Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rock-wool fibers cellulose" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Performance Testing of Radiant Barriers (RB) with R11, R19, and R30 Cellulose and Rock Wool Insulation  

E-Print Network (OSTI)

TVA has previously conducted testing to determine the effects of attic RBs when used with R19 fiberglass insulation during summer and winter conditions. This previous testing, and the testing described in this paper, used five small test cells exposed to ambient conditions. Heat flux transducers measured heat transfer between the attic and conditioned space. The objective of the testing described in this paper was to determine summer and winter RB performance when used with cellulose and rock wool insulations at R-vale levels of R11, R19, and R30. In addition, several summer side-by-side tests were conducted to determine the effects of: dust on RB performance, a low-emissivity paint, a high-emissivity material (black plastic) laid directly on top of the insulation, and single-sided RB placed on top of the insulation (RBT) with the reflective side down.

Hall, J. A.

1988-01-01T23:59:59.000Z

2

Cellulosic Fiber Composites Using Protein Hydrolysates and Methods ...  

Technology Marketing Summary This technology relates to cellulosic fiber composites using protein hydrolysates. Description Cellulosic fiber composites currently use ...

3

Cellulosic Fiber Composites Using Protein Hydrolysates and Methods of Making Same  

This technology relates to cellulosic fiber composites using protein hydrolysates. Cellulosic fiber composites currently use petroleum-derived binders ...

4

Method for separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials  

DOE Patents (OSTI)

A method for enzymatically separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials. The cellulosic material, such as newsprint, is introduced into a first chamber containing a plastic canvas basket. This first chamber is in fluid communication, via plastic tubing, with a second chamber containing cellobiase beads in a plastic canvas basket. Cellulase is then introduced into the first chamber. A programmable pump then controls the flow rate between the two chambers. The action of cellulase and stirring in the first chamber results in the production of a slurry of newsprint pulp in the first chamber. This slurry contains non-inked fibers, inked fibers, and some cellobiose. The inked fibers and cellobiose flow from the first chamber to the second chamber, whereas the non-inked fibers remain in the first chamber because they are too large to pass through the pores of the plastic canvas basket. The resulting non-inked and inked fibers are then recovered. 6 figs.

Woodward, J.

1998-12-01T23:59:59.000Z

5

Electrospinning of Cellulose and Carbon Nanotube-Cellulose Fibers for Smart Applications  

E-Print Network (OSTI)

Cellulose is one of the Earth’s most abundant natural polymers and is used as a raw material in various applications. Recently, cellulose based electro-active paper (EAPap) has been investigated for its potential as a smart material. The electrospinning method of fiber production is not a new way of fabrication; however, it has attracted a great deal of attention as a means of producing non-woven membranes of nanofibers due to its simple methodology and the advent of nano applications. Electrospinning occurs when the electrical force on a polymer droplet overcomes its surface tension, and a charged jet is ejected. As the liquid jet is continuously elongated and the solvent is evaporated, the fibers of sub-micron size or nano size are formed, depending on the conditions. In a previous study, a cellulose mat was electro-spun and tested for piezoelectric characteristics. This aligned, electrospun cellulose mat showed a possibility as a promising smart material. Additionally, carbon nanotubes have been considered for the versatile nano-applications due to their superior material properties such as low density and high aspect ratio. Parametric studies were conducted to find optimum conditions for electrospinning. Various ways of reducing surface tension of solutions were investigated including radiative and convective heating of the solution. Pre-examination of solution is very important in consistent, uniform fiber formation. In this study, cellulose and CNT-cellulose composite fibers were prepared via electrospinning. The optimal experimental conditions for fiber generation were found so that the mechanical strength of both the composite and the pure cellulose fibers could be compared in future tests. Eventually, this fiber will be interwoven into the CNT-cellulose mat and be used as an electro-active paper sensor and actuator. The CNT-cellulose electrospun mat will be widely applicable to the fields of sensors, filters and reinforcements in composites because of its intrinsic properties of porosity, light weight, flexibility, and large surface area. To be used in the aforementioned applications, piezoelectric properties of this composite will also be tested in the next step.

Pankonien, Alexander

2008-08-19T23:59:59.000Z

6

Cellulose solventbased biomass pretreatment breaks highly ordered hydrogen bonds in cellulose fibers of switchgrass  

NLE Websites -- All DOE Office Websites (Extended Search)

Solvent-Based Solvent-Based Biomass Pretreatment Breaks Highly Ordered Hydrogen Bonds in Cellulose Fibers of Switchgrass Noppadon Sathitsuksanoh, 1,2 Zhiguang Zhu, 1 Sungsool Wi, 3 Y.-H. Percival Zhang 1,2,4 1 Biological Systems Engineering Department, Virginia Polytechnic Institute and State University (Virginia Tech), 210-A Seitz Hall, Blacksburg, Virginia 24061; telephone: 540-231-7414, fax: 540-231-3199; e-mail: ypzhang@vt.edu 2 Institute for Critical Technology and Applied Science (ICTAS), Virginia Polytechnic Institute and State University, Blacksburg, Virginia 3 Chemistry Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 4 DOE BioEnergy Science Center (BESC), Oak Ridge, Tennessee Received 25 June 2010; revision received 23 August 2010; accepted 4 October 2010 Published online 21 October 2010 in Wiley Online Library (wileyonlinelibrary.com).

7

NEUTRON AND SYNCHROTRON X-RAY FIBER DIFFRACTION STUDIES OF CELLULOSE POLYMORPHS.  

DOE Green Energy (OSTI)

Although the crystalline nature of cellulose has been one of most studied structural problems in polymer science there remain many open questions. Cellulose is a polymer formed by (1-4)-linked {beta}-D-glucosyl residues that are alternately rotated by 180o along the polymer axis to form flat ribbon-like chains. Each glucosyl unit bears three hydroxyl groups, one an hydroxymethyl group. It has been long recognized that these hydroxyl groups and their ability to bond via hydrogen bonding not only play a major role in directing how the crystal structure of cellulose forms but also in governing important physical properties of cellulose materials. Through the development of new techniques we have been able to prepare fiber samples of cellulose with exceptionally high order. The quality of these samples is allowing us to exploit the unique properties of synchrotron X-ray and neutron sources in order to collect diffraction data to near atomic resolution. Synchrotron X-rays are used to provide accurate crystallographic parameters for C and O atoms. However, because of the relatively weak scattering power of H atoms for X-rays, neutrons are used to determine H atom parameters. We have developed methods for replacing labile H atoms with D, without any loss in crystalline perfection. Deuterated fibers can diffract neutrons with intensities that are substantially different from the intensities diffracted from hydrogenated fibers. These differences, along with the phases calculated from the C and O positions determined in our X-ray studies, are used to calculate Fourier difference syntheses in which density associated with labile hydrogen atoms is imaged. The unprecedented high resolution of these data is revealing new information on cellulose structure and hydrogen bonding.

Los Alamos National Laboratory

2001-01-01T23:59:59.000Z

8

Ligning-Derived Carbon Fiber as a Co-Product of Refining Cellulosic Biomass  

Science Conference Proceedings (OSTI)

Lignin by-products from biorefineries has the potential to provide a low-cost alternative to petroleum-based precursors to manufacture carbon fiber, which can be combined with a binding matrix to produce a structural material with much greater specific strength and specific stiffness than conventional materials such as steel and aluminum. The market for carbon fiber is universally projected to grow exponentially to fill the needs of clean energy technologies such as wind turbines and to improve the fuel economies in vehicles through lightweighting. In addition to cellulosic biofuel production, lignin-based carbon fiber production coupled with biorefineries may provide $2,400 to $3,600 added value dry Mg-1 of biomass for vehicle applications. Compared to producing ethanol alone, the addition of lignin-derived carbon fiber could increase biorefinery gross revenue by 30% to 300%. Using lignin-derived carbon fiber in 15 million vehicles per year in the US could reduce fossil fuel consumption by 2-5 billion liters year-1, reduce CO2 emissions by about 6.7 million Mg year-1, and realize fuel savings through vehicle lightweighting of $700 to $1,600 per Mg biomass processed. The value of fuel savings from vehicle lightweighting becomes economical at carbon fiber price of $6.60 kg-1 under current fuel prices, or $13.20 kg-1 under fuel prices of about $1.16 l-1.

Langholtz, Matthew H [ORNL; Downing, Mark [ORNL; Graham, Robin Lambert [ORNL; Baker, Fred S [ORNL; Compere, A L [ORNL; Griffith, William {Bill} L [ORNL; Boeman, Raymond G [ORNL; Keller, Martin [ORNL

2013-01-01T23:59:59.000Z

9

Microscopic Analysis of Corn Fiber Using Corn Starch- and Cellulose-Specific Molecular Probes  

Science Conference Proceedings (OSTI)

Ethanol is the primary liquid transportation fuel produced from renewable feedstocks in the United States today. The majority of corn grain, the primary feedstock for ethanol production, has been historically processed in wet mills yielding products such as gluten feed, gluten meal, starch, and germ. Starch extracted from the grain is used to produce ethanol in saccharification and fermentation steps; however the extraction of starch is not 100% efficient. To better understand starch extraction during the wet milling process, we have developed fluorescent probes that can be used to visually localize starch and cellulose in samples using confocal microscopy. These probes are based on the binding specificities of two types of carbohydrate binding modules (CBMs), which are small substrate-specific protein domains derived from carbohydrate degrading enzymes. CBMs were fused, using molecular cloning techniques, to a green fluorescent protein (GFP) or to the red fluorescent protein DsRed (RFP). Using these engineered probes, we found that the binding of the starch-specific probe correlates with starch content in corn fiber samples. We also demonstrate that there is starch internally localized in the endosperm that may contribute to the high starch content in corn fiber. We also surprisingly found that the cellulose-specific probe did not bind to most corn fiber samples, but only to corn fiber that had been hydrolyzed using a thermochemical process that removes the residual starch and much of the hemicellulose. Our findings should be of interest to those working to increase the efficiency of the corn grain to ethanol process.

Porter, S. E.; Donohoe, B. S.; Beery, K. E.; Xu, Q.; Ding, S.-Y.; Vinzant, T. B.; Abbas, C. A.; Himmel, M. E.

2007-09-01T23:59:59.000Z

10

Spinning Carbon Fiber Precursors from 1-Butyl-3-Methylimidazolium Chloride Cellulose Solutions.  

E-Print Network (OSTI)

??Cellulose is an abundant natural renewable polymer that is used in the production of many materials. However, limited processibility and reduced solubility have restricted its… (more)

Gelderloos-Sammons, Rhea J

2007-01-01T23:59:59.000Z

11

Analysis of the topochemical effects of dielectric-barrier discharge on cellulosic fibers  

E-Print Network (OSTI)

This study investigates the fundamental topochemical effects of dielectric-barrier discharge treatment on bleached chemical pulp and unbleached mechanical pulp fiber surfaces. Fibers were treated with various levels of dielectric-barrier discharge treatment ranging from 0 to 9.27 kw/m2/min. Changes to the fiber surface topochemistry were investigated by atomic force microscopy (AFM). The AFM studies were complemented by inverse gas chromatography (IGC), contact angle evaluation, poly-electrolyte titration, viscosity testing and determination of water retention value (WRV). The static coefficient of friction and zero-span tensile index of sheets were also evaluated. Low dielectric-barrier discharge treatment levels resulted in increased surface energy and roughness. Fibers treated at high applied power levels showed surface energies and roughness levels near that of reference samples as well as evidence of degradation and decreased fiber swelling. Abbreviations: AFM- atomic force microscopy; BKP- bleached kraft pulp; IGC- inverse gas chromatography; TMP- thermomechanical pulp; WRV- water retention value.

Lorraine C. V; Thomas Lder; Arthur J. A~auskas

2004-01-01T23:59:59.000Z

12

Interaction between the CBM of Cel9A from Thermobifida fusca and Cellulose Fibers  

DOE Green Energy (OSTI)

Molecular docking and molecular dynamics simulations were used to investigate the binding of a cellodextrin chain in a crystal-like conformation to the carbohydrate-binding module (CBM) of Cel9A from Thermobifida fusca. The fiber was found to bind to the CBM in a single and well-defined configuration in-line with the catalytic cleft, supporting the hypothesis that this CBM plays a role in the catalysis by feeding the catalytic domain with a polyssacharide chain. The results also expand the current known list of residues involved in the binding. The polysaccharide-protein attachment is shown to be mediated by five amine/amide-containing residues. E478 and E559 were found not to interact directly with the sugar chain; instead they seem to be responsible to stabilize the binding motif via hydrogen bonds.

Oliveira, Osmair V.; Freitas, Luiz C.; Straatsma, TP; Lins, Roberto D.

2009-01-01T23:59:59.000Z

13

TamingtheCellulosic BiofuelsSupplyChain  

E-Print Network (OSTI)

TamingtheCellulosic BiofuelsSupplyChain: DistributedBiomassProcessingfor SustainableBiofuelsandAnimalFeeds Supplying adequate cellulosic biomass to biorefineries is emerging as a crucial issue in biofuel systems. We addresss this problem by pretreating cellulosic biomass using the ammonia fiber expansion (AFEX) process

Grissino-Mayer, Henri D.

14

Synthesis of Cellulose Hydrogels with High Strength and ...  

Science Conference Proceedings (OSTI)

The high strength of cellulose fibers and the ability to synthesize gels with high optical ... Ab Initio Study of Thermodynamic, Structural, and Elastic Properties of ...

15

SUSTAINABLE COMPOSITES: CELLULOSE NANOFIBERS  

Science Conference Proceedings (OSTI)

SUSTAINABLE COMPOSITES: CELLULOSE NANOFIBERS. Iulia Sacui and Jeffrey Gilman. Our main focus is on using cellulose ...

16

Ionic-Liquid Induced Changes in Cellulose Structure Associated with Enhanced Biomass Hydrolysis  

DOE Green Energy (OSTI)

The effects of varying ionic liquid pretreatment parameters on various sources of lignocellulosic biomass have been studied using X-ray powder diffraction, X-ray fiber diffraction, and compositional analysis. Comparative enzymatic hydrolysis and sugar analysis were used to relate the observed changes in cellulose structure to biomass digestibility. In this study, the factor most clearly associated with enhanced biomass hydrolysis is the conversion of cellulose fibers from the cellulose I to the cellulose II crystal phase.

Samayam, Indira P.; Hanson, B. Leif; Langan, Paul; Schall, Constance A. (Toledo)

2011-11-07T23:59:59.000Z

17

Magnetic Alignment of Cellulose Nanowhiskers in an All-Cellulose Composite  

DOE Green Energy (OSTI)

Unidirectional reinforced nanocomposite paper was fabricated from cellulose nanowhiskers and wood pulp under an externally-applied magnetic field. A 1.2 Tesla magnetic field was applied in order to align the nanowhiskers in the pulp as it was being formed into a sheet of paper. The magnetic alignment was driven by the characteristic negative diamagnetic anisotropy of the cellulose nanowhiskers. ESEM micrographs demonstrated unidirectional alignment of the nanowhiskers in the all-cellulose composite paper. Comparing with control paper sheets made from wood pulp only, the storage modulus in the all-cellulose nanocomposites increased dramatically. The storage modulus along the direction perpendicular to the magnetic field was much stronger than that parallel to the magnetic field. This new nanocomposite, which contains preferentially-oriented microstructures and has improved mechanical properties, demonstrates the possibility of expanding the functionality of paper products and constitutes a promising alternative to hydrocarbon based materials and fibers.

Li, Dongsheng; Liu, Zuyan; Al-Haik, Marwan; Tehrani, Mehran; Murray, Frank; Tennenbaum, Rina; Garmestani, Hamid

2010-08-01T23:59:59.000Z

18

Trillium FiberFuels Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Place Corvallis, Oregon Zip 97333 Product Oregon-based biochemical cellulosic ethanol technology developer. References Trillium FiberFuels Inc1 LinkedIn Connections...

19

Cellulose binding domain proteins  

DOE Patents (OSTI)

A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

Shoseyov, Oded (Karmey Yosef, IL); Shpiegl, Itai (Rehovot, IL); Goldstein, Marc (Davis, CA); Doi, Roy (Davis, CA)

1998-01-01T23:59:59.000Z

20

Development of a Green Clay-fiber Composite for Fire Protection  

Science Conference Proceedings (OSTI)

The latter consisted of short recycling paper cellulosic fibers and long kapok ( Ceiba Pentadra). The composite composition had been optimized regarding the  ...

Note: This page contains sample records for the topic "rock-wool fibers cellulose" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Method of saccharifying cellulose  

DOE Patents (OSTI)

A method is disclosed of saccharifying cellulose by incubation with the cellulase of Clostridium thermocellum in a broth containing an efficacious amount of thiol reducing agent. Other incubation parameters which may be advantageously controlled to stimulate saccharification include the concentration of alkaline earth salts, pH, temperature, and duration. By the method of the invention, even native crystalline cellulose such as that found in cotton may be completely saccharified.

Johnson, E.A.; Demain, A.L.; Madia, A.

1983-05-13T23:59:59.000Z

22

Available Technologies: Cellulose Degradation Using ...  

... enzymes. When combined with heat and acid pretreatments for cellulose, they can speed the degradation process, saving time and energy, ...

23

Conversion of cellulose materials into nanostructured ceramics by biomineralization  

DOE Green Energy (OSTI)

Synthesis of hierarchically ordered silica materials having ordered wood cellular structures has been demonstrated through in-situ mineralization of wood by means of surfactant-directed mineralization in solutions of different pH. At low pH, silicic acid penetrates the buried interfaces of the wood cellular structure without clogging the pores to subsequently “molecularly paint” the interfaces thereby forming a positive replica following calcinations. At high pH, the hydrolyzed silica rapidly condenses to fill the open cells and pits within the structure resulting in a negative replica of the structure. Surfactant-templated mineralization in acid solutions leads to the formation of micelles that hexagonally pack at the wood interfaces preserving structural integrity while integrating hexagonally ordered nanoporosity into the structure of the cell walls following thermal treatment in air. The carbothermal reduction of mineralized wood with silica at high temperature produces biomorphic silicon carbide (SiC) materials, which are typical aggregations of ?-SiC nanoparticles. To understand the roles of each component (lignin, crystalline cellulose, amorphous cellulose) comprising the natural biotemplates in the transformation to SiC rods, three different cellulose precursors including unbleached and bleached pulp, and cellulose nanocrystals have been utilized. Lignin in unbleached pulp blocked homogeneous penetration of silica into the pores between cellulose fibers resulting in non-uniform SiC fibers containing thick silica layers. Bleached pulp produced uniform SiC rods with camelback structures (80nm in diameter; ~50?m in length), indicating that more silica infiltrates into the amorphous constituent of cellulose to form chunky rather than straight rod structures. The cellulose nanocrystal (CNXL) material produced clean and uniform SiC nanowires (70nm in diameter; >100?m in length) without the camelback structure.

Shin, Yongsoon; Exarhos, Gregory J.

2007-06-01T23:59:59.000Z

24

Correlating Detergent Fiber Analysis and Dietary Fiber Analysis Data for Corn Stover  

Science Conference Proceedings (OSTI)

There exist large amounts of detergent fiber analysis data [neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL)] for many different potential cellulosic ethanol feedstocks, since these techniques are widely used for the analysis of forages. Researchers working in the area of cellulosic ethanol are interested in the structural carbohydrates in a feedstock (principally glucan and xylan), which are typically determined by acid hydrolysis of the structural fraction after multiple extractions of the biomass. These so-called dietary fiber analysis methods are significantly more involved than detergent fiber analysis methods. The purpose of this study was to determine whether it is feasible to correlate detergent fiber analysis values to glucan and xylan content determined by dietary fiber analysis methods for corn stover. In the detergent fiber analysis literature cellulose is often estimated as the difference between ADF and ADL, while hemicellulose is often estimated as the difference between NDF and ADF. Examination of a corn stover dataset containing both detergent fiber analysis data and dietary fiber analysis data predicted using near infrared spectroscopy shows that correlations between structural glucan measured using dietary fiber techniques and cellulose estimated using detergent techniques, and between structural xylan measured using dietary fiber techniques and hemicellulose estimated using detergent techniques are high, but are driven largely by the underlying correlation between total extractives measured by fiber analysis and NDF/ADF. That is, detergent analysis data is correlated to dietary fiber analysis data for structural carbohydrates, but only indirectly; the main correlation is between detergent analysis data and solvent extraction data produced during the dietary fiber analysis procedure.

Wolfrum, E. J.; Lorenz, A. J.; deLeon, N.

2009-01-01T23:59:59.000Z

25

Microbial diversity of cellulose hydrolysis  

NLE Websites -- All DOE Office Websites (Extended Search)

871; 871; NO. OF PAGES 5 Please cite this article in press as: Wilson DB. Microbial diversity of cellulose hydrolysis, Curr Opin Microbiol (2011), doi:10.1016/j.mib.2011.04.004 Available online at www.sciencedirect.com Microbial diversity of cellulose hydrolysis David B Wilson Enzymatic hydrolysis of cellulose by microorganisms is a key step in the global carbon cycle. Despite its abundance only a small percentage of microorganisms can degrade cellulose, probably because it is present in recalcitrant cell walls. There are at least five distinct mechanisms used by different microorganisms to degrade cellulose all of which involve cellulases. Cellulolytic organisms and cellulases are extremely diverse possibly because their natural substrates, plant cell walls, are very diverse. At this time the microbial ecology of cellulose degradation in any environment is still

26

Why Sequence Cellulose Degrading Bacteria?  

NLE Websites -- All DOE Office Websites (Extended Search)

Cellulose Degrading Bacteria? Cellulose Degrading Bacteria? One of the major DOE missions is the production of renewable fuels to reduce our dependence on foreign oil, and also to take the place of petroleum-based fuels as these resources dwindle. Biologically produced ethanol is one possible replacement for fossil fuels. Currently, ethanol is produced from corn starch, but there is much research into using lignocellulosic materials (those containing cellulose, hemicellulose, and lignin) as the raw material for ethanol production. Ethanol production from cellulose requires several steps: pretreatment with steam, acid, or ammonia; digestion of cellulose to sugars; and fermentation of sugars to ethanol. The slowest and most expensive step is the breakdown of cellulose, chemically accomplished by cellulases. The second and third

27

Exploiting Genetic Variation of Fiber Components and Morphology in Juvenile Loblolly Pine.  

DOE Green Energy (OSTI)

This study has found that loblolly pine families differed significantly for cellulose yield, fiber length, fiber coarseness, and less for lignin content. The implication for forest industry is that genetic testing and selection for these traits is possible and practical. With sufficient genetic variation, we could improve cellulose yield, fiber length, fiber coarseness, and reduce lignin content in Loblolly pine. With the continued progress in molecular research, some candidate genes may be used for selecting cellulose content, lignin content, hemicellulose content and specific extractible metabolites. This would accelerate current breeding and testing program significantly, and produce pine plantations with not only high productivity, but desirable wood properties as well.

Hou-min Chang, John F. Kadla, Bailian Li, Ron Sederoff,

2005-06-30T23:59:59.000Z

28

Genes and Mechanisms for Improving Cellulosic Ethanol ...  

Background Cellulosic biomass accounts for roughly 75% of all plant material, and can be used to produce biofuels. Sources of cellulosic biomass ...

29

Genes and Mechanisms for Improving Cellulosic Ethanol ...  

Cellulosic biomass accounts for roughly 75% of all plant material, and can be used to produce biofuels. Sources of cellulosic biomass include ...

30

Cellulose binding domain fusion proteins  

DOE Patents (OSTI)

A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

Shoseyov, Oded (Karmey Yosef, IL); Shpiegl, Itai (Rehovot, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

1998-01-01T23:59:59.000Z

31

Cellulose binding domain fusion proteins  

DOE Patents (OSTI)

A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

1998-02-17T23:59:59.000Z

32

Compositions and methods for increasing cellulose production  

SciTech Connect

This disclosure relates to methods and compositions for genetically altering cellulose biosynthesis.

Yang, Zhenbiao (Riverside, CA); Karr, Stephen (Camarillo, CA)

2012-05-01T23:59:59.000Z

33

Magnetic cellulose-derivative structures  

DOE Patents (OSTI)

Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorbtion agents can be incorporated during the manufacture of the structure.

Walsh, Myles A. (Falmouth, MA); Morris, Robert S. (Fairhaven, MA)

1986-09-16T23:59:59.000Z

34

Magnetic cellulose-derivative structures  

DOE Patents (OSTI)

Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorption agents can be incorporated during the manufacture of the structure. 3 figs.

Walsh, M.A.; Morris, R.S.

1986-09-16T23:59:59.000Z

35

Low Cost Carbon Fiber From Renewable Resources  

DOE Green Energy (OSTI)

The Department of Energy Partnership for a New Generation of Vehicles has shown that, by lowering overall weight, the use of carbon fiber composites could dramatically decrease domestic vehicle fuel consumption. For the automotive industry to benefit from carbon fiber technology, fiber production will need to be substantially increased and fiber price decreased to $7/kg. To achieve this cost objective, alternate precursors to pitch and polyacrylonitrile (PAN) are being investigated as possible carbon fiber feedstocks. Additionally, sufficient fiber to provide 10 to 100 kg for each of the 13 million cars and light trucks produced annually in the U.S. will require an increase of 5 to 50-fold in worldwide carbon fiber production. High-volume, renewable or recycled materials, including lignin, cellulosic fibers, routinely recycled petrochemical fibers, and blends of these components, appear attractive because the cost of these materials is inherently both low and insensitive to changes in petroleum price. Current studies have shown that a number of recycled and renewable polymers can be incorporated into melt-spun fibers attractive as carbon fiber feedstocks. Highly extrudable lignin blends have attractive yields and can be readily carbonized and graphitized. Examination of the physical structure and properties of carbonized and graphitized fibers indicates the feasibility of use in transportation composite applications.

Compere, A.L.

2001-08-10T23:59:59.000Z

36

Cellulosic ethanol | Open Energy Information  

Open Energy Info (EERE)

Cellulosic ethanol Cellulosic ethanol Jump to: navigation, search Cellethanol.jpg Cellulosic ethanol is identical to first generation bio ethanol except that it can be derived from agricultural residues, other lignocellulosic raw materials or energy crops. These lignocellulosic raw materials are more widely available than the standard material used for ethanol. They are also considered to be more sustainable, however they need to be broken down (hydrolysed) into simple sugars prior to distillation, a much more complex process than the first generation bioethanol. It first must go through pretreatment,hydrolysis then a conversion. Research since the 1970s and large investments are being made in the US and Europe to speed up development of this route to bioethanol. Biomass refineries like Inbicon in Denmark are producing

37

Drying of fiber webs  

DOE Patents (OSTI)

A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

Warren, David W. (9253 Glenoaks Blvd., Sun Valley, CA 91352)

1997-01-01T23:59:59.000Z

38

Drying of fiber webs  

DOE Patents (OSTI)

A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

Warren, D.W.

1997-04-15T23:59:59.000Z

39

Structural and Thermal Stability Properties of Cellulose ...  

Science Conference Proceedings (OSTI)

In this work, nanocomposite based on cellulose nanowhiskers (CNW) and polyactic ... The optical transparency properties were studied by Fourier Transform ...

40

Method of producing thin cellulose nitrate film  

DOE Patents (OSTI)

An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

Lupica, S.B.

1975-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "rock-wool fibers cellulose" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Mascoma Announces Major Cellulosic Biofuel Technology Breakthrough  

E-Print Network (OSTI)

Mascoma Announces Major Cellulosic Biofuel Technology Breakthrough Lebanon, NH - May 7, 2009 bioprocessing, or CBP, a low-cost processing strategy for production of biofuels from cellulosic biomass. CBP much, much closer to billions of gallons of low cost cellulosic biofuels," said Michigan State

42

Production of bacterial cellulose from alternate feedstocks  

DOE Green Energy (OSTI)

Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS and HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

D. N. Thompson; M. A. Hamilton

2000-05-07T23:59:59.000Z

43

Cellulosic fiber composites using protein hydrolysates and methods ...  

Biomass and Biofuels; Building Energy Efficiency; Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and ...

44

Enzymatic Hydrolysis of Cellulosic Biomass  

Science Conference Proceedings (OSTI)

Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

2011-08-22T23:59:59.000Z

45

Preparation and Characterization on Cellulose Nanofiber Film  

Science Conference Proceedings (OSTI)

In this study, cellulose nanofibers from wood were obtained using ... Employment of PS Template in the Surface Modification and Performance Improvement of ...

46

Supercomputer Provides Molecular Insight into Cellulose (Fact...  

NLE Websites -- All DOE Office Websites (Extended Search)

cellulose, which is a fundamental step in biomass conversion technolo- gies for biofuels production. NREL used the new high-performance supercomputer Red Mesa to conduct...

47

Settling of loose-fill insulations due to vibration  

SciTech Connect

Vibration and impact testing of loose-fill cellulosic, fiberglass, and rock wool insulations has been carried out to provide a data base for settled density tests. The ratio of final density to initial density for the three materials has been determined for repeated 19-mm (0.75-in.) drops, repeated 152-mm (6.0-in.) drops, and vibrations at frequencies from 10 to 60 Hz with displacements from 0.1 mm (0.004 in.) to 6.35 mm (0.25 in.). Repeated 19-mm or 152-mm drops increased the density ratio for rock wool insulation specimens the most, while the cellulosic insulation specimens were affected the least. Density ratios after 200 19-mm drops averaged 1.75 for loose-fill rock wool, 1.45 for loose-fill fiberglass, and 1.27 for loose-fill cellulosic insulations. Vibration tests for 7200 s at 0.1-mm displacement and 15 Hertz produced negligible changes in the densities of all three loose-fill insulations. An 1800-s vibration test at 2.5 mm (0.1 in.) and 10 Hz resulted in average density ratios of 1.05, 1.11, and 1.18 for specimens of loose-fill cellulosic, rock wool, and fiberglass insulations, respectively. Changes in either frequency of vibration, displacement, or test duration can be used to achieve a wide range of laboratory results. Efforts to correlate laboratory results with in situ density measurements are presented.

Yarbrough, D.W.; McElroy, D.L.; Wright, J.W.

1981-12-01T23:59:59.000Z

48

Settling of loose-fill insulations due to vibration  

SciTech Connect

Vibration and impact testing of loose-fill cellulosic, fiberglass, and rock wool insulations has been carried out to provide a data base for settled density tests. The ratio of final density to initial density for the three materials has been determined for repeated 19-mm (0.75-in.) drops, repeated 152-mm (6.0-in.) drops, and vibrations at frequencies from 10 to 60 Hz with displacements from 0.1 mm (0.004 in.) to 6.35 mm (0.25 in.). Repeated 19-mm or 152-mm drops increased the density ratio for rock wool insulation specimens the most, while the cellulosic insulation specimens were affected the least. Density ratios after 200 19-mm drops averaged 1.75 for loose-fill rock wool, 1.45 for loose-fill fiberglass, and 1.27 for loose-fill cellulosic insulations. Vibration tests for 7200 s at 0.1-mm displacement and 15 Hertz produced negligible changes in the densities of all three loose-fill insulations. An 1800-s vibration test at 2.5 mm (0.1 in.) and 10 Hz resulted in average density ratios of 1.05, 1.11, and 1.18 for specimens of loose-fill cellulosic, rock wool, and fiberglass insulations, respectively. Changes in either frequency of vibration, displacement, or test duration can be used to achieve a wide range of laboratory results. Efforts to correlate laboratory results with in situ density measurements are presented.

Yarbrough, D.W.; Wright, J.H.; McElroy, D.L.; Scanlan, T.F.

1983-01-01T23:59:59.000Z

49

Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking October...

50

Genes and Mechanisms for Improving Cellulosic Vaccine for ...  

Background Cellulosic biomass accounts for roughly 75% of all plant material, and can be used to produce biofuels. Sources of cellulosic biomass ...

51

Less is more: Novel cellulose structure requires fewer enzymes...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved methods for breaking down cellulose nanofibers are central to cost-effective biofuel production. June 19, 2013 An enzyme (shown in blue) pulls out individual cellulose...

52

Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel  

E-Print Network (OSTI)

Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel suggests that infrastructure development was not a major limitation. Cellulosic-based advanced biofuel has

53

Alternative Fuels Data Center: Cellulosic Ethanol Research and Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cellulosic Ethanol Cellulosic Ethanol Research and Development Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Google Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Delicious Rank Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on AddThis.com... More in this section... Federal State

54

Methods for enhancing the degradation or conversion of cellulosic material  

DOE Patents (OSTI)

The present invention relates to methods for degrading or converting a cellulosic material and for producing a substance from a cellulosic material.

Harris, Paul (Carnation, WA); Rey, Michael (Davis, CA); Ding, Hanshu (Davis, CA)

2012-04-03T23:59:59.000Z

55

Selective solvent extraction of cellulosic material  

DOE Patents (OSTI)

Cellulosic products having a high hemicellulose to lignin weight ratio are obtained by extracting a cellulosic composition with basic ethanol-water solution having a pH between about 12 and about 14 at a temperature between about 15.degree. and about 70.degree. C. and for a time period between about 2 and about 80 hours.

Wang, Daniel I. C. (Belmont, MA); Avgerinos, George C. (Newton Center, MA)

1983-01-01T23:59:59.000Z

56

Selective solvent extraction of cellulosic material  

DOE Patents (OSTI)

Cellulosic products having a high hemicellulose to lignin weight ratio are obtained by extracting a cellulosic composition with basic ethanol-water solution having a pH between about 12 and about 14 at a temperature between about 15 and about 70 C and for a time period between about 2 and about 80 hours. 6 figs.

Wang, D.I.C.; Avgerinos, G.C.

1983-07-26T23:59:59.000Z

57

Nucleic acids encoding a cellulose binding domain  

DOE Patents (OSTI)

A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 15 figs.

Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

1996-03-05T23:59:59.000Z

58

Nucleic acids encoding a cellulose binding domain  

SciTech Connect

A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

Shoseyov, Oded (Karmey Yosef, IL); Shpiegl, Itai (Rehovot, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

1996-01-01T23:59:59.000Z

59

Definition: Cellulosic ethanol | Open Energy Information  

Open Energy Info (EERE)

Dictionary.png Dictionary.png Cellulosic ethanol An advanced type of biofuel that is produced by breaking down and using the cellulose compound found in trees and grasses.[1] View on Wikipedia Wikipedia Definition Cellulosic ethanol is a biofuel produced from wood, grasses, or the inedible parts of plants. It is a type of biofuel produced from lignocellulose, a structural material that comprises much of the mass of plants. Lignocellulose is composed mainly of cellulose, hemicellulose and lignin. Corn stover, Panicum virgatum (switchgrass), Miscanthus grass species, wood chips and the byproducts of lawn and tree maintenance are some of the more popular cellulosic materials for ethanol production. Production of ethanol from lignocellulose has the advantage of abundant and

60

Alternative Fuels Data Center: Cellulosic Biofuel Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cellulosic Biofuel Tax Cellulosic Biofuel Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Cellulosic Biofuel Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Cellulosic Biofuel Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Cellulosic Biofuel Tax Exemption on Google Bookmark Alternative Fuels Data Center: Cellulosic Biofuel Tax Exemption on Delicious Rank Alternative Fuels Data Center: Cellulosic Biofuel Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Cellulosic Biofuel Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Cellulosic Biofuel Tax Exemption Fuel consisting of cellulosic biofuel or a blend of gasoline and cellulosic

Note: This page contains sample records for the topic "rock-wool fibers cellulose" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Cellulose Pyrolysis A Literature, Review.  

Office of Scientific and Technical Information (OSTI)

Reaction Mechanisms in Reaction Mechanisms in Cellulose Pyrolysis A Literature, Review. - - pacific N o r t h ~ ~ ~ , baboratwies I - - bCL-T-,,;, .,- , . . . I ' I . - " 1- jl,! # . .' , . - --h 1 , i b - . "I 1.- . . ., .. ' N O T - I C E , , If PACIF tC NORTHWLST U B O R A T ~ R Y .4peiild by B h m E far c h t ,EP4ERGY RESEARCH AN0 PEVELOPMEM ADMtNlSTRAnQN U m h Contract Z Y - ~ ~ - C ~ & I # D w n : m a , m & l 3 Q j l m OIdrfrn m y - !*? 1SI71Y9 1 - m-u3 2s-m .**-2?3 ,Sbca lcPa w m *a0 Iffy &a It- w-% w w @.a SlO.0 m u 6 REACTION MECHANISMS IN CELLULOSE PYROLYSIS A LITERATURE REVIEW by Peter M. Molton T.F. Demmitt Chemical Technology Department BATTELLE Pacific Northwest Laboratories Richland, Washington 99352 CONTENTS . . . . . . . . . . . . . . L I S T OF F I G U R E S iii L I S T O F T A B L E S . . . . . . . . . . . . . . i v . . . . . . . . . . . . . I . INTRODUCTION 1

62

Effects of Dilute Acid Pretreatment on Cellulose DP and the Relationship Between DP Reduction and Cellulose Digestibility  

Science Conference Proceedings (OSTI)

The degree of polymerization(DP) of cellulose is considered to be one of the most important properties affecting the enzymatic hydrolysis of cellulose. Various pure cellulosic and biomass materials have been used in a study of the effect of dilute acid treatment on cellulose DP. A substantial reduction in DP was found for all pure cellulosic materials studied even at conditions that would be considered relatively mild for pretreatment. The effect of dilute acid pretreatment on cellulose DP in biomass samples was also investigated. Corn stover pretreated with dilute acid under the most optimal conditions contained cellulose with a DPw in the range of 1600{approx}3500, which is much higher than the level-off DP(DPw 150{approx}300) obtained with pure celluloses. The effect of DP reduction on the saccharification of celluloses was also studied. From this study it does not appear that cellulose DP is a main factor affecting cellulose saccharification.

Wang, W.; Chen, X.; Tucker, M.; Himmel, M. E.; Johnson, D. K.

2012-01-01T23:59:59.000Z

63

Renewable materials for tissue repair/biocompatibility of cellulose nanocrystals  

Science Conference Proceedings (OSTI)

The surface of cellulose displays hydroxyl groups can be reacted to a broad range of molecules adding unique properties to cellulose surfaces. This opens for possible applications for cellulose nanoparticles in biomedicine, specifically in areas that ... Keywords: atomic force microscope, biocompatibility, cellulose nanoparticles

E.-M. Ulrika Egertsdotter; Cyrus K. Aidun

2007-02-01T23:59:59.000Z

64

Production of permeable cellulose triacetate membranes  

DOE Patents (OSTI)

A phase inversion process for the preparation of cellulose triacetate (CTA) and regenerated cellulose membranes is disclosed. Such membranes are useful as supports for liquid membranes in facilitated transport processes, as microfiltration membranes, as dialysis or ultrafiltration membranes, and for the preparation of ion-selective electrodes. The process comprises the steps of preparing a casting solution of CTA in a solvent comprising a mixture of cyclohexanone and methylene chloride, casting a film from the casting solution, and immersing the cast film in a methanol bath. The resulting CTA membrane may then be hydrolyzed to regenerated cellulose using conventional techniques.

Johnson, B.M.

1986-12-23T23:59:59.000Z

65

Reaction mechanisms in cellulose pyrolysis: a literature review  

DOE Green Energy (OSTI)

A bibliographic review of 195 references is presented outlining the history of the research into the mechanisms of cellulose pyrolysis. Topics discussed are: initial product identification, mechanism of initial formation of levoglucosan, from cellulose and from related compounds, decomposition of cellulose to other compounds, formation of aromatics, pyrolysis of levoglucosan, crosslinking of cellulose, pyrolytic reactions of cellulose derivatives, and the effects of inorganic salts on the pyrolysis mechanism. (JSR)

Molton, P.M.; Demmitt, T.F.

1977-08-01T23:59:59.000Z

66

Essays concerning the cellulosic biofuel industry.  

E-Print Network (OSTI)

??Despite market-based incentives and mandated production, the U.S. cellulosic biofuel industry has been slow to develop. This dissertation explores the economic factors that have limited… (more)

Rosburg, Alicia Sue

2012-01-01T23:59:59.000Z

67

Utilization of biocatalysts in cellulose waste minimization  

DOE Green Energy (OSTI)

Cellulose, a polymer of glucose, is the principal component of biomass and, therefore, a major source of waste that is either buried or burned. Examples of biomass waste include agricultural crop residues, forestry products, and municipal wastes. Recycling of this waste is important for energy conservation as well as waste minimization and there is some probability that in the future biomass could become a major energy source and replace fossil fuels that are currently used for fuels and chemicals production. It has been estimated that in the United States, between 100-450 million dry tons of agricultural waste are produced annually, approximately 6 million dry tons of animal waste, and of the 190 million tons of municipal solid waste (MSW) generated annually, approximately two-thirds is cellulosic in nature and over one-third is paper waste. Interestingly, more than 70% of MSW is landfilled or burned, however landfill space is becoming increasingly scarce. On a smaller scale, important cellulosic products such as cellulose acetate also present waste problems; an estimated 43 thousand tons of cellulose ester waste are generated annually in the United States. Biocatalysts could be used in cellulose waste minimization and this chapter describes their characteristics and potential in bioconversion and bioremediation processes.

Woodward, J.; Evans, B.R.

1996-09-01T23:59:59.000Z

68

Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cellulosic Ethanol Cellulosic Ethanol Investment Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Google Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Delicious Rank Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Cellulosic Ethanol Investment Tax Credit A qualified investor may receive a tax credit of up to 40% of an

69

Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cellulosic Ethanol Cellulosic Ethanol Investment Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Google Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Delicious Rank Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Cellulosic Ethanol Investment Tax Credit A tax credit is available for investments in a qualified small business

70

Alternative Fuels Data Center: Cellulosic Ethanol Production Financing  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cellulosic Ethanol Cellulosic Ethanol Production Financing to someone by E-mail Share Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Facebook Tweet about Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Twitter Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Google Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Delicious Rank Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Digg Find More places to share Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Cellulosic Ethanol Production Financing The Kansas Development Finance Authority may issue revenue bonds to cover

71

Influence of Fly Ash and Fluorgypsum on Hydration Heat and Mortar ...  

Science Conference Proceedings (OSTI)

The results show that: the heat of hydration of cement hydration heat is lower than ... Analysis of Carbon Fiber Recovered from Optimized Processes of Commercial Scale Recycling Facilities · Clayey Ceramic Incorporated with Powder from the Sintering Plant of a ... Production of Rock Wool from Ornamental Rock Wastes.

72

Biofuel Supply Chain Infrastructure: Optimizing the Evolution of Cellulosic Biofuel  

E-Print Network (OSTI)

the long- established corn processing infrastructure. Cellulosic-based advanced biofuel has a target of 21Biofuel Supply Chain Infrastructure: Optimizing the Evolution of Cellulosic Biofuel Infrastructure of biofuel sustainability. #12;

73

Florida Project Produces Nation's First Cellulosic Ethanol at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale July 31, 2013 - 1:37pm Addthis...

74

Biofuel Supply Chain Infrastructure: Optimizing the Evolution of Cellulosic Biofuel  

E-Print Network (OSTI)

Biofuel Supply Chain Infrastructure: Optimizing the Evolution of Cellulosic Biofuel The rapid limitation. Cellulosic-based advanced biofuel has a target of 21 billion gallons by 2022 and requires almost

75

Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel  

E-Print Network (OSTI)

Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel leveraged the long-established corn processing infrastructure. Cellulosic-based advanced biofuel has is being integrated into a national economic model of biofuel sustainability. Point of Contact: Michael R

76

Simulation studies of the insolubility of cellulose  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation Simulation studies of the insolubility of cellulose Malin Bergenstråhle a , Jakob Wohlert a, , Michael E. Himmel b , John W. Brady a, * a Department of Food Science, Cornell University, Ithaca, NY 14853, United States b National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401-3393, United States a r t i c l e i n f o Article history: Received 4 February 2010 Received in revised form 5 June 2010 Accepted 25 June 2010 Available online 6 July 2010 Keywords: Cellulase Cellobiohydrolase I Cellulose Computer modeling Molecular dynamics a b s t r a c t Molecular dynamics simulations have been used to calculate the potentials of mean force for separating short cellooligomers in aqueous solution as a means of estimating the contributions of hydrophobic stacking and hydrogen bonding to the insolubility of crystalline cellulose. A series of four potential of mean force (pmf) calculations

77

Process design and optimization of cellulose hydrolysis  

DOE Green Energy (OSTI)

The primary concern of this work is the economic optimization of a process for the hydrolysis of waste cellulosic material to fermentable sugars. Hydrolysis is performed enzymatically, utilizing the cellulase enzyme complex produced by Trichoderma viride. Using corn stover as a substrate, a system was designed to provide 14% hydrolyzate sugars (70% fermentable) at an estimated cost of 6.84 cents/pound of sugar, a 43% cost reduction over previous designs. Optimal residence time for hydrolysis was found to be 62 hours, resulting in a 34% conversion of raw material to sugars. Total fixed capital investment for the process is estimated to be $17.13 x 10/sup 6/. The kinetics of cellulose hydrolysis were modeled through the use of a modified Michaelis--Menten equation, making computer simulation of batch hydrolyses possible. Additional studies on the accessibility of cellulose were performed, and the feasibility of a counter-current processing scheme was investigated.

Lindsey, R.R.; Wilke, C.R.

1978-08-01T23:59:59.000Z

78

Why sequence cellulose degrading fungus Amanita thiersii?  

NLE Websites -- All DOE Office Websites (Extended Search)

sequence cellulose degrading fungus Amanita thiersii? sequence cellulose degrading fungus Amanita thiersii? Amanita thiersii is a white, sticky mushroom that obtains its carbon by decomposing grasses, playing a role in the terrestrial carbon cycle. The fungus is commonly found in grasslands throughout the central United States and grows in grassy areas away from trees, often seen on lawns after the rain. By sequencing A. thiersii's genome, researchers hope increase the list of fungi that might provide enzymes that can be used to commercialize the production of cellulosic biofuel, which falls in with the U.S. Department of Energy's mission to develop clean energy, by potentially offering a more cost-effective method of breaking down lignocellulose in plant cell walls. Because the fungus is found in regions where the biomass is high in

79

Research Advances Cellulosic Ethanol, NREL Leads the Way (Brochure)  

DOE Green Energy (OSTI)

This brochure highlights NREL's recent advances in cellulosic ethanol production. Research at NREL addresses both biochemical and thermochemical processes.

Not Available

2007-03-01T23:59:59.000Z

80

Energy Corn for Cellulosic Ethanol - National Renewable Energy ...  

edenspace. Edenspace: A Track Record of Success • Improved crop feedstocks for cellulosic ethanol • Superb development team includes NREL,

Note: This page contains sample records for the topic "rock-wool fibers cellulose" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Environmental Cycling of Cellulosic Thermal Insulation and Its ...  

Science Conference Proceedings (OSTI)

... cellulosic insulation industry, lengthy conditioning cycles and testing -8- ... energy using a flux profile generated during test ... and Technology, Vol. ...

2008-04-29T23:59:59.000Z

82

Genes and Mechanisms for Improving Cellulosic Vaccine for ...  

and ethanol, along with other inhibitors found in cellulosic hydrolysate. Advantages Hardier organisms with increased growth and production potential

83

Structure and processing of fibrous cellulose: bacterial and ascidian material  

E-Print Network (OSTI)

properties. The estimated Young’s modulus of cellulose microfibrils by experimental and theoretical approaches is up to 220 GPa [3, 4]. Cellulose has deeply integrated with our society in applications such as paper, cotton, lubricants, fillers, adhesives... and visualisation [15, 16]. The chapter 7 of this thesis explores the effect of various additives on the bacterial cellulose microstructure. Work has been directed towards developing a rationale to modify cellulose microstructure. In situ modification has also...

Khandelwal, Mudrika

2013-06-11T23:59:59.000Z

84

Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel  

E-Print Network (OSTI)

Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel Center infrastructure. Cellulosic-based ad- vanced biofuel has a target of 21 billion gallons by 2022 and requires into a national economic model of biofuel sustainability. Cellulosic biomass relocates the demand

85

Book ReViews Comprehensive Cellulose Chemistry. Volume 1. Fundamentals  

E-Print Network (OSTI)

Book ReViews Comprehensive Cellulose Chemistry. Volume 1. Fundamentals and Analytical Methods. By D is a valuable and much-needed reference book for both the novice and the practitioner of cellulose chemistry does this significantly reduce the clarity of the book. The section on cellulose structure is extensive

Dantus, Marcos

86

SANS Study of Cellulose Extracted from Switchgrass  

SciTech Connect

AbstractLignocellulosic biomass, an abundant renewable natural resource, has the potential to play a major role in generation of renewable biofuels through its conversion to bio-ethanol. Unfortunately, it is a complex biological composite material that shows significant recalcitrance making it a cost-ineffective feedstock for bioethanol production. Small-angle neutron scattering (SANS) was employed to probe the multi-scale structure of cellulosic materials. Cellulose was extracted from milled native switchgrass and switchgrass that had undergone the dilute acid pretreatment method to disrupt the lignocellulose structure. The high-Q structural feature (Q > 0.07 -1) can be assigned to cellulose fibrils based on comparison with the switchgrass purified by solvent extraction of native and dilute acid pretreated and a commercial preparation of microcrystalline cellulose. Dilute acid pretreatment results in an increase in the smallest structural size, a decrease in the interconnectivity of the fibrils; and no change in the smooth domain boundaries at length scales larger than 1000 .

Pingali, Sai Venkatesh [ORNL; Urban, Volker S [ORNL; Heller, William T [ORNL; McGaughey, Joseph [ORNL; O' Neill, Hugh Michael [ORNL; Foston, Marcus B [ORNL; Myles, Dean A A [ORNL; Ragauskas, Arthur J [ORNL; Evans, Barbara R [ORNL

2010-01-01T23:59:59.000Z

87

IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION  

Science Conference Proceedings (OSTI)

This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms. This research is aimed at advancing understanding of biofilm formation and other complex processes involved in the degradation of the abundant cellulosic biomass, and the biology of the microbes involved. Information obtained from these studies is invaluable in the development of practical applications, such as the single-step bioconversion of cellulose-containing residues to fuels and other bioproducts. Our results have clearly shown that cellulose-decomposing microbes rapidly colonize cellulose and form complex structures typical of biofilms. Furthermore, our observations suggest that, as cells multiply on nutritive surfaces during biofilms formation, dramatic cell morphological changes occur. We speculated that morphological changes, which involve a transition from rod-shaped cells to more rounded forms, might be more apparent in a filamentous microbe. In order to test this hypothesis, we included in our research a study of biofilm formation by T. fusca, a thermophilic cellulolytic actinomycete commonly found in compost. The cellulase system of T. fusca has been extensively detailed through the work of David Wilson and colleagues at Cornell, and also, genome sequence of a T. fusca strain has been determine by the DOE Joint Genome Institute. Thus, T. fusca is an excellent subject for studies of biofilm development and its potential impacts on cellulose degradation. We also completed a study of the chitinase system of C. uda. This work provided essential background information for understanding how C. uda colonizes and degrades insoluble substrates. Major accomplishments of the project include: • Development of media containing dialysis tubing (described by the manufacturer as “regenerated cellulose”) as sole carbon and energy source and a nutritive surface for the growth of cellulolytic bacteria, and development of various microscopic methods to image biofilms on dialysis tubing. • Demonstration that cultures of C. phytofermentans, an obligate anaerobe, C. uda, a facultative aerobe, and T. fusca, a filamentous aerobe, formed microbial communities on the surface of dialysis tubing, which possessed architectural features and functional characteristics typical of biofilms. • Demonstration that biofilm formation on the nutritive surface, cellulose, involves a complex developmental processes, including colonization of dialysis tubing, formation of cell clusters attached to the nutritive surface, cell morphological changes, formation of complex structures embedded in extracellular polymeric matrices, and dispersal of biofilm communities as the nutritive surface is degraded. • Determination of surface specificity and regulatory aspects of biofilm formation by C. phytofermentans, C. uda, and T. fusca. • Demonstration that biofilm formation by T. fusca forms an integral part of the life cycle of this filamentous cellulolytic bacterium, including studies on the role of mycelial pellet formation in the T. fusca life cycle and a comparison of mycelial pellets to surface-attached T. fusca biofilms. • Characterization of T. fusca biofilm EPS, including demonstration of a functional role for EPS constituents. • Correlation of T. fusca developmental life cycle and cellulase gene expression.

Leschine, Susan

2009-10-31T23:59:59.000Z

88

Physical Energy Accounting in California: A Case Study of Cellulosic Ethanol Production  

SciTech Connect

California's target for greenhouse gas reduction in part relies on the development of viable low-carbon fuel alternatives to gasoline. It is often assumed that cellulosic ethanol--ethanol made from the structural parts of a plant and not from the food parts--will be one of these alternatives. This study examines the physical viability of a switchgrass-based cellulosic ethanol industry in California from the point of view of the physical requirements of land, water, energy and other material use. Starting from a scenario in which existing irrigated pastureland and fiber-crop land is converted to switchgrass production, the analysis determines the total acreage and water supply available and the resulting total biofuel feedstock output under different assumed yields. The number and location of cellulosic ethanol biorefineries that can be supported is also determined, assuming that the distance from field to biorefinery would be minimized. The biorefinery energy input requirement, available energy from the fraction of biomass not converted to ethanol, and energy output is calculated at various levels of ethanol yields, making different assumptions about process efficiencies. The analysis shows that there is insufficient biomass (after cellulose separation and fermentation into ethanol) to provide all the process energy needed to run the biorefinery; hence, the purchase of external energy such as natural gas is required to produce ethanol from switchgrass. The higher the yield of ethanol, the more external energy is needed, so that the net gains due to improved process efficiency may not be positive. On 2.7 million acres of land planted in switchgrass in this scenario, the switchgrass outputproduces enough ethanol to substitute for only 1.2 to 4.0percent of California's gasoline consumption in 2007.

Coughlin, Katie; Fridley, David

2008-07-17T23:59:59.000Z

89

Physical Energy Accounting in California: A Case Study of Cellulosic Ethanol Production  

SciTech Connect

California's target for greenhouse gas reduction in part relies on the development of viable low-carbon fuel alternatives to gasoline. It is often assumed that cellulosic ethanol--ethanol made from the structural parts of a plant and not from the food parts--will be one of these alternatives. This study examines the physical viability of a switchgrass-based cellulosic ethanol industry in California from the point of view of the physical requirements of land, water, energy and other material use. Starting from a scenario in which existing irrigated pastureland and fiber-crop land is converted to switchgrass production, the analysis determines the total acreage and water supply available and the resulting total biofuel feedstock output under different assumed yields. The number and location of cellulosic ethanol biorefineries that can be supported is also determined, assuming that the distance from field to biorefinery would be minimized. The biorefinery energy input requirement, available energy from the fraction of biomass not converted to ethanol, and energy output is calculated at various levels of ethanol yields, making different assumptions about process efficiencies. The analysis shows that there is insufficient biomass (after cellulose separation and fermentation into ethanol) to provide all the process energy needed to run the biorefinery; hence, the purchase of external energy such as natural gas is required to produce ethanol from switchgrass. The higher the yield of ethanol, the more external energy is needed, so that the net gains due to improved process efficiency may not be positive. On 2.7 million acres of land planted in switchgrass in this scenario, the switchgrass outputproduces enough ethanol to substitute for only 1.2 to 4.0percent of California's gasoline consumption in 2007.

Coughlin, Katie; Fridley, David

2008-07-17T23:59:59.000Z

90

Saccharification of corn fiber using enzymes from Aureobasidium sp. strain NRRL Y-2311-1  

SciTech Connect

Crude enzyme preparations from Aureobasidium sp. strain NRRL Y-2311-1 were characterized and tested for the capacity to saccharify corn fiber. Cultures grown on xylan, corn fiber, and alkaline hydrogen peroxide (AHP)-pretreated corn fiber produced specific levels of endoxylanase, amylase, protease, cellulose, and other activities. Using equal units of endoxylanase activity, crude enzymes from AHP-pretreated corn fiber cultures were most effective in saccharification. Multiple enzyme activities were implicated in this process. Pretreatment of corn fiber with AHP nearly doubled the susceptibility of hemicellulose to enzymatic digestion. Up to 138 mg xylose, 125 mg arabinose, and 490 mg glucose were obtained per g pretreated corn fiber under conditions tested. 31 refs., 2 figs., 4 tabs.

Leathers, T.D.; Gupta, S.C. [Dept. of Agriculture, Peoria, IL (United States)

1996-06-01T23:59:59.000Z

91

Cellulosic Biofuels: Importance, Recalcitrance, and Pretreatment  

NLE Websites -- All DOE Office Websites (Extended Search)

Cellulosic Cellulosic Biofuels: Importance, Recalcitrance, and Pretreatment Lee Lynd 1,2 and Mark Laser 1 1 Thayer School of Engineering, Dartmouth College, Hanover, USA 2 BioEnergy Science Center, Oak Ridge, USA 2.1 Our Place in History The two most profound societal transformations in history have been spawned by radical shifts in human- kind's use of natural resources. The agricultural revolution, which spanned about two millennia beginning around 4000 BC, saw hunter-gatherer societies subsisting on wild plants and animals being largely dis- placed by those cultivating the land to produce crops and domesticated livestock. The industrial revolution followed, beginning around 1700 and lasting roughly two hundred years, during which time preindustrial agricultural societies gave way to those harnessing precious metals and fossil energy to develop sophisti- cated economies centered

92

Cellulose and the Control of Growth Anisotropy  

DOE Green Energy (OSTI)

The authors research aims to understand morphogenesis, focusing on growth anisotropy, a process that is crucial to make organs with specific and heritable shapes. For the award, the specific aims were to test hypotheses concerning how growth anisotropy is controlled by cell wall structure, particularly by the synthesis and alignment of cellulose microfibrils, the predominant mechanical element in the cell wall. This research has involved characterizing the basic physiology of anisotropic expansion, including measuring it at high resolution; and second, characterizing the relationship between growth anisotropy, and cellulose microfibrils. Important in this relationship and also to the control of anisotropic expansion are structures just inside the plasma membrane called cortical microtubules, and the research has also investigated their contribution to controlling anisotropy and microfibril alignment. In addition to primary experimental papers, I have also developed improved methods relating to these objectives as well as written relevant reviews. Major accomplishments in each area will now be described.

Tobias I. Baskin

2004-04-01T23:59:59.000Z

93

Polyethylene fiber drawing optimization  

E-Print Network (OSTI)

Polymer fiber drawing creates fibers with enhanced thermal conductivity and strength compared to bulk polymer because drawing aligns the molecular chains. I optimize the polymer fiber drawing method in order to achieve ...

Chiloyan, Vazrik

2011-01-01T23:59:59.000Z

94

Multimaterial acoustic fibers  

E-Print Network (OSTI)

The emergence of multimaterial fibers that combine a multiplicity of solid materials with disparate electrical, optical, and mechanical properties into a single fiber presents new opportunities for extending fiber applications ...

Chocat, Noémie

2012-01-01T23:59:59.000Z

95

Review: Enzymatic Hydrolysis of Cellulosic Biomass  

SciTech Connect

Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

2011-07-16T23:59:59.000Z

96

Belize-OAS Cellulosic Ethanol Market Assessment | Open Energy Information  

Open Energy Info (EERE)

Belize-OAS Cellulosic Ethanol Market Assessment Belize-OAS Cellulosic Ethanol Market Assessment Jump to: navigation, search Name Belize-OAS Cellulosic Ethanol Market Assessment Agency/Company /Organization Organization of American States (OAS) Sector Energy Focus Area Renewable Energy, Biomass Topics Market analysis, Background analysis Website http://www.sepa-americas.net/p Program Start 2008 Program End 2009 Country Belize UN Region Latin America and the Caribbean References OAS Project Database[1] "The main objective of the Project is to assess the market potential for cellulosic ethanol in Belize through sustainable implementation of cellulosic ethanol technology utilizing agricultural and forest residues as primary biomass feedstock. A supplementary objective will be to help prepare for potential future cellulosic ethanol projects in other Caribbean

97

Exploiting Genetic Variation of Fiber Components and Morphology in Juvenile Loblolly Pine.  

SciTech Connect

In order to ensure the global competitiveness of the Pulp and Paper Industry in the Southeastern U.S., more wood with targeted characteristics have to be produced more efficiently on less land. The objective of the research project is to provide a molecular genetic basis for tree breeding of desirable traits in juvenile loblolly pine, using a multidisciplinary research approach. We developed micro analytical methods for determine the cellulose and lignin content, average fiber length, and coarseness of a single ring in a 12 mm increment core. These methods allow rapid determination of these traits in micro scale. Genetic variation and genotype by environment interaction (GxE) were studied in several juvenile wood traits of loblolly pine (Pinus taeda L.). Over 1000 wood samples of 12 mm increment cores were collected from 14 full-sib families generated by a 6-parent half-diallel mating design (11-year-old) in four progeny tests. Juvenile (ring 3) and transition (ring 8) for each increment core were analyzed for cellulose and lignin content, average fiber length, and coarseness. Transition wood had higher cellulose content, longer fiber and higher coarseness, but lower lignin than juvenile wood. General combining ability variance for the traits in juvenile wood explained 3 to 10% of the total variance, whereas the specific combining ability variance was negligible or zero. There were noticeable full-sib family rank changes between sites for all the traits. This was reflected in very high specific combining ability by site interaction variances, which explained from 5% (fiber length) to 37% (lignin) of the total variance. Weak individual-tree heritabilities were found for cellulose, lignin content and fiber length at the juvenile and transition wood, except for lignin at the transition wood (0.23). Coarseness had moderately high individual-tree heritabilities at both the juvenile (0.39) and transition wood (0.30). Favorable genetic correlations of volume and stem straightness were found with cellulose content, fiber length and coarseness, suggesting that selection on growth or stem straightness would results in favorable response in chemical wood traits. We have developed a series of methods for application of functional genomics to understanding the molecular basis of traits important to tree breeding for improved chemical and physical properties of wood. Two types of technologies were used, microarray analysis of gene expression, and profiling of soluble metabolites from wood forming tissues. We were able to correlate wood property phenotypes with expression of specific genes and with the abundance of specific metabolites using a new database and appropriate statistical tools. These results implicate a series of candidate genes for cellulose content, lignin content, hemicellulose content and specific extractible metabolites. Future work should integrate such studies in mapping populations and genetic maps to make more precise associations of traits with gene locations in order to increase the predictive power of molecular markers, and to distinguish between different candidate genes associated by linkage or by function. This study has found that loblolly pine families differed significantly for cellulose yield, fiber length, fiber coarseness, and less for lignin content. The implication for forest industry is that genetic testing and selection for these traits is possible and practical. With sufficient genetic variation, we could improve cellulose yield, fiber length, fiber coarseness, and reduce lignin content in Loblolly pine. With the continued progress in molecular research, some candidate genes may be used for selecting cellulose content, lignin content, hemicellulose content and specific extractible metabolites. This would accelerate current breeding and testing program significantly, and produce pine plantations with not only high productivity, but desirable wood properties as well.

Hou-min Chang, John F. Kadla, Bailian Li, Ron Sederoff,

2005-06-30T23:59:59.000Z

98

Catalytic conversion of cellulose to liquid hydrocarbon fuels ...  

Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

99

Cost-Effective Enzyme for Producing Biofuels from Cellulosic ...  

Potential to be produced in-house: The enzyme could potentially be produced in house by biorefineries, reducing one of the cost impediments to cellulosic biofuels.

100

Cellulosic biofuels begin to flow but in lower volumes than ...  

U.S. Energy Information Administration (EIA)

Technology scale-up difficulties at startup companies; ... many companies are developing technologies to produce intermediate chemicals from cellulosic biomass as ...

Note: This page contains sample records for the topic "rock-wool fibers cellulose" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

EA-1704: Construction and Operation of a Proposed Cellulosic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

consists of the design, construction and operation of a biorefinery facility producing ethanol and other co-products from cellulosic materials utilizing a patented concentrated...

102

New Saccharification Process of Cellulosic Biomass by Microwave  

Science Conference Proceedings (OSTI)

Abstract Scope, As renewable energy, the research to produce biofuels from cellulosic resources which does not compete with foods has been actively doing  ...

103

Cellulose Simulations Demystify High-Temperature Behavior (Fact...  

NLE Websites -- All DOE Office Websites (Extended Search)

easier to break down, which could lead to more efficient processing of cellulose into biofuel. Using molecular dynamics simulation, scientists at the National Renewable Energy...

104

Cellulosic biofuels begin to flow but in lower volumes than ...  

U.S. Energy Information Administration (EIA)

Several companies combined to produce about 20,000 gallons of fuels using cellulosic biomass (e.g., wood waste, sugarcane bagasse) from commercial-scale facilities in ...

105

Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium  

E-Print Network (OSTI)

References Brown, R. C. 2003. Bio renewable Resources:RIVERSIDE Consolidated Bio-Processing of Cellulosic BiomassTHE THESIS Consolidated Bio-Processing of Cellulosic Biomass

Goyal, Garima

2011-01-01T23:59:59.000Z

106

The Potential of Cellulosic Ethanol Production from Municipal Solid Waste: A Technical and Economic Evaluation  

E-Print Network (OSTI)

of the lowest cost feedstock sources for cellulosic ethanolfeedstock costs along with achieving high yields of ethanol can result in significant improvements in the economics of cellulosic

Shi, Jian; Ebrik, Mirvat; Yang, Bin; Wyman, Charles E.

2009-01-01T23:59:59.000Z

107

Methods of detection using a cellulose binding domain fusion product  

DOE Patents (OSTI)

A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

Shoseyov, Oded (Shimshon, IL); Shpiegl, Itai (North Gallilea, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

1999-01-01T23:59:59.000Z

108

Single Molecule Study of Cellulase Hydrolysis of Crystalline Cellulose  

DOE Green Energy (OSTI)

This report seeks to elucidate the role of cellobiohydrolase-I (CBH I) in the hydrolysis of crystalline cellulose. A single-molecule approach uses various imaging techniques to investigate the surface structure of crystalline cellulose and changes made in the structure by CBH I.

Liu, Y.-S.; Luo, Y.; Baker, J. O.; Zeng, Y.; Himmel, M. E.; Smith, S.; Ding, S.-Y.

2009-12-01T23:59:59.000Z

109

Methods of use of cellulose binding domain proteins  

DOE Patents (OSTI)

A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

1997-09-23T23:59:59.000Z

110

Methods of detection using a cellulose binding domain fusion product  

DOE Patents (OSTI)

A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 34 figs.

Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

1999-01-05T23:59:59.000Z

111

Methods of use of cellulose binding domain proteins  

SciTech Connect

A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

Shoseyov, Oded (Karmey Yosef, IL); Shpiegl, Itai (Rehovot, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

1997-01-01T23:59:59.000Z

112

Cellulose synthesizing Complexes in Vascular Plants andProcaryotes  

DOE Green Energy (OSTI)

Continuing the work initiated under DE-FG03-94ER20145, the following major accomplishments were achieved under DE-FG02-03ER15396 from 2003-2007: (a) we purified the acsD gene product of the Acetobacter cellulose synthase operon as well as transferred the CesA cellulose gene from Gossypium into E. coli in an attempt to crystallize this protein for x-ray diffraction structural analysis; however, crystallization attempts proved unsuccessful; (b) the Acetobacter cellulose synthase operon was successfully incorporated into Synechococcus, a cyanobacterium2; (c) this operon in Synechococcus was functionally expressed; (d) we successfully immunolabeled Vigna cellulose and callose synthase components and mapped their distribution before and after wounding; (e) we developed a novel method to produce replicas of cellulose synthases in tobacco BY-2 cells, and we demonstrated the cytoplasmic domain of the rosette TC; (f) from the moss Physcomitrella, we isolated two full-length cDNA sequences of cellulose synthase (PpCesA1 and PpCesA2) and attempted to obtain full genomic DNA sequences; (g) we examined the detailed molecular structure of a new form of non-crystalline cellulose known as nematic ordered cellulose (=NOC)3.

Brown, Richard M, Jr; Saxena, Inder Mohan

2009-07-07T23:59:59.000Z

113

EA-1704: Construction and Operation of a Proposed Cellulosic Biorefinery,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

704: Construction and Operation of a Proposed Cellulosic 704: Construction and Operation of a Proposed Cellulosic Biorefinery, BlueFire Fulton Renewable Energy, LLC, Fulton, Mississippi EA-1704: Construction and Operation of a Proposed Cellulosic Biorefinery, BlueFire Fulton Renewable Energy, LLC, Fulton, Mississippi SUMMARY ThIs EA evaluates the potential environmental impacts of a propsal, (Fulton Project) that consists of the design, construction and operation of a biorefinery facility producing ethanol and other co-products from cellulosic materials utilizing a patented concentrated acid hydrolysis process. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD June 4, 2010 EA-1704: Finding of No Significant Impact Construction and Operation of a Proposed Cellulosic Biorefinery, BlueFire

114

Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Touts Importance of Cellulosic Ethanol at Georgia Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking October 6, 2007 - 4:21pm Addthis SOPERTON, GA - U.S. Secretary of Energy Samuel W. Bodman today attended a groundbreaking ceremony for Range Fuels' biorefinery - one of the nation's first commercial-scale cellulosic ethanol biorefineries - and made the following statement. "Together, the Department of Energy and private sector pioneers, such as Range Fuels, are blending science and technology to advance the President's goal of reducing our dependence on foreign oil," U.S. Secretary of Energy Samuel W. Bodman said. "The production of cost-competitive cellulosic ethanol is a significant part of America's energy future. This new

115

DuPont Danisco Cellulosic Ethanol | Open Energy Information  

Open Energy Info (EERE)

Danisco Cellulosic Ethanol Danisco Cellulosic Ethanol Jump to: navigation, search Name DuPont Danisco Cellulosic Ethanol Place Itasca, Illinois Zip 60143 Product DuPont Danisco Cellulosic Ethanol is a joint venture to develop technologies for cellulosic ethanol. Coordinates 32.1666°, -97.154369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.1666,"lon":-97.154369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

Ceramic fiber reinforced filter  

DOE Patents (OSTI)

A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

Stinton, David P. (Knoxville, TN); McLaughlin, Jerry C. (Oak Ridge, TN); Lowden, Richard A. (Powell, TN)

1991-01-01T23:59:59.000Z

117

Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium  

E-Print Network (OSTI)

bioethanol production has become more competitive by combining cellulose saccharification and fermentation (

Goyal, Garima

2011-01-01T23:59:59.000Z

118

Carbohydrate derivedpseudolignin can retard cellulose biological conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbohydrate Carbohydrate Derived-Pseudo-Lignin Can Retard Cellulose Biological Conversion Rajeev Kumar, 1,2,3 Fan Hu, 3,4 Poulomi Sannigrahi, 3,4 Seokwon Jung, 3,4 Arthur J. Ragauskas, 3,4 Charles E. Wyman 1,2,3 1 Center for Environmental Research and Technology, Bourns College of Engineering, 1084 Columbia Avenue, Riverside, California 92507; telephone: 951-781-5668; fax: 951-781-5790; e-mail: rajeev.dartmouth@gmail.com 2 Department of Chemical and Environmental Engineering, Bourns College of Engineering, 446 Winston Chung Hall, 900 University Avenue, Riverside, California 92507 3 BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6422 4 School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia ABSTRACT: Dilute acid as well as water only (hydrother- mal) pretreatments often lead to a significant

119

Author Proof A ARTICLE Cellulose Hydrolysis  

NLE Websites -- All DOE Office Websites (Extended Search)

II: II: Numerical Results and Analysis Wen Zhou, 1,2 Zhiqian Hao, 3 Ying Xu, 1,2 Heinz-Bernd Schu ¨ ttler 3 1 Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, Georgia; telephone: 706-542-9779; fax: 706-542-9751; e-mail: xyn@bmb.uga.edu 2 BioEnergy Science Center (BESC), Oak Ridge, Tennessee 3 Department of Physics and Astronomy, University of Georgia, Athens, Georgia; telephone: 706-542-3886; fax: 706-542-2492; e-mail: hbs@physast.uga.edu Received 16 December 2008; revision received 13 March 2009; accepted 27 April 2009 Published online 12 May 2009 in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/bit.22388 ABSTRACT: Numerical simulation results are presented for a cellulose hydrolysis model which incorporates both the enzymatic glucan chain fragmentation kinetics and the hydrolytic

120

Author Proof A ARTICLE Cellulose Hydrolysis  

NLE Websites -- All DOE Office Websites (Extended Search)

I: I: A General Modeling Formalism Wen Zhou, 1,2 Heinz-Bernd Schu ¨ ttler, 3 Zhiqian Hao, 3 Ying Xu 1,2 1 Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, Georgia; telephone: 706-542-9779; fax: 706-542-9751; e-mail: xyn@bmb.uga.edu 2 BioEnergy Science Center (BESC), Oak Ridge, Tennassee 3 Department of Physics and Astronomy, University of Georgia, Athens, Georgia; telephone: 706-542-3886; fax: 706-542-9751; e-mail: hbs@physast.uga.edu Received 16 December 2008; revision received 13 March 2009; accepted 27 April 2009 Published online 8 May 2009 in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/bit.22389 ABSTRACT: We develop a general framework for a realistic rate equation modeling of cellulose hydrolysis using non- complexed cellulase. Our proposed formalism, for the first time, takes

Note: This page contains sample records for the topic "rock-wool fibers cellulose" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The Role of Cellulosic Ethanol in Transportation  

Science Conference Proceedings (OSTI)

Petroleum provides essentially all of the energy used today in the transportation sector. To reduce this dependence on fossil energy, other fuels are beginning to be used, notably ethanol and biodiesel. Almost all fuel ethanol is produced by the conversion of corn grain to starch with subsequent fermentation to ethanol. In 2006, almost 5 billion gallons of fuel ethanol were produced, which used 17% of domestic corn production. The DOE has a goal to displace 30% of motor gasoline demand or 60 billion gallons per year by 2030. To achieve this goal, production of ethanol from lignocellulosic sources (e.g., agricultural residues, forest residues, and dedicated energy crops) is needed. This paper will describe the production of cellulosic ethanol as well as the issues and benefits associated with its production.

Robert M. Neilson, Jr.

2007-10-01T23:59:59.000Z

122

Understanding Cellulose Through Molecular Simulation and Electron Tomography  

SciTech Connect

High-resolution cellulose crystal structures have been determined from diffraction experiments using large diameter microfibrils as the sample material. However, cellulose microfibrils in plants are much smaller in diameter, and are more difficult to directly examine experimentally. Molecular dynamics simulation combined with quantum chemical calculations can help to elucidate the structure and dynamics of small diameter cellulose microfibrils. These simulation techniques also aid in the interpretation of electron tomography volumetric structural data from maize cell walls, where pretreatment with dilute acid or ammonia reveals microfibril geometry.

Matthews, J.

2013-01-01T23:59:59.000Z

123

NREL Proves Cellulosic Ethanol Can Be Cost Competitive (Fact Sheet)  

SciTech Connect

Ethanol from non-food sources - known as "cellulosic ethanol" - is a near-perfect transportation fuel: it is clean, domestic, abundant, and renewable, and it can potentially replace 30% of the petroleum consumed in the United States, but its relatively high cost has limited its market. That changed in 2012, when the National Renewable Energy Laboratory (NREL) demonstrated the technical advances needed to produce cellulosic ethanol at a minimum ethanol selling price of $2.15/gallon (in 2007 dollars). Through a multi-year research project involving private industry, NREL has proven that cellulosic ethanol can be cost competitive with other transportation fuels.

Not Available

2013-11-01T23:59:59.000Z

124

Fiber bundle fluorescence endomicroscopy  

E-Print Network (OSTI)

An improved design for fiber bundle fluorescence endomicroscopy is demonstrated. Scanned illumination and detection using coherent fiber bundles with 30,000 elements with 3 ?m resolution enables high speed imaging with ...

Tsai, Tsung-Han

125

Conducting fiber compression tester  

DOE Patents (OSTI)

The invention measures the resistance across a conductive fiber attached to a substrate place under a compressive load to determine the amount of compression needed to cause the fiber to fail. 3 figs.

DeTeresa, S.J.

1989-12-07T23:59:59.000Z

126

Omnidirectional fiber optic tiltmeter  

DOE Patents (OSTI)

A tiltmeter is provided which is useful in detecting very small movements such as earth tides. The device comprises a single optical fiber, and an associated weight affixed thereto, suspended from a support to form a pendulum. A light source, e.g., a light emitting diode, mounted on the support transmits light through the optical fiber to a group of further optical fibers located adjacent to but spaced from the free end of the single optical fiber so that displacement of the single optical fiber with respect to the group will result in a change in the amount of light received by the individual optical fibers of the group. Photodetectors individually connectd to the fibers produce corresponding electrical outputs which are differentially compared and processed to produce a resultant continuous analog output representative of the amount and direction of displacement of the single optical fiber.

Benjamin, B.C.; Miller, H.M.

1983-06-30T23:59:59.000Z

127

Florida Project Produces Nation's First Cellulosic Ethanol at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Project Produces Nation's First Cellulosic Ethanol at Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale July 31, 2013 - 1:37pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today recognized the nation's first commercial-scale cellulosic ethanol production at INEOS Bio's Indian River BioEnergy Center in Vero Beach, Florida. Developed through a joint venture between INEOS Bio and New Planet Energy, the project uses a unique hybrid of gasification and fermentation technology - originally developed with Energy Department support starting in the 1990's - to convert wood scraps, grass clippings and other waste materials into transportation fuels as well as energy for heat and power.

128

Florida Project Produces Nation's First Cellulosic Ethanol at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Project Produces Nation's First Cellulosic Ethanol at Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale July 31, 2013 - 1:37pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today recognized the nation's first commercial-scale cellulosic ethanol production at INEOS Bio's Indian River BioEnergy Center in Vero Beach, Florida. Developed through a joint venture between INEOS Bio and New Planet Energy, the project uses a unique hybrid of gasification and fermentation technology - originally developed with Energy Department support starting in the 1990's - to convert wood scraps, grass clippings and other waste materials into transportation fuels as well as energy for heat and power.

129

Cellulosic Ethanol Technology on Track to Being Competitive With...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 a gallon in 2010. References: Cellulose, Volume 16, No. 4, August 2009, Special issue: Corn Stover Conversion to Biofuels, Ed. Michael E. Himmel. M.M. Yung, K. A. Magrini-Bair,...

130

Life cycle analysis of hybrid poplar trees for cellulosic ethanol  

E-Print Network (OSTI)

The main purpose of this paper is to assess the energy and environmental benefits of cultivating hybrid poplars as a biomass crop for cellulosic ethanol. A "Life Cycle Assessment" (LCA) methodology is used to systematically ...

Huang, Jessica J

2007-01-01T23:59:59.000Z

131

First look at cellulose's early production could hold keys to...  

NLE Websites -- All DOE Office Websites (Extended Search)

cellulose's early production could hold keys to bacteria-free medical devices, better biofuel By Jared Sagoff * May 14, 2013 Tweet EmailPrint Produced by plants as well as algae...

132

Shear and Extensional Rheology of Cellulose/Ionic Liquid Solutions  

E-Print Network (OSTI)

In this study, we characterize the shear and extensional rheology of dilute to semidilute solutions of cellulose in the ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIAc). In steady shear flow, the semidilute solutions ...

Haward, Simon J.

133

The structure and mechanics of nanofibrillar cellulose foams  

E-Print Network (OSTI)

Crystalline nanofibrillar cellulose has remarkable mechanical properties: a Young's modulus of about 130 GPa and a tensile strength in the range of 750–1000 MPa. Recently, there has been increasing interest in exploiting ...

Ali, Zubaidah Mohammed

134

Fiber optic monitoring device  

DOE Patents (OSTI)

A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information. 4 figures.

Samborsky, J.K.

1993-10-05T23:59:59.000Z

135

Fiber optic monitoring device  

DOE Patents (OSTI)

This invention is comprised of a device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

Samborsky, J.K.

1992-12-31T23:59:59.000Z

136

Fiber coating method  

DOE Patents (OSTI)

A coating is applied to reinforcing fibers arranged into a tow by coaxially aligning the tow with an adjacent separation layer and winding or wrapping the tow and separation layer onto a support structure in an interleaved manner so that the separation layer separates a wrap of the tow from an adjacent wrap of the tow. A coating can then be uniformly applied to the reinforcing fibers without defects caused by fiber tow to fiber tow contact. The separation layer can be a carbon fiber veil.

Corman, Gregory Scot (Ballston Lake, NY)

2001-01-01T23:59:59.000Z

137

Fiber coating method  

DOE Patents (OSTI)

A coating is applied to reinforcing fibers arranged into a tow by coaxially aligning the tow with an adjacent separation layer and winding or wrapping the tow and separation layer onto a support structure in an interleaved manner so that the separation layer separates a wrap of the tow from an adjacent wrap of the tow. A coating can then be uniformly applied to the reinforcing fibers without defects caused by fiber tow to fiber tow contact. The separation layer can be a carbon fiber veil.

Corman, Gregory Scot (Ballston Lake, NY)

2003-04-15T23:59:59.000Z

138

Fiber optic laser rod  

DOE Patents (OSTI)

A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

Erickson, G.F.

1988-04-13T23:59:59.000Z

139

Fiber optic moisture sensor  

DOE Patents (OSTI)

A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.

Kirkham, R.R.

1984-08-03T23:59:59.000Z

140

Buildings Energy Data Book: 5.1 Building Materials/Insulation  

Buildings Energy Data Book (EERE)

3 3 Thermal Performance of Insulation Fiberglass (2) Perlite/Vermiculite Batts (3) Loose-Fill 2.1 - 3.7 Loose-Fill Foam Boards Spray-Applied Expanded Polystyrene 3.9 - 4.4 Rock Wool (2) Polyisocyanurate/Polyurethane 5.6 - 7.0 Loose-Fill Phenolic 4.4 - 8.2 Cellulose Reflective Insulation 2 - 17 Loose-Fill Vacuum Powder Insulation 25 - 30 Spray-Applied Vacuum Insulation Panel 20 - 100 Note(s): Source(s): 3.1 - 3.7 2.9 - 3.5 1) Hr-SF-F/Btu-in. Does not include the effects of aging and settling. 2) Mineral fiber. 3) System R-Value depends on heat-flow direction and number of air spaces. ASHRAE, 1997 ASHRAE Handbook: Fundamentals, p. 24-4, 22-5; DOE, Insulation Fact Sheet, Jan. 1988, p. 6; Journal of Thermal Insulation, 1987, p. 81-95; ORNL, ORNL/SUB/88-SA835/1, 1990; ORNL, Science and Technology for a Sustainable Energy Future, Mar. 1995, p. 17; and ORNL for vacuum insulation

Note: This page contains sample records for the topic "rock-wool fibers cellulose" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Structure and dynamics of a complex of cellulose with EDA: insights into the action of amines on cellulose  

SciTech Connect

The neutron structure of a complex of EDA with cellulose has been determined to reveal the location of hydrogen atoms involved in hydrogen bonding. EDA disrupts the hydrogen bonding pattern of naturally occurring cellulose by accepting a strong hydrogen bond from the O6 hydroxymethyl group as the conformation of this group is rotated from tg to gt. The O3-H O5 intrachain hydrogen bond commonly found in cellulose allomorphs is observed to be disordered in the neutron structure, and quantum chemistry and molecular dynamics calculations show that O3 prefers to donate to EDA. The hydrogen bonding arrangement is highly dynamic with bonds continually being formed and broken thus explaining the difficulty in locating all of the hydrogen atoms in the neutron scattering density maps. Comparison with other polysaccharide-amine complexes supports a common underlying mechanism for amine disruption of cellulose.

Sawada, Daisuke [ORNL; Nishiyama, Yoshiharu [Centre de Recherches sur les Macromolecules Vegetales (CERMAV-CNRS); Petridis, Loukas [ORNL; Parthasarathi, R. [Los Alamos National Laboratory (LANL); Gnanakaran, S [Los Alamos National Laboratory (LANL); Forsyth, V. T. [Institut Laue Langevin and Keele University; Wada, Masahisa [University of Tokyo, Japan; Langan, Paul [ORNL

2013-01-01T23:59:59.000Z

142

Conversion of cellulosic wastes to liquid fuels  

DOE Green Energy (OSTI)

The current status and future plans for a project to convert waste cellulosic (biomass) materials to quality liquid hydrocarbon fuels is described. The basic approach is indirect liquefaction, i.e., thermal gasification followed by catalytic liquefaction. The indirect approach results in separation of the oxygen in the biomass feedstock, i.e., oxygenated compounds do not appear in the liquid hydrocarbon fuel product. The process is capable of accepting a wide variety of feedstocks. Potential products include medium quality gas, normal propanol, diesel fuel and/or high octane gasoline. A fluidized bed pyrolysis system is used for gasification. The pyrolyzer can be fluidized with recycle pyrolysis gas, steam or recycle liquefaction system off gas or some combination thereof. Tars are removed in a wet scrubber. Unseparated pyrolysis gases are utilized as feed to a modified Fischer-Tropsch reactor. The liquid condensate from the reactor consists of a normal propanol-water phase and a paraffinic hydrocarbon phase. The reactor can be operated to optimize for either product. The following tasks were specified in the statement of work for the contract period: (1) feedstock studies; (2) gasification system optimization; (3) waste stream characterization; and (4) liquid fuels synthesis. In addition, several equipment improvements were implemented.

Kuester, J.L.

1980-09-01T23:59:59.000Z

143

Conversion of bagasse cellulose into ethanol  

DOE Green Energy (OSTI)

The study conducted by Arkenol was designed to test the conversion of feedstocks such as sugar cane bagasse, sorghum, napier grass and rice straw into fermentable sugars, and then ferment these sugars using natural yeasts and genetically engineered Zymomonis mobilis bacteria (ZM). The study did convert various cellulosic feedstocks into fermentable sugars utilizing the patented Arkenol Concentrated Acid Hydrolysis Process and equipment at the Arkenol Technology Center in Orange, California. The sugars produced using this process were in the concentration range of 12--15%, much higher than the sugar concentrations the genetically engineered ZM bacteria had been developed for. As a result, while the ZM bacteria fermented the produced sugars without initial inhibition, the completion of high sugar concentration fermentations was slower and at lower yield than predicted by the National Renewable Energy Laboratory (NREL). Natural yeasts performed as expected by Arkenol, similar to the results obtained over the last four years of testing. Overall, at sugar concentrations in the 10--13% range, yeast produced 850090% theoretical ethanol yields and ZM bacteria produced 82--87% theoretical yields in 96 hour fermentations. Additional commercialization work revealed the ability to centrifugally separate and recycle the ZM bacteria after fermentation, slight additional benefits from mixed culture ZM bacteria fermentations, and successful utilization of defined media for ZM bacteria fermentation nutrients in lieu of natural media.

Cuzens, J.E.

1997-11-19T23:59:59.000Z

144

Comparison of Cellulose Ib Simulations with Three Carbohydrate Force Fields  

DOE Green Energy (OSTI)

Molecular dynamics simulations of cellulose have recently become more prevalent due to increased interest in renewable energy applications, and many atomistic and coarse-grained force fields exist that can be applied to cellulose. However, to date no systematic comparison between carbohydrate force fields has been conducted for this important system. To that end, we present a molecular dynamics simulation study of hydrated, 36-chain cellulose I{beta} microfibrils at room temperature with three carbohydrate force fields (CHARMM35, GLYCAM06, and Gromos 45a4) up to the near-microsecond time scale. Our results indicate that each of these simulated microfibrils diverge from the cellulose I{beta} crystal structure to varying degrees under the conditions tested. The CHARMM35 and GLYCAM06 force fields eventually result in structures similar to those observed at 500 K with the same force fields, which are consistent with the experimentally observed high-temperature behavior of cellulose I. The third force field, Gromos 45a4, produces behavior significantly different from experiment, from the other two force fields, and from previously reported simulations with this force field using shorter simulation times and constrained periodic boundary conditions. For the GLYCAM06 force field, initial hydrogen-bond conformations and choice of electrostatic scaling factors significantly affect the rate of structural divergence. Our results suggest dramatically different time scales for convergence of properties of interest, which is important in the design of computational studies and comparisons to experimental data. This study highlights that further experimental and theoretical work is required to understand the structure of small diameter cellulose microfibrils typical of plant cellulose.

Matthews, J. F.; Beckham, G. T.; Bergenstrahle, M.; Brady, J. W.; Himmel, M. E.; Crowley, M. F.

2012-02-14T23:59:59.000Z

145

Fiber composite flywheel rim  

DOE Patents (OSTI)

A flywheel comprising a hub having at least one radially projecting disc, an annular rim secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers wound about said rim congruent to said surface, and a shell enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface. 2 figs.

Davis, D.E.; Ingham, K.T.

1987-04-28T23:59:59.000Z

146

Fiber composite flywheel rim  

DOE Patents (OSTI)

A flywheel 2 comprising a hub 4 having at least one radially projecting disc 6, an annular rim 14 secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers 22 wound about said rim congruent to said surface, and a shell 26 enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface.

Davis, Donald E. (Thousand Oaks, CA); Ingham, Kenneth T. (Woodland Hills, CA)

1987-01-01T23:59:59.000Z

147

Carbon Fiber Electronic Interconnects.  

E-Print Network (OSTI)

??Carbon fiber is an emerging material in electrical and electronics industry. It has been used as contact in many applications, such as switch, potentiometer, and… (more)

Deng, Yuliang

2007-01-01T23:59:59.000Z

148

www.exeter.ac.uk/inspiring-science Cellulose: sustainable and renewable  

E-Print Network (OSTI)

www.exeter.ac.uk/inspiring-science Cellulose: sustainable and renewable material for many The talk will cover the use of cellulose as a sustainable and renewable source for use in composites

Mumby, Peter J.

149

Cellulose Simulations Demystify High-Temperature Behavior (Fact Sheet), NREL Highlights, Science  

DOE Green Energy (OSTI)

Molecular simulations that model cellulose microfibrils at high temperature indicate regions that may be easier to break down, which could lead to more efficient processing of cellulose into biofuel.

Not Available

2011-05-01T23:59:59.000Z

150

J33. CSSC Cellulosic H2 2009 (High Resolution $$$).pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

Reprint Reprint © Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Supported by  WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Table of Contents X. Ye, Y. Wang, R. C. Hopkins, M. W. W. Adams, B. R. Evans, J. R. Mielenz, Y.-H. P. Zhang* 149 - 152 Spontaneous High-Yield Production of Hydrogen from Cellulosic Materials and Water Catalyzed by Enzyme Cocktails Cocktail reception: Biohydrogen is pro- duced in high yield from cellulosic ma- terials and water in a one-pot process catalyzed by up to 14 enzymes and one coenzyme. This assembly of enzymes re- sults in non-natural catabolic pathways. These spontaneous reactions are con- ducted under modest reaction condi- tions (32 8C and atmospheric pressure). DOI: 10.1002/cssc.200900017 Spontaneous High-Yield Production of Hydrogen from Cellulosic Materials and Water Catalyzed by Enzyme Cocktails Xinhao Ye, [a] Yiran Wang, [a] Robert

151

DOE Joint Genome Institute: Breaking down cellulose without blasting  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2011 4, 2011 Breaking down cellulose without blasting lignin: "Dry rot" genome offers lessons for biofuel pretreatment WALNUT CREEK, Calif.-Feared by realtors and homeowners alike, dry rot due to the fungus Serpula lacrymans causes millions of dollars worth of damage to homes and buildings around the world. This brown rot fungus' capacity to break down the cellulose in wood led to its selection for sequencing by the U.S. Department of Energy (DOE) Joint Genome Institute (JGI) in 2007, with the goal of identifying the enzymes involved in the degradation process and using the information to improve cellulosic biofuels production. Photo: A variant of Serpula lacrymans causes dry rot. (Dave Brown via Flickr/Creative Commons Attribution 2.0) As reported online July 14 in Science Express, an international team of

152

New lignocellulose pretreatments using cellulose solvents: a review  

NLE Websites -- All DOE Office Websites (Extended Search)

Received: Received: 7 September 2012 Accepted: 13 September 2012 Published online in Wiley Online Library: (wileyonlinelibrary.com) DOI 10.1002/jctb.3959 New lignocellulose pretreatments using cellulose solvents: a review Noppadon Sathitsuksanoh, a† Anthe George b,c and Y-H Percival Zhang a,d,e∗ Abstract Non-food lignocellulosic biomass is the most abundant renewable bioresource as a collectable, transportable, and storable chemical energy that is far from fully utilized. The goal of biomass pretreatment is to improve the enzymatic digestibility of pretreated lignocellulosic biomass. Many substrate factors, such as substrate accessibility, lignin content, particle size and so on, contribute to its recalcitrance. Cellulose accessibility to hydrolytic enzymes is believed to be the most important substrate characteristic limiting enzymatic hydrolysis. Cellulose

153

MICROBIAL FERMENTATION OF ABUNDANT BIOPOLYMERS: CELLULOSE AND CHITIN  

DOE Green Energy (OSTI)

Our research has dealt with seven major areas of investigation: i) characterization of cellulolytic members of microbial consortia, with special attention recently given to Clostridium phytofermentans, a bacterium that decomposes cellulose and produces uncommonly large amounts of ethanol, ii) investigations of the chitinase system of Cellulomonas uda; including the purification and characterization of ChiA, the major component of this enzyme system, iii) molecular cloning, sequence and structural analysis of the gene that encodes ChiA in C. uda, iv) biofilm formation by C. uda on nutritive surfaces, v) investigations of the effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes, vi) studies of nitrogen metabolism in cellulolytic anaerobes, and vii) understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. Also, progress toward completing the research of more recent projects is briefly summarized. Major accomplishments include: 1. Characterization of Clostridium phytofermentans, a cellulose-fermenting, ethanol-producing bacterium from forest soil. The characterization of a new cellulolytic species isolated from a cellulose-decomposing microbial consortium from forest soil was completed. This bacterium is remarkable for the high concentrations of ethanol produced during cellulose fermentation, typically more than twice the concentration produced by other species of cellulolytic clostridia. 2. Examination of the use of chitin as a source of carbon and nitrogen by cellulolytic microbes. We discovered that many cellulolytic anaerobes and facultative aerobes are able to use chitin as a source of both carbon and nitrogen. This major discovery expands our understanding of the biology of cellulose-fermenting bacteria and may lead to new applications for these microbes. 3. Comparative studies of the cellulase and chitinase systems of Cellulomonas uda. Results of these studies indicate that the chitinase and cellulase systems of this bacterium are distinct in terms of the proteins involved and the regulation of their production. 4. Characterization of the chitinase system of C. uda. A 70,000-Mr endochitinase, designated ChiA, was purified from C. uda culture supernatant fluids and characterized. 5. Analysis of chiA, which codes for the major enzymatic component of the chitinase system of C. uda. The gene encoding the endochitinase ChiA in C. uda was cloned, its complete nucleotide sequence was determined and its implications were investigated. 6. Formation of biofilms by C. uda on cellulose and chitin. Microscopic observations indicated that, under conditions of nitrogen limitation, C. uda cells grew as a biofilm attached tightly to the surface of cellulose or chitin. 7. Development of tools for a genetic approach to studies of cellulose fermentation by cellulolytic clostridia. We have explored the potential of various techniques, and obtained evidence indicating that Tn916 mutagenesis may be particularly effective in this regard. As part of this research, we identified the presence of a plasmid in one strain, which was cloned, sequenced, and analyzed for its utility in the development of vectors for genetic studies. 8. Effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes. We determined that humic substances play an important role in the anaerobic cellulose decomposition and in the physiology of cellulose-fermenting soil bacteria. 9. Nitrogenases of cellulolytic clostridia. We described a nitrogenase gene from a cellulolytic clostridium and presented evidence, based on sequence analyses and conserved gene order, for lateral gene transfer between this bacterium and a methanogenic archaeon. 10. Characterization of Clostridium hungatei, a new N2-fixing cellulolytic species isolated from a methanogenic consortium from soil. 11. Understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. We discovered that C. papyrosolvens produces a multiprotein, multicom

Leschine, Susan

2009-10-31T23:59:59.000Z

154

ROLE OF FIBER MODIFICATION IN NATURAL FIBER COMPOSITE PROCESSING  

SciTech Connect

The prediction and characterization of the adhesion between fiber, surface treatment, and polymer is critical to the success of large-scale natural fiber based polymer composites in automotive semi-structural application. The two primary factors limiting the use of natural fiber in polymer composites are fiber moisture uptake and fiber degradation during high-temperature processing. In this study, we have developed several fiber surface modification techniques and analyzed the fiber-polymer adhesion of modified fibers to more clearly understand the critical parameters controlling moisture uptake, swelling, and fiber degradation due to interfacial structure. We will present a overview of surface modification techniques we have applied to date for hemp fiber sources, and illustrate a path to characterize surface modification effects on natural fiber adhesion in thermoplastic composites.

Fifield, Leonard S.; Denslow, Kayte M.; Gutowska, Anna; Simmons, Kevin L.; Holbery, Jim

2005-11-03T23:59:59.000Z

155

Diamond fiber field emitters  

DOE Patents (OSTI)

A field emission electron emitter comprising an electrode formed of at least one diamond, diamond-like carbon or glassy carbon composite fiber, said composite fiber having a non-diamond core and a diamond, diamond-like carbon or glassy carbon coating on said non-diamond core, and electronic devices employing such a field emission electron emitter.

Blanchet-Fincher, Graciela B. (Wilmington, DE); Coates, Don M. (Santa Fe, NM); Devlin, David J. (Los Alamos, NM); Eaton, David F. (Wilmington, DE); Silzars, Aris K. (Landenburg, PA); Valone, Steven M. (Santa Fe, NM)

1996-01-01T23:59:59.000Z

156

The Effects of Surfactant Pretreatment and Xylooligomers on Enzymatic Hydrolysis of Cellulose and Pretreated Biomass  

E-Print Network (OSTI)

the processing of the cellulosic feedstock to ethanol wascellulosic ethanol scenarios, use of poplar as a feedstock

Qing, Qing

2010-01-01T23:59:59.000Z

157

Carbon Nanotubes Grown on Various Fibers - Oak Ridge National ...  

fiber materials inlcuding quartz wool fibers, carbon fibers, and activated carbon fibers. In each example a chloride solution of Fe, ...

158

Enhanced attrition bioreactor for enzyme hydrolysis or cellulosic materials  

DOE Patents (OSTI)

A process for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified.

Scott, Timothy C. (Knoxville, TN); Scott, Charles D. (Oak Ridge, TN); Faison, Brendlyn D. (Knoxville, TN); Davison, Brian H. (Knoxville, TN); Woodward, Jonathan (Oak Ridge, TN)

1996-01-01T23:59:59.000Z

159

Enhanced attrition bioreactor for enzyme hydrolysis of cellulosic materials  

DOE Patents (OSTI)

A process for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified.

Scott, Timothy C. (Knoxville, TN); Scott, Charles D. (Oak Ridge, TN); Faison, Brendlyn D. (Knoxville, TN); Davison, Brian H. (Knoxville, TN); Woodward, Jonathan (Oak Ridge, TN)

1997-01-01T23:59:59.000Z

160

Enhanced attrition bioreactor for enzyme hydrolysis of cellulosic materials  

DOE Patents (OSTI)

A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified. 1 fig.

Scott, T.C.; Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

1997-06-10T23:59:59.000Z

Note: This page contains sample records for the topic "rock-wool fibers cellulose" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Process for converting cellulosic materials into fuels and chemicals  

DOE Patents (OSTI)

A process for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system.

Scott, Charles D. (Oak Ridge, TN); Faison, Brendlyn D. (Knoxville, TN); Davison, Brian H. (Knoxville, TN); Woodward, Jonathan (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

162

Enhanced attrition bioreactor for enzyme hydrolysis or cellulosic materials  

DOE Patents (OSTI)

A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified. 1 fig.

Scott, T.C.; Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

1996-04-16T23:59:59.000Z

163

Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production on Greenhouse  

E-Print Network (OSTI)

Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production on Greenhouse Gas on recycled paper #12;1 Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production. Melillo*, John M. Reilly§ , and Sergey Paltsev§ Abstract The production of cellulosic biofuels may have

164

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling  

E-Print Network (OSTI)

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling Oak Ridge National been identified by carbon fiber manufacturers as a market with substantial growth potential. When manufactured with carbon fiber as opposed to traditional materials such as steel, automotive parts are able

165

Hybrid Fiber Optics  

SciTech Connect

Instruments and devices based on optical fiber were originally simple and passive. That has changed. A variety of devices uses optical fiber for sensing, communications and various optoelectronic functions. This paper discusses the creation of a hybrid optical fiber that incorporates not just the light transmission function but other types of materials and new multiple fiber arrangements. Recent experiences with a fiber draw tower reveal new possibilities for achieving multifunctional devices able to perform diverse instrumentation sensing applications. This is achievable even with feature sizes, when desired, on the nanoscale. For instance, fiber comprised of one or more light guides and one or more electrically conducting wires is feasible. This combination of optical fiber and metal wire may be termed a wiber . The wiber could determine temperature and proximity to surfaces, detect radio-frequency radiation, and provide electrical power. At the same time, a wiber would have the capability to simultaneously transmit light where the light is utilized to sense temperature and proximity and give illumination. There are many possible uses--depending on design and configuration--cutting across many technologies and programs.

Allison, Stephen W [ORNL; Simpson, John T [ORNL; Gillies, George [ORNL

2010-01-01T23:59:59.000Z

166

Fiber optic hydrogen sensor  

DOE Patents (OSTI)

Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

Buchanan, B.R.; Prather, W.S.

1991-01-01T23:59:59.000Z

167

Irreversible transformations of native celluloses, upon exposure to elevated temperatures  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbohydrate Polymers 100 (2014) 2- 8 Carbohydrate Polymers 100 (2014) 2- 8 Contents lists available at ScienceDirect Carbohydrate Polymers j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c a r b p o l Irreversible transformations of native celluloses, upon exposure to elevated temperatures R.S. Atalla a , M.F. Crowley b , M.E. Himmel b , R.H. Atalla a,c,∗ a Cellulose Sciences International, Madison, WI, United States b National Renewable Energy Laboratory, Golden, CO, United States c University of Wisconsin-Madison, Madison, WI, United States a r t i c l e i n f o Article history: Received 29 August 2012 Received in revised form 4 June 2013 Accepted 7 June 2013 Available online 15 June 2013 Keywords: Transformation Irreversible Celluloses Elevated Temperatures Native Accessibility Aggregation a b s t r a c t Current research, basic and applied, assumes that observed recalcitrance of celluloses is an inherent

168

Can Delignification Decrease Cellulose Digestibility in Acid Pretreated Corn Stover?  

Science Conference Proceedings (OSTI)

It has previously been shown that the improved digestibility of dilute acid pretreated corn stover is at least partially due to the removal of xylan and the consequent increase in accessibility of the cellulose to cellobiohydrolase enzymes. We now report on the impact that lignin removal has on the accessibility and digestibility of dilute acid pretreated corn stover. Samples of corn stover were subjected to dilute sulfuric acid pretreatment with and without simultaneous (partial) lignin removal. In addition, some samples were completely delignified after the pretreatment step using acidified sodium chlorite. The accessibility and digestibility of the samples were tested using a fluorescence-labeled cellobiohydrolase (Trichoderma reesei Cel7A) purified from a commercial cellulase preparation. Partial delignification of corn stover during dilute acid pretreatment was shown to improve cellulose digestibility by T. reesei Cel7A; however, decreasing the lignin content below 5% (g g{sup -1}) by treatment with acidified sodium chlorite resulted in a dramatic reduction in cellulose digestibility. Importantly, this effect was found to be enhanced in samples with lower xylan contents suggesting that the near complete removal of xylan and lignin may cause aggregation of the cellulose microfibrils resulting in decreased cellulase accessibility.

Ishizawa, C. I.; Jeoh, T.; Adney, W. S.; Himmel, M. E.; Johnson, D. K.; Davis, M. F.

2009-01-01T23:59:59.000Z

169

Supercomputer Provides Molecular Insight into Cellulose (Fact Sheet)  

DOE Green Energy (OSTI)

Groundbreaking research at the National Renewable Energy Laboratory (NREL) has used supercomputing simulations to calculate the work that enzymes must do to deconstruct cellulose, which is a fundamental step in biomass conversion technologies for biofuels production. NREL used the new high-performance supercomputer Red Mesa to conduct several million central processing unit (CPU) hours of simulation.

Not Available

2011-02-01T23:59:59.000Z

170

What is (and is not) vital to advancing cellulosic ethanol  

E-Print Network (OSTI)

Received in revised form 8 November 2011 Accepted 9 December 2011 Available online xxx Keywords: Bioethanol release and sugar conversion were measured. Up to 26% difference in sugar release between cultivars to cellulose can impede the sugar conversion rate, and convertibility of each botanical fraction might be more

California at Riverside, University of

171

Methods of pretreating comminuted cellulosic material with carbonate-containing solutions  

DOE Patents (OSTI)

Methods of pretreating comminuted cellulosic material with an acidic solution and then a carbonate-containing solution to produce a pretreated cellulosic material are provided. The pretreated material may then be further treated in a pulping process, for example, a soda-anthraquinone pulping process, to produce a cellulose pulp. The pretreatment solutions may be extracted from the pretreated cellulose material and selectively re-used, for example, with acid or alkali addition, for the pretreatment solutions. The resulting cellulose pulp is characterized by having reduced lignin content and increased yield compared to prior art treatment processes.

Francis, Raymond

2012-11-06T23:59:59.000Z

172

Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations  

E-Print Network (OSTI)

feedstock on earth for biofuel production [1]. However, the economic feasibility and sustainability of cellulosic

2012-01-01T23:59:59.000Z

173

Simulating Cellulose Structure, Properties, Thermodynamics, Synthesis, and Deconstruction with Atomistic and Coarse-Grain Models  

SciTech Connect

Cellulose is still a mysterious polymer in many ways: structure of microfibrils, thermodynamics of synthesis and degradation, and interactions with other plant cell wall components. Our aim is to uncover the details and mechanisms of cellulose digestion and synthesis. We report the details of the structure of cellulose 1-beta under several temperature conditions and report here the results of these studies and connections to experimental measurements and the measurement in-silico the free energy of decrystallization of several morphologies of cellulose. In spatially large modeling, we show the most recent work of mapping atomistic and coarse-grain models into tomographic images of cellulose and extreme coarse-grain modeling of interactions of large cellulase complexes with microfibrils. We discuss the difficulties of modeling cellulose and suggest future work both experimental and theoretical to increase our understanding of cellulose and our ability to use it as a raw material for fuels and materials.

Crowley, M. F.; Matthews, J.; Beckham, G.; Bomble, Y.; Hynninen, A. P.; Ciesielski, P. F.

2012-01-01T23:59:59.000Z

174

Multimaterial rectifying device fibers  

E-Print Network (OSTI)

Electronic and optoelectronic device processing is commonly thought to be incompatible with much simpler thermal drawing techniques used in optical fiber production. The incorporation of metals, polymer insulators, and ...

Orf, Nicholas D

2009-01-01T23:59:59.000Z

175

Fiber optic detector  

DOE Patents (OSTI)

This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

Partin, J.K.; Ward, T.E.; Grey, A.E.

1990-12-31T23:59:59.000Z

176

Enhanced radiation resistant fiber optics  

DOE Patents (OSTI)

A process for producing an optical fiber having enhanced radiation resitance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation.

Lyons, P.B.; Looney, L.D.

1992-12-31T23:59:59.000Z

177

Natural Fiber Composites: A Review  

SciTech Connect

The need for renewable fiber reinforced composites has never been as prevalent as it currently is. Natural fibers offer both cost savings and a reduction in density when compared to glass fibers. Though the strength of natural fibers is not as great as glass, the specific properties are comparable. Currently natural fiber composites have two issues that need to be addressed: resin compatibility and water absorption. The following preliminary research has investigated the use of Kenaf, Hibiscus cannabinus, as a possible glass replacement in fiber reinforced composites.

Westman, Matthew P.; Fifield, Leonard S.; Simmons, Kevin L.; Laddha, Sachin; Kafentzis, Tyler A.

2010-03-07T23:59:59.000Z

178

Combined enzyme mediated fermentation of cellulose and xylose to ethanol  

DOE Patents (OSTI)

A process for producing ethanol from mixed sugar streams from pretreated biomass comprising xylose and cellulose using enzymes to convert these substrates to fermentable sugars; selecting and isolating a yeast having the ability to ferment these sugars as they are being formed to produce ethanol; loading the substrates with the fermentation mix composed of yeast, enzymes and substrates; fermenting the loaded substrates and enzymes under anaerobic conditions at a pH range of between about 5.0 to about 6.0 and at a temperature range of between about 35[degrees]C to about 40[degrees]C until the fermentation is completed, the xylose being isomerized to xylulose, the cellulose being converted to glucose, and these sugars being concurrently converted to ethanol by yeast through means of the anaerobic fermentation; and recovering the ethanol.

Lastick, S.M.; Mohagheghi, A.; Tucker, M.P.; Grohmann, K.

1991-03-21T23:59:59.000Z

179

Combined enzyme mediated fermentation of cellulose and xylose to ethanol  

DOE Patents (OSTI)

A process for producing ethanol from mixed sugar streams from pretreated biomass comprising xylose and cellulose using enzymes to convert these substrates to fermentable sugars; selecting and isolating a yeast having the ability to ferment these sugars as they are being formed to produce ethanol; loading the substrates with the fermentation mix composed of yeast, enzymes and substrates; fermenting the loaded substrates and enzymes under anaerobic conditions at a pH range of between about 5.0 to about 6.0 and at a temperature range of between about 35{degrees}C to about 40{degrees}C until the fermentation is completed, the xylose being isomerized to xylulose, the cellulose being converted to glucose, and these sugars being concurrently converted to ethanol by yeast through means of the anaerobic fermentation; and recovering the ethanol.

Lastick, S.M.; Mohagheghi, A.; Tucker, M.P.; Grohmann, K.

1991-03-21T23:59:59.000Z

180

Evaluating possible cap and trade legislation on cellulosic feedstock availability  

Science Conference Proceedings (OSTI)

An integrated, socioeconomic biogeophysical model is used to analyze the interactions of cap-and-trade legislation and the Renewable Fuels Standard. Five alternative policy scenarios were considered with the purpose of identifying policies that act in a synergistic manner to reduce carbon emissions, increase economic returns to agriculture, and adequately meet ethanol mandates. We conclude that climate and energy policies can best be implemented together by offering carbon offset payments to conservation tillage, herbaceous grasses for biomass, and by constraining crop residue removal for ethanol feedstocks to carbon neutral level. When comparing this scenario to the Baseline scenario, the agricultural sector realizes an economic benefit of US$156 billion by 2030 and emissions are reduced by 135 Tg C-equivalent (Eq) yr 1. Results also indicate that geographic location of cellulosic feedstocks could shift significantly depending on the final policies implemented in cap and trade legislation. Placement of cellulosic ethanol facilities should consider these possible shifts when determining site location.

Hellwinckel, Chad [Agricultural Policy Analysis Center, University of Tennessee; de la Torre Ugarte, Daniel [University of Tennessee; Perlack, Robert D [ORNL; West, T. O. [University of Maryland

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock-wool fibers cellulose" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Development of Cellulosic Biofuels (LBNL Summer Lecture Series)  

DOE Green Energy (OSTI)

Summer Lecture Series 2007: Chris Somerville, Director of the Energy Biosciences Institute and an award-winning plant biochemist with Berkeley Lab's Physical Biosciences Division, is a leading authority on the structure and function of plant cell walls. He discusses an overview of some of the technical challenges associated with the production of cellulosic biofuels, which will require an improved understanding of a diverse range of topics in fields such as agronomy, chemical engineering, microbiology, structural biology, genomics, environmental sciences, and socioeconomics.

Somerville, Chris (Director, Energy Biosciences Institute)

2007-06-20T23:59:59.000Z

182

An Environmental and Policy Evaluation of Cellulosic Ethanol  

E-Print Network (OSTI)

As the global demand for energy rises, there are significant efforts to find alternative energy sources. In the United States (US), these efforts are primarily motivated by a desire to increase energy security and reduce the potential impacts on climate change caused by carbon dioxide emissions from the burning of fossil fuels. Biofuels are considered a potential partial solution, which are being encouraged through public policy. Cellulosic ethanol is a biofuel that is required in increasing amounts over time as part of the Renewable Fuel Standards. Thus, researchers are exploring the environmental impacts of using this biofuel on a large scale. This dissertation research performed an environmental evaluation using the Life Cycle Assessment technique on Bioenergy Sorghum, a crop which was specifically produced as an energy crop, used in a conversion process (MixAlco version 1) that can produce cellulosic ethanol. Results indicate that the conversion process is highly optimized with minimal environmental concerns. Analysis of the crop production, however, demonstrate that further investigation is warranted regarding the depletion of natural resources and emissions from the fertilizers and pesticides/herbicides, due to large scale production of energy crops. A new policy is proposed to support the sustainable, environmentally responsible development of cellulosic ethanol in the US.

Hurtado, Lisa Diane

2011-05-01T23:59:59.000Z

183

Optical fiber switch  

DOE Patents (OSTI)

Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

2002-01-01T23:59:59.000Z

184

Fiber-Optic Sensing Technology  

SciTech Connect

This article offers a basic review of fiber-optic sensing technology, or more specifically, fiber-optic sensing technology as applied to the qualitative or quantitative identification of a chemical sample, and how it works,

Milnes, M. [Westinghouse Savannah River Company, AIKEN, SC (United States); Baylor, L.C.; Bave, S.

1996-10-24T23:59:59.000Z

185

Optical and optoelectronic fiber devices  

E-Print Network (OSTI)

The ability to integrate materials with disparate electrical, thermal, and optical properties into a single fiber structure enabled the realization of fiber devices with diverse and complex functionalities. Amongst those, ...

Shapira, Ofer, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

186

Automated fiber pigtailing machine  

DOE Patents (OSTI)

The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectronic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems. 26 figs.

Strand, O.T.; Lowry, M.E.

1999-01-05T23:59:59.000Z

187

Silicon fiber optic sensors  

DOE Patents (OSTI)

A Fabry-Perot cavity is formed by a partially or wholly reflective surface on the free end of an integrated elongate channel or an integrated bounding wall of a chip of a wafer and a partially reflective surface on the end of the optical fiber. Such a constructed device can be utilized to detect one or more physical parameters, such as, for example, strain, through the optical fiber using an optical detection system to provide measuring accuracies of less than aboutb0.1%.

Pocha, Michael D. (Livermore, CA); Swierkowski, Steve P. (Livermore, CA); Wood, Billy E. (Livermore, CA)

2007-10-02T23:59:59.000Z

188

Carbon Fiber Consortium | Partnerships | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Partnerships Carbon Fiber Consortium Manufacturing Industrial Partnerships Staff Partnerships Home | Connect with ORNL | For Industry | Partnerships | Industrial...

189

Method for producing ethanol and co-products from cellulosic biomass  

DOE Patents (OSTI)

The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

Nguyen, Quang A

2013-10-01T23:59:59.000Z

190

Fiber-optic pressure sensor  

DOE Patents (OSTI)

A pressure wave sensor utilizing fiber optic interferometry techniques to determine pressure in a bar. Light from a fiber optic coil around the bar is mixed with light from a reference optical fiber to produce interference fringes as a function of time. These fringes over time are related to the pressure versus time existing in the bar. 2 figs.

Dingus, R.S.

1989-03-10T23:59:59.000Z

191

Aerogel-clad optical fiber  

SciTech Connect

An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency. 4 figs.

Sprehn, G.A.; Hrubesh, L.W.; Poco, J.F.; Sandler, P.H.

1997-11-04T23:59:59.000Z

192

Enriching and characterizing an aerotolerant mixed microbial community capable of cellulose hydrolysis and ethanol production.  

E-Print Network (OSTI)

??Cellulosic ethanol produced via consolidated bioprocessing may one day be a viable alternative to fossil fuels However, efforts must focus on streamlining and simplifying its… (more)

Ronan, Patrick

2011-01-01T23:59:59.000Z

193

The Potential of Cellulosic Ethanol Production from Municipal Solid Waste: A Technical and Economic Evaluation  

E-Print Network (OSTI)

process streams. Handb. Bioethanol:395-415. 10. Ehrman T.solid waste used as bioethanol sources and its relatedof cellulosic biomass into bioethanol as an alternative

Shi, Jian; Ebrik, Mirvat; Yang, Bin; Wyman, Charles E.

2009-01-01T23:59:59.000Z

194

Selective Recovery of Gold from E-wastes by Using Cellulosic Wastes  

Science Conference Proceedings (OSTI)

This technology was extended to prepare similar adsorption gels from cellulosic wastes like spent paper and spent cotton. These adsorption gels were tested for ...

195

Fiber-optic voltage sensor  

DOE Patents (OSTI)

A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities.

Wood, C.B.

1990-12-31T23:59:59.000Z

196

Radiation damage in optical fibers  

SciTech Connect

While plastic-clad-silica (PCS) fiber shows the greatest radiation resistance, PCS fiber has been difficult to reliably connectorize for routine field operations. For this reason, all-glass fibers have been studied as an alternative to PCS. Based on available literature and some preliminary tests at Los Alamos, we have concentrated on fluorosilicate clad, step index, pure silica core fibers. This paper reviews recent laboratory data for these fibers relative to the PCS fibers. This paper also discusses use of a fiber (or any optical medium) on a Cerenkov radiation-to-light transducer. Since the radiation induces attenuation in the medium, the light output is not proportional to the radiation input. The nonlinearity introduced by this attenuation is calculated.

Lyons, P.B.; Looney, L.D.; Ogle, J.W.

1983-01-01T23:59:59.000Z

197

Fiber-optic voltage sensor  

DOE Patents (OSTI)

A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities.

Wood, C.B.

1990-01-01T23:59:59.000Z

198

Loose-fill insulations  

SciTech Connect

Whether you are increasing the insulation levels in your current home or selecting insulation for a new home, choosing the right insulation material can be challenging. Fibrous loose-fill insulations such as cellulose, fiberglass, and rock wool are options you may wish to consider. This publication will introduce you to these materials--what they are, how they are applied, how they compare with each other, and other considerations regarding their use--so that you can decide whether loose fills are right for your home.

1995-05-01T23:59:59.000Z

199

Optimization of direct bioconversion of cellulose into biofuels: medium improvement, scale-up and use of alternative nutrients.  

E-Print Network (OSTI)

??Despite the long-term economic and environmental benefits of cellulosic biofuel production, low rates of cellulose utilization and products syntheses are major techno-economical barriers to the… (more)

Islam, Rumana

2013-01-01T23:59:59.000Z

200

Kits and methods of detection using cellulose binding domain fusion proteins  

DOE Patents (OSTI)

A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

Shoseyov, Oded (Karmey Yosef, IL)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock-wool fibers cellulose" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Cellulosic Ethanol Technology on Track to Being Competitive With Other Transportation Fuels (Fact Sheet)  

DOE Green Energy (OSTI)

Researchers at the National Renewable Energy Laboratory (NREL) have been driving down the cost of cellulosic ethanol and overcoming the technical challenges that surround it-major milestones toward the Department of Energy (DOE) goal of making cellulosic ethanol cost-competitive by 2012.

Not Available

2011-02-01T23:59:59.000Z

202

Topic T4 Claudia Hildenbrand #274 EDLC electrodes from cellulose-based carbon aerogels: influence of  

E-Print Network (OSTI)

Topic T4 Claudia Hildenbrand #274 EDLC electrodes from cellulose-based carbon aerogels: influence performance if used as EDLC electrode material. Carbon aerogels were synthesized by crosslinking cellulose atmosphere (1000°C, nitrogen atmosphere). Subsequently, the surface chemistry of the carbon aerogels

Paris-Sud XI, Université de

203

Construction and characterization of chimeric cellulases with enhanced catalytic activity towards insoluble cellulosic substrates  

E-Print Network (OSTI)

cellulose in high affinity through fusion of an effective CBM, the enzyme concentration on the insol- uble., 2008; Cordomi et al., 2008; Yoon et al., 2008). Initial coordinates for the protein atoms were taken- ciently hydrolyzed the soluble cellulosic substrates as well as insol- uble ones (Table 1). The catalytic

Lee, Keun Woo

204

Kits and methods of detection using cellulose binding domain fusion proteins  

DOE Patents (OSTI)

A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

Shoseyov, O.; Yosef, K.

1998-04-14T23:59:59.000Z

205

Fiber Optic Velocity Interferometry  

SciTech Connect

This paper explores the use of a new velocity measurement technique that has several advantages over existing techniques. It uses an optical fiber to carry coherent light to and from a moving target. A Fabry-Perot interferometer, formed by a gradient index lens and the moving target, produces fringes with a frequency proportional to the target velocity. This technique can measure velocities up to 10 km/s, is accurate, portable, and completely noninvasive.

Neyer, Barry T.

1988-04-01T23:59:59.000Z

206

Impact Resistance of Carbon Fiber and Metallic Glass Fiber Metal ...  

Science Conference Proceedings (OSTI)

The combination of thin metallic sheets with carbon fiber composite results in a ... Ceramic Textile Composites under In Situ Loading at Ultrahigh Temperatures.

207

Cellulosic Biomass Feedstocks and Logistics for Ethanol Production  

Science Conference Proceedings (OSTI)

The economic competitiveness of cellulosic ethanol production is highly dependent on feedstock cost, which constitutes 35–50% of the total ethanol production cost, depending on various geographical factors and the types of systems used for harvesting, collecting, preprocessing, transporting, and handling the material. Consequently, as the deployment of cellulosic ethanol biorefi neries approaches, feedstock cost and availability are the driving factors that infl uence pioneer biorefi nery locations and will largely control the rate at which this industry grows. Initial scenarios were postulated to develop a pioneer dry feedstock supply system design case as a demonstration of the current state of technology. Based on this pioneer design, advanced scenarios were developed to determine key cost barriers, needed supply system improvements, and technology advancements to achieve government and private sector cost targets. Analysis of the pioneer supply system resulted in a delivered feedstock cost to the throat of the pretreatment reactor of $37.00 per dry tonne (2002 $). Pioneer supply systems will start by using current infrastructure and technologies and be individually designed for biorefi neries using specifi c feedstock types and varieties based on local geographic conditions. As the industry develops and cost barriers are addressed, the supply systems will incorporate advanced technologies that will eliminate downstream diversity and provide a uniform, tailored feedstock for multiple biorefi neries located in different regions.

J. Richard Hess; Christopher T. Wright; Kevin L. Kenney

2007-10-01T23:59:59.000Z

208

System for testing optical fibers  

DOE Patents (OSTI)

A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector. 2 figs.

Golob, J.E.; Looney, L.D.; Lyons, P.B.; Nelson, M.A.; Davies, T.J.

1980-07-15T23:59:59.000Z

209

Preparation of silicon carbide fibers  

DOE Patents (OSTI)

Silicon carbide fibers suitable for use in the fabrication of dense, high-strength, high-toughness SiC composites or as thermal insulating materials in oxidizing environments are fabricated by a new, simplified method wherein a mixture of short-length rayon fibers and colloidal silica is homogenized in a water slurry. Water is removed from the mixture by drying in air at 120/sup 0/C and the fibers are carbonized by (pyrolysis) heating the mixture to 800 to 1000/sup 0/C in argon. The mixture is subsequently reacted at 1550 to 1900/sup 0/C in argon to yield pure ..beta..-SiC fibers.

Wei, G.C.

1983-10-12T23:59:59.000Z

210

Carbon Fiber Cluster Strategy | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Fiber Cluster Strategy SHARE Carbon Fiber Cluster Strategy ORNL has a 40-year history in R&D on fiber-reinforced composite materials, and has been leading DOE's low-cost...

211

Fiber optic systems for mobile platforms II  

Science Conference Proceedings (OSTI)

This book contains papers presented at the symposium of International Society for Optical Engineering. Topics covered/include: Fiber optic pressure sensor for internal combustion engine; Automotive fiber optic technology: application issues; and Fiber optic guided missile.

Lewis, N.E.; Moore, E.L.

1988-01-01T23:59:59.000Z

212

Nanocharacterization of electrocoated polymers on carbon fibers  

Science Conference Proceedings (OSTI)

Electropolymerization of carbazole and its copolymers onto carbon fibers were performed by potentiodynamic and potentiostatic methods. Electrocoated polymer thin films on carbon fiber microelectrodes (CFME) were characterized by combination of a variety ... Keywords: Carbon fibers, Electropolymerization, Nanomodification

A. Sezai Sarac

2006-04-01T23:59:59.000Z

213

Fiber Tracking Cylinder Nesting  

SciTech Connect

The fiber tracker consists of 8 concentric carbon fiber cylinders of varying diameters, from 399mm to 1032.2mm and two different lengths. 1.66 and 2.52 meters. Each completed cylinder is covered over the entire o.d. with scintillating fiber ribbons with a connector on each ribbon. These ribbons are axial (parallel to the beam line) at one end and stereo (at 3 deg. to the beam line) at the other. The ribbon connectors have dowel pins which are used to match with the connectors on the wave guide ribbons. These dowel pins are also used during the nesting operation, locating and positioning measurements. The nesting operation is the insertion of one cylinder into another, aligning them with one another and fastening them together into a homogeneous assembly. For ease of assembly. the nesting operation is accomplished working from largest diameter to smallest. Although the completed assembly of all 8 cylinders glued and bolted together is very stiff. individual cylinders are relatively flexible. Therefore. during this operation, No.8 must be supported in a manner which maintains its integrity and yet allows the insertion of No.7. This is accomplished by essentially building a set of dummy end plates which replicate a No.9 cylinder. These end plates are mounted on a wheeled cart that becomes the nesting cart. Provisions for a protective cover fastened to these rings has been made and will be incorporated in finished product. These covers can be easily removed for access to No.8 and/or the connection of No.8 to No.9. Another wheeled cart, transfer cart, is used to push a completed cylinder into the cylinder(s) already mounted in the nesting cart.

Stredde, H.; /Fermilab

1999-03-30T23:59:59.000Z

214

Development of efficient, integrated cellulosic biorefineries : LDRD final report.  

DOE Green Energy (OSTI)

Cellulosic ethanol, generated from lignocellulosic biomass sources such as grasses and trees, is a promising alternative to conventional starch- and sugar-based ethanol production in terms of potential production quantities, CO{sub 2} impact, and economic competitiveness. In addition, cellulosic ethanol can be generated (at least in principle) without competing with food production. However, approximately 1/3 of the lignocellulosic biomass material (including all of the lignin) cannot be converted to ethanol through biochemical means and must be extracted at some point in the biochemical process. In this project we gathered basic information on the prospects for utilizing this lignin residue material in thermochemical conversion processes to improve the overall energy efficiency or liquid fuel production capacity of cellulosic biorefineries. Two existing pretreatment approaches, soaking in aqueous ammonia (SAA) and the Arkenol (strong sulfuric acid) process, were implemented at Sandia and used to generated suitable quantities of residue material from corn stover and eucalyptus feedstocks for subsequent thermochemical research. A third, novel technique, using ionic liquids (IL) was investigated by Sandia researchers at the Joint Bioenergy Institute (JBEI), but was not successful in isolating sufficient lignin residue. Additional residue material for thermochemical research was supplied from the dilute-acid simultaneous saccharification/fermentation (SSF) pilot-scale process at the National Renewable Energy Laboratory (NREL). The high-temperature volatiles yields of the different residues were measured, as were the char combustion reactivities. The residue chars showed slightly lower reactivity than raw biomass char, except for the SSF residue, which had substantially lower reactivity. Exergy analysis was applied to the NREL standard process design model for thermochemical ethanol production and from a prototypical dedicated biochemical process, with process data supplied by a recent report from the National Research Council (NRC). The thermochemical system analysis revealed that most of the system inefficiency is associated with the gasification process and subsequent tar reforming step. For the biochemical process, the steam generation from residue combustion, providing the requisite heating for the conventional pretreatment and alcohol distillation processes, was shown to dominate the exergy loss. An overall energy balance with different potential distillation energy requirements shows that as much as 30% of the biomass energy content may be available in the future as a feedstock for thermochemical production of liquid fuels.

Teh, Kwee-Yan; Hecht, Ethan S.; Shaddix, Christopher R.; Buffleben, George M.; Dibble, Dean C.; Lutz, Andrew E.

2010-09-01T23:59:59.000Z

215

Fiber optic geophysical sensors  

DOE Patents (OSTI)

This invention is comprised of a fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figs.

Homuth, E.F.

1990-01-01T23:59:59.000Z

216

Fiber optic geophysical sensors  

DOE Patents (OSTI)

This invention is comprised of a fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figs.

Homuth, E.F.

1990-12-31T23:59:59.000Z

217

Implementation Challenges for Sintered Silicon Carbide Fiber ...  

Science Conference Proceedings (OSTI)

The sintered silicon carbide fiber bonded ceramics have been fabricated by the hot pressing and sintering of silicon carbide fibers. However, in this system ...

218

Thermoplastic Composite with Vapor Grown Carbon Fiber.  

E-Print Network (OSTI)

??Vapor grown carbon fiber (VGCF) is a new class of highly graphitic carbon nanofiber and offers advantages of economy and simpler processing over continuous-fiber composites.… (more)

Lee, Jaewoo

2005-01-01T23:59:59.000Z

219

Study of radiation hardness of optical fibers.  

E-Print Network (OSTI)

??Optical fiber manufacturing is a multibillion dollar industry today, and optical fibers have found diverse applications, such as telecommunication, medicine, nuclear and chemical industries, and… (more)

Thomas, Rayburn D

2004-01-01T23:59:59.000Z

220

CFTF | Carbon Fiber Technology Facility | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

BTRIC CNMS CSMB CFTF Working with CFTF HFIR MDF NTRC OLCF SNS Carbon Fiber Technology Facility Home | User Facilities | CFTF CFTF | Carbon Fiber Technology Facility SHARE Oak...

Note: This page contains sample records for the topic "rock-wool fibers cellulose" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A PRECISION ANALOG FIBER OPTIC TRANSMISSION SYSTEM  

E-Print Network (OSTI)

Optical Fibers for Transmission, John Wiley and Sons, 9.Laboratories, Transmission Systems for Communications, BellANALOG FIBER OPTIC TRANSMISSION SYSTEM G. Stover M.S. Thesis

Stover, G.

2010-01-01T23:59:59.000Z

222

Cellulose hydrolysis in evolving substrate morphologies III: Timescale analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrolysis Hydrolysis in Evolving Substrate Morphologies III: Time-Scale Analysis Wen Zhou, 1,2 Ying Xu, 1,2 Heinz-Bernd Schu ¨ ttler 3 1 Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, Georgia; telephone: 706-542-9779; fax: 706-542-9751; e-mail: xyn@bmb.uga.edu 2 BioEnergy Science Center (BESC), Department of Energy (DOE), Oak Ridge, Tennessee 3 Department of Physics and Astronomy, University of Georgia, Athens, Georgia; telephone: 706-542-3886; fax: 706-542-2492; e-mail: hbs@physast.uga.edu Received 11 December 2009; revision received 4 May 2010; accepted 10 May 2010 Published online 1 June 2010 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/bit.22814 ABSTRACT: We present a time-scale analysis for the enzy- matic hydrolysis of solid cellulosic substrates,

223

Cellulosic Ethanol: Securing the Planet Future Energy Needs  

E-Print Network (OSTI)

Abstract: Bioenergy is fairly recognized as not only a necessity, but an inevitable path to secure the planet future energy needs. There is however a global consensus that the overall feasibility of bioenergy will require an integrated approach based on diversified feedstocks and conversion processes. As illustrated in the Brazilian experience, the thrust of any bioenergy program should be centered on the principles and criteria of sustainable production. In general the trends are towards exploiting low value cellulosic materials to obtain high-end value energy products. To this end, it is expected that scientific or technical innovation will come to play a critical role on the future prospects and potential of any bioenergy initiative.

Clifford Louime; Hannah Uckelmann

2008-01-01T23:59:59.000Z

224

Conversion of cellulosic and waste polymer material to gasoline  

DOE Green Energy (OSTI)

The present status and future plans for a project to convert cellulosic (biomass) and waste synthetic polymer materials to quality liquid fuels is presented. A thermal gasification approach is utilized followed by catalytic liquid fuels synthesis steps. Potential products include a medium quality substitute for natural gas or liquid fuel equivalents of diesel fuel, kerosene or high octane gasoline. The process appears very flexible with regard to ability to handle different sources of feedstock. Results to date indicate quality products can be produced. Product yields need to be improved with the main thrust centered on improvement of pyrolysis gas composition. This will be a major effort in the new contract period. Other items to be addressed are study of alternate economic feedstocks, waste stream characterization, and liquid fuels synthesis and tailoring with particular attention on the effects of alternate feedstocks. A description of a proposed 10 ton/day pilot plant is presented with flow sheet, material balance and cost estimates.

Kuester, J.L.

1979-03-28T23:59:59.000Z

225

Fiber optic refractive index monitor  

DOE Patents (OSTI)

A sensor for measuring the change in refractive index of a liquid uses the lowest critical angle of a normal fiber optic to achieve sensitivity when the index of the liquid is significantly less than the index of the fiber core. Another embodiment uses a liquid filled core to ensure that its index is approximately the same as the liquid being measured.

Weiss, Jonathan David (Albuquerque, NM)

2002-01-01T23:59:59.000Z

226

System for testing optical fibers  

SciTech Connect

A system for nondestructively determining the attenuation coefficient, .alpha.(.lambda.), of low-loss optical fiber wave guides. Cerenkov light pulses are generated at a plurality of locations in the fiber by a beam of charged particles. The transit times of selected spectral components and their intensities are utilized to unfold the .alpha.(.lambda.) values over the measured spectrum.

Davies, Terence J. (Santa Barbara, CA); Franks, Larry A. (Santa Barbara, CA); Nelson, Melvin A. (Santa Barbara, CA)

1981-01-01T23:59:59.000Z

227

Quantitive DNA Fiber Mapping  

SciTech Connect

Several hybridization-based methods used to delineate single copy or repeated DNA sequences in larger genomic intervals take advantage of the increased resolution and sensitivity of free chromatin, i.e., chromatin released from interphase cell nuclei. Quantitative DNA fiber mapping (QDFM) differs from the majority of these methods in that it applies FISH to purified, clonal DNA molecules which have been bound with at least one end to a solid substrate. The DNA molecules are then stretched by the action of a receding meniscus at the water-air interface resulting in DNA molecules stretched homogeneously to about 2.3 kb/{micro}m. When non-isotopically, multicolor-labeled probes are hybridized to these stretched DNA fibers, their respective binding sites are visualized in the fluorescence microscope, their relative distance can be measured and converted into kilobase pairs (kb). The QDFM technique has found useful applications ranging from the detection and delineation of deletions or overlap between linked clones to the construction of high-resolution physical maps to studies of stalled DNA replication and transcription.

Lu, Chun-Mei; Wang, Mei; Greulich-Bode, Karin M.; Weier, Jingly F.; Weier, Heinz-Ulli G.

2008-01-28T23:59:59.000Z

228

Fair Oaks Dairy Farms Cellulosic Ethanol Technology Review Summary  

SciTech Connect

At Fair Oaks Dairy, dried manure solids (''DMS'') are currently used as a low value compost. United Power was engaged to evaluate the feasibility of processing these DMS into ethanol utilizing commercially available cellulosic biofuels conversion platforms. The Fair Oaks Dairy group is transitioning their traditional ''manure to methane'' mesophilic anaerobic digester platform to an integrated bio-refinery centered upon thermophilic digestion. Presently, the Digested Manure Solids (DMS) are used as a low value soil amendment (compost). United Power evaluated the feasibility of processing DMS into higher value ethanol utilizing commercially available cellulosic biofuels conversion platforms. DMS was analyzed and over 100 potential technology providers were reviewed and evaluated. DMS contains enough carbon to be suitable as a biomass feedstock for conversion into ethanol by gasification technology, or as part of a conversion process that would include combined heat and power. In the first process, 100% of the feedstock is converted into ethanol. In the second process, the feedstock is combusted to provide heat to generate electrical power supporting other processes. Of the 100 technology vendors evaluated, a short list of nine technology providers was developed. From this, two vendors were selected as finalists (one was an enzymatic platform and one was a gasification platform). Their selection was based upon the technical feasibility of their systems, engineering expertise, experience in commercial or pilot scale operations, the ability or willingness to integrate the system into the Fair Oaks Biorefinery, the know-how or experience in producing bio-ethanol, and a clear path to commercial development.

Andrew Wold; Robert Divers

2011-06-23T23:59:59.000Z

229

Fiber Grating Environmental Sensing System  

DOE Patents (OSTI)

Fiber grating environmental measurement systems are comprised of sensors that are configured to respond to changes in moisture or chemical content of the surrounding medium through the action of coatings and plates inducing strain that is measured. These sensors can also be used to monitor the interior of bonds for degradation due to aging, cracking, or chemical attack. Means to multiplex these sensors at high speed and with high sensitivity can be accomplished by using spectral filters placed to correspond to each fiber grating environmental sensor. By forming networks of spectral elements and using wavelength division multiplexing arrays of fiber grating sensors may be processed in a single fiber line allowing distributed high sensitivity, high bandwidth fiber optic grating environmental sensor systems to be realized.

Schulz, Whitten L. (Fairview, OR); Udd, Eric (Fairview, OR)

2003-07-29T23:59:59.000Z

230

Bioconversion of Secondary Fiber Fines to Ethanol Using Counter-Current Enzymatic Saccharification and Co-Fermentation  

E-Print Network (OSTI)

This research examined several enzymatic and microbial process for the conversion of waste cellulosic fibers into ethanol. The first was a one-stage process in which pulp fines were contacted with commercial enzyme solutions. The second process used sequential, multistage saccharification. The third used sequential enzyme addition in a countercurrent mode. Experiments compared the results with various feedstocks, different commercial enzymes, supplementation with b-glucosidase, and saccharification combined with fermentation. The highest saccharification (65%) from a 4% consistency pulp and the highest sugar concentration (5.4%) from an 8% consistency pulp were attained when 5 FPU/g plus 10 IU/g of b-glucosidase were used.

Ethanol Using; Counter-current Enzymatic; Thomas W. Jeffries; Richard Schartman

1999-01-01T23:59:59.000Z

231

FIBER LENGTH DISTRIBUTION MEASUREMENT FOR LONG GLASS AND CARBON FIBER REINFORCED INJECTION MOLDED THERMOPLASTICS  

SciTech Connect

Procedures for fiber length distribution (FLD) measurement of long fiber reinforced injection molded thermoplastics were refined for glass and carbon fibers. Techniques for sample selection, fiber separation, digitization and length measurement for both fiber types are described in detail. Quantitative FLD results are provided for glass and carbon reinforced polypropylene samples molded with a nominal original fiber length of 12.7 mm (1/2 in.) using equipment optimized for molding short fiber reinforced thermoplastics.

Kunc, Vlastimil [ORNL; Frame, Barbara J [ORNL; Nguyen, Ba N. [Pacific Northwest National Laboratory (PNNL); TuckerIII, Charles L. [University of Illinois, Urbana-Champaign; Velez-Garcia, Gregorio [Virginia Polytechnic Institute and State University

2007-01-01T23:59:59.000Z

232

NREL: Continuum Magazine - At $2.15 a Gallon, Cellulosic Ethanol Could Be  

NLE Websites -- All DOE Office Websites (Extended Search)

At $2.15 a Gallon, Cellulosic Ethanol Could Be Cost Competitive At $2.15 a Gallon, Cellulosic Ethanol Could Be Cost Competitive Issue 5 Print Version Share this resource At $2.15 a Gallon, Cellulosic Ethanol Could Be Cost Competitive DOE challenge met-research advances cut costs to produce fuel from non-food plant sources. A photo showing a silhouette of a man wearing glass in a dark room lit only by a band of light consisting or red, blue, and white dots (26186). Enlarge image In NREL's new Energy Systems Integration Facility, the Insight Collaboration Laboratory shows a 3D model of cellulose microfibrils. Photo by Dennis Schroeder, NREL Imagine a near perfect transportation fuel-it's clean, domestic, abundant, and renewable. Now imagine that it's also affordable. Bringing this vision closer to reality was the challenge the U.S.

233

Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium  

E-Print Network (OSTI)

of cellulosic biomass: an update. Curr.Opin.Biotechnol.16:Stokes, and D. C. Erbach. 2005. Biomass as a feedstock for a2002. Energy production from biomass (part 1): overview of

Goyal, Garima

2011-01-01T23:59:59.000Z

234

Recovery and reuse of cellulase catalyst in an exzymatic cellulose hydrolysis process  

DOE Patents (OSTI)

A process for recovering cellulase from the hydrolysis of cellulose, and reusing it in subsequent hydrolyois procedures. The process utilizes a commercial adsorbent that efficiently removes cellulase from reaction products which can be easily removed by simple decantation.

Woodward, Jonathan (Oak Ridge, TN)

1989-01-01T23:59:59.000Z

235

Utilization of Vinegar for Isolation of Cellulose Producing Acetic Acid Bacteria  

Science Conference Proceedings (OSTI)

Wastes of traditionally fermented Turkish vinegar were used in the isolation of cellulose producing acetic acid bacteria. Waste material was pre-enriched in Hestrin-Schramm medium and microorganisms were isolated by plating dilution series on HS agar plates The isolated strains were subjected to elaborate biochemical and physiological tests for identification. Test results were compared to those of reference strains Gluconacetobacter xylinus DSM 46604, Gluconacetobacter hansenii DSM 5602 and Gluconacetobacter liquefaciens DSM 5603. Seventeen strains, out of which only three were found to secrete the exopolysaccharide cellulose. The highest cellulose yield was recorded as 0.263+-0.02 g cellulose L{sup -1} for the strain AS14 which resembled Gluconacetobacter hansenii in terms of biochemical tests.

Aydin, Y. Andelib; Aksoy, Nuran Deveci [Chemical Engineering Department of Istanbul Technical University, Ayazaga, Maslak, Istanbul, 34469 (Turkey)

2010-06-17T23:59:59.000Z

236

Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants  

DOE Patents (OSTI)

Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

Somerville, Chris R. (Portola Valley, CA); Scheible, Wolf (Golm, DE)

2007-07-10T23:59:59.000Z

237

Fiber optic hydrogen sensor  

DOE Green Energy (OSTI)

This report covers the development of fiber optic hydrogen and temperature sensors for monitoring dissolved hydrogen gas in transformer oil. The concentration of hydrogen gas is a measure of the corona and spark discharge within the transformer and reflects the state of health of the transformer. Key features of the instrument include use of palladium alloys to enhance hydrogen sensitivity, a microprocessor controlled instrument with RS-232, liquid crystal readout, and 4-20 ma. current loop interfaces. Calibration data for both sensors can be down loaded to the instrument through the RS-232 interface. This project was supported by the Technology Transfer Initiative in collaboration with J. W. Harley, Inc. through the mechanism of a cooperative research and development agreement (CRADA).

Butler, M.A.; Sanchez, R.; Dulleck, G.R.

1996-05-01T23:59:59.000Z

238

Evaluation of Exothermic Reactions from Bulk-Vitrification Melter Feeds Containing Cellulose  

SciTech Connect

PNNL has demonstrated that cellulose effectively reduces the amount of molten ionic salt during Bulk Vitrification of simulated Hanford Low Level Waste (LLW). To address concerns about the potential reactivity of cellulose-LLW, PNNL used thermogravimetric analysis, differential thermal analysis, and accelerating rate calorimetry to determine in these preliminary studies that these mixtures will support a self-sustaining reaction if heated to 110°C at adiabatic conditions. Additional testing is recommended.

Scheele, Randall D.; McNamara, Bruce K.; Bagaasen, Larry M.; Bos, Stanley J.; Kozelisky, Anne E.; Berry, Pam

2007-06-25T23:59:59.000Z

239

Ethanol extraction of phytosterols from corn fiber  

Science Conference Proceedings (OSTI)

The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.

Abbas, Charles (Champaign, IL); Beery, Kyle E. (Decatur, IL); Binder, Thomas P. (Decatur, IL); Rammelsberg, Anne M. (Decatur, IL)

2010-11-16T23:59:59.000Z

240

High pressure HC1 conversion of cellulose to glucose  

DOE Green Energy (OSTI)

The production of ethanol from glucose by means of fermentation represents a potential long-range alternative to oil for use as a transportation fuel. Today's rising oil prices and the dwindling world supply of oil have made other fuels, such as ethanol, attractive alternatives. It has been shown that automobiles can operate, with minor alterations, on a 10% ethanol-gasoline mixture popularly known as gasohol. Wood has long been known as a potential source of glucose. Glucose may be obtained from wood following acid hydrolysis. In this research, it was found that saturating wood particles with HCl gas under pressure was an effective pretreatment before subjecting the wood to dilute acid hydrolysis. The pretreatment is necessary because of the tight lattice structure of cellulose, which inhibits dilute acid hydrolysis. HCl gas makes the cellulose more susceptible to hydrolysis and the glucose yield is doubled when dilute acid hydrolysis is preceded by HCl saturation at high pressure. The saturation was most effectively performed in a fluidized bed reactor, with pure HCl gas fluidizing equal volumes of ground wood and inert particles. The fluidized bed effectively dissipated the large amount of heat released upon HCl absorption into the wood. Batch reaction times of one hour at 314.7 p.s.i.a. gave glucose yields of 80% and xylose yields of 95% after dilute acid hydrolysis. A non-catalytic gas-solid reaction model, with gas diffusing through the solid limiting the reaction rate, was found to describe the HCl-wood reaction in the fluidized bed. HCl was found to form a stable adduct with the lignin residue in the wood, in a ratio of 3.33 moles per mole of lignin monomer. This resulted in a loss of 0.1453 lb. of HCl per pound of wood. The adduct was broken upon the addition of water. A process design and economic evaluation for a plant to produce 214 tons per day of glucose from air-dried ground Populus tristi gave an estimated glucose cost of 15.14 cents per pound. This would correspond to $2.54 per gallon of ethanol if the glucose were fermented. Key factors contributing to the cost of glucose production were unrecovered HCl, which contributed 5.70 cents per pound of glucose, and the cost of wood, which at $25 per ton contribute 4.17 cents per pound.

Antonoplis, Robert Alexander; Blanch, Harvey W.; Wilke, Charles R.

1981-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock-wool fibers cellulose" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Electric Field Alignment of Cellulose Based-Polymer Nanocomposites  

E-Print Network (OSTI)

Cellulose whiskers (CWs) obtained from naturally occuring cellulose are nano-inclusions which show a lot of promise as mechanical reinforcements in polymers. Typically, a relatively high content is added to realize improvement in effective mechanical behavior. This enhancement in modulus is usually followed by a modest increase in strength but generally the ductility and toughness decrease. Our approach is to use small concentrations of CWs so as not to detrimentally affect processability, toughness and ductility. By aligning the small concentrations, we target the same kind of improvement in modulus and strength as reported in the literature, but at much smaller volume contents. In this work, we investigate the effect of AC electric field on the alignment of dispersed nanoscale CW in a polymer. Polyvinyl acetate (PVAc) is used as the model polymer because of the good interaction between CWs and PVAc. A low concentration of 0.4wt% was used for the study. Two dispersion methods, namely basic and modified, were developed. The basic method led to micron scale dispersion. Using the modified method, CWs were individually dispersed in PVAc with average lengths and diameters of 260 nm and 8 nm respectively yielding an aspect ratio of approximately 30. The behavior of CWs (alignment and chain formation) under an applied electric field was found to be a function of applied electric field magnitude, frequency and duration. Following alignment, the CW/PVAc nanocomposites are thermally dried in the presence of electric field to maintain the aligned microstructure. Improvements in dielectric constant and mechanical properties were observed for the aligned cases as compared to random case and pure PVAc. The optimal electric field magnitude, frequency and duration for the alignment and chain formation were found to be 200Vpp/mm, 50 KHz for duration of 20 minutes for the microcomposite and 250Vpp/mm, 10KHz for a duration of 1hr for the nanocomposite. At 0.4wt% concentration, 21% increase in dielectric constant for the optimal nanocomposite case. Above Tg, a 680% improvement in elastic modulus at 0.4wt% concentration for the optimal nanocomposite case. The reason for the significant reinforcement is attributed to alignment (rotation and chain formation) and chain-chain interaction (3D network formation and hydrogen bonding).

Kalidindi, Sanjay Varma

2012-05-01T23:59:59.000Z

242

Scintillator fiber optic long counter  

DOE Patents (OSTI)

A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected is described. 11 figures.

McCollum, T.; Spector, G.B.

1994-03-29T23:59:59.000Z

243

Light diffusing fiber optic chamber  

DOE Patents (OSTI)

A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

Maitland, Duncan J. (Lafayette, CA)

2002-01-01T23:59:59.000Z

244

Isolation of levoglucosan from pyrolysis oil derived from cellulose  

DOE Patents (OSTI)

High purity levoglucosan is obtained from pyrolysis oil derived from cellulose by: mixing pyrolysis oil with water and a basic metal hydroxide, oxide, or salt in amount sufficient to elevate pH values to a range of from about 12 to about 12.5, and adding an amount of the hydroxide, oxide, or salt in excess of the amount needed to obtain the pH range until colored materials of impurities from the oil are removed and a slurry is formed; drying the slurry azeotropically with methyl isobutyl ketone solvent to form a residue, and further drying the residue by evaporation; reducing the residue into a powder; continuously extracting the powder residue with ethyl acetate to provide a levoglucosan-rich extract; and concentrating the extract by removing ethyl acetate to provide crystalline levoglucosan. Preferably, Ca(OH)[sub 2] is added to adjust the pH to the elevated values, and then Ca(OH)[sub 2] is added in an excess amount needed. 3 figures.

Moens, L.

1994-12-06T23:59:59.000Z

245

Transgenic Plants Lower the Costs of Cellulosic Biofuels (Fact Sheet)  

DOE Green Energy (OSTI)

A new transgenic maize was observed to be less recalcitrant than wild-type biomass, as manifested through lower severity requirements to achieve comparable levels of conversion. Expression of a single gene derived from bacteria in plants has resulted in transgenic plants that are easier and cheaper to convert into biofuels. Part of the high production cost of cellulosic biofuels is the relatively poor accessibility of substrates to enzymes due to the strong associations between plant cell wall components. This biomass recalcitrance makes costly thermochemical pretreatment necessary. Scientists at the National Renewable Energy Laboratory (NREL) have created transgenic maize expressing an active glycosyl hydrolase enzyme, E1 endoglucanase, originally isolated from a thermophilic bacterium, Acidothermus cellulolyticus. This engineered feedstock was observed to be less recalcitrant than wild-type biomass when subjected to reduced severity pretreatments and post-pretreatment enzymatic hydrolysis. This reduction in recalcitrance was manifested through lower severity requirements to achieve comparable levels of conversion of wild-type biomass. The improvements observed are significant enough to positively affect the economics of the conversion process through decreased capital construction costs and decreased degradation products and inhibitor formation.

Not Available

2011-11-01T23:59:59.000Z

246

Isolation of levoglucosan from pyrolysis oil derived from cellulose  

DOE Patents (OSTI)

High purity levoglucosan is obtained from pyrolysis oil derived from cellulose by: mixing pyrolysis oil with water and a basic metal hydroxide, oxide, or salt in amount sufficient to elevate pH values to a range of from about 12 to about 12.5, and adding an amount of the hydroxide, oxide, or salt in excess of the amount needed to obtain the pH range until colored materials of impurities from the oil are removed and a slurry is formed; drying the slurry azeotropically with methyl isobutyl ketone solvent to form a residue, and further drying the residue by evaporation; reducing the residue into a powder; continuously extracting the powder residue with ethyl acetate to provide a levoglucosan-rich extract; and concentrating the extract by removing ethyl acetate to provide crystalline levoglucosan. Preferably, Ca(OH).sub.2 is added to adjust the pH to the elevated values, and then Ca(OH).sub.2 is added in an excess amount needed.

Moens, Luc (Lakewood, CO)

1994-01-01T23:59:59.000Z

247

Fiber optic temperature sensor  

SciTech Connect

Our fiber optic temperature measurement sensor and system is a major improvement over methods currently in use in most industrial processes, and it delivers all of the attributes required simplicity, accuracy, and cost efficiency-to help improve all of these processes. Because temperature is a basic physical attribute of nearly every industrial and commercial process, our system can eventually result in significant improvements in nearly every industrial and commercial process. Many finished goods, and the materials that go into them, are critically dependent on the temperature. The better the temperature measurement, the better quality the goods will be and the more economically they can be produced. The production and transmission of energy requires the monitoring of temperature in motors, circuit breakers, power generating plants, and transmission line equipment. The more reliable and robust the methods for measuring these temperature, the more available, stable, and affordable the supply of energy will become. The world is increasingly realizing the threats to health and safety of toxic or otherwise undesirable by products of the industrial economy in the environment. Cleanup of such contamination often depends on techniques that require the constant monitoring of temperature in extremely hazardous environments, which can damage most conventional temperature sensors and which are dangerous for operating personnel. Our system makes such monitoring safer and more economical.

Rabold, D.

1995-12-01T23:59:59.000Z

248

Optical fiber inspection system  

DOE Patents (OSTI)

A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected. 10 figs.

Moore, F.W.

1985-04-05T23:59:59.000Z

249

Optical fiber inspection system  

DOE Patents (OSTI)

A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected.

Moore, Francis W. (Richland, WA)

1987-01-01T23:59:59.000Z

250

Hydrogen Optical Fiber Sensors  

DOE Green Energy (OSTI)

Optically-based hydrogen sensors promise to deliver an added level of safety as hydrogen and fuel cell technologies enter the mainstream. More importantly, they offer reduced power consumption and lower cost, which are desirable for mass production applications such as automobiles and consumer appliances. This program addressed two of the major challenges previously identified in porous optrode-based optical hydrogen sensors: sensitivity to moisture (ambient humidity), and interference from the oxygen in air. Polymer coatings to inhibit moisture and oxygen were developed in conjunction with newer and novel hydrogen sensing chemistries. The results showed that it is possible to achieve sensitive hydrogen detection and rapid response with minimal interference from oxygen and humidity. As a result of this work, a new and more exciting avenue of investigation was developed: the elimination of the porous optrode and deposition of the sensor chemistry directly into the polymer film. Initial results have been promising, and open up a wider range of potential applications from extended optical fiber sensing networks, to simple plastic "stickers" for use around the home and office.

Lieberman, Robert A.; Beshay, Manal; Cordero, Steven R.

2008-07-28T23:59:59.000Z

251

Clostridium Thermocellum CbhA- Amino acid sequence modified for enhanced catalytic activity in the saccharification of cellulose  

sugars from biomass cellulose is an important step in making biomass-derived products economically viable. Despite efforts to engineer cellulases with ...

252

Effective elastoplastic damage mechanics for fiber-reinforced composites with evolutionary complete fiber debonding  

E-Print Network (OSTI)

unidirectional silicon-carbide fiber (Textron SCS-6, withFor simplicity, the silicon-carbide fibers are assumed to be

Ju, Jiann-Wen W; Ko, Y F; Ruan, H N

2006-01-01T23:59:59.000Z

253

Buried fiber optic intrusion sensor  

E-Print Network (OSTI)

A distributed fiber optic intrusion sensor capable of detecting intruders from the pressure of their weight on the earth's surface was investigated in the laboratory and in field tests. The presence of an intruder above or in proximity to the buried sensor induces a phase shift in light propagating along the fiber which allows for the detection and localization of intrusions. Through the use of an ultra-stable erbium-doped fiber laser and phase sensitive optical time domain reflectometry, disturbances were monitored in long (several km) lengths of optical fiber. Narrow linewidth and low frequency drift in the laser were achieved through a combination of optical feedback and insulation of the laser cavity against environmental effects. The frequency drift of the laser, characterized using an all-fiber Mach Zehnder interferometer, was found to be less than 1 MHz/min, as required for operation of the intrusion detection system. Intrusions were simulated in a laboratory setting using a piezoelectric transducer to produce a controllable optical phase shift at the 2 km point of a 12 km path length. Interrogation of the distributed sensor was accomplished by repetitively gating light pulses from the stable laser into the sensing fiber. By monitoring the Rayleigh backscattered light with a photodetector and comparing traces with and without an induced phase shift, the phase disturbances were detected and located. Once the feasibility of such a sensor was proven in the laboratory, the experimental set up was transferred to Texas A&M's Riverside Campus. At the test site, approximately 40 meters of fiber optic cable were buried in a triangle perimeter and then spliced into the 12 km path length which was housed inside the test facility. Field tests were conducted producing results comparable to those found in the laboratory. Intrusions over this buried fiber were detectable on the ?-OTDR trace and could be localized to the intrusion point. This type of sensor has the potential benefits of heightened sensitivity, covertness, and greatly reduced cost over the conventional seismic, acoustic, infrared, magnetic, and fiber optic sensors for monitoring long (multi-km) perimeters.

Maier, Eric William

2005-05-01T23:59:59.000Z

254

Characterization of cellulosic wastes and gasification products from chicken farms  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer The gas chromatography indicated the variable quality of the producer gas. Black-Right-Pointing-Pointer The char had appreciable NPK values, and can be used as a fertiliser. Black-Right-Pointing-Pointer The bio-oil produced was of poor quality, having high moisture content and low pH. Black-Right-Pointing-Pointer Mass and energy balances showed inadequate level energy recovery from the process. Black-Right-Pointing-Pointer Future work includes changing the operating parameters of the gasification unit. - Abstract: The current article focuses on gasification as a primary disposal solution for cellulosic wastes derived from chicken farms, and the possibility to recover energy from this process. Wood shavings and chicken litter were characterized with a view to establishing their thermal parameters, compositional natures and calorific values. The main products obtained from the gasification of chicken litter, namely, producer gas, bio-oil and char, were also analysed in order to establish their potential as energy sources. The experimental protocol included bomb calorimetry, pyrolysis combustion flow calorimetry (PCFC), thermo-gravimetric analyses (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, elemental analyses, X-ray diffraction (XRD), mineral content analyses and gas chromatography. The mass and energy balances of the gasification unit were also estimated. The results obtained confirmed that gasification is a viable method of chicken litter disposal. In addition to this, it is also possible to recover some energy from the process. However, energy content in the gas-phase was relatively low. This might be due to the low energy efficiency (19.6%) of the gasification unit, which could be improved by changing the operation parameters.

Joseph, Paul, E-mail: p.joseph@ulster.ac.uk [School of the Built Environment and the Built Environment Research Institute, University of Ulster, Newtownabbey BT37 0QB, County Antrim, Northern Ireland (United Kingdom); Tretsiakova-McNally, Svetlana; McKenna, Siobhan [School of the Built Environment and the Built Environment Research Institute, University of Ulster, Newtownabbey BT37 0QB, County Antrim, Northern Ireland (United Kingdom)

2012-04-15T23:59:59.000Z

255

Thin-film Nanofibrous Composite Membranes Containing Cellulose or Chitin Barrier Layers Fabricated by Ionic Liquids  

Science Conference Proceedings (OSTI)

The barrier layer of high-flux ultrafiltration (UF) thin-film nanofibrous composite (TFNC) membranes for purification of wastewater (e.g., bilge water) have been prepared by using cellulose, chitin, and a cellulose-chitin blend, regenerated from an ionic liquid. The structures and properties of regenerated cellulose, chitin, and a cellulose-chitin blend were analyzed with thermogravimetric analysis (TGA) and wide-angle X-ray diffraction (WAXD). The surface morphology, pore size and pore size distribution of TFNC membranes were determined by SEM images and molecular weight cut-off (MWCO) methods. An oil/water emulsion, a model of bilge water, was used as the feed solution, and the permeation flux and rejection ratio of the membranes were investigated. TFNC membranes based on the cellulose-chitin blend exhibited 10 times higher permeation flux when compared with a commercial UF membrane (PAN10, Sepro) with a similar rejection ratio after filtration over a time period of up to 100 h, implying the practical feasibility of such membranes for UF applications.

H Ma; B Hsiao; B Chu

2011-12-31T23:59:59.000Z

256

Suite of Activity-Based Probes for Cellulose-Degrading Enzymes  

Science Conference Proceedings (OSTI)

Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry, and to increase enzyme active site inclusion for LC-MS analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic cellulose degrading systems, and facilitates a greater understanding of the organismal role associated within biofuel development.

Chauvigne-Hines, Lacie M.; Anderson, Lindsey N.; Weaver, Holly M.; Brown, Joseph N.; Koech, Phillip K.; Nicora, Carrie D.; Hofstad, Beth A.; Smith, Richard D.; Wilkins, Michael J.; Callister, Stephen J.; Wright, Aaron T.

2012-12-19T23:59:59.000Z

257

A Probabilistic Inventory Analysis of Biomass for the State of Texas for Cellulosic Ethanol  

E-Print Network (OSTI)

Agricultural and forestry wastes for the use of creating cellulosic ethanol were inventoried for each county in Texas. A simple forecast was created for each of the agricultural wastes and then a multivariate empirical distribution was used to simulate the range of biomass available by county and district. The probability that a district could support a 25, 50, 75, or 100 million gallon cellulosic ethanol plant is estimated from the Monte Carlo simulation results. Biomass in Texas is concentrated in the Northern and Eastern areas of the state. The areas of South and West Texas have little to no biomass available to use for cellulosic ethanol. The North East, South East, and Upper Coast districts include forestry waste that increase the amount of available biomass. With 100 percent certainty the North East and South East districts can support four 100 million gallon cellulosic ethanol plants each. The research found that there is more than enough biomass to support numerous cellulosic ethanol plants in Texas, and decision makers can use the results of this study to identify regions of low and high risk for available biomass from agricultural and forestry waste.

Gleinser, Matthew A.

2009-05-01T23:59:59.000Z

258

Continuous Fiber Ceramic Composites (CFCC)  

Science Conference Proceedings (OSTI)

This report summarizes work to develop CFCC's for various applications in the Industries of the Future (IOF) and power generation areas. Performance requirements range from relatively modest for hot gas filters to severe for turbine combustor liners and infrared burners. The McDermott Technology Inc. (MTI) CFCC program focused on oxide/oxide composite systems because they are known to be stable in the application environments of interest. The work is broadly focused on dense and porous composite systems depending on the specific application. Dense composites were targeted at corrosion resistant components, molten aluminum handling components and gas turbine combustor liners. The development work on dense composites led to significant advances in fiber coatings for oxide fibers and matrix densification. Additionally, a one-step fabrication process was developed to produce low cost composite components. The program also supported key developments in advanced oxide fibers that resulted in an improved version of Nextel 610 fiber (commercially available as Nextel 650) and significant progress in the development of a YAG/alumina fiber. Porous composite development focused on the vacuum winding process used to produce hot gas filters and infrared burner components.

R. A. Wagner

2002-12-18T23:59:59.000Z

259

Graphitized-carbon fiber/carbon char fuel  

DOE Patents (OSTI)

A method for recovery of intact graphitic fibers from fiber/polymer composites is described. The method comprises first pyrolyzing the graphite fiber/polymer composite mixture and then separating the graphite fibers by molten salt electrochemical oxidation.

Cooper, John F. (Oakland, CA)

2007-08-28T23:59:59.000Z

260

NREL: News - NREL Finds a New Cellulose Digestion Mechanism by a  

NLE Websites -- All DOE Office Websites (Extended Search)

114 114 NREL Finds a New Cellulose Digestion Mechanism by a Fast-eating Enzyme CelA digests cellulose faster than enzymes from commercial preparations January 2, 2014 Researchers at the Energy Department's National Renewable Energy Laboratory (NREL) have discovered that an enzyme from a microorganism first found in the Valley of Geysers on the Kamchatka Peninsula in Russia in 1990 can digest cellulose almost twice as fast as the current leading component cellulase enzyme on the market. If the enzyme continues to perform well in larger tests, it could help drive down the price of making lignocellulosic fuels, from ethanol to other biofuels that can be dropped into existing infrastructure. A paper reporting this finding, "Revealing Nature's Cellulase Diversity: The

Note: This page contains sample records for the topic "rock-wool fibers cellulose" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Direct analysis of cellulose in poplar stem by matrixassisted laser desorption/ionization imaging mass spectrometry  

NLE Websites -- All DOE Office Websites (Extended Search)

analysis analysis of cellulose in poplar stem by matrix- assisted laser desorption/ionization imaging mass spectrometry Seokwon Jung 1,3 , Yanfeng Chen 3 , M. Cameron Sullards 1,3 and Arthur J. Ragauskas 1,2,3 * 1 BioEnergy Science Center, Georgia Institute of Technology, 500 10 th St., Atlanta, GA 30332, USA 2 Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10 th St., Atlanta, GA 30332, USA 3 School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA Received 10 July 2010; Revised 9 August 2010; Accepted 23 August 2010 Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) was applied to the analysis of the spatial distribution of cellulose on a cross-section of juvenile poplar (Populus deltoids) stems. Microcrystalline cellulose (MCC) was used to optimize matrix (2,5-dihydroxybenzoic

262

Ultrastable phosphoglucose isomerase through immobilization of cellulosebinding moduletagged thermophilic enzyme on lowcost highcapacity cellulosic adsorbent  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultra-stable phosphoglucose isomerase through immobilization of cellulose- Ultra-stable phosphoglucose isomerase through immobilization of cellulose- binding module-tagged thermophilic enzyme on low-cost high-capacity cellulosic adsorbent Suwan Myung 1,2 , Xiao-Zhou Zhang 1 , Y.-H. Percival Zhang 1,2,3* Running title: One-step protein purification and immobilization 1 Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, 210-A Seitz Hall, Blacksburg, VA 24061, USA 2 Institute for Critical Technology and Applied Science (ICTAS), Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA 3 DOE BioEnergy Science Center (BESC), Oak Ridge, TN 37831, USA *Corresponding author. Tel: 540-231-7414; Fax: 540-231-7414; Email: ypzhang@vt.edu Biocatalysts and Bioreactor Design

263

Applications of fiber optics in physical protection  

SciTech Connect

The purpose of this NUREG is to provide technical information useful for the development of fiber-optic communications and intrusion detection subsystems relevant to physical protection. There are major sections on fiber-optic technology and applications. Other topics include fiber-optic system components and systems engineering. This document also contains a glossary, a list of standards and specifications, and a list of fiber-optic equipment vendors.

Buckle, T.H. [Sandia National Labs., Albuquerque, NM (United States)

1994-03-01T23:59:59.000Z

264

Piezoelectric Fiber Fabrication for Magnetoelectric Sensors  

Science Conference Proceedings (OSTI)

Optical Properties of Bifeo3: Polar Oxides for Fundamental Science and Solar Energy Applications · Piezoelectric Fiber Fabrication for Magnetoelectric Sensors

265

Chapter 31. Microfluidic Fiber Lasers Microfluidic Fiber Lasers  

E-Print Network (OSTI)

at the water/oil interface. We have shown that in maintaining the same pump beam energy, the fiber laser can based pressure sensors. Custom made hermetic optical coupler oil Pump Light Radially Emitted Laser Light hermetic optical coupler oil Pump Light Radially Emitted Laser Light from R6G-doped water plug Microfluidic

266

Interaction effects between cellulose and water in nanocrystalline and amorphous regions: a novel approach using molecular modeling  

Science Conference Proceedings (OSTI)

The hydrophilic/hydrophobic nature of cellulose is based on its structural anisotropy. Cellulose chains are arranged in a parallel manner and are organized in sheets stabilized by interchain OH-O hydrogen bonds, whereas the stacking of sheets is stabilized ...

Ali Chami Khazraji, Sylvain Robert

2013-01-01T23:59:59.000Z

267

The environmental benefits of cellulosic energy crops at a landscape scale  

DOE Green Energy (OSTI)

The objective of this paper is to present a broad overview of the potential environmental impacts of biomass energy from energy crops--particularly the cellulosic energy crops current under development. For this discussion, the term energy crop refers to a crop grown primarily to create feedstock for either making biofuels such as ethanol or burning in a heat or electricity generation facility. Cellulosic energy crops are designed to be used in cellulose-based ethanol conversion processes (as opposed to starch or sugar-based ethanol conversion processes). As more cellulose can be produced per hectare of land than can sugar or starch, the cellulose-based ethanol conversion process is a more efficient sue of land for ethanol production. Assessing the environmental impacts of biomass energy from energy crops is complex because the environmental impact of using biomass for energy must be considered in the context of alternative energy options while the environmental impact of producing biomass from energy crops must be considered in the context of alternative land-uses. Using biomass-derived energy can reduce greenhouse gas emissions or increase them; growing biomass energy crops can enhance soil fertility or degrade it. Without knowing the context of the biomass energy, one can say little about its specific environmental impacts. The primary focus of this paper is an evaluation of the environmental impacts of growing cellulosic energy crops especially at the landscape or regional scale. However, to set the stage for this discussion, the authors begin by comparing the environmental advantages and disadvantages of biomass-derived energy relative to other energy alternatives such as coal, hydropower, nuclear power, oil/gasoline, natural gas and photovoltaics.

Graham, R.L.; Liu, W. [Oak Ridge National Lab., TN (United States); English, B.C. [Univ. of Tennessee, Knoxville, TN (United States). Inst. of Agriculture

1995-12-31T23:59:59.000Z

268

Optical fiber reliability models M. John Matthewson  

E-Print Network (OSTI)

Systems containing optical fiber have design lives on the order of decades so that models for assessing and promising areas for future work are proposed. 1. INTRODUCTION Mechanical failure of optical fiber must tail can be controlled by proof testing the fiber which truncates the distribution (dashed line

Matthewson, M. John

269

Process Design of Wastewater Treatment for the NREL Cellulosic Ethanol Model  

SciTech Connect

This report describes a preliminary process design for treating the wastewater from NREL's cellulosic ethanol production process to quality levels required for recycle. In this report Brown and Caldwell report on three main tasks: 1) characterization of the effluent from NREL's ammonia-conditioned hydrolyzate fermentation process; 2) development of the wastewater treatment process design; and 3) development of a capital and operational cost estimate for the treatment concept option. This wastewater treatment design was incorporated into NREL's cellulosic ethanol process design update published in May 2011 (NREL/TP-5100-47764).

Steinwinder, T.; Gill, E.; Gerhardt, M.

2011-09-01T23:59:59.000Z

270

Preliminary Economics for the Production of Pyrolysis Oil from Lignin in a Cellulosic Ethanol Biorefinery  

Science Conference Proceedings (OSTI)

Cellulosic ethanol biorefinery economics can be potentially improved by converting by-product lignin into high valued products. Cellulosic biomass is composed mainly of cellulose, hemicellulose and lignin. In a cellulosic ethanol biorefinery, cellulose and hemicellullose are converted to ethanol via fermentation. The raw lignin portion is the partially dewatered stream that is separated from the product ethanol and contains lignin, unconverted feed and other by-products. It can be burned as fuel for the plant or can be diverted into higher-value products. One such higher-valued product is pyrolysis oil, a fuel that can be further upgraded into motor gasoline fuels. While pyrolysis of pure lignin is not a good source of pyrolysis liquids, raw lignin containing unconverted feed and by-products may have potential as a feedstock. This report considers only the production of the pyrolysis oil and does not estimate the cost of upgrading that oil into synthetic crude oil or finished gasoline and diesel. A techno-economic analysis for the production of pyrolysis oil from raw lignin was conducted. comparing two cellulosic ethanol fermentation based biorefineries. The base case is the NREL 2002 cellulosic ethanol design report case where 2000 MTPD of corn stover is fermented to ethanol (NREL 2002). In the base case, lignin is separated from the ethanol product, dewatered, and burned to produce steam and power. The alternate case considered in this report dries the lignin, and then uses fast pyrolysis to generate a bio-oil product. Steam and power are generated in this alternate case by burning some of the corn stover feed, rather than fermenting it. This reduces the annual ethanol production rate from 69 to 54 million gallons/year. Assuming a pyrolysis oil value similar to Btu-adjusted residual oil, the estimated ethanol selling price ranges from $1.40 to $1.48 (2007 $) depending upon the yield of pyrolysis oil. This is considerably above the target minimum ethanol selling price of $1.33 for the 2012 goal case process as reported in the 2007 State of Technology Model (NREL 2008). Hence, pyrolysis oil does not appear to be an economically attractive product in this scenario. Further research regarding fast pyrolysis of raw lignin from a cellulosic plant as an end product is not recommended. Other processes, such as high-pressure liquefaction or wet gasification, and higher value products, such as gasoline and diesel from fast pyrolysis oil should be considered in future studies.

Jones, Susanne B.; Zhu, Yunhua

2009-04-01T23:59:59.000Z

271

Chapter 18: Understanding the Developing Cellulosic Biofuels Industry through Dynamic Modeling  

DOE Green Energy (OSTI)

The purpose of this chapter is to discuss a system dynamics model called the Biomass Scenario Model (BSM), which is being developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the burgeoning cellulosic biofuels industry in the United States. The model has also recently been expanded to include advanced conversion technologies and biofuels (i.e., conversion pathways that yield biomass-based gasoline, diesel, jet fuel, and butanol), but we focus on cellulosic ethanol conversion pathways here. The BSM uses a system dynamics modeling approach (Bush et al., 2008) built on the STELLA software platform.

Newes, E.; Inman, D.; Bush, B.

2011-01-01T23:59:59.000Z

272

Convergence of Agriculture and Energy: II. Producing Cellulosic Biomass for Biofuels  

SciTech Connect

The economic competitiveness of cellulosic ethanol production is highly dependent on feedstock cost, which constitutes 35-50% of the total ethanol production cost, depending on geographical factors such as biomass species, yield, location, climate, local economy, as well as the types of systems used for harvesting, collection, preprocessing, and transportation. Consequently, as the deployment of cellulosic ethanol biorefineries approaches, feedstock cost and availability are the driving factors that influence the selection of pioneer biorefinery locations, and these same factors will largely control the rate at which this industry grows. Due to geographic variability and complex distributed supply system dynamics, estimating feedstock costs and supplies has been a major source of uncertainty.

Steven L. Fales; Wallace W. Wilhelm; J. Richard Hess

2007-11-01T23:59:59.000Z

273

Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars  

DOE Patents (OSTI)

A method is described for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

Black, S.K.; Hames, B.R.; Myers, M.D.

1998-03-24T23:59:59.000Z

274

Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars  

DOE Patents (OSTI)

A method for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

Black, Stuart K. (Denver, CO); Hames, Bonnie R. (Westminster, CO); Myers, Michele D. (Dacono, CO)

1998-01-01T23:59:59.000Z

275

Land-use change and greenhouse gas emissions from corn and cellulosic  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Science Computing, Environment & Life Sciences Energy Engineering & Systems Analysis Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Science Highlights Postdoctoral Researchers Land-use change and greenhouse gas emissions from corn and cellulosic ethanol July 16, 2013 Tweet EmailPrint The greenhouse gas (GHG) emissions that may accompany land-use change (LUC) from increased biofuel feedstock production are a source of debate in the discussion of drawbacks and advantages of biofuels. Estimates of LUC GHG emissions focus mainly on corn ethanol and vary widely. Increasing the understanding of LUC GHG impacts associated with both corn and cellulosic ethanol will inform the on-going debate concerning their magnitudes and

276

Cellulose and cellobiose: adventures of a wandering organic chemist in theoretical chemistry  

SciTech Connect

The energies arising from the rotation of free hydroxyl groups in the central glucose residue of a cellulose crystalline assembly, calculated using RHF, DFT, and FMO2/MP2 methods, will be presented. In addition, interactions of this central glucose residue with some of the surrounding residues (selected on the basis of the interaction strengths) are analyzed. The mechanism of acid-catalyzed hydrolysis of cellobiose, which is the repeating unit of cellulose. Energies corresponding to the different steps of this mechanism calculated using RHF and DFT are compared with those previously reported using molecular dynamics calculations and with experimental data.

Baluyut, John

2012-04-03T23:59:59.000Z

277

Increasing cellulose accessibility is more important than removing lignin: A comparison of cellulose solventbased lignocellulose fractionation and soaking in aqueous ammonia  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing Increasing Cellulose Accessibility Is More Important Than Removing Lignin: A Comparison of Cellulose Solvent-Based Lignocellulose Fractionation and Soaking in Aqueous Ammonia Joseph A. Rollin, 1 Zhiguang Zhu, 1 Noppadon Sathitsuksanoh, 1,2 Y.-H. Percival Zhang 1,2,3 1 Biological Systems Engineering Department, Virginia Polytechnic Institute and State University, 210-A Seitz Hall, Blacksburg, Virginia 24061; telephone: 1-540-231-7414; fax: þ1- 540-231-3199; e-mail: ypzhang@vt.edu 2 Institute for Critical Technology and Applied Sciences (ICTAS), Virginia Polytechnic Institute and State University, Blacksburg, Virginia 3 DOE BioEnergy Science Center (BESC), Oak Ridge, Tennessee Received 18 May 2010; revision received 11 August 2010; accepted 17 August 2010 Published online 1 September 2010 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/bit.22919

278

High temperature mineral fiber binder  

SciTech Connect

A modified phenol formaldehyde condensate is reacted with boric acid and cured in the presence of a polyfunctional nitrogeneous compound to provide a binder for mineral wool fibers which is particularly suited for thermal insulation products intended for high temperature service.

Miedaner, P.M.

1980-11-25T23:59:59.000Z

279

Anisotropic fiber alignment in composite structures  

DOE Patents (OSTI)

High strength material composite structures are formed with oriented fibers to provide controlled anisotropic fibers. Fibers suspended in non-dilute concentrations (e.g., up to 20 volume percent for fibers having an aspect ratio of 20) in a selected medium are oriented by moving an axially spaced array of elements in the direction of desired fiber alignment. The array elements are generally perpendicular to the desired orientation. The suspension medium may also include sphere-like particles where the resulting material is a ceramic. 5 figures.

Graham, A.L.; Mondy, L.A.; Guell, D.C.

1993-11-16T23:59:59.000Z

280

Fiber-type dosimeter with improved illuminator  

DOE Patents (OSTI)

A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.

Fox, Richard J. (Oak Ridge, TN)

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock-wool fibers cellulose" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fiber-type dosimeter with improved illuminator  

DOE Patents (OSTI)

A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.

Fox, R.J.

1985-12-23T23:59:59.000Z

282

Anisotropic fiber alignment in composite structures  

DOE Patents (OSTI)

High strength material composite structures are formed with oriented fibers to provide controlled anisotropic fibers. Fibers suspended in non-dilute concentrations (e.g., up to 20 volume percent for fibers having an aspect ratio of 20) in a selected medium are oriented by moving an axially spaced array of elements in the direction of desired fiber alignment. The array elements are generally perpendicular to the desired orientation. The suspension medium may also include sphere-like particles where the resulting material is a ceramic.

Graham, A.L.; Mondy, L.A.; Guell, D.C.

1992-12-31T23:59:59.000Z

283

Side-emitting fiber optic position sensor  

SciTech Connect

A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.

Weiss, Jonathan D. (Albuquerque, NM)

2008-02-12T23:59:59.000Z

284

Compensated vibrating optical fiber pressure measuring device  

SciTech Connect

A microbending optical fiber is attached under tension to a diaphragm to se a differential pressure applied across the diaphragm which it causes it to deflect. The fiber is attached to the diaphragm so that one portion of the fiber, attached to a central portion of the diaphragm, undergoes a change in tension; proportional to the differential pressure applied to the diaphragm while a second portion attached at the periphery of the diaphragm remains at a reference tension. Both portions of the fiber are caused to vibrate at their natural frequencies. Light transmitted through the fiber is attenuated by both portions of the tensioned sections of the fiber by an amount which increases with the curvature of fiber bending so that the light signal is modulated by both portions of the fiber at separate frequencies. The modulated light signal is transduced into a electrical signal. The separate modulation signals are detected to generate separate signals having frequencies corresponding to the reference and measuring vibrating sections of the continuous fiber, respectively. A signal proportional to the difference between these signals is generated which is indicative of the measured pressure differential across the diaphragm. The reference portion of the fiber is used to compensate the pressure signal for zero and span changes resulting from ambient temperature and humidity effects upon the fiber and the transducer fixture.

Fasching, George E. (Morgantown, WV); Goff, David R. (Christiansburg, VA)

1987-01-01T23:59:59.000Z

285

Interfacial Studies of Sized Carbon Fiber  

SciTech Connect

This study was performed to investigate the influence of sizing treatment on carbon fiber in respect of interfacial adhesion in composite materials, Epolam registered 2025. Fortafil unsized carbon fiber was used to performed the experiment. The fiber was commercially surface treated and it was a polyacrylonitrile based carbon fiber with 3000 filament per strand. Epicure registered 3370 was used as basic sizing chemical and dissolved in two types of solvent, ethanol and acetone for the comparison purpose. The single pull out test has been used to determine the influence of sizing on carbon fiber. The morphology of carbon fiber was observed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The apparent interfacial strength IFSS values determined by pull out test for the Epicure registered 3370/ethanol sized carbon fiber pointed to a good interfacial behaviour compared to the Epicure registered 3370/acetone sized carbon fiber. The Epicure registered 3370/ethanol sizing agent was found to be effective in promoting adhesion because of the chemical reactions between the sizing and Epolam registered 2025 during the curing process. From this work, it showed that sized carbon fiber using Epicure registered 3370 with addition of ethanol give higher mechanical properties of carbon fiber in terms of shear strength and also provided a good adhesion between fiber and matrix compared to the sizing chemical that contain acetone as a solvent.

Shahrul, S. N.; Hartini, M. N.; Hilmi, E. A.; Nizam, A. [Nanomaterials Program, Advance Materials Centre (AMREC), SIRIM Berhad, Lot 34, Jalan Hi-Tech Park, 09000, Kulim, Kedah (Malaysia)

2010-03-11T23:59:59.000Z

286

Electrical Properties of Carbon Fiber Support Systems  

E-Print Network (OSTI)

Carbon fiber support structures have become common elements of detector designs for high energy physics experiments. Carbon fiber has many mechanical advantages but it is also characterized by high conductivity, particularly at high frequency, with associated design issues. This paper discusses the elements required for sound electrical performance of silicon detectors employing carbon fiber support elements. Tests on carbon fiber structures are presented indicating that carbon fiber must be regarded as a conductor for the frequency region of 10 to 100 MHz. The general principles of grounding configurations involving carbon fiber structures will be discussed. To illustrate the design requirements, measurements performed with a silicon detector on a carbon fiber support structure at small radius are presented. A grounding scheme employing copper-kapton mesh circuits is described and shown to provide adequate and robust detector performance.

W. Cooper; C. Daly; M. Demarteau; J. Fast; K. Hanagaki; M. Johnson; W. Kuykendall; H. Lubatti; M. Matulik; A. Nomerotski; B. Quinn; J. Wang

2005-04-19T23:59:59.000Z

287

Electrical Properties of Carbon Fiber Support Systems  

E-Print Network (OSTI)

Carbon fiber support structures have become common elements of detector designs for high energy physics experiments. Carbon fiber has many mechanical advantages but it is also characterized by high conductivity, particularly at high frequency, with associated design issues. This paper discusses the elements required for sound electrical performance of silicon detectors employing carbon fiber support elements. Tests on carbon fiber structures are presented indicating that carbon fiber must be regarded as a conductor for the frequency region of 10 to 100 MHz. The general principles of grounding configurations involving carbon fiber structures will be discussed. To illustrate the design requirements, measurements performed with a silicon detector on a carbon fiber support structure at small radius are presented. A grounding scheme employing copper-kapton mesh circuits is described and shown to provide adequate and robust detector performance.

Cooper, W; Demarteau, M; Fast, J; Hanagaki, K; Johnson, M; Kuykendall, W; Lubatti, H; Matulik, M; Nomerotski, A; Quinn, B; Wang, J

2005-01-01T23:59:59.000Z

288

Investigation of Polymer Resin/Fiber Compatibility in Natural Fiber Reinforced Composite Automotive Materials  

DOE Green Energy (OSTI)

Natural fibers represent a lower density and potentially lower cost alternative to glass fibers for reinforcement of polymers in automotive composites. The high specific modulus and strength of bast fibers make them an attractive option to replace glass not only in non-structural automotive components, but also in semi-structural and structural components. Significant barriers to insertion of bast fibers in the fiber reinforced automotive composite market include the high moisture uptake of this lignocellulosic material relative to glass and the weak inherent interface between natural fibers and automotive resins. This work seeks to improve the moisture uptake and resin interfacing properties of natural fibers through improved fundamental understanding of fiber physiochemical architecture and development of tailored fiber surface modification strategies.

Fifield, Leonard S.; Huang, Cheng; Simmons, Kevin L.

2010-01-01T23:59:59.000Z

289

Complete Genome Sequence of the Cellulose-Degrading Bacterium Cellulosilyticum lentocellum  

SciTech Connect

Cellulosilyticum lentocellum DSM 5427 is an anaerobic, endospore-forming member of the Firmicutes. We describe the complete genome sequence of this cellulose-degrading bacterium; originally isolated from estuarine sediment of a river that received both domestic and paper mill waste. Comparative genomics of cellulolytic clostridia will provide insight into factors that influence degradation rates.

Miller, David A [Cornell University; Suen, Garret [University of Wisconsin, Madison; Bruce, David [Los Alamos National Laboratory (LANL); Copeland, A [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Meincke, Linda [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Teshima, Hazuki [Los Alamos National Laboratory (LANL); Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Fox, Brian G. [University of Wisconsin, Madison; Angert, Esther R. [Cornell University; Currie, Cameron [University of Wisconsin, Madison

2011-01-01T23:59:59.000Z

290

Recovery and reuse of cellulase catalyst in an enzymatic cellulose hydrolysis process  

DOE Patents (OSTI)

A process for recovering cellulase from the hydrolysis of cellulose, and reusing it in subsequent hydrolyois procedures. The process utilizes a commercial adsorbent that efficiently removes cellulase from reaction products which can be easily removed by simple decantation. 1 fig., 4 tabs.

Woodward, J.

1987-09-18T23:59:59.000Z

291

Design of Superhydrophobic Paper/Cellulose Surfaces via Plasma Enhanced Etching and Deposition  

E-Print Network (OSTI)

agents have been added to pulp slur- ries to yield hydrophobic paper surfaces [3]. In recent decades to the paper forming process. Commercial copy paper substrates, "Premium white copy paper", were obtained fromDesign of Superhydrophobic Paper/Cellulose Surfaces via Plasma Enhanced Etching and Deposition

Breedveld, Victor

292

Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants  

DOE Patents (OSTI)

Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

Somerville, Chris R.; Scieble, Wolf

2000-10-11T23:59:59.000Z

293

Binding Preferences, Surface Attachment, Diffusivity, and Orientation of a Family 1 Carbohydrate-Binding Module on Cellulose  

DOE Green Energy (OSTI)

Cellulase enzymes often contain carbohydrate-binding modules (CBMs) for binding to cellulose. The mechanisms by which CBMs recognize specific surfaces of cellulose and aid in deconstruction are essential to understand cellulase action. The Family 1 CBM from the Trichoderma reesei Family 7 cellobiohydrolase, Cel7A, is known to selectively bind to hydrophobic surfaces of native cellulose. It is most commonly suggested that three aromatic residues identify the planar binding face of this CBM, but several recent studies have challenged this hypothesis. Here, we use molecular simulation to study the CBM binding orientation and affinity on hydrophilic and hydrophobic cellulose surfaces. Roughly 43 {mu}s of molecular dynamics simulations were conducted, which enables statistically significant observations. We quantify the fractions of the CBMs that detach from crystal surfaces or diffuse to other surfaces, the diffusivity along the hydrophobic surface, and the overall orientation of the CBM on both hydrophobic and hydrophilic faces. The simulations demonstrate that there is a thermodynamic driving force for the Cel7A CBM to bind preferentially to the hydrophobic surface of cellulose relative to hydrophilic surfaces. In addition, the simulations demonstrate that the CBM can diffuse from hydrophilic surfaces to the hydrophobic surface, whereas the reverse transition is not observed. Lastly, our simulations suggest that the flat faces of Family 1 CBMs are the preferred binding surfaces. These results enhance our understanding of how Family 1 CBMs interact with and recognize specific cellulose surfaces and provide insights into the initial events of cellulase adsorption and diffusion on cellulose.

Nimlos, M. R.; Beckham, G. T.; Matthews, J. F.; Bu, L.; Himmel, M. E.; Crowley, M. F.

2012-06-08T23:59:59.000Z

294

Computer simulation and economic analysis for ammonia fiber explosion (AFEX) pretreatment process  

E-Print Network (OSTI)

The ammonia fiber explosion (AFFECT) process is a promising new pretreatment for enhancing the reactivity of lignocerulose materials with many advantages over existing processes. The material is soaked in high-pressure liquid ammonia for a few minutes then the pressure is explosively released. A combined chemical (cellulose decrystamution) and physical (increased surface area) effect increases the enzymatic digestibility of lignocelmose. The laboratory phase of AFEX development is nearing completion, and a brief preliminary economic analysis (without detailed sizing) was finished. However, a commercial size plant has not been developed. This study was undertaken in an effort to support and assist AFEX commercialization through process simulation and cost analysis. In this study, a steady state computer simulation package was developed for the AFEX process. Corn fiber was used as the representative biomass treated by AFEX. Different ammonia loadings, water loadings, temperatures and pressures were used as operational parameters. Mass balances and energy balances are the major determinants of the equipments selected and sized. 'nermodynamic models or kinetic models are also included. A preliminary cost estimate includes total purchased-equipment cost using the equipment cost ratio method. The process computer simulation model was programmed in FORTRAN. FORTRAN subroutine libraries from IMSL (International Mathematical and Statistics Library), Inc. were used as needed. To increase the portability of the program, the programming was done on an EBM compatible PC.

Wang, Lin

1996-01-01T23:59:59.000Z

295

Patterned functional carbon fibers from polyethylene  

SciTech Connect

Patterned, continuous carbon fibers with controlled surface geometry were produced from a novel melt-processible carbon precursor. This portends the use of a unique technique to produce such technologically innovative fibers in large volume for important applications. The novelties of this technique include ease of designing and fabricating fibers with customized surface contour, the ability to manipulate filament diameter from submicron scale to a couple of orders of magnitude larger scale, and the amenable porosity gradient across the carbon wall by diffusion controlled functionalization of precursor. The geometry of fiber cross-section was tailored by using bicomponent melt-spinning with shaped dies and controlling the melt-processing of the precursor polymer. Circular, trilobal, gear-shaped hollow fibers, and solid star-shaped carbon fibers of 0.5 - 20 um diameters, either in self-assembled bundle form, or non-bonded loose filament form, were produced by carbonizing functionalized-polyethylene fibers. Prior to carbonization, melt-spun fibers were converted to a char-forming mass by optimizing the sulfonation on polyethylene macromolecules. The fibers exhibited distinctly ordered carbon morphologies at the outside skin compared to the inner surface or fiber core. Such order in carbon microstructure can be further tuned by altering processing parameters. Partially sulfonated polyethylene-derived hollow carbon fibers exhibit 2-10 fold surface area (50-500 m2/g) compared to the solid fibers (10-25 m2/g) with pore sizes closer to the inside diameter of the filaments larger than the sizes on the outer layer. These specially functionalized carbon fibers hold promise for extraordinary performance improvements when used, for example, as composite reinforcements, catalyst support media, membranes for gas separation, CO2 sorbents, and active electrodes and current collectors for energy storage applications.

Hunt, Marcus A [ORNL; Saito, Tomonori [ORNL; Brown, Rebecca H [ORNL; Kumbhar, Amar S [University of North Carolina, Chapel Hill; Naskar, Amit K [ORNL

2012-01-01T23:59:59.000Z

296

Carbon fibers from SRC pitch  

SciTech Connect

This invention relates to an improved method of manufacturing carbon fibers from a coal derived pitch. The improvement resides in the use of a solvent refined coal which has been hydrotreated and subjected to solvent extraction whereby the hetero atom content in the resulting product is less than 4.0% by weight and the softening point is between about 100.degree.-250.degree. F.

Greskovich, Eugene J. (Allentown, PA); Givens, Edwin N. (Bethlehem, PA)

1981-01-01T23:59:59.000Z

297

Inheritance of cotton fiber length and distribution  

E-Print Network (OSTI)

Fiber quality data from five upland cotton (Gossypium hirsutum L.) genotypes, which were grown at College Station, TX during 2001 and 2002, were subjected to diallel and generation means analyses to determine the potential for improvement of fiber length and to determine the inheritance of length distribution data. Four near-long staple (NLS) upland cotton genotypes and one short-staple genotype were crossed in all combinations, excluding reciprocals. Estimates of general (GCA) and specific combining ability (SCA) for fiber length based on Griffing�s diallel Model I, Method 4 were calculated for high volume instrumentation (HVI) upper-half mean (UHM) fiber length and advance fiber information system (AFIS) mean fiber length by weight (FLw), mean fiber length by number (FLn), upper quartile length by weight (Uqlw), fiber length distribution cross entropy (using 3 different standard or check distributions - CEA, CEB, and CEC), fiber length distribution kurtosis (FLwKurt), and fiber length distribution skewness (FLwSkew) for FLw. Across environments, GCA effects were significant for fiber length measurements of UHM, FLw, FLn, Uqlw, and SFCw and distribution measurements of CEA, CEB, FLwKurt, and FLwSkew. On the basis of GCA effects, TAM 94L-25 was the best parent to be used in a cross to improve upland fiber length, while Acala 1517-99 was the parent of choice to improve distribution among the 4 parents tested. The inheritance of AFIS fiber length measurements and distribution data was estimated using parents, F1, F2, and backcross generations. The magnitude and significance of the estimates for non-allelic effects in the parental combinations suggest that epistatic gene effects are present and important in the basic mechanism of AFIS fiber length and length distribution inheritance for the populations studied. Gene effects and variances for all AFIS fiber length and distribution data measurements were inherited differently in different environments and specific parental combination, suggesting environmentally specific mechanisms. Developing genotypes with enhanced fiber length and an optimal fiber length distribution should be a priority to improve spinning performance and product quality of U.S. upland cotton.

Braden, Chris Alan

2005-08-01T23:59:59.000Z

298

Improvement of Cotton Fiber Maturity and Assessment of Intra-Plant Fiber Variability  

E-Print Network (OSTI)

The temporal system of fruiting on the cotton plant lends itself to bolls at different fruiting sites developing under different environmental conditions and with varied source-sink relationships. To investigate this, intra-plant fiber quality was assessed in four upland cultivars at College Station, Texas for three years and at Lubbock, Texas for two years. It was concluded that fiber quality steadily declines from the bottom sympodial branches towards the upper branches. 'FiberMax 832' had the best fiber quality among all cultivars but it also had the highest degree of variability within the plants. 'Half and Half' and 'Acala 1517-99' appear to have the least amount of intra-plant variability of fiber quality. Bolls from the bottom region of the plant have higher trash content compared to the upper region. To test the impact of fiber quality variability on boll sampling techniques employed, ten sampling protocols were compared against each other for three years in College Station, Texas, for two upland cultivars. Results suggest that randomized boll samples containing 50 bolls worked well to estimate inherent fiber quality for most fiber traits while estimation of trash and lint percent was not predictable based on boll samples. One of the problems associated with intra-plant fiber variability was the presence of immature fibers. In order to determine the potential for improvement of fiber maturity and standard fineness, five upland cotton (Gossypium hirsutum L.) genotypes were subjected to a diallel analysis at College Station, Texas, in 2011. Four cultivars that tend to produce fine and mature fibers and one cultivar that tends to produce coarse fibers were intermated in all combinations, without reciprocals. Estimates of general (GCA) and specific combining ability (SCA) for fiber maturity ratio and standard fineness based on Griffing's diallel Model I, Method 4 were calculated for AFIS and fiber micronaire, length and strength measurements for High Volume Instrument (HVI). Four parents had significant GCA effects and Acala 1517-99 was found to be the best parent for improving standard fineness followed by FiberMax 832 and 'Tamcot HQ-95'. Tamcot HQ-95 was the best parent to improve fiber maturity ratio while 'Deltapine 90' was the best parent to reduce fiber maturity ratio. The specific cross between Acala 1517-99 and Tamcot HQ-95 had the best performance. Diallel analysis indicated that fiber maturity ratio was influenced by non-additive gene effects more than additive gene effects while fiber standard fineness was highly influenced by additive gene effects. Developing cultivars with optimal fiber standard fineness and maturity should be prioritized to address problems associated with neps and short fiber content and improve spinning performance of US cotton.

Kothari, Neha

2012-08-01T23:59:59.000Z

299

Conversion of Ultra High Performance Carbon Fiber  

Conversion of Ultra High Performance Carbon Fiber Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual property may

300

Finding Inspiration in Spider Silk Fibers  

Science Conference Proceedings (OSTI)

Finding Inspiration in Argiope Trifasciata Spider Silk Fibers. Manuel Elices, José Pérez-Rigueiro, Gustavo R. Plaza, and Gustavo V. Guinea ...

Note: This page contains sample records for the topic "rock-wool fibers cellulose" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Remote Synchrotron Light Instrumentation Using Optical Fibers  

E-Print Network (OSTI)

et al. , “Fiberoptics-based Instrumentation for Storage RingSYNCHROTRON LIGHT INSTRUMENTATION USING OPTICAL FIBERS * S.beam diagnostic instrumentation that measures longitudinal

De Santis, S.

2010-01-01T23:59:59.000Z

302

ELECTROSPUN POLYMER-FIBER SOLAR CELL.  

E-Print Network (OSTI)

??A study of fabricating the first electrospun polymer-fiber solar cell with MEHPPV is presented. Motivation for the work and a brief history of solar cell… (more)

Nagata, Shinobu

2011-01-01T23:59:59.000Z

303

Carbon Fiber Damage in Accelerator Beam  

E-Print Network (OSTI)

Carbon fibers are commonly used as moving targets in Beam Wire Scanners. Because of their thermomechanical properties they are very resistant to particle beams. Their strength deteriorates with time due to radiation damage and low-cycle thermal fatigue. In case of high intensity beams this process can accelerate and in extreme cases the fiber is damaged during a single scan. In this work a model describing the fiber temperature, thermionic emission and sublimation is discussed. Results are compared with fiber damage test performed on SPS beam in November 2008. In conclusions the limits of Wire Scanner operation on high intensity beams are drawn.

Sapinski, M; Guerrero, A; Koopman, J; Métral, E

2009-01-01T23:59:59.000Z

304

Effect of incorporating cellulose nanocrystals from corncob on the tensile, thermal and barrier properties of poly(vinyl alcohol) nanocomposites  

Science Conference Proceedings (OSTI)

The effect of incorporating cellulose nanocrystals fromcorncob (CNC) on the tensile, thermal, and barrier properties of poly(vinyl alcohol) (PVA) nanocomposites was evaluated. The CNC were prepared by sulfuric acid hydrolysis at 45°C for 60 minutes, ...

Hudson Alves Silvério, Wilson Pires Flauzino Neto, Daniel Pasquini

2013-01-01T23:59:59.000Z

305

Assessing the Environmental Impacts of Cellulosic Bioethanol Production: An Ongoing Case Study of Switchgrass Production around Vonore, TN  

E-Print Network (OSTI)

for the Vonore area, we will relate these changes in water quality to changes in economic criteria (e.g., target of Tennessee Biofuels Initiative. Managed by Genera Energy LLC and operated by DuPont Danisco Cellulosic

306

EA-1694: Department of Energy Loan Guarantee to Highlands Ethanol, LLC, for the Cellulosic Ethanol Facility in Highlands County, Florida  

Energy.gov (U.S. Department of Energy (DOE))

This EA will evaluate the environmental impacts of a proposal to issue a Federal loan guarantee to Highlands Ethanol, LLC, for a cellulosic ethanol facility in Highlands County, Florida. This EA is on hold.

307

A LASER-BASED MONODISPERSE CARBON FIBER GENERATOR  

E-Print Network (OSTI)

L. (1979) "Release of Carbon Fibers from Burning Composites"2119, p. 29. NASA (1978) "Carbon Fiber Study" NASA TechnicalA. L. Jr. (1980) "A Carbon Fiber Exposure Test Facility and

Loo, Billy W.

2013-01-01T23:59:59.000Z

308

Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 June 2010 Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol F. Kabir Kazi, J. Fortman, and R. Anex Iowa State University G. Kothandaraman ConocoPhillips Company D. Hsu, A. Aden, and A. Dutta National Renewable Energy Laboratory National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-46588 June 2010 Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol F. Kabir Kazi, J. Fortman, and R. Anex

309

Catalytic Mechanism of Cellulose Degradation by a Cellobiohydrolase, CelS  

DOE Green Energy (OSTI)

The hydrolysis of cellulose is the bottleneck in cellulosic ethanol production. The cellobiohydrolase CelS from Clostridium thermocellum catalyzes the hydrolysis of cello-oligosaccharides via inversion of the anomeric carbon. Here, to examine key features of the CelS-catalyzed reaction, QM/MM (SCCDFTB/MM) simulations are performed. The calculated free energy profile for the reaction possesses a 19 kcal/mol barrier. The results confirm the role of active site residue Glu87 as the general acid catalyst in the cleavage reaction and show that Asp255 may act as the general base. A feasible position in the reactant state of the water molecule responsible for nucleophilic attack is identified. Sugar ring distortion as the reaction progresses is quantified. The results provide a computational approach that may complement the experimental design of more efficient enzymes for biofuel production.

Saharay, Moumita [ORNL; Guo, Hong [ORNL; Smith, Jeremy C [ORNL

2010-08-01T23:59:59.000Z

310

Processing cellulosic solids for methane production by a combined chemical and biological process  

Science Conference Proceedings (OSTI)

Cellulosic solids are pretreated by calcium hydroxide to produce salts of volatile organic acids and other water-soluble substances. Pure cellulose, sawdust, and waste paper are used as model substances for the study of alkaline degradation. It was found that sawdust is more difficult to degrade than the other two substances. The cooking conditions for high conversion of model substance and high yield of organic acids are found to be 275/sup 0/C to 300/sup 0/C with the corresponding reaction time from 30 to 15 minutes. The cooking liquor can be readily fermented in an anaerobic fluidized-bed digester for methane production. The cooking liquor from different reaction conditions can all be digested by the methanogens. Higher than 90% of COD can be removed under the conditions of low organic loading rate (<2.0 g COD/1/day) and low hydraulic retention time (1.5-2.0 days).

Tsai, G.J.; Tsao, G.T.

1987-01-01T23:59:59.000Z

311

Fiber optic inclination detector system  

DOE Patents (OSTI)

A fiber optic inclination detector system for determining the angular displacement of an object from a reference surface includes a simple mechanical transducer which requires a minimum number of parts and no electrical components. The system employs a single light beam which is split into two light beams and provided to the transducer. Each light beam is amplitude modulated upon reflecting off the transducer to detect inclination. The power values associated with each of the reflected light beams are converted by a pair of photodetectors into voltage signals, and a microprocessor manipulates the voltage signals to provide a measure of the angular displacement between the object and the reference surface.

Cwalinski, J.P.

1994-12-31T23:59:59.000Z

312

Mechanism of formation of oil by the hot aqueous alkaline digestion of cellulose  

DOE Green Energy (OSTI)

The overall mechanism of cellulose converson in hot aqueous alkali appears to be one of degradation through glucose to low molecular weight saccharinic acids, dihydroxybutyric acid, glycolic acid, and carbonyl products such as acetone, acetaldehyde, formaldehyde, and similar compounds. Although the products identified in the present report were fairly complex furans, carbocyclic ketones, unsaturated hydrocarbons, and aromatic compounds, nevertheless, in most cases, they could have been formed from simple carbonyl compounds through a series of condensations involving carbanion intermediates. It is conceivable that residual alkali in the oil during acetone extraction could have given rise to diacetone alcohol as an artifact. This is refuted by examination of an aqueous residue which was extracted with diethyl ether and which was never exposed to any acetone: Compounds derived from diacetone alcohol (such as mesityl oxide or 4-methyl-3-penten-2-one) were also identified in the diethyl ether extract of the aqueous phase. Other compounds were identified in the oil acetone extract which could not have been derived from acetone or diacetone alcohol, but which could have been formed from other carbonyl compounds by the same mechanism. Hence, diacetone alcohol is a genuine product of cellulose conversion although apparently not an intermediate in further synthesis of other products. The further reaction of the postulated cyclic intermediates, and the route to formation of unsaturated hydrocarbons of high molecular weight is intended to be the next subject of investigation in the current work. The fundamental difference in the mechanism of cellulose conversion to oil by pyrolysis and by aqueous alkaline digestion predicted by theory is therefore confirmed. Pyrolysis products may be explained generally by carbonium ion and free radical reactions (in fact, cellulose decomposition is acid-catalyzed), while in aqueous alkali, nucleophilic carbanion reactions are favored.

Molten, P.M.; Miller, R.K.; Donovan, J.M.; Demmitt, T.F.

1977-01-01T23:59:59.000Z

313

Integration of Feedstock Assembly System and Cellulosic Ethanol Conversion Models to Analyze Bioenergy System Performance  

DOE Green Energy (OSTI)

Research barriers continue to exist in all phases of the emerging cellulosic ethanol biorefining industry. These barriers include the identification and development of a sustainable and abundant biomass feedstock, the assembly of viable assembly systems formatting the feedstock and moving it from the field (e.g., the forest) to the biorefinery, and improving conversion technologies. Each of these phases of cellulosic ethanol production are fundamentally connected, but computational tools used to support and inform analysis within each phase remain largely disparate. This paper discusses the integration of a feedstock assembly system modeling toolkit and an Aspen Plus® conversion process model. Many important biomass feedstock characteristics, such as composition, moisture, particle size and distribution, ash content, etc. are impacted and most effectively managed within the assembly system, but generally come at an economic cost. This integration of the assembly system and the conversion process modeling tools will facilitate a seamless investigation of the assembly system conversion process interface. Through the integrated framework, the user can design the assembly system for a particular biorefinery by specifying location, feedstock, equipment, and unit operation specifications. The assembly system modeling toolkit then provides economic valuation, and detailed biomass feedstock composition and formatting information. This data is seamlessly and dynamically used to run the Aspen Plus® conversion process model. The model can then be used to investigate the design of systems for cellulosic ethanol production from field to final product.

Jared M. Abodeely; Douglas S. McCorkle; Kenneth M. Bryden; David J. Muth; Daniel Wendt; Kevin Kenney

2010-09-01T23:59:59.000Z

314

Method and Apparatus for Three-Dimensional Carbon Fiber Production  

UCF researchers have discovered a method for producing three-dimensional carbon fibers. These novel fibers have a surface area approximately two ...

315

Fiber Bridging Model for Reinforced-Carbon-Carbon  

Science Conference Proceedings (OSTI)

Symposium, Professor K. K. Chawla Honorary Symposium on Fibers, Foams and ... fiber bridging and resistance-curve behavior in reinforced-carbon-carbon (

316

Carbon fiber/vinylester composites in the marine environment.  

E-Print Network (OSTI)

??In this research, the degradation of carbon fiber/vinylester composites in marine environments was experimentally investigated. Additionally, two types of carbon fiber surface treatments, namely Polyhedral… (more)

Vinci, Chris J.

2010-01-01T23:59:59.000Z

317

Novel method for carbon nanofilament growth on carbon fibers.  

E-Print Network (OSTI)

??Carbon nanofilaments were grown on the surface of microscale carbon-fibers at relatively low temperature using palladium as a catalyst to create multiscale fiber reinforcing structures… (more)

Garcia, Daniel

2009-01-01T23:59:59.000Z

318

Oak Ridge National Laboratory Carbon Fiber Technology Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Laboratory Carbon Fiber Technology Facility Low-Cost Carbon Fiber | Proposal Guidelines Proposal Guidelines Proposals should be no more than 5 single spaced...

319

Three-dimensional carbon fibers and method and apparatus for ...  

Method and Apparatus for Three-Dimensional Carbon Fiber Production: Abstract: This invention relates to novel three-dimensional (3D) carbon fibers which are original ...

320

Quantum state tomography of a fiber-based source of ...  

Science Conference Proceedings (OSTI)

... 2. RP Feynman, RB Leighton, RB and ML Sands, The Feynman Lectures ... fiber because the centro- symmetry of single-mode fiber glass allows no ...

2010-08-19T23:59:59.000Z

Note: This page contains sample records for the topic "rock-wool fibers cellulose" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Fiber optic probe having fibers with endfaces formed for improved coupling efficiency and method using same  

DOE Patents (OSTI)

A fiber optic probe is disclosed for detecting scattered light, with transmitting and receiving fibers having slanted ends and bundled together to form a bevel within the tip of the probe. The probe comprises a housing with a transparent window across its tip for protecting the transmitting and receiving fibers held therein. The endfaces of the fibers are slanted, by cutting, polishing and the like, so that they lie in a plane that is not perpendicular to the longitudinal axis of the respective fiber. The fibers are held in the tip of the probe using an epoxy and oriented so that lines normal to the slanted endfaces are divergent with respect to one another. The epoxy, which is positioned substantially between the transmitting and receiving fibers, is tapered so that the transmitting fiber, the epoxy and the receiving fiber form a bevel of not more than 20 degrees. The angled fiber endfaces cause directing of the light cones toward each other, resulting in improved light coupling efficiency. A light absorber, such as carbon black, is contained in the epoxy to reduce crosstalk between the transmitting and receiving fibers. 3 figures.

O`Rourke, P.E.; Livingston, R.R.

1995-03-28T23:59:59.000Z

322

Fiber optic probe having fibers with endfaces formed for improved coupling efficiency and method using same  

DOE Patents (OSTI)

A fiber optic probe for detecting scattered light, with transmitting and receiving fibers having slanted ends and bundled together to form a bevel within the tip of the probe. The probe comprises a housing with a transparent window across its tip for protecting the transmitting and receiving fibers held therein. The endfaces of the fibers are slanted, by cutting, polishing and the like, so that they lie in a plane that is not perpendicular to the longitudinal axis of the respective fiber. The fibers are held in the tip of the probe using an epoxy and oriented so that lines normal to the slanted endfaces are divergent with respect to one another. The epoxy, which is positioned substantially between the transmitting and receiving fibers, is tapered so that the transmitting fiber, the epoxy and the receiving fiber form a bevel of not more than 20 degrees. The angled fiber endfaces cause directing of the light cones toward each other, resulting in improved light coupling efficiency. A light absorber, such as carbon black, is contained in the epoxy to reduce crosstalk between the transmitting and receiving fibers.

O' Rourke, Patrick E. (Martinez, GA); Livingston, Ronald R. (Aiken, SC)

1995-01-01T23:59:59.000Z

323

Virtual klingler dissection: putting fibers into context  

Science Conference Proceedings (OSTI)

Fiber tracking is a standard tool to estimate the course of major white matter tracts from diffusion tensor magnetic resonance imaging (DT-MRI) data. In this work, we aim at supporting the visual analysis of classical streamlines from fiber tracking ...

T. Schultz; N. Sauber; A. Anwander; H. Theisel; H.-P. Seidel

2008-05-01T23:59:59.000Z

324

The Transport Properties of Activated Carbon Fibers  

DOE R&D Accomplishments (OSTI)

The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

1990-07-00T23:59:59.000Z

325

Assessment of fiber optic pressure sensors  

SciTech Connect

This report presents the results of a six-month Phase 1 study to establish the state-of-the-art in fiber optic pressure sensing and describes the design and principle of operation of various fiber optic pressure sensors. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. In addition, current requirements for environmental and seismic qualification of sensors for nuclear power plants were reviewed to determine the extent of the qualification tests that fiber optic pressure sensors may have to meet before they can be used in nuclear power plants. This project has concluded that fiber optic pressure sensors are still in the research and development stage and only a few manufacturers exist in the US and abroad which supply suitable fiber optic pressure sensors for industrial applications. Presently, fiber optic pressure sensors are mostly used in special applications for which conventional sensors are not able to meet the requirements.

Hashemian, H.M.; Black, C.L.; Farmer, J.P. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

1995-04-01T23:59:59.000Z

326

Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection  

DOE Patents (OSTI)

A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities.

Wood, Charles B. (Lakewood, CO)

1992-01-01T23:59:59.000Z

327

Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection  

DOE Patents (OSTI)

A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities. 3 figs.

Wood, C.B.

1992-12-15T23:59:59.000Z

328

Online fiber-optic spectrophotometry  

Science Conference Proceedings (OSTI)

The Savannah River Plant operates two radio-chemical separations areas to recover uranium and plutonium from nuclear reactor fuel and target assemblies. Chemical processes in these areas are controlled based on laboratory analysis of samples extracted from the process. While analytical results from the laboratory are reliable, the process of pulling samples, transporting them to the laboratory, analyzing them, and then reporting results is time consuming and potentially exposes many workers to highly radioactive solutions. To improve the timeliness of chemical information and reduce personnel radiation exposure, the Savannah River Laboratory has developed an online fiber optic spectrophotometer which combines three new technologies, fiber optics, diode array spectrophotometers, and multivariate data analysis. The analyzer monitors the uranium and nitrate concentration of seven aqueous process streams in a uranium purification process. The analyzer remotely controls the sampling of each process stream and monitors the relative flow rate through each sampler. Spectrophotometric data from the analyzer is processed by multivariate data analysis to give both uranium and nitrate concentrations as well as an indication of the quality of the data.

Van Hare, D.R.; O'Rourke, P.E.; Prather, W.S.

1989-01-01T23:59:59.000Z

329

Remotely readable fiber optic compass  

DOE Patents (OSTI)

A remotely readable fiber optic compass. A sheet polarizer is affixed to a magnet rotatably mounted in a compass body, such that the polarizer rotates with the magnet. The optical axis of the sheet polarizer is preferably aligned with the north-south axis of the magnet. A single excitation light beam is divided into four identical beams, two of which are passed through the sheet polarizer and through two fixed polarizing sheets which have their optical axes at right angles to one another. The angle of the compass magnet with respect to a fixed axis of the compass body can be determined by measuring the ratio of the intensities of the two light beams. The remaining ambiguity as to which of the four possible quadrants the magnet is pointing to is resolved by the second pair of light beams, which are passed through the sheet polarizer at positions which are transected by two semicircular opaque strips formed on the sheet polarizer. The incoming excitation beam and the four return beams are communicated by means of optical fibers, giving a remotely readable compass which has no electrical parts.

Migliori, A.; Swift, G.W.; Garrett, S.L.

1985-04-30T23:59:59.000Z

330

Method for preparing polyaniline fibers  

DOE Patents (OSTI)

Stable, concentrated solutions of high molecular weight polyaniline. In order to process high quality fibers and other articles possessing good mechanical properties, it is known that solution concentrations of the chosen polymer should be in the range from 15-30% (w/w). Moreover, it is desirable to use the highest molecular weight consistent with the solubility properties of the polymer. However, such solutions are inherently unstable, forming gels before processing can be achieved. The present invention describes the addition gel inhibitors (GIs) to the polymer solution, thereby permitting high concentrations (>15% (w/w)) of high molecular weight ((M.sub.w)>120,000, and (M.sub.n)>30,000) emeraldine base (EB) polyaniline to be dissolved. Secondary amines have been used for this purpose in concentrations which are small compared to those which might otherwise be used in a cosolvent role therefor. The resulting solutions are useful for generating excellent fibers, films, coatings and other objects, since the solutions are stable for significant time periods, and the GIs are present in too small concentrations to cause polymer deterioration. It is demonstrated that the GIs found to be useful do not act as cosolvents, and that gelation times of the solutions are directly proportional to the concentration of GI. In particular, there is a preferred concentration of GI, which if exceeded causes structural and electrical conductivity degradation of resulting articles. Heating of the solutions significantly improves solubility.

Mattes, Benjamin R. (Santa Fe, NM); Wang, Hsing-Lin (Los Alamos, NM)

2000-01-01T23:59:59.000Z

331

Low Cost Carbon Fiber.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Fiber Production Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract number DE-AC05-00OR22725 Research Areas Freight Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies Research Brief Background The automotive industry has long been identified by carbon fiber manufacturers as a market with substantial growth potential. When manufactured with carbon fiber as opposed to traditional materials such as steel, automotive parts are able to achieve requisite levels of strength and stiffness with significantly less overall vehicle weight. These potential large reductions in vehicle weight, in turn, afford the

332

Lower Cost, Higher Performance Carbon Fiber  

NLE Websites -- All DOE Office Websites (Extended Search)

David (Dave) Warren David (Dave) Warren Field Technical Manager Transportation Materials Research Oak Ridge National Laboratory P.O. Box 2009, M/S 8050 Oak Ridge, Tennessee 37831-8050 Phone: 865-574-9693 Fax: 865-574-0740 Email: WarrenCD@ORNL.GOV Lower Cost, Higher Performance Carbon Fiber 14 February 2011 2 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Questions for Today Materials How can the cost of carbon fiber suitable for higher performance applications (H 2 Storage) be developed? H 2 Storage requirements implies Aerospace grade fibers. Can we build off of work previously done for more modest structural applications? To accurately answer: We need to know the minimum performance and maximum cost requirements of the fiber not simply the properties of current fiber.

333

Methods And Apparatus For Acoustic Fiber Fractionation  

DOE Patents (OSTI)

Methods and apparatus for acoustic fiber fractionation using a plane ultrasonic wave field interacting with water suspended fibers circulating in a channel flow using acoustic radiation forces to separate fibers into two or more fractions based on fiber radius, with applications of the separation concept in the pulp and paper industry. The continuous process relies on the use of a wall-mounted, rectangular cross-section piezoelectric ceramic transducer to selectively deflect flowing fibers as they penetrate the ultrasonic field. The described embodiment uses a transducer frequency of approximately 150 kHz. Depending upon the amount of dissolved gas in water, separation is obtained using a standing or a traveling wave field.

Brodeur, Pierre (Smyrna, GA)

1999-11-09T23:59:59.000Z

334

Carbon fiber manufacturing via plasma technology  

DOE Patents (OSTI)

The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

Paulauskas, Felix L. (Knoxville, TN); Yarborough, Kenneth D. (Oak Ridge, TN); Meek, Thomas T. (Knoxville, TN)

2002-01-01T23:59:59.000Z

335

Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same  

DOE Patents (OSTI)

A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

Wrenn, Jr., George E. (Clinton, TN); Holcombe, Jr., Cressie E. (Farragut, TN)

1988-01-01T23:59:59.000Z

336

Fiber optic D dimer biosensor  

DOE Patents (OSTI)

A fiber optic sensor for D dimer (a fibrinolytic product) can be used in vivo (e.g., in catheter-based procedures) for the diagnosis and treatment of stroke-related conditions in humans. Stroke is the third leading cause of death in the United States. It has been estimated that strokes and stroke-related disorders cost Americans between $15-30 billion annually. Relatively recently, new medical procedures have been developed for the treatment of stroke. These endovascular procedures rely upon the use of microcatheters. These procedures could be facilitated with this sensor for D dimer integrated with a microcatheter for the diagnosis of clot type, and as an indicator of the effectiveness, or end-point of thrombolytic therapy.

Glass, Robert S. (Livermore, CA); Grant, Sheila A. (Pleasanton, CA)

1999-01-01T23:59:59.000Z

337

Coated Fiber Neutron Detector Test  

Science Conference Proceedings (OSTI)

Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Reported here are the results of tests of the 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT).

Lintereur, Azaree T.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

2009-10-23T23:59:59.000Z

338

Effects of hadron irradiation on scintillating fibers  

SciTech Connect

Trackers based on scintillating-fiber technology are being considered by the Solenoidal Detector Collaboration at SSC and the D[phi] collaboration at Fermilab. An important issue is the effect of the radiation existing in the detector cores on fiber properties. Most studies of radiation damage in scintillators have irradiated small bulk samples rather than fibers, and have used X-rays, [sup 60]Co gammas, or electron beams, often at accelerated rates. The authors have irradiated some 600 fibers in the Fermilab Tevatron C[phi] area, thereby obtaining a hadronic irradiation at realistic rates. Four-meter-long samples of ten Bicron polystyrene-based fiber types, maintained in air, dry nitrogen, argon, and vacuum atmospheres within stainless-steel tubes, were irradiated for seven weeks at various distances from the accelerator beam pipes. Maximum doses, measured by thermoluminescence detectors, were about 80 Krad. Fiber properties, particularly light yield and attenuation length, have been measured over a one-year period. A description of the work together with the results is presented. At the doses achieved, corresponding to a few years of actual fiber-tracking detector operation, little degradation is observed. In addition, recovery after several days' exposure to air has been noted. Properties of unirradiated samples kept in darkness show no changes after one year.

Atac, M. (Univ. of California, Los Angeles, CA (United States) Fermi National Accelerator Lab., Batavia, IL (United States)); Buchanan, C.; Chrisman, D.; Cline, D.; Kolonko, J.; Kubic, J.; Park, J. (Univ. of California, Los Angeles, CA (United States)); Baumbaugh, A.; Binkley, M.; Bross, A.D.; Finley, D.; Elias, J.; Foster, G.W.; Kephart, R.; Kephart, R.; Kim, C.; Park, H.; Pla-Dalmau, A.; Rivetta, C.; Tkaczyk, S.; Wagner, R. (Fermi National Accelerator Lab., Batavia, IL (United States)); Chung, M.; Goldberg, H.; Jeskik, R.; Margulies, S.; Mendez, H.; Solomon, J.; Vaca, F. (Univ. of Illinois, Chicago, IL (United States)); Kelley, C. (Massachusetts College of Pharmacy and Allied Health Sciences, Boston, MA (United States)); Baumbaugh, B.; Bishop, J.; Biswas, N.; Cason, N.; Jacques, J.; Kehoe, R.; Kelly, M.; Kenney, V.; LoSecco, J.; Ruchti, R.; Shephard, W.; Warchol, J.; Wayne, M.; Marchant, J.; Mountain, R.J. (Univ. of Notre Dame, IN (United States)); Davis, D.; Vandergriff, D. (O

1993-08-01T23:59:59.000Z

339

Shear and Extensional Rheology of Cellulose/Ionic Liquid Solutions Simon J. Haward1*  

E-Print Network (OSTI)

-anhydroglucopyranose building blocks are substituted by ethers or esters. 1-4 The extensive inter-chain and intra-chain hydrogen and other desirable properties that drive its use in textile fibers, films, nanoparticles, aerogels

340

Microbend fiber-optic chemical sensor  

DOE Patents (OSTI)

A microbend fiber-optic chemical sensor for detecting chemicals in a sample, and a method for its use, is disclosed. The sensor comprises at least one optical fiber having a microbend section (a section of small undulations in its axis), for transmitting and receiving light. In transmission, light guided through the microbend section scatters out of the fiber core and interacts, either directly or indirectly, with the chemical in the sample, inducing fluorescence radiation. Fluorescence radiation is scattered back into the microbend section and returned to an optical detector for determining characteristics of the fluorescence radiation quantifying the presence of a specific chemical.

Weiss, Jonathan D. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock-wool fibers cellulose" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Breaking the Biological barriers to Cellulosic Ethanol: A Joint Research Agenda  

SciTech Connect

A robust fusion of the agricultural, industrial biotechnology, and energy industries can create a new strategic national capability for energy independence and climate protection. In his State of the Union Address (Bush 2006), President George W. Bush outlined the Advanced Energy Initiative, which seeks to reduce our national dependence on imported oil by accelerating the development of domestic, renewable alternatives to gasoline and diesel fuels. The president has set a national goal of developing cleaner, cheaper, and more reliable alternative energy sources to substantially replace oil imports in the coming years. Fuels derived from cellulosic biomass - the fibrous, woody, and generally inedible portions of plant matter - offer one such alternative to conventional energy sources that can dramatically impact national economic growth, national energy security, and environmental goals. Cellulosic biomass is an attractive energy feedstock because it is an abundant, domestic, renewable source that can be converted to liquid transportation fuels. These fuels can be used readily by current-generation vehicles and distributed through the existing transportation-fuel infrastructure. The Biomass to Biofuels Workshop, held December 7-9, 2005, was convened by the Department of Energy's Office of Biological and Environmental Research in the Office of Science; and the Office of the Biomass Program in the Office of Energy Efficiency and Renewable Energy. The purpose was to define barriers and challenges to a rapid expansion of cellulosic-ethanol production and determine ways to speed solutions through concerted application of modern biology tools as part of a joint research agenda. Although the focus was ethanol, the science applies to additional fuels that include biodiesel and other bioproducts or coproducts having critical roles in any deployment scheme. The core barrier is cellulosic-biomass recalcitrance to processing to ethanol. Biomass is composed of nature's most ready energy source, sugars, but they are locked in a complex polymer composite exquisitely created to resist biological and chemical degradation. Key to energizing a new biofuel industry based on conversion of cellulose (and hemicelluloses) to ethanol is to understand plant cell-wall chemical and physical structures - how they are synthesized and can be deconstructed. With this knowledge, innovative energy crops - plants specifically designed for industrial processing to biofuel - can be developed concurrently with new biology-based treatment and conversion methods. Recent advances in science and technological capabilities, especially those from the nascent discipline of systems biology, promise to accelerate and enhance this development. Resulting technologies will create a fundamentally new process and biorefinery paradigm that will enable an efficient and economic industry for converting plant biomass to liquid fuels. These key barriers and suggested research strategies to address them are described in this report. As technologies mature for accomplishing this task, the technical strategy proceeds through three phases: In the research phase, within 5 years, an understanding of existing feedstocks must be gained to devise sustainable, effective, and economical methods for their harvest, deconstruction, and conversion to ethanol. Research is centered on enzymatic breakdown of cellulosic biomass to component 5- and 6-carbon sugars and lignin, using a combination of thermochemical and biological processes, followed by cofermentation of sugars to specified endproducts such as ethanol. Processes will be integrated and consolidated to reduce costs, improve efficacy, reduce generation of and sensitivity to inhibitors, and improve overall yields and viability in biorefinery environments. The technology deployment phase, within 10 years, will include creation of a new generation of energy crops with enhanced sustainability, yield, and composition, coupled with processes for simultaneous breakdown of biomass to sugars and cofermentation of sugars via new biological system

Mansfield, Betty Kay [ORNL; Alton, Anita Jean [ORNL; Andrews, Shirley H [ORNL; Bownas, Jennifer Lynn [ORNL; Casey, Denise [ORNL; Martin, Sheryl A [ORNL; Mills, Marissa [ORNL; Nylander, Kim [ORNL; Wyrick, Judy M [ORNL

2006-01-01T23:59:59.000Z

342

A fiber damage model for early stage consolidation of metal-coated fibers  

Science Conference Proceedings (OSTI)

Continuous fiber reinforced titanium matrix composites (TMCs) possess combinations of specific modulus, strength, and creep resistance that are well suited for a variety of aerospace applications. Recent studies of the high temperature consolidation of titanium alloy coated {alpha}-alumina fiber tows and SiC monofilaments have both revealed the widespread occurrence of fiber bending and fracture during early stage consolidation. This damage was shown to arise from the bending of unaligned fibers during consolidation and was found to be affected by the mechanical behavior of the metal-metal contacts at fiber crossovers. To predict the incidence of fiber fracture during early stage high temperature consolidation, a time-temperature dependent micromechanical model incorporating the evolving contact geometry and mechanical behavior of both the metal matrix and the ceramic fibers has been combined with a statistical representation of crossovers in the pre-consolidated layup. The damage predictions are found to compare favorably with experimental results. The model has subsequently been used to explore the effects of fiber strength, matrix constitutive properties and the processing conditions upon the incidence of fiber fracture. It reveals the existence of a temperature dependent pressurization rate below which fracture is relatively unlikely. This critical pressure rate can be significantly increased by the enhanced superplasticity of the initially nanocrystalline coating.

Warren, J.; Elzey, D.M.; Wadley, H.N.G. [Univ. of Virginia, Charlottesville, VA (United States)

1997-03-01T23:59:59.000Z

343

Polyacrylonitrile / carbon nanotube composite fibers: effect of various processing parameters on fiber structure and properties .  

E-Print Network (OSTI)

??This study elucidates the effect of various processing parameters on polyacrylonitrile (PAN) /carbon nanotube (CNT) composite fiber structure and properties. Interaction between PAN and MWNT… (more)

Choi, Young Ho

2010-01-01T23:59:59.000Z

344

Distributed Light Sensing with Convex Potential Fibers  

E-Print Network (OSTI)

We report on a photoconductive fiber that supports decaying and convex electrical potential profiles capable of localizing a point of illumination, and propose a scheme to perform distributed optical sensing.

Sorin, Fabien

345

Fiber to waveguide couplers for silicon photonics  

E-Print Network (OSTI)

As silicon photonics enters mainstream technology, we find ourselves in need of methods to seamlessly transfer light between the optical fibers of global scale telecommunications networks and the on-chip waveguides used ...

Montalbo, Trisha M., 1980-

2004-01-01T23:59:59.000Z

346

Fiber-Optic Environmental Radiation Dosimeter - Energy ...  

Solar Thermal; Startup ... mm in diameter by 10 cm in length and is fiber-optic-coupled to a photodetec-tor that is remotely located away from the potential radiation ...

347

Fiber gasket and method of making same  

DOE Patents (OSTI)

A gasket (1) is made by repetitively spirally winding a fiber (3) back on itself in a closed path. The gasket (1) so made has a multi-layer spiral winding (1) formed in a loop (5). The fiber (3) can be wound at a constant wrap rate to form a gasket with a uniform cross-section around the loop. Alternatively, the wrap rate can be varied, increased to increase cross-sectional bulk, and decreased to reduce cross-section bulk around the loop (5). Also, the spiral winding (7) can be applied over a core (13) of either strands of the fiber (3) or a dissimilar material providing a desired property such as resiliency, stiffness or others. For high temperature applications, a ceramic fiber (3) can be used. The gasket (1) can have any of various geometric configurations with or without a core (13).

Bruck, Gerald Joseph (Murrysville, PA); Alvin, Mary Anne (Pittsburgh, PA); Smeltzer, Eugene E. (Export, PA)

2003-01-01T23:59:59.000Z

348

Investigation on digitized RF transport over fiber.  

E-Print Network (OSTI)

??Finally, the thesis investigates the power consumptions and energy-saving potentials of the fiber-wireless integration techniques. A mathematical model for estimating the base station power consumption… (more)

Yang, Yizhuo

2011-01-01T23:59:59.000Z

349

Optoelectronic fiber webs for imaging applications  

E-Print Network (OSTI)

We demonstrate the use of novel visible and infrared light-sensitive optoelectronic fiber in the development of large scale photodector arrays. Unlike conventional point photodetectors these one-dimensional linear photodectors ...

Arnold, Jerimy Reeves

2005-01-01T23:59:59.000Z

350

Cement Composites Reinforced by Short Curaua Fibers  

Science Conference Proceedings (OSTI)

Consolidation of Nanostructured Al-Powder Alloys by Hot Extrusion: Grain Size ... Shell Fiber and Electron-Beam Irradiation in Thermo-Mechanical Properties of HDPE ... with Malealated Polypropylene (MAPP) Produced by Reactive Extrusion

351

Structural retrofitting using fiber reinforced polymers  

E-Print Network (OSTI)

Over the past decades, fiber reinforced polymers (FRP) have been widely used in the aeronautical and naval industries. Being more costly than conventional Civil Engineering materials such as steel or concrete, they have ...

Dumas, Pierre, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

352

Fabrication of microscale carbon nanotube fibers  

Science Conference Proceedings (OSTI)

Carbon nanotubes (CNTs) have excellent mechanical, chemical, and electronic properties, but realizing these excellences in practical applications needs to assemble individual CNTs into larger-scale products. Recently, CNT fibers demonstrate the potential ...

Gengzhi Sun; Yani Zhang; Lianxi Zheng

2012-01-01T23:59:59.000Z

353

Fiber coupled optical spark delivery system  

DOE Patents (OSTI)

A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

Yalin, Azer (Fort Collins, CO); Willson, Bryan (Fort Collins, CO); Defoort, Morgan (Fort Collins, CO)

2008-08-12T23:59:59.000Z

354

Fiber laser coupled optical spark delivery system  

DOE Patents (OSTI)

A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

Yalin, Azer (Fort Collins, CO); Willson, Bryan (Fort Collins, CO); Defoort, Morgan (Fort Collins, CO); Joshi, Sachin (Fort Collins, CO); Reynolds, Adam (Fort Collins, CO)

2008-03-04T23:59:59.000Z

355

Radio over fiber in multimedia access networks  

Science Conference Proceedings (OSTI)

Dominant broadband access technologies today are Digital Subscriber Line (DSL) and hybrid fiber coaxial (HFC) networks. DSL leads, with global subscribers exceeding 100 million, while cable-modem subscribers worldwide total 55 million in 2005 [1]. Recently, ...

Xavier Fernando

2006-09-01T23:59:59.000Z

356

Pilot plant studies of the bioconversion of cellulose and production of ethanol  

DOE Green Energy (OSTI)

Progress is reported in several areas of research. The following cellulosic raw materials were selected for study: wheat, barley, and rice straws, rice hulls, sorghum, corn stover, cotton gin trash, newsprint, ground wood, and masonite steam-treated Douglas fir and redwood. Samples were collected, prepared, and analyzed for hexosans, pentosans, lignin, ash, and protein. Results of acid extraction and enzymatic hydrolysis are discussed. Yields of glucose, polyglucose, xylose, and arabinose are reported. Progress in process design and economic studies, as well as pilot plant process development and design studies, is summarized. (JGB)

Wilke, C.R.

1977-01-31T23:59:59.000Z

357

Plastic matrix composites with continuous fiber reinforcement  

Science Conference Proceedings (OSTI)

Most plastic resins are not suitable for structural applications. Although many resins are extremely tough, most lack strength, stiffness, and deform under load with time. By mixing strong, stiff, fibrous materials into the plastic matrix, a variety of structural composite materials can be formed. The properties of these composites can be tailored by fiber selection, orientation, and other factors to suit specific applications. The advantages and disadvantages of fiberglass, carbon-graphite, aramid (Kevlar 49), and boron fibers are summarized.

NONE

1991-09-19T23:59:59.000Z

358

Fiber optics welder having movable aligning mirror  

SciTech Connect

A system for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45.degree. angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

Higgins, Robert W. (Los Alamos, NM); Robichaud, Roger E. (Jemez Springs, NM)

1981-01-01T23:59:59.000Z

359

Cellulose solvent- and organic solvent-based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks  

NLE Websites -- All DOE Office Websites (Extended Search)

Cellulose solvent- and organic solvent-based lignocellulose fractionation ena- Cellulose solvent- and organic solvent-based lignocellulose fractionation ena- bled efficient sugar release from a variety of lignocellulosic feedstocks Noppadon Sathitsuksanoh, Zhiguang Zhu, Y.-H. Percival Zhang PII: S0960-8524(12)00712-2 DOI: http://dx.doi.org/10.1016/j.biortech.2012.04.088 Reference: BITE 9966 To appear in: Bioresource Technology Received Date: 29 February 2012 Revised Date: 21 April 2012 Accepted Date: 21 April 2012 Please cite this article as: Sathitsuksanoh, N., Zhu, Z., Percival Zhang, Y.-H., Cellulose solvent- and organic solvent- based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks, Bioresource Technology (2012), doi: http://dx.doi.org/10.1016/j.biortech.2012.04.088 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

360

Finding of No Significant Impact for the Proposed Construction and Operation of a Cellulosic Ethanol Plant, Treutlen County, Georgia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

05 05 October 15, 2007 FINDING OF NO SIGNIFICANT IMPACT for the PROPOSED CONSTRUCTION AND OPERATION OF A CELLULOSIC ETHANOL PLANT, TREUTLEN COUNTY, GEORGIA SUMMARY: The U. S. Department of Energy (DOE) conducted an environmental assessment (EA) that analyzed the potential impacts associated with the construction and operation of a proposed cellulosic ethanol plant in Treutlen County, Georgia. DOE, through its Golden Field Office, in Golden, Colorado, would provide funding to Range Fuels, Inc., a Colorado based corporation, to support the construction and initial operation of the proposed plant. All discussion, analysis and findings related to the potential impacts of construction and operation ofthe proposed cellulosic ethanol plant (including the applicant-committed practices presented in the Proposed Action) are contained in the Final EA. The Final EA is hereby incorporated

Note: This page contains sample records for the topic "rock-wool fibers cellulose" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fiber optic probe for light scattering measurements  

DOE Patents (OSTI)

A fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman-scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

Nave, Stanley E. (Evans, GA); Livingston, Ronald R. (Aiken, SC); Prather, William S. (Augusta, GA)

1995-01-01T23:59:59.000Z

362

Fiber optic probe for light scattering measurements  

DOE Patents (OSTI)

This invention is comprised of a fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman- scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

Nave, S.E.; Livingston, R.R.; Prather, W.S.

1993-01-01T23:59:59.000Z

363

Adaptive elastic properties of chromatin fiber  

E-Print Network (OSTI)

Chromatin is a complex of DNA and specific proteins forming an intermediary level of organization of eukaryotic genomes, between double-stranded DNA and chromosome. Within a generic modeling of the chromatin assembly, we investigate the interplay between the mechanical properties of the chromatin fiber and its biological functions. A quantitative step is to relate the mechanics at the DNA level and the mechanics described at the chromatin fiber level. It allows to calculate the complete set of chromatin elastic constants (twist and bend persistence lengths, stretch modulus and twist-stretch coupling constant), in terms of DNA elastic properties and geometric features of the fiber. These elastic constants are strongly sensitive to the local architecture of the fiber and we argue that this tunable elasticity might be a key feature in chromatin functions, for instance in the initiation and regulation of transcription. Moreover, this analysis provides a framework to interpret micromanipulations studies of chromatin fiber and suggests further experiments involving intercalators to scan the tunable elasticity of the fiber.

Eli Ben-Haïm; Annick Lesne; Jean-Marc Victor

2002-11-09T23:59:59.000Z

364

Orientation factor and number of fibers at failure plane in ring-type steel fiber reinforced concrete  

SciTech Connect

Considering the probabilistic distributions of fibers in ring-type steel fiber reinforced concrete, the orientation factor and the number of ring-type steel fibers crossing the failure plane were theoretically derived as a function of fiber geometry, specimen dimensions, and fiber volume fraction. A total number of 24 specimens were tested incorporating different fiber types, specimen geometry, and fiber volume fractions of 0.2% and 0.4%: 5 beams and 5 panels containing straight steel fibers; and 6 beams and 8 panels containing ring-type steel fibers. Measurements were made to assess the number of fibers at fractured surfaces of steel fiber reinforced concrete. The developed theoretical expressions reasonably predicted the orientation factor and the number of ring-type steel fibers at failure plane: the average and the standard deviation for the ratios of the test to theory were 1.03 and 0.26, respectively. Theoretical investigations and comparisons were made for the values of orientation factor and the number of fibers at failure plane for straight steel fibers and ring-type steel fibers.

Lee, C., E-mail: cdlee@cau.ac.k [School of Architecture and Building Science, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Kim, H. [School of Architecture and Building Science, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

2010-05-15T23:59:59.000Z

365

Energy Efficient Indoor VOC Air Cleaning with Activated Carbon Fiber (ACF) Filters  

E-Print Network (OSTI)

compound by activated carbon fiber. Carbon 2004, 42(14):of an activated carbon fiber cloth adsorber. Journal ofindoor VOCs – activated carbon fibers. Proceedings of IAQ’

Sidheswaran, Meera

2012-01-01T23:59:59.000Z

366

Fundamental study on kinetics and transport phenomena in low water dilute acid total hydrolysis of cellulosic biomass  

DOE Green Energy (OSTI)

The overall objective of this research is to delineate the process of the dilute-acid hydrolysis of biomass and seek better understanding of the reactions involving dilute-acid treatment of lignocellulosic biomass. Specifically the scope of the work entails the following two primary technical elements: Verification of the heterogeneous nature of the reaction mechanism in dilute-acid hydrolysis of cellulosic component of the biomass. Experimental investigation to identify the overall reaction pattern and the kinetic constants associated with dilute-acid hydrolysis of the cellulosic component of the agricultural residues.

Auburn University

2004-04-07T23:59:59.000Z

367

Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks  

DOE Green Energy (OSTI)

The goal of the Corn-to-Cellulosic Migration (CCM) pilot facility was to demonstrate the implementation of advanced technologies and methods for conversion of non-food, cellulosic feedstocks into ethanol, assess the economics of the facility and evaluate potential environmental benefits for biomass to fuels conversion. The CCM project was comprised of design, build, and operate phases for the CCM pilot facility as well as research & development, and modeling components. The CCM pilot facility was designed to process 1 tonne per day of non-food biomass and biologically convert that biomass to ethanol at a rate of 70 gallons per tonne. The plant demonstrated throughputs in excess of 1 tonne per day for an extended run of 1400 hours. Although target yields were not fully achieved, the continuous operation validated the design and operability of the plant. These designs will permit the design of larger scale operations at existing corn milling operations or for greenfield plants. EdeniQ, a partner in the project and the owner of the pilot plant, continues to operate and evaluate other feedstocks.

Derr, Dan

2013-12-30T23:59:59.000Z

368

Characterization, Genetic Variation, and Combining Ability of Maize Traits Relevant to the Production of Cellulosic Ethanol  

SciTech Connect

Maize (Zea mays L.) stover has been identified as an important feedstock for the production of cellulosic ethanol. Our objectives were to measure hybrid effect and combining ability patterns of traits related to cellulosic ethanol production, determine if germplasm and mutations used for silage production would also be beneficial for feedstock production, and examine relationships between traits that are relevant to selective breeding. We evaluated grain hybrids, germplasm bred for silage production, brown-midrib hybrids, and a leafy hybrid. Yield and composition traits were measured in four environments. There was a 53% difference in stover yield between commercial grain hybrids that were equivalent for other production-related traits. Silage germplasm may be useful for increasing stover yield and reducing lignin concentration. We found much more variation among hybrids than either in vitro ruminal fermentability or polysaccharide concentration. Correlations between traits were mostly favorable or nonexistent. Our results suggest that utilizing standing genetic variation of maize in breeding programs could substantially increase the amount of biofuels produced from stover per unit area of land.

Lorenz, A. J.; Coors, J. G.; de Leon, N.; Wolfrum, E. J.; Hames, B. R.; Sluiter, A. D.; Weimer, P. J.

2009-01-01T23:59:59.000Z

369

Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks  

DOE Green Energy (OSTI)

Progress in studies on the production of reducing sugars and other products by Clostridium thermocellum on cellulosic biomass is reported. The rate of reducing sugar production using corn residue was found to be equal if not greater than on solka floc. Current work is being devoted towards elucidating discrepancies between reducing sugar analysis and high pressure liquid chromatography sugar analysis in order to permit accurate material balances to be completed. Studies are reported in further characterizing the plasmics of C. thermocellum and in the development of protoplasts of the same microorganism. A process and economic analysis for the production of 200 x 10/sup 6/ pounds (90 x 10/sup 6/ kilograms) per year of soluble reducing sugars from corn stover cellulose, using enzymes derived from Clostridium thermocellum was designed. Acrylic acid was produced in resting cell preparation of Clostridium propionicum from both ..beta..-alanine and from propionic acid. Results from the conversion of corn stover hydrolyzates to lactic acid, a precursor to acrylic acid, show that up to 70% of the sugars produced are converted to lactic acid. Efforts are proceeding to improve the conversion yield and carry out the overall conversion of corn stover to acrylic acid in the same fermentor. Results on the production of acetone and butanol by Clostridium acetobutylicum demonstrated the capability of the strain to produce mixed solvents in concentration and conversion similar to that achieved in industrial processes. Various studies on the production of acetic acid by Clostridium thermoaceticum are also reported.

Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

1977-11-01T23:59:59.000Z

370

Activated carbon fibers and engineered forms from renewable resources  

DOE Patents (OSTI)

A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

Baker, Frederick S

2013-02-19T23:59:59.000Z

371

Differential Removal of Copper and Iron from Acidic Polymetallic ...  

Science Conference Proceedings (OSTI)

Production of Rock Wool from Ornamental Rock Wastes · Purification of Vegetable Oils Post-Consumption Residential and Commercial Clay with Two Brazilian.

372

Study on the Treatment of Wastewater Containing High ...  

Science Conference Proceedings (OSTI)

Production of Rock Wool from Ornamental Rock Wastes · Purification of Vegetable Oils Post-Consumption Residential and Commercial Clay with Two Brazilian.

373

On In-Process Separation of Zinc from EAF Dust  

Science Conference Proceedings (OSTI)

Production of Rock Wool from Ornamental Rock Wastes · Purification of Vegetable Oils Post-Consumption Residential and Commercial Clay with Two Brazilian.

374

Concentric core optical fiber with multiple-mode signal transmission  

DOE Patents (OSTI)

A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion. 3 figs.

Muhs, J.D.

1997-05-06T23:59:59.000Z

375

Concentric core optical fiber with multiple-mode signal transmission  

DOE Patents (OSTI)

A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion.

Muhs, Jeffrey D. (Lenoir City, TN)

1997-01-01T23:59:59.000Z

376

Original papers: Aerodynamic analysis and CFD simulation of several cellulose evaporative cooling pads used in Mediterranean greenhouses  

Science Conference Proceedings (OSTI)

The present work makes an aerodynamic analysis and computational fluid dynamics (CFD) simulation of the four commercial models of corrugated cellulose evaporative cooling pads that are most widely used in Mediterranean greenhouses. The geometric characteristics ... Keywords: Aerodynamic analysis, CFD, Evaporative cooling, Fan and pad, Greenhouse, Pressure drop

A. Franco; D. L. Valera; A. Peña; A. M. Pérez

2011-05-01T23:59:59.000Z

377

Complete genome sequence of the marine, cellulose and xylan degrading bacterium Glaciecola sp. 4H-3-7+YE-5  

DOE Green Energy (OSTI)

Glaciecola sp. 4H-3-7+YE-5 was isolated from deep sea sediments at Suruga Bay in Japan and is capable of efficiently hydrolyzing cellulose and xylan. The complete genome sequence of Glaciecola sp. 4H-3-7+YE-5 revealed several genes encoding putatively novel glycoside hydrolases associated with plant biomass degradation.

Klippel, Dr Barbara [Technische Universitat Hamburg-Harburg (Hamburg University of Technology); Bruce, David [Los Alamos National Laboratory (LANL); Davenport, Karen W. [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Han, Shunsheng [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Pennacchio, Len [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Wiebusch, Sigrid [Technische Universitat Hamburg-Harburg (Hamburg University of Technology); Basner, Alexander [Technische Universitat Hamburg-Harburg (Hamburg University of Technology); Abe, Fumiyoshi [Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Horikoshi, Koki [Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Antranikian, Garabed [Technische Universitat Hamburg-Harburg (Hamburg University of Technology)

2011-01-01T23:59:59.000Z

378

Interactions of Endoglucanases with Amorphous Cellulose Films Resolved by Neutron Reflectometry and Quartz Crystal Microbalance with Dissipation Monitoring  

Science Conference Proceedings (OSTI)

A study of the interaction of four endoglucanases with amorphous cellulose films by neutron reflectometry (NR) and quartz crystal microbalance with dissipation monitoring (QCM-D) is reported. The endoglucanases include a mesophilic fungal endoglucanase (Cel45A from H. insolens), a processive endoglucanase from a marine bacterium (Cel5H from S. degradans), and two from thermophilic bacteria (Cel9A from A. acidocaldarius and Cel5A from T. maritima). The use of amorphous cellulose is motivated by the promise of ionic liquid pretreatment as a second generation technology that disrupts the native crystalline structure of cellulose. The endoglucanases displayed highly diverse behavior. Cel45A and Cel5H, which possess carbohydrate-binding modules (CBMs), penetrated and digested within the bulk of the films to a far greater extent than Cel9A and Cel5A, which lack CBMs. While both Cel45A and Cel5H were active within the bulk of the films, striking differences were observed. With Cel45A, substantial film expansion and interfacial broadening were observed, whereas for Cel5H the film thickness decreased with little interfacial broadening. These results are consistent with Cel45A digesting within the interior of cellulose chains as a classic endoglucanase, and Cel5H digesting predominantly at chain ends consistent with its designation as a processive endoglucanase.

Cheng, Gang [Joint Bioenergy Institute; Liu, Zelin [Virginia Polytechnic Institute and State University (Virginia Tech); Kent, Michael S [Sandia National Laboratories (SNL); Majewski, Jaroslaw [Los Alamos National Laboratory (LANL); Michael, Jablin [Los Alamos National Laboratory (LANL); Jaclyn, Murton K [Sandia National Laboratories (SNL); Halbert, Candice E [ORNL; Datta, Supratim [Joint Bioenergy Institute; Chao, Wang [Virginia Polytechnic Institute and State University (Virginia Tech); Brown, Page [Sandia National Laboratories (SNL)

2012-01-01T23:59:59.000Z

379

The Economic and Financial Implications of Supplying a Bioenergy Conversion Facility with Cellulosic Biomass Feedstocks  

E-Print Network (OSTI)

Comprehensive analyses are conducted of the holistic farm production-harvesting-transporting-pre-refinery storage supply chain paradigm which represents the totality of important issues affecting the conversion facility front-gate costs of delivered biomass feedstocks. Targeting the Middle Gulf Coast, Edna-Ganado, Texas area, mathematical programming in the form of a cost-minimization linear programming model(Sorghasaurus) is used to assess the financial and economic logistics costs for supplying a hypothetical 30-million gallon conversion facility with high-energy sorghum (HES) and switchgrass (SG) cellulosic biomass feedstock for a 12-month period on a sustainable basis. A corporate biomass feedstock farming entity business organization structure is assumed. Because SG acreage was constrained in the analysis, both HES and SG are in the optimal baseline solution, with the logistics supply chain costs (to the front gate of the conversion facility) totaling $53.60 million on 36,845 acres of HES and 37,225 acres of SG (total farm acreage is 187,760 acres, including HES rotation acres), i.e., $723.67 per harvested acre, $1.7867 per gallon of biofuel produced not including any conversion costs, and $134.01 per dry ton of the requisite 400,000 tons of biomass feedstock. Several sensitivity scenario analyses were conducted, revealing a potential range in these estimates of $84.75-$261.52 per dry ton of biomass feedstock and $1.1300-$3.4870 per gallon of biofuel. These results are predicated on simultaneous consideration of capital and operating costs, trafficable days, timing of operations, machinery and labor constraints, and seasonal harvested biomass feedstock yield relationships. The enhanced accuracy of a comprehensive, detailed analysis as opposed to simplistic approach of extrapolating from crop enterprise budgets are demonstrated. It appears, with the current state of technology, it is uneconomical to produce cellulosic biomass feedstocks in the Middle Gulf Coast, Edna-Ganado, Texas area. That is, the costs estimated in this research for delivering biomass feedstocks to the frontgate of a cellulosic facility are much higher than the $35 per ton the Department of Energy suggests is needed. The several sensitivity scenarios evaluated in this thesis research provides insights in regards to needed degrees of advancements required to enhance the potential economic competitiveness of biomass feedstock logistics in this area.

McLaughlin, Will

2011-12-01T23:59:59.000Z

380

Optimization and Simulation for Designing the Supply Chain of the Cellulosic Biofuel Industry  

E-Print Network (OSTI)

The purpose of this dissertation is to provide an effective approach to design the supply chain (SC) of the cellulosic biofuel industry in order that it will support and accelerate the successful commercialization of the cellulosic biofuel industry. The methods of approach to this problem are (1) to assess the state-of-the-art biofuel SC studies, (2) to provide a decision support tool based on a mixed integer programming (MIP) model for the cellulosic biofuel supply chain design problem (BSCP), (3) to devise an exact solution method to solve large-scale instances of BSCP, (4) to evaluate a biomass logistics system based on biomass modules, by using new simulation elements for new machines, and (5) to compare several biomass logistics systems based on biomass module, bale, and silage, using simulation models. The first part of this dissertation broadly reviews the literature on biofuel SCs, analyzing the state-of-the-art biofuel and petroleum-based fuel SC studies as well as relating generic SC models that have been published over the last decade to the biofuel SC (An et al., 2010a). The resulting analysis proposes fertile opportunity for future research to contribute to improving biofuel SC. The second part of this dissertation formulates BSCP as a MIP model, which is a time-staged, multi-commodity flow, network design problem with an objective of maximizing profit (An et al., 2010b). The model prescribes strategic level decisions (i.e., facility locations, capacities, and technology types) as well as plans for transportation routes and material flows (i.e., quantities produced, stored, and transported) in each time period. A case study demonstrates managerial use in application to a region in Central Texas. The third part of this dissertation provides an exact solution method to solve BSCP. An embedded structure can be transformed to a generalized minimum cost flow problem, which is used as a sub-problem in a CG approach. This study proposes a dynamic programming algorithm to solve the sub-problem in O(m), generating improving path-flows. To accelerate branch-and-bound (B&B) search, it develops an inequality, called the partial objective constraint (POC), which is based on the portion of the objective function associated with binary variables. The fourth part of this dissertation evaluates a biomass module system, which is a conceptual logistics system based on large packages of chopped biomass with sufficient size and density to provide maximized legal highway loads and quick load/unload times. The last part of this dissertation evaluates economic benefits of the biomass module system, comparing it to bale and silage systems.

An, Heungjo

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock-wool fibers cellulose" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hot Springs-Garrison Fiber Optic Project  

SciTech Connect

Bonneville Power Administration (BPA) is proposing to upgrade its operational telecommunications system between the Hot Springs Substation and the Garrison Substation using a fiber optic system. The project would primarily involve installing 190 kilometers (120 miles) of fiber optic cable on existing transmission structures and installing new fiber optic equipment in BPA`s substation yards and control houses. BPA prepared an environmental assessment (EA) evaluating the proposed action. This EA was published in October 1994. The EA identifies a number of minor impacts that might occur as a result of the proposed action, as well as some recommended mitigation measures. This Mitigation Action Plan (MAP) identifies specific measures to avoid, minimize, or compensate for impacts identified in the EA.

Not Available

1994-10-01T23:59:59.000Z

382

Carbon Fiber Damage in Particle Beam  

E-Print Network (OSTI)

Carbon fibers are commonly used as moving targets in beam wire scanners. The heating of the fiber due to energy loss of the particles travelling through is simulated with Geant4. The heating induced by the beam electromagnetic field is estimated with ANSYS. The heat transfer and sublimation processes are modelled. Due to the model nonlinearity, a numerical approach based on discretization of the wire movement is used to solve it for particular beams. Radiation damage to the fiber is estimated with SRIM. The model is tested with available SPS and LEP data and a dedicated damage test on the SPS beam is performed followed by a post-mortem analysis of the wire remnants. Predictions for the LHC beams are made.

Dehning, B; Kroyer, T; Meyer, M; Sapinski, M

2011-01-01T23:59:59.000Z

383

Simulations of carbon fiber composite delamination tests  

Science Conference Proceedings (OSTI)

Simulations of mode I interlaminar fracture toughness tests of a carbon-reinforced composite material (BMS 8-212) were conducted with LSDYNA. The fracture toughness tests were performed by U.C. Berkeley. The simulations were performed to investigate the validity and practicality of employing decohesive elements to represent interlaminar bond failures that are prevalent in carbon-fiber composite structure penetration events. The simulations employed a decohesive element formulation that was verified on a simple two element model before being employed to perform the full model simulations. Care was required during the simulations to ensure that the explicit time integration of LSDYNA duplicate the near steady-state testing conditions. In general, this study validated the use of employing decohesive elements to represent the interlaminar bond failures seen in carbon-fiber composite structures, but the practicality of employing the elements to represent the bond failures seen in carbon-fiber composite structures during penetration events was not established.

Kay, G

2007-10-25T23:59:59.000Z

384

Interlayer toughening of fiber composite flywheel rotors  

DOE Patents (OSTI)

An interlayer toughening mechanism is described to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0{degree} to 90{degree} to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles. 2 figs.

Groves, S.E.; Deteresa, S.J.

1998-07-14T23:59:59.000Z

385

Interlayer toughening of fiber composite flywheel rotors  

DOE Patents (OSTI)

An interlayer toughening mechanism to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0.degree. to 90.degree. to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles.

Groves, Scott E. (Brentwood, CA); Deteresa, Steven J. (Livermore, CA)

1998-01-01T23:59:59.000Z

386

Characterization by mercury porosimetry of nonwoven fiber media with deformation  

E-Print Network (OSTI)

The porosity and pore diameter distribution are important characteristics of nonwoven fiber media. With the advent of electrospinning, the production of mats of nonwoven fibrous materials with fiber diameters in the 0.1-10 ...

Rutledge, Gregory C.

387

Method of thermochemically treating silicon carbide fibers derived from polymers  

SciTech Connect

A method is described of thermochemically treating polymeric-derived silicon carbide fiber comprising the step of: annealing a silicon carbide fiber derived from organosilicon polymeric precursors said fiber further including at least: (1) excess carbon and oxygen, (2) excess silicon and oxygen, or (3) nitrogen, at a temperature between 800 C and 1,800 C, thus outgassing from said silicon carbide fiber at least one member selected from the group consisting of nitrogen, silicon monoxide and carbon monoxide, in intimate contact with carbon particles and in the presence of a gas capable of reacting in the presence of said carbon particles and said silicon carbide fiber, with products and byproducts formed as a result of said outgassing to form silicon carbide, so that said annealing step provides an annealed fiber wherein at least said silicon of the silicon carbide at said modified surface of said annealed fiber was originally present in said fiber prior to said annealing step.

Wallace, J.S.; Bender, B.A.; Schrodt, D.

1993-07-27T23:59:59.000Z

388

Fiber Supercapacitors DOI: 10.1002/anie.201006062  

E-Print Network (OSTI)

Fiber Supercapacitors DOI: 10.1002/anie.201006062 Fiber Supercapacitors Made of Nanowire storage devices such as batteries and supercapacitors need to be explored, but future develop- ment. In recent years, electrochemical supercapacitors have attracted much attention as novel energy

Wang, Zhong L.

389

Genetically engineered phage fibers and coatings for antibacterial applications  

E-Print Network (OSTI)

Multifunctionality can be imparted to protein-based fibers and coatings via either synthetic or biological approaches. Here, we demonstrate potent antimicrobial functionality of genetically engineered, phage-based fibers ...

Mao, Joan Y

2009-01-01T23:59:59.000Z

390

Characterization of Thermal Properties of Curaua Fibers by ...  

Science Conference Proceedings (OSTI)

... among others, are required especially in the case of an insulating natural fiber. In the present work, thermal properties of the curaua fibers were investigated by ... Evolution of Crystallographic Texture of Cold Roll Bonding and Annealing ...

391

Intrinsic Fabry-Perot optical fiber sensors and their multiplexing  

DOE Patents (OSTI)

An intrinsic Fabry-Perot optical sensor includes a thin film sandwiched between two fiber ends. When light is launched into the fiber, two reflections are generated at the two fiber/thin film interfaces due to a difference in refractive indices between the fibers and the film, giving rise to the sensor output. In another embodiment, a portion of the cladding of a fiber is removed, creating two parallel surfaces. Part of the evanescent fields of light propagating in the fiber is reflected at each of the surfaces, giving rise to the sensor output. In a third embodiment, the refractive index of a small portion of a fiber is changed through exposure to a laser beam or other radiation. Interference between reflections at the ends of the small portion give rise to the sensor output. Multiple sensors along a single fiber are multiplexed using an optical time domain reflectometry method.

Wang, Anbo (Blacksburg, VA)

2007-12-11T23:59:59.000Z

392

Fiber optically isolated and remotely stabilized data transmission system  

DOE Patents (OSTI)

A fiber optically isolated and remotely stabilized data transmission system s described wherein optical data may be transmitted over an optical data fiber from a remote source which includes a data transmitter and a power supply at the remote source. The transmitter may be remotely calibrated and stabilized via an optical control fiber, and the power source may be remotely cycled between duty and standby modes via an optical control fiber.

Nelson, Melvin A. (Santa Barbara, CA)

1992-01-01T23:59:59.000Z

393

Fiber-Optic Sensors to Monitor Deepwater Oil and Gas ...  

Science Conference Proceedings (OSTI)

Fiber-Optic Sensors to Monitor Deepwater Oil and Gas Pipelines. Partnering Organization: Luna Innovations, Incorporated, Blacksburg, VA. ...

394

Nanomaterials on Fiber Optic Sensors in Healthcare and Industry ...  

Science Conference Proceedings (OSTI)

The fiber optic sensors have several advantages over conventional electrical counterparts: 1) immunity to electromagnetic interference; 2)Lightweight; 3) Small

395

System to Continuously Produce Carbon Fiber via Microwave-Assisted ...  

Biomass and Biofuels; Building ... Carbon and graphite fibers are conventionally produced through the controlled pyrolysis of fibrous organic carbon precursors ...

396

Fiber optically isolated and remotely stabilized data transmission system  

DOE Patents (OSTI)

A fiber optically isolated and remotely stabilized data transmission systems described wherein optical data may be transmitted over an optical data fiber from a remote source which includes a data transmitter and a power supply at the remote source. The transmitter may be remotely calibrated and stabilized via an optical control fiber, and the power source may be remotely cycled between duty and standby modes via an optical control fiber. 3 figs.

Nelson, M.A.

1992-11-10T23:59:59.000Z

397

Mechanical Properties of Tensile Tested Coir Fiber Reinforced ...  

Science Conference Proceedings (OSTI)

Lignocellulosic-Based Carbon Fibers from Biofuel Production Wastes · Magnesium Sheets Produced by Extrusion · Magnetite Formation Observed with TEM on ...

398

A fiber optically isolated and remotely stabilized data transmission system  

DOE Patents (OSTI)

It is, an object of this invention to provide a fiber optically isolated and remotely stabilized data transmission system wherein optical data may be transmitted over an optical data fiber from a remote source which includes a data transmitter and a power supply at the remote source, the transmitter may be remotely calibrated and stabilized via an optical control fiber, and the power source may be remotely cycled between duty and standby modes via an optical control fiber.

Nelson, M.A.

1991-01-01T23:59:59.000Z

399

A fiber optically isolated and remotely stabilized data transmission system  

DOE Patents (OSTI)

It is, an object of this invention to provide a fiber optically isolated and remotely stabilized data transmission system wherein optical data may be transmitted over an optical data fiber from a remote source which includes a data transmitter and a power supply at the remote source, the transmitter may be remotely calibrated and stabilized via an optical control fiber, and the power source may be remotely cycled between duty and standby modes via an optical control fiber.

Nelson, M.A.

1991-12-31T23:59:59.000Z

400

Carbon Fibers and Carbon Nanotubes - Programmaster.org  

Science Conference Proceedings (OSTI)

Feb 17, 2010 ... Polymer Nanocomposites: Carbon Fibers and Carbon Nanotubes Sponsored by: The Minerals, Metals and Materials Society Program ...

Note: This page contains sample records for the topic "rock-wool fibers cellulose" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Charpy Impact Resistance of Alkali Treated Curaua Fiber ...  

Science Conference Proceedings (OSTI)

Lignocellulosic-Based Carbon Fibers from Biofuel Production Wastes · Magnesium Sheets Produced by Extrusion · Magnetite Formation Observed with TEM on ...

402

Tensile Strength of Bamboo Fibers: Weibull Analysis to Characterize ...  

Science Conference Proceedings (OSTI)

Lignocellulosic-Based Carbon Fibers from Biofuel Production Wastes · Magnesium Sheets Produced by Extrusion · Magnetite Formation Observed with TEM on ...

403

Fiber Laser Cladding of Spherotene Spherical Fused WC/Inconel ...  

Science Conference Proceedings (OSTI)

Conditioning of Composite Lubricant Powder for Cold Spray · Confirmation ... Fabrication of Surface Composite via Additive Friction Stir Technology · Fiber Laser ...

404

BIMA Memoranda Series Report from First Hat Creek Fiber-Optic Test  

E-Print Network (OSTI)

-mode fibers.* * On Sept. 20, the fiber-optic link was disassembled and the normal system restored. 2 system. 2.2 Fiber-Optic Cable Two 100-m lengths of fiber-optic cable were used in the experiments. 5 #12; A Fiber-Optic Upgrade of the BIMA Array In light of the success of the fiber-optic link

405

Methods for Structural Characterization of the Products of Cellulose- and Xyloglucan-Hydrolyzing Enzymes  

NLE Websites -- All DOE Office Websites (Extended Search)

Methods for Structural Characterization of the Products of Cellulose- and Xyloglucan-Hydrolyzing Enzymes Maria J. Pen ~a,* Sami T. Tuomivaara,* ,† Breeanna R. Urbanowicz,* Malcolm A. O'Neill,* and William S. York* ,† Contents 1. Introduction 122 2. Preparation of Substrates 124 3. Purification of the Oligosaccharide Products 124 3.1. Isolation of soluble products generated by enzymatic hydrolysis of insoluble substrates 124 3.2. Isolation of soluble products generated by enzymatic hydrolysis of soluble polymeric substrates 125 3.3. Purification of oligosaccharides by liquid chromatography 125 4. Chemical and Structural Analysis of the Reaction Products 127 4.1. Glycosyl residue composition analysis by gas chromatography with mass spectrometric and flame ionization detection 127 4.2. Converting oligosaccharides to their corresponding oligoglycosyl alditols

406

Cultivar variation and selection potential relevant to the production of cellulosic ethanol from wheat straw  

NLE Websites -- All DOE Office Websites (Extended Search)

Cultivar Cultivar variation and selection potential relevant to the production of cellulosic ethanol from wheat straw J. Lindedam a, *, S.B. Andersen b , J. DeMartini c , S. Bruun b , H. Jørgensen a , C. Felby a , J. Magid b , B. Yang d , C.E. Wyman c a Forestry and Wood Products, Forest & Landscape, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark b Plant and Soil Science Laboratory, Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark c Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Avenue, Riverside, CA 92507, USA d Center for Bioproducts and Bioenergy, Washington State University, 2710 University Drive, Richland, WA 99354, USA a r t i c l e i n f o Article history:

407

Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluations Evaluations of Cellulose Accessibilities of Lignocelluloses by Solute Exclusion and Protein Adsorption Techniques Q.Q. Wang, 1,2 Z. He, 3 Z. Zhu, 4,5 Y.-H.P. Zhang, 4,5 Y. Ni, 3 X.L. Luo, 1 J.Y. Zhu 2 1 State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China 2 USDA Forest Service, Forest Products Laboratory, Madison, Wisconsin; telephone: 608-231-9520; fax: 608-231-9538; e-mail: jzhu@fs.fed.us 3 Limerick Pulp and paper Center, University of New Brunswick, Fredericton, New Brunswick, Canada 4 Department Biological Systems Engineering, Virginia Polytechnic Institute, Blacksburg, Virginia 5 U.S. DOE Bioenergy Science Center, Oak Ridge, Tennessee Received 31 May 2011; revision received 27 July 2011; accepted 30 August 2011 Published online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/bit.23330 ABSTRACT:

408

Preliminary engineering and cost analysis of Purdue/Tsao cellulose hydrolysis (solvent) process  

DOE Green Energy (OSTI)

Using information published on the Purdue/Tsao Acid Solution Process for the Hydrolysis of Ligno-Cellulosic materials--specifically corn stovers--an engineering and cost analysis was performed for a battery limits facility to produce sufficient glucose syrup for 25 million gallons per year of ethanol. A capital investment estimate of 59 million dollars was derived. This estimate was based on vendor quoted equipment prices and a detailed consideration of all aspects of constructing the facility. The product transfer cost of the fermentable sugars--pentoses and hexoses--was estimated at 4.5 cents/pound. The major factor impacting the commercial feasibility of such a facility is the price assigned to the delivered corn stover. Although considerable development work on the process is required before it will be ready for commercialization, no technical problem was uncovered to preclude this commercialization.

Not Available

1978-10-01T23:59:59.000Z

409

Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

laboratory laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass Rajeev Kumar a,b,d,⇑ , Fan Hu c,d , Christopher A. Hubbell c,d , Arthur J. Ragauskas c,d , Charles E. Wyman a,b,d a Center for Environmental Research and Technology, Bourns College of Engineering, University of California, Riverside, 1084 Columbia Avenue, Riverside, CA 92507, United States b Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, 446 Winston Chung Hall, 900 University Avenue, Riverside, CA 92521, United States c School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States d BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, United States h i g h l i g h t s " Delignification was

410

Phase II Nuclide Partition Laboratory Study Influence of Cellulose Degradation Products on the Transport of Nuclides from SRS Shallow Land Burial Facilities  

DOE Green Energy (OSTI)

Degradation products of cellulosic materials (e.g., paper and wood products) can significantly influence the subsurface transport of metals and radionuclides. Codisposal of radionuclides with cellulosic materials in the E-Area slit trenches at the Savannah River Site (SRS) is, therefore, expected to influence nuclide fate and transport in the subsurface. Due to the complexities of these systems and the scarcity of site-specific data, the effects of cellulose waste loading and its subsequent influence on nuclide transport are not well established.

Serkiz, S.M.

1999-10-04T23:59:59.000Z

411

Low Cost Fiber-Optic Links for Digital Applications  

E-Print Network (OSTI)

will allow longer fiber-optic links to operate at fre- quencies beyond the flat portion of the system side of the board. Production fiber-optic systems can Equation 4. OPM (dB) = Optical power margin. PR shielding should be applied to the receiver if the system using the fiber-optic link is extremely noisy

Berns, Hans-Gerd

412

Test of Conductive Carbon Fiber Enhancing the Structural Bearing Capacity  

Science Conference Proceedings (OSTI)

Research mechanism of conductive carbon fiber concrete, including mechanical intelligent properties, electrical properties, thermo-sensitive properties and mechanical properties. Put forward intelligent programs of carbon fiber concrete bridge, and do ... Keywords: conductive carbon fiber, CFRP concrete, intelligent programs, properties test, structural bearing capacity

Xiao-ming He; Jie Liang; Peng Guan

2010-06-01T23:59:59.000Z

413

EFFECTS OF FIBER WAVINESS ON COMPOSITES FOR WIND TURBINE BLADES  

E-Print Network (OSTI)

EFFECTS OF FIBER WAVINESS ON COMPOSITES FOR WIND TURBINE BLADES J.F. Mandell D.D. Samborsky and L Composite materials of interest for wind turbine blades use relatively low cost fibers, resins and processes WORDS: Composite Materials, Fiber Waviness, Compressive Strength #12;1. INTRODUCTION Wind turbine blades

414

Specific Effects of Fiber Size and Fiber Swelling on Biomass Substrate Surface Area and Enzymatic Digestibility  

SciTech Connect

To clarify the specific effect of biomass substrate surface area on its enzymatic digestibility, factors of fiber size reduction and swelling changes were investigated by using poplar substrates with controlled morphological and chemical properties after modified chemical pulping. Results showed that fiber size changes had insignificant influence on enzymatic hydrolysis, although the external surface area increased up to 41% with the reduction of fiber size. Swelling changes caused by increased biomass fiber porosities after PFI refining showed a significant influence on the efficiency of enzymatic hydrolysis. It is also found that chemical properties such as xylan and lignin content can influence the swelling effect. Xylan is confirmed to facilitate substrate hydrolysability by swelling, while lignin restricts swelling effect and thus minimizes the enzyme accessibility to substrates.

Ju, Xiaohui; Grego, Courtnee; Zhang, Xiao

2013-09-01T23:59:59.000Z

415

Cation Adsorption on Manganese Dioxide Impregnated Fibers  

Science Conference Proceedings (OSTI)

The complete removal of radioactive cations by standard mixed-bed ion-exchange resins is sometimes not achieved in liquid radwaste systems. This report documents an alternative ion adsorption process for the purification of liquid wastes, specifically, the use of manganese dioxide (MnO2) impregnated fibers to remove selected cations from PWR liquid waste streams.

1993-02-26T23:59:59.000Z

416

Single-fiber multi-color pyrometry  

DOE Patents (OSTI)

This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.

Small, IV, Ward (Livermore, CA); Celliers, Peter (Berkeley, CA)

2000-01-01T23:59:59.000Z

417

Single-fiber multi-color pyrometry  

Science Conference Proceedings (OSTI)

This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.

Small, W. IV; Celliers, P.

2000-01-11T23:59:59.000Z

418

Nonlinear texture modeling of mesophase carbon fibers  

Science Conference Proceedings (OSTI)

This paper presents a theoretical and computational nonlinear study of structure selection in carbon fibers obtained by spinning binary blends of carbonaceous mesophases precursors. Although models for single component mesophase precursors seem to capture ... Keywords: carbonaceous mesophase, multiple solution, nematic liquid crystals, texture

M. Golmohammadi; A. D. Rey

2007-05-01T23:59:59.000Z

419

Remote Synchrotron Light Instrumentation Using Optical Fibers  

Science Conference Proceedings (OSTI)

By coupling the emitted synchrotron light into an optical fiber, it is possible to transmit the signal at substantial distances from the light port, without the need to use expensive beamlines. This would be especially beneficial in all those cases when the synchrotron is situated in areas not easily access because of their location, or due to high radiation levels. Furthermore, the fiber output can be easily switched, or even shared, between different diagnostic instruments. We present the latest results on the coupling and dispersion measurements performed at the Advanced Light Source in Berkeley. In several cases, coupling synchrotron light into optical fibers can substantially facilitate the use of beam diagnostic instrumentation that measures longitudinal beam properties by detecting synchrotron radiation. It has been discussed in with some detail, how fiberoptics can bring the light at relatively large distances from the accelerator, where a variety of devices can be used to measure beam properties and parameters. Light carried on a fiber can be easily switched between instruments so that each one of them has 100% of the photons available, rather than just a fraction, when simultaneous measurements are not indispensable. From a more general point of view, once synchrotron light is coupled into the fiber, the vast array of techniques and optoelectronic devices, developed by the telecommunication industry becomes available. In this paper we present the results of our experiments at the Advanced Light Source, where we tried to assess the challenges and limitations of the coupling process and determine what level of efficiency one can typically expect to achieve.

De Santis, S.; Yin, Y.

2009-05-04T23:59:59.000Z

420

Method for enhancing signals transmitted over optical fibers  

DOE Patents (OSTI)

A method for spectral equalization of high frequency spectrally broadband signals transmitted through an optical fiber is disclosed. The broadband signal input is first dispersed by a grating. Narrow spectral components are collected into an array of equalizing fibers. The fibers serve as optical delay lines compensating for material dispersion of each spectral component during transmission. The relative lengths of the individual equalizing fibers are selected to compensate for such prior dispersion. The output of the equalizing fibers couple the spectrally equalized light onto a suitable detector for subsequent electronic processing of the enhanced broadband signal.

Ogle, J.W.; Lyons, P.B.

1981-02-11T23:59:59.000Z

Note: This page contains sample records for the topic "rock-wool fibers cellulose" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Method for enhancing signals transmitted over optical fibers  

DOE Patents (OSTI)

A method for spectral equalization of high frequency spectrally broadband signals transmitted through an optical fiber. The broadband signal input is first dispersed by a grating. Narrow spectral components are collected into an array of equalizing fibers. The fibers serve as optical delay lines compensating for material dispersion of each spectral component during transmission. The relative lengths of the individual equalizing fibers are selected to compensate for such prior dispersion. The output of the equalizing fibers couple the spectrally equalized light onto a suitable detector for subsequent electronic processing of the enhanced broadband signal.

Ogle, James W. (Goleta, CA); Lyons, Peter B. (Whiterock, NM)

1983-01-01T23:59:59.000Z

422

Fiber-bragg grating-loop ringdown method and apparatus  

Science Conference Proceedings (OSTI)

A device comprising a fiber grating loop ringdown (FGLRD) system of analysis is disclosed. A fiber Bragg grating (FBG) or Long-Period grating (LPG) written in a section of single mode fused silica fiber is incorporated into a fiber loop. By utilizing the wing areas of the gratings' bandwidth as a wavelength dependent attenuator of the light transmission, a fiber grating loop ringdown concept is formed. One aspect of the present invention is temperature sensing, which has been demonstrated using the disclosed device. Temperature measurements in the areas of accuracy, stability, high temperature, and dynamic range are also described.

Wang, Chuji (Starkville, MS)

2008-01-29T23:59:59.000Z

423

Fiber-bragg grating-loop ringdown method and apparatus  

DOE Patents (OSTI)

A device comprising a fiber grating loop ringdown (FGLRD) system of analysis is disclosed. A fiber Bragg grating (FBG) or Long-Period grating (LPG) written in a section of single mode fused silica fiber is incorporated into a fiber loop. By utilizing the wing areas of the gratings' bandwidth as a wavelength dependent attenuator of the light transmission, a fiber grating loop ringdown concept is formed. One aspect of the present invention is temperature sensing, which has been demonstrated using the disclosed device. Temperature measurements in the areas of accuracy, stability, high temperature, and dynamic range are also described.

Wang, Chuji (Starkville, MS)

2008-01-29T23:59:59.000Z

424

Carbon Fiber Production from a Kraft Hardwood Lignin  

Science Conference Proceedings (OSTI)

Lignin is a renewable resource material that is being evaluated for the low cost production of carbon fiber for automotive and other applications. Solvent extraction of a commercial hardwood lignin product yielded a purified lignin free of the contaminants typical of lignins derived from the Kraft chemical pulping of wood. The purified lignin was highly melt-spinnable into fibers, from which carbon fiber was subsequently produced. The lignin has been evaluated in terms of its rheological properties, fiber melt spinning ability, and potential for manufacture of low cost carbon fiber without the need for plasticizing agents or chemical modifications.

Baker, Darren A [ORNL; Gallego, Nidia C [ORNL; Baker, Frederick S [ORNL

2008-01-01T23:59:59.000Z

425

Method of producing a hybrid matrix fiber composite  

DOE Patents (OSTI)

Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites comprised of two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

Deteresa, Steven J. (Livermore, CA); Lyon, Richard E. (Absecon, NJ); Groves, Scott E. (Brentwood, CA)

2006-03-28T23:59:59.000Z

426

Neutron Reflectometry and QCM-D Study of the Interaction of Cellulase Enzymes with Films of Amorphous Cellulose  

Science Conference Proceedings (OSTI)

Improving the efficiency of enzymatic hydrolysis of cellulose is one of the key technological hurdles to reduce the cost of producing ethanol and other transportation fuels from lignocellulosic material. A better understanding of how soluble enzymes interact with insoluble cellulose will aid in the design of more efficient enzyme systems. We report a study involving neutron reflectometry (NR) and quartz crystal microbalance with dissipation (QCM-D) of the interaction of a commercial fungal enzyme extract (T. viride), two purified endoglucanses from thermophilic bacteria (Cel9A from A. acidocaldarius and Cel5A from T. maritima), and a mesophilic fungal endoglucanase (Cel45A from H. insolens) with amorphous cellulose films. The use of amorphous cellulose is motivated by the promise of ionic liquid pretreatment as a second generation technology that disrupts the native crystalline structure of cellulose. NR reveals the profile of water through the film at nm resolution, while QCM-D provides changes in mass and film stiffness. At 20 oC and 0.3 mg/ml, the T. viride cocktail rapidly digested the entire film, beginning from the surface followed by activity throughout the bulk of the film. For similar conditions, Cel9A and Cel5A were active for only a short period of time and only at the surface of the film, with Cel9A releasing 40 from the ~ 700 film and Cel5A resulting in only a slight roughening/swelling effect at the surface. Subsequent elevation of the temperature to the Topt in each case resulted in a very limited increase in activity, corresponding to the loss of an additional 60 from the film for Cel9A and 20 from the film for Cel5A, and very weak penetration into and digestion within the bulk of the film, before the activity again ceased. The results for Cel9A and Cel5A contrast sharply with results for Cel45A where very rapid and extensive penetration and digestion within the bulk of the film was observed at 20 C. We speculate that the large differences are due to the use of the thermophilic enzymes far below their optimal temperatures and also the presence of a cellulose binding module (CBM) on Cel45A while the thermophilic enzymes lack a CBM.

Halbert, Candice E [ORNL; Ankner, John Francis [ORNL; Kent, Michael S [Sandia National Laboratories (SNL); Jaclyn, Murton K [Sandia National Laboratories (SNL); Browning, Jim [ORNL; Cheng, Gang [Joint Bioenergy Institute; Liu, Zelin [Virginia Polytechnic Institute and State University (Virginia Tech); Majewski, Jaroslaw [Los Alamos National Laboratory (LANL); Supratim, Datta [Joint Bioenergy Institute; Michael, Jablin [Los Alamos National Laboratory (LANL); Bulent, Akgun [NIST Center for Neutron Research (NCRN), Gaithersburg, MD; Alan, Esker [Virginia Polytechnic Institute and State University (Virginia Tech); Simmons, Blake [Sandia National Laboratories (SNL)

2011-01-01T23:59:59.000Z

427

Metal matrix coated fiber composites and the methods of manufacturing such composites  

DOE Patents (OSTI)

A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials.

Weeks, Jr., Joseph K. (Salt Lake City, UT); Gensse, Chantal (Salt Lake City, UT)

1993-01-01T23:59:59.000Z

428

A compensated vibrating optical fiber pressure measuring device  

DOE Patents (OSTI)

A microbending optical fiber is attached under tension to a diaphragm to sense a differential pressure applied across the diaphragm which causes it to deflect. The fiber is attached to the diaphragm so that one portion of the fiber, attached to a central portion of the diaphragm, undergoes a change in tension; proportional to the differential pressure applied to the diaphragm while a second portion attached at the periphery of the diaphragm remains at a reference tension. Both portions of the fiber are caused to vibrate at their natural frequencies. Light transmitted through the fiber is attenuated by both portions of the tensioned sections of the fiber by an amount which increases with the curvature of fiber bending so that the light signal is modulated by both portions of the fiber at separate frequencies. The modulated light signal is transduced into an electrical signal. The separate modulation signals are detected to generate separate signals having frequencies corresponding to the reference and measuring vibrating sections of the continuous fiber, respectively. A signal proportional to the difference between these signals is generated which is indicative of the measured pressure differential across the diaphragm. The reference portion of the fiber is used to compensate the pressure signal for zero and span changes resulting from ambient temperature and humidity effects upon the fiber and the transducer fixture.

Fasching, G.E.; Goff, D.R.

1985-12-30T23:59:59.000Z

429

Fiber optic moisture sensor with moisture-absorbing reflective target  

DOE Patents (OSTI)

A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.

Kirkham, Randy R. (Richland, WA)

1987-01-01T23:59:59.000Z

430

Lab Breakthrough: Better Fiber for Better Products | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Fiber for Better Products Better Fiber for Better Products Lab Breakthrough: Better Fiber for Better Products May 2, 2012 - 9:47am Addthis Researchers at Idaho National Laboratory have developed a cost-effective method for the continuous production of alpha silicon carbide fiber. The exceptionally strong, lightweight fiber could enable significant performance improvements in many everyday products. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What could Alpha Silicon Carbide Fibers produce? Lighter and longer-lasting vehicle body structures that are 3 to 6 times stronger than those using steel. Utilities could deploy lighter, stronger power lines. Idaho National Laboratory researcher John Garnier recently took some time to explain how the carbon fibers he and George Griffith invented could

431

Process development studies of the bioconversion of cellulose and production of ethanol. Semi annual report  

Science Conference Proceedings (OSTI)

Progress in the following process development studio is reported: economic evaluation of hydrolysis and ethanol fermentation schemes, economic evaluation of alternative fermentation processes, raw materials evaluation, and evaluation of pretreatment process. Microbiological and enzymatic studies reported are: production of cellulase enzyme from high yielding mutants, hydrolysis reactor development, xylose fermentation, and xylanese production. Fermentation and separation processes include: process development studies on vacuum fermentation and distillation, evaluation of low energy separations processes, large scale hollow fiber reactor development. (MHR)

Wilke, C.R.; Blanch, H.W.

1981-04-01T23:59:59.000Z

432

Engineering of a high-throughput screening system to identify cellulosic biomass, pretreatments, and enzyme formulations that enhance sugar release  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Engineering of a High-Throughput Screening System to Identify Cellulosic Biomass, Pretreatments, and Enzyme Formulations That Enhance Sugar Release Michael H. Studer, Jaclyn D. DeMartini, Simone Brethauer, Heather L. McKenzie, Charles E. Wyman Chemical and Environmental Engineering Department, Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Avenue, Riverside, California 92507; telephone: þ951-781-5791; fax: þ951-781-5790; e-mail: charles.wyman@ucr.edu Received 7 April 2009; revision received 21 August 2009; accepted 31 August 2009 Published online 3 September 2009 in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/bit.22527 ABSTRACT: The recalcitrance of cellulosic biomass, the only abundant, sustainable feedstock for making liquid fuels, is a primary

433

Impact of Corn Stover Composition on Hemicellulose Conversion during Dilute Acid Pretreatment and Enzymatic Cellulose Digestibility of the Pretreated Solids  

Science Conference Proceedings (OSTI)

This study assessed the impact of corn stover compositional variability on xylose conversion yields during dilute acid pretreatment and on enzymatic cellulose digestibility of the resulting pretreated solids. Seven compositionally-different stovers obtained from various locations throughout the United States were pretreated at three different conditions in triplicate in a pilot-scale continuous reactor. At the same pretreatment severity, a 2-fold increase in monomeric xylose yield and a 1.5-fold increase in enzymatic cellulose digestibility from their lowest values were found. Similar results were observed at the other pretreatment conditions. It was found that xylose conversion yields decreased with increasing acid neutralization capacity or soil content of the corn stover. Xylose yields also increased with increasing xylan content. No other significant correlations between corn stover's component concentrations and conversion yields were found.

Weiss, N. D.; Farmer, J. D.; Schell, D. J.

2010-01-01T23:59:59.000Z

434

Combined enzyme mediated fermentation of cellulose and xylose to ethanol by Schizosaccharomyces pombe, cellulase, [beta]-glucosidase, and xylose isomerase  

DOE Patents (OSTI)

A process for producing ethanol from mixed sugar streams from pretreated biomass comprising xylose and cellulose using enzymes to convert these substrates to fermentable sugars; selecting and isolating a yeast Schizosaccharomyces pombe ATCC No. 2476, having the ability to ferment these sugars as they are being formed to produce ethanol; loading the substrates with the fermentation mix composed of yeast, enzymes and substrates; fermenting the loaded substrates and enzymes under anaerobic conditions at a pH range of between about 5.0 to about 6.0 and at a temperature range of between about 35 C to about 40 C until the fermentation is completed, the xylose being isomerized to xylulose, the cellulose being converted to glucose, and these sugars being concurrently converted to ethanol by yeast through means of the anaerobic fermentation; and recovering the ethanol. 2 figures.

Lastick, S.M.; Mohagheghi, A.; Tucker, M.P.; Grohmann, K.

1994-12-13T23:59:59.000Z

435

Nitrogen and Sulfur Requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on Cellulosic Substrates in Minimal Nutrient Media  

Science Conference Proceedings (OSTI)

Growth media for cellulolytic Clostridium thermocellum and Caldicellulosiruptor bescii bacteria usually contain excess nutrients that would increase costs for consolidated bioprocessing for biofuel production and create a waste stream with nitrogen, sulfur and phosphate. C. thermocellum was grown on crystalline cellulose with varying concentrations of nitrogen and sulfur compounds, and growth rate and alcohol production response curves were determined. Both bacteria assimilated sulfate in the presence of ascorbate reductant, increasing the ratio of oxidized to reduced fermentation products. From these results, a low ionic strength, defined minimal nutrient medium with decreased nitrogen, sulfur, phosphate and vitamin supplements was developed for the fermentation of cellobiose, cellulose and acid-pretreated Populus. Carbon and electron balance calculations indicate the unidentified residual fermentation products must include highly reduced molecules. Both bacterial populations were maintained in co-cultures with substrates containing xylan or hemicellulose in defined medium with sulfate and basal vitamin supplements.

Kridelbaugh, Donna M [ORNL; Nelson, Josh C [ORNL; Engle, Nancy L [ORNL; Tschaplinski, Timothy J [ORNL; Graham, David E [ORNL

2013-01-01T23:59:59.000Z

436

Final Environmental Assessment for Construction and Operation of a Proposed Ethanol Cellulosic Ethanol Plant, Range Fuels, Inc.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

i i n a l E n v i r o n m e n t a l A s s e s s m e n t Construction and Operation of a Proposed Cellulosic Ethanol Plant, Range Fuels, Inc. Treutlen County, Georgia DOE/EA 1597 Prepared for U.S. Department of Energy October 2007 Contents Section Page Contents........................................................................................................................................iii Acronyms and Abbreviations .................................................................................................vii 1.0 Introduction......................................................................................................................1 1.1 Background ..........................................................................................................1

437

Research into the pyrolysis of pure cellulose, lignin, and birch wood flour in the China Lake entrained-flow reactor  

DOE Green Energy (OSTI)

This experimental program used the China Lake entrained-flow pyrolysis reactor to briefly investigate the pyrolysis of pure cellulose, pure lignin, and birch wood flour. The study determined that the cellulose and wood flour do pyrolyze to produce primarily gaseous products containing significant amounts of ethylene and other useful hydrocarbons. During attempts to pyrolyze powdered lignin, the material melted and bubbled to block the reactor entrance. The pure cellulose and wood flour produced C/sub 2/ + yields of 12% to 14% by weight, which were less than yields from an organic feedstock derived from processed municipal trash. The char yields were 0.1% by weight from cellulose and 1.5% from birch wood flour - one to two orders of magnitude less than were produced from the trash-derived feedstock. In scanning electron microscope photographs, most of the wood flour char had a sintered and agglomerated appearance, although some particles retained the gross cell characteristics of the wood flour. The appearance of the char particles indicated that the material had once been molten and possibly vapor before it formed spheroidal particles about 1 ..mu..m diameter which agglomerated to form larger char particles. The ability to completely melt or vaporize lignocellulosic materials under conditions of high heating rates has now been demonstrated in a continuous flow reactor and promises new techniques for fast pyrolysis. This char was unexpectedly attracted by a magnet, presumably because of iron contamination from the pyrolysis reactor tube wall. The production of water-insoluble tars was negligible compared to the tars produced from trash-derived feedstock. The production of water-soluble organic materials was fairly low and qualitatively appeared to vary inversely with temperature. This study was of a preliminary nature and additional studies are necessary to optimize ethylene production from these feedstocks.

Diebold, J.

1980-06-01T23:59:59.000Z

438

Addressing the Recalcitrance of Cellulose Degradation through Cellulase Discovery, Nano-scale Elucidation of Molecular Mechanisms, and Kinetic Modeling  

DOE Green Energy (OSTI)

This research project was designed to play a vital role in the development of low cost sugars from cellulosic biomass and contributing to the national effort to displace fossil fuel usage in the USA transportation sector. The goal was to expand the portfolio of cell wall degrading enzymes through innovative research at the nano-scale level, prospecting for novel cellulases and building a kinetic framework for the development of more effective enzymatic conversion processes. More precisely, the goal was to elucidate the molecular mechanisms for some cellulases that are very familiar to members of our research team and to investigate what we hope are novel cellulases or new enzyme combinations from the world of plant pathogenic fungi and bacteria. Hydrolytic activities of various cellulases and cellulase cocktails were monitored at the nanoscale of cellulose fibrils and the microscale of pretreated cellulose particles, and we integrated this insight into a heterogeneous reaction framework. The over-riding approach for this research program was the application of innovative and cutting edge optical and high-throughput screening and analysis techniques for observing how cellulases hydrolyze real substrates.

Walker, Larry P., Bergstrom, Gary; Corgie, Stephane; Craighead, Harold; Gibson, Donna; Wilson, David

2011-06-13T23:59:59.000Z

439

Ceramic fiber ceramic matrix filter development  

SciTech Connect

The objectives of this project were to develop a novel type of candle filter based on a ceramic fiber-ceramic matrix composite material, and to extend the development to full-size, 60-mm OD by 1-meter-long candle filters. The goal is to develop a ceramic filter suitable for use in a variety of fossil energy system environments such as integrated coal gasification combined cycles (IGCC), pressurized fluidized-bed combustion (PFBC), and other advanced coal combustion environments. Further, the ceramic fiber ceramic matrix composite filter, hereinafter referred to as the ceramic composite filter, was to be inherently crack resistant, a property not found in conventional monolithic ceramic candle filters, such as those fabricated from clay-bonded silicon carbide. Finally, the adequacy of the filters in the fossil energy system environments is to be proven through simulated and in-plant tests.

Judkins, R.R.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Smith, R.G.; Fischer, E.M. [3M Company, St. Paul, MN (United States)

1994-09-01T23:59:59.000Z

440

Mechanized selection of fiber optic arrays for spectroscopy measurements  

Science Conference Proceedings (OSTI)

A 400-fiber optic bundle has been installed as part of the beam emission spectroscopy diagnostic for measuring density fluctuations in Tokamak Fusion Test Reactor. One hundred bundles, each composed of four 1-mm-diam fibers, transmit {ital H}{sub {alpha}} light 50 m away to 20 detectors located outside the radiation area. To shorten the time spent manually switching the bundles among the 20 detectors, a mechanized fiber selector was installed. The fiber bundles were separated into radial and poloidal groups of 220 and 180 fibers and coupled by a computer-controlled, motorized precision translation stage. The fibers were fastened to a plate and placed less than 0.003 in. from an identical plate that holds a similar array of fibers which transmits the light to the detectors. Holding the fiber spacing tolerance to 0.001 in., and using refractive index matching fluid, the highest measured loss was less than 0.5 dB, and generally was very small compared to the fiber's insertion loss. The stages are actuated with precision encoded micrometers and controlled by the beam emission spectroscopy VAX-resident software via a RS-232/CAMAC interface allowing arbitrary selections of fibers between plasma discharges with a 5 min repetition rate.

Paul, S.F.; Cylinder, D.; Durst, R.D.; Fonck, R.J. (Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States))

1992-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock-wool fibers cellulose" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Fatigue Enhancement of a Carbon Fiber Reinforced Nanocomposite  

E-Print Network (OSTI)

The primary objective of the present investigation is to study the fatigue characteristics of a woven carbon fiber reinforced polymer which has been modified with either amine or fluorine functionalized carbon nanotubes on the fiber-matrix interface. Multi-wall functionalized carbon nanotubes are sprayed onto both sides of each fiber at 0.2-wt % with respect to the fibers. The composites are fabricated using high temperature vacuum assisted resin transfer molding with four-harness satin weave fabric and EPON 862/Epi-Kure W epoxy. Due to the heterogeneous nature of carbon fiber composites, under dynamic loading the composites undergoes a series of complex failure mechanisms: matrix cracking, fiber-matrix debonding, fiber fracture, and buckling. It is believed that debonding of the fiber-matrix interface is the most crucial of these failure mechanisms. Debonding of the fiber-matrix interface critically hinders the matrix’s ability to transfer loads to the fibers, leading to a poor distribution of load. Due to this distribution, one of three failures occurs: individual yarns of fibers are overloaded and fracture, the matrix losses strength and buckles, or a mixture of the two occurs. It will be shown that functionalized multi-wall carbon nanotubes can strengthen the fiber-matrix interface, resulting in fatigue life improvement. The research investigates this behavior for both tension-tension and tension-compression fatiguing. It is believed that improvements will be best at negative R-ratios and high cycle regimes, because the damage is almost entirely matrix dominated occurs under these conditions. Results have shown improvements in static tensile properties of about twenty percent and an order of magnitude improvement in the fatigue life. Fractographic analysis reveals that the nanocomposites can withstand far greater matrix damage prior to final failure. In addition, both optical and scanning electron microscopy indicates that the nanocomposite exhibits reduced fiber-matrix debonding.

Wilkerson, Justin W.

2008-08-19T23:59:59.000Z

442

Low-Cost Fiber Optic Pressure Sensor  

DOE Patents (OSTI)

The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

Sheem, Sang K. (Pleasanton, CA)

2004-05-18T23:59:59.000Z

443

Low-Cost Fiber Optic Pressure Sensor  

DOE Patents (OSTI)

The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

Sheem, Sang K. (Pleasanton, CA)

2003-07-22T23:59:59.000Z

444

Multi-Scale Reinforced Carbon Fiber Nanocomposites  

E-Print Network (OSTI)

Carbon fiber polymer composites are utilized in many industries including in commercial and military aircraft and space vehicles because of their lighter weight and superior strength compared to aluminum and steel. Due to the insulating nature of epoxy-based polymer composites and the dielectric breakdown of the epoxy, catastrophic failure may occur when subjected to high voltages (as in a lightning strike). The addition of carbon nanofibers and carbon nanotubes to the epoxy resin has the potential to improve electrical deficiencies and enhance mechanical characteristics, as well as add self-sensing and actuation capabilities to the original composite. The focus of the present research is to modify the epoxy in traditional carbon fiber composites through addition of carbon nanofibers. As a first step, this study aims to develop an effective technique to disperse carbon nanofibers in the epoxy using mechanical stirring along with sonication, and characterize cured composite samples of various nanomaterial concentrations by optical microscopy, and mechanical and electrical characterization. Once the dispersion procedure is finalized, the nanofibers must be aligned in a desired direction to maximize the extent to which they enhance the original composite. This is achieved by placing electrodes on opposite sides of the material to apply an electric field while the epoxy cures, as secondary bonding joins the aligned nanofibers together. The Vacuum Assisted Resin Transfer Molding (VARTM) process is currently used in industry and serves as a basis to add the modified epoxy resin to the carbon fiber fabric. Results will be tested and compared to a standard carbon fiber composite to optimize the overall procedure. With greater understanding and control of nanoparticles, it will be possible to design composites for specific applications in the not-so-distant future.

VanRooyen, Ainsley

2008-08-19T23:59:59.000Z

445

Adaptive nonparametric regression on spin fiber bundles  

Science Conference Proceedings (OSTI)

The construction of adaptive nonparametric procedures by means of wavelet thresholding techniques is now a classical topic in modern mathematical statistics. In this paper, we extend this framework to the analysis of nonparametric regression on sections ... Keywords: 42B35, 42C10, 42C40, 46E35, 62G08, 62G20, Adaptive nonparametric regression, Mixed spin needlets, Spin Besov spaces, Spin fiber bundles, Thresholding

Claudio Durastanti; Daryl Geller; Domenico Marinucci

2012-02-01T23:59:59.000Z

446

Fiber Optic Cables in High Voltage Environments  

Science Conference Proceedings (OSTI)

In recent years, it has become common for electric utilities to place fiber optic cables within their transmission rights-of-way. Overhead transmission power line corridors can provide the telecommunications industry with cost-effective alternative routes, and at the same time benefit the electric utilities by generating additional revenues using existing facilities. Also, within the power utility industry, reliable internal communications are vital to ensure ptotection and control of the power system. S...

2000-12-07T23:59:59.000Z

447

Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol  

Science Conference Proceedings (OSTI)

A techno-economic analysis on the production of cellulosic ethanol by fermentation was conducted to understand the viability of liquid biofuel production processes within the next 5-8 years. Initially, 35 technologies were reviewed, then a two-step down selection was performed to choose scenarios to be evaluated in a more detailed economic analysis. The lignocellulosic ethanol process was selected because it is well studied and portions of the process have been tested at pilot scales. Seven process variations were selected and examined in detail. Process designs were constrained to public data published in 2007 or earlier, without projecting for future process improvements. Economic analysis was performed for an 'nth plant' (mature technology) to obtain total investment and product value (PV). Sensitivity analysis was performed on PV to assess the impact of variations in process and economic parameters. Results show that the modeled dilute acid pretreatment process without any downstream process variation had the lowest PV of $3.40/gal of ethanol ($5.15/gallon of gasoline equivalent) in 2007 dollars. Sensitivity analysis shows that PV is most sensitive to feedstock and enzyme costs.

Kazi, F. K.; Fortman, J.; Anex, R.; Kothandaraman, G.; Hsu, D.; Aden, A.; Dutta, A.

2010-06-01T23:59:59.000Z

448

Development of a rapid design procedure for emergency repair of bridge columns using fiber-reinforced polymers  

E-Print Network (OSTI)

strengthening effects with carbon fiber sheet for concreteD. and Ho, F. (1995). “Carbon fiber jacket retrofit test ofcolumns with continuous carbon fiber jackets, volume II,

Slater, Susan E.

2008-01-01T23:59:59.000Z

449

Solar power system utilizing optical fibers each fiber fed by a respective lens  

Science Conference Proceedings (OSTI)

A mosaic of lenses is oriented to face the sun. Each lens focuses a solar image upon the open end of a respective optical fiber. The several fibers converge to form a bundle. The bundle passes to a receiver generally inside a building. The radiation delivered by the bundle may be used for cooking, lighting, operation of a thermodynamic engine, or other similar application. In the preferred system the lens mosaic is a plastic sheet into which lenses have been molded. In a first auxiliary system the lens mosaic is formed on the front surface of a transparent plate. Solar images are formed on the rear surface. Optical fibers are attached where these solar images are formed. This eliminates two reflecting surfaces, thereby increasing efficiency by 19%. In a second auxiliary system mass of the plate is reduced by using truncated cones to transmit the radiation to the solar image positions.

Whitaker, R.O.

1984-11-20T23:59:59.000Z

450

Microsoft Word - Bell-BoundaryFiber_CX_2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amanda Williams Amanda Williams Project Manager - TEP-TPP-3 Proposed Action: Bell-Boundary Fiber Project Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.7 - Fiber optic cable Location: Spokane and Pend Orielle counties, WA Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA is proposing to install new fiber optic line along 90 miles of existing BPA transmission lines in Spokane and Pend Orielle counties in Washington (see Figure 1). It would extend from Bell Substation in Spokane, WA to Boundary Substation 8 miles north of Metaline Falls, WA. The fiber would be strung on the Bell-Boundary No. 1 transmission line and run through Sacheen and Cusick substations along the route. BPA would install overhead fiber optic cable on existing towers or on fiber optic wood poles where

451

Spectrometer employing optical fiber time delays for frequency resolution  

DOE Patents (OSTI)

This invention provides different length glass fibers for providing a broad range of optical time delays for short incident chromatic light pulses for the selective spatial and frequency analysis of the light with a single light detector. To this end, the frequencies of the incident light are orientated and matched with the different length fibers by dispersing the separate frequencies in space according to the respective fiber locations and lengths at the input terminal of the glass fibers. This makes the different length fibers useful in the field of plasma physics. To this end the short light pulses can be scattered by a plasma and then passed through the fibers for analyzing and diagnosing the plasma while it varies rapidly with time.

Schuss, Jack J. (Providence, RI); Johnson, Larry C. (Princeton, NJ)

1979-01-01T23:59:59.000Z

452

Progress in the development of scintillating optical fibers  

SciTech Connect

Starting with 1 inch diameter PVT scintillator as a preform, the authors have drawn fibers of several diameters ranging from 1 to 4 mm. These fibers have been coated in line with the draw to form optical fibers. Several cladding materials whose index of refraction ranges from 1.35 to 1.55 have been used. The most successful fiber has been obtained with an extra thick (200 micron) cladding of silicone in combination with a linear draw, as opposed to a spool draw. This fiber is acceptable, but it is extremely fragile and its quality is difficult to control. The authors are currently constructing a 12 channel hodoscope with 1 mm spatial resolution using 4 mm diameter fibers. An account is also given of the progress made in using the Avalanche Photo Diode (APD) operated in the Geiger mode as the photo detector.

Borenstein, S.R.; Strand, R.C.

1983-01-01T23:59:59.000Z

453

Optical Fiber Sensor Instrumentation for Slagging Coal Gasifiers  

SciTech Connect

Coal gasifier is one of the most promising solutions for clean fossil energy. Refractory thickness monitoring and online real-time temperature measurement is needed for improved reliability and advanced process control for current and future generation power plants. The objective of this program is to design and implement an optical fiber based sensing system that could potentially be used to monitor refractory wall thickness and temperature inside a coal gasifier. For the thickness monitoring, the system should be able to operate at temperatures up to 1000 C. For this temperature range, silica fiber can still work so it is chosen for the sensor design. The measurement is based on a photon counting optical time domain reflectometer. A narrow light pulse is launched into a silica fiber which could be embedded into the gasifier refractory wall, and is partially reflected by the far end of the fiber. The time of flight of the light pulse in the fiber then gives an indication of the position of the fiber end, which is a function of the wall thickness when the fiber is embedded. Results obtained show a measurement accuracy of {+-}2cm in environment of 1000 C with a saw cut fiber end. When the fiber end is corroded by sodium carbide at 900 C, the accuracy is {+-}3cm. For the temperature measurement, a single crystal sapphire fiber sensor is designed. The sapphire fiber guides the broadband light from a light emitting diode to a sapphire wafer functioning as a Fabry-Perot interferometer and the wafer optical thickness is a function of temperature. The returned optical signal is then demodulated by multimode fiber based whitelight interferometry. The system was tested up to 1500 C with a measurement accuracy of {+-}10 C for the entire measurement range.

Anbo Wang; Kristie Cooper

2008-07-19T23:59:59.000Z

454

Modeling Time-dependent Responses of Piezoelectric Fiber Composite  

E-Print Network (OSTI)

The existence of polymer constituent in piezoelectric fiber composites (PFCs) could lead to significant viscoelastic behaviors, affecting overall performance of PFCs. High mechanical and electrical stimuli often generate significant amount of heat, increasing temperatures of the PFCs. At elevated temperatures, most materials, especially polymers show pronounced time-dependent behaviors. Predicting time-dependent responses of the PFCs becomes important to improve reliability in using PFCs. We study overall performance of PFCs having unidirectional piezoceramic fibers, such as PZT fibers, dispersed in viscoelastic polymer matrix. Two types of PFCs are studied, which are active fiber composites (AFCs) and macro fiber composites (MFCs). AFCs and MFCs consist of unidirectional PZT fibers dispersed in epoxy placed between two interdigitated electrode and kapton layers. The AFCs have a circular fiber cross-section while the MFCs have a square fiber cross-section. Finite element (FE) models of representative volume elements (RVEs) of active PFCs, having square and circular fiber cross-sections, are generated for composites with 20, 40, and 60 percent fiber contents. Two FE micromechanical models having one fiber embedded in epoxy matrix and five fibers placed in epoxy matrix are considered. A continuum 3D piezoelectric element in ABAQUS FE is used. A general time-integral function is applied for the mechanical, electrical, and piezoelectric properties in order to incorporate the time-dependent effect and histories of loadings. The effective properties of PZT-5A/epoxy and PZT-7A/LaRC-SI piezocomposites determined from the FE micromechanical models are compared to available experimental data and analytical solutions in the literature. Furthermore, the effect of viscoelastic behaviors of the LaRC-SI matrix at an elevated temperature on the overall electro-mechanical and piezoelectric constants are examined.

Li, Kuo-An

2009-12-01T23:59:59.000Z

455

Faceted ceramic fibers, tapes or ribbons and epitaxial devices therefrom  

SciTech Connect

A crystalline article includes a single-crystal ceramic fiber, tape or ribbon. The fiber, tape or ribbon has at least one crystallographic facet along its length, which is generally at least one meter long. In the case of sapphire, the facets are R-plane, M-plane, C-plane or A-plane facets. Epitaxial articles, including superconducting articles, can be formed on the fiber, tape or ribbon.

Goyal, Amit (Knoxville, TN)

2012-07-24T23:59:59.000Z

456

Test Methods for the Tensile Evaluation of Ceramic Fibers  

Science Conference Proceedings (OSTI)

Abstract Scope, Test methods for the determination of tensile strength of ceramic fibers will be reviewed. The withdrawal of ASTM D3379 and the requirements in ...

457

Fiber optics interface for a dye laser oscillator and method  

DOE Patents (OSTI)

A dye laser oscillator in which one light beam is used to pump a continuous stream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

Johnson, S.A.; Seppala, L.G.

1984-06-13T23:59:59.000Z

458

Nanocoating Enhanced Optical Fiber Sensors - Programmaster.org  

Science Conference Proceedings (OSTI)

Symposium, Nanotechnology for Energy ... In that time, considerable progress has been made in conception and development of novel fiber-optic configurations ...

459

Production of Activated Carbon Fibers and Engineered Forms ...  

Carbon fibers are currently produced from non-renewable fossil sources, namely coal, oil, and natural gas, through energy-intensive processes.

460

Nano/Micro Vacuum Triodes Using Glass Fiber Drawing Methods  

Nano/Micro Vacuum Triodes Using Glass Fiber Drawing Methods Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual ...

Note: This page contains sample records for the topic "rock-wool fibers cellulose" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Mechanical Performance of Discontinuous Carbon Fiber-SiC Matrix ...  

Science Conference Proceedings (OSTI)

Presentation Title, Mechanical Performance of Discontinuous Carbon Fiber-SiC Matrix Composites for Wear Components of High-Speed Train Applications.

462

Composite Silicon Carbon Nano-fiber Anode for High Energy ...  

Science Conference Proceedings (OSTI)

Presentation Title, Composite Silicon Carbon Nano-fiber Anode for High .... of Super P Carbon Black and Silicon Carbide in Si-based Lithium Ion Batteries.

463

Carbon Fiber Reinforced Ultra-High-Temperature Ceramic Matrix ...  

Science Conference Proceedings (OSTI)

To improve the thermal shock resistance of UHTC, carbon fiber was selected as the ... Nanoscale Characterization of Polymer Precursor Derived Silicon Carbide

464

A TESTING FRAMEWORK FOR FIBER TRACTOGRAPHY Langping (Kevin) Wei  

E-Print Network (OSTI)

that particular situation. Developed in C/C++ in conjunction with Tcl/Tk, FiberTK is a toolkit developed

Sun, Jing

465

Contact Lee McGetrick Director, Carbon Fiber Technology Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Director, Carbon Fiber Technology Facility (865) 574-6549 mcgetricklb@ornl.gov Craig Blue, Ph.D. Director, Manufacturing Demonstration Facility (865) 574-4351...

466

Michael Heine, SGL Group - The Carbon Company, Carbon Fibers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Fibers in Lightweight Systems for Wind Energy and Automotive Applications: Availability and Challenges for the Future Michael Heine, SGL Group - The Carbon Company, Carbon...

467

Modular Off-Axis Fiber Optic Solar Concentrator  

interior lighting: Sunlight Direct, ... a Modular Off-Axis Fiber Optic Solar Concentrator, uses novel embodiments of an off-axis aspheric focusing system to achieve ...

468

Fiber Reinforced Composite Pipeline - DOE Hydrogen and Fuel Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

End Date: October 1, 2016 Fiscal Year (FY) 2012 Objectives Fiber Reinforced Composite Pipeline (FRP) Successfully adapt spoolable FRP currently used in * the oil and natural gas...

469

Carbon Fiber with Ni-Coated Reinforced Aluminum Alloy Matrix ...  

Science Conference Proceedings (OSTI)

May 1, 2007 ... Carbon Fiber with Ni-Coated Reinforced Aluminum Alloy Matrix Composites by Bianhua Han, Tianjiao Luo, Chunlin Liang,Guangchun Yao, ...

470

Assessment of Various Manufacturing Methods for Natural Fiber ...  

Science Conference Proceedings (OSTI)

Characterizing the Variation of Surface Charge Density of Natural Fibers by High- Resolution Force Spectroscopy · Creep Behavior of Chitin-carbon Nanotube ...

471

System to Continuously Produce Carbon Fiber via Microwave-Assisted ...  

ORNL 2011-G00246/jcn UT-B ID 200501518 09.2011 System to Continuously Produce Carbon Fiber via Microwave-Assisted Plasma Processing Technology Summary

472

Distributed Fiber Optic Gas Sensing for Harsh Environments  

NLE Websites -- All DOE Office Websites (Extended Search)

primary technology products include: * High-quality sapphire long period grating (LPG) or fiber Bragg grating (FBG) sensors - both single and multiple grating devices, *...

473

The Influence of Polypropylene Fibers on the Punching Resistance ...  

Science Conference Proceedings (OSTI)

Effect of Accelerated Carbonation on Kraft Pulp Fiber Reinforced ... Effects of Temperature and Strain Rate on the Tensile Properties of TWIP steels · Evaluation ...

474

Resolving optical illumination distributions along an axially symmetric photodetecting fiber  

E-Print Network (OSTI)

Photodetecting fibers of arbitrary length with internal metal, semiconductor and insulator domains have recently been demonstrated. These semiconductor devices exhibit a continuous translational symmetry which presents ...

Sorin, Fabien

475

Resolving optical illumination distributions along an axially symmetric photodetecting fiber  

E-Print Network (OSTI)

Photodetecting fibers of arbitrary length with internal metal, semiconductor and insulator domains have recently been demonstrated. These semiconductor devices display a continuous translational symmetry which presents ...

Lestoquoy, Guillaume

2012-01-01T23:59:59.000Z