Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Rock-physics Models for Gas-hydrate Systems Associated  

E-Print Network (OSTI)

Rock-physics Models for Gas-hydrate Systems Associated with Unconsolidated Marine Sediments Diana associated with unconsolidated marine sediments. The goals are to predict gas-hydrate concentration from intercalated with unconsolidated sediments. We show that the geometrical details of how gas hy- drates

Texas at Austin, University of

2

Big Bang Day : Physics Rocks  

ScienceCinema (OSTI)

Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

None

2011-04-25T23:59:59.000Z

3

Rock Properties Model  

SciTech Connect

The purpose of this model report is to document the Rock Properties Model version 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties model provides mean matrix and lithophysae porosity, and the cross-correlated mean bulk density as direct input to the ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021, REV 02 (BSC 2004 [DIRS 170042]). The constraints, caveats, and limitations associated with this model are discussed in Section 6.6 and 8.2. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7. The revision of this model report was performed as part of activities being conducted under the ''Technical Work Plan for: The Integrated Site Model, Revision 05'' (BSC 2004 [DIRS 169635]). The purpose of this revision is to bring the report up to current procedural requirements and address the Regulatory Integration Team evaluation comments. The work plan describes the scope, objectives, tasks, methodology, and procedures for this process.

C. Lum

2004-09-16T23:59:59.000Z

4

Experimental and modeling results for reconsolidation of crushed natural rock salt under varying physical conditions  

SciTech Connect

Mined salt from the underground facility at the Waste Isolation Pilot Plant (WIPP) Project is a candidate material for use as backfill around the waste packages and in the underground openings during and after the operational phase. We have conducted a series of hydrostatic and triaxial compression experiments on the time-dependent compaction behavior of crushed salt under nominally dry, damp,'' (0.5-3 wt % added water), and brine-saturated conditions. Though the compaction of dry crushed salt is very show in the laboratory, damp salt is likely to compact as rapidly as the mine walls can converge. Drained tests on brine-saturated crushed salt indicate that, though effects associated with saturation do retard consolidation rates slightly, high fractional densities ({ge} 0.95) can still be obtained on laboratory time scales at pressures below lithostatic at the WIPP. Triaxial compression experiments indicate that small deviatoric stresses have little impact on consolidation rates. Micromechanical models for the compaction of dry and damp crushed salt, based on isostatic hot-pressing models, are discussed.

Zeuch, D.H.; Holcomb, D.J.

1991-11-01T23:59:59.000Z

5

Experimental and modeling results for reconsolidation of crushed natural rock salt under varying physical conditions  

SciTech Connect

Mined salt from the underground facility at the Waste Isolation Pilot Plant (WIPP) Project is a candidate material for use as backfill around the waste packages and in the underground openings during and after the operational phase. We have conducted a series of hydrostatic and triaxial compression experiments on the time-dependent compaction behavior of crushed salt under nominally dry, ``damp,`` (0.5-3 wt % added water), and brine-saturated conditions. Though the compaction of dry crushed salt is very show in the laboratory, damp salt is likely to compact as rapidly as the mine walls can converge. Drained tests on brine-saturated crushed salt indicate that, though effects associated with saturation do retard consolidation rates slightly, high fractional densities ({ge} 0.95) can still be obtained on laboratory time scales at pressures below lithostatic at the WIPP. Triaxial compression experiments indicate that small deviatoric stresses have little impact on consolidation rates. Micromechanical models for the compaction of dry and damp crushed salt, based on isostatic hot-pressing models, are discussed.

Zeuch, D.H.; Holcomb, D.J.

1991-11-01T23:59:59.000Z

6

ROCK PROPERTIES MODEL ANALYSIS MODEL REPORT  

SciTech Connect

The purpose of this Analysis and Model Report (AMR) is to document Rock Properties Model (RPM) 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties models are intended principally for use as input to numerical physical-process modeling, such as of ground-water flow and/or radionuclide transport. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. This work was conducted in accordance with the following planning documents: WA-0344, ''3-D Rock Properties Modeling for FY 1998'' (SNL 1997, WA-0358), ''3-D Rock Properties Modeling for FY 1999'' (SNL 1999), and the technical development plan, Rock Properties Model Version 3.1, (CRWMS M&O 1999c). The Interim Change Notice (ICNs), ICN 02 and ICN 03, of this AMR were prepared as part of activities being conducted under the Technical Work Plan, TWP-NBS-GS-000003, ''Technical Work Plan for the Integrated Site Model, Process Model Report, Revision 01'' (CRWMS M&O 2000b). The purpose of ICN 03 is to record changes in data input status due to data qualification and verification activities. These work plans describe the scope, objectives, tasks, methodology, and implementing procedures for model construction. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The work scope for this activity consists of the following: (1) Conversion of the input data (laboratory measured porosity data, x-ray diffraction mineralogy, petrophysical calculations of bound water, and petrophysical calculations of porosity) for each borehole into stratigraphic coordinates; (2) Re-sampling and merging of data sets; (3) Development of geostatistical simulations of porosity; (4) Generation of derivative property models via linear coregionalization with porosity; (5) Post-processing of the simulated models to impart desired secondary geologic attributes and to create summary and uncertainty models; and (6) Conversion of the models into real-world coordinates. The conversion to real world coordinates is performed as part of the integration of the RPM into the Integrated Site Model (ISM) 3.1; this activity is not part of the current analysis. The ISM provides a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site and consists of three components: (1) Geologic Framework Model (GFM); (2) RPM, which is the subject of this AMR; and (3) Mineralogic Model. The interrelationship of the three components of the ISM and their interface with downstream uses are illustrated in Figure 1. Figure 2 shows the geographic boundaries of the RPM and other component models of the ISM.

Clinton Lum

2002-02-04T23:59:59.000Z

7

Seismic-Scale Rock Physics of Methane Hydrate  

SciTech Connect

We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

Amos Nur

2009-01-08T23:59:59.000Z

8

Anisotropy parameters estimate and rock physics analysis for the Barnett Shale  

Science Journals Connector (OSTI)

The rock physics model is an important tool for the characterization of shale reservoirs. We propose an improved anisotropic rock physics model of shale by introducing clay lamination (CL) index as a modeling parameter in effective medium theories. The parameter CL describes the degree of preferred orientation in distributions of clay particles, which depends on deposition and diagenesis history and determines intrinsic anisotropy of shales. Those complicated parameters of sophisticated methods that are difficult to quantify are substituted by CL. The applications of the proposed rock physics method include the inversion for anisotropy parameters using log data and the construction of a rock physics template for the evaluation of the Barnett Shale reservoir. Results show reasonable agreement between the P-wave anisotropy parameter ? inverted by the proposed method and those measured from core samples. The constructed rock physics templates are calibrated on well log data, and can be used for the evaluation of porosity, lithology, and brittleness index defined in terms of mineralogy and geomechanical properties of the Barnett Shale. The templates predict that the increase in clay content leads to the increase in Poisson's ratio and the decrease in Young's modulus on each line of constant porosity, which confirms the consistent and reveals quantitative relations of the two ways of defining the brittleness index. Different scenarios of mineralogy substitutions present the varied layout of constant lines on the templates.

Zhiqi Guo; Xiang-Yang Li; Cai Liu

2014-01-01T23:59:59.000Z

9

Aspects of rock physics in 4-D seismology  

SciTech Connect

In recent years, time-lapse 3-13 or 4-D seismology has been used to identify bypassed oil, to monitor steam and CO[sub 2] injection processes, and even to track the movement of the injected water. However, the feasibility of applying seismic technology to monitoring oil recovery processes and the ability to interpret the seismic results depend to a large extent on the understanding of the physics or seismic properties of the reservoir rocks and fluids. We have carried out several laboratory rock physics investigations on seismic properties of reservoir rocks in relation to oil recovery processes. Particularly, we found that seismic properties were dramatically affected by he injected steam in heavy oil sands, by the injected CO[sub 2] in carbonate rocks, and in some cases, by the injected water in light oil reservoir sands. In this paper, we present laboratory results of seismic properties of oil lands from several places in the world, including Indonesia, Canada, and of West Texas carbonates undergoing CO[sub 2] injection. We discuss the effects of reservoir geology, fluid properties, and recovery process on the seismic properties and how the laboratory results can be used in the feasibility studies and seismic interpretations. We also show examples of 4-D and cross-well seismic results from the Duri field, Indonesia, and from a West Texas carbonate field undergoing CO[sub 2] flooding.

Wang, Zhijing; Langan, R. (Chevron Petroleum Technology Co., La Habra, CA (United States)); Jenkins, S.; Bee, M.; Waite, M. (Caltex Pacific Indonesia, Rumbai (Indonesia))

1996-01-01T23:59:59.000Z

10

Aspects of rock physics in 4-D seismology  

SciTech Connect

In recent years, time-lapse 3-13 or 4-D seismology has been used to identify bypassed oil, to monitor steam and CO{sub 2} injection processes, and even to track the movement of the injected water. However, the feasibility of applying seismic technology to monitoring oil recovery processes and the ability to interpret the seismic results depend to a large extent on the understanding of the physics or seismic properties of the reservoir rocks and fluids. We have carried out several laboratory rock physics investigations on seismic properties of reservoir rocks in relation to oil recovery processes. Particularly, we found that seismic properties were dramatically affected by he injected steam in heavy oil sands, by the injected CO{sub 2} in carbonate rocks, and in some cases, by the injected water in light oil reservoir sands. In this paper, we present laboratory results of seismic properties of oil lands from several places in the world, including Indonesia, Canada, and of West Texas carbonates undergoing CO{sub 2} injection. We discuss the effects of reservoir geology, fluid properties, and recovery process on the seismic properties and how the laboratory results can be used in the feasibility studies and seismic interpretations. We also show examples of 4-D and cross-well seismic results from the Duri field, Indonesia, and from a West Texas carbonate field undergoing CO{sub 2} flooding.

Wang, Zhijing; Langan, R. [Chevron Petroleum Technology Co., La Habra, CA (United States); Jenkins, S.; Bee, M.; Waite, M. [Caltex Pacific Indonesia, Rumbai (Indonesia)

1996-12-31T23:59:59.000Z

11

Improving the Monitoring, Verification, and Accounting of CO{sub 2} Sequestered in Geologic Systems with Multicomponent Seismic Technology and Rock Physics Modeling  

SciTech Connect

Research done in this study showed that P-SV seismic data provide better spatial resolution of geologic targets at our Appalachian Basin study area than do P-P data. This finding is important because the latter data (P-P) are the principal seismic data used to evaluate rock systems considered for CO{sub 2} sequestration. The increase in P-SV{sub 1} resolution over P-P resolution was particularly significant, with P-SV{sub 1} wavelengths being approximately 40-percent shorter than P-P wavelengths. CO{sub 2} sequestration projects across the Appalachian Basin should take advantage of the increased resolution provided by converted-shear seismic modes relative to P-wave seismic data. In addition to S-wave data providing better resolution of geologic targets, we found S-wave images described reservoir heterogeneities that P-P data could not see. Specifically, a channel-like anomaly was imaged in a key porous sandstone interval by P-SV{sub 1} data, and no indication of the feature existed in P-P data. If any stratigraphic unit is considered for CO{sub 2} storage purposes, it is important to know all heterogeneities internal to the unit to understand reservoir compartmentalization. We conclude it is essential that multicomponent seismic data be used to evaluate all potential reservoir targets whenever a CO{sub 2} storage effort is considered, particularly when sequestration efforts are initiated in the Appalachian Basin. Significant differences were observed between P-wave sequences and S- wave sequences in data windows corresponding to the Oriskany Sandstone, a popular unit considered for CO{sub 2} sequestration. This example demonstrates that S-wave sequences and facies often differ from P-wave sequences and facies and is a principle we have observed in every multicomponent seismic interpretation our research laboratory has done. As a result, we now emphasis elastic wavefield seismic stratigraphy in our reservoir characterization studies, which is a science based on the concept that the same weight must be given to S-wave sequences and facies as is given to P-wave sequences and facies. This philosophy differs from the standard practice of depending on only conventional P-wave seismic stratigraphy to characterize reservoir units. The fundamental physics of elastic wavefield seismic stratigraphy is that S- wave modes sense different sequences and facies across some intervals than does a P-wave mode because S-wave displacement vectors are orthogonal to P- wave displacement vectors and thus react to a different rock fabric than do P waves. Although P and S images are different, both images can still be correct in terms of the rock fabric information they reveal.

Alkan, Engin; DeAngelo, Michael; Hardage, Bob; Sava, Diana; Sullivan, Charlotte; Wagner, Donald

2012-12-31T23:59:59.000Z

12

TWO-DIMENSIONAL MODELING OF LASER SPALLATION DRILLING OF ROCKS  

NLE Websites -- All DOE Office Websites (Extended Search)

DIMENSIONAL MODELING OF LASER SPALLATION DRILLING OF ROCKS DIMENSIONAL MODELING OF LASER SPALLATION DRILLING OF ROCKS P532 Zhiyue Xu, Yuichiro Yamashita 1 , and Claude B. Reed Argonne National Laboratory, Argonne, IL 60439, USA 1 Now with Kyushu University, Japan Abstract High power lasers can weaken, spall, melt and vaporize natural earth materials with thermal spallation being the most energy efficient rock removal mechanism. Laser rock spallation is a very complex phenomenon that depends on many factors. Computer numerical modeling would provides great tool to understand the fundamental of this complex phenomenon, which is crucial to the success of its applications. Complexity of modeling laser rock spallation is due to: 1) rock is a porous media, to which traditional theories of heat transfer and rock mechanics can not be directly

13

MULTI-ATTRIBUTE SEISMIC/ROCK PHYSICS APPROACH TO CHARACTERIZING FRACTURED RESERVOIRS  

SciTech Connect

This project consists of three key interrelated Phases, each focusing on the central issue of imaging and quantifying fractured reservoirs, through improved integration of the principles of rock physics, geology, and seismic wave propagation. This report summarizes the results of Phase I of the project. The key to successful development of low permeability reservoirs lies in reliably characterizing fractures. Fractures play a crucial role in controlling almost all of the fluid transport in tight reservoirs. Current seismic methods to characterize fractures depend on various anisotropic wave propagation signatures that can arise from aligned fractures. We are pursuing an integrated study that relates to high-resolution seismic images of natural fractures to the rock parameters that control the storage and mobility of fluids. Our goal is to go beyond the current state-of-the art to develop and demonstrate next generation methodologies for detecting and quantitatively characterizing fracture zones using seismic measurements. Our study incorporates 3 key elements: (1) Theoretical rock physics studies of the anisotropic viscoelastic signatures of fractured rocks, including up scaling analysis and rock-fluid interactions to define the factors relating fractures in the lab and in the field. (2) Modeling of optimal seismic attributes, including offset and azimuth dependence of travel time, amplitude, impedance and spectral signatures of anisotropic fractured rocks. We will quantify the information content of combinations of seismic attributes, and the impact of multi-attribute analyses in reducing uncertainty in fracture interpretations. (3) Integration and interpretation of seismic, well log, and laboratory data, incorporating field geologic fracture characterization and the theoretical results of items 1 and 2 above. The focal point for this project is the demonstration of these methodologies in the Marathon Oil Company Yates Field in West Texas.

Gary Mavko

2000-10-01T23:59:59.000Z

14

SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES  

SciTech Connect

As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) Effects of pore texture on porosity, permeability, and sonic velocity. We show how a relation can be found between porosity, permeability, and velocity by separating the formations of rocks with similar pore textures.

Gary Mavko

2003-06-30T23:59:59.000Z

15

Experimental and modeling results for reconsolidation of crushed natural rock salt under varying physical conditions: Applications to nuclear waste isolation in bedded and domal salt formations  

SciTech Connect

Mined salt from the underground facility at the Waste Isolation Pilot Plant (WIPP) Project is a candidate material for use as backfill around the waste packages and in the underground openings during and after the operational phase. We have conducted a series of hydrostatic and triaxial compression experiments on the time-dependent compaction behavior of crushed salt under nominally dry, damp,'' (0.5-5 wt % added water), and brine-saturated conditions. Though the compaction of dry crushed salt is very slow in the laboratory, damp salt is likely to compact as rapidly as the mine walls can converge. Drained tests on brine-saturated crushed salt indicate that, though effects associated with saturation do retard consolidation rates slightly, high fractional densities ({ge}0.95) can still be obtained on laboratory times scales at pressures below lithostatic at the WIPP. Triaxial compression experiments indicate that small deviatoric stresses have little impact on consolidation rates. Micromechanical models for the compaction of dry and damp crushed salt, based on isostatic hot-pressing models, are discussed. 14 refs., 4 figs.

Zeuch, D.H.; Holcomb, D.J.

1991-01-01T23:59:59.000Z

16

SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES  

SciTech Connect

As part of our study on ''Relationships between seismic properties and rock microstructure'', we have (1) Studied relationships between velocity and permeability. (2) Used independent experimental methods to measure the elastic moduli of clay minerals as functions of pressure and saturation. (3) Applied different statistical methods for characterizing heterogeneity and textures from scanning acoustic microscope (SAM) images of shale microstructures. (4) Analyzed the directional dependence of velocity and attenuation in different reservoir rocks (5) Compared Vp measured under hydrostatic and non-hydrostatic stress conditions in sands. (6) Studied stratification as a source of intrinsic anisotropy in sediments using Vp and statistical methods for characterizing textures in sands.

Gary Mavko

2003-10-01T23:59:59.000Z

17

SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES  

SciTech Connect

As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) Methods for detection of stress-induced velocity anisotropy in sands. (2) We have initiated efforts for velocity upscaling to quantify long-wavelength and short-wavelength velocity behavior and the scale-dependent dispersion caused by sediment variability in different depositional environments.

Gary Mavko

2003-06-30T23:59:59.000Z

18

A NEW MODEL FOR PERFORMANCE PREDICTION OF HARD ROCK TBMS.  

E-Print Network (OSTI)

methods to accu- rately predict the penetration rate of a TBM in a given geology. These models are mainly, and the penetration rate. A good example of this is the Norwegian (NTH) hard rock diagnostic system and predictor penetration rate. This group of models 1.ResearchAssociakandGraduacStudentinMiningErrg.Dept. 2.Directorof

19

Variation in physical rock properties determined from sonic logs at a South Texas lignite mine  

E-Print Network (OSTI)

graph1c units and their sonic properties; 6. comparing the sonic logg1ng data with geotechnical test results; 7. applying the tool through the production of physical rock character1zati on maps using the sonic and strat1graphic logs of overburden...graph1c units and their sonic properties; 6. comparing the sonic logg1ng data with geotechnical test results; 7. applying the tool through the production of physical rock character1zati on maps using the sonic and strat1graphic logs of overburden...

Cato, Kerry Don

2012-06-07T23:59:59.000Z

20

Computational and experimental investigation of scour past laboratory models of stream restoration rock structures  

Science Journals Connector (OSTI)

Local scour of the streambed around three models of stream restoration rock structures, including a rock vane, a cross vane, and a J-hook vane, is investigated via laboratory experiments and numerical simulations. In the experimental study, a physical model of each rock structure is constructed via an assembly of rocks and installed in a straight mobile sand bed flume. Continuous bed topography measurements provide insight into the time evolution of the scour patterns downstream of the structures and yield comprehensive data sets for validating the numerical simulations in terms of scour patterns, maximum scour depths, and bar migration dynamics. The numerical simulations are carried out using the coupled, hydro-morphodynamic Curvilinear Immersed Boundary (CURVIB) method of Khosronejad et al. (2011) [17]. The mobile channel bed and the individual rocks comprising a stream restoration structure are discretized with an unstructured triangular mesh and treated as sharp-interface immersed boundaries embedded in the background curvilinear mesh used to discretize the flow domain. For each case, simulations are carried out solving both the unsteady Reynolds-averaged Navier–Stokes (URANS) equations closed with the k–? model and filtered Large-Eddy Simulation (LES) equations closed with the dynamic Smagorinski subgrid scale model. Both the URANS and LES models yield flow and scour patterns in reasonable agreement with the measurements with the LES results being consistently in better overall agreement with the measurements. To our knowledge, the present study is the first attempt to simulate local scour patterns around realistic model of stream restoration rock structures by taking into account and directly modeling their arbitrarily complex geometrical features.

Ali Khosronejad; Craig Hill; Seokkoo Kang; Fotis Sotiropoulos

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Annual Logging Symposium, June 22-26, 2013 DETECTION AND QUANTIFICATION OF ROCK PHYSICS  

E-Print Network (OSTI)

PHYSICS PROPERTIES FOR IMPROVED HYDRAULIC FRACTURING IN HYDROCARBON-BEARING SHALE Antoine Montaut, Paul and hydraulic stimulation make hydrocarbon production from organic-rich shales economically viable factors. The objective of this paper is to quantify rock fabric properties of hydrocarbon-bearing shales

Torres-Verdín, Carlos

22

Mineral and Rock Physics [MR] MR21B MCW:Level 1 Tuesday 0800h  

E-Print Network (OSTI)

Mineral and Rock Physics [MR] MR21B MCW:Level 1 Tuesday 0800h Structural Refinement Studies Kunz, Advanced Light Source MR21B-0018 The Crystal Structure of Diopside at Pressure to 10 Gpa tetrahedra and M1 octahedra to try and understand the observed changes in pyroxenes with changing P, T, and x

Downs, Robert T.

23

Capabilities for measuring physical and chemical properties of rocks at high pressure  

SciTech Connect

The Experimental Geophysics Group of the Earth Sciences Department at Lawrence Livermore National Laboratory (LLNL) has experimental equipment that measures a variety of physical properties and phase equilibria and kinetics on rocks and minerals at extreme pressures (to 500 GPa) and temperatures (from 10 to 2800 K). These experimental capabilities are described in this report in terms of published results, photographs, and schematic diagrams.

Durham, W.B. (comp.)

1990-01-01T23:59:59.000Z

24

A wellbore stability model for formations with anisotropic rock strengths  

Science Journals Connector (OSTI)

Shale formations, due to the presence of laminations and weak planes, exhibit directional strength characteristics. In most conventional wellbore stability analyses, rock formations are typically assumed to have isotropic strength. This may cause erroneous results in anisotropic formations such as shales which show strength variations with changing loading directions with respect to the plane of weakness. Therefore a more complex wellbore stability model is required. We have developed such a model in which the anisotropic rock strength characteristic is incorporated. Applying this model to two case studies shows that shear failures occur either along or across the bedding planes depending on the relative orientation between the wellbore trajectories and the bedding planes. Additionally, the extent of failure region around the wellbore and the safe mud weights are significantly affected by the wellbore orientation with respect to the directions of bedding plane and in-situ stress field.

Hikweon Lee; See Hong Ong; Mohammed Azeemuddin; Harvey Goodman

2012-01-01T23:59:59.000Z

26

Shear velocity as the function of frequency in heavy oils De-hua Han and Jiajin Liu, Rock Physics Lab, UH;  

E-Print Network (OSTI)

Shear velocity as the function of frequency in heavy oils De-hua Han and Jiajin Liu, Rock Physics of heavy oils is discussed based on the measured data in our lab. Havriliak and Negami (HN) model is suggested to describe the frequency dispersion of heavy oils. Introduction The velocity behavior in heavy

27

A Rock Physics Based Investigation of Pore Structure Variations Associated with a CO2 Flood in a Clastic Reservoir, Delhi, LA  

E-Print Network (OSTI)

3-D seismic which spans the entire field (Figure 7). Since both Sun (2004) and Aveseth?s (2011) models correlate dry bulk modulus with the pore structure of a reservoir, possibly the Sun (2004) model maybe applicable to the 3-D range as well... ................................................................................................................. 85 5.1 Wells 159-2 and 169-5 Variability in Lithology, Porosity and Permeability ........ 86 5.2 Velocity Estimation Rock Physic Models .............................................................. 89 5.3 Variability in Bulk and Shear Modulus...

Davidson, Daniel

2013-08-14T23:59:59.000Z

28

Modeling of crack initiation, propagation and coalescence in rocks  

E-Print Network (OSTI)

Natural or artificial fracturing of rock plays a very important role in geologic processes and for engineered structures in and on rock. Fracturing is associated with crack initiation, propagation and coalescence, which ...

Gonçalves da Silva, Bruno Miguel

2009-01-01T23:59:59.000Z

29

Development of a rock mass characteristics model for TBM penetration rate prediction  

Science Journals Connector (OSTI)

The TBM tunneling process in hard rock is actually a rock or rock mass breakage process, which determines the efficiency of tunnel boring machine (TBM). On the basis of the rock breakage process, a rock mass conceptual model that identifies the effect of rock mass properties on TBM penetration rate is proposed. During the construction of T05 and T06 tunnels of DTSS project in Singapore, a comprehensive program was performed to obtain the relevant rock mass properties and TBM performance data. A database, including rock mass properties, TBM specifications and the corresponding TBM performance, was established. Combining the rock mass conceptual model for evaluating rock mass boreability with the established database, a statistical prediction model of TBM penetration rate is set up by performing a nonlinear regression analysis. The parametric studies of the new model showed that the rock uniaxial compressive strength and the volumetric joint count have predominantly effects on the penetration rate. These results showed good agreement with the numerical simulations. The model limitations were also discussed.

Q.M. Gong; J. Zhao

2009-01-01T23:59:59.000Z

30

Discrete element modeling of rock deformation, fracture network development and permeability evolution under hydraulic stimulation  

SciTech Connect

Key challenges associated with the EGS reservoir development include the ability to reliably predict hydraulic fracturing and the deformation of natural fractures as well as estimating permeability evolution of the fracture network with time. We have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a network flow model. In DEM model, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external and internal load is applied. The natural fractures are represented by a series of connected line segments. Mechanical bonds that intersect with such line segments are removed from the DEM model. A network flow model using conjugate lattice to the DEM network is developed and coupled with the DEM. The fluid pressure gradient exerts forces on individual elements of the DEM network, which therefore deforms the mechanical bonds and breaks them if the deformation reaches a prescribed threshold value. Such deformation/fracturing in turn changes the permeability of the flow network, which again changes the evolution of fluid pressure, intimately coupling the two processes. The intimate coupling between fracturing/deformation of fracture networks and fluid flow makes the meso-scale DEM- network flow simulations necessary in order to accurately evaluate the permeability evolution, as these methods have substantial advantages over conventional continuum mechanical models of elastic rock deformation. The challenges that must be overcome to simulate EGS reservoir stimulation, preliminary results, progress to date and near future research directions and opportunities will be discussed. Methodology for coupling the DEM model with continuum flow and heat transport models will also be discussed.

Shouchun Deng; Robert Podgorney; Hai Huang

2011-02-01T23:59:59.000Z

31

1.4 PETROPHYSICS: Combined Rock and Fluid Character Integration of geological and petrophysical data allows development of a rock-fluid model for  

E-Print Network (OSTI)

the different rock types that comprise the subject reservoirs, marginal reservoirs and non-reservoir rocks). Analytical techniques used to develop this model include porosity-permeability analysis of core plug samples.4.2.2.1 Permeability determination with Nitrogen Flow Through Rock Type: Core plug samples of 1 in. and 1.5-in

Schechter, David S.

32

Experiment-Based Model for the Chemical Interactions between Geothermal Rocks, Supercritical Carbon Dioxide and Water  

Energy.gov (U.S. Department of Energy (DOE))

Experiment-Based Model for the Chemical Interactions between Geothermal Rocks, Supercritical Carbon Dioxide and Water presentation at the April 2013 peer review meeting held in Denver, Colorado.

33

Physics Beyond the Standard Model  

E-Print Network (OSTI)

I present a brief overview of some exciting possibilities for physics Beyond the Standard Model. I include short discussions of neutrino physics, the strong CP problem and axions, GUTs, large and warped extra dimensions, Little Higgs models and supersymmetry. The chances appear excellent that in the next few years-- as the LHC era gets underway-- data from a bevy of experiments will point the way to a new paradigm for the laws of physics as we know them.

Howard Baer

2009-08-19T23:59:59.000Z

34

Coupled In-Rock and In-Drift Hydrothermal Model Stuudy For Yucca Mountain  

SciTech Connect

A thermal-hydrologic-natural-ventilation model is configured for simulating temperature, humidity, and condensate distributions in the coupled domains of the in-drift airspace and the near-field rockmass in the proposed Yucca Mountain repository. The multi-physics problem is solved with MULTIFLUX in which a lumped-parameter computational fluid dynamics model is iterated with TOUGH2. The solution includes natural convection, conduction, and radiation for heat as well as moisture convection and diffusion for moisture transport with half waste package scale details in the drift, and mountain-scale heat and moisture transport in the porous and fractured rock-mass. The method provides fast convergence on a personal computer computational platform. Numerical examples and comparison with a TOUGH2 based, integrated model are presented.

G. Danko; J. Birkholzer; D. Bahrami

2006-12-18T23:59:59.000Z

35

Electroweak physics and physics beyond the Standard Model  

E-Print Network (OSTI)

We summarize the recent results on electroweak physics and physics beyond the Standard Model that have been presented at the XIV International Workshop on Deep Inelastic Scattering 2006.

L. Bellagamba; E. Sauvan; H. Spiesberger

2006-07-25T23:59:59.000Z

36

Modeling of Seismic Signatures of Carbonate Rock Types  

E-Print Network (OSTI)

Carbonate reservoirs of different rock types have wide ranges of porosity and permeability, creating zones with different reservoir quality and flow properties. This research addresses how seismic technology can be used to identify different...

Jan, Badr H.

2011-02-22T23:59:59.000Z

37

Mathematical model of a Hot Dry Rock system  

Science Journals Connector (OSTI)

......efficiency calculations, geothermal energy, Hot Dry Rock, multiple crack...is to estimate the amount of energy which may be produced by a geothermic power station. Heat capacity...provides a large resource of energy. To obtain the energy cold......

Norbert Heuer; Tassilo Küpper; Dirk Windelberg

1991-06-01T23:59:59.000Z

38

Physical modelling in biomechanics  

Science Journals Connector (OSTI)

...affixed side-by-side to wave-swept rocky shores, and many repli- cates of such...is of interest, then models should have safety factors (maximum stress experienced due...we assumed that the body sur- face was flat, and that the copepod's other appendages...

2003-01-01T23:59:59.000Z

39

IMA Preprints Series (2002) Micro-and macro-scopic models of rock fracture  

E-Print Network (OSTI)

IMA Preprints Series (2002) Micro- and macro-scopic models of rock fracture Donald L. Turcotte to some earthquakes. Key words: rock mechanics, damage, fracture, critical point, power-law scaling, self involve a sin- gle fracture propagating through an homogeneous solid. However, this is an idealized case

40

IMA Preprints Series (2002) Micro and macroscopic models of rock fracture  

E-Print Network (OSTI)

IMA Preprints Series (2002) Micro­ and macro­scopic models of rock fracture Donald L. Turcotte to some earthquakes. Key words: rock mechanics, damage, fracture, critical point, power­law scaling, self involve a sin­ gle fracture propagating through an homogeneous solid. However, this is an idealized case

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Physics beyond the standard model  

SciTech Connect

The author briefly summarizes the prospects for extending the understanding of physics beyond the standard model within the next five years. He interprets ``beyond the standard model'' to mean the physics of electroweak symmetry breaking, including the standard model Higgs boson. The nature of this TeV-scale new physics is perhaps the most crucial question facing high-energy physics, but one should recall (neutrino oscillations) that there is ample evidence for interesting physics in the flavour section too. In the next five years, before the LHC starts operations, the facilities available will be LEP2, HERA and the Fermilab Tevatron. He devotes a bit more time to the Tevatron as it is a new initiative for United Kingdom institutions. The Tevatron schedule now calls for data taking in Run II, using two upgraded detectors, to begin on March 1, 2001, with 2 fb{sup {minus}1} accumulated in the first two years. A nine-month shutdown will follow, to allow new silicon detector layers to be installed, and then running will resume with a goal of accumulating 15 fb{sup {minus}1} (or more) by 2006.

Womersley, J.

2000-01-24T23:59:59.000Z

42

Physical system modeling with Modelica  

Science Journals Connector (OSTI)

A new language, called ModelicaTM, for the modeling of physical systems has been developed in an international effort. The main objective was to make it easy to exchange models and model libraries. The design approach builds on non-causal modeling with true ordinary differential and algebraic equations and the use of object-oriented constructs to facilitate the reuse of modeling knowledge. There are already several modeling languages based on these ideas, available from universities and small companies. There is also significant experience of using them in various applications. The aim of the Modelica effort was to unify the concepts and to design a new uniform language for model representation. The paper describes the effort, gives an overview of Modelica, and demonstrates how Modelica is used in real-world applications: modeling of an automatic gearbox and of a heat exchanger.

Sven Erik Mattsson; Hilding Elmqvist; Martin Otter

1998-01-01T23:59:59.000Z

43

Numerical and analytical modeling of heat transfer between fluid and fractured rocks  

E-Print Network (OSTI)

Modeling of heat transfer between fluid and fractured rocks is of particular importance for energy extraction analysis in EGS, and therefore represents a critical component of EGS design and performance evaluation. In ...

Li, Wei, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

44

The interaction of two closely spaced cracks - rock models and computer simulations  

E-Print Network (OSTI)

THE INTERACTION OF TWO CLOSELY SPACED CRACKS ROCK MODELS AND COMPUTER SIMULATIONS A Thesis by PENG LIN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1990 Major Subject: Geophysics THE INTERACTION OF TWO CLOSELY SPACED CRACKS ROCK MODELS AND COMPUTER SIMULATIONS A Thesis by PENG LIN Approved as to style and content by: o . ogan ( -Chair Committee) Andreas K. Kronenberg (Co...

Lin, Peng

2012-06-07T23:59:59.000Z

45

A model for the development of a lobate alpine rock glacier in southwest Colorado, USA: implications for water on Mars  

E-Print Network (OSTI)

...................................................................................... 56 Water Discharge Characteristics ..................................................... 61 Closing Remarks ............................................................................ 64 III GPR SURVEY OF A LOBATE ROCK GLACIER IN YANKEE BOY BASIN, CO..................................................................................... 160 Engineering Aspects: Rock Glacier Geomorphology .................... 160 Model Based on Yankee Boy Rock Glacier .................................. 162 A Surrogate for Landforms on Mars ............................................. 162 Convergence...

Degenhardt, John Jerome

2004-09-30T23:59:59.000Z

46

Fractional-calculus model for temperature and pressure waves in fluid-saturated porous rocks  

Science Journals Connector (OSTI)

We study a fractional time derivative generalization of a previous Natale-Salusti model about nonlinear temperature and pressure waves, propagating in fluid-saturated porous rocks. Their analytic solutions, i.e., solitary shock waves characterized by a sharp front, are here generalized, introducing a formalism that allows memory mechanisms. In realistic wave propagation in porous media we must take into account spatial or temporal variability of permeability, diffusivity, and other coefficients due to the system “history.” Such a rock fracturing or fine particulate migration could affect the rock and its pores. We therefore take into account these phenomena by introducing a fractional time derivative to simulate a memory-conserving formalism. We also discuss this generalized model in relation to the theory of dynamic permeability and tortuosity in fluid-saturated porous media. In such a realistic model we obtain exact solutions of Burgers’ equation with time fractional derivatives in the inviscid case.

Roberto Garra

2011-09-26T23:59:59.000Z

47

Mechanical defradation of Emplacement Drifts at Yucca Mountain- A Modeling Case Study. Part I: Nonlithophysal Rock  

SciTech Connect

This paper outlines rock mechanics investigations associated with mechanical degradation of planned emplacement drifts at Yucca Mountain, which is the designated site for the proposed U.S. high-level nuclear waste repository. The factors leading to drift degradation include stresses from the overburden, stresses induced by the heat released from the emplaced waste, stresses due to seismically related ground motions, and time-dependent strength degradation. The welded tuff emplacement horizon consists of two groups of rock with distinct engineering properties: nonlithophysal units and lithophysal units, based on the relative proportion of lithophysal cavities. The term 'lithophysal' refers to hollow, bubble like cavities in volcanic rock that are surrounded by a porous rim formed by fine-grained alkali feldspar, quartz, and other minerals. Lithophysae are typically a few centimeters to a few decimeters in diameter. Part I of the paper concentrates on the generally hard, strong, and fractured nonlithophysal rock. The degradation behavior of the tunnels in the nonlithophysal rock is controlled by the occurrence of keyblocks. A statistically equivalent fracture model was generated based on extensive underground fracture mapping data from the Exploratory Studies Facility at Yucca Mountain. Three-dimensional distinct block analyses, generated with the fracture patterns randomly selected from the fracture model, were developed with the consideration of in situ, thermal, and seismic loads. In this study, field data, laboratory data, and numerical analyses are well integrated to provide a solution for the unique problem of modeling drift degradation.

M. Lin; D. Kicker; B. Damjanac; M. Board; M. Karakouzian

2006-07-05T23:59:59.000Z

48

Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling  

SciTech Connect

A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.

Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.

2009-01-15T23:59:59.000Z

49

Turbine Aeration Physical Modeling and Software Design | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turbine Aeration Physical Modeling and Software Design Turbine Aeration Physical Modeling and Software Design Turbine Aeration Physical Modeling and Software Design...

50

Model Transformation for Cyber Physical Systems  

Science Journals Connector (OSTI)

Cyber Physical Systems(CPS) are composed with discrete and continuous dynamics. Traditional modeling techniques can’t implement the requirement of modeling CPS. One way of solving this is to model CPS parts wi...

Shuguang Feng; Lichen Zhang

2014-01-01T23:59:59.000Z

51

Core Analysis For The Development And Constraint Of Physical Models Of  

Open Energy Info (EERE)

For The Development And Constraint Of Physical Models Of For The Development And Constraint Of Physical Models Of Geothermal Reservoirs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Core Analysis For The Development And Constraint Of Physical Models Of Geothermal Reservoirs Details Activities (2) Areas (2) Regions (0) Abstract: Effective reservoir exploration, characterization, and engineering require a fundamental understanding of the geophysical properties of reservoir rocks and fracture systems. Even in the best of circumstances, spatial variability in porosity, fracture density, salinity, saturation, tectonic stress, fluid pressures, and lithology can all potentially produce and/or contribute to geophysical anomalies. As a result, serious uniqueness problems frequently occur when interpreting

52

Upscaling of elastic properties of anisotropic sedimentary rocks  

Science Journals Connector (OSTI)

......Data 2.1 Physical model of shale Shales are anisotropic rocks whose anisotropy is generally...Hudson J.A., 1994. Anisotropic effective-medium modeling of the elastic properties of shales, Geophysics, 59, 1570-1583......

Irina O. Bayuk; Mike Ammerman; Evgeni M. Chesnokov

2008-02-01T23:59:59.000Z

53

A comparison of two heat transfer models for estimating thermal drawdown in Hot Dry Rock reservoirs  

SciTech Connect

Estimates of thermal drawdown in Hot Dry Rock geothermal systems have been made with two different models of heat transfer from hydraulically fractured reservoir rock blocks to water circulated through the fracture permeability. One model is based on deconvolution of experimental tracer response curves into a network of flowpaths connected in parallel with heat transfer calculated individually in each flowpath. The second model is based on one-dimensional flow through the rock with a block size distribution described as a group of equivalent-radius spheres for which the heat transfer equations can be solved analytically. The two models were applied to the planned Phase II long-term thermal drawdown experiment at Fenton Hill, NM. The results show good agreement between the two models, with estimates of temperature cooldown from 240ºC to 150ºC in a few years depending on selected operation parameters, but with somewhat differing cooldown curve characteristic shapes. Data from the long-term experiment will be helpful in improving the two models.

Robinson, Bruce A.; Kruger, Paul

1988-01-01T23:59:59.000Z

54

Rare Earth Element sorption by basaltic rock: experimental data and modeling results using the "Generalised Composite approach".  

E-Print Network (OSTI)

Rare Earth Element sorption by basaltic rock: experimental data and modeling results using Email address : emmanuel.tertre@univ-poitiers.fr Keywords: sorption, lanthanides, basalt, surface.1016/j.gca.2007.12.015 #12;Abstract Sorption of the 14 Rare Earth Elements (REE) by basaltic rock

Paris-Sud XI, Université de

55

Physical layer model design for wireless networks  

E-Print Network (OSTI)

and shown to be deficient for low to moderate signal-to-noise ratios. The physical layer statistics are investigated, and the run length distributions of the good and bad frames are demonstrated to be the key statistics for accurate physical layer modeling...

Yu, Yi

2009-06-02T23:59:59.000Z

56

Modeling attacks on physical unclonable functions  

E-Print Network (OSTI)

We show in this paper how several proposed Physical Unclonable Functions (PUFs) can be broken by numerical modeling attacks. Given a set of challenge-response pairs (CRPs) of a PUF, our attacks construct a computer algorithm ...

Ulrich, Ruhrmair

57

Rock Physics-Based Carbonate Reservoir Pore Type Evaluation by Combining Geological, Petrophysical and Seismic Data  

E-Print Network (OSTI)

model, similar to modern marine hydrological environments within carbonate islands. How to evaluate carbonate reservoir permeability heterogeneity from 3 D seismic data has been a dream for reservoir geoscientists, which is a key factor to optimize...

Dou, Qifeng

2012-07-16T23:59:59.000Z

58

Multi-physics modeling of thermoelectric generators for waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multi-physics modeling of thermoelectric generators for waste heat recovery applications Multi-physics modeling of thermoelectric generators for waste heat recovery applications...

59

Physically-based demand modeling  

E-Print Network (OSTI)

for d1fferent values of insulation or control tempera- ture. Also, the results of var1ous load management. scenarios may be evaluated. 26 REFERENCES LZ] D. P. Lijesen and J. Rosing, MAdaptive Forecasting of Hourly Loads Based on Load Measurement...) Terry Marshall Calloway, B. S, , Northeast Louisiana University B. S. , Louisiana Tech University Chairman of Advisory Committee: Dr. C. W. Brice, III This thesis proposes a new methodology for modeling short-term (one hour to one day) air...

Calloway, Terry Marshall

1980-01-01T23:59:59.000Z

60

Study of various models for estimation of penetration rate of hard rock \\{TBMs\\}  

Science Journals Connector (OSTI)

Various approaches for predicting penetration rate of hard rock tunnel boring machines (TBMs) have been studied by researchers since the early stages of TBM application in the 1950s. These studies resulted in the development of several penetration prediction models. For evaluation and validation of a model, it is important to test its predictive capability on new projects. A model should include parameters for machine specifications and ground conditions. The model validation process can reveal problems that an existing model may have in providing an accurate estimate for a given combination of specifications and conditions. This paper offers a brief review and discusses the capabilities of some of the more commonly used TBM performance prediction models. To evaluate the accuracy of these models, the predicted rates are compared with recorded TBM penetration rates in a database of recently completed tunnels. Comparison between predicted and recorded rates indicates that most of the existing models tend to overestimate TBM performance. This comparison highlights the on-going difficulties the industry continues to experience in estimating penetration rate. Even the use of normalized penetration rate indices has not been able to provide higher accuracy expected in related predictions. This paper discusses the development of new models to support an improved level of predictive accuracy in penetration rate estimating. These models are based on the analysis of a comprehensive database of more than 300 TBM projects records. Analyses of performance information within this database provided for the development of simpler models that are focused on quantifying the influence of primary factors, such as tunnel diameter, UCS, RPM, and rock type. These new models are introduced to provide alternative ways of penetration prediction. These models are especially useful at the planning stage of a tunneling project where \\{TBMs\\} can be used. These models also serve to provide secondary checks for other more in-depth analyses of TBM performance for an initial assessment of required boring time (inverse of penetration rate), and an estimate of utilization rate in an activity-based TBM model.

Ebrahim Farrokh; Jamal Rostami; Chris Laughton

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Simplified Models for LHC New Physics Searches  

E-Print Network (OSTI)

This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the "Topologies for Early LHC Searches" workshop, held at SLAC in September of 2010, the purpose of which was to develop a set of representative models that can be used to cover all relevant phase space in experimental searches. Particular emphasis is placed on searches relevant for the first ~50-500 pb-1 of data and those motivated by supersymmetric models. This note largely summarizes material posted at http://lhcnewphysics.org/, which includes simplified model definitions, Monte Carlo material, and supporting contacts within the theory community. We also comment on future developments that may be useful as more data is gathered and analyzed by the experiments.

Daniele Alves; Nima Arkani-Hamed; Sanjay Arora; Yang Bai; Matthew Baumgart; Joshua Berger; Matthew Buckley; Bart Butler; Spencer Chang; Hsin-Chia Cheng; Clifford Cheung; R. Sekhar Chivukula; Won Sang Cho; Randy Cotta; Mariarosaria D'Alfonso; Sonia El Hedri; Rouven Essig; Jared A. Evans; Liam Fitzpatrick; Patrick Fox; Roberto Franceschini; Ayres Freitas; James S. Gainer; Yuri Gershtein; Richard Gray; Thomas Gregoire; Ben Gripaios; Jack Gunion; Tao Han; Andy Haas; Per Hansson; JoAnne Hewett; Dmitry Hits; Jay Hubisz; Eder Izaguirre; Jared Kaplan; Emanuel Katz; Can Kilic; Hyung-Do Kim; Ryuichiro Kitano; Sue Ann Koay; Pyungwon Ko; David Krohn; Eric Kuflik; Ian Lewis; Mariangela Lisanti; Tao Liu; Zhen Liu; Ran Lu; Markus Luty; Patrick Meade; David Morrissey; Stephen Mrenna; Mihoko Nojiri; Takemichi Okui; Sanjay Padhi; Michele Papucci; Michael Park; Myeonghun Park; Maxim Perelstein; Michael Peskin; Daniel Phalen; Keith Rehermann; Vikram Rentala; Tuhin Roy; Joshua T. Ruderman; Veronica Sanz; Martin Schmaltz; Stephen Schnetzer; Philip Schuster; Pedro Schwaller; Matthew D. Schwartz; Ariel Schwartzman; Jing Shao; Jessie Shelton; David Shih; Jing Shu; Daniel Silverstein; Elizabeth Simmons; Sunil Somalwar; Michael Spannowsky; Christian Spethmann; Matthew Strassler; Shufang Su; Tim Tait; Brooks Thomas; Scott Thomas; Natalia Toro; Tomer Volansky; Jay Wacker; Wolfgang Waltenberger; Itay Yavin; Felix Yu; Yue Zhao; Kathryn Zurek

2011-05-13T23:59:59.000Z

62

Transport and seismoelectric properties of porous permeable rock : numerical modeling and laboratory measurements  

E-Print Network (OSTI)

The objective of this thesis is to better understand the transport and seismoelectric (SE) properties of porous permeable rock. Accurate information of rock transport properties, together with pore geometry, can aid us to ...

Zhan, Xin, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

63

Wireless Link Scheduling under Physical Interference Model  

E-Print Network (OSTI)

approximation algorithms for link scheduling with or without power control. Index Terms--Link schedulingWireless Link Scheduling under Physical Interference Model Peng-Jun Wan, Ophir Frieder, Xiaohua Jia: jia@cs.cityu.edu.hk, csfyao@cityu.edu.hk Abstract--Link scheduling is a fundamental problem in multi

Jia, Xiaohua

64

Physics-Based Mathematical Models for Nanotechnology  

E-Print Network (OSTI)

Physics-Based Mathematical Models for Nanotechnology 2008 J. Phys.: Conf. Ser. 107, 011001, doi: 10 for their excellent support during the workshop. Nanotechnology is the study and application of phenomena at or below. This workshop put strong emphasis on discussions of the new mathematics needed in nanotechnology especially

Melnik, Roderick

65

Introduction. Stochastic physics and climate modelling  

E-Print Network (OSTI)

become a backbone of numerical weather prediction and is used not only by weather forecasters but also. Stochastic physics schemes within weather and climate models have the potential to represent the dynamical history, the present era, whereby predictions are made from numerical solutions of the underlying dynamic

Williams, Paul

66

Development of Chemical Model to Predict the Interactions between Supercritical CO2and Fluid, and Rocks in EGS Reservoirs  

Energy.gov (U.S. Department of Energy (DOE))

This project will develop a chemical model, based on existing models and databases, that is capable of simulating chemical reactions between supercritical (SC) CO2 and Enhanced Geothermal System (EGS) reservoir rocks of various compositions in aqueous, non-aqueous and 2-phase environments.

67

Physics Beyond the Standard Model: Supersymmetry  

SciTech Connect

This collection of studies on new physics at the LHC constitutes the report of the supersymmetry working group at the Workshop 'Physics at TeV Colliders', Les Houches, France, 2007. They cover the wide spectrum of phenomenology in the LHC era, from alternative models and signatures to the extraction of relevant observables, the study of the MSSM parameter space and finally to the interplay of LHC observations with additional data expected on a similar time scale. The special feature of this collection is that while not each of the studies is explicitly performed together by theoretical and experimental LHC physicists, all of them were inspired by and discussed in this particular environment.

Nojiri, M.M.; /KEK, Tsukuba /Tsukuba, Graduate U. Adv. Studies /Tokyo U.; Plehn, T.; /Edinburgh U.; Polesello, G.; /INFN, Pavia; Alexander, John M.; /Edinburgh U.; Allanach, B.C.; /Cambridge U.; Barr, Alan J.; /Oxford U.; Benakli, K.; /Paris U., VI-VII; Boudjema, F.; /Annecy, LAPTH; Freitas, A.; /Zurich U.; Gwenlan, C.; /University Coll. London; Jager, S.; /CERN /LPSC, Grenoble

2008-02-01T23:59:59.000Z

68

Challenges in Solar and Stellar Model Physics  

E-Print Network (OSTI)

We are reaching relative maturity and standardization in one-dimensional single-star stellar evolution and pulsation modeling, and are making advances in binary and 2D and 3D models. However, many physical inputs are still uncertain or neglected in models of the Sun and of other stars. Thanks to the the Kepler, CoRoT, and MOST spacecraft, for example, as well as to ground-based networks, we now have pulsation data for stars that are of comparable quality to that for the Sun to constrain models and test physical assumptions. Here I will focus on main sequence (core H-burning) or slightly post-main sequence (shell H-burning) stellar models, and some of the unsolved problems for these stars. I will revisit the solar abundance problem, and show the effects of modified electron screening, dark matter, and early mass loss on solar models. I will discuss the gamma Dor/ delta Sct hybrid stars, the mismatch between predicted and observed frequencies for delta Sct stars, and how seismology of stars more massive than th...

Guzik, Joyce A

2014-01-01T23:59:59.000Z

69

A Coupled Model for Natural Convection and Condensation in Heated Subsurface Enclosures Embedded in Fractured Rock  

E-Print Network (OSTI)

and Mass Transfer in Yucca Mountain Drifts,” Proceedings ofMD- 000001 REV 00, Yucca Mountain Project Report, Bechtelthe fractured rock at Yucca Mountain have been investigated

Halecky, N.; Birkholzer, J.T.; Webb, S.W.; Peterson, P.F.; Bodvarsson, G.S.

2006-01-01T23:59:59.000Z

70

A physics department's role in preparing physics teachers: The Colorado learning assistant model  

E-Print Network (OSTI)

A physics department's role in preparing physics teachers: The Colorado learning assistant model Finkelstein Department of Physics, University of Colorado, Boulder, Colorado 80309 Received 11 November 2009 of all students in introductory physics and increases the numbers of talented physics majors becoming

Colorado at Boulder, University of

71

Towards a theory for cyber-physical systems modeling  

Science Journals Connector (OSTI)

Modeling the heterogeneous composition of physical, computational and communication systems is an important challenge in engineering Cyber-Physical Systems (CPS), where the major sources of heterogeneity are causality, time semantics, and different physical ... Keywords: cyber-physical systems, formalization, heterogeneous composition, model-based engineering

Gabor Simko; Tihamer Levendovszky; Miklos Maroti; Janos Sztipanovits

2014-04-01T23:59:59.000Z

72

Vector difference calculus for physical lattice models  

Science Journals Connector (OSTI)

A vector difference calculus is developed for physical models defined on a general triangulating graph G, which may be a regular or an extremely irregular lattice, using discrete field quantities roughly analogous to differential forms. The role of the space ?p of p-forms at a point is taken on by the linear space generated at a graph vertex by the geometrical p-simplices which contain it. The vector operations divergence, gradient, and curl are developed using the boundary ? and coboundary d. Dot, cross, and scalar products are defined in such a way that discrete analogs of the vector integral theorems, including theorems of Gauss-Ostrogradski, Stokes, and Green, as well as most standard vector identities hold exactly, not as approximations to a continuum limit. Physical conservation laws for the models become theorems satisfied by the discrete fields themselves. Three discrete lattice models are constructed as examples, namely a discrete version of the Maxwell equations, the Navier-Stokes equation for incompressible flow, and the Navier linearized model for a homogeneous, isotropic elastic medium. Weight factors needed for obtaining quantitative agreement with continuum calculations are derived for the special case of a regular triangular lattice. Green functions are developed using a generalized Helmholtz decomposition of the fields.

W. Schwalm; B. Moritz; M. Giona; M. Schwalm

1999-01-01T23:59:59.000Z

73

Seismic Absorption and Modulus Measurements in Porous Rocks Under Fluid and Gas Flow-Physical and Chemical Effects: a Laboratory Study  

SciTech Connect

This paper describes the culmination of a research project in which we investigated the complex modulus change in partially fluid saturated porous rocks. The investigation started with simple flow experiments over ''clean'' and ''contaminated'' surfaces, progressed to moduli measurements on partially filled single cracks, to measurements in ''clean'' and ''contaminated'' porous rocks and finally to a feasibility study in the field. For the experiments with the simple geometries we were able to measure fundamental physical properties such as contact angles of the meniscus and time dependent forces required to get the meniscus moving and to keep it moving at various velocities. From the data thus gathered we were able to interpret the complex elastic moduli data we measured in the partially saturated single cracks. While the geometry in real rocks is too complex to make precise calculations we determined that we had indeed identified the mechanisms responsible for the changes in the moduli we had measured. Thus encouraged by the laboratory studies we embarked on a field experiment in the desert of Arizona. The field site allowed for controlled irrigation. Instrumentation for fluid sampling and water penetration were already in place. The porous loosely consolidated rocks at the site were not ideal for finding the effects of the attenuation mechanism we had identified in the lab, but for logistic and cost constraint reasons we chose to field test the idea at that site. Tiltmeters and seismometers were installed and operated nearly continuously for almost 3 years. The field was irrigated with water in the fall of 2003 and with water containing a biosurfactant in the fall of 2004. We have indications that the biosurfactant irrigation has had a notable effect on the tilt data.

Harmut Spetzler

2005-11-28T23:59:59.000Z

74

Establishment of Stress-Permeabilty relationship of fractured rock mass by numerical modeling  

Office of Scientific and Technical Information (OSTI)

Accepted for publication in International Journal of Rock Mechanics & Mining Sciences Accepted for publication in International Journal of Rock Mechanics & Mining Sciences Stress-Dependent Permeability of Fractured Rock Masses: A Numerical Study Ki-Bok Min *1 , J Rutqvist 2 , Chin-Fu Tsang 2 , and Lanru Jing 1 1 Engineering Geology and Geophysics Research Group, Royal Institute of Technology (KTH), Stockholm, Sweden 2 Earth Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA * corresponding author. Tel.: +46-8-790-7919; fax: +46-8-790-6810. E-mail address: kibok@kth.se (Ki-Bok Min) 1 Abstract We investigate the stress-dependent permeability issue in fractured rock masses considering the effects of nonlinear normal deformation and shear dilation of fractures using a two-dimensional

75

Fluid substitution in carbonate rocks based on the Gassmann equation and Eshelby–Walsh theory  

Science Journals Connector (OSTI)

Abstract Fluid substitution in carbonate rocks is more difficult than it is in clastic rocks for two reasons. Firstly, the rock physics modeling uncertainties in carbonate rocks, this is due to the difficulty of accurately acquiring the moduli of carbonate rocks' solid matrix because the experimental data on carbonate rocks have not been as thoroughly studied as silici-clastic sedimentary rocks. Secondly, due to the complex pore systems of carbonate rocks, it is very difficult to model pore geometry of carbonates, and hence hard to assess how the elastic properties change as fluid saturation changes based on the traditional Biot and Gassmann theories. In order to solve these problems, we present a new fluid substitution equation of carbonate rocks using the Gassmann equation and Eshelby–Walsh theory (GEW) in this paper. Then, the specific procedures of how to calculate the moduli of carbonate rocks' solid matrix and how to measure the effect of pore geometry in fluid substitution based on the new fluid substation equation were illustrated by experimental testing about 12 carbonate rock samples in different fluid saturation scenarios and logging data. Finally, we further compared the new fluid substitution method with the conventional Gassmann fluid substitution based on the experimental data. The results verified that the new method is more accurate and reliable in the fluid substitution of complex carbonate rocks.

Quanxiong Feng; Lian Jiang; Mingquan Liu; Huan Wan; Li Chen; Wei Xiao

2014-01-01T23:59:59.000Z

76

U.S. National Committee for Rock Mechanics; and Conceptual model of fluid infiltration in fractured media. Project summary, July 28, 1997--July 27, 1998  

SciTech Connect

The title describes the two tasks summarized in this report. The remainder of the report contains information on meetings held or to be held on the subjects. The US National Committee for Rock Mechanics (USNC/RM) provides for US participation in international activities in rock mechanics, principally through adherence to the International Society for Rock Mechanics (ISRM). It also keeps the US rock mechanics community informed about new programs directed toward major areas of national concern in which rock mechanics problems represent critical or limiting factors, such as energy resources, excavation, underground storage and waste disposal, and reactor siting. The committee also guides or produces advisory studies and reports on problem areas in rock mechanics. A new panel under the auspices of the US National Committee for Rock Mechanics has been appointed to conduct a study on Conceptual Models of Fluid Infiltration in Fractured Media. The study has health and environmental applications related to the underground flow of pollutants through fractured rock in and around mines and waste repositories. Support of the study has been received from the US Nuclear Regulatory Commission and the Department of Energy`s Yucca Mountain Project Office. The new study builds on the success of a recent USNC/RM report entitled Rock Fractures and Fluid Flow: Contemporary Understanding and Applications (National Academy Press, 1996, 551 pp.). A summary of the new study is provided.

NONE

1998-09-01T23:59:59.000Z

77

Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns  

E-Print Network (OSTI)

Excavated Hard Rock Caverns. Pacific Northwest Laboratory,Lux, K.H. Design of salt caverns for the storage of naturalgas storage in unlined rock caverns. Int J Rock Mech Min Sc

Rutqvist, J.

2013-01-01T23:59:59.000Z

78

Model independent search for new physics at the Tevatron  

E-Print Network (OSTI)

The Standard Model of elementary particles can not be the final theory. There are theoretical reasons to expect the appearance of new physics, possibly at the energy scale of few TeV. Several possible theories of new physics ...

Choudalakis, Georgios

2008-01-01T23:59:59.000Z

79

PHYSICAL REVIEW B 87, 035125 (2013) Compressive sensing as a paradigm for building physics models  

E-Print Network (OSTI)

PHYSICAL REVIEW B 87, 035125 (2013) Compressive sensing as a paradigm for building physics models of finding the key descriptive variables. CS is a powerful paradigm for model building; we show that its in efficiency and conceptual clarity are achieved by building models that express the quantity of interest

Hart, Gus

80

Deformation in ramp regions of thrust faults: experiments with rock models  

E-Print Network (OSTI)

and justification. Furthermore, they can be tested only in the field, because t. he experimental and natural systems are only analogous, not identical The approach +aken h re, the d formation of a rock specimen in exper. iments designed to favor the simulation... and justification. Furthermore, they can be tested only in the field, because t. he experimental and natural systems are only analogous, not identical The approach +aken h re, the d formation of a rock specimen in exper. iments designed to favor the simulation...

Morse, James Donald

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Integration of Nontraditional Isotopic Systems Into Reaction-Transport Models of EGS For Exploration, Evaluation of Water-Rock Interaction, and Impacts of Water Chemistry on Reservoir Sustainability  

Energy.gov (U.S. Department of Energy (DOE))

Integration of Nontraditional Isotopic Systems Into Reaction-Transport Models of EGS For Exploration, Evaluation of Water-Rock Interaction, and Impacts of Water Chemistry on Reservoir Sustainability presentation at the April 2013 peer review meeting held in Denver, Colorado.

82

A pore-scale model of two-phase flow in water-wet rock  

SciTech Connect

A finite-difference discretization of Stokes equations is used to simulate flow in the pore space of natural rocks. Numerical solutions are obtained using the method of artificial compressibility. In conjunction with Maximal Inscribed Spheres method, these computations produce relative permeability curves. The results of computations are in agreement with laboratory measurements.

Silin, Dmitriy; Patzek, Tad

2009-02-01T23:59:59.000Z

84

Cognitive Effects of Physical Models in Engineering Idea Generation  

E-Print Network (OSTI)

of controlled lab studies and qualitative studies is adopted to achieve said goal. The results from the controlled studies show that physical models supplement designers’ erroneous mental models and help them to come up with more ideas satisfying the problem...

Cherickal Viswanathan, Vimal 1983-

2012-08-17T23:59:59.000Z

85

Physical Modeling Synthesis Update Julius O. Smith III  

E-Print Network (OSTI)

Physical Modeling Synthesis Update Julius O. Smith III Center for Computer Research in Music. They model wave propagation in distributed media such as strings, bores, horns, plates, and acoustic spaces

Smith III, Julius Orion

86

White Rock  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnished house for rent in rural White Rock Bright and sunny Ideal for a young family Safe neighborhood 10 min drive to LANL 1300 per month, basic utilities included 1180 sq ft....

87

Rock magnetism  

Science Journals Connector (OSTI)

The past three decades have witnessed a new paradigm, the plate tectonics paradigm, in Earth sciences. The record of the Earth's magnetic field stored in rocks played a major role in the establishment of this par...

Ronald T. Merrill

1989-01-01T23:59:59.000Z

88

MODELING SECURITY IN CYBER-PHYSICAL SYSTEMS  

E-Print Network (OSTI)

novel aspects of networked systems that include integrating dis- tributed computing systems with monitoring and controlling entities in the physical environment. For example, in real-time control systems stations. Other examples include smart grid systems and supervisory control and data acquisition (SCADA

Burmester, Mike

89

Optimal dynamic rock-fluid physics template validated by petroelastic reservoir modeling  

Science Journals Connector (OSTI)

...gpr.2006.54.issue-3 .GPPRAR. Macrides, C. G. , Rademakers, M., Fournier, F., and Dequirez, P. Y., 2000, 2-D...1111/ gpr.2006.54.issue-3. Macrides, C. G., M. Rademakers, F. Fournier, and P. Y. Dequirez, 2000, 2-D and 3-D...

Alireza Shahin; Robert Tatham; Paul Stoffa; Kyle Spikes

90

An Integrated Modeling Analysis of Unsaturated Flow Patterns in Fractured Rock  

E-Print Network (OSTI)

study, heat flow simulations use a 3-D thermal model grid (model grid, which is used for gas flow and ambient heat-flowgrid showing a smaller model domain, used for modeling gas and heat

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

2008-01-01T23:59:59.000Z

91

Unification and Model Building, Astroparticle Physics and Neutrinos  

E-Print Network (OSTI)

This report summarises the work done during the Workshop on High Energy Physics Phenomenology 4 (S.N.Bose National Centre for Basic Sciences, Calcutta, India, Jan 2-14,1996) in Working Groups IV (Unification and Model Building) and V (Astroparticle Physics and Neutrinos).

Amitava Raychaudhuri; Probir Roy

1996-04-11T23:59:59.000Z

92

The current status of titaniterutile thermobarometry in ultrahigh-pressure metamorphic rocks: The in uence of titanite activity models on phase equilibrium  

E-Print Network (OSTI)

The current status of titanite­rutile thermobarometry in ultrahigh-pressure metamorphic rocks: The in uence of titanite activity models on phase equilibrium calculations Peter Tropper a,b, , Craig E Article history: Accepted 12 March 2008 Keywords: Titanite Activity model Al+F substitution UHP

Manning, Craig

93

Problems of physical modeling of electric-arc discharges  

Science Journals Connector (OSTI)

Special features of physical modeling of high-current arc discharges are considered. It is shown that the employment of dimensionless criterial expressions makes it possible to establish only approximate simil...

O. I. Yas'ko

94

SENSPECTRA : an elastic, strain-aware physical modeling interface  

E-Print Network (OSTI)

Senspectra is a computationally augmented physical modeling toolkit designed for sensing and visualization of structural strain. The system functions as a distributed sensor network consisting of nodes, embedded with ...

Leclerc, Vincent, S.M. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

95

Physics Beyond the Standard Model and Dark Matter  

E-Print Network (OSTI)

In this lecture note, I discuss why many of us are expecting rich physics at the TeV scale, drawing analogies from the history of physics in the last century. Then I review some of the possible candidates of new physics at this energy scale. I also discuss why we believe much of the matter in the universe is not atoms (baryons) or compact astronomical objects, and hence requires physics beyond the standard model. Finally I discuss some of the candidates for the non-baryonic dark matter.

Hitoshi Murayama

2007-04-18T23:59:59.000Z

96

Analyzing flow patterns in unsaturated fractured rock of Yucca Mountain using an integrated modeling approach  

E-Print Network (OSTI)

heat flow simulations use the 3-D thermal model grid (Figuremodel grid, which is used for gas flow and ambient heat flowgrid showing a smaller model domain, used for modeling gas and heat

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

2008-01-01T23:59:59.000Z

97

Modelling biological complexity: a physical scientist's perspective  

Science Journals Connector (OSTI)

...illustration of either hierarchical or hybrid multiscale modelling. 4...of the software and hardware infrastructure to support such research worldwide...progress can be made without a hybrid multiscale model by inferring...will, however, require a hybrid multiscale approach. Establishing...

2005-01-01T23:59:59.000Z

98

Analyzing flow patterns in unsaturated fractured rock of Yucca Mountain using an integrated modeling approach  

E-Print Network (OSTI)

zone site-scale model, Yucca Mountain Site Characterizationzone site- scale model, Yucca Mountain Project Milestonelateral diversion at Yucca Mountain, Nevada, Water Resources

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

2008-01-01T23:59:59.000Z

99

A model of the large hydraulic gradient at Yucca Mountain, Nevada Test Site, based on hydraulic conductivity contrasts between Cenozoic and Paleozoic rocks  

E-Print Network (OSTI)

A MODEL OF THE LARGE HYDRAULIC GRADIENT AT YUCCA MOUNTAIN, NEVADA TEST SITE, BASED ON HYDRAULIC CONDUCTIVITY CONTRASTS BETWEEN CENOZOIC AND PALEOZOIC ROCKS A Thesis ERIC WILLIAM STROM Submitted to the Offic of Graduate Studies of Texas A.... 4m W&~~ &&go~'~o~~i gp ??g Y, ) 4r y. odtli' ~ 6. A MODEL OF THE LARGE HYDRAULIC GRADIENT AT YUCCA MOUNTAIN, NEVADA TEST SITE, BASED ON HYDRAULIC CONDUCTIVITY CONTRASTS BETWEEN CENOZOIC AND PALEOZOIC ROCKS A Thesis ERIC WILLIAM STROM...

Strom, Eric William

2012-06-07T23:59:59.000Z

100

THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES  

E-Print Network (OSTI)

improving production by hydraulic fracturing 8 the focus otfor fractures. (d) Hydraulic Fracturing: The model has been

Wang, J.S.Y.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES  

E-Print Network (OSTI)

geothermal reservoir and wellbore model was used in the history-matching simulations for test wells in Cerro Prieto, Mexico,

Wang, J.S.Y.

2013-01-01T23:59:59.000Z

102

A Mountain-Scale Thermal Hydrologic Model for Simulating FluidFlow and Heat Transfer in Unsaturated Fractured Rock  

SciTech Connect

A multidimensional, mountain-scale, thermal-hydrologic (TH) numerical model is presented for investigating unsaturated flow behavior in response to decay heat from the radioactive waste repository in the Yucca Mountain unsaturated zone (UZ), Nevada. The model, consisting of both two-dimensional (2-D) and three-dimensional (3-D) representations of the UZ repository system, is based on the current repository design, drift layout, thermal loading scenario, and estimated current and future climate conditions. This mountain-scale TH model evaluates the coupled TH processes related to mountain-scale UZ flow. It also simulates the impact of radioactive waste heat release on the natural hydrogeological system, including heat-driven processes occurring near and far away from the emplacement tunnels or drifts. The model simulations predict thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. These simulations provide mountain-scale thermally perturbed flow fields for assessing the repository performance under thermal loading conditions.

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson,Gudmundur S.

2005-05-25T23:59:59.000Z

103

Simplified models for same-spin new physics scenarios  

E-Print Network (OSTI)

Simplified models are an important tool for the interpretation of searches for new physics at the LHC. They are defined by a small number of new particles together with a specific production and decay pattern. The simplified models adopted in the experimental analyses thus far have been derived from supersymmetric theories, and they have been used to set limits on supersymmetric particle masses. We investigate the applicability of such simplified supersymmetric models to a wider class of new physics scenarios, in particular those with same-spin Standard Model partners. We focus on the pair production of quark partners and analyze searches for jets and missing energy within a simplified supersymmetric model with scalar quarks and a simplified model with spin-1/2 quark partners. Despite sizable differences in the detection efficiencies due to the spin of the new particles, the limits on particle masses are found to be rather similar. We conclude that the supersymmetric simplified models employed in current expe...

Edelhäuser, Lisa; Sonneveld, Jory

2015-01-01T23:59:59.000Z

104

Three Dimensional Non-linear Anisotropic Thermo-Chemo-Poro-Elastoplastic Modelling of Borehole Stability in Chemically Active Rocks.  

E-Print Network (OSTI)

??Borehole stability problems are mostly encountered when drilling through chemically active formations such as shales. Shales are highly laminated rocks with transversely isotropic behaviour, and… (more)

Roshan, Hamid

2011-01-01T23:59:59.000Z

105

Heteropolymer freezing and design: Towards physical models of protein folding  

SciTech Connect

Protein folding has become one of the most actively studied problems in modern molecular biophysics. Approaches to the problem combine ideas from the physics of disordered systems, polymer physics, and molecular biology. Much can be learned from the statistical properties of model heteropolymers, the chain molecules having different monomers in irregular sequences. Even in highly evolved proteins, there is a strong random element in the sequences, which gives rise to a statistical ensemble of sequences for a given folded shape. Simple analytic models give rise to phase transitions between random, glassy, and folded states, depending on the temperature T and the design temperature T{sup des} of the ensemble of sequences. Besides considering the analytic results obtainable in a random-energy model and in the Flory mean-field model of polymers, the article reports on confirming numerical simulations. (c) 2000 The American Physical Society.

Pande, Vijay S. [Chemistry Department, Stanford University, Stanford, California 94305-5080 (United States)] [Chemistry Department, Stanford University, Stanford, California 94305-5080 (United States); Grosberg, Alexander Yu. [Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455 (United States)] [Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Tanaka, Toyoichi [Department of Physics and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Department of Physics and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2000-01-01T23:59:59.000Z

106

Physical Modeling of Transient Enhanced Diusion and Dopant Deactivation via Extended Defect Evolution  

E-Print Network (OSTI)

Physical Modeling of Transient Enhanced Diusion and Dopant Deactivation via Extended Defect requires the use of well-founded physical models for these aggregation processes. We have developed

Dunham, Scott

107

Modeling electrical conductivity for earth media with macroscopic fluid-filled fractures  

E-Print Network (OSTI)

J. , 2009, The Rock Physics Handbook (Second Edition),in Rock Physics and Phase Relations: A Handbook of Physical

Berryman, J.G.

2014-01-01T23:59:59.000Z

108

Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns  

SciTech Connect

We applied coupled nonisothermal, multiphase fluid flow and geomechanical numerical modeling to study the coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in concrete-lined rock caverns. The paper focuses on CAES in lined caverns at relatively shallow depth (e.g., 100 m depth) in which a typical CAES operational pressure of 5 to 8 MPa is significantly higher than both ambient fluid pressure and in situ stress. We simulated a storage operation that included cyclic compression and decompression of air in the cavern, and investigated how pressure, temperature and stress evolve over several months of operation. We analyzed two different lining options, both with a 50 cm thick low permeability concrete lining, but in one case with an internal synthetic seal such as steel or rubber. For our simulated CAES system, the thermodynamic analysis showed that 96.7% of the energy injected during compression could be recovered during subsequent decompression, while 3.3% of the energy was lost by heat conduction to the surrounding media. Our geomechanical analysis showed that tensile effective stresses as high as 8 MPa could develop in the lining as a result of the air pressure exerted on the inner surface of the lining, whereas thermal stresses were relatively smaller and compressive. With the option of an internal synthetic seal, the maximum effective tensile stress was reduced from 8 to 5 MPa, but was still in substantial tension. We performed one simulation in which the tensile tangential stresses resulted in radial cracks and air leakage though the lining. This air leakage, however, was minor (about 0.16% of the air mass loss from one daily compression) in terms of CAES operational efficiency, and did not significantly impact the overall energy balance of the system. However, despite being minor in terms of energy balance, the air leakage resulted in a distinct pressure increase in the surrounding rock that could be quickly detected using pressure monitoring outside the concrete lining.

Rutqvist, J.; Kim, H. -M.; Ryu, D. -W.; Synn, J. -H.; Song, W. -K.

2012-02-01T23:59:59.000Z

109

THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES  

E-Print Network (OSTI)

Doughty, 1979a, Aquifer thermal energy storage--a numericalical modeling of thermal energy storage in aquifers.Presented at the Thermal Energy Storage in Aquifers

Wang, J.S.Y.

2013-01-01T23:59:59.000Z

110

Modeling of thermally driven hydrological processes in partially saturated fractured rock  

E-Print Network (OSTI)

multiphase fluid flow, heat transfer, and deformation insimulations of fluid flow, heat transfer, and phaseeither included no fluid flow and modeled heat transfer by

Tsang, Yvonne

2010-01-01T23:59:59.000Z

111

An Integrated Modeling Analysis of Unsaturated Flow Patterns in Fractured Rock  

E-Print Network (OSTI)

zone transport model of Yucca Mountain, Las Alamos Nationalisotope distributions at Yucca Mountain, Las Alamos Nationalpneumatic response of at Yucca Mountain, Nevada, Journal of

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

2008-01-01T23:59:59.000Z

112

Dispersivity as an oil reservoir rock characteristic  

SciTech Connect

The main objective of this research project is to establish dispersivity, {alpha}{sub d}, as an oil reservoir rock characteristic and to use this reservoir rock property to enhance crude oil recovery. A second objective is to compare the dispersion coefficient and the dispersivity of various reservoir rocks with other rock characteristics such as: porosity, permeability, capillary pressure, and relative permeability. The dispersivity of a rock was identified by measuring the physical mixing of two miscible fluids, one displacing the other in a porous medium. 119 refs., 27 figs., 12 tabs.

Menzie, D.E.; Dutta, S.

1989-12-01T23:59:59.000Z

113

Seismic velocity anisotropy in mica-rich rocks: an inclusion model  

Science Journals Connector (OSTI)

......also calculated Thomsen's anisotropic parameters, , gamma and delta...Hudson J.A.,1994. Anisotropic effective-medium modelling of the elastic properties of shales, Geophysics, 59, 1570-1583...Elastic field of inclusions in anisotropic media, Phys. Status Solidi......

O. Nishizawa; T. Yoshino

2001-04-01T23:59:59.000Z

114

Physical model of a fractured reservoir | Open Energy Information  

Open Energy Info (EERE)

model of a fractured reservoir model of a fractured reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Physical model of a fractured reservoir Details Activities (1) Areas (1) Regions (0) Abstract: The objectives of the physical modeling effort are to: (1) evaluate injection-backflow testing for fractured reservoirs under conditions of known reservoir parameters (porosity, fracture width, etc.); (2) study the mechanisms controlling solute transport in fracture systems; and (3) provide data for validation of numerical models that explicitly simulate solute migration in fracture systems. The fracture network is 0.57-m wide, 1.7-m long, and consists of two sets of fractures at right angles to one another with a fracture spacing of 10.2 cm. A series of

115

A Physically Based Runoff Routing Model for Land Surface and Earth System Models  

Science Journals Connector (OSTI)

A new physically based runoff routing model, called the Model for Scale Adaptive River Transport (MOSART), has been developed to be applicable across local, regional, and global scales. Within each spatial unit, surface runoff is first routed ...

Hongyi Li; Mark S. Wigmosta; Huan Wu; Maoyi Huang; Yinghai Ke; André M. Coleman; L. Ruby Leung

2013-06-01T23:59:59.000Z

116

MODELING THE INFLUENCE OF HETEROGENEITY AND ANISOTROPY ON PHYSICAL PROCESSES IN  

E-Print Network (OSTI)

the interplay of coupled physical and chemical processes interacting in partially water- saturated waste rock the piles. This process is a much more efficient oxygen transport mechanism than diffusion and it sustains of existing piles and guidelines on constructing new pile with minimal ARD production. Aubertin et al. (2005

Aubertin, Michel

117

Influence of rock mass fracturing on the net penetration rates of hard rock \\{TBMs\\}  

Science Journals Connector (OSTI)

Abstract Penetration rates during excavation using hard rock tunnel boring machines (TBMs) are significantly influenced by the degree of fracturing of the rock mass. In the NTNU prediction model for hard rock TBM performance and costs, the rock mass fracturing factor (ks) is used to include the influence of rock mass fractures. The rock mass fracturing factor depends on the degree of fracturing, fracture type, fracture spacing, and the angle between fracture systems and the tunnel axis. In order to validate the relationship between the degree of fracturing and the net penetration rate of hard rock TBMs, field work has been carried out, consisting of geological back-mapping and analysis of performance data from a TBM tunnel. The rock mass influence on hard rock TBM performance prediction is taken into account in the NTNU model. Different correlations between net penetration rate and the fracturing factor (ks) have been identified for a variety of ks values.

F.J. Macias; P.D. Jakobsen; Y. Seo; A. Bruland

2014-01-01T23:59:59.000Z

118

Physical model of human blood electronic memristors network  

Science Journals Connector (OSTI)

For the first time using therapeutic methodology, network of physical model (three memristors in series and parallel combination) of memristors was experimentally studied. The combination of memristors manifested memristor's characteristics (only as defined by Williams of HP, USA). Key potential applications towards biomedical electronics specially man-machine interface, artificial brain, and signal processing is envisaged.

Shiv Prasad Kosta; Mukta Bhatele; Prateek Gupta; Preeti Nair; Shakti Kosta; Siddharth Dutt Choubey; Luni Thakre; Piyush R. Vaghela; K.N. Patel; B.K. Dave; Jaimin Chavda; Chintan Bhatt; Tushar Nigam

2014-01-01T23:59:59.000Z

119

ENHANCED CLOUD REGIME CLASSIFICATION FOR EVALUATION OF MODEL FAST PHYSICS  

E-Print Network (OSTI)

ENHANCED CLOUD REGIME CLASSIFICATION FOR EVALUATION OF MODEL FAST PHYSICS Wuyin Lin1 , Yangang Liu1 of Energy under Contract No. DE-AC02-98CH10886 ABSTRACT Distinct cloud regimes exist locally and globally helps identify the meteorological conditions that are closely associated with specific cloud regimes

120

Index Interactions in Physical Design Tuning: Modeling, Analysis, and Applications  

E-Print Network (OSTI)

a complete pic- ture. Basically, they ignore the key issue of index interaction, which is crucialIndex Interactions in Physical Design Tuning: Modeling, Analysis, and Applications Karl Schnaitter. We formalize the notion of index interactions and develop a novel algorithm to iden- tify

Polyzotis, Neoklis (Alkis)

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Modeling of the rock bed thermal energy storage system of a combined cycle solar thermal power plant in South Africa  

Science Journals Connector (OSTI)

Abstract A thermocline-based rock bed thermal energy storage system potentially offers a cheap and simple way of achieving dispatchability in an air-cooled central receiver CSP plant. In order to efficiently match heliostat field size, storage dimensions, back-up fuel consumption and turbine sizes for non-stop power generation and economic feasibility, year-long power plant simulations have to be run. This paper focuses on the storage as the center of in- and outgoing thermal energy. The derived storage model has one spatial dimension which is justified by the high tube-to-particle diameter ratio and because yearly aggregated – and not momentary – values are of interest. A validation of the correlations with data from the literature shows acceptable agreement. Sensitivity analyses indicate that, due to low costs of the storage system, above certain minimum storage dimensions, the influence on energetic and monetary performance indicators is marginal. The calculated LCOE is in the range of 0.11–0.18 EUR/kW h and in agreement with other studies on combined cycle CSP plants.

Lukas Heller; Paul Gauché

2013-01-01T23:59:59.000Z

122

Precision Searches for Physics Beyond the Standard Model  

E-Print Network (OSTI)

The "precision" frontier, which is closely related to the "intensity" frontier, provides a complementary path to the discovery of physics beyond the Standard Model. Several examples of discoveries that would change our view of the physical world are: Charged lepton flavor violation, e.g. muon electron conversion; the discovery of a permanent electric dipole moment of the electron, neutron, muon or a nucleus. In this paper I focus mostly on phenomena mediated by a dipole interaction, including the anomalous magnetic moment of the muon.

B. Lee Roberts

2009-10-28T23:59:59.000Z

123

Future high precision experiments and new physics beyond Standard Model  

SciTech Connect

High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.

Luo, Mingxing.

1993-01-01T23:59:59.000Z

124

Future high precision experiments and new physics beyond Standard Model  

SciTech Connect

High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.

Luo, Mingxing

1993-04-01T23:59:59.000Z

125

Using Modelica for Physical Modeling of Air-Conditioning Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Modelica for Physical Modeling of Air-Conditioning Systems Using Modelica for Physical Modeling of Air-Conditioning Systems Speaker(s): Jonas Eborn Date: August 23, 2007 - 12:00pm Location: 90-4133 Seminar Host/Point of Contact: Michael Wetter The Air Conditioning library is a commercial Modelica library for the steady-state and transient simulation of air conditioning systems using both compact micro-channel heat exchangers as well as fin-and-tube type heat exchangers. Currently it is mostly used by automotive OEMs and suppliers that need high-accuracy system level models to evaluate energy efficiency of systems developed under the pressure of reduced design cycle times. The library also has applications in other areas, including aircraft cooling systems and residential air-conditioning. The Air Conditioning library contains published correlations for heat and mass transfer and

126

Simplest model to study reentrance in physical systems  

Science Journals Connector (OSTI)

We numerically investigate the necessary ingredients for reentrant behavior in the phase diagram of physical systems. Studies on the possibly simplest model that exhibits reentrance, the two-dimensional random-bond Ising model, show that reentrant behavior is generic whenever frustration is present in the model. For both discrete and continuous disorder distributions, the phase diagram in the disorder-temperature plane is found to be reentrant, where for some disorder strengths a paramagnetic phase exists at both high and low temperatures, but an ordered ferromagnetic phase exists for intermediate temperatures.

Creighton K. Thomas and Helmut G. Katzgraber

2011-10-11T23:59:59.000Z

127

Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Physics1354608000000PhysicsSome of these resources are LANL-only and will require Remote Access.No Physics Some of these resources are LANL-only and will require Remote...

128

E-Print Network 3.0 - analysis physical models Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

theory, regression analysis, ARAM modelling (6... and Richard E. Thomson - Data Analysis ... Source: deYoung, Brad - Department of Physics and Physical Oceanography,...

129

Charged Higgs Boson: Tracer of the Physics beyond Standard Model  

E-Print Network (OSTI)

Charged Higgs boson can exist in many physics beyond the standard models (BSM) and it is the obvious BSM signal. We briefly describe why the 125GeV scalar discovered at the LHC must have (heavy) companion: the charged Higgs boson, in a new paradigm. We then focus on the charged Higgs phenomenology, especially on how to measure $\\tan\\beta$ precisely utilizing the top quark polarization information.

Zhu, Shou-hua

2014-01-01T23:59:59.000Z

130

Rock mechanics contributions from defense programs  

SciTech Connect

An attempt is made at illustrating the many contributions to rock mechanics from US defense programs, over the past 30-plus years. Large advances have been achieved in the technology-base area covering instrumentation, material properties, physical modeling, constitutive relations and numerical simulations. In the applications field, much progress has been made in understanding and being able to predict rock mass behavior related to underground explosions, cratering, projectile penetration, and defense nuclear waste storage. All these activities stand on their own merit as benefits to national security. But their impact is even broader, because they have found widespread applications in the non-defense sector; to name a few: the prediction of the response of underground structures to major earthquakes, the physics of the earth`s interior at great depths, instrumentation for monitoring mine blasting, thermo-mechanical instrumentation useful for civilian nuclear waste repositories, dynamic properties of earthquake faults, and transient large-strain numerical modeling of geological processes, such as diapirism. There is not pretense that this summary is exhaustive. It is meant to highlight success stories representative of DOE and DOD geotechnical activities, and to point to remaining challenges.

Heuze, F.E.

1992-02-01T23:59:59.000Z

131

An Autonomous, Emergent Model of Fundamental Physics: Understanding the Universe by Designing It  

E-Print Network (OSTI)

An Autonomous, Emergent Model of Fundamental Physics: Understanding the Universe by Designing. We seek to build an autonomous model that produces known physics in a completely self/16/2005. #12;2 An Autonomous, Emergent Model of Fundamental Physics Contents Introduction 3 Autonomous Models

O'Reilly, Randall C.

132

Maximization of permanent trapping of CO{sub 2} and co-contaminants in the highest-porosity formations of the Rock Springs Uplift (Southwest Wyoming): experimentation and multi-scale modeling  

SciTech Connect

Under this project, a multidisciplinary team of researchers at the University of Wyoming combined state-of-the-art experimental studies, numerical pore- and reservoir-scale modeling, and high performance computing to investigate trapping mechanisms relevant to geologic storage of mixed scCO{sub 2} in deep saline aquifers. The research included investigations in three fundamental areas: (i) the experimental determination of two-­?phase flow relative permeability functions, relative permeability hysteresis, and residual trapping under reservoir conditions for mixed scCO{sub 2}-­?brine systems; (ii) improved understanding of permanent trapping mechanisms; (iii) scientifically correct, fine grid numerical simulations of CO{sub 2} storage in deep saline aquifers taking into account the underlying rock heterogeneity. The specific activities included: (1) Measurement of reservoir-­?conditions drainage and imbibition relative permeabilities, irreducible brine and residual mixed scCO{sub 2} saturations, and relative permeability scanning curves (hysteresis) in rock samples from RSU; (2) Characterization of wettability through measurements of contact angles and interfacial tensions under reservoir conditions; (3) Development of physically-­?based dynamic core-­?scale pore network model; (4) Development of new, improved high-­? performance modules for the UW-­?team simulator to provide new capabilities to the existing model to include hysteresis in the relative permeability functions, geomechanical deformation and an equilibrium calculation (Both pore-­? and core-­?scale models were rigorously validated against well-­?characterized core-­? flooding experiments); and (5) An analysis of long term permanent trapping of mixed scCO{sub 2} through high-­?resolution numerical experiments and analytical solutions. The analysis takes into account formation heterogeneity, capillary trapping, and relative permeability hysteresis.

Piri, Mohammad

2014-03-31T23:59:59.000Z

133

Convergence Approach to Model Physical World and Cyber World of Aviation Cyber Physical System  

Science Journals Connector (OSTI)

Aviation Cyber-Physical Systems are the integration of cyber systems and physical systems. Recent concentration to Aviation Cyber Physical Systems (ACPS) is driven by the demand for deeper Convergence of design disciplines that integrate physical and ... Keywords: Aviation Cyber Physical System CPS, Modelica, AADL, SysML, Spatial-Temporal Features, Dynamic Continuous Features

Lichen Zhang

2014-08-01T23:59:59.000Z

134

Parameter Optimization in an Intermediate Coupled Climate Model with Biased Physics  

Science Journals Connector (OSTI)

Imperfect physical parameterization schemes in a coupled climate model are an important source of model biases that adversely impact climate prediction. However, how observational information should be used to optimize physical parameterizations ...

Xuefeng Zhang; Shaoqing Zhang; Zhengyu Liu; Xinrong Wu; Guijun Han

135

A Model Independent General Search for new physics in ATLAS  

E-Print Network (OSTI)

We present results of a model-independent general search for new phenomena in proton-proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS detector at the LHC. The data set corresponds to a total integrated luminosity of 20.3~\\ifb. Event topologies involving isolated electrons, photons and muons, as well as jets, including those identified as originating from \\textit{b}-quarks (\\textit{b}-jets) and missing transverse momentum are investigated. The events are subdivided according to their final states into exclusive event classes. For the 697 classes with a Standard Model expectation greater than 0.1 events, a search algorithm tests the compatibility of data against the Monte Carlo simulated background in three kinematic variables sensitive to new physics effects. No significant deviation is found in data. The number and size of the observed deviations follow the Standard Model expectation obtained from simulated pseudo-experiments.

Amoroso, S; The ATLAS collaboration

2014-01-01T23:59:59.000Z

136

Muon Physics: A Pillar of the Standard Model  

E-Print Network (OSTI)

Since its discovery in the 1930s, the muon has played an important role in our quest to understand the sub-atomic theory of matter. The muon was the first second-generation standard-model particle to be discovered, and its decay has provided information on the (Vector -Axial Vector) structure of the weak interaction, the strength of the weak interaction, G_F, and the conservation of lepton number (flavor) in muon decay. The muon's anomalous magnetic moment has played an important role in restricting theories of physics beyond the standard standard model, where at present there is a 3.4 standard-deviation difference between the experiment and standard-model theory. Its capture on the atomic nucleus has provided valuable information on the modification of the weak current by the strong interaction which is complementary to that obtained from nuclear beta decay.

B. Lee Roberts

2007-04-18T23:59:59.000Z

137

An Effective Guide to Beyond the Standard Model Physics  

E-Print Network (OSTI)

Effective Lagrangians with dimension-six operators are widely used to analyse Higgs and other electroweak data. We show how to build a basis of operators such that each operator corresponds to a coupling which is well measured or will be in the future. We choose a set of couplings such that the correspondence is one-to-one. In our framework, some important features of the Lagrangian are transparent. For example, one can clearly see the presence or absence of correlations among measurable quantities. This may be a useful guide when searching for physics beyond the Standard Model.

Eduard Masso

2014-07-23T23:59:59.000Z

138

Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock  

SciTech Connect

Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of radioactive waste. Figure 1-1 presents the distribution of clay/shale formations within the USA.

Liu, H.H.; Li, L.; Zheng, L.; Houseworth, J.E.; Rutqvist, J.

2011-06-20T23:59:59.000Z

139

Physics and Seismic Modeling for Monitoring CO2 Storage JOSE M. CARCIONE,1  

E-Print Network (OSTI)

, methane-bearing coal beds and saline aquifers. An example of the latter is the Sleipner field in the North-elastical equations model the seismic properties of reservoir rocks saturated with CO2, methane, oil and brine conditions, and can approach that of liquid water. Instead, pure CH4 (methane, hydrocarbon gas) exhibits

Santos, Juan

140

3-D physical modeling of a complex salt canopy  

SciTech Connect

Recent drilling has confirmed both significant reservoir potential and the presence of commercial hydrocarbons below salt structures in the Gulf of Mexico. Obtaining definitive seismic images with standard processing schemes beneath these salt structures is very difficult if not impossible. Because of the complicated seismic behavior of these structures, full volume 3-D prestack depth migration is required. Unfortunately, carrying out the multitude of calculations needed to create a proper image requires the largest and fastest supercomputers and rather complex numerical algorithms. Furthermore, developing and testing the imaging algorithms is quite involved and requires appropriate test data sets. To better understand the problems and issues of subsalt imaging, Marathon Oil Company and Louisiana Land and Exploration Company contracted with the University of Houston`s Allied Geophysical Laboratories (AGL) to construct a salt canopy physical model. The model is patterned after the SEG/EAEG Salt Model and is made from synthetic materials. It is a full three-dimensional model with an irregularly shaped, lateral salt structure embedded in five distinct sedimentary layers. The model was used to acquire a multi-offset 3-D marine-style survey. These data are being used to address problems of subsalt imaging. In addition to standard processing techniques, the authors investigate algorithms for multiple removal and prestack depth migration.

Wiley, R.W. [Marathon Oil Co., Littleton, CO (United States); Sekharan, K.K. [Univ. of Houston, TX (United States). Allied Geophysical Labs.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Standard model parameters and the search for new physics  

SciTech Connect

In these lectures, my aim is to present an up-to-date status report on the standard model and some key tests of electroweak unification. Within that context, I also discuss how and where hints of new physics may emerge. To accomplish those goals, I have organized my presentation as follows: I discuss the standard model parameters with particular emphasis on the gauge coupling constants and vector boson masses. Examples of new physics appendages are also briefly commented on. In addition, because these lectures are intended for students and thus somewhat pedagogical, I have included an appendix on dimensional regularization and a simple computational example that employs that technique. Next, I focus on weak charged current phenomenology. Precision tests of the standard model are described and up-to-date values for the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix parameters are presented. Constraints implied by those tests for a 4th generation, supersymmetry, extra Z/prime/ bosons, and compositeness are also discussed. I discuss weak neutral current phenomenology and the extraction of sin/sup 2/ /theta//sub W/ from experiment. The results presented there are based on a recently completed global analysis of all existing data. I have chosen to concentrate that discussion on radiative corrections, the effect of a heavy top quark mass, and implications for grand unified theories (GUTS). The potential for further experimental progress is also commented on. I depart from the narrowest version of the standard model and discuss effects of neutrino masses and mixings. I have chosen to concentrate on oscillations, the Mikheyev-Smirnov- Wolfenstein (MSW) effect, and electromagnetic properties of neutrinos. On the latter topic, I will describe some recent work on resonant spin-flavor precession. Finally, I conclude with a prospectus on hopes for the future. 76 refs.

Marciano, W.J.

1988-04-01T23:59:59.000Z

142

Robust Characterization of Model Physics Uncertainty for Simulations of Deep Moist Convection  

Science Journals Connector (OSTI)

This study explores the functional relationship between model physics parameters and model output variables for the purpose of 1) characterizing the sensitivity of the simulation output to the model formulation and 2) understanding model ...

Derek J. Posselt; Tomislava Vukicevic

2010-05-01T23:59:59.000Z

143

Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations  

SciTech Connect

This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptual drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer drilling tests, as well as single impact tests, have been designed and executed. Both Berea sandstone and Mancos shale samples are used. In single impact tests, three impacts are sequentially loaded at the same rock location to investigate rock response to repetitive loadings. The crater depth and width are measured as well as the displacement and force in the rod and the force in the rock. Various pressure differences across the rock-indentor interface (i.e. bore pressure minus pore pressure) are used to investigate the pressure effect on rock penetration. For hammer drilling tests, an industrial fluid hammer is used to drill under both underbalanced and overbalanced conditions. Besides calibrating the modeling tool, the data and cuttings collected from the tests indicate several other important applications. For example, different rock penetrations during single impact tests may reveal why a fluid hammer behaves differently with diverse rock types and under various pressure conditions at the hole bottom. On the other hand, the shape of the cuttings from fluid hammer tests, comparing to those from traditional rotary drilling methods, may help to identify the dominant failure mechanism that percussion drilling relies on. If so, encouraging such a failure mechanism may improve hammer performance. The project is summarized in this report. Instead of compiling the information contained in the previous quarterly or other technical reports, this report focuses on the descriptions of tasks, findings, and conclusions, as well as the efforts on promoting percussion drilling technologies to industries including site visits, presentations, and publications. As a part of the final deliveries, the 3D numerical model for rock mechanics is also attached.

Michael S. Bruno

2005-12-31T23:59:59.000Z

144

Multiplex modeling of physical habitat for endangered freshwater mussels  

Science Journals Connector (OSTI)

Quantification of the potential habitat available for endangered freshwater mussels can be a challenging task, as habitat use criteria are very complex and often only low numbers of species observations are available. To address this problem in a riverine environment, we developed a concept of a multivariate, multi-scale, and multi-model (multiplex) habitat simulation through combining multivariate time-series analysis of complex hydraulics (CART and logistic regression), micro-scale (River2D), and meso-scale (MesoHABSIM) habitat models, to develop macro-scale management criteria. This concept has been applied and tested on the Upper Delaware River (USA) for the protection and enhancement of existing populations of Alasmidonta heterodon, an endangered freshwater mussel. The physical habitat conditions of approximately 125 km of the Delaware River were described using digital aerial imagery and ground-based surveys. The temporal and spatial variabilities of complex hydraulics simulated by a River2D model at 1547 locations were statistically analyzed to select ranges of attributes that corresponded to mussel presence. We applied these criteria to the river's meso-scale hydromorphological unit mappings to identify suitable mesohabitats, which then served as a calibration data set for the coarser scale model. The final meso-scale model's predictions were hydraulically validated offering encouraging results. The meso-scale habitat suitability criteria defined moderately deep, slow-flowing, and non-turbulent hydromorphologic units as providing good conditions for A. heterodon. All three of the developed suitability models (descriptive statistics, CART and logistic regression model) indicated the species preference for hydraulically stable habitats.

Piotr Parasiewicz; Elena Castelli; Joseph N. Rogers; Ethan Plunkett

2012-01-01T23:59:59.000Z

145

Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Physics Physics Print Because a large proportion of ALS experiments are "physics" experiments, it's useful to separate them into two categories - one focused on Materials/Condensed Matter, and this one, with a dual focus on AMO (atomic, molecular, and optical) physics and accelerator physics. Light sources such as the ALS have opened up research frontiers that may hold the answers to fundamental questions about structure and dynamics in AMO physics. The advanced spectroscopies that have been developed here provide the ability to control and probe atomic and molecular processes with unprecedented precision. In particular, the spectral resolution, brightness, broad tunability, and polarization control generate novel avenues for the study of tailored states, inner-shell processes, and nonperturbative electron interactions. Driven by the high brightness of the ALS, a whole new world of vacuum ultraviolet (VUV) and soft x-ray physics has emerged through the development of combined techniques to excite, select, and probe atoms, molecules, and clusters.

146

Rock magnetism of remagnetized carbonate rocks: another look  

E-Print Network (OSTI)

and significance of magnetism in sedimentary rocks. Journal1997. Rock Magnetism. ¨ zdemir, O Dunlop, D. J. & Oon July 30, 2013 ROCK MAGNETISM: REMAGNETIZED CARBONATES

Jackson, M.; Swanson-Hysell, N. L

2012-01-01T23:59:59.000Z

147

Physical Langevin model and the time-series model in systems far from equilibrium  

Science Journals Connector (OSTI)

To bridge the gap between a physical Langevin equation and a stochastic equation used in the time-series analysis, and to clarify the physical foundations of the latter, the time-series model from the Langevin equation is derived with the aid of two manipulations—elimination of irrelevant variables and projection of state variables upon a space spanned by observed quantities. The order of the two manipulations is shown to be important to find an equation called the Kalman filter in control theory. All the results are summarized in a concise schematic diagram which relates various models and equations established so far in different fields.

Kuniharu Kishida

1982-01-01T23:59:59.000Z

148

EMIT: explicit modeling of interactive-engagement techniques for physics graduate teaching assistants and the impact on instruction and student performance in calculus-based physics  

E-Print Network (OSTI)

and physics problem solving and 3) undergraduate physics students? understanding and performance in an introductory calculus-based physics course. Methods included explicit modeling for the treatment group GTAs of the Reformed Teaching Observation Protocol...

Ezrailson, Cathy Mariotti

2005-02-17T23:59:59.000Z

149

Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Print Physics Print Because a large proportion of ALS experiments are "physics" experiments, it's useful to separate them into two categories - one focused on Materials/Condensed Matter, and this one, with a dual focus on AMO (atomic, molecular, and optical) physics and accelerator physics. Light sources such as the ALS have opened up research frontiers that may hold the answers to fundamental questions about structure and dynamics in AMO physics. The advanced spectroscopies that have been developed here provide the ability to control and probe atomic and molecular processes with unprecedented precision. In particular, the spectral resolution, brightness, broad tunability, and polarization control generate novel avenues for the study of tailored states, inner-shell processes, and nonperturbative electron interactions. Driven by the high brightness of the ALS, a whole new world of vacuum ultraviolet (VUV) and soft x-ray physics has emerged through the development of combined techniques to excite, select, and probe atoms, molecules, and clusters.

150

Definition: Rock Sampling | Open Energy Information  

Open Energy Info (EERE)

Sampling Sampling Jump to: navigation, search Dictionary.png Rock Sampling Systematic rock sampling can be used to characterize a geothermal reservoir. The physical and chemical properties of rock samples provide important information for determining whether a power generation or heat utilization facility can be developed. Some general rock properties can be measured by visual inspection, but detailed properties require laboratory techniques. View on Wikipedia Wikipedia Definition A core sample is a cylindrical section of (usually) a naturally occurring substance. Most core samples are obtained by drilling with special drills into the substance, for example sediment or rock, with a hollow steel tube called a core drill. The hole made for the core sample is called the "core hole". A variety of core samplers exist to sample

151

A Physically Based Runoff Routing Model for Land Surface and Earth System Models  

SciTech Connect

A new physically based runoff routing model, called the Model for Scale Adaptive River Transport (MOSART), has been developed to be applicable across local, regional, and global scales. Within each spatial unit, surface runoff is first routed across hillslopes and then discharged along with subsurface runoff into a ‘‘tributary subnetwork’’ before entering the main channel. The spatial units are thus linked via routing through the main channel network, which is constructed in a scale-consistent way across different spatial resolutions. All model parameters are physically based, and only a small subset requires calibration.MOSART has been applied to the Columbia River basin at 1/ 168, 1/ 88, 1/ 48, and 1/ 28 spatial resolutions and was evaluated using naturalized or observed streamflow at a number of gauge stations. MOSART is compared to two other routing models widely used with land surface models, the River Transport Model (RTM) in the Community Land Model (CLM) and the Lohmann routing model, included as a postprocessor in the Variable Infiltration Capacity (VIC) model package, yielding consistent performance at multiple resolutions. MOSART is further evaluated using the channel velocities derived from field measurements or a hydraulic model at various locations and is shown to be capable of producing the seasonal variation and magnitude of channel velocities reasonably well at different resolutions. Moreover, the impacts of spatial resolution on model simulations are systematically examined at local and regional scales. Finally, the limitations ofMOSART and future directions for improvements are discussed.

Li, Hongyi; Wigmosta, Mark S.; Wu, Huan; Huang, Maoyi; Ke, Yinghai; Coleman, Andre M.; Leung, Lai-Yung R.

2013-06-13T23:59:59.000Z

152

Towards a modeling language for cyber-physical systems  

Science Journals Connector (OSTI)

A cyber-physical system (CPS) is an interactive system of continuous plants and real-time controller programs. These systems usually feature a tight relationship between the physical and computational components and exhibit true concurrency with respect ...

Longfei Zhu; Yongxin Zhao; Huibiao Zhu; Qiwen Xu

2013-01-01T23:59:59.000Z

153

Physical Building Information Modeling for Solar Building Design and Simulation- Annual Report 2011  

E-Print Network (OSTI)

implementing this data modeling structure. 1.3 Research on linking BIM-OOPM (Object-Oriented Physical Modeling) and integrating P-BIM (Physical BIM) We reviewed extensively a Modelica-based building thermal library and its example models (LBL Modelica... thermal, we have researched on how to model building objects in Object-Oriented Equation-Based modeling language – Modelica by using the LBL Modelica Buildings Library (Lawrence Berkeley National Laboratory, 2011). We have identified modeling methods...

Yan, W.; Haberl, J.; Clayton, M.; Jeong, W.; Kim, J.; Kota, S.; Alcocer, J.; Dixit, M.

2011-01-01T23:59:59.000Z

154

Developing the ability to model acid-rock interactions and mineral dissolution during the RMA stimulation test performed at the Soultz-sous-Forêts EGS site, France  

Science Journals Connector (OSTI)

The Soultz Enhanced Geothermal System (EGS) reservoir's response to chemical stimulation is assessed by numerical simulation of coupled thermo-hydraulic-chemical processes. To assess chemical interactions between host rocks and a mixture of \\{HCl\\} and HF as well as its potential effects on the Soultz EGS reservoir, new modelling efforts using the FRACHEM code have been initiated. This article presents the model calibration and results. Simulations consider realistic conditions with available data sets from the EGS system at Soultz. Results indicate that the predicted amount of fracture sealing minerals dissolved by injection of a mixture of acids Regular Mud Acid (RMA) was consistent with the estimated amount from the test performed on GPK4 well at Soultz EGS site. Consequently reservoir porosity and permeability can be enhanced especially near the injection well by acidizing treatment.

Sandrine Portier; François D. Vuataz

2010-01-01T23:59:59.000Z

155

An integrated quantitative hazard analysis method for natural gas jet release from underground gas storage caverns in salt rock. I: Models and validation  

Science Journals Connector (OSTI)

It is very important and necessary to perform quantitative hazard analysis for possible accidental leakage from an underground gas storage cavern in salt rock. An integrated quantitative hazard analysis method for natural gas jet release from salt caverns is presented in this paper, which was constituted by a revised model for gas leakage rate calculation, a consequence analysis and a model of probability assessment for harm. The presented method was validated by comparing the analytical results with the data collected from the real accidents (including the leakage, jet fire, fireball and vapor cloud explosion). It is indicated that the proposed method was more accurate than the TNT equivalence method for vapor cloud explosion and gave more reasonable results when applied to the consequence analysis for the thermal radiation from jet fire and fireball.

Shigang Yang; Qin Fang; Yadong Zhang; Hao Wu; Linjian Ma

2013-01-01T23:59:59.000Z

156

Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance  

SciTech Connect

This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operational costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 1×10{sup -18} m{sup 2} would result in an acceptable air leakage rate of less than 1%, with the operational pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operational air pressure and when the lining is kept moist at a relatively high liquid saturation. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability off less than 1×10{sup -18} m{sup 2}, heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage and energy efficiency viewpoint. Our numerical approach and energy analysis will next be applied in designing and evaluating the performance of a planned full-scale pilot test of the proposed underground CAES concept.

Kim, H.-M.; Rutqvist, J.; Ryu, D.-W.; Choi, B.-H.; Sunwoo, C.; Song, W.-K.

2011-07-15T23:59:59.000Z

157

Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design, April 2013  

Energy.gov (U.S. Department of Energy (DOE))

Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design

158

Estimation of reservoir properties of the Haynesville Shale by using rock-physics modelling and grid searching  

Science Journals Connector (OSTI)

......directions. In addition, shales are typically anisotropic due to intrinsic alignment...anellipticity and three anisotropic parameters under different...transversely isotropic shales through a porosity-deformation approach and its anisotropic extension. Pervukhina......

Meijuan Jiang; Kyle T. Spikes

2013-01-01T23:59:59.000Z

159

Numerical tools for musical instruments acoustics: analysing nonlinear physical models using continuation  

E-Print Network (OSTI)

self-sustained oscillations. Several physical models (clarinet and saxophone) are formulated the dynamical properties of self-sustained musical instruments using tra- ditional numerical techniques

Boyer, Edmond

160

Rock-physics templates for hydrocarbon source rocks  

E-Print Network (OSTI)

May 27, 2014 ... ing kerogen content, fluid saturations and pore pressure. ..... The energy velocities for a shale with full kerogen content (immature) (a) and a.

2014-05-27T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Rock mechanics activities at the Waste Isolation Pilot Plant  

SciTech Connect

The application of rock mechanics at nuclear waste repositories is a true multidisciplinary effort. A description and historical summary of the Waste Isolation Pilot Plant (WIPP) is presented. Rock mechanics programs at the WIPP are outlined, and the current rock mechanics modeling philosophy of the Westinghouse Waste Isolation Division is discussed.

Francke, C. [Westinghouse Electric Corp., Carlsbad, NM (United States); Saeb, S. [International Technology Corp., Albuquerque, NM (United States)

1996-12-31T23:59:59.000Z

162

Statistical model for source rock maturity and organic richness using well-log data, Bakken Formation, Williston basin, United States  

SciTech Connect

A study of the Bakken Formation, the proposed source rock for much of the hydrocarbons generated in the Williston basin, was done using bulk density, neutron porosity, and resistivity logs, and formation temperatures. Principal components, cluster, and discriminant analyses indicate that the present-day distribution of organic matter controls much of the variability in the log values. Present-day total organic carbon values are high in the central part of the basin near northeastern Montana and along the east edge of the basin, and low in the area of the Nesson anticline and along the southwest edge of the basin. Using a regression of density on temperature and the analysis of residuals from this regression, hydrocarbon maturity effects were partially separated from depositional effects. These analyses suggest that original concentrations of organic matter were low near the limits of the Bakken and increased to a high in northeastern Montana. The pre-maturation distribution of total organic carbon and the present-day total organic carbon distribution, as determined by statistical analyses of well-log data, agree with the results of geochemical analyses. The distributions can be explained by a relatively simple depositional pattern and thermal history for the Bakken. 6 figures, 3 tables.

Krystinik, K.B.; Charpentier, R.R.

1987-01-01T23:59:59.000Z

163

Statistical Model Checking for Cyber-Physical Systems  

E-Print Network (OSTI)

-Physical System (CPS). The autopilot is a software which provides inputs to the aircraft's engines and flight to keep control of the vehicle and improving safety. Cyber-Physical Systems enjoy wide adoption in our society, even in safety- critical applications, but are difficult to reason about. In particular

Clarke, Edmund M.

164

Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

B C D E F G H I J K L M N O P Q R S T U V W X Y Z A'Hearn, Michael F. - Department of Astronomy, University of Maryland at College Park Aalberts, Daniel P. - Department of Physics,...

165

Port-Hamiltonian systems: network modeling and control of nonlinear physical systems  

E-Print Network (OSTI)

Port-Hamiltonian systems: network modeling and control of nonlinear physical systems A.J. van der Schaft February 3, 2004 Abstract It is shown how port-based modeling of lumped-parameter complex physical to a geometrically defined class of systems, called port-Hamiltonian systems. These are Hamiltonian systems defined

Schaft, Arjan van der

166

Wear 252 (2002) 322331 A physically-based abrasive wear model for composite materials  

E-Print Network (OSTI)

Wear 252 (2002) 322­331 A physically-based abrasive wear model for composite materials Gun Y. Leea 2001 Abstract A simple physically-based model for the abrasive wear of composite materials is presented based on the mechanics and mechanisms associated with sliding wear in soft (ductile)- matrix composites

Ritchie, Robert

167

A model for cosmological simulations of galaxy formation physics: multi-epoch validation  

Science Journals Connector (OSTI)

......i.e. the growth rates, concentrations, morphologies...highest resolution model passes above most of the low-redshift...2000). The varied physics models impact the simulated...limited by the growth rate of dark matter haloes...implementation of feedback physics (e.g. Springel Hernquist......

Paul Torrey; Mark Vogelsberger; Shy Genel; Debora Sijacki; Volker Springel; Lars Hernquist

2014-01-01T23:59:59.000Z

168

7 Physical Model of Carbide Precipitation 2 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  

E-Print Network (OSTI)

Contents 7 Physical Model of Carbide Precipitation 2 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1 #12;Chapter 7 Physical Model of Carbide Precipitation 7.1 Introduction If the austempering process is held for prolonged periods of time precipitation of carbides from retained austenite occurs

Cambridge, University of

169

Computer aided modeling and simulation of complex physical systems, using components from multiple  

E-Print Network (OSTI)

of Equation-Based Object-Oriented Modeling Languages Department of Computer and Information Science, Linköping. References [1] Modelica Association. Modelica - A Unified Object-Oriented Language for Physical Systems§ Background Computer aided modeling and simulation of complex physical systems, using components

Zhao, Yuxiao

170

United States National Waste Terminal Storage argillaceous rock studies  

SciTech Connect

The past and present argillaceous rock studies for the US National Waste Terminal Storage Program consist of: (1) evaluation of the geological characteristics of several widespread argillaceous formations in the United States; (2) laboratory studies of the physical and chemical properties of selected argillaceous rock samples; and (3) two full-scale in situ surface heater experiments that simulate the emplacement of heat-generating radioactive waste in argillaceous rock.

Brunton, G.D.

1981-01-01T23:59:59.000Z

171

Physical modeling of electrical conduction in printed circuit board insulation  

E-Print Network (OSTI)

This thesis is concerned with understanding the degradation of electrical and electronic components in automobiles due to environmental effects. A special emphasis is placed on understanding the physical processes underlying ...

Sarathy, Vasanth

2005-01-01T23:59:59.000Z

172

Physically modeling and mathematically simulating pressure transients in transfer lines  

E-Print Network (OSTI)

Characterizing transient flow is not a trivial venture. It provides an excellent challenge for a senior mechanical engineering lab class. This project aimed at developing a new physical system for such a class based on the ...

Humbert, Matthew S

2008-01-01T23:59:59.000Z

173

Physical influences on phytoplankton ecology : models and observations  

E-Print Network (OSTI)

The physical environment in the oceans dictates not only how phytoplankton cells are dispersed and their populations intermingled, but also mediates the supply of nutrients to the surface mixed layer. In this thesis I ...

Clayton, Sophie A

2013-01-01T23:59:59.000Z

174

Rock Magnetism To-Day  

Science Journals Connector (OSTI)

... ROCK magnetism is that branch of geophysics that deals with the origin of magnetization in rocks and ... that deals with the origin of magnetization in rocks and its stability. Workers in rock magnetism are also interested in the phenomenon of self-reversal, that is, a rock acquiring ...

SUBIR K. BANERJEE

1966-02-12T23:59:59.000Z

175

Modeling Thermal-Hydrologic Processes for a Heated Fractured Rock System: Impact of a Capillary-Pressure Maximum  

E-Print Network (OSTI)

drift-scale thermal test at Yucca Mountain, Nevada. Lawrencemechanical analyses of the Yucca Mountain Drift Scale Test–waste repository at Yucca Mountain, Nevada. The modeling

Sun, Y.; Buscheck, T. A.; Lee, K. H.; Hao, Y.; James, S. C.

2010-01-01T23:59:59.000Z

176

A Mountain-Scale Thermal Hydrologic Model for Simulating Fluid Flow and Heat Transfer in Unsaturated Fractured Rock  

E-Print Network (OSTI)

Studies Using the Yucca Mountain Unsaturated Zone Model,Unsaturated Zone at Yucca Mountain, Nevada, to Thermal LoadUnsaturated Zone, Yucca Mountain, Nevada, Water-Resources

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, Gudmundur S.

2005-01-01T23:59:59.000Z

177

Session: Hard Rock Penetration  

SciTech Connect

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

1992-01-01T23:59:59.000Z

178

CFD modeling of entrained-flow coal gasifiers with improved physical and chemical sub-models  

SciTech Connect

Optimization of an advanced coal-fired integrated gasification combined cycle system requires an accurate numerical prediction of gasifier performance. While the turbulent multiphase reacting flow inside entrained-flow gasifiers has been modeled through computational fluid dynamic (CFD), the accuracy of sub-models requires further improvement. Built upon a previously developed CFD model for entrained-flow gasification, the advanced physical and chemical sub-models presented here include a moisture vaporization model with consideration of high mass transfer rate, a coal devolatilization model with more species to represent coal volatiles and heating rate effect on volatile yield, and careful selection of global gas phase reaction kinetics. The enhanced CFD model is applied to simulate two typical oxygen-blown entrained-flow configurations including a single-stage down-fired gasifier and a two-stage up-fired gasifier. The CFD results are reasonable in terms of predicted carbon conversion, syngas exit temperature, and syngas exit composition. The predicted profiles of velocity, temperature, and species mole fractions inside the entrained-flow gasifier models show trends similar to those observed in a diffusion-type flame. The predicted distributions of mole fractions of major species inside both gasifiers can be explained by the heterogeneous combustion and gasification reactions and the homogeneous gas phase reactions. It was also found that the syngas compositions at the CFD model exits are not in chemical equilibrium, indicating the kinetics for both heterogeneous and gas phase homogeneous reactions are important. Overall, the results achieved here indicate that the gasifier models reported in this paper are reliable and accurate enough to be incorporated into process/CFD co-simulations of IGCC power plants for systemwide design and optimization.

Ma, J.; Zitney, S.

2012-01-01T23:59:59.000Z

179

A physically based approach to modeling and animating a sailboat  

E-Print Network (OSTI)

like to thank Tom Moore for his insight on the physics world, and yacht designer German Frers and his staff for their helpful hints in understanding how a boat sails. Finally I would like to thank my parents Massimo and Zoraida Miniati, and my... like to thank Tom Moore for his insight on the physics world, and yacht designer German Frers and his staff for their helpful hints in understanding how a boat sails. Finally I would like to thank my parents Massimo and Zoraida Miniati, and my...

Miniati, Maria Pia

2012-06-07T23:59:59.000Z

180

Numerical modelling of erosion processes in the Himalayas of Nepal: effects of spatial variations of rock strength and precipitation  

E-Print Network (OSTI)

Numerical modelling of erosion processes in the Himalayas of Nepal: effects of spatial variations of the morphology of mountain belts. Here we investigate the modalities of defor- mation in Central Nepal on a c that the pattern of uplift in Nepal is mainly dependent on both erodability and fault geometry, rather than

Demouchy, Sylvie

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Multi-physics modeling of thermoelectric generators for waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

modeling Material properties and interface information (Experiments) Fluid temperature, Heat transfer coefficient & Pressure drop System temperature & Electric power Thermal...

182

Physics modeling of tandem mirror devices with high-field test cell inserts  

SciTech Connect

Recently developed plasma physics models of tandem mirror operation with a high-field technology test cell insert in the central cell are described in detail. These models have been incorporated in the TMRBAR tandem mirror reactor physics code. Results of a benchmark case for the code models against previous analysis of the MFTF - ..cap alpha.. /sup +/ T configuration are given. A brief users guide to the new TMRBAR with the test cell models is also presented. Some description of the applications of the models to MFTF - ..cap alpha.. /sup +/ T and FPD - II + T configurations is made. References are given to separate reports on these studies.

Fenstermacher, M.E.; Campbell, R.B.

1985-04-15T23:59:59.000Z

183

Scaled physical modelling of anisotropic wave propagation: multioffset profiles over an orthorhombic medium  

Science Journals Connector (OSTI)

......in an azimuthally anisotropic medium: A physical...velocities in Cretaceous shales from the Williston...propagation in arbitrary anisotropic media, complexitie...modelled as Greenhorn shale (Jones & Wang 1981...in an azimuthally anisotropic medium: A physical...velocities in Cretaceous shales from the Williston......

R. James Brown; Don C. Lawton; Scott P. Cheadle

1991-12-01T23:59:59.000Z

184

Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters  

Energy.gov (U.S. Department of Energy (DOE))

Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

185

PHYSICAL REVIEW E 87, 032119 (2013) Fluctuations and criticality in the random-field Ising model  

E-Print Network (OSTI)

PHYSICAL REVIEW E 87, 032119 (2013) Fluctuations and criticality in the random-field Ising model properties of the d = 3 random-field Ising model with a Gaussian field distribution at zero temperature-field Ising model (RFIM) is one of the archetypal disordered systems [1­11], extensively studied due to its

Theodorakis, Panagiotis E.

186

Simple Physical Models Connect Theory and Experiment in Protein Folding Kinetics  

E-Print Network (OSTI)

Simple Physical Models Connect Theory and Experiment in Protein Folding Kinetics Eric Alm1 underlying the protein-folding problem can be tested by developing and characterizing simple models that make prefactor for protein folding. Finally, we discuss the limitations of simple native-state-based models

Morozov, Alexandre V.

187

Semi-Automatic Fault Localization and Behavior Verification for Physical System Simulation Models  

E-Print Network (OSTI)

equation-based methodologies and object-oriented constructs that facilitate reusability of modelingSemi-Automatic Fault Localization and Behavior Verification for Physical System Simulation Models 83, Linköping, Sweden {petbu,petfr@ida.liu.se} Abstract Mathematical modeling and simulation

Zhao, Yuxiao

188

Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models  

E-Print Network (OSTI)

in the solid phase. Introduction Physics based Li-ion battery models use porous electrode theory. One and their drawbacks Porous electrode models of Li-ion batteries often use approximations to eliminate the time and disadvantages when used in Li-ion battery models. For instance, the Duhamel's superposition method is the robust

Subramanian, Venkat

189

Optimizing a physical security configuration using a highly detailed simulation model  

E-Print Network (OSTI)

Optimizing a physical security configuration using a highly detailed simulation model Marechal, T. Email: tommarechal@hotmail.com Abstract This chapter focuses on using a highly detailed simulation model. In this chapter describes the use of a highly detailed simulation model to find a superior security configuration

Smith, Alice E.

190

Physical characteristics of the performance and increase of the reliability of functioning of overflow dams with a {open_quotes}second limit state{close_quotes} of the rock foundation  

SciTech Connect

The main danger for the stability of high-head overflow dams having large safety factors is related to unfavorable processes in two zones of the foundation - near the upstream and downstream sides of the dam - due to fracturing of the rock foundation next to the dam by flood discharges. Fracturing of the toe of a dam, especially a gravity-arch dam, is accompanied by an increase of shear stresses in the rock under it to values exceeding the design values, and owing to fracturing of the rock below the dam foundation deformation movements of the dam toward the lower pool increase markedly, moreover, the greater amount, the more considerable the depth of fracturing below the dam foundation. As a result the tensile stresses in the rock in front of the dam increase to values exceeding the allowable, which intensifies cracking of this rock zone to a greater depth, the deeper the fracturing of the rock beyond the dam. Owing to this, the stress state of the foundation directly under the dam, accompanied by a decrease of the bearing capacity of the rock and increase of its deformation with loss of the required seepage strength, worsens.

Khlopenkov, P.R.

1994-08-01T23:59:59.000Z

191

Physical modeling of wind turbine generators in a small scale analog system  

E-Print Network (OSTI)

This project represents the physical modeling and experimental test of a Doubly-fed Induction Machine (DFIM), in order to substantially analyze the characteristic behaviors of wind turbines and its use in the micro-grid ...

Wang, Xuntuo

2014-01-01T23:59:59.000Z

192

Object-oriented Modelling of Physical Systems with Modelica using Design Patterns  

Science Journals Connector (OSTI)

In the last years formal description languages and object-oriented design technologies became more and more important for modelling physical systems. In this paper a methodology taken from the computer science co...

Christoph Clauß; Thomas Leitner; André Schneider; Peter Schwarz

2001-01-01T23:59:59.000Z

193

A Unifying Platform for Water Resources Management Using Physically-Based Model and Remote Sensing Data  

E-Print Network (OSTI)

In recent years, physically-based hydrological models provided a robust approach to better understand the cause-effect relationships of effective hydraulic properties in soil hydrology. These have increased the flexibility of studying the behavior...

Shin, Yongchul

2012-12-07T23:59:59.000Z

194

Modelica—A language for equation-based physical modeling and high performance simulation  

Science Journals Connector (OSTI)

A new language called Modelica for hierarchical physical modeling is developed through an international effort. Modelica 1.0 [http:// www.Dynasim.se/Modelica] was announced in September 1997. It is an object-o...

Peter Fritzson

1998-01-01T23:59:59.000Z

195

Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance  

E-Print Network (OSTI)

K. H. Lux, Design of salt caverns for the storage of naturalof CAES in a lined rock cavern. Table 2. :Leakage rate forLeakage rate for different cavern depth. Table 4. Calculated

Kim, H.-M.

2012-01-01T23:59:59.000Z

196

Proceedings of the Workshop on Numerical Modeling of Thermohydrological Flow in Fractured Rock Masses, Feb. 19-20, 1980, Berkeley, CA  

E-Print Network (OSTI)

the formation i V Coupling of Fluid Plow and Heat Transferof years. In general fluid flow, heat transfer, rock defor­The fluid flow eq'iation and the heat transfer equation are

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

197

Proceedings of the Workshop on Numerical Modeling of Thermohydrological Flow in Fractured Rock Masses, Feb. 19-20, 1980, Berkeley, CA  

E-Print Network (OSTI)

and fluid flow in the hydraulic fracturing process." Ph.D.depth by means of hydraulic fracturing." in Rock Mechanics:production by hydraulic fracturing, the focus of fracture

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

198

Comparison of unsaturated flow and solute transport through waste rock at two experimental scales using temporal moments and numerical modeling  

Science Journals Connector (OSTI)

Abstract This study analyzed and compared unsaturated flow response and tracer breakthrough curves from a 10-m high constructed pile experiment (CPE) in the field (Antamina, Peru) and two 0.8 m high laboratory-based columns. Similar materials were used at both experimental scales, with the exception of a narrower grain size distribution range for the smaller column tests. Observed results indicate flow and solute transport regimes between experimental scales were comparable, dominated by flow and solute migration through granular matrix materials. These results are supported by: analogous breakthrough curves (normalized to cross-sectional area and flow path length) that suggest observation- or smaller- scale heterogeneities within the porous media have been homogenized or smoothed at the transport-scale, long breakthrough tails, and similar recovered tracer mass fractions (i.e., 0.72 – 0.80) at the end of the experiment. CPE breakthrough curves do indicate a portion of the fluid flow follows rapid flow paths (open void or film flow); however, this portion accounts for a minor (i.e., ~ 0.1%) component of the overall flow and transport regime. Flow-corrected temporal moment analysis was used to estimate flow and transport parameter values, however large temporal variations in flow indicate this method is better suited for conceptualizing transport regimes. In addition, a dual-porosity mobile-immobile (MIM), rate-limited mass-transfer approach was able to simulate tracer breakthrough and the dominant transport regimes from both scales. Dispersivity values used in model simulations reflect a scale-dependency, whereby column values were approximately 2x smaller than those values applied in CPE simulations. The mass-transfer coefficient, for solute transport between mobile and immobile regions, was considered as a model calibration factor. Column experiments are characterized by a larger ‘mobile to immobile’ porosity ratio and a shorter experimental duration and flow path, which supports larger mass-transfer coefficient values (relative to the CPE). These results demonstrate that laboratory-based experiments may be able to mimic flow regimes observed in the field; however, the requirement of scale-dependent dispersivities and in particular mass-transfer coefficients indicates these tests may be more limited in understanding larger-scale solute transport between regions of different mobility. Nevertheless, the results of this study suggest that the reasonably simplistic modeling approaches utilized in this study may be applied at other field sites to estimate parameters and conceptualize dominant transport processes through highly heterogeneous, unsaturated material.

Sharon Blackmore; Leslie Smith; K. Ulrich Mayer; Roger D. Beckie

2014-01-01T23:59:59.000Z

199

Z physics and tests of the standard model  

SciTech Connect

Fundamental aspects of Z physics are reviewed with an emphasis on e/sup +/e/sup /minus// annihilation. The effects of radiative corrections, both from ordinary QED and from the electroweak interactions are considered from an elementary point of view, but in some detail. The possibility of mixing with an extra Z boson is discussed. The implications for experiments are stressed. Additional information that will be obtained from measurements of the W in collider experiments is considered. 18 refs., 20 figs., 3 tabs.

Cahn, R.N.

1989-01-03T23:59:59.000Z

200

Characterizing fractured rock for fluid-flow, geomechanical, and paleostress modeling: Methods and preliminary results from Yucca Mountain, Nevada  

SciTech Connect

Fractures have been characterized for fluid-flow, geomechanical, and paleostress modeling at three localities in the vicinity of drill hole USW G-4 at Yucca Mountain in southwestern Nevada. A method for fracture characterization is introduced that integrates mapping fracture-trace networks and quantifying eight fracture parameters: trace length, orientation, connectivity, aperture, roughness, shear offset, trace-length density, and mineralization. A complex network of fractures was exposed on three 214- to 260-m 2 pavements cleared of debris in the upper lithophysal unit of the Tiva Canyon Member of the Miocene Paint-brush Tuff. The pavements are two-dimensional sections through the three-dimensional network of strata-bound fractures. All fractures with trace lengths greater than 0.2 m were mapped and studied.

Barton, C.C.; Larsen, E.; Page, W.R.; Howard, T.M.

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Cyber-Physical System Requirements -A Model Driven Approach Cyber-physical systems (CPS) networked  

E-Print Network (OSTI)

systems such as infusion pumps. Complete and consistent requirements are central to analysis. A generic patient controlled analgesia (GPCA) infusion pump system was used as a case example to provide: Generic Patient Controlled Analgesia Infusion Pump System. Figure: Infusion Pump Plant Model. Figure

Minnesota, University of

202

Towards LHC Physics with Non-local Standard Model  

E-Print Network (OSTI)

We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field propagators. We apply the modifications to a toy version of the nonlocal Standard Model and investigate collider phenomenology. We find the lower bound on the scale of non-locality from the 8 TeV LHC data to be 2.5-3 TeV

Tirthabir Biswas; Nobuchika Okada

2014-07-12T23:59:59.000Z

203

A New Model to Study ICT Adoption in Connection with Physical Activity – The TAMPA-Model  

Science Journals Connector (OSTI)

Physical inactivity is one of the leading risks for mortality worldwide. One of future main drivers for physical activity could be information and communication technology (ICT) gadgets and services that suppo...

Eija Koskivaara; Raija Laukkanen; Olli J. Heinonen

2011-01-01T23:59:59.000Z

204

Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models  

SciTech Connect

An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two types of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.

Cetiner, Mustafa Sacit; none,; Flanagan, George F. [ORNL] [ORNL; Poore III, Willis P. [ORNL] [ORNL; Muhlheim, Michael David [ORNL] [ORNL

2014-07-30T23:59:59.000Z

205

PHYSICAL REVIEW B 83, 092202 (2011) Building block modeling technique: Application to ternary chalcogenide glasses  

E-Print Network (OSTI)

PHYSICAL REVIEW B 83, 092202 (2011) Building block modeling technique: Application to ternary; published 21 March 2011) For some glasses, there are fundamental units, "building blocks" (BBs), that exist in both the liquid and glassy phases. In this Brief Report, we introduce a systematic modeling technique

Drabold, David

206

Journal of Statistical Physics A Free Energy Model of Boron Carbide  

E-Print Network (OSTI)

Journal of Statistical Physics A Free Energy Model of Boron Carbide --Manuscript Draft-- Manuscript Number: Full Title: A Free Energy Model of Boron Carbide Article Type: SI: Dedicated to M.E. Fisher, J.K. Percus and B. Widom Keywords: boron carbide; third law; first principles; thermodynamics Corresponding

Widom, Michael

207

PHYSICAL NATURE OF SHEAR BANDS FORMATION AND CONSTITUTIVE MODELLING FOR PLASTIC INSTABILITY  

E-Print Network (OSTI)

697 PHYSICAL NATURE OF SHEAR BANDS FORMATION AND CONSTITUTIVE MODELLING FOR PLASTIC INSTABILITYtokrzyska 21,00-049 Warsaw,Poland Revue Phys. Appl. 23 (1988) 697 AVRIL 1988, Studies of plastic deformation dependent hardening property can be pivotal in the modelling for plastic deform- ation instability

Paris-Sud XI, Université de

208

Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models  

E-Print Network (OSTI)

Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models or approximation for the solid phase. One of the major difficulties in simulating Li-ion battery models is the need typically solve electrolyte con- centration, electrolyte potential, solid-state potential, and solid-state

Subramanian, Venkat

209

Sensitivity of sea ice to physical parameterizations in the GISS global climate model  

E-Print Network (OSTI)

absorbed by the polar regions. Second, sea ice has a strong insulating effect on the under- lying oceanSensitivity of sea ice to physical parameterizations in the GISS global climate model Jiping Liu,1 coupled model is used to investigate the sensitivity of sea ice to each of the following parameterizations

210

Sound Synthesis and Musical Composition by Physical Modelling of Self-Sustained Oscillating  

E-Print Network (OSTI)

Sound Synthesis and Musical Composition by Physical Modelling of Self-Sustained Oscillating environment GENESIS on self-sustained oscillating structures models. Based on the mass-interaction CORDIS the analysis of real self-sustained instruments like bowed strings or woodwinds, our aim is to develop generic

Kouroupetroglou, Georgios

211

A physical model of the turbulent boundary layer consonant with mean momentum balance structure  

Science Journals Connector (OSTI)

...compared with the prevalent, well-established, model. Some...O(U ) ((u tau /kappa)log(delta/C)) D (wake layer...Engineering, University of Alabama. Wark, C.E , and H.M Nagib1991Experimental...comparison, the prevalent, well-established, physical model...

2007-01-01T23:59:59.000Z

212

Semi-Automatic Fault Localization and Behavior Verification for Physical System Simulation Models  

E-Print Network (OSTI)

of simulation models specified with such languages faces a daunting task: not only the overall object-oriented and simulation are based on acausal equation-based methodologies and object-oriented constructs that facilitateSemi-Automatic Fault Localization and Behavior Verification for Physical System Simulation Models

Zhao, Yuxiao

213

Model Independent Searches for New Physics at the Fermilab Tevatron Collider  

E-Print Network (OSTI)

The standard model is a successful but limited theory. There is significant theoretical motivation to believe that new physics may appear at the energy scale of a few TeV, the lower end of which is currently probed by the Fermilab Tevatron Collider. The methods used to search for physics beyond the standard model in a model independent way and the results of these searches based on 1.0 fb-1 of data collected with the D0 detector and 2.0 fb^-1 at the CDF detector are presented.

Joel Piper

2009-06-19T23:59:59.000Z

214

A model for including Arduino microcontroller programming in the introductory physics lab  

E-Print Network (OSTI)

The paper describes a curricular framework for introducing microcontroller programming in the University Physics lab. The approach makes use of Modeling Instruction, an effective approach for teaching science at the secondary level in which student learn the standard material by developing and deploying models of the physical world. In our approach, students engage with a context-rich problem that can be solved with one or more sensors and a microcontroller. The solution path we describe then consists of developing a mathematical model for how the sensors' data can be mapped to a meaningful measurement, and further, developing an algorithmic model that will be implemented in the microcontroller. Once the system is developed and implemented, students are given an array of similar problems in which they can deploy their data collection system. Results from the implementation of this idea, in two University Physics sections, using Arduino microcontrollers, are also described.

Haugen, Andrew J

2014-01-01T23:59:59.000Z

215

Neutron Electric Dipole Moments from Beyond the Standard Model Physics  

E-Print Network (OSTI)

Neutron Electric Dipole Moment (nEDM), a generic feature of CP-violation, is predicted to be very small in the Standard Model, but can be much larger in most extensions of the model. In this talk, I will discuss the classification of the CP violating operators up to dimension 6 that can give rise to nEDM, and then describe the mixing and renormalization structure of the operators of dimension 5 and lower in both dimensional and cutoff regularizations in general terms. Finally I will describe how to connect the dimension 5 operators, in particular, the Chromoelectric Dipole Moment of the quarks, between MSbar scheme and a Regularization Independent prescription in the chiral limit.

Tanmoy Bhattacharya; Vincenzo Cirigliano; Rajan Gupta

2014-03-11T23:59:59.000Z

216

Joint physical and numerical modeling of water distribution networks.  

SciTech Connect

This report summarizes the experimental and modeling effort undertaken to understand solute mixing in a water distribution network conducted during the last year of a 3-year project. The experimental effort involves measurement of extent of mixing within different configurations of pipe networks, measurement of dynamic mixing in a single mixing tank, and measurement of dynamic solute mixing in a combined network-tank configuration. High resolution analysis of turbulence mixing is carried out via high speed photography as well as 3D finite-volume based Large Eddy Simulation turbulence models. Macroscopic mixing rules based on flow momentum balance are also explored, and in some cases, implemented in EPANET. A new version EPANET code was developed to yield better mixing predictions. The impact of a storage tank on pipe mixing in a combined pipe-tank network during diurnal fill-and-drain cycles is assessed. Preliminary comparison between dynamic pilot data and EPANET-BAM is also reported.

Zimmerman, Adam; O'Hern, Timothy John; Orear, Leslie Jr.; Kajder, Karen C.; Webb, Stephen Walter; Cappelle, Malynda A.; Khalsa, Siri Sahib; Wright, Jerome L.; Sun, Amy Cha-Tien; Chwirka, J. Benjamin; Hartenberger, Joel David; McKenna, Sean Andrew; van Bloemen Waanders, Bart Gustaaf; McGrath, Lucas K.; Ho, Clifford Kuofei

2009-01-01T23:59:59.000Z

217

A Physically Based Analytical Model to Predict Quantized Eigen Energies and Wave Functions Incorporating Penetration Effect  

E-Print Network (OSTI)

We propose a physically based analytical compact model to calculate Eigen energies and Wave functions which incorporates penetration effect. The model is applicable for a quantum well structure that frequently appears in modern nano-scale devices. This model is equally applicable for both silicon and III-V devices. Unlike other models already available in the literature, our model can accurately predict all the eigen energies without the inclusion of any fitting parameters. The validity of our model has been checked with numerical simulations and the results show significantly better agreement compared to the available methods.

Nadim Chowdhury; Imtiaz Ahmed; Zubair Al Azim; Md. Hasibul Alam; Iftikhar Ahmad Niaz; Quazi D. M. Khosru

2014-04-14T23:59:59.000Z

218

Radioactive Threat Detection with Scattering Physics: A Model-Based Application  

SciTech Connect

The detection of radioactive contraband is a critical problem in maintaining national security for any country. Emissions from threat materials challenge both detection and measurement technologies especially when concealed by various types of shielding complicating the transport physics significantly. The development of a model-based sequential Bayesian processor that captures both the underlying transport physics including scattering offers a physics-based approach to attack this challenging problem. It is shown that this processor can be used to develop an effective detection technique.

Candy, J V; Chambers, D H; Breitfeller, E F; Guidry, B L; Verbeke, J M; Axelrod, M A; Sale, K E; Meyer, A M

2010-01-21T23:59:59.000Z

219

Physics-Based Stress Corrosion Cracking Component Reliability Model cast in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Physics-Based Stress Corrosion Cracking Component Reliability Model Physics-Based Stress Corrosion Cracking Component Reliability Model cast in an R7-Compatible Cumulative Damage Framework Physics-Based Stress Corrosion Cracking Component Reliability Model cast in an R7-Compatible Cumulative Damage Framework The Risk-Informed Safety Margin Characterization (RISMC) pathway is a set of activities defined under the U.S. Department of Energy Light Water Reactor Sustainability Program. The overarching objective of RISMC is to support plant life-extension decision-making by providing a state-of-knowledge characterization of safety margins in key systems, structures, and components (SSCs). The methodology emerging from the RISMC pathway is not a conventional probabilistic risk assessment (PRA)-based one; rather, it relies on a reactor systems simulation framework in which

220

Physics-Based Stress Corrosion Cracking Component Reliability Model cast in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Physics-Based Stress Corrosion Cracking Component Reliability Model Physics-Based Stress Corrosion Cracking Component Reliability Model cast in an R7-Compatible Cumulative Damage Framework Physics-Based Stress Corrosion Cracking Component Reliability Model cast in an R7-Compatible Cumulative Damage Framework The Risk-Informed Safety Margin Characterization (RISMC) pathway is a set of activities defined under the U.S. Department of Energy Light Water Reactor Sustainability Program. The overarching objective of RISMC is to support plant life-extension decision-making by providing a state-of-knowledge characterization of safety margins in key systems, structures, and components (SSCs). The methodology emerging from the RISMC pathway is not a conventional probabilistic risk assessment (PRA)-based one; rather, it relies on a reactor systems simulation framework in which

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

High Performance Computing Modeling Advances Accelerator Science for High Energy Physics  

SciTech Connect

The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing (HPC) are essential for accurately modeling them. In the past decade, the DOE SciDAC program has produced such accelerator-modeling tools, which have beem employed to tackle some of the most difficult accelerator science problems. In this article we discuss the Synergia beam-dynamics framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable of handling the entire spectrum of beam dynamics simulations. We present the design principles, key physical and numerical models in Synergia and its performance on HPC platforms. Finally, we present the results of Synergia applications for the Fermilab proton source upgrade, known as the Proton Improvement Plan (PIP).

Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

2014-04-29T23:59:59.000Z

222

Physical modeling and computer graphic simulation of the depletion of world energy reserve  

Science Journals Connector (OSTI)

A physical modeling device and a computer graphic simulation program of the depletion of world energy reserve are developed to demonstrate how rapidly our energy reserve is depleted, how quickly and enormously our demands for energy grows, and how important energy conservation is to us. In both modeling and simulation cases, the total world energy reserve, the current energy usage annual growth rate, and the current energy consumption rate are given as parameters. One can view the energy shortage in terms of the rapidly falling levels in the physical water tank or the simulated oil barrels.

Chih Wu

1981-01-01T23:59:59.000Z

223

Microwave assisted hard rock cutting  

DOE Patents (OSTI)

An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

Lindroth, David P. (Apple Valley, MN); Morrell, Roger J. (Bloomington, MN); Blair, James R. (Inver Grove Heights, MN)

1991-01-01T23:59:59.000Z

224

Search for new physics in e?X data at DØ using SLEUTH: A quasi-model-independent search strategy for new physics  

E-Print Network (OSTI)

We present a quasi-model-independent search for the physics responsible for electroweak symmetry breaking. We define final states to be studied, and construct a rule that identifies a set of relevant variables for any ...

Baringer, Philip S.

2000-10-11T23:59:59.000Z

225

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide  

Energy.gov (U.S. Department of Energy (DOE))

Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250ºC, and to develop chemical modeling of CO2-reservior rock interactions.

226

Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models  

E-Print Network (OSTI)

This short review presents a selected history of the mutual fertilization between physics and economics, from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistic physics. Recent extensions in term of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it would not cover the dynamical field of agent based models (AB...

Sornette, D

2014-01-01T23:59:59.000Z

227

Report on High Performance Building's Energy Modeling, Physical Building Information Modeling for Solar Building Design and Simulation  

E-Print Network (OSTI)

This report was created for the National Science Foundation-Physical Building Information Modeling (NSF-PBIM) project. This report describes the analysis of a solar office building using the following software: the legacy tools (DOE 2.1e, the F...

Alcocer, J.; Haberl, J. S.

2012-01-01T23:59:59.000Z

228

Physics based analytical modelling of Gallium Nitride(GaN) MESFET considering different ion implantation energy with high temperature annealing.  

E-Print Network (OSTI)

??A physics based analytical model of ion implanted GaN MESFET has been presented considering high temperature annealing effects. Choosing appropriate activation energy of impurity atoms,… (more)

Raghavan, Vinay

2015-01-01T23:59:59.000Z

229

Physics based analytical modelling of silicon carbide (SiC) MESFET considering different ion implantation energy with high temperature annealing.  

E-Print Network (OSTI)

??A Physics based analytical model of ion implanted SiC MESFET has been developed considering the high temperature annealing effects. The diffusion of implanted impurities has… (more)

Yadavalli, Karthik Vishwanath

2015-01-01T23:59:59.000Z

230

B {yields} {pi}K puzzle: Solutions in the Standard Model and in New Physics  

SciTech Connect

The present B {yields} {pi}K data is studied in the context of the standard model (SM) and with new physics (NP). We confirm that the SM has difficulties explaining the B {yields} {pi}K measurements. By adopting an effective-lagrangian parametrization of NP effects, we are able to rule out several classes of NP. Our model-independent analysis shows that the B {yields} {pi}K data can be accommodated by NP in the electroweak penguin sector.

Baek, Seungwon; Hamel, Philippe; London, David [Physique des Particules, Universite de Montreal, C.P. 6128, succ. centre-ville, Montreal, QC, H3C 3J7 (Canada); Datta, Alakabha [Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON, M5S 1A7 (Canada); Suprun, Denis A. [Physics Department, Brookhaven National Laboratory, Upton, NY, 11973 (United States)

2005-12-02T23:59:59.000Z

231

STP Resources for Statistical & Thermal Physics Density of States of the Two-Dimensional Ising Model  

E-Print Network (OSTI)

STP Resources for Statistical & Thermal Physics Density of States of the Two-Dimensional Ising Model: STP IsingDensityOfStates FIG. 1: Plot of the density of states generated by stp IsingDensityOfStates. I. INTRODUCTION The STP IsingDensityOfStates program computes the density of states of the two

Holzwarth, Natalie

232

Using Physical Models to Study the Gliding Performance of Extinct Animals  

E-Print Network (OSTI)

is to provide a practical guide for the design of dynamically scaled physical models to study the gliding,1 Dennis Evangelista and Karen Yang Department of Integrative Biology, University of California'' presented at the annual meeting of the Society for Integrative and Comparative Biology, January 3­7, 2011

Koehl, Mimi

233

2006 29 1 A physics-based equivalent circuit model for LTCC Helical  

E-Print Network (OSTI)

2006 29 1 601 Abstract A physics-based equivalent circuit model for LTCC Helical type Inductors, C, , . Film Low Temperature Co-fired Ceramic (LTCC) . LTCC of Low Temperature Co-fired Ceramic Helical Inductors Keun Heo, Juhwan Lim, Sungwoo Hwang Dept

Hwang, Sung Woo

234

Physical causes and modeling challenges of anomalous diffusion of sediment tracers  

E-Print Network (OSTI)

Physical causes and modeling challenges of anomalous diffusion of sediment tracers Douglas Jerolmack Earth & Environmental Science, UPenn [sediment@sas.upenn.edu] "Bridging the Gap", Princeton U., 2" describable by: 1. Particle volume, v [L3 ]. 2.Average velocity, us , of bed load sediment [L/T]. 3. Surface

235

ECE 308 -Spring 2005 Physics and Models of Electronics and Optoelectronics Devices (3)  

E-Print Network (OSTI)

ECE 308 - Spring 2005 Physics and Models of Electronics and Optoelectronics Devices (3) Lecture Heterostructure (Lecture Notes) 9. Semiconductor Optoelectronic Devices: Lasers, LEDs, Photodiodes, and Solar of semiconductor optoelectronic devices. Homework Policy: 1. Homework is given on every Thursday, and due

Gilchrist, James F.

236

Quasi-model-independent search for new physics at large transverse momentum  

E-Print Network (OSTI)

We apply a quasi-model-independent strategy (“SLEUTH”) to search for new high p(T) physics in ?100 pb(-1) of pp-bar collisions at s?=1.8TeV collected by the DØ experiment during 1992–1996 at the Fermilab Tevatron. Over 32 ...

Baringer, Philip S.; Bean, Alice; Coppage, Don; Hebert, C.; Abazov, V. M.; Abbott, B.; Abdesselam, A.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adams, D. L.

2001-06-04T23:59:59.000Z

237

Quasi-model-independent search for new high p(T) physics at D0  

E-Print Network (OSTI)

We apply a quasi-model-independent strategy ("Sleuth") to search for new high p(T) physics in approximate to 100 pb(-1) of p (p) over bar collisions at roots = 1.8 TeV collected by the D0 experiment during 1992-1990 at the ...

Baringer, Philip S.; Bean, Alice; Coppage, Don; Hebert, C.

2001-04-01T23:59:59.000Z

238

Image Analysis of 3D Cardiac Motion Using Physical and Geometrical Models  

E-Print Network (OSTI)

Abstract Image Analysis of 3D Cardiac Motion Using Physical and Geometrical Models Pengcheng Shi of the Graduate School of Yale University in Candidacy for the Degree of Doctor of Philosophy by Pengcheng Shi Dissertation Director: James Scott Duncan May 1996 #12;c 1997 by Pengcheng Shi All Rights Reserved #12

Duncan, James S.

239

Mathematical, physical and numerical principles essential for models of turbulent mixing  

SciTech Connect

We propose mathematical, physical and numerical principles which are important for the modeling of turbulent mixing, especially the classical and well studied Rayleigh-Taylor and Richtmyer-Meshkov instabilities which involve acceleration driven mixing of a fluid discontinuity layer, by a steady accerleration or an impulsive force.

Sharp, David Howland [Los Alamos National Laboratory; Lim, Hyunkyung [STONY BROOK UNIV; Yu, Yan [STONY BROOK UNIV; Glimm, James G [STONY BROOK UNIV

2009-01-01T23:59:59.000Z

240

Active control of underground stresses through rock pressurization  

SciTech Connect

To significantly increase the stability of underground excavations while exploiting the full advantages of confined rock strength, methods must be developed to actively control the distribution of stresses near the excavation. This US Bureau of Mines study examines theoretical and practical aspects of rock pressurization, an active stress control concept that induces compressive stress in the wall rock through repeated hydraulic fracturing with a settable fluid. Numerical analyses performed by incorporating the rock pressurization concept into a variety of boundary-element models indicate that rock pressurization has the potential to improve underground excavation stability in three ways: (1) by relocating stress concentrations away from the weak opening surface to stronger, confined wall rock; (2) by inducing additional stresses in a biaxial stress field to reduce the difference between the principal stress components near the surface of the opening, and (3) by counteracting the tensile stresses induced in the rock around internally loaded openings. Practical aspects of the rock pressurization concept were investigated through a series of hydraulic fracturing experiments. The use of sulfur as a settable fluid for hydraulic fracturing was demonstrated, although problems related to sulfur viscosity suggest that other molten materials, such as wax, may be better suited to practical field application of the rock pressurization concept.

Vandergrift, T.L.

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Time-dependent Integrated Modeling of Burning Plasmas TTF and US-Japan Workshop on Energetic Particle Physics  

E-Print Network (OSTI)

PRINCETON PLASMA PHYSICS LABORATORY PPPL 1 #12;Why traditional predictions of burning plasmas are inadequate PRINCETON PLASMA PHYSICS LABORATORY PPPL 2 #12;Why Time-Dependent Self-Consistent Integrated Modeling of plasma conditions and current drive PRINCETON PLASMA PHYSICS LABORATORY PPPL 3 #12;Goals of this Talk

Budny, Robert

242

A Simple Physical Model for the Gas Distribution in Galaxy Clusters  

E-Print Network (OSTI)

The dominant baryonic component of galaxy clusters is hot gas whose distribution is commonly probed through X-ray emission arising from thermal bremsstrahlung. The density profile thus obtained has been traditionally modeled with a beta-profile, a simple function with only three parameters. However, this model is known to be insufficient for characterizing the range of cluster gas distributions, and attempts to rectify this shortcoming typically introduce additional parameters to increase the fitting flexibility. We use cosmological and physical considerations to obtain a family of profiles for the gas with fewer parameters than the beta-model but which better accounts for observed gas profiles over wide radial intervals.

Patej, Anna

2014-01-01T23:59:59.000Z

243

INSTITUTE OF PHYSICS PUBLISHING MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING Modelling Simul. Mater. Sci. Eng. 10 (2002) 119 PII: S0965-0393(02)55385-7  

E-Print Network (OSTI)

INSTITUTE OF PHYSICS PUBLISHING MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING in the two- dimensional case, it has been realized that the fundamental physical nature of dislocation 1 of the DD methodology to the more physical, yet, considerably more complex conditions of three

Ghoniem, Nasr M.

244

Compressional and shear velocities of dry and saturated jointed rock: a laboratory study  

Science Journals Connector (OSTI)

......classification of rock mass qualities, Geophys...shallow jointed rock, Int. J...a jointed sandstone, in Mechanical...fracture permeability, Int. J...microcrack porosity. By modelling...and steam reservoirs require...hot-dry-rock method are...evaluating the quality of large...and fluid permeability. Seismic...aperture or porosity. Moos...velocity in a sandstone is independent......

R. M. Stesky

1985-10-01T23:59:59.000Z

245

Physics Beyond the Standard Model: Exotic Leptons and Black Holes at Future Colliders  

E-Print Network (OSTI)

The Standard Model of particle physics has been remarkably successful in describing present experimental results. However, it is assumed to be only a low-energy effective theory which will break down at higher energy scales, theoretically motivated to be around 1 TeV. There are a variety of proposed models of new physics beyond the Standard Model, most notably supersymmetric and extra dimension models. New charged and neutral heavy leptons are a feature of a number of theories of new physics, including the `intermediate scale' class of supersymmetric models. Using a time-of-flight technique to detect the charged leptons at the Large Hadron Collider, the discovery range (in the particular scenario studied in the first part of this thesis) is found to extend up to masses of 950 GeV. Extra dimension models, particularly those with large extra dimensions, allow the possible experimental production of black holes. The remainder of the thesis describes some theoretical results and computational tools necessary to model the production and decay of these miniature black holes at future particle colliders. The grey-body factors which describe the Hawking radiation emitted by higher-dimensional black holes are calculated numerically for the first time and then incorporated in a Monte Carlo black hole event generator; this can be used to model black hole production and decay at next-generation colliders. It is hoped that this generator will allow more detailed examination of black hole signatures and help to devise a method for extracting the number of extra dimensions present in nature.

Christopher M. Harris

2005-02-01T23:59:59.000Z

246

Rock Sampling | Open Energy Information  

Open Energy Info (EERE)

Rock Sampling Rock Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Sampling Details Activities (13) Areas (13) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Rock samples are used to define lithology. Field and lab analyses can be used to measure the chemical and isotopic constituents of rock samples. Stratigraphic/Structural: Provides information about the time and environment which formed a particular geologic unit. Microscopic rock textures can be used to estimate the history of stress and strain, and/or faulting. Hydrological: Isotope geochemistry can reveal fluid circulation of a geothermal system.

247

An analytical and numerical model to determine stresses in a Rock Melt Drill produced glass liner for potential use on Mars  

E-Print Network (OSTI)

information on the history of Mars. To access the hydrosphere some device must be used to penetrate the surface to depths of 3-5 kilometers. On Earth these depths are routinely achieved in petroleum and natural gas applications by drilling rigs. By far... the most common type of drilling employed on Earth is rotary drilling. Rotary drilling involves the uses of a rotating drill bit, attached to the surface by a long string of steel pipe, that grinds or cuts the rock, and forms a hole in the formation...

McConnell, Joshua B

2000-01-01T23:59:59.000Z

248

Overview - Hard Rock Penetration  

SciTech Connect

The Hard Rock Penetration program is developing technology to reduce the costs of drilling and completing geothermal wells. Current projects include: lost circulation control, rock penetration mechanics, instrumentation, and industry/DOE cost shared projects of the Geothermal Drilling Organization. Last year, a number of accomplishments were achieved in each of these areas. A new flow meter being developed to accurately measure drilling fluid outflow was tested extensively during Long Valley drilling. Results show that this meter is rugged, reliable, and can provide useful measurements of small differences in fluid inflow and outflow rates. By providing early indications of fluid gain or loss, improved control of blow-out and lost circulation problems during geothermal drilling can be expected. In the area of downhole tools for lost circulation control, the concept of a downhole injector for injecting a two-component, fast-setting cementitious mud was developed. DOE filed a patent application for this concept during FY 91. The design criteria for a high-temperature potassium, uranium, thorium logging tool featuring a downhole data storage computer were established, and a request for proposals was submitted to tool development companies. The fundamental theory of acoustic telemetry in drill strings was significantly advanced through field experimentation and analysis. A new understanding of energy loss mechanisms was developed.

Dunn, James C.

1992-03-24T23:59:59.000Z

249

Overview: Hard Rock Penetration  

SciTech Connect

The Hard Rock Penetration program is developing technology to reduce the costs of drilling and completing geothermal wells. Current projects include: lost circulation control, rock penetration mechanics, instrumentation, and industry/DOE cost shared projects of the Geothermal Drilling organization. Last year, a number of accomplishments were achieved in each of these areas. A new flow meter being developed to accurately measure drilling fluid outflow was tested extensively during Long Valley drilling. Results show that this meter is rugged, reliable, and can provide useful measurements of small differences in fluid inflow and outflow rates. By providing early indications of fluid gain or loss, improved control of blow-out and lost circulation problems during geothermal drilling can be expected. In the area of downhole tools for lost circulation control, the concept of a downhole injector for injecting a two-component, fast-setting cementitious mud was developed. DOE filed a patent application for this concept during FY 91. The design criteria for a high-temperature potassium, uranium, thorium logging tool featuring a downhole data storage computer were established, and a request for proposals was submitted to tool development companies. The fundamental theory of acoustic telemetry in drill strings was significantly advanced through field experimentation and analysis. A new understanding of energy loss mechanisms was developed.

Dunn, J.C.

1992-08-01T23:59:59.000Z

250

Nonhysteretic Nonlinear Losses at Intergrain Contacts in Rocks: Application to Tidal Modulation Phenomena in Seismics  

SciTech Connect

Inherent amplitude-dependent nonhysteretic dissipation in microstructured solids is considered, and a physical interpretation on this basis is proposed for experimentally observed clear correlations between the Earth tide strains {approx}10{sup -8} and seismic noise periodic variations with surprisingly strong magnitudes 10{sup -2} - 10{sup -1}. Using a few basic assumptions on the rock microstructure, the proposed model predicts close interrelation between nonlinear-elastic and linear and nonlinear dissipative properties of solids containing cracks, contacts and similar high-compliance features.

Zaitsev, V.; Matveev, L. [Institute of Applied Physics, RAS, 46 Uljanova Street, Nizhny Novgorod, 603950 (Russian Federation); Saltykov, V. [Kamchatkan Branch, Geophysical Survey RAS, 9 Piipa Blvd., Petropavlovsk-Kamchatsky (Russian Federation)

2008-06-24T23:59:59.000Z

251

Multi-State Physics Models of Aging Passive Components in Probabilistic Risk Assessment  

SciTech Connect

Multi-state Markov modeling has proved to be a promising approach to estimating the reliability of passive components - particularly metallic pipe components - in the context of probabilistic risk assessment (PRA). These models consider the progressive degradation of a component through a series of observable discrete states, such as detectable flaw, leak and rupture. Service data then generally provides the basis for estimating the state transition rates. Research in materials science is producing a growing understanding of the physical phenomena that govern the aging degradation of passive pipe components. As a result, there is an emerging opportunity to incorporate these insights into PRA. This paper describes research conducted under the Risk-Informed Safety Margin Characterization Pathway of the Department of Energy’s Light Water Reactor Sustainability Program. A state transition model is described that addresses aging behavior associated with stress corrosion cracking in ASME Class 1 dissimilar metal welds – a component type relevant to LOCA analysis. The state transition rate estimates are based on physics models of weld degradation rather than service data. The resultant model is found to be non-Markov in that the transition rates are time-inhomogeneous and stochastic. Numerical solutions to the model provide insight into the effect of aging on component reliability.

Unwin, Stephen D.; Lowry, Peter P.; Layton, Robert F.; Heasler, Patrick G.; Toloczko, Mychailo B.

2011-03-13T23:59:59.000Z

252

Low Dose Radiation Research Program: Modeling the Physics of Damage Cluster  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling the Physics of Damage Cluster Formation in a Cellular Environment Modeling the Physics of Damage Cluster Formation in a Cellular Environment Larry Toburen East Carolina University Why This Project Modern tools of radiobiology are leading to many new discoveries regarding how cells and tissues respond to radiation exposure. We can now irradiate single cells and observe responses in adjacent cells. We can also measure clusters of radiation damage produced in DNA. The primary tools available to describe the initial spatial pattern of damage formed by the absorption of ionizing radiation are based on (MC) Monte Carlo simulations of the structure of charged particle tracks. Although many MC codes exist and considerable progress is being made in the incorporation of detailed macromolecular target structures into these codes, much of the interaction

253

Physical model of the contact resistivity of metal-graphene junctions  

SciTech Connect

While graphene-based technology shows great promise for a variety of electronic applications, including radio-frequency devices, the resistance of the metal-graphene contact is a technological bottleneck for the realization of viable graphene electronics. One of the most important factors in determining the resistance of a metal-graphene junction is the contact resistivity. Despite the large number of experimental works that exist in the literature measuring the contact resistivity, a simple model of it is still lacking. In this paper, we present a comprehensive physical model for the contact resistivity of these junctions, based on the Bardeen Transfer Hamiltonian method. This model unveils the role played by different electrical and physical parameters in determining the specific contact resistivity, such as the chemical potential of interaction, the work metal-graphene function difference, and the insulator thickness between the metal and graphene. In addition, our model reveals that the contact resistivity is strongly dependent on the bias voltage across the metal-graphene junction. This model is applicable to a wide variety of graphene-based electronic devices and thus is useful for understanding how to optimize the contact resistance in these systems.

Chaves, Ferney A., E-mail: ferneyalveiro.chaves@uab.cat; Jiménez, David [Departament d'Enginyeria Electrònica, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Cummings, Aron W. [ICN2–Institut Català de Nanociència i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Roche, Stephan [ICN2–Institut Català de Nanociència i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); ICREA, Institució Catalana de Recerca i Estudis Avançats, 08070 Barcelona (Spain)

2014-04-28T23:59:59.000Z

254

Hybrid models for the simulation of microstructural evolution influenced by coupled, multiple physical processes.  

SciTech Connect

Most materials microstructural evolution processes progress with multiple processes occurring simultaneously. In this work, we have concentrated on the processes that are active in nuclear materials, in particular, nuclear fuels. These processes are coarsening, nucleation, differential diffusion, phase transformation, radiation-induced defect formation and swelling, often with temperature gradients present. All these couple and contribute to evolution that is unique to nuclear fuels and materials. Hybrid model that combines elements from the Potts Monte Carlo, phase-field models and others have been developed to address these multiple physical processes. These models are described and applied to several processes in this report. An important feature of the models developed are that they are coded as applications within SPPARKS, a Sandiadeveloped framework for simulation at the mesoscale of microstructural evolution processes by kinetic Monte Carlo methods. This makes these codes readily accessible and adaptable for future applications.

Tikare, Veena; Hernandez-Rivera, Efrain; Madison, Jonathan D.; Holm, Elizabeth Ann [Carnegie Mellon University, Pittsburgh, PA; Patterson, Burton R. [University of Florida, Gainesville, FL; Homer, Eric R. [Brigham Young University, Provo, UT

2013-09-01T23:59:59.000Z

255

Experiment-Based Model for the Chemical Interactions between Geothermal  

Open Energy Info (EERE)

Experiment-Based Model for the Chemical Interactions between Geothermal Experiment-Based Model for the Chemical Interactions between Geothermal Rocks, Supercritical Carbon Dioxide and Water Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Experiment-Based Model for the Chemical Interactions between Geothermal Rocks, Supercritical Carbon Dioxide and Water Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Project Description The geochemical model will be developed on a foundation of both theory and measurements of chemical and physical interactions between minerals, rocks, scCO2 and water. An experimentally validated reservoir modeling capability is critically important for the evaluation of the scCO2-EGS concept, the adoption of which could significantly enhance energy production in the USA.

256

Individual-based modeling of fish: Linking to physical models and water quality.  

SciTech Connect

The individual-based modeling approach for the simulating fish population and community dynamics is gaining popularity. Individual-based modeling has been used in many other fields, such as forest succession and astronomy. The popularity of the individual-based approach is partly a result of the lack of success of the more aggregate modeling approaches traditionally used for simulating fish population and community dynamics. Also, recent recognition that it is often the atypical individual that survives has fostered interest in the individual-based approach. Two general types of individual-based models are distribution and configuration. Distribution models follow the probability distributions of individual characteristics, such as length and age. Configuration models explicitly simulate each individual; the sum over individuals being the population. DeAngelis et al (1992) showed that, when distribution and configuration models were formulated from the same common pool of information, both approaches generated similar predictions. The distribution approach was more compact and general, while the configuration approach was more flexible. Simple biological changes, such as making growth rate dependent on previous days growth rates, were easy to implement in the configuration version but prevented simple analytical solution of the distribution version.

Rose, K.A.

1997-08-01T23:59:59.000Z

257

Nuclear Physics: A Key Ingredient in Astrophysical Modeling F.-K. Thielemann, D. Argast, F. Brachwitz, J.L. Fisker, C. Frohlich, R. Hirschi, E.  

E-Print Network (OSTI)

1 Nuclear Physics: A Key Ingredient in Astrophysical Modeling F.-K. Thielemann, D. Argast, F of Physics & Astronomy, Univ. of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland Nuclear physics. In this review we will survey how these aspects of nuclear physics enter the modeling of astrophysical objects. 1

Rauscher, Thomas

258

Constitutive relationships for elastic deformation of clay rock: Data Analysis  

SciTech Connect

Geological repositories have been considered a feasible option worldwide for storing high-level nuclear waste. Clay rock is one of the rock types under consideration for such purposes, because of its favorable features to prevent radionuclide transport from the repository. Coupled hydromechanical processes have an important impact on the performance of a clay repository, and establishing constitutive relationships for modeling such processes are essential. In this study, we propose several constitutive relationships for elastic deformation in indurated clay rocks based on three recently developed concepts. First, when applying Hooke's law in clay rocks, true strain (rock volume change divided by the current rock volume), rather than engineering strain (rock volume change divided by unstressed rock volume), should be used, except when the degree of deformation is very small. In the latter case, the two strains will be practically identical. Second, because of its inherent heterogeneity, clay rock can be divided into two parts, a hard part and a soft part, with the hard part subject to a relatively small degree of deformation compared with the soft part. Third, for swelling rock like clay, effective stress needs to be generalized to include an additional term resulting from the swelling process. To evaluate our theoretical development, we analyze uniaxial test data for core samples of Opalinus clay and laboratory measurements of single fractures within macro-cracked Callovo-Oxfordian argillite samples subject to both confinement and water reduced swelling. The results from this evaluation indicate that our constitutive relationships can adequately represent the data and explain the related observations.

Liu, H.H.; Rutqvist, J.; Birkholzer, J.T.

2011-04-15T23:59:59.000Z

259

AN INITIAL MODEL OF A BASE-ISOLATED BUILDING When modelling a physical system there is always a compromise between adequately accounting  

E-Print Network (OSTI)

44 Chapter 3 AN INITIAL MODEL OF A BASE-ISOLATED BUILDING When modelling a physical system and convenient model will incorporate only the essential dynamic behaviour of the building and its foundation that a theoretical, rather than empirical, model is most suitable for a base-isolated building. This chapter

Talbot, James P.

260

BABAR searches for New Physics in B decays to invisible final states The Standard Model (SM) of particle physics has been proven by numerous experiments over  

E-Print Network (OSTI)

BABAR searches for New Physics in B decays to invisible final states The Standard Model (SM for invisible decays of neutral B mesons, where unobservable particles are created in the final state, either exclusively or accompanied by a single photon. The invisible decay products are neutral particles

Wechsler, Risa H.

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

An ensemble Kalman filter for statistical estimation of physics constrained nonlinear regression models  

SciTech Connect

A central issue in contemporary science is the development of nonlinear data driven statistical–dynamical models for time series of noisy partial observations from nature or a complex model. It has been established recently that ad-hoc quadratic multi-level regression models can have finite-time blow-up of statistical solutions and/or pathological behavior of their invariant measure. Recently, a new class of physics constrained nonlinear regression models were developed to ameliorate this pathological behavior. Here a new finite ensemble Kalman filtering algorithm is developed for estimating the state, the linear and nonlinear model coefficients, the model and the observation noise covariances from available partial noisy observations of the state. Several stringent tests and applications of the method are developed here. In the most complex application, the perfect model has 57 degrees of freedom involving a zonal (east–west) jet, two topographic Rossby waves, and 54 nonlinearly interacting Rossby waves; the perfect model has significant non-Gaussian statistics in the zonal jet with blocked and unblocked regimes and a non-Gaussian skewed distribution due to interaction with the other 56 modes. We only observe the zonal jet contaminated by noise and apply the ensemble filter algorithm for estimation. Numerically, we find that a three dimensional nonlinear stochastic model with one level of memory mimics the statistical effect of the other 56 modes on the zonal jet in an accurate fashion, including the skew non-Gaussian distribution and autocorrelation decay. On the other hand, a similar stochastic model with zero memory levels fails to capture the crucial non-Gaussian behavior of the zonal jet from the perfect 57-mode model.

Harlim, John, E-mail: jharlim@psu.edu [Department of Mathematics and Department of Meteorology, the Pennsylvania State University, University Park, PA 16802, Unites States (United States)] [Department of Mathematics and Department of Meteorology, the Pennsylvania State University, University Park, PA 16802, Unites States (United States); Mahdi, Adam, E-mail: amahdi@ncsu.edu [Department of Mathematics, North Carolina State University, Raleigh, NC 27695 (United States)] [Department of Mathematics, North Carolina State University, Raleigh, NC 27695 (United States); Majda, Andrew J., E-mail: jonjon@cims.nyu.edu [Department of Mathematics and Center for Atmosphere and Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States)

2014-01-15T23:59:59.000Z

262

A Physical Model For The Origin Of Volcanism Of The Tyrrhenian Margin- The  

Open Energy Info (EERE)

Model For The Origin Of Volcanism Of The Tyrrhenian Margin- The Model For The Origin Of Volcanism Of The Tyrrhenian Margin- The Case Of Neapolitan Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Physical Model For The Origin Of Volcanism Of The Tyrrhenian Margin- The Case Of Neapolitan Area Details Activities (0) Areas (0) Regions (0) Abstract: The onset of volcanism in the Neapolitan area and the tensile tectonics of the Tyrrhenian margin of the Apennine chain have been related to the opening of the Tyrrhenian Basin, which may have resulted in horizontal asthenosphere flows giving rise, in turn, to crustal distension, local mantle upwellings and ensuing volcanism. Geological and structural data were taken into consideration: the existence of a shallow crust-mantle discontinuity in the Neapolitan area, the onset of volcanism in a

263

Mathematical modelling of some chemical and physical processes in underground coal gasification  

SciTech Connect

Underground coal gasification normally involves two vertical wells which must be linked by a channel having low resistance to gas flow. There are several ways of establishing such linkage, but all leave a relatively open horizontal hole with a diameter on the order of a meter. To increase our understanding of the chemical and physical processes governing underground coal gasification LLNL has been conducting laboratory scale experiments accompanied by mathematical modelling. Blocks of selected coal types are cut to fit 55 gallon oil drums and sealed in place with plaster. A 1 cm. diameter hole is drilled the length of the block and plumbing attached to provide a flow of air or oxygen/steam mixture. After an instrumented burn the block is sawed open to examine the cavity. Mathematical modelling has been directed towards predicting the cavity shape. This paper describes some sub-models and examines their impact on predicted cavity shapes.

Creighton, J. R.

1981-08-01T23:59:59.000Z

264

Handbook of Anatomical Models for Radiation Dosimetry (To be published in 2009 in "Series in Medical Physics and Biomedical Engineering")  

E-Print Network (OSTI)

Handbook of Anatomical Models for Radiation Dosimetry (To be published in 2009 in "Series in Medical Physics and Biomedical Engineering") Edited by X. George Xu, Ph.D., Rensselaer Polytechnic Reference Computational Phantoms Maria Zankl, Keith F Eckerman, Wesley E. Bolch Chapter 16 Physical Phantoms

Linhardt, Robert J.

265

Impacts of WRF Physics and Measurement Uncertainty on California Wintertime Model Wet Bias  

SciTech Connect

The Weather and Research Forecast (WRF) model version 3.0.1 is used to explore California wintertime model wet bias. In this study, two wintertime storms are selected from each of four major types of large-scale conditions; Pineapple Express, El Nino, La Nina, and synoptic cyclones. We test the impacts of several model configurations on precipitation bias through comparison with three sets of gridded surface observations; one from the National Oceanographic and Atmospheric Administration, and two variations from the University of Washington (without and with long-term trend adjustment; UW1 and UW2, respectively). To simplify validation, California is divided into 4 regions (Coast, Central Valley, Mountains, and Southern California). Simulations are driven by North American Regional Reanalysis data to minimize large-scale forcing error. Control simulations are conducted with 12-km grid spacing (low resolution) but additional experiments are performed at 2-km (high) resolution to evaluate the robustness of microphysics and cumulus parameterizations to resolution changes. We find that the choice of validation dataset has a significant impact on the model wet bias, and the forecast skill of model precipitation depends strongly on geographic location and storm type. Simulations with right physics options agree better with UW1 observations. In 12-km resolution simulations, the Lin microphysics and the Kain-Fritsch cumulus scheme have better forecast skill in the coastal region while Goddard, Thompson, and Morrison microphysics, and the Grell-Devenyi cumulus scheme perform better in the rest of California. The effect of planetary boundary layer, soil-layer, and radiation physics on model precipitation is weaker than that of microphysics and cumulus processes for short- to medium-range low-resolution simulations. Comparison of 2-km and 12-km resolution runs suggests a need for improvement of cumulus schemes, and supports the use of microphysics schemes in coarser-grid applications.

Chin, H S; Caldwell, P M; Bader, D C

2009-07-22T23:59:59.000Z

266

Life Under Rocks Grade Level: First  

E-Print Network (OSTI)

. Procedure: Find a small and large rock (rock should be on a solid surface and not sunk in sand or muck

267

Search for physics beyond the standard model using multilepton signatures in pp collisions at ?s = 7 TeV  

E-Print Network (OSTI)

A search for physics beyond the standard model in events with at least three leptons and any number of jets is presented. The data sample corresponds to 35 pb[superscript ?1] of integrated luminosity in pp collisions at ...

Alver, Burak Han

268

A proposed cost-benefit analysis model for physical form analysis for a futuristic submarine decision support system  

E-Print Network (OSTI)

This thesis proposes a model for cost-benefit analysis for physical form selection of a decision support tool, primarily to support system acquisition decisions that need to be made early in the system life cycle. By ...

Bhattacharjee, Dhiman

2007-01-01T23:59:59.000Z

269

Constraints on the Physical Parameters of the Dark Energy Using a Model-Independent Approach  

E-Print Network (OSTI)

Understanding the physical nature of the dark energy which appears to drive the accelerated expansion of the unvierse is one of the key problems in physics and cosmology today. This important problem is best studied using a variety of mutually complementary approaches. Daly and Djorgovski (2003, 2004) proposed a model independent approach to determine a number of important physical parameters of the dark energy as functions of redshift directly from the data. Here, we expand this method to include the determinations of its potential and kinetic energy as functions of redshift. We show that the dark energy potential and kinetic energy may be written as combinations of the first and second derivatives of the coordinate distance with respect to redshift. We expand the data set to include new supernova measurements, and now use a total of 248 coordinate distances that span the redshift range from zero to 1.79. First and second derivatives of the coordinate distance are obtained as functions of redshift, and these are combined to determine the potential and kinetic energy of the dark energy as functions of redshift. An update on the redshift behavior of the dimensionless expansion rate E(z), the acceleration rate q(z), and the dark energy pressure p(z), energy density f(z), and equation of state w(z) is also presented. We find that the standard Omega = 0.3 and Lambda = 0.7 model is in an excellent agreement with the data. We also show tentative evidence that the Cardassian and Chaplygin gas models in a spatially flat universe do not fit the data as well.

Ruth A. Daly; S. G. Djorgovski

2005-12-22T23:59:59.000Z

270

Shotgun cartridge rock breaker  

DOE Patents (OSTI)

A rock breaker uses shotgun cartridges or other firearm ammunition as the explosive charge at the bottom of a drilled borehole. The breaker includes a heavy steel rod or bar, a gun with a firing chamber for the ammunition which screws onto the rod, a long firing pin running through a central passage in the rod, and a firing trigger mechanism at the external end of the bar which strikes the firing pin to fire the cartridge within the borehole. A tubular sleeve surround the main body of the rod and includes slits the end to allow it to expand. The rod has a conical taper at the internal end against which the end of the sleeve expands when the sleeve is forced along the rod toward the taper by a nut threaded onto the external end of the rod. As the sleeve end expands, it pushes against the borehole and holds the explosive gasses within, and also prevents the breaker from flying out of the borehole. The trigger mechanism includes a hammer with a slot and a hole for accepting a drawbar or drawpin which, when pulled by a long cord, allows the cartridge to be fired from a remote location.

Ruzzi, Peter L. (Eagan, NM); Morrell, Roger J. (Bloomington, MN)

1995-01-01T23:59:59.000Z

271

Integrated hydrothermal model for proposed deep crustal borehole on Texas Gulf Coast - origins of geopressured brines and lead-zinc, uranium, hydrocarbon, and cap-rock deposits  

SciTech Connect

Sediment accumulation over Jurassic salt in the Gulf coast has resulted in an interrelated sequential development of salt domes and diagenetic, hydrothermal, and hydrocarbon generation zones. Primary anhydrites within the salt with high /sup 87/Sr//sup 86/Sr ratios suggest early generation of underlying fluids rich in radiogenic strontium that were incorporated in the salt during its diapiric rise to the surface. Subsequently, late-stage, hydrocarbon-rich, saline hydrothermal fluids migrated up the margins of the salt domes, and caused precipitation of several generation of calcite cements, followed by uranium and Mississippi Valley-type lead-zinc-barite deposits near or at salt dome rims. Present fluids in the lower Frio (deeper than 4270 m or 14,000 ft) at the Pleasant Bayou geopressured-geothermal test well (Brazoria County, Texas) are highly saline and enriched in iron, manganese, lead, zinc, and carbon dioxide, and are saturated in methane. These lower Frio waters must have migrated into the area recently because they are not in isotopic equilibrium with diagenetic albite cements formed at temperatures greater than 120/sup 0/C (248/sup 0/F) less than 7.5 million years ago. Isotopic and geochemical data suggest that the fluids trapped by geopressure in the lower Frio at the Pleasant Bayou well are the parent fluids of those causing salt dome cap-rock mineralization.

Light, M.P.R.; Posey, H.H.

1986-05-01T23:59:59.000Z

272

Groningen Active Living Model (GALM): stimulating physical activity in sedentary older adults; validation of the behavioral change model  

Science Journals Connector (OSTI)

Background A significant proportion of older adults in The Netherlands do not participate regularly in leisure-time physical activity. The Groningen Active Living Model (GALM) was developed to change this situation for the better. Longitudinal results of the validation of the GALM behavioral change model are presented. Methods We obtained data on potentially mediating variables of physical activity behavior change (self-efficacy, social support, perceived fitness, and enjoyment) from 96 participants in a prospective study during the 18 months the GALM strategy lasted. Results Prospective analyses revealed significant differences in several potentially mediating variables, although some of these differences were contrary to our hypothesis. Discriminant analysis resulted in canonical correlations of 0.50 after 6 months and 0.66 after 18 months of program participation between adherers and nonadherers, respectively; 73.8 and 80.0% of the subjects were classified correctly. Conclusions Based on the results, it can be concluded that we partially succeeded in manipulating the potentially mediating variables by means of our GALM strategy. Several mediating variables were identified that reliably discriminated long-term adherers from nonadherers, expanding the generalizability of social cognitive theory-driven variables to a Dutch population.

Martin Stevens; Koen A.P.M Lemmink; Marieke J.G van Heuvelen; Johan de Jong; Piet Rispens

2003-01-01T23:59:59.000Z

273

Post Rock | Open Energy Information  

Open Energy Info (EERE)

Rock Rock Jump to: navigation, search Name Post Rock Facility Post Rock Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Capital Group Developer Wind Capital Group Energy Purchaser Westar Energy Location Ellsworth KS Coordinates 38.87269233°, -98.33059788° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.87269233,"lon":-98.33059788,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

Rock Density | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rock Density Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Density Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Density of different lithologic units. Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 10.001,000 centUSD 0.01 kUSD 1.0e-5 MUSD 1.0e-8 TUSD / sample

275

Neutrinoless Double-Beta Decay: a Probe of Physics Beyond the Standard Model  

E-Print Network (OSTI)

In the Standard Model the total lepton number is conserved. Thus, neutrinoless double-beta decay, in which the total lepton number is violated by two units, is a probe of physics beyond the Standard Model. After a brief summary of the present status of our knowledge of neutrino masses and mixing and an introduction to the seesaw mechanism for the generation of light Majorana neutrino masses, in this review we discuss the theory and phenomenology of neutrinoless double-beta decay. We present the basic elements of the theory of neutrinoless double-beta decay, our view of the present status of the challenging problem of the calculation of the nuclear matrix element of the process and a summary of the experimental results.

Bilenky, S M

2014-01-01T23:59:59.000Z

276

Neutrinoless Double-Beta Decay: a Probe of Physics Beyond the Standard Model  

E-Print Network (OSTI)

In the Standard Model the total lepton number is conserved. Thus, neutrinoless double-beta decay, in which the total lepton number is violated by two units, is a probe of physics beyond the Standard Model. After a brief summary of the present status of our knowledge of neutrino masses and mixing and an introduction to the seesaw mechanism for the generation of light Majorana neutrino masses, in this review we discuss the theory and phenomenology of neutrinoless double-beta decay. We present the basic elements of the theory of neutrinoless double-beta decay, our view of the present status of the challenging problem of the calculation of the nuclear matrix element of the process and a summary of the experimental results.

S. M. Bilenky; C. Giunti

2014-11-18T23:59:59.000Z

277

Extension of the quantum-kinetic model to lunar and Mars return physics  

SciTech Connect

The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high-mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. A recently introduced molecular-level chemistry model, the quantum-kinetic, or Q-K, model that predicts reaction rates for gases in thermal equilibrium and non-equilibrium using only kinetic theory and fundamental molecular properties, is extended in the current work to include electronic energy level transitions and reactions involving charged particles. Like the Q-K procedures for neutral species chemical reactions, these new models are phenomenological procedures that aim to reproduce the reaction/transition rates but do not necessarily capture the exact physics. These engineering models are necessarily efficient due to the requirement to compute billions of simulated collisions in direct simulation Monte Carlo (DSMC) simulations. The new models are shown to generally agree within the spread of reported transition and reaction rates from the literature for near equilibrium conditions.

Liechty, D. S. [Aerothermodynamics Branch, NASA Langley Research Center, Hampton, Virginia 23681 (United States)] [Aerothermodynamics Branch, NASA Langley Research Center, Hampton, Virginia 23681 (United States); Lewis, M. J. [Department of Aerospace Engineering, University of Maryland, College Park, Maryland 20742 (United States)] [Department of Aerospace Engineering, University of Maryland, College Park, Maryland 20742 (United States)

2014-02-15T23:59:59.000Z

278

Unit physics performance of a mix model in Eulerian fluid computations  

SciTech Connect

In this report, we evaluate the performance of a K-L drag-buoyancy mix model, described in a reference study by Dimonte-Tipton [1] hereafter denoted as [D-T]. The model was implemented in an Eulerian multi-material AMR code, and the results are discussed here for a series of unit physics tests. The tests were chosen to calibrate the model coefficients against empirical data, principally from RT (Rayleigh-Taylor) and RM (Richtmyer-Meshkov) experiments, and the present results are compared to experiments and to results reported in [D-T]. Results show the Eulerian implementation of the mix model agrees well with expectations for test problems in which there is no convective flow of the mass averaged fluid, i.e., in RT mix or in the decay of homogeneous isotropic turbulence (HIT). In RM shock-driven mix, the mix layer moves through the Eulerian computational grid, and there are differences with the previous results computed in a Lagrange frame [D-T]. The differences are attributed to the mass averaged fluid motion and examined in detail. Shock and re-shock mix are not well matched simultaneously. Results are also presented and discussed regarding model sensitivity to coefficient values and to initial conditions (IC), grid convergence, and the generation of atomically mixed volume fractions.

Vold, Erik [Los Alamos National Laboratory; Douglass, Rod [Los Alamos National Laboratory

2011-01-25T23:59:59.000Z

279

PHYS 626 --Fundamentals of Plasma Physics --Section 5.6-5.7 1. A simple collision model (Lorentz gas model) is to assume that a particle  

E-Print Network (OSTI)

gas model) is to assume that a particle experience s collisions per unit time and have a change. The Lorentz gas model can describe well collisions between electron and neutrals, or even between ionsPHYS 626 -- Fundamentals of Plasma Physics -- Section 5.6-5.7 1. A simple collision model (Lorentz

Ng, Chung-Sang

280

Modeling Fluid Flow in Natural Systems, Model Validation and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

rock, flow is primarily in relatively sparse networks of fractures. Discrete fracture network (DFNs) models are an approach to representing flow in fractured rock that...

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Physical Properties of the Atmosphere in the New Hadley Centre Global Environmental Model (HadGEM1). Part I: Model Description and Global Climatology  

Science Journals Connector (OSTI)

The atmospheric component of the new Hadley Centre Global Environmental Model (HadGEM1) is described and an assessment of its mean climatology presented. HadGEM1 includes substantially improved representations of physical processes, increased ...

G. M. Martin; M. A. Ringer; V. D. Pope; A. Jones; C. Dearden; T. J. Hinton

2006-04-01T23:59:59.000Z

282

MHK Projects/Modeling the Physical and Biochemical Influence of Ocean  

Open Energy Info (EERE)

Modeling the Physical and Biochemical Influence of Ocean Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.9,"lon":158.75,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

283

GEOL 103 Writing Assignment 3. Sedimentary Rocks Name _______________________  

E-Print Network (OSTI)

.g., kaolinite), halite (rock salt), gypsum, occasionally micas (muscovite, biotite). Sed rocks can also contain

Kirby, Carl S.

284

Moduli dispersion and attenuation in limestones in the laboratory L. Adam and M. Batzle, Center for Rock Abuse, Colorado School of Mines  

E-Print Network (OSTI)

variations in the intrinsic attenuation as a function of fluid content, and rock permeability at reservoir is common practice in reservoir rock physics. With knowl- edge of these properties, enhanced oil recovery transmitted through the rock core. We investigate the relation of permeability to attenuation, as well

285

Evaluation of Used Fuel Disposition in Clay-Bearing Rock  

SciTech Connect

Radioactive waste disposal in shale/argillite rock formations has been widely considered given its desirable isolation properties (low permeability), geochemically reduced conditions, anomalous groundwater pressures, and widespread geologic occurrence. Clay/shale rock formations are characterized by their high content of clay minerals such as smectites and illites where diffusive transport and chemisorption phenomena predominate. These, in addition to low permeability, are key attributes of shale to impede radionuclide mobility. Shale host-media has been comprehensively studied in international nuclear waste repository programs as part of underground research laboratories (URLs) programs in Switzerland, France, Belgium, and Japan. These investigations, in some cases a decade or more long, have produced a large but fundamental body of information spanning from site characterization data (geological, hydrogeological, geochemical, geomechanical) to controlled experiments on the engineered barrier system (EBS) (barrier clay and seals materials). Evaluation of nuclear waste disposal in shale formations in the USA was conducted in the late 70’s and mid 80’s. Most of these studies evaluated the potential for shale to host a nuclear waste repository but not at the programmatic level of URLs in international repository programs. This report covers various R&D work and capabilities relevant to disposal of heat-generating nuclear waste in shale/argillite media. Integration and cross-fertilization of these capabilities will be utilized in the development and implementation of the shale/argillite reference case planned for FY15. Disposal R&D activities under the UFDC in the past few years have produced state-of-the-art modeling capabilities for coupled Thermal-Hydrological-Mechanical-Chemical (THMC), used fuel degradation (source term), and thermodynamic modeling and database development to evaluate generic disposal concepts. The THMC models have been developed for shale repository leveraging in large part on the information garnered in URLs and laboratory data to test and demonstrate model prediction capability and to accurately represent behavior of the EBS and the natural (barrier) system (NS). In addition, experimental work to improve our understanding of clay barrier interactions and TM couplings at high temperatures are key to evaluate thermal effects as a result of relatively high heat loads from waste and the extent of sacrificial zones in the EBS. To assess the latter, experiments and modeling approaches have provided important information on the stability and fate of barrier materials under high heat loads. This information is central to the assessment of thermal limits and the implementation of the reference case when constraining EBS properties and the repository layout (e.g., waste package and drift spacing). This report is comprised of various parts, each one describing various R&D activities applicable to shale/argillite media. For example, progress made on modeling and experimental approaches to analyze physical and chemical interactions affecting clay in the EBS, NS, and used nuclear fuel (source term) in support of R&D objectives. It also describes the development of a reference case for shale/argillite media. The accomplishments of these activities are summarized as follows: ? Development of a reference case for shale/argillite; ? Investigation of Reactive Transport and Coupled THM Processes in EBS: FY14; ? Update on Experimental Activities on Buffer/Backfill Interactions at elevated Pressure and Temperature; ? Thermodynamic Database Development: Evaluation Strategy, Modeling Tools, First-Principles Modeling of Clay, and Sorption Database Assessment; ? ANL Mixed Potential Model For Used Fuel Degradation: Application to Argillite and Crystalline Rock Environments.

Carlos F. Jové Colón; Philippe F. Weck; David H. Sassani; Liange Zheng; Jonny Rutqvist; Carl I. Steefel; Kunhwi Kim; Seiji Nakagawa; James Houseworth; Jens Birkholzer; Florie A. Caporuscio; Michael Cheshire; Michael S. Rearick; Mary K. McCarney; Mavrik Zavarin; Ana Benedicto; Annie B. Kersting; Mark Sutton; James Jerden; Kurt E. Frey; Jacqueline M. Copple; William Ebert

2014-08-29T23:59:59.000Z

286

Unit physics testing of a mix model in an eulerian fluid computation  

SciTech Connect

A K-L turbulence mix model driven with a drag-buoyancy source term is tested in an Eulerian code in a series of basic unit-physics tests, as part of a mix validation milestone. The model and the closure coefficient values are derived in the work of Dimonte-Tipton [D-T] in Phys.Flu.18, 085101 (2006), and many of the test problems were reported there, where the mix model operated in Lagrange computations. The drag-buoyancy K-L mix model was implemented within the Eulerian code framework by A.J. Scannapieco. Mix model performance is evaluated in terms of mix width growth rates compared to experiments in select regimes. Results in our Eulerian code are presented for several unit-physics I-D test problems including the decay of homogeneous isotropic turbulence (HIT), Rayleigh-Taylor (RT) unstable mixing, shock amplification of initial turbulence, Richtmyer-Meshkov (RM) mixing in several single shock test cases and in comparison to two RM experiments including re-shock (Vetter-Sturtevant and Poggi, et.al.). Sensitivity to model parameters, to Atwood number, and to initial conditions are examined. Results here are in good agreement in some tests (HIT, RT) with the previous results reported for the mix model in the Lagrange calculations. The HIT turbulent decay agrees closely with analytic expectations, and the RT growth rate matches experimental values for the default values of the model coefficients proposed in [D-T]. Results for RM characterized with a power law growth rate differ from the previous mix model work but are still within the range for reasonable agreement with experiments. Sensitivity to IC values in the RM studies are examined; results are sensitive to initial values of L[t=O], which largely determines the RM mix layer growth rate, and generally differs from the IC values used in the RT studies. Result sensitivity to initial turbulence, K[t=O], is seen to be small but significant above a threshold value. Initial conditions can be adjusted so that single shock RM mix width results match experiments but we have not been able to obtain a good match for first shock and re-shock growth rates in the same experiment with a single set of parameters and Ie. Problematic issues with KH test problems are described. Resolution studies for an RM test problem show the K-L mix growth rate decreases as it converges at a supra-linear rate, and, convergence requires a fine grid (on the order of 10 microns). For comparison, a resolution study of a second mix model [Scannapieco and Cheng, Phys.Lett.A, 299(1),49, (2002)] acting on a two fluid interface problem was examined. The mix in this case was found to increase with grid resolution at low to moderate resolutions, but converged at comparably fine resolutions. In conclusion, these tests indicate that the Eulerian code K-L model, using the Dimonte Tipton default model closure coefficients, achieve reasonable results across many of the unit-physics experimental conditions. However, we were unable to obtain good matches simultaneously for shock and re-shock mix in a single experiment. Results are sensitive to initial conditions in the regimes under study, with different IC best suited to RT or RM mix. It is reasonable to expect IC sensitivity in extrapolating to high energy density regimes, or to experiments with deceleration due to arbitrary combinations of RT and RM. As a final comparison, the atomically generated mix fraction and the mix width were each compared for the K-L mix model and the Scannapieco model on an identical RM test problem. The Scannapieco mix fraction and width grow linearly. The K-L mix fraction and width grow with the same power law exponent, in contrast to expectations from analysis. In future work it is proposed to do more head-to-head comparisons between these two models and other mix model options on a full suite of physics test problems, such as interfacial deceleration due to pressure build-up during an idealized ICF implosion.

Vold, Erik [Los Alamos National Laboratory; Douglass, Rod [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

287

Isotopic Analysis- Rock | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Rock Isotopic Analysis- Rock Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotopic Analysis- Rock Details Activities (13) Areas (11) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Water rock interaction Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Isotopic Analysis- Rock: Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.

288

Proceedings of the Workshop on Numerical Modeling of Thermohydrological Flow in Fractured Rock Masses, Feb. 19-20, 1980, Berkeley, CA  

E-Print Network (OSTI)

Mathematical modeling of thermal energy storage in aquifers:presented at the Thermal Energy storage in aquifers1979; Aquifer thermal energy storage—a numerical simulation

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

289

Accelerator System Model (ASM) user manual with physics and engineering model documentation. ASM version 1.0  

SciTech Connect

The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the {open_quotes}construction{close_quotes} of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of the physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc.

NONE

1993-07-01T23:59:59.000Z

290

An integrated experimental and numerical study: Developing a reaction transport model that couples chemical reactions of mineral dissolution/precipitation with spatial and temporal flow variations in CO2/brine/rock systems  

Energy.gov (U.S. Department of Energy (DOE))

Project objectives: Generate and characterize mineral dissolution/precipitation reactions in supercritical CO2/brine/rock systems under pressure-temperature-chemistry conditions resembling CO2injection into EGS. Characterize three-dimensional spatial and temporal distributions of rock structures subject to mineral dissolution/precipitation processes by X-ray tomography, SEM imaging, and Microprobe analysis.

291

Numerical simulation of gas flow through unsaturated fractured rock at Yucca Mountain, Nevada  

SciTech Connect

Numerical analysis is used to identify the physical phenomena associated with barometrically driven gas (air and water vapor) flow through unsaturated fractured rock at Yucca Mountain, Nevada. Results from simple finite difference simulations indicate that for a fractured rock scenario, the maximum velocity of air out of an uncased 10 cm borehole is 0.002 m s{sub {minus}1}. An equivalent porous medium (EPM) model was incorporated into a multiphase, multicomponent simulator to test more complex conceptual models. Results indicate that for a typical June day, a diurnal pressure wave propagates about 160 m into the surrounding Tiva Canyon hydrogeologic unit. Dry air that enters the formation evaporates water around the borehole which reduces capillary pressure. Multiphase countercurrent flow develops in the vicinity of the hole; the gas phase flows into the formation while the liquid phase flows toward the borehole. The effect occurs within 0.5 m of the borehole. The amount of water vapor leaving the formation during 1 day is 900 cm{sup 3}. This is less than 0.1% of the total recharge into the formation, suggesting that the barometric effect may be insignificant in drying the unsaturated zone. However, gas phase velocities out of the borehole (3 m s{sup {minus}1}), indicating that observed flow rates from wells along the east flank of Yucca Mountain were able to be simulated with a barometric model.

Cooper, C.A. [Nevada Univ., Las Vegas, NV (United States). Water Resources Center

1990-01-01T23:59:59.000Z

292

Design of field test plots for a sloped waste rock surface  

SciTech Connect

Westmin Resources Limited is a Western Canadian mining company with producing interests in base and precious metals and coals. Westmin`s Myra Falls Operations produce copper, zinc, and gold concentrates. The Myra Falls Operations are located in the central interior of Vancouver Island in a hanging glacial valley. Mean annual precipitation is approximately 3,000 mm with more than 75% occurring during the months of October to April. Historic surface deposition of waste rock has resulted in acid rock drainage (ARD). An applied research program was initiated to develop a cover system for the waste rock material at the Myra Falls site. The objective is to develop a cover system which controls the ingress of oxygen and infiltration of water, while providing a medium for sustainable vegetation that is consistent with the end land use of the area. Progress to date suggests that modified local till materials (amended with either fly ash or bentonite) can be used in soil cover construction. Four test plots were designed using two-dimensional saturated-unsaturated modelling tools to ensure that the performance of each test plot was representative of a full scale ARD cover system. This paper summarizes the design philosophy and principles of the cover system as well as the methodology for the two-dimensional numerical modelling program. Conclusions and results from the numerical modelling program are presented with a focus on implications for construction of the field test plots and installation of the performance monitoring instruments. The numerical modelling demonstrated that the hydraulic performance of a soil cover system placed on a sloped waste rock surface will be much different than that predicted by idealized one-dimensional numerical models, and in general current design methodologies. The modelling clearly demonstrated that the design of small scale field test plots was not a simple task. The physical dimensions of the field test plots had a significant impact on the ideal location for monitoring instruments and incorrect placement of instruments would lead to an erroneous measure of test plot performance.

O`Kane, M. [O`Kane Consultants, Inc., Saskatoon, Saskatchewan (Canada); Stoicescu, J.; Haug, M. [M.D. Haug and Associates Ltd., Saskatoon, Saskatchewan (Canada); Januszewski, S. [Westmin Resources Ltd., Campbell River, British Columbia (Canada). Myra Falls Operations; Mchaina, D.M. [Westmin Resources Ltd., Vancouver, British Columbia (Canada)

1998-12-31T23:59:59.000Z

293

Physics-Based Multi-State Models of Passive Component Degradation for the R7 Reactor Simulation Environment  

SciTech Connect

Abstract: The Next Generation Systems Analysis Code - referred to as R7 - is reactor systems simulation software being developed to support the Risk-Informed Safety Margin Characterization Pathway of the U.S. Department of Energy's Light Water Reactor Sustainability Program. It will provide an integrated multi-physics environment, implemented in an uncertainty quantification (UQ) framework that can produce risk and other performance insights on long-term reactor operations. An element of this simulation environment will be the performance of passive components and materials. Conventional models of component reliability are largely parametric, relying on plant service data to estimate component lifetimes and failure rates. This type of model has limited usefulness in the R7 environment where the intent is to explicitly determine the influence of physical stressors on component degradation. In this paper, we describe a new class of multi-state physics-based component models designed to be R7-compatible. These models capture the physics of materials degradation while also incorporating the effects of interventions and component rejuvenation. The models are implemented in a cumulative damage framework that allows the impact of an evolving physical environment to be addressed without recourse to resampling within the Monte Carlo-based UQ framework. The paper describes an application to stress corrosion cracking in dissimilar metal welds - a principal contributor to potential loss of coolant accidents. So while R7 will have the more conventional capability of reactor simulation codes to model the impact of degraded components and systems on plant performance, the methodology described here allows R7 to model the inverse effect; the impact of the physical environment on component degradation and performance.

Unwin, Stephen D.; Layton, Robert F.; Johnson, Kenneth I.; Lowry, Peter P.

2012-06-25T23:59:59.000Z

294

Search for physics beyond the standard model in events with a Z boson, jets, and missing transverse energy in pp collisions at ?s =7 TeV  

E-Print Network (OSTI)

A search is presented for physics beyond the standard model (BSM) in events with a Z boson, jets, and missing transverse energy (Emiss[over]T) This signature is motivated by BSM physics scenarios, including supersymmetry. ...

Bauer, Gerry P.

295

Chemical and physical properties of gas jets in comets: I. Monte Carlo model of an inner cometary coma  

Science Journals Connector (OSTI)

We describe a 3-dimensional, time-dependent Monte Carlo model developed to analyze the chemical and physical nature of a cometary gas coma. Our model includes the necessary physics and chemistry to recreate the conditions applicable to Comet Hale–Bopp when the comet was near 1 AU from the Sun. Two base models were designed and are described here. The first is an isotropic model that emits particles (parents of the observed gases) from the entire nucleus; the second is a jet model that ejects parent particles solely from discrete active areas on the surface of the comet nucleus, resulting in coma jets. The two models are combined to produce the final model, which is compared with observations. The physical processes incorporated in both base models include: (1) isotropic ejection of daughter molecules (the observed gases) in the parent's frame of reference, (2) solar radiation pressure, (3) solar insolation effects, (4) collisions of daughter products with other molecules in the coma, and (5) acceleration of the gas in the coma. The observed daughter molecules are produced when a parent decays, which is represented by either an exponential decay distribution (photodissociation of the parent gas) or a triangular distribution (production from a grain extended source). Application of this model to the analysis the OH, C2 and CN gas jets observed in the coma of Comet Hale–Bopp is the focus of the accompanying paper [Lederer, S.M., Campins, H., Osip, D.J., 2008. Icarus, in press (this issue)].

S.M. Lederer; H. Campins; D.J. Osip

2009-01-01T23:59:59.000Z

296

Rock Lab Analysis | Open Energy Information  

Open Energy Info (EERE)

Rock Lab Analysis Rock Lab Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Lab Analysis Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Lab Analysis Techniques Information Provided by Technique Lithology: Core and cuttings analysis is done to define lithology. Water rock interaction. Can determine detailed information about rock composition and morphology. Density of different lithologic units. Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Core analysis can locate faults or fracture networks. Oriented core can give additional important information on anisotropy. Historic structure and deformation of land.

297

Physically-based modeling, simulation and rendering of fire for computer animation  

Science Journals Connector (OSTI)

We give an up-to-date survey on techniques and methods for fire simulation in computer graphics. Physically-based method prevails over traditional non-physical methods for realistic visual effect. In this paper, we explore visual simulation of fire-related ... Keywords: Blackbody radiation, Chemical reaction, Fire, Navier---Stokes equations, Physically-based simulation, Visual adaption

Zhanpeng Huang, Guanghong Gong, Liang Han

2014-08-01T23:59:59.000Z

298

Source rock screening studies of Ordovician Maquoketa shale in western Illinois  

SciTech Connect

Rock-Eval (pyrolysis) studies of Ordovician Maquoketa Shale samples (cuttings and cores) from the shallow subsurface (500-800 ft deep) in western Illinois indicate that facies within the Maquoketa have potential as hydrocarbon source rocks. Dark, presumably organic-rich zones within the Maquoketa Shale were selected and analyzed for total organic carbon (TOC), Rock-Eval (pyrolysis), and bulk and clay mineralogy using x-ray diffraction. Preliminary results from six samples from Schuyler, McDonough, and Fulton Counties show TOC values ranging from 4.70% to as high as 12.90%. Rock-Eval parameters, measured by heating organic matter in an inert atmosphere, indicate source rock maturity and petroleum-generative potential. Screening studies, using the Rock-Eval process, describe very good source rock potential in facies of the Maquoketa Shale. Further studies at the Illinois State Geological Survey will expand on these preliminary results. This study complements a proposed exploration model in western Illinois and further suggests the possibility of source rocks on the flanks of the Illinois basin. Long-distance migration from more deeply buried effective source rocks in southern Illinois has been the traditional mechanism proposed for petroleum in basin-flank reservoirs. Localized source rocks can be an alternative to long-distance migration, and can expand the possibilities of basin-flank reservoirs, encouraging further exploration in these areas.

Autrey, A.; Crockett, J.E.; Dickerson, D.R.; Oltz, D.F.; Seyler, B.J.; Warren, R.

1987-09-01T23:59:59.000Z

299

The quantitative influence of salinity on the apparent resistivity on a physical model upon salination  

SciTech Connect

The excessive exploitation of groundwater aquifers leads to water table drawdown, and subsequently to the contamination of these aquifers by the intrusion of sea water or other hazardous sources. This worldwide environmental problem is becoming increasingly critical in coastal agricultural areas, where the fine grained materials develop a thick fringe zone. By evapo-transpiration the moisture of this zone pumps up the salt in the dry season, which cannot be efficiently washed away in the wet season. The current study investigates the possibility of an early detection of salination, through systematic observation of electrical resistivity in selected positions with fixed electrode arrays. A direct current electrical profiling system of Wenner configuration was tested in the laboratory using a physical model. The model was constructed of wood and plastic tilled with saturated sand and having a constant water flow of 1.6 l/mn. The model size is 148 by 85 cm for lateral dimensions and 25 cm of sand thickness, with a total porosity of 360%. Upon salination the salt was increasingly added to the system to reach a concentration of 32 g/l. Upon desalination salt water was replaced by fresh water to dilute the water in the system to a concentration of 0.25 g/l. The results show that the relationship between salinity and electrical resistivity is inversely proportional and characterized by linear logarithmic function; the velocity of water flow calculated by abrupt resistivity changes is lower than the hydraulic velocity; the resistivity values for low salinity upon desalination are much different (smaller) than those upon salination of equivalent salt concentrations: the relative change of resistivity upon salination and desalination involves almost equally all features of the tank that have distinctive resistivity values.

Khair, K. [American Univ. of Beirut (Lebanon); Skokan, C. [Colorado School of Mines, Golden, CO (United States)

1996-11-01T23:59:59.000Z

300

MECHANICAL DEGRADATION OF EMPLACEMENT DRIFTS AT YUCCA MOUNTAIN - A CASE STUDY IN ROCK MECHANICS, PART 1: NONLITHOPHYSAL ROCK, PART 2: LITHOPHYSAL ROCK  

SciTech Connect

This paper outlines rock mechanics investigations associated with mechanical degradation of planned emplacement drifts at Yucca Mountain, which is the designated site for a US high-level nuclear waste repository. The factors leading to drift degradation include stresses from the overburden, stresses induced by the heat released from the emplaced waste, stresses due to seismically related ground motions, and time-dependent strength degradation. The welded tuff emplacement horizon consists of two groups of rock with distinct engineering properties: nonlithophysal units and lithophysal units, based on the relative proportion of lithophysal cavities. Part I of the paper concentrates on the generally hard, strong, and fractured nonlithophysal rock. The degradation behavior of the tunnels in the nonlithophysal rock is controlled by the occurrence of keyblocks. A statistically equivalent fracture model was generated based on extensive underground fracture mapping data from the Exploratory Studies Facility at Yucca Mountain. Three-dimensional distinct block analyses, generated with the fracture patterns randomly selected from the fracture model, were developed with the consideration of in situ, thermal, seismic loads. In this study, field data, laboratory data, and numerical analyses are well integrated to provide a solution for the unique problem of modeling drift degradation throughout the regulatory period for repository performance.

M. Lin, D. Kicker, B. Damjanac, M. Board, and M. Karakouzian

2006-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

B Physics (Experiment)  

E-Print Network (OSTI)

In past few years the flavor physics made important transition from the work on confirmation the standard model of particle physics to the phase of search for effects of a new physics beyond standard model. In this paper we review current state of the physics of b-hadrons with emphasis on results with a sensitivity to new physics.

Michal Kreps

2010-08-02T23:59:59.000Z

302

Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models  

SciTech Connect

This final report summarizes research undertaken collaboratively between Princeton University, the NOAA Geophysical Fluid Dynamics Laboratory on the Princeton University campus, the State University of New York at Stony Brook, and the University of California, Los Angeles between September 1, 2000, and November 30, 2006, to do fundamental research on ocean iron fertilization as a means to enhance the net oceanic uptake of CO2 from the atmosphere. The approach we proposed was to develop and apply a suite of coupled physical-ecological-biogeochemical models in order to (i) determine to what extent enhanced carbon fixation from iron fertilization will lead to an increase in the oceanic uptake of atmospheric CO2 and how long this carbon will remain sequestered (efficiency), and (ii) examine the changes in ocean ecology and natural biogeochemical cycles resulting from iron fertilization (consequences). The award was funded in two separate three-year installments: • September 1, 2000 to November 30, 2003, for a project entitled “Ocean carbon sequestration by fertilization: An integrated biogeochemical assessment.” A final report was submitted for this at the end of 2003 and is included here as Appendix 1. • December 1, 2003 to November 30, 2006, for a follow-on project under the same grant number entitled “Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models.” This report focuses primarily on the progress we made during the second period of funding subsequent to the work reported on in Appendix 1. When we began this project, we were thinking almost exclusively in terms of long-term fertilization over large regions of the ocean such as the Southern Ocean, with much of our focus being on how ocean circulation and biogeochemical cycling would interact to control the response to a given fertilization scenario. Our research on these types of scenarios, which was carried out largely during the first three years of our project, led to several major new insights on the interaction between ocean biogeochemistry and circulation. This work, which is described in the following Section II on “Large scale fertilization,” has continued to appear in the literature over the past few years, including two high visibility papers in Nature. Early on in the first three years of our project, it became clear that small "patch-scale" fertilizations over limited regions of order 100 km diameter were much more likely than large scale fertilization, and we carried out a series of idealized patch fertilization simulations reported on in Gnanadesikan et al. (2003). Based on this paper and other results we had obtained by the end of our first three-year grant, we identified a number of important issues that needed to be addressed in the second three-year period of this grant. Section III on “patch fertilization” discusses the major findings of this phase of our research, which is described in two major manuscripts that will be submitted for publication in the near future. This research makes use of new more realistic ocean ecosystem and iron cycling models than our first paper on this topic. We have several major new insights into what controls the efficiency of iron fertilization in the ocean. Section IV on “model development” summarizes a set of papers describing the progress that we made on improving the ecosystem models we use for our iron fertilization simulations.

Jorge L. Sarmiento - Princeton PI, Anand Gnanadesikan - Princeton Co-I, Nicolas Gruber - UCLA PI, Xin Jin - UCLA PostDoc, Robert Armstrong - SUNY /Stony Brook Consultant

2007-06-21T23:59:59.000Z

303

PARKER-HEADGATE ROCK & PARKER-GILA  

NLE Websites -- All DOE Office Websites (Extended Search)

PARKER-HEADGATE ROCK & PARKER-GILA 161-kV TRANSMISSION LINE Cross Arm Repair and Helicopter Staging Areas Figure 1. Project Location Project Location j PARKER-HEADGATE ROCK &...

304

Predicting the transport properties of sedimentary rocks from microstructure  

SciTech Connect

Understanding transport properties of sedimentary rocks, including permeability, relative permeability, and electrical conductivity, is of great importance for petroleum engineering, waste isolation, environmental restoration, and other applications. These transport properties axe controlled to a great extent by the pore structure. How pore geometry, topology, and the physics and chemistry of mineral-fluid and fluid-fluid interactions affect the flow of fluids through consolidated/partially consolidated porous media are investigated analytically and experimentally. Hydraulic and electrical conductivity of sedimentary rocks are predicted from the microscopic geometry of the pore space. Cross-sectional areas and perimeters of individual pores are estimated from two-dimensional scanning electron microscope (SEM) photomicrographs of rock sections. Results, using Berea, Boise, Massilon, and Saint-Gilles sandstones show close agreement between the predicted and measured permeabilities. Good to fair agreement is found in the case of electrical conductivity. In particular, good agreement is found for a poorly cemented rock such as Saint-Gilles sandstone, whereas the agreement is not very good for well-cemented rocks. The possible reasons for this are investigated. The surface conductance contribution of clay minerals to the overall electrical conductivity is assessed. The effect of partial hydrocarbon saturation on overall rock conductivity, and on the Archie saturation exponent, is discussed. The region of validity of the well-known Kozeny-Carman permeability formulae for consolidated porous media and their relationship to the microscopic spatial variations of channel dimensions are established. It is found that the permeabilities predicted by the Kozeny-Carman equations are valid within a factor of three of the observed values methods.

Schlueter, E.M.

1995-01-01T23:59:59.000Z

305

PHYSICAL REVIEW B 88, 144305 (2013) Two-channel model for nonequilibrium thermal transport in pump-probe experiments  

E-Print Network (OSTI)

150 nm of the Al/Si0.99Ge0.01 interface. The extra thermal resistance in this region is a result. INTRODUCTION The magnitude of a material's thermal conductivity and spe- cific heat is determinedPHYSICAL REVIEW B 88, 144305 (2013) Two-channel model for nonequilibrium thermal transport in pump

Cahill, David G.

306

A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel  

E-Print Network (OSTI)

with hydrogen embrittlement represents a particu- larly severe degradation mechanism in metallic structures and compressors, despite the fact that they can be extremely susceptible to such hydrogen embrittlementA statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture

Ritchie, Robert

307

Protein folding dynamics in lattice model with physical movement Sema Kachalo, Hsiao-Mei Lu and Jie Liang  

E-Print Network (OSTI)

Protein folding dynamics in lattice model with physical movement S¨ema Kachalo, Hsiao-Mei Lu analysis of the kinetic energy landscape. I. INTRODUCTION The dynamics of protein folding has been studied exten- sively [1, 3­5]; A remarkable empirical observation is that protein folding rates are well

Dai, Yang

308

288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling of nuclear reactors  

E-Print Network (OSTI)

288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling practices in a nutshell', Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, pp.288 Energy and Nuclear Applications', Göteborg, Sweden, 13­14 October 2011 Copyright © 2013 Inderscience

Demazière, Christophe

309

An estimation of the penetration rate of rotary drills using the Specific Rock Mass Drillability index  

Science Journals Connector (OSTI)

The main purpose of the present study was to provide a practical, convenient drillability prediction model based on rock mass characteristics, geological sampling from blast holes, and drill operational factors. Empirical equations that predict drill penetration rate have been developed using statistical analyses of data from the Sarcheshmeh Copper Mine. Seven parameters of the rock or rock mass, including uniaxial compressive strength (UCS) of the rock, Schmidt hammer hardness value, quartz content, fragment size (d80), alteration, and joint dip, are included in the model along with two operational parameters of the rotary drill, bit rotational speed and thrust. These parameters were used to predict values of the newly developed Specific Rock Mass Drillability (SRMD) index. Comparing measured SRMD values to those predicted by the multi-parameter linear, or nonlinear, regression models showed good agreement. The correlation coefficients were 0.82 and 0.81, respectively.

Alireza Cheniany; Khoshrou Seyed Hasan; Kourosh Shahriar; Jafar Khademi Hamidi

2012-01-01T23:59:59.000Z

310

Modeling CO{sub 2}-Brine-Rock Interaction Including Mercury and H{sub 2}S Impurities in the Context of CO{sub 2} Geologic Storage  

SciTech Connect

This study uses modeling and simulation approaches to investigate the impacts on injectivity of trace amounts of mercury (Hg) in a carbon dioxide (CO{sub 2}) stream injected for geologic carbon sequestration in a sandstone reservoir at ~2.5 km depth. At the range of Hg concentrations expected (7-190 ppbV, or ~ 0.06-1.6 mg/std.m{sup 3}CO{sub 2}), the total volumetric plugging that could occur due to complete condensation of Hg, or due to complete precipitation of Hg as cinnabar, results in a very small porosity change. In addition, Hg concentration much higher than the concentrations considered here would be required for Hg condensation to even occur. Concentration of aqueous Hg by water evaporation into CO{sub 2} is also unlikely because the higher volatility of Hg relative to H{sub 2}O at reservoir conditions prevents the Hg concentration from increasing in groundwater as dry CO{sub 2} sweeps through, volatilizing both H{sub 2}O and Hg. Using a model-derived aqueous solution to represent the formation water, batch reactive geochemical modeling show that the reaction of the formation water with the CO{sub 2}-Hg mixture causes the pH to drop to about 4.7 and then become buffered near 5.2 upon reaction with the sediments, with a negligible net volume change from mineral dissolution and precipitation. Cinnabar (HgS(s)) is found to be thermodynamically stable as soon as the Hg-bearing CO{sub 2} reacts with the formation water which contains small amounts of dissolved sulfide. Liquid mercury (Hg(l)) is not found to be thermodynamically stable at any point during the simulation. Two-dimensional radial reactive transport simulations of CO{sub 2} injection at a rate of 14.8 kg/s into a 400 m-thick formation at isothermal conditions of 106°C and average pressure near 215 bar, with varying amounts of Hg and H{sub 2}S trace gases, show generally that porosity changes only by about ±0.05% (absolute, i.e., new porosity = initial porosity ±0.0005) with Hg predicted to readily precipitate from the CO{sub 2} as cinnabar in a zone mostly matching the single-phase CO{sub 2} plume. The precipitation of minerals other than cinnabar, however, dominates the evolution of porosity. Main reactions include the replacement of primarily Fe-chlorite by siderite, of calcite by dolomite, and of K-feldspar by muscovite. Chalcedony is also predicted to precipitate from the dissolution of feldspars and quartz. Although the range of predicted porosity change is quite small, the amount of dissolution and precipitation predicted for these individual minerals is not negligible. These reactive transport simulations assume that Hg gas behaves ideally. To examine effects of non-ideality on these simulations, approximate calculations of the fugacity coefficient of Hg in CO{sub 2} were made. Results suggest that Hg condensation could be significantly overestimated when assuming ideal gas behavior, making our simulation results conservative with respect to impacts on injectivity. The effect of pressure on Henry’s constant for Hg is estimated to yield Hg solubilities about 10% lower than when this effect is not considered, a change that is considered too small to affect the conclusions of this report. Although all results in this study are based on relatively mature data and modeling approaches, in the absence of experimental data and more detailed site-specific information, it is not possible to fully validate the results and conclusions.

Spycher, N.; Oldenburg, C.M.

2014-01-01T23:59:59.000Z

311

Computed solid phases limiting the concentration of dissolved constituents in basalt aquifers of the Columbia Plateau in eastern Washington. Geochemical modeling and nuclide/rock/groundwater interaction studies  

SciTech Connect

A speciation-solubility geochemical model, WATEQ2, was used to analyze geographically-diverse, ground-water samples from the aquifers of the Columbia Plateau basalts in eastern Washington. The ground-water samples compute to be at equilibrium with calcite, which provides both a solubility control for dissolved calcium and a pH buffer. Amorphic ferric hydroxide, Fe(OH)/sub 3/(A), is at saturation or modestly oversaturated in the few water samples with measured redox potentials. Most of the ground-water samples compute to be at equilibrium with amorphic silica (glass) and wairakite, a zeolite, and are saturated to oversaturated with respect to allophane, an amorphic aluminosilicate. The water samples are saturated to undersaturated with halloysite, a clay, and are variably oversaturated with regard to other secondary clay minerals. Equilibrium between the ground water and amorphic silica presumably results from the dissolution of the glassy matrix of the basalt. The oversaturation of the clay minerals other than halloysite indicates that their rate of formation lags the dissolution rate of the basaltic glass. The modeling results indicate that metastable amorphic solids limit the concentration of dissolved silicon and suggest the same possibility for aluminum and iron, and that the processes of dissolution of basaltic glass and formation of metastable secondary minerals are continuing even though the basalts are of Miocene age. The computed solubility relations are found to agree with the known assemblages of alteration minerals in the basalt fractures and vesicles. Because the chemical reactivity of the bedrock will influence the transport of solutes in ground water, the observed solubility equilibria are important factors with regard to chemical-retention processes associated with the possible migration of nuclear waste stored in the earth's crust.

Deutsch, W.J.; Jenne, E.A.; Krupka, K.M.

1982-08-01T23:59:59.000Z

312

Using LIDAR in Highway Rock Cuts Norbert H. Maerz, Ph. D., P. Eng,  

E-Print Network (OSTI)

the data needed to begin the process of modeling the rock raveling process. INTRODUCTION LIDAR damage, injury, and even death. Highways impeded by even small spills of rock material by blasting techniques to facilitate the highway construction. A constant danger to the motoring public

Maerz, Norbert H.

313

Coalescing Neutron Stars -- a Step Towards Physical Models. I. Hydrodynamic Evolution and Gravitational-Wave Emission  

E-Print Network (OSTI)

We investigate the dynamics and evolution of coalescing neutron stars. Although the code (Piecewise Parabolic Method) is purely Newtonian, we do include the emission of gravitational waves and their backreaction on the hydrodynamic flow. The properties of neutron star matter are described by the physical equation of state of Lattimer \\& Swesty (1991). Energy loss by all types of neutrinos and changes of the electron fraction due to the emission of electron neutrinos and antineutrinos are taken into account by an elaborate ``neutrino leakage scheme''. We simulate the coalescence of two identical, cool neutron stars with a baryonic mass of $\\approx\\!1.6\\,M_\\odot$ and a radius of $\\approx\\!15$~km and with an initial center-to-center distance of 42~km. The initial distributions of density and electron concentration are given from a model of a cold neutron star in hydrostatic equilibrium (central temperature about $8\\,{\\rm MeV}$). We investigate three cases which differ by the initial velocity distribution in the neutron stars, representing different cases of the neutron star spins relative to the direction of the orbital angular momentum vector. Within about 1~ms the neutron stars merge into a rapidly spinning ($P_{\\rm spin}\\approx 1$~ms), high-density body ($\\rho\\approx 10^{14}$~g/cm$^3$) with a surrounding thick disk of material with densities $\\rho\\approx 10^{10}-10^{12}$~g/cm$^3$ and orbital velocities of~0.3--0.5~c. In this work we evaluate the models in detail with respect to the gravitational wave emission using the quadrupole approximation. In a forthcoming paper we will concentrate on the neutrino emission and implications for gamma-ray bursters. A maximum luminosity in excess of $10^{55}$~erg/s is reached for about 1~ms.

M. Ruffert; H. -Th. Janka; G. Schaefer

1995-09-01T23:59:59.000Z

314

A Moduli Space of the Quaternionic Hopf Surface Encodes Standard Model Physics  

E-Print Network (OSTI)

The quaternionic Hopf surface, HL, is associated with a non-compact moduli space, ML, of stable holomorphic SL(2,C) bundles. ML is open in MLc, the corresponding compact moduli space of holomorphic SL(2,C) bundles, and naturally fibers over an open set of the quaternionic projective line HP^1. We pull back to ML natural locally conformal kaehler and hyperkaehler structures from MLc, and lift natural sub-pseudoriemannian and optical structures from HP^1. Unexpectedly, the holomorphic maps connecting these structures solve the the classical Dirac-Higgs equations of the unbroken Standard Model. These equations include: all observed fermionic and bosonic fields of all three generations with the correct color, weak isospin, and hypercharge values; a Higgs field coupling left and right fermion fields; and a pp-wave gravitational metric. We hypothesize that physics is essentially the geometry of ML, both algebraic (quantum) and differential (classical). We further show that the Yang-Mills equations with fermionic currents also naturally emerge, along with an induced action on the ML structure sheaf equivalent to the time-evolution operator of the associated quantum field theory.

Colin B. Hunter

2012-09-13T23:59:59.000Z

315

Physical Constraints on, and a Model for, the Active Regions in Seyfert Galaxies  

E-Print Network (OSTI)

We discuss several physical constraints on the nature of the Active Regions (AR) in Seyfert 1 Galaxies, and show that a plausible model consistent with these constraints is one in which the ARs are magnetically confined and ``fed''. The unique X-ray index of these sources points to a large compactness parameter ($l\\gg 1$). This, together with the conditions required to account for the observed optical depth being close to unity, suggests that the magnetic energy density in the AR should be comparable to the equipartition value in the accretion disk, and that it should be released in a flare-like event above the surface of the cold accretion disk. We consider the various issues pertaining to magnetic flares and attempt to construct a coherent picture, including a reason for the optical depth in the AR being $\\sim 1$, and an understanding of the characteristics of the X-ray reflection component and the power density spectra associated with this high-energy emission.

Sergei Nayakshin; Fulvio Melia

1997-05-30T23:59:59.000Z

316

Rock magnetism of remagnetized carbonate rocks: another look MIKE JACKSON* & NICHOLAS L. SWANSON-HYSELL  

E-Print Network (OSTI)

Rock magnetism of remagnetized carbonate rocks: another look MIKE JACKSON* & NICHOLAS L. SWANSON-HYSELL Institute for Rock Magnetism, Winchell School of Earth Sciences, University of Minnesota, Minnesota, US, dominantly in the super- paramagnetic and stable single-domain size range, also give rise to distinctive rock-magnetic

Swanson-Hysell, Nicholas

317

Rock mass modification around a nuclear waste repository in welded tuff  

SciTech Connect

This report presents the results of numerical analyses to estimate the extent of rock mass modification resulting from the presence of a High Level Waste (HLW) repository. Changes in rock mass considered are stresses and joint deformations resulting from disposal room excavation and thermal efffects induced by the heat generated by nuclear waste. rock properties and site conditions are taken from the Site Characterization Plan Conceptual Design Report for the potential repository site at Yucca Mountain, Nevada. Analyses were conducted using boundary element and distinct element methods. Room-scale models and repository-scale models were investigated for up to 500 years after waste emplacement. Results of room-scale analyses based on the thermoelastic boundary element model indicate that a zone of modified rock develops around the disposal rooms for both vertical and horizontal waste emplacement. This zone is estimated to extend a distance of roughly two room diameters from the room surface. Results from the repository-scale model, which are based on the thermoelastic boundary element model and the distinct element model, indicate a zone with modified rock mass properties starting approximately 100 m above and below the repository, with a thickness of approximately 200 m above and 150 m below the repository. Slip-prone subhorizontal features are shown to have a substantial effect on rock mass response. The estimates of rock mass modification reflect uncertainties and simplifying assumptions in the models. 32 refs., 57 figs., 1 tab.

Mack, M.G.; Brandshaug, T.; Brady, B.H.

1989-08-01T23:59:59.000Z

318

Simulated diurnal rainfall physics in a multi-scale global climate model with embedded explicit convection  

E-Print Network (OSTI)

their Community Earth System Model (Richard Neale, personaldevelopment of Earth system models capable of reproducing

Pritchard, Michael Stephen

2011-01-01T23:59:59.000Z

319

Fluid-Rock Interaction: A Reactive Transport Approach  

Science Journals Connector (OSTI)

...fluid-rock interaction systems as well-mixed reactors was challenged and it was shown how an...Q, Lichtner PC, Zhang D (2007) An improved lattice Boltzmann model for multicomponent...Eric H. editor CNRS-Universite Paul Sabatier, Laboratoire de Mecanisme de Transfert...

Carl I. Steefel; Kate Maher

320

MATLOC. Transient Non Lin Deformation in Fractured Rock  

SciTech Connect

MATLOC is a nonlinear, transient, two-dimensional (planer and axisymmetric), thermal stress, finite-element code designed to determine the deformation within a fractured rock mass. The mass is modeled as a nonlinear anistropic elastic material which can exhibit stress-dependent bi-linear locking behavior.

Boonlualohr, P.; Mustoe, G.; Williams, J.R.; Lester, B.H.; Huyakorn, P.S. [Geotrans Inc., (United States)

1983-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

LANL | Physics | Nuclear Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Leaders in nuclear physics Physics Division scientists and engineers play an important role in the Laboratory's Nuclear Physics program, funded by the Department of Energy's Office...

322

Cloud in the operational DWD mesoscale model An extensive documentation of the physics included in the Lokal Modell (LM) can be found  

E-Print Network (OSTI)

in the Lokal Modell (LM) can be found in Doms et al. (2004). Here a short summary of the cloud physics is given-scale clouds Since 26th of April 2004 the Lokal Modell (LM) uses a two-category ice scheme which explicitly S that are considered in this two-category ice scheme of LM. The individual microphysical processes are: Sc condensation

Reading, University of

323

GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics  

Science Journals Connector (OSTI)

The physical climate formulation and simulation characteristics of two new global coupled carbon–climate Earth System Models, ESM2M and ESM2G, are described. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics ...

John P. Dunne; Jasmin G. John; Alistair J. Adcroft; Stephen M. Griffies; Robert W. Hallberg; Elena Shevliakova; Ronald J. Stouffer; William Cooke; Krista A. Dunne; Matthew J. Harrison; John P. Krasting; Sergey L. Malyshev; P. C. D. Milly; Peter J. Phillipps; Lori T. Sentman; Bonita L. Samuels; Michael J. Spelman; Michael Winton; Andrew T. Wittenberg; Niki Zadeh

2012-10-01T23:59:59.000Z

324

APPLIED PHYSICS APPLIED PHYSICS  

E-Print Network (OSTI)

MSc APPLIED PHYSICS #12;MSc APPLIED PHYSICS This taught Masters course is based on the strong research in Applied Physics in the University's Department of Physics. The department has an impressive photonics and quantum optics, Physics and the Life Sciences, and solid state physics. The knowledge gained

Mottram, Nigel

325

Properties of CO2-Rich Pore Fluids and Their Effect on Porosity Evolution in EGS Rocks  

Energy.gov (U.S. Department of Energy (DOE))

Project objective: Quantify key parameters critically needed for developing and validating numerical modeling of chemical interactions between EGS reservoir rocks and supercritical CO2and CO2-rich aqueous fluids.

326

Geohydromechanical Processes in the Excavation Damaged Zone in Crystalline Rock, Rock Salt, and Indurated and Plastic Clays  

SciTech Connect

The creation of an excavation disturbed zone or excavation damaged zone is expected around all man-made openings in geologic formations. Macro- and micro-fracturing, and in general a redistribution of in situ stresses and rearrangement of rock structures, will occur in this zone, resulting in drastic changes of permeability to flow, mainly through the fractures and cracks induced by excavation. Such an EDZ may have significant implications for the operation and long-term performance of an underground nuclear waste repository. Various issues of concern need to be evaluated, such as processes creating fractures in the excavation damaged zone, the degree of permeability increase, and the potential for sealing or healing (with permeability reduction) in the zone. In recent years, efforts along these lines have been made for a potential repository in four rock types-crystalline rock, salt, indurated clay, and plastic clay-and these efforts have involved field, laboratory, and theoretical studies. The present work involves a synthesis of the ideas and issues that emerged from presentations and discussions on EDZ in these four rock types at a CLUSTER Conference and Workshop held in Luxembourg in November, 2003. First, definitions of excavation disturbed and excavation damaged zones are proposed. Then, an approach is suggested for the synthesis and intercomparison of geohydromechanical processes in the EDZ for the four rock types (crystalline rock, salt, indurated clay, and plastic clay). Comparison tables of relevant processes, associated factors, and modeling and testing techniques are developed. A discussion of the general state-of-the-art and outstanding issues are also presented. A substantial bibliography of relevant papers on the subject is supplied at the end of the paper.

Tsang, Chin-Fu; Bernier, Frederic; Davies, Christophe

2004-06-20T23:59:59.000Z

327

Rock Physics Based Determination of Reservoir Microstructure for Reservoir Characterization  

E-Print Network (OSTI)

than the critical value, Hertz-Mindlin (HM) contact theory over-predicts compressional velocity (V_p) by about 69%. This was reduced to 4% when PAR distribution was accounted for in the original HM formulation. The pore structure parameter was also...

Adesokan, Hamid 1976-

2013-01-09T23:59:59.000Z

328

An ensemble Kalman filter for statistical estimation of physics constrained nonlinear regression models  

Science Journals Connector (OSTI)

A central issue in contemporary science is the development of nonlinear data driven statistical-dynamical models for time series of noisy partial observations from nature or a complex model. It has been established recently that ad-hoc quadratic multi-level ... Keywords: Ensemble Kalman filter, Multi-level models, Nonlinear regression models, Parameter estimation of stochastic differential equations

John Harlim; Adam Mahdi; Andrew J. Majda

2014-01-01T23:59:59.000Z

329

Multi-physics modeling of thermoelectric generators for waste heat recovery applications  

Energy.gov (U.S. Department of Energy (DOE))

Model developed provides effective guidelines to designing thermoelectric generation systems for automotive waste heat recovery applications

330

Rock Energy Cooperative (Illinois) | Open Energy Information  

Open Energy Info (EERE)

Energy Cooperative (Illinois) Jump to: navigation, search Name: Rock Energy Cooperative Place: Illinois References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA...

331

A Global Time-Dependent Model of Thunderstorm Electricity. Part I: Mathematical Properties of the Physical and Numerical Models  

Science Journals Connector (OSTI)

A time-dependent model that simulates the interaction of a thunderstorm with its electrical environment is introduced. The model solves the continuity equation of the Maxwell current density that includes conduction, displacement, and source ...

G. L. Browning; I. Tzur; R. G. Roble

1987-08-01T23:59:59.000Z

332

Reliability Modeling of Cyber-Physical Electric Power Systems: A System-Theoretic Framework  

E-Print Network (OSTI)

generation sources, e.g., wind, photovoltaics (PV), new loads, such as plug-in hybrid electric vehicles (PHEV]. In this regard, next generation electric power systems envisioned under the US DOE Smart Grid initiative and its the tight coupling between this communication and control infrastructure and the physical components

Liberzon, Daniel

333

Tailoring real-time physical activity coaching systems: a literature survey and model  

Science Journals Connector (OSTI)

Technology mediated healthcare services designed to stimulate patients' self-efficacy are widely regarded as a promising paradigm to reduce the burden on the healthcare system. The promotion of healthy, active living is a topic of growing interest in ... Keywords: Personalization, Physical activity, Real time coaching, Tailoring, Telemedicine, eHealth

Harm Akker, Valerie M. Jones, Hermie J. Hermens

2014-12-01T23:59:59.000Z

334

PHYSICAL REVIEW C 87, 064608 (2013) Nuclear meson transparency in a relativistic Glauber model  

E-Print Network (OSTI)

interactions (FSI) between the tagged hadron and the nuclear environment vanish. The SSC can also be produced be of the order of the nuclear radius (lf RA). Observation of the onset of CT at a certain energy scale can teach traditional nuclear-physics calculations. The measurement of the onset and magnitude of the CT effect allows

Gent, Universiteit

335

Physical Model Assisted Probability of Detection in Nondestructive Evaluation for Detecting of Flaws in Titanium  

E-Print Network (OSTI)

evaluation (NDE) is used to characterize the status or properties of components or structures without causing any permanent physical damage. The aerospace industry is one important NDE application area where/03 (1989) and NTSB/AAR-90/06 (1990)]. In virtually all NDE applications, there are random effects

336

Introduction to Physical Systems Modelling with Bond Graphs Jan F. Broenink  

E-Print Network (OSTI)

on energy and energy exchange. Analogies between domains are more than just equations being analogous and directed graphs, in which the vertices represent submodels and the edges represent an ideal energy connection between power ports. The vertices are idealised descriptions of physical phenomena

Batlle, Carles

337

Development of a Visualized Modeling and Simulation Environment for Multi-domain Physical Systems  

Science Journals Connector (OSTI)

This article introduces the development of a software environment for both Visualized modeling and simulation of mechatronic multi-domain systems. The environment utilises Modelica language to model multi-doma...

Y. L. Tian; Y. H. Yan; R. M. Parkin…

2008-01-01T23:59:59.000Z

338

A physical approach to metal insulator metal (MIM) tuning capacitor modeling  

E-Print Network (OSTI)

transmission line model. The latter addition proved to be the difference in accurately predicting the shunt capacitor behavior....

Nelson, James Erich

2012-06-07T23:59:59.000Z

339

ELEN 525 Telecommunication Theory and Applications Emphasis is on the physical and data link layers of the OSI telecommunications model. Also  

E-Print Network (OSTI)

ELEN 525 ­ Telecommunication Theory and Applications Overview: Emphasis is on the physical and data link layers of the OSI telecommunications model. Also known as the fiber and packet layers, these topics deal with the physical aspects and lower level protocols of telecommunication networks including

Selmic, Sandra

340

A physical model to estimate snowfall over land using AMSU-B observations  

E-Print Network (OSTI)

. Weinman,3 W. S. Olson,4,5 D.-E. Chang,6 G. Skofronick-Jackson,7 and J. R. Wang7 Received 26 February 2007.-J., J. A. Weinman, W. S. Olson, D.-E. Chang, G. Skofronick-Jackson, and J. R. Wang (2008), A physical; Skofronick-Jackson et al., 2004; Liu, 2004; Noh et al., JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, D09201

Houze Jr., Robert A.

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Eagle Rock Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Eagle Rock Geothermal Facility Eagle Rock Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Eagle Rock Geothermal Facility General Information Name Eagle Rock Geothermal Facility Facility Eagle Rock Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.826770222484°, -122.80002593994° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.826770222484,"lon":-122.80002593994,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

342

The addenda to "Searching for New Physics beyond the Standard Model in Electric Dipole Moment"  

E-Print Network (OSTI)

This is the addenda to the previous review, clarifying the conditions under which theoretical predictions of verious models beyond the standard model are derived. The correct interpretations of those conditions seem to be indispensable for the refinements of model building as well as the mutual reliance in experiment and theory communities. The implications of recent experimental results like the discovery of $126$ GeV Higgs particle and the negative searches for SUSY particles are also discussed.

Fukuyama, T

2015-01-01T23:59:59.000Z

343

Addenda to "Searching for New Physics beyond the Standard Model in Electric Dipole Moment"  

E-Print Network (OSTI)

This is the addenda to the previous review, clarifying the conditions under which theoretical predictions of verious models beyond the standard model are derived. The correct interpretations of those conditions seem to be indispensable for the refinements of model building as well as the mutual reliance in experiment and theory communities. The implications of recent experimental results like the discovery of $126$ GeV Higgs particle and the negative searches for SUSY particles are also discussed.

T. Fukuyama; K. Asahi

2015-01-23T23:59:59.000Z

344

The effects of lithology and initial fault angle in physical models of fault-propagation folds  

E-Print Network (OSTI)

(1998). . . . 12 10 Principal stress directions within a layer moving through a ramp region of a thrust by Wiltschko (1979). . 14 Potential secondary fault trajectories interpreted from maximum shear stresses in theoretical models by Rodgers... Sandstone Data: Lead Configuration B. . 10 Layer Thickness Measurements ? Clay Configuration A . . . 91 11 Limb Dips: Configuration A Clay Models. . . 113 12 Fold Measurements: Configuration A Clay Models . . . 113 13 Sandstone Data: Clay Configuration...

McLain, Christopher Thomas

2012-06-07T23:59:59.000Z

345

Black hole physics, confining solutions of SU(3)-Yang-Mills equations and relativistic models of mesons  

E-Print Network (OSTI)

The black hole physics techniques and results are applied to find the set of the exact solutions of the SU(3)-Yang-Mills equations in Minkowski spacetime in the Lorentz gauge. All the solutions contain only the Coulomb-like or linear in $r$ components of SU(3)-connection. This allows one to obtain some possible exact and approximate solutions of the corresponding Dirac equation that can describe the relativistic bound states. Possible application to the relativistic models of mesons is also outlined.

Yu. P. Goncharov

2001-04-29T23:59:59.000Z

346

Comparison and analysis of reservoir rocks and related clays  

SciTech Connect

A series of instrumental and chemical analyses was made on sedimentary rocks to determine the surface chemical properties of sedimentry rocks and the physical characteristic of the pores. A scanning electron microscope (SEM) with energy dispersive X-ray analytic capability was used to study the morphology of the samples, surface mineral composition and type and location of clays, and to obtain a qualitative estimate of the pore sizes. A centrifuge was used to determine the pore size distributions which are correlated with SEM observations. An atomic absorption spectrophotometer equipped with an inductively coupled plasma for complete spectral analysis was used to obtain analyses of the rocks, clays, and effluents from ion exchange tests. Two of the results are as follows: (1) Sweetwater gas sands have a bimodal pore size distribution composed of pores with a mean diameter of 0.2 microns which is attributed to intergranular spaces and cracks in the expanded laborboratory sample but which will be close under the pressure of the overburden formations, and these Sweetwater sands have a distribution of pores at 2 microns which are solution vugs rather than intergranular porosity since the sand grains are completely packed together with the cementing material due to the high overburden pressures; and (2) Ion-exchange capacities of two rocks were 5.3 meq/kg and 18.0 meq/kg, and the surface areas were 0.9 m/sup 2//g and 2.30 m/sup 2//g, respectively, even though each had almost identical mineral composition, clay type and quantity, and permeability. 7 references, 12 figures, 3 tables.

Crocker, M.E.; Donaldson, E.C.; Marchin, L.M.

1983-10-01T23:59:59.000Z

347

Thermal properties of rocks of the borehole Yaxcopoil-1 (Impact Crater Chicxulub, Mexico)  

Science Journals Connector (OSTI)

......Physics, Rheology, Heat Flow...applied to invert the matrix...scientific deep drilling with dense...for dry and fluid-saturated...for dry and fluid-saturated...cylindrical or flat surfaces of...associated with drilling (and in particular...rock sample fluid-saturation...Yaxcopoil-1 drilling site, Chicxulub......

Yu. Popov; R. Romushkevich; D. Korobkov; S. Mayr; I. Bayuk; H. Burkhardt; H. Wilhelm

2011-02-01T23:59:59.000Z

348

Analysis of the singular vectors of the full-physics FSU Global Spectral Model  

E-Print Network (OSTI)

for the numerical weather prediction models has been the subject of numerous studies. For the barotropic atmosphere-growth estimation in numerical weather prediction and atmospheric predictability (Molteni and Palmer, 1993 predictability of an idealized model. However, singular vector analysis was carried out for the realistic meteo

Aluffi, Paolo

349

Addressing model error through atmospheric stochastic physical parametrizations: impact on the coupled ECMWF seasonal forecasting system  

Science Journals Connector (OSTI)

...parametrizations: impact on the coupled ECMWF...Stochastic modelling and energy-efficient computing...effects of sub-grid-scale variability...present results of the impact of these schemes...and near-surface winds. Positive impact...Stochastic modelling and energy-efficient computing...

2014-01-01T23:59:59.000Z

350

Pore-Level Analysis of the Relationship Between Porosity, Irreducible Water Saturation, and Permeability of Clastic Rocks  

E-Print Network (OSTI)

, and Permeability of Clastic Rocks T. Torskaya, SPE; G. Jin, SPE; and C. Torres-Verd´in, SPE, The University permeability from well- log calculations of porosity and irreducible water satura- tion. However, these models to inves- tigate the influence of these factors on the permeability of clastic rocks for explicit pore

Torres-Verdín, Carlos

351

Connate Water Saturation -Irreducible or Not: the Key to Reliable Hydraulic Rock Typing in Reservoirs Straddling Multiple Capillary Windows  

E-Print Network (OSTI)

of flow capacity. High in-situ capillary pressure causes connate water saturation in reservoir rocks with core-calibrated Timur-Tixier's permeability model, both of which are expressions of porosity method in detecting and ranking reservoir rock types in complex contexts of reservoir saturation

Torres-Verdín, Carlos

352

A Bayesian approach to comparing theoretic models to observational data: A case study from solar flare physics  

E-Print Network (OSTI)

Solar flares are large-scale releases of energy in the solar atmosphere, which are characterized by rapid changes in the hydrodynamic properties of plasma from the photosphere to the corona. Solar physicists have typically attempted to understand these complex events using a combination of theoretical models and observational data. From a statistical perspective, there are many challenges associated with making accurate and statistically significant comparisons between theory and observations, due primarily to the large number of free parameters associated with physical models. This class of ill-posed statistical problem is ideally suited to Baysian methods. In this paper, the solar flare studied by Raftery et al. (2008) is reanalysed using a Baysian framework. This enables us to study the evolution of the flare's temperature, emission measure and energy loss in a statistically self-consistent manner. The Baysian-based techniques confirm that both conductive and non-thermal beam heating play important roles i...

Adamakis, S; Walsh, R W; Gallagher, P T

2011-01-01T23:59:59.000Z

353

Slick Rock Archived Soil & Groundwater Master Reports | Department...  

Office of Environmental Management (EM)

Soil & Groundwater Master Reports Slick Rock - Old North Continent Slick Rock - Union Carbide More Documents & Publications South Valley Archived Soil & Groundwater Master Reports...

354

Rock mechanics issues and research needs in the disposal of wastes in hydraulic fractures  

SciTech Connect

The proposed rock mechanics studies outlined in this document are designed to answer the basic questions concerning hydraulic fracturing for waste disposal. These questions are: (1) how can containment be assured for Oak Ridge or other sites; and (2) what is the capacity of a site. The suggested rock mechanics program consists of four major tasks: (1) numerical modeling, (2) laboratory testing, (3) field testing, and (4) monitoring. These tasks are described.

Doe, T.W.; McClain, W.C.

1984-07-01T23:59:59.000Z

355

A coupled-physics model for the vanadium oxygen fuel cell  

Science Journals Connector (OSTI)

Abstract A stationary two-dimensional model for the vanadium oxygen fuel cell is developed. The model consists of a single cell with two membranes, set up as of two half-cells and an intermediate chamber. The transport and balance of mass, momentum and charge are linked to the electrochemical reaction kinetics of the vanadium species and oxygen. The kinetic model for the cathode half-cell is extended by an empirical logistic function to describe the transient behavior of the half-cell. Additionally, experiments are conducted on a single vanadium oxygen fuel cell with 40 cm2 active membrane area. The experimental results are used to validate the simulation data. The effects of constant current discharging, polarization behavior and different flow rates on the cathode overpotential are studied by means of this model.

F.T. Wandschneider; M. Küttinger; J. Noack; P. Fischer; K. Pinkwart; J. Tübke; H. Nirschl

2014-01-01T23:59:59.000Z

356

A PHYSICS-BASED SOFTWARE FRAMEWORK FOR SUN-EARTH CONNECTION MODELING  

E-Print Network (OSTI)

. The SWMF is a structured collection of software building blocks to develop components for Sun-Earth system modeling, to couple them, and to assemble them into applications. A component is created from the user

Stout, Quentin F.

357

Physical Building Information Modeling for Solar Building Design and Simulation- Annual Report 2012  

E-Print Network (OSTI)

the following tools and datasets: • Modelica as an Object-Oriented Equation-based modeling language • LBL Modelica Buildings Library (LBNL, 2012) as a simulation engine • Dymola as a Modelica modeling and simulation environment • Revit as a BIM authoring... interface, and e. improve visualization of simulation results. 2) With the capabilities of object-oriented programming in Modelica, we could encapsulate third-party energy simulation modules and transfer parameters throughout encapsulated modules...

Yan, W.; Haberl, J.; Clayton, M.; Jeong, W.; Kim, J.; Kota, S.; Alcocer, J.; Dixit, M.

2012-01-01T23:59:59.000Z

358

Development of an Atmospheric Climate Model with Self-Adapting Grid and Physics  

SciTech Connect

This project was targeting the development of a computational approach that would allow resolving cloud processes on small-scales within the framework of the most recent version of the NASA/NCAR Finite-Volume Community Atmospheric Model (FVCAM). The FVCAM is based on the multidimensional Flux-Form Semi-Lagrangian (FFSL) dynamical core and uses a ?vertically Lagrangian? finite-volume (FV) representation of the model equations with a mass-conserving re-mapping algorithm. The Lagrangian coordinate requires a remapping of the Lagrangian volume back to Eulerian coordinates to restore the original resolution and keep the mesh from developing distortions such as layers with overlapping interfaces. The main objectives of the project were, first, to develop the 3D library which allows refinement and coarsening of the model domain in spherical coordinates, and second, to develop a non-hydrostatic code for calculation of the model variables within the refined areas that could be seamlessly incorporated with the hydrostatic finite volume dynamical core when higher resolution is wanted. We also updated the aerosol simulation model in CAM in order to ready the model for the treatment of aerosol/cloud interactions.

Penner, Joyce E. [University of Michigan] University of Michigan

2013-08-10T23:59:59.000Z

359

The accretion history of dark matter halos III: A physical model for the concentration-mass relation  

E-Print Network (OSTI)

We present a semi-analytic, physically motivated model for dark matter halo concentration as a function of halo mass and redshift. The semi-analytic model is intimately based on hierarchical structure formation. It uses an analytic model for the halo mass accretion history, based on extended Press Schechter (EPS) theory, and an empirical relation between concentration and an appropriate definition of formation time obtained through fits to the results of numerical simulations. The resulting concentration-mass relations are tested against the simulations and do not exhibit an upturn at high masses or high redshifts as claimed by recent works. Because our semi-analytic model is based on EPS theory, it can be applied to wide ranges in mass, redshift and cosmology. We predict a change of slope in the z=0 concentration-mass relation at a mass scale of $10^{11}\\rm{M}_{\\odot}$, that is caused by the varying power in the density perturbations. We provide best-fitting expressions of the $c-M$ relations as well as nume...

Correa, Camila A; Schaye, Joop; Duffy, Alan R

2015-01-01T23:59:59.000Z

360

Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Details Activities (5) Areas (2) Regions (0) Abstract: Two hot dry rock (HDR) geothermal energy reservoirs have been created by hydraulic fracturing of Precambrian granitic rock between two wells on the west flank of the Valles Caldera in the Jemez Mountains of northern New Mexico. Heat is extracted by injecting water into one well,

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Rock of Ages | Open Energy Information  

Open Energy Info (EERE)

of Ages of Ages Jump to: navigation, search Name Rock of Ages Facility Rock of Ages Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Rock of Ages Energy Purchaser Rock of Ages Location Graniteville VT Coordinates 44.14668574°, -72.48180896° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.14668574,"lon":-72.48180896,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

362

Definition: Isotopic Analysis- Rock | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Rock Isotopic Analysis- Rock Jump to: navigation, search Dictionary.png Isotopic Analysis- Rock Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.[1] View on Wikipedia Wikipedia Definition References ↑ http://wwwrcamnl.wr.usgs.gov/isoig/isopubs/itchch2.html Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Isotopic_Analysis-_Rock&oldid=687702" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties

363

Thermophysical properties of the Po Basin rocks  

Science Journals Connector (OSTI)

......7 per cent. 4.2.2 Anisotropic rocks Anisotropy of shales, silty shales and siltstones...dolomites). Horizons of shales, silty shales and siltstones are present...the presence of thermally anisotropic sheet silicates, note that......

V. Pasquale; G. Gola; P. Chiozzi; M. Verdoya

2011-07-01T23:59:59.000Z

364

Winner: Hot Rocks | Department of Energy  

Energy Savers (EERE)

a catch. Only a couple of EGS projects have ever produced power, and those are in Germany and France, where the rock is considerably more pliant than Australia's granite...

365

Anomalous quantum and isotope effects in water clusters: Physical phenomenon, model artifact, or bad approximation?  

E-Print Network (OSTI)

Free energy differences $\\Delta F:=F-F_{\\text{prism}}$ are computed for several isomers of water hexamer relative to the "prism" isomer using the self-consistent phonons method. %$\\Delta F:=F-F({prism})$ We consider the isotope effect defined by the quantity $\\delta F_{D_2O}:=\\Delta F_{\\rm D_2O}-\\Delta F_{\\rm H_2O}$, and the quantum effect, $\\delta F_{\\hbar=0}:=\\Delta F_{\\hbar=0}-\\Delta F_{\\rm H_2O}$, and evaluate them using different flexible water models. While both $\\delta F_{D_2O}$ and $\\delta F_{\\hbar=0}$ are found to be rather small for all of the potentials, they are especially small for two of the empirical models, q-TIP4P/F and TTM3-F, compared to q-SPC/Fw and the two {\\it abinitio}-based models, WHBB and HBB2-pol. This qualitative difference in the properties of different water models cannot be explained by one being "more accurate" than the other. We speculate as to whether the observed anomalies are caused by the special properties of water systems, or are an artifact of either the potential energ...

Brown, Sandra E

2014-01-01T23:59:59.000Z

366

Lower mantle composition and temperature from mineral physics and thermodynamic modelling  

Science Journals Connector (OSTI)

......Equations of state, Rev. Mineral. Geochem., 41...Mg,Fe)O, Am. Mineral., 84, 272-276...thermal expansion of lime periclase corundum...7(4), 1-7. Green D.H. , Ringwood A.E., 1963. Mineral assemblages in a model......

E. Mattern; J. Matas; Y. Ricard; J. Bass

2005-03-01T23:59:59.000Z

367

Modification of the Physics and Numerics in a Third-Generation Ocean Wave Model  

Science Journals Connector (OSTI)

The ocean wave model WAM was recently upgraded to improve the coupling between the sea state and the air flow and, in particular, enhance the growth of young wind sea over that of old wind sea. Prior to this change, numerous validations of the ...

Leslie C. Bender

1996-06-01T23:59:59.000Z

368

Sliding Mode Control for Uncertain Thermal SOFC Models with Physical Actuator Constraints  

E-Print Network (OSTI)

Mathematical models for the dynamics of high-temperature Solid Oxide Fuel Cells (SOFCs) can be subdivided in the preheating unit and in the inlet elements of the fuel cell stack module. If the above-mentioned sliding mode differential equations (ODEs). In [3] and [4], interval- based global optimization routines accounting

Appelrath, Hans-Jürgen

369

Searching for particle physics beyond the standard model at the LHC and elsewhere  

SciTech Connect

Following a general introduction to open questions beyond the Standard Model, the prospects for addressing them in the new era opened up by the LHC are reviewed. Sample highlights are given of ways in which the LHC is already probing beyond previous experiments, including the searches for supersymmetry, quark and gluon substructure and microscopic black holes.

Ellis, John [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); King's College London, Department of Physics, Strand, London WC2R 2LS (United Kingdom)

2012-06-20T23:59:59.000Z

370

Simulation of the Beating Heart Based on Physically Modeling aDeformable Balloon  

SciTech Connect

The motion of the beating heart is complex and createsartifacts in SPECT and x-ray CT images. Phantoms such as the JaszczakDynamic Cardiac Phantom are used to simulate cardiac motion forevaluationof acquisition and data processing protocols used for cardiacimaging. Two concentric elastic membranes filled with water are connectedto tubing and pump apparatus for creating fluid flow in and out of theinner volume to simulate motion of the heart. In the present report, themovement of two concentric balloons is solved numerically in order tocreate a computer simulation of the motion of the moving membranes in theJaszczak Dynamic Cardiac Phantom. A system of differential equations,based on the physical properties, determine the motion. Two methods aretested for solving the system of differential equations. The results ofboth methods are similar providing a final shape that does not convergeto a trivial circular profile. Finally,a tomographic imaging simulationis performed by acquiring static projections of the moving shape andreconstructing the result to observe motion artifacts. Two cases aretaken into account: in one case each projection angle is sampled for ashort time interval and the other case is sampled for a longer timeinterval. The longer sampling acquisition shows a clear improvement indecreasing the tomographic streaking artifacts.

Rohmer, Damien; Sitek, Arkadiusz; Gullberg, Grant T.

2006-07-18T23:59:59.000Z

371

Statistical physics of a model binary genetic switch with linear feedback Paolo Visco, Rosalind J. Allen, and Martin R. Evans  

E-Print Network (OSTI)

. Allen, and Martin R. Evans SUPA, School of Physics and Astronomy, The University of Edinburgh, James

Visco, Paolo - Laboratoire Matière et Systèmes Complexes, Université Paris 7

372

Virtual and Physical Prototyping, Vol. 5(3), September 2010, pp. 123 -137 A new muscle fatigue and recovery model and its ergonomics  

E-Print Network (OSTI)

and recovery model and its ergonomics application in human simulation Liang MA1, Damien CHABLAT1, Fouad BENNIS, those ergonomics analysis tools are mainly based on posture analysis techniques, and until now and recovery model, physical fatigue evaluation, objective work evaluation, ergonomics analysis 1 Introduction

Paris-Sud XI, Université de

373

Physical and Computational Modeling for Chemical and Biological Weapons Airflow Applications  

SciTech Connect

There is a need for information on dispersion and infiltration of chemical and biological agents in complex building environments. A recent collaborative study conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) and Bechtel Corporation Research and Development had the objective of assessing computational fluid dynamics (CFD) models for simulation of flow around complicated buildings through a comparison of experimental and numerical results. The test facility used in the experiments was INEEL’s unique large Matched-Index-of-Refraction (MIR) flow system. The CFD code used for modeling was Fluent, a widely available commercial flow simulation package. For the experiment, a building plan was selected to approximately represent an existing facility. It was found that predicted velocity profiles from above the building and in front of the building were in good agreement with the measurements.

McEligot, Donald Marinus; Mc Creery, Glenn Ernest; Pink, Robert John; Barringer, C.; Knight, K. J.

2002-11-01T23:59:59.000Z

374

Standard Model Predictions and New Physics Sensitivity in B->DD Decays  

E-Print Network (OSTI)

An extensive model-independent analysis of B->DD decays is carried out employing SU(3) flavour symmetry, including symmetry-breaking corrections. Several theoretically clean observables are identified which allow for testing the Standard Model. These include the known time-dependent CP asymmetries, the penguin pollution of which can be controlled in this framework, but notably also quasi-isospin relations which are experimentally well accessible and unaffected by symmetry-breaking corrections. Theoretical assumptions can be kept to a minimum and controlled by additional sum rules. Available data are used in global fits to predict the branching ratio for the B0->DsDs decay as well as several CP asymmetries which have not been measured so far, and future prospects are analyzed.

Jung, Martin

2014-01-01T23:59:59.000Z

375

Modeling and simulation for cyber-physical system security research, development and applications.  

SciTech Connect

This paper describes a new hybrid modeling and simulation architecture developed at Sandia for understanding and developing protections against and mitigations for cyber threats upon control systems. It first outlines the challenges to PCS security that can be addressed using these technologies. The paper then describes Virtual Control System Environments (VCSE) that use this approach and briefly discusses security research that Sandia has performed using VCSE. It closes with recommendations to the control systems security community for applying this valuable technology.

Pollock, Guylaine M.; Atkins, William Dee; Schwartz, Moses Daniel; Chavez, Adrian R.; Urrea, Jorge Mario; Pattengale, Nicholas; McDonald, Michael James; Cassidy, Regis H.; Halbgewachs, Ronald D.; Richardson, Bryan T.; Mulder, John C.

2010-02-01T23:59:59.000Z

376

Final Technical Report Modeling the Physical and Biochemical Influence of Ocean  

E-Print Network (OSTI)

POWELLPH.D 29 September 2012 0.013 0.013 0.013 0.013 0.013 0.018 0.018 0.018 0.018 0.018 0.018 OTEC Plant 100 MW 0.01 0.002 0.0015 0.001 ~100 (shallow) #12;Optimizing OTEC Sustainability Using. 29 September 2012 #12;Optimizing OTEC Sustainability Using a Hydrodynamic Modeling Tool DE-EE0003638

377

The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations  

E-Print Network (OSTI)

We present results from thirteen cosmological simulations that explore the parameter space of the "Evolution and Assembly of GaLaxies and their Environments" (EAGLE) simulation project. Four of the simulations follow the evolution of a periodic cube L = 50 cMpc on a side, and each employs a different subgrid model of the energetic feedback associated with star formation. The relevant parameters were adjusted so that the simulations each reproduce the observed galaxy stellar mass function at z = 0.1. Three of the simulations fail to form disc galaxies as extended as observed, and we show analytically that this is a consequence of numerical radiative losses that reduce the efficiency of stellar feedback in high-density gas. Such losses are greatly reduced in the fourth simulation - the EAGLE reference model - by injecting more energy in higher density gas. This model produces galaxies with the observed size distribution, and also reproduces many galaxy scaling relations. In the remaining nine simulations, a sin...

Crain, Robert A; Bower, Richard G; Furlong, Michelle; Schaller, Matthieu; Theuns, Tom; Vecchia, Claudio Dalla; Frenk, Carlos S; McCarthy, Ian G; Helly, John C; Jenkins, Adrian; Rosas-Guevara, Yetli M; White, Simon D M; Trayford, James W

2015-01-01T23:59:59.000Z

378

A physical model for active galactic nuclei with double-peaked broad emission lines  

E-Print Network (OSTI)

The double-peaked broad emission lines are usually thought to be linked to accretion disks, however, the local viscous heating in the line-emitting disk portion is usually insufficient for the observed double-peaked broad-line luminosity in most sources. Our calculations show that only a small fraction (line-emitting disk portion, because the solid angle of the outer disk portion subtended to the inner region of the RIAF is too small. We propose that only those AGNs with sufficient matter above the disk (slowly moving jets or outflows) can scatter enough photons radiated from the inner disk region to the outer line-emitting disk portion. Our model predicts a power-law r-dependent line emissivity with an index ~2.5, which is consistent with \\beta~2-3 required by the model fittings for double-peaked line profiles. Using a sample of radio-loud double-peaked line emitters, we show that the outer disk regions can be efficiently illuminated by the photons scattered from the electron-positron jets with \\gamma_jline is present in strong radio quasars with relativistic jets. For radio-quiet counterparts, slow outflows with Thomson scattering depth ~0.2 can scatter sufficient photons to the line-emitting regions. This model can therefore solve the energy budget problem for double-peaked line emitters.

Xinwu Cao; Ting-Gui Wang

2006-07-19T23:59:59.000Z

379

Modeling and simulation of blast-induced, early-time intracranial wave physics leading to traumatic brain injury.  

SciTech Connect

The objective of this modeling and simulation study was to establish the role of stress wave interactions in the genesis of traumatic brain injury (TBI) from exposure to explosive blast. A high resolution (1 mm{sup 3} voxels), 5 material model of the human head was created by segmentation of color cryosections from the Visible Human Female dataset. Tissue material properties were assigned from literature values. The model was inserted into the shock physics wave code, CTH, and subjected to a simulated blast wave of 1.3 MPa (13 bars) peak pressure from anterior, posterior and lateral directions. Three dimensional plots of maximum pressure, volumetric tension, and deviatoric (shear) stress demonstrated significant differences related to the incident blast geometry. In particular, the calculations revealed focal brain regions of elevated pressure and deviatoric (shear) stress within the first 2 milliseconds of blast exposure. Calculated maximum levels of 15 KPa deviatoric, 3.3 MPa pressure, and 0.8 MPa volumetric tension were observed before the onset of significant head accelerations. Over a 2 msec time course, the head model moved only 1 mm in response to the blast loading. Doubling the blast strength changed the resulting intracranial stress magnitudes but not their distribution. We conclude that stress localization, due to early time wave interactions, may contribute to the development of multifocal axonal injury underlying TBI. We propose that a contribution to traumatic brain injury from blast exposure, and most likely blunt impact, can occur on a time scale shorter than previous model predictions and before the onset of linear or rotational accelerations traditionally associated with the development of TBI.

Ford, Corey C. (University of New Mexico, Albuquerque, NM); Taylor, Paul Allen

2008-02-01T23:59:59.000Z

380

Invisible decay of muonium: Tests of the standard model and searches for new physics  

E-Print Network (OSTI)

In the Standard Model there are several canonical examples of pure leptonic processes involving the muon, the electron and the corresponding neutrinos which are connected by the crossing symmetry: i) the decay of muon, ii) the inverse muon decay, and iii) the annihilation of a muon and an electron into two neutrinos. Although the first two reactions have been observed and measured since long ago, the third process, resulting in the invisible final state, has never been experimentally tested. It may go either directly, or, at low energies, via the annihilation of a muon and an electron from an atomic bound state, called muonium (M=\\mu^+e^-). The M\\to \

S. N. Gninenko; N. V. Krasnikov; V. A. Matveev

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Probing new physics with flavor physics (and probing flavor physics with new physics)  

E-Print Network (OSTI)

This is a written version of a series of lectures aimed at graduate students and postdoctoral fellows in particle theory/string theory/particle experiment familiar with the basics of the Standard Model. We begin with an overview of flavor physics and its implications for new physics. We emphasize the "new physics flavor puzzle". Then, we give four specific examples of flavor measurements and the lessons that have been (or can be) drawn from them: (i) Charm physics: lessons for supersymmetry from the upper bound on $\\Delta m_D$. (ii) Bottom physics: model independent lessons on the KM mechanism and on new physics in neutral B mixing from $S_{\\psi K_S}$. (iii) Top physics and beyond: testing minimal flavor violation at the LHC. (iv) Neutrino physics: interpreting the data on neutrino masses and mixing within flavor models.

Yosef Nir

2007-08-14T23:59:59.000Z

382

Economic predictions for heat mining : a review and analysis of hot dry rock (HDR) geothermal energy technology  

E-Print Network (OSTI)

The main objectives of this study were first, to review and analyze several economic assessments of Hot Dry Rock (HDR) geothermal energy systems, and second, to reformulate an economic model for HDR with revised cost components.

Tester, Jefferson W.

1990-01-01T23:59:59.000Z

383

DEPARTMENT OF PHYSICS Physics 21900  

E-Print Network (OSTI)

DEPARTMENT OF PHYSICS Syllabus Physics 21900 Physics for Architecture Students Designation suggested material: Giancoli, Physics, Principles with Applications (6th ed.) (required), Prentice Hall Giancoli, Physics, Principles with Applications, Student Guide (6th ed.) (optional), Prentice Hall Course

Lombardi, John R.

384

DEPARTMENT OF PHYSICS Physics 20300  

E-Print Network (OSTI)

DEPARTMENT OF PHYSICS Syllabus Physics 20300 General Physics Designation: Required Undergraduate Catalog description: For majors in the life sciences (biology, medicine, dentistry, psychology, physical therapy) and for liberal arts students. Fundamental ideas and laws of physics from mechanics to modern

Lombardi, John R.

385

ChemCam rock laser for Mars Science Laboratory "Curiosity"  

ScienceCinema (OSTI)

Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. The Flight Model was shipped in August, 2010 for installation on the rover at JPL. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components were concurrently assembled at Los Alamos and in Toulouse, France. The Mars Science Laboratory is scheduled to launch in 2011. Animations courtesy of JPL/NASA.

Wiens, Roger

2014-08-12T23:59:59.000Z

386

Numerical and physical modelling of microstructure evolution – new approach to the development and optimisation of cold rolling and annealing technology of IF steel strips  

Science Journals Connector (OSTI)

Modelling of cold rolling and continuous annealing of the IF steel is the objective of the paper. Experimental plastometric tests were performed to determine flow stress in the temperature range characteristic for cold rolling. Physical simulations of the annealing were performed at various heating rates to various temperatures. The kinetics of recrystallization model based on the additivity rule was identified on the basis of the experimental results. In connection with the finite element model of cold rolling, the complex model for the whole manufacturing cycle is obtained. This model can be used for optimisation of cold rolling and annealing technology of IF steel strips.

R. KUZIAK; R. MOLENDA; M. PIETRZYK

2008-01-01T23:59:59.000Z

387

Assimilation of surface data in a one-dimensional physical-biogeochemical model of the surface ocean: 2. Adjusting a simple trophic model to chlorophyll, temperature, nitrate, and pCO{sub 2} data  

SciTech Connect

This paper builds on a previous work which produced a constrained physical-biogeochemical model of the carbon cycle in the surface ocean. Three issues are addressed: (1) the results of chlorophyll assimilation using a simpler trophic model, (2) adjustment of parameters using the simpler model and data other than surface chlorophyll concentrations, and (3) consistency of the main carbon fluxes derived by the simplified model with values from the more complex model. A one-dimensional vertical model coupling the physics of the ocean mixed layer and a description of biogeochemical processes with a simple trophic model was used to address these issues. Chlorophyll concentration, nitrate concentration, and temperature were used to constrain the model. The surface chlorophyll information was shown to be sufficient to constrain primary production within the photic layer. The simultaneous assimilation of chlorophyll, nitrate, and temperature resulted in a significant improvement of model simulation for the data used. Of the nine biological and physical parameters which resulted in significant variations of the simulated chlorophyll concentration, seven linear combinations of the mode parameters were constrained. The model fit was an improvement on independent surface chlorophyll and nitrate data. This work indicates that a relatively simple biological model is sufficient to describe carbon fluxes. Assimilation of satellite or climatological data coulc be used to adjust the parameters of the model for three-dimensional models. It also suggests that the main carbon fluxes driving the carbon cycle within surface waters could be derived regionally from surface information. 38 refs., 16 figs., 7 tabs.

Prunet, P.; Minster, J.F.; Echevin, V. [Laboratoire CNES-CNRS, Toulouse (France)] [and others] [Laboratoire CNES-CNRS, Toulouse (France); and others

1996-03-01T23:59:59.000Z

388

Compressed air energy storage monitoring to support refrigerated mined rock cavern technology.  

SciTech Connect

This document is the final report for the Compressed Air Energy Storage Monitoring to Support Refrigerated-Mined Rock Cavern Technology (CAES Monitoring to Support RMRCT) (DE-FC26-01NT40868) project to have been conducted by CAES Development Co., along with Sandia National Laboratories. This document provides a final report covering tasks 1.0 and subtasks 2.1, 2.2, and 2.5 of task 2.0 of the Statement of Project Objectives and constitutes the final project deliverable. The proposed work was to have provided physical measurements and analyses of large-scale rock mass response to pressure cycling. The goal was to develop proof-of-concept data for a previously developed and DOE sponsored technology (RMRCT or Refrigerated-Mined Rock Cavern Technology). In the RMRCT concept, a room and pillar mine developed in rock serves as a pressure vessel. That vessel will need to contain pressure of about 1370 psi (and cycle down to 300 psi). The measurements gathered in this study would have provided a means to determine directly rock mass response during cyclic loading on the same scale, under similar pressure conditions. The CAES project has been delayed due to national economic unrest in the energy sector.

Lee, Moo Yul; Bauer, Stephen J.

2004-06-01T23:59:59.000Z

389

A Mathematical Study to Select Fractionation Regimen Based on Physical Dose Distribution and the Linear-Quadratic Model  

SciTech Connect

Purpose: Hypofractionated irradiation is often used in precise radiotherapy instead of conventional multifractionated irradiation. We propose a novel mathematical method for selecting a hypofractionated or multifractionated irradiation regimen based on physical dose distribution adding to biologic consideration. Methods and Materials: The linear-quadratic model was used for the radiation effects on tumor and normal tissues, especially organs at risk (OARs). On the basis of the assumption that the OAR receives a fraction of the dose intended for the tumor, the minimization problem for the damage effect on the OAR was treated under the constraint that the radiation effect on the tumor is fixed. Results: For an N-time fractionated irradiation regimen, the constraint of tumor lethality was described by an N-dimensional hypersphere. The total dose of the fractionated irradiations was considered for minimizing the damage effect on the OAR under the hypersphere condition. It was found that the advantage of hypofractionated or multifractionated irradiation therapies depends on the magnitude of the ratio of {alpha}/{beta} parameters for the OAR and tumor in the linear-quadratic model and the ratio of the dose for the OAR and tumor. Conclusions: Our mathematical method shows that multifractionated irradiation with a constant dose is better if the ratio of {alpha}/{beta} for the OAR and tumor is less than the ratio of the dose for the OAR and tumor, whereas hypofractionated irradiation is better otherwise.

Mizuta, Masahiro [Laboratory of Advanced Data Science, Information Initiative Center, Hokkaido University, Sapporo (Japan)] [Laboratory of Advanced Data Science, Information Initiative Center, Hokkaido University, Sapporo (Japan); Takao, Seishin [Faculty of Engineering, Hokkaido University, Sapporo (Japan)] [Faculty of Engineering, Hokkaido University, Sapporo (Japan); Date, Hiroyuki, E-mail: date@hs.hokudai.ac.jp [Faculty of Health Sciences, Hokkaido University, Sapporo (Japan)] [Faculty of Health Sciences, Hokkaido University, Sapporo (Japan); Kishimoto, Naoki [Graduate School of Information Science and Technology, Hokkaido University, Sapporo (Japan)] [Graduate School of Information Science and Technology, Hokkaido University, Sapporo (Japan); Sutherland, Kenneth L.; Onimaru, Rikiya; Shirato, Hiroki [Graduate School of Medicine, Hokkaido University, Sapporo (Japan)] [Graduate School of Medicine, Hokkaido University, Sapporo (Japan)

2012-11-01T23:59:59.000Z

390

On a non-linear sigma model of knotted relaxed states far from thermodynamic equilibrium in plasma physics and beyond  

E-Print Network (OSTI)

We show that a Faddeev-Niemi non-linear sigma model describes in the long wavelength limit a wide class of steady-state, knotted physical systems far from thermodynamic equilibrium which are stable against perturbations of temperature and interact weakly with the external world. In these systems temperature gradients are negligible, inertial effects are negligible in comparison with diffusion effects, entropy is mainly produced through Joule and-or viscous heating, the macroscopic state is described by specifying a unit vector at each point, and the Gauss linking number of this unit vector is lower than a threshold. In fluids and plasmas, the model describes filamentary structures which adjust themselves in order to offer minimum resistance to the medium embedding them and to the electric currents (if any) flowing across them; in the latter case, Gauss linking number is related to magnetic helicity. Both n and the relative velocity of the filament with respect to the medium are approximately Double Beltrami v...

Di Vita, Andrea

2014-01-01T23:59:59.000Z

391

Control-theoretic cyber-physical system modeling and synthesis: A case study of an active direct methanol fuel cell  

Science Journals Connector (OSTI)

A joint optimization of the physical system and the cyber world is one of the key problems in the design of a cyber-physical system (CPS). The major mechanical forces and/or chemical reactions in a plant are commonly modified by actuators in the balance-of-plant ... Keywords: Balance of plants system, Cyber-physical systems, Direct methanol fuel cell

Donghwa Shin; Jaehyun Park; Younghyun Kim; Jaeam Seo; Naehyuck Chang

2012-12-01T23:59:59.000Z

392

A Physically Based Framework for Modelling the Organic Fractionation of Sea Spray Aerosol from Bubble Film Langmuir Equilibria  

SciTech Connect

The presence of a large fraction of organic matter in primary sea spray aerosol (SSA) can strongly affect its cloud condensation nuclei activity and interactions with marine clouds. Global climate models require new parameterizations of the SSA composition in order to improve the representation of these processes. Existing proposals for such a parameterization use remotely-sensed chlorophyll-a concentrations as a proxy for the biogenic contribution to the aerosol. However, both observations and theoretical considerations suggest that existing relationships with chlorophyll-a, derived from observations at only a few locations, may not be representative for all ocean regions. We introduce a novel framework for parameterizing the fractionation of marine organic matter into SSA based on a competitive Langmuir adsorption equilibrium at bubble surfaces. Marine organic matter is partitioned into classes with differing molecular weights, surface excesses, and Langmuir adsorption parameters. The classes include a lipid-like mixture associated with labile dissolved organic carbon (DOC), a polysaccharide-like mixture associated primarily with semi-labile DOC, a protein-like mixture with concentrations intermediate between lipids and polysaccharides, a processed mixture associated with recalcitrant surface DOC, and a deep abyssal humic-like mixture. Box model calculations have been performed for several cases of organic adsorption to illustrate the underlying concepts. We then apply the framework to output from a global marine biogeochemistry model, by partitioning total dissolved organic carbon into several classes of macromolecule. Each class is represented by model compounds with physical and chemical properties based on existing laboratory data. This allows us to globally map the predicted organic mass fraction of the nascent submicron sea spray aerosol. Predicted relationships between chlorophyll-\\textit{a} and organic fraction are similar to existing empirical parameterizations, but can vary between biologically productive and non-productive regions, and seasonally within a given region. Major uncertainties include the bubble film thickness at bursting and the variability of organic surfactant activity in the ocean, which is poorly constrained. In addition, marine colloids and cooperative adsorption of polysaccharides may make important contributions to the aerosol, but are not included here. This organic fractionation framework is an initial step towards a closer linking of ocean biogeochemistry and aerosol chemical composition in Earth system models. Future work should focus on improving constraints on model parameters through new laboratory experiments or through empirical fitting to observed relationships in the real ocean and atmosphere, as well as on atmospheric implications of the variable composition of organic matter in sea spray.

Burrows, Susannah M.; Ogunro, O.; Frossard, Amanda; Russell, Lynn M.; Rasch, Philip J.; Elliott, S.

2014-12-19T23:59:59.000Z

393

Rock-brine chemical interactions. Final report  

SciTech Connect

The results of experimental interaction of powdered volcanic rock with aqueous solutions are presented at temperatures from 200 to 400/sup 0/C, 500 to 1000 bars fluid pressure, with reaction durations of approximately 30 days under controlled laboratory conditions. The aim of this research is to develop data on the kinetics and equilibria of rock solution interactions that will provide insight into the complex geochemical processes attending geothermal reservoir development, stimulation, and reinjection. The research was done in the Stanford Hydrothermal Lab using gold cell equipment of the Dickson design. This equipment inverts the solution rock mixture several times a minute to ensure thorough mixing. Solution samples were periodically withdrawn without interruption of the experimental conditions. The data from these experiments suggests a path dependent series of reactions by which geothermal fluids might evolve from meteoric or magmatic sources.

Not Available

1982-02-01T23:59:59.000Z

394

Exergy analysis of a rock bed thermal storage system  

Science Journals Connector (OSTI)

In this paper, a thermodynamic procedure is presented to analyse energy and exergy balances of a rock bed thermal storage system. The thermal behaviour is described by means of a control volume that includes three subsystems: the solar collectors, the fluid distribution system and the storage chamber. Solar-to-thermal energy conversion was obtained by means of a solar collector at a fixed airflow rate. The final purpose of the method is to determine how well the thermodynamic modelling fits the real data obtained experimentally from the prototype under normal operating conditions.

J.J. Navarrete-Gonzalez; J.G. Cervantes-de Gortari; E. Torres-Reyes

2008-01-01T23:59:59.000Z

395

B Physics at LHCb  

E-Print Network (OSTI)

LHCb is a dedicated detector for b physics at the LHC. In this article we present a concise review of the detector design and performance together with the main physics goals and their relevance for a precise test of the Standard Model and search of New Physics beyond it.

Monica Pepe Altarelli; Frederic Teubert

2008-02-13T23:59:59.000Z

396

Assessing the CAM5 Physics Suite in the WRF-Chem Model: Implementation, Resolution Sensitivity, and a First Evaluation for a Regional Case Study  

SciTech Connect

A suite of physical parameterizations (deep and shallow convection, turbulent boundary layer, aerosols, cloud microphysics, and cloud fraction) from the global climate model Community Atmosphere Model version 5.1 (CAM5) has been implemented in the regional model Weather Research and Forecasting with chemistry (WRF-Chem). A downscaling modeling framework with consistent physics has also been established in which both global and regional simulations use the same emissions and surface fluxes. The WRF-Chem model with the CAM5 physics suite is run at multiple horizontal resolutions over a domain encompassing the northern Pacific Ocean, northeast Asia, and northwest North America for April 2008 when the ARCTAS, ARCPAC, and ISDAC field campaigns took place. These simulations are evaluated against field campaign measurements, satellite retrievals, and ground-based observations, and are compared with simulations that use a set of common WRF-Chem Parameterizations. This manuscript describes the implementation of the CAM5 physics suite in WRF-Chem provides an overview of the modeling framework and an initial evaluation of the simulated meteorology, clouds, and aerosols, and quantifies the resolution dependence of the cloud and aerosol parameterizations. We demonstrate that some of the CAM5 biases, such as high estimates of cloud susceptibility to aerosols and the underestimation of aerosol concentrations in the Arctic, can be reduced simply by increasing horizontal resolution. We also show that the CAM5 physics suite performs similarly to a set of parameterizations commonly used in WRF-Chem, but produces higher ice and liquid water condensate amounts and near-surface black carbon concentration. Further evaluations that use other mesoscale model parameterizations and perform other case studies are needed to infer whether one parameterization consistently produces results more consistent with observations.

Ma, Po-Lun; Rasch, Philip J.; Fast, Jerome D.; Easter, Richard C.; Gustafson, William I.; Liu, Xiaohong; Ghan, Steven J.; Singh, Balwinder

2014-05-06T23:59:59.000Z

397

Coalescing neutron stars - a step towards physical models III. Improved numerics and different neutron star masses and spins  

E-Print Network (OSTI)

(Abridged) In this paper we present a compilation of results from our most advanced neutron star merger simulations, including a description of the employed numerical procedures and a more complete overview over a large number of computed models. The three-dimensional hydrodynamic simulations were done with a code based on the Piecewise Parabolic Method with up to five levels of nested Cartesian grids. The simulations are basically Newtonian, but gravitational-wave emission and the corresponding back-reaction are taken into account. The use of a physical nuclear equation of state allows us to follow the thermodynamic history of the stellar medium and to compute the energy and lepton number loss due to the emission of neutrinos. The computed models differ concerning the neutron star masses and mass ratios, the neutron star spins, the numerical resolution expressed by the cell size of the finest grid and the number of grid levels, and the calculation of the temperature from the solution of the entropy equation instead of the energy equation. Our simulations show that the details of the gravitational-wave emission are still sensitive to the numerical resolution, even in our highest-quality calculations. The amount of mass which can be ejected from neutron star mergers depends strongly on the angular momentum of the system. Our results do not support the initial conditions of temperature and proton-to-nucleon ratio assumed in recent work for producing a solar r-process pattern for nuclei around and above the A approx 130 peak. The improved models confirm our previous conclusion that gamma-ray bursts are not powered by neutrino emission during the dynamical phase of the merging of two neutron stars.

M. Ruffert; H. -Th. Janka

2001-06-13T23:59:59.000Z

398

Toward a more physical representation of precipitation scavenging in global chemistry models: cloud overlap and ice physics and their impact on tropospheric ozone  

E-Print Network (OSTI)

more of a test of model climatology. In all cases, the HNO 3results to a gridded air- craft climatology is the issue of

Neu, J. L; Prather, M. J

2012-01-01T23:59:59.000Z

399

Category:Little Rock, AR | Open Energy Information  

Open Energy Info (EERE)

AR AR Jump to: navigation, search Go Back to PV Economics By Location Media in category "Little Rock, AR" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Little Rock AR Entergy Arkansas Inc.png SVFullServiceRestauran... 71 KB SVHospital Little Rock AR Entergy Arkansas Inc.png SVHospital Little Rock... 69 KB SVLargeHotel Little Rock AR Entergy Arkansas Inc.png SVLargeHotel Little Ro... 70 KB SVLargeOffice Little Rock AR Entergy Arkansas Inc.png SVLargeOffice Little R... 71 KB SVMediumOffice Little Rock AR Entergy Arkansas Inc.png SVMediumOffice Little ... 68 KB SVMidriseApartment Little Rock AR Entergy Arkansas Inc.png SVMidriseApartment Lit... 70 KB SVOutPatient Little Rock AR Entergy Arkansas Inc.png SVOutPatient Little Ro...

400

3D MHD modelling of the glidarc behaviour of a low current high voltage DC plasma torch Journal of Physics D: Applied Physics  

E-Print Network (OSTI)

in terms of: global behaviour, arc length, mean voltage and glidarc frequency. 1. Introduction The non-thermal on magnetohydrodynamic (MHD) modelling of atmospheric pressure direct current (DC) plasma torch operating at low current3D MHD modelling of the glidarc behaviour of a low current ­ high voltage DC plasma torch Journal

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Predicting the transport properties of sedimentary rocks from microgeometry  

SciTech Connect

We investigate through analysis and experiment how pore geometry, topology, and the physics and chemistry of mineral-fluid and fluid-fluid interactions affect the flow of fluids through consolidated/partially consolidated porous media. Our approach is to measure fluid permeability and electrical conductivity of rock samples using single and multiple fluid phases that can be frozen in place (wetting and nonwetting) over a range of pore pressures. These experiments are analyzed in terms of the microphysics and microchemistry of the processes involved to provide a theoretical basis for the macroscopic constitutive relationships between fluid-flow and geophysical properties that we develop. The purpose of these experiments and their analyses is to advance the understanding of the mechanisms and factors that control fluid transport in porous media. This understanding is important in characterizing porous media properties and heterogeneities before simulating and monitoring the progress of complex flow processes at the field scale in permeable media.

Schlueter, E.M.

1993-01-01T23:59:59.000Z

402

Predicting the transport properties of sedimentary rocks from microgeometry  

SciTech Connect

The author investigates through analysis and experiment how pore geometry, topology, and the physics and chemistry of mineral-fluid and fluid-fluid interactions affect the flow of fluids through consolidated/partially consolidated porous media. The approach is to measure fluid permeability and electrical conductivity of rock samples using single and multiple fluid phases that can be frozen in place (wetting and nonwetting) over a range of pore pressures. These experiments are analyzed in terms of the microphysics and microchemistry of the processes involved to provide a theoretical basis for the macroscopic constitutive relationships between fluid-flow and geophysical properties that the authors develop. The purpose of these experiments and their analyses is to advance the understanding of the mechanisms and factors that control fluid transport in porous media. This understanding is important in characterizing porous media properties and heterogeneities before simulating and monitoring the progress of complex flow processes at the field scale in permeable media.

Schlueter, E.M.

1995-02-01T23:59:59.000Z

403

Criticality in the two-dimensional random-bond Ising model Department of Physics, University of California, Santa Barbara, California 93106  

E-Print Network (OSTI)

Criticality in the two-dimensional random-bond Ising model Sora Cho Department of Physics of California, Santa Barbara, California 93106 Received 25 July 1996 The two-dimensional 2D random-bond Ising temperatures and disorder strength. We study the associated critical properties, by mapping the random 2D Ising

404

A physically-based heat pump model was connected to an optimization program to form a computer code for use in the design of high-efficiency  

E-Print Network (OSTI)

#12;ABSTRACT A physically-based heat pump model was connected to an optimization program to form a computer code for use in the design of high-efficiency heat pumps. The method used allows efficiency of conventional heat pumps, ten variables were optimized while heating capacity was fixed

Oak Ridge National Laboratory

405

Panel Discussion: Does Chemical Evidence Give Diagnostic Tests for the Credibility of Physical Models of the Origin of the Solar System?  

Science Journals Connector (OSTI)

29 July 1988 research-article Panel Discussion: Does Chemical Evidence Give Diagnostic Tests for the Credibility of Physical Models of the Origin of the Solar System? M. M. Woolfson G. J. Wasserburg P. Pellas G. Turner H. Wanke J. T...

1988-01-01T23:59:59.000Z

406

Searches for physics beyond the standard model in proton-proton interactions at {radical}s = 7 TeV in the CMS experiment at the LHC  

SciTech Connect

The results obtained in the CMS experiment at the LHC from searches for various physics phenomena beyond the Standard Model in proton-proton interactions at the c.m. energy of 7 TeV are presented. The respective analysis is based on data measured in the CMS experiment over the period spanning 2010 and 2011.

Shmatov, S. V., E-mail: shmatov@cern.ch [Joint Institute for Nuclear Research (Russian Federation)

2013-09-15T23:59:59.000Z

407

Observations and Modeling of Long Negative Laboratory Discharges: Identifying the Physics Important to an Electrical Spark in Air  

SciTech Connect

There are relatively few reports in the literature focusing on negative laboratory leaders. Most of the reports focus exclusively on the simpler positive laboratory leader that is more commonly encountered in high voltage engineering [Gorin et al., 1976; Les Renardieres Group, 1977; Gallimberti, 1979; Domens et al., 1994; Bazelyan and Raizer 1998]. The physics of the long, negative leader and its positive counterpart are similar; the two differ primarily in their extension mechanisms [Bazelyan and Raizer, 1998]. Long negative sparks extend primarily by an intermittent process termed a 'step' that requires the development of secondary leader channels separated in space from the primary leader channel. Long positive sparks typically extend continuously, although, under proper conditions, their extension can be temporarily halted and begun again, and this is sometimes viewed as a stepping process. However, it is emphasized that the nature of positive leader stepping is not like that of negative leader stepping. There are several key observational studies of the propagation of long, negative-polarity laboratory sparks in air that have aided in the understanding of the stepping mechanisms exhibited by such sparks [e.g., Gorin et al., 1976; Les Renardieres Group, 1981; Ortega et al., 1994; Reess et al., 1995; Bazelyan and Raizer, 1998; Gallimberti et al., 2002]. These reports are reviewed below in Section 2, with emphasis placed on the stepping mechanism (the space stem, pilot, and space leader). Then, in Section 3, reports pertaining to modeling of long negative leaders are summarized.

Biagi, C J; Uman, M A

2011-12-13T23:59:59.000Z

408

THE PHYSICAL CONDITIONS IN STARBURSTS DERIVED FROM BAYESIAN FITTING OF MID-INFRARED SPECTRAL ENERGY DISTRIBUTION MODELS: 30 DORADUS AS A TEMPLATE  

SciTech Connect

To understand and interpret the observed spectral energy distributions (SEDs) of starbursts, theoretical or semi-empirical SED models are necessary. Yet, while they are well founded in theory, independent verification and calibration of these models, including the exploration of possible degeneracies between their parameters, are rarely made. As a consequence, a robust fitting method that leads to unique and reproducible results has been lacking. Here we introduce a novel approach based on Bayesian analysis to fit the Spitzer-Infrared Spectrometer spectra of starbursts using the SED models proposed by Groves et al.. We demonstrate its capabilities and verify the agreement between the derived best-fit parameters and actual physical conditions by modeling the nearby, well-studied, giant H II region 30 Doradus in the LMC. The derived physical parameters, such as cluster mass, cluster age, interstellar medium pressure, and covering fraction of photodissociation regions, are representative of the 30 Doradus region. The inclusion of the emission lines in the modeling is crucial to break degeneracies. We investigate the limitations and uncertainties by modeling subregions, which are dominated by single components, within 30 Doradus. A remarkable result for 30 Doradus in particular is a considerable contribution to its mid-infrared spectrum from hot ({approx}300 K) dust. The demonstrated success of our approach will allow us to derive the physical conditions in more distant, spatially unresolved starbursts.

MartInez-Galarza, J. R.; Groves, B.; Brandl, B. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 CA Leiden (Netherlands); De Messieres, G. E.; Indebetouw, R. [Department of Astronomy, University of Virginia, P.O. Box 3818, Charlottesville, VA (United States); Dopita, M. A. [Mount Stromlo and Siding Spring Observatories, Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia)

2011-09-10T23:59:59.000Z

409

Rim Rock Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Rim Rock Wind Farm Rim Rock Wind Farm Jump to: navigation, search Name Rim Rock Wind Farm Facility Rim Rock Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NaturEner Developer NaturEner Energy Purchaser San Diego Gas & Electric Location Glacier and Toole Counties MT Coordinates 48.779564°, -112.061291° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.779564,"lon":-112.061291,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Storage capacity in hot dry rock reservoirs  

DOE Patents (OSTI)

A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

Brown, Donald W. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

411

Thermophysical properties of the Po Basin rocks  

Science Journals Connector (OSTI)

......W.E., AAPG, Memoir 1. Hadgu T. , Clinton C.L., Bean J.E., 2007. Determination of heat capacity of Yucca Mountain stratigraphic layer, Int. J. Rock Mech. Min. Sci., 44, 1022-1034. Hamilton E. , 1976. Variations of density......

V. Pasquale; G. Gola; P. Chiozzi; M. Verdoya

2011-07-01T23:59:59.000Z

412

Hot-dry-rock geothermal resource 1980  

SciTech Connect

The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

Heiken, G.; Goff, F.; Cremer, G. (ed.)

1982-04-01T23:59:59.000Z

413

E-Print Network 3.0 - archean metavolcanic rocks Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

(Krner, 1985). However, the tectonic setting and age of metavolcanic rocks in Egypt are poorly... metavolcanic rocks. Metavolcanic rocks in Egypt were described by...

414

Modeling of coupled heat transfer and reactive transport processes in porous media: Application to seepage studies at Yucca Mountain, Nevad a  

E-Print Network (OSTI)

Fractured Rock of Yucca Mountain, Nevada: Heterogeneity andfractured rocks of Yucca Mountain have been extensivelyHydrothermal Flow at Yucca Mountain, Part I: Modeling and

Mukhopadhyay, S.; Sonnenthal, E.L.; Spycher, N.

2008-01-01T23:59:59.000Z

415

Does roughening of rock-fluid-rock interfaces emerge from a stress-induced instability?  

Science Journals Connector (OSTI)

Non-planar solid-fluid-solid interfaces under stress are very common in many industrial and natural materials. For example, in the Earth’s crust, many rough and wavy interfaces can be observed in rocks in a wi...

E. Bonnetier; C. Misbah; F. Renard; R. Toussaint…

2009-01-01T23:59:59.000Z

416

@Why Physics Comprehensive Physics Major.  

E-Print Network (OSTI)

@Why Physics Comprehensive Physics Major. From the basic laws of physics to the resulting emergent behavior, physics studies what the universe is made of and how it works. As a Physics major that surrounds us, to the structure and evolution of the entire universe. We offer three degrees in Physics

Yoo, S. J. Ben

417

VancouverParksville White RockNew Westminster  

E-Print Network (OSTI)

Courtenay VancouverParksville Abbotsford White RockNew Westminster Squamish Chilliwack Port McNeill Powell

418

MicroRNA-340 suppresses osteosarcoma tumor growth and metastasis by directly targeting ROCK1  

SciTech Connect

Highlights: •miR-340 is downregulated in OS cell lines and tissues. •miR-340 suppresses OS cell proliferation, migration and invasion. •miR-340 suppresses tumor growth and metastasis of OS cells in nude mice. •ROCK1 is a target gene of miR-340. •ROCK1 is involved in miR-340-induced suppression of OS cell proliferation, migration and invasion. -- Abstract: MicroRNAs (miRNAs) play key roles in cancer development and progression. In the present study, we investigated the role of miR-340 in the progression and metastasis of osteosarcoma (OS). Our results showed that miR-340 was frequently downregulated in OS tumors and cell lines. Overexpression of miR-340 in OS cell lines significantly inhibited cell proliferation, migration, and invasion in vitro, and tumor growth and metastasis in a xenograft mouse model. ROCK1 was identified as a target of miR-340, and ectopic expression of miR-340 downregulated ROCK1 by direct binding to its 3? untranslated region. siRNA-mediated silencing of ROCK1 phenocopied the effects of miR-340 overexpression, whereas restoration of ROCK1 in miR-340-overexpressing OS cells reversed the suppressive effects of miR-340. Together, these findings indicate that miR-340 acts as a tumor suppressor and its downregulation in tumor tissues may contribute to the progression and metastasis of OS through a mechanism involving ROCK1, suggesting miR-340 as a potential new diagnostic and therapeutic target for the treatment of OS.

Zhou, Xin; Wei, Min; Wang, Wei, E-mail: rjwangwei@126.com

2013-08-09T23:59:59.000Z

419

Internal Structure of the Green Lake 5 Rock Glacier, Colorado Front Range, USA M. Leopold ,1* M.W. Williams ,2  

E-Print Network (OSTI)

Internal Structure of the Green Lake 5 Rock Glacier, Colorado Front Range, USA M. Leopold ,1* M tomography--were used to develop a detailed subsurface model of the Green Lake 5 rock glacier in the Colorado (Corte, 1976; Clow et al., 2003). Recently, Azo´car and Brenning (2010) and Brenning and Azo´car (2010

Williams, Mark W.

420

Kaon physics  

E-Print Network (OSTI)

At present, the main topics addressed by kaon physics are the unitarity test of CKM matrix via precision measurements of the Cabibbo angle as well as precision tests of discrete symmetries: in particular, study of possible CPT violations in a model-independent way through the Bell-Steinberger relation, or through the measurement of charge asymmetries. Other interesting topics are related to the test of predictions from chiral perturbation theory. Also status and prospects of the $K^\\pm \\to \\pi^\\pm\

B. Sciascia

2006-10-14T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Assimilation of surface data in a one-dimensional physical-biogeochemical model of the surface ocean: 1. Method and preliminary results  

SciTech Connect

This paper describes a method to estimate parameters of complex ocean carbon cycle models and to estimate carbon fluxes other than primary production from satellite data. A one-dimensional vertical model, which couples the physics of the ocean mixed layer and biogeochemical processes, was used to simulate the carbon cycle. Variational assimilation was applied to globally adjust the model solution. Consistent results were found for the grazing rate, the phytoplankton mortality rate, and the minimum concentration of zooplankton in winter. Some carbon fluxes appeared to be robustly constrained; however, primary production is apparently underestimated. The study results suggest that a simplified biological model would adequately the seasonal evolution of surface chlorophyll concentration, and would be more adapted to transform satellite data into carbon fluxes. Analysis of model behavior during assimilation experiments also provided information for other possible simplifications of the trophic model. 49 refs., 17 figs., 5 tabs.

Prunet, P.; Minster, J.F. [Laboratoire CNES-CNRS, Toulouse (France)] [Laboratoire CNES-CNRS, Toulouse (France); Ruiz-Pino, D. [Universite Pierre et Marie Curie, Paris (France)] [Universite Pierre et Marie Curie, Paris (France)

1996-03-01T23:59:59.000Z

422

Understanding Through-Composition in Post-Rock, Math-Metal, and other Post-Millennial Rock Genres  

E-Print Network (OSTI)

Since the dawn of experimental rock’s second coming in the new millennium, experimental artists have begun distancing themselves from Top-40 artists through formal structures that eschew recapitulatory verse/chorus ...

Osborn, Brad

2011-01-01T23:59:59.000Z

423

Assistant Director Physical Science and Engineering  

E-Print Network (OSTI)

Genomics Plant Genome Physics of the Universe Education & Workforce Dev. Research Business Models Global

424

Multi-view modeling and pragmatics in 2020: position paper on designing complex cyber-physical systems  

Science Journals Connector (OSTI)

Multi-view modeling refers to a system designer constructing distinct and separate models of the same system to model different (semantic) aspects of a system. Modeling pragmatics also entails constructing different views of a system, but ...

Reinhard von Hanxleden; Edward A. Lee; Christian Motika; Hauke Fuhrmann

2012-03-01T23:59:59.000Z

425

Quantum theory, gravity, and the standard model of particle physics : using the hints of today to build the final theory of tomorrow  

E-Print Network (OSTI)

When a mountaineer is ascending one of the great peaks of the Himalayas she knows that an entirely new vista awaits her at the top, whose ramifications will be known only after she gets there. Her immediate goal though, is to tackle the obstacles on the way up, and reach the summit. In a similar vein, one of the immediate goals of contemporary theoretical physics is to build a quantum, unified description of general relativity and the standard model of particle physics. Once that peak has been reached, a new (yet unknown) vista will open up. In this essay I propose a novel approach towards this goal. One must address and resolve a fundamental unsolved problem in the presently known formulation of quantum theory : the unsatisfactory presence of an external classical time in the formulation. Solving this problem takes us to the very edge of theoretical physics as we know it today!

T. P. Singh

2010-01-19T23:59:59.000Z

426

Cosmology and New Physics  

E-Print Network (OSTI)

A comparison of the standard models in particle physics and in cosmology demonstrates that they are not compatible, though both are well established. Basics of modern cosmology are briefly reviewed. It is argued that the measurements of the main cosmological parameters are achieved through many independent physical phenomena and this minimizes possible interpretation errors. It is shown that astronomy demands new physics beyond the frameworks of the (minimal) standard model in particle physics. More revolutionary modifications of the basic principles of the theory are also discussed.

A. D. Dolgov

2006-06-21T23:59:59.000Z

427

Rock River Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Rock River Wind Farm Facility Rock River Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Shell Wind Energy Developer SeaWest Energy Purchaser PacifiCorp Location Arlington and Carbon Counties WY Coordinates 41.6996°, -107.003° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6996,"lon":-107.003,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

A Phased Array Approach to Rock Blasting  

SciTech Connect

A series of laboratory-scale simultaneous two-hole shots was performed in a rock simulant (mortar) to record the shock wave interference patterns produced in the material. The purpose of the project as a whole was to evaluate the usefulness of phased array techniques of blast design, using new high-precision delay technology. Despite high-speed photography, however, we were unable to detect the passage of the shock waves through the samples to determine how well they matched the expected interaction geometry. The follow-up mine-scale tests were therefore not conducted. Nevertheless, pattern analysis of the vectors that would be formed by positive interference of the shockwaves from multiple charges in an ideal continuous, homogeneous, isotropic medium indicate the potential for powerful control of blast design, given precise characterization of the target rock mass.

Leslie Gertsch; Jason Baird

2006-07-01T23:59:59.000Z

429

Physics 105 Handbook of Instructions  

E-Print Network (OSTI)

1 Physics 105 Handbook of Instructions Spring 2010 M.J. Madsen Wabash College, Crawfordsville the physical world and can be summa- rized by the following steps: 1. You will be presented a variety of "myths" or stories about some physical situation. 2. You will do background research into the physics models

Madsen, Martin John

430

New physics at the LHC.  

SciTech Connect

With the LHC up and running, the focus of experimental and theoretical high energy physics will soon turn to an interpretation of LHC data in terms of the physics of electroweak symmetry breaking and the TeV scale. We present here a broad review of models for new TeV-scale physics and their LHC signatures. In addition, we discuss possible new physics signatures and describe how they can be linked to specific models of physics beyond the Standard Model. Finally, we illustrate how the LHC era could culminate in a detailed understanding of the underlying principles of TeV-scale physics.

Morrissey, D. E.; Plehn, T.; Tait, T. M. P. (High Energy Physics); (TRIUMF); (Harvard Univ); (Univ. of Heidelberg); (Univ. of California at Irvine); (Northwestern Univ.)

2012-01-01T23:59:59.000Z

431

A partial differential equation system for modelling stochastic storage in physical systems with applications to wind power generation  

Science Journals Connector (OSTI)

......system for energy, whose purpose...the physical storage system as...flow. The tool of last resort...framework for the valuation of electricity storage. Working...supply with energy storage. First Report...2004) Valuation and optimal......

Sydney D. Howell; Peter W. Duck; Andrew Hazel; Paul V. Johnson; Helena Pinto; Goran Strbac; Nathan Proudlove; Mary Black

2011-07-01T23:59:59.000Z

432

Fluid-Rock Characterization and Interactions in NMR Well Logging  

SciTech Connect

The objective of this report is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity. Oil based drilling fluids can have an adverse effect on NMR well logging if it alters the wettability of the formation. The effect of various surfactants on wettability and surface relaxivity are evaluated for silica sand. The relation between the relaxation time and diffusivity distinguishes the response of brine, oil, and gas in a NMR well log. A new NMR pulse sequence in the presence of a field gradient and a new inversion technique enables the T{sub 2} and diffusivity distributions to be displayed as a two-dimensional map. The objectives of pore morphology and rock characterization are to identify vug connectivity by using X-ray CT scan, and to improve NMR permeability correlation. Improved estimation of permeability from NMR response is possible by using estimated tortuosity as a parameter to interpolate between two existing permeability models.

George J. Hirasaki; Kishore K. Mohanty

2005-09-05T23:59:59.000Z

433

Gage for measuring displacements in rock samples  

DOE Patents (OSTI)

A gage for measuring diametral displacement within a rock sample for use in a rock mechanics laboratory and in the field, comprises a support ring housing a linear variable differential transformer, a mounting screw, and a leaf spring. The mounting screw is adjustable and defines a first point of contact with the rock sample. The leaf spring has opposite ends fixed to the inner periphery of the mounting ring. An intermediate portion of the leaf spring projecting radially inward from the ring is formed with a dimple defining a second point of contact with the sample. The first and second points of contact are diametrically opposed to each other. The LVDT is mounted in the ring with its axis parallel to the line of measurement and its core rod received in the dimple of the leaf spring. Any change in the length of the line between the first and second support points is directly communicated to the LVDT. The leaf spring is rigid to completely support lateral forces so that the LVDT is free of all load for improved precision.

Holcomb, David J. (Albuquerque, NM); McNamee, Michael J. (Albuquerque, NM)

1986-01-01T23:59:59.000Z

434

DEPARTMENT OF PHYSICS Physics 32300  

E-Print Network (OSTI)

DEPARTMENT OF PHYSICS Syllabus Physics 32300 Quantum Mechanics for Engineers Designation: required for Physics majors in the Applied Physics Option Undergraduate Catalog description: Basic experiments, wave: Physics 20700 and 20800, Math 39100 and Math 39200 Textbook and other suggested material: Scherrer

Lombardi, John R.

435

DEPARTMENT OF PHYSICS Physics 42200  

E-Print Network (OSTI)

DEPARTMENT OF PHYSICS Syllabus Physics 42200 Biophysics Designation: Undergraduate Catalog and membranes. In depth study of the physical basis of selected systems including vision, nerve transmission. Prerequisites: Prereq.: 1 yr. of Math, 1 yr. of Physics (elective for Physics Majors and Biomedical Engineering

Lombardi, John R.

436

Category:Rock Lab Analysis | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Rock Lab Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Rock Lab Analysis page? For detailed information on exploration techniques, click here. Category:Rock Lab Analysis Add.png Add a new Rock Lab Analysis Technique Pages in category "Rock Lab Analysis" The following 9 pages are in this category, out of 9 total. C Core Analysis Cuttings Analysis I Isotopic Analysis- Rock O Over Core Stress P Paleomagnetic Measurements Petrography Analysis R Rock Density X X-Ray Diffraction (XRD) X-Ray Fluorescence (XRF)

437

Electroweak Physics and Searches for New Physics at HERA  

E-Print Network (OSTI)

Recent results from the H1 and ZEUS experiments are reported on electroweak physics and on searches for new physics. All results are in good agreement with the Standard Model.

U. Schneekloth

2010-01-13T23:59:59.000Z

438

Symmetries in physics  

E-Print Network (OSTI)

The concept of symmetries in physics is briefly reviewed. In the first part of these lecture notes, some of the basic mathematical tools needed for the understanding of symmetries in nature are presented, namely group theory, Lie groups and Lie algebras, and Noether's theorem. In the second part, some applications of symmetries in physics are discussed, ranging from isospin and flavor symmetry to more recent developments involving the interacting boson model and its extension to supersymmetries in nuclear physics.

Roelof Bijker

2005-09-02T23:59:59.000Z

439

LANL | Physics | High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

high energy physics frontiers as defined by the Department of Energy's Office of High Energy Physics. Exploring the intensity frontier On the trail of one of the greatest...

440

Particle Physics: a Progress Report  

E-Print Network (OSTI)

We present a concise review of where we stand in particle physics today. First we discuss QCD, then the electroweak sector and finally the motivations and the avenues for new physics beyond the Standard Model.

Guido Altarelli

2006-09-11T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Saturated Zone Plumes in Volcanic Rock: Implications for Yucca Mountain  

SciTech Connect

This paper presents a literature survey of the occurrences of radionuclide plumes in saturated, fractured rocks. Three sites, Idaho National laboratory, Hanford, and Oak Ridge are discussed in detail. Results of a modeling study are also presented showing that the length to width ratio of a plume starting within the repository footprint at the Yucca Mountain Project site, decreases from about 20:1 for the base case to about 4:1 for a higher value of transverse dispersivity, indicating enhanced lateral spreading of the plume. Due to the definition of regulatory requirements, this lateral spreading does not directly impact breakthrough curves at the 18 km compliance boundary, however it increases the potential that a plume will encounter reducing conditions, thus significantly retarding the transport of sorbing radionuclides.

S. Kelkar; R. Roback; B. Robinson; G. Srinivasan; C. Jones; P. Reimus

2006-02-14T23:59:59.000Z

442

Size distribution functions for rock fragments  

Science Journals Connector (OSTI)

Abstract The capacity of 17 functions to represent the size distribution of fragmented rock is assessed on 1234 data sets of screened fragments from blasted and crushed rock of different origins, of sizes ranging from 0.002 to 2000 mm. The functions evaluated are Weibull, Grady, log-normal, log-logistic and Gilvarry, in their plain, re-scaled and bi-component forms, and also the Swebrec distribution and its bi-component extension. In terms of determination coefficient, the Weibull is the best two-parameter function for describing rock fragments, with a median R2 of 0.9886. Among re-scaled, three-parameter distributions, Swebrec and Weibull lead with median R2 values of 0.9976 and 0.9975, respectively. Weibull and Swebrec distributions tie again as best bi-component, with median R2 of 0.9993. Re-scaling generally reduces the unexplained variance by a factor of about four with respect to the plain function; bi-components further reduce this unexplained variance by a factor of about two to three. Size-prediction errors are calculated in four zones: coarse, central, fines and very fines. Expected and maximum errors in the different ranges are discussed. The extended Swebrec is the best fitting function across the whole passing range for most types of data. Bimodal Weibull and Grady distributions follow, except for the coarse range, where re-scaled forms are preferable. Considering the extra difficulty in fitting a five-parameter function with respect to a three-parameter one, re-scaled functions are the best choice if data do not extend far below 20% passing. If the focus is on the fine range, some re-scaled distributions may still do (Weibull, Swebrec and Grady, with maximum errors of 15–20% at 8% passing), but serious consideration should be given to bi-component distributions, especially extended Swebrec, bimodal Weibull and bimodal Grady.

José A. Sanchidrián; Finn Ouchterlony; Pablo Segarra; Peter Moser

2014-01-01T23:59:59.000Z

443

GPC behavior of metalloporphyrins from rock extract  

SciTech Connect

Nickel and vanadyl porphyrins present in rock extract from the vicinity of petroleum deposit in the Persian Gulf area were isolated by the combination of adsurption chromatography on silica gel and GPC on styrene-divinylbenzene copolymer. In order to study the GPC behavior of these metalloporphyrins, chromatographic fractions were collected and analyzed by UV/VIS absorption spectroscopy and mass spectrometry. The number of carbon atoms present in the porphine substituents and the different geometry of nickel and vanadyl ions in the molecule of metalloporphyrins were found to be the main factors influencing the GPC separation of these complexes. This chromatographic technique provided an effective separation of nickel from vanadylporphyrins.

Sebor, G.

1986-04-01T23:59:59.000Z

444

PHYSICAL REVIEW B 88, 045107 (2013) Wave-packet dynamics in the one-dimensional extended Hubbard model  

E-Print Network (OSTI)

Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA 2 Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA 3 Department of Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA (Received 17 April 2013; revised

Tennessee, University of

445

PHYSICAL REVIEW E 88, 042146 (2013) Uncovering wind turbine properties through two-dimensional stochastic modeling of wind dynamics  

E-Print Network (OSTI)

PHYSICAL REVIEW E 88, 042146 (2013) Uncovering wind turbine properties through two, such as the rated speed of the wind turbine or the descriptive wind speed statistics, can be related to the equations describing the evolution of power production and wind speed at single wind turbines. DOI: 10

Peinke, Joachim

446

Rock Mechanics and Enhanced Geothermal Systems: A DOE-sponsored Workshop to Explore Research Needs  

SciTech Connect

This workshop on rock mechanics and enhanced geothermal systems (EGS) was held in Cambridge, Mass., on June 20-21 2003, before the Soil and Rock America 2003 International Conference at MIT. Its purpose was to bring together experts in the field of rock mechanics and geothermal systems to encourage innovative thinking, explore new ideas, and identify research needs in the areas of rock mechanics and rock engineering applied to enhanced geothermal systems. The agenda is shown in Appendix A. The workshop included experts in the fields of rock mechanics and engineering, geological engineering, geophysics, drilling, the geothermal energy production from industry, universities and government agencies, and laboratories. The list of participants is shown is Appendix B. The first day consisted of formal presentations. These are summarized in Chapter 1 of the report. By the end of the first day, two broad topic areas were defined: reservoir characterization and reservoir performance. Working groups were formed for each topic. They met and reported in plenary on the second day. The working group summaries are described in Chapter 2. The final session of the workshop was devoted to reaching consensus recommendations. These recommendations are given in Chapter 3. That objective was achieved. All the working group recommendations were considered and, in order to arrive at a practical research agenda usable by the workshop sponsors, workshop recommendations were reduced to a total of seven topics. These topics were divided in three priority groups, as follows. First-priority research topics (2): {sm_bullet} Define the pre-existing and time-dependent geometry and physical characteristics of the reservoir and its fracture network. That includes the identification of hydraulically controlling fractures. {sm_bullet} Characterize the physical and chemical processes affecting the reservoir geophysical parameters and influencing the transport properties of fractures. Incorporate those processes in reservoir simulators. Second-priority research topics (4): {sm_bullet} Implement and proof-test enhanced fracture detection geophysical methods, such as 3-D surface seismics, borehole seismics, and imaging using earthquake data. {sm_bullet} Implement and proof-test enhanced stress measurement techniques, such as borehole breakout analysis, tilt-meters, and earthquake focal mechanism analysis. {sm_bullet} Implement and proof-test high-temperature down-hole tools for short-term and long-term diagnostics, such as borehole imaging, geophone arrays, packers, and electrical tools.

Francois Heuze; Peter Smeallie; Derek Elsworth; Joel L. Renner

2003-10-01T23:59:59.000Z

447

DEPARTMENT OF PHYSICS Physics 35400  

E-Print Network (OSTI)

DEPARTMENT OF PHYSICS Syllabus Physics 35400 Electricity and Magnetism II Designation potentials and radiation, special relativity. 3 HR./WK.; 3 CR. Prerequisites: Prereq.: Physics 35300; pre- or coreq.: Math 39200 (required for Physics majors, except those in the Biomedical Option). Textbook

Lombardi, John R.

448

Physics Division: Subatomic Physics Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Subatomic Physics Subatomic Physics Physics home » Subatomic Physics Site Home About Us Groups Applied Modern Physics, P-21 Neutron Science and Technology, P-23 Plasma Physics, P-24 Subatomic Physics, P-25 CONTACTS Group Leader Jon Kapustinsky (Acting) Deputy Group Leader Andy Saunders Office Administration Irene Martinez Miquela Sanchez Group Office (505) 667-6941 Physics Links Jobs in Physics Human Resources Working at Los Alamos Los Alamos resources Who we are, what we do We conduct basic research in nuclear and particle physics, applying this expertise to solve problems of national importance. By pushing the limits of our understanding of the smallest building blocks of matter through diverse experiments probing aspects of subatomic reactions, we aim to provide a more thorough understanding of the basic

449

MULTIDISCIPLINARY IMAGING OF ROCK PROPERTIES IN CARBONATE RESERVOIRS FOR FLOW-UNIT TARGETING  

SciTech Connect

Excellent progress has been made on all project objectives and goals. All tasks have been completed in the Phase 1 study area, the initial area of project focus. Primary elements of this work include the following: The stratigraphic architecture has been established through correlation of wireline logs guided by core and outcrop studies of facies and cyclicity. A porosity model has been developed that creates a basis for calculation of porosity for wells in the study area. Rock fabrics have been defined by sampling, analysis, and description of cores and used to create transforms for calculating permeability and oil saturation from porosity data. Finally, a preliminary 3-D model has been constructed that incorporates stratigraphic architecture, rock-fabric data, and petrophysical data. Reservoir volumetrics calculated from the model show that a very large fraction of the original oil in place remains.

Stephen C. Ruppel

2003-01-01T23:59:59.000Z

450

Study of Acid Response of Qatar Carbonate Rocks  

E-Print Network (OSTI)

STUDY OF ACID RESPONSE OF QATAR CARBONATE ROCKS A Thesis by ZHAOHONG WANG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... December 2011 Major Subject: Petroleum Engineering Study of Acid Response of Qatar Carbonate Rocks Copyright 2011 Zhaohong Wang STUDY OF ACID RESPONSE OF QATAR CARBONATE ROCKS A Thesis...

Wang, Zhaohong

2012-02-14T23:59:59.000Z

451

Progress in Biophysics and Molecular Biology, 69(2-3):333351, 1998. 1 Physical and Geometrical Modeling for  

E-Print Network (OSTI)

Modeling for Image-Based Recovery of Left Ventricular Deformation James Duncan, Ph.D., , Pengcheng Shi, Ph

Duncan, James S.

452

Rock types, pore types, and hydrocarbon exploration  

SciTech Connect

A proposed exploration-oriented method of classifying porosity in sedimentary rocks is based on microscopic examination cores or cuttings. Factors include geometry, size, abundance, and connectivity of the pores. The porosity classification is predictive of key petrophysical characteristics: porosity-permeability relationships, capillary pressures, and (less certainly) relative permeabilities. For instance, intercrystalline macroporosity typically is associated with high permeability for a given porosity, low capillarity, and favorable relative permeabilities. This is found to be true whether this porosity type occurs in a sucrosic dolomite or in a sandstone with pervasive quartz overgrowths. This predictive method was applied in three Rocky Mountain oil plays. Subtle pore throat traps could be recognized in the J sandstone (Cretaceous) in the Denver basin of Colorado by means of porosity permeability plotting. Variations in hydrocarbon productivity from a Teapot Formation (Cretaceous) field in the Powder River basin of Wyoming were related to porosity types and microfacies; the relationships were applied to exploration. Rock and porosity typing in the Red River Formation (Ordovician) reconciled apparent inconsistencies between drill-stem test, log, and mud-log data from a Williston basin wildcat. The well was reevaluated and completed successfully, resulting in a new field discovery. In each of these three examples, petrophysics was fundamental for proper evaluation of wildcat wells and exploration plays.

Coalson, E.B.; Hartmann, D.J.; Thomas, J.B.

1985-05-01T23:59:59.000Z

453

PHYSICAL REVIEW E 85, 036704 (2012) Generalized Monte Carlo loop algorithm for two-dimensional frustrated Ising models  

E-Print Network (OSTI)

-dimensional frustrated Ising models Yuan Wang and Hans De Sterck Department of Applied Mathematics, University a generalized loop move (GLM) update for Monte Carlo simulations of frustrated Ising models on two implementation on several frustrated Ising models, we demonstrate the effectiveness of the GLM updates in cases

De Sterck, Hans

454

B physics in the LHC era  

E-Print Network (OSTI)

Lectures content: (1) Flavour physics within the SM and the flavour problem; (2) B-physics phenomenology: mixing, CP violation, and rare decays; (3) Flavour physics beyond the SM: models and predictions.

Gino Isidori

2010-01-19T23:59:59.000Z

455

Seepage into drifts in unsaturated fractured rock at Yucca Mountain  

E-Print Network (OSTI)

Fractured Rock at Yucca Mountain Jens Birkholzer, Guomin Lrepository site at Yucca Mountain, Nevada, as it is locatedclimate conditions at Yucca Mountain. The numerical study is

Birkholzer, Jens; Li, Guomin; Tsang, Chin-Fu; Tsang, Yvonne

1998-01-01T23:59:59.000Z

456

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and...

457

Scientists Pass Solid Particles Through Rock in DOE-Sponsored...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

rock fractures in the laboratory. This technology has the potential for mapping fracture systems in detail and aid in determining reservoir characteristics. This research was...

458

Reconstruction of Sedimentary Rock Based on Mechanical Properties  

E-Print Network (OSTI)

Diagenesis transforms an unconsolidated loose sed- imentOur emphasis is on unconsolidated sand and sandstone. Thesedi- mentary rock: unconsolidated sand and sandstone. The

Jin, Guodong; Patzek, Tad W.; Silin, Dmitry B.

2008-01-01T23:59:59.000Z

459

Rock Sampling At San Francisco Volcanic Field Area (Warpinski...  

Open Energy Info (EERE)

geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify...

460

Evaluation Of Used Fuel Disposition In Clay-Bearing Rock  

Energy.gov (U.S. Department of Energy (DOE))

Radioactive waste disposal in shale/argillite rock formations has been widely considered given its desirable isolation properties, e.g., low permeability, potential geochemically reduced conditions...

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

ORISE: Health physics services  

NLE Websites -- All DOE Office Websites (Extended Search)

Health physics services Health physics services Nuclear power plant The Oak Ridge Institute for Science and Education (ORISE) offers comprehensive health physics services in a number of technical areas for the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), as well as other federal and state agencies. From radiological facility audits and reviews to dose modeling and technical evaluations, ORISE is nationally-recognized for its health physics support to decontamination and decommissioning (D&D) projects across the United States. Our health physics services include: Environmental survey Applied health physics projects We work with government agencies and organizations to identify, measure and assess the presence of radiological materials during the D&D process. ORISE

462

Numerical investigation of the physical model of a high-power electromagnetic wave in a magnetically insulated transmission line  

SciTech Connect

An efficient numerical code for simulating the propagation of a high-power electromagnetic pulse in a vacuum transmission line is required to study the physical phenomena occurring in such a line, to analyze the operation of present-day megavolt generators at an {approx}10-TW power level, and to design such new devices. The main physical theoretical principles are presented, and the stability of flows in the near-threshold region at the boundary of the regime of magnetic self-insulation is investigated based on one-dimensional telegraph equations with electron losses. Numerical (difference) methods-specifically, a method of characteristics and a finite-difference scheme-are described and their properties and effectiveness are compared by analyzing the high-frequency modes.

Samokhin, A. A. [Troitsk Institute for Innovation and Fusion Research (Russian Federation)

2010-02-15T23:59:59.000Z

463

Fracture and Healing of Rock Salt Related to Salt Caverns  

SciTech Connect

In recent years, serious investigations of potential extension of the useful life of older caverns or of the use of abandoned caverns for waste disposal have been of interest to the technical community. All of the potential applications depend upon understanding the reamer in which older caverns and sealing systems can fail. Such an understanding will require a more detailed knowledge of the fracture of salt than has been necessary to date. Fortunately, the knowledge of the fracture and healing of salt has made significant advances in the last decade, and is in a position to yield meaningful insights to older cavern behavior. In particular, micromechanical mechanisms of fracture and the concept of a fracture mechanism map have been essential guides, as has the utilization of continuum damage mechanics. The Multimechanism Deformation Coupled Fracture (MDCF) model, which is summarized extensively in this work was developed specifically to treat both the creep and fracture of salt, and was later extended to incorporate the fracture healing process known to occur in rock salt. Fracture in salt is based on the formation and evolution of microfractures, which may take the form of wing tip cracks, either in the body or the boundary of the grain. This type of crack deforms under shear to produce a strain, and furthermore, the opening of the wing cracks produce volume strain or dilatancy. In the presence of a confining pressure, microcrack formation may be suppressed, as is often the case for triaxial compression tests or natural underground stress situations. However, if the confining pressure is insufficient to suppress fracture, then the fractures will evolve with time to give the characteristic tertiary creep response. Two first order kinetics processes, closure of cracks and healing of cracks, control the healing process. Significantly, volume strain produced by microfractures may lead to changes in the permeability of the salt, which can become a major concern in cavern sealing and operation. The MDCF model is used in three simulations of field experiments in which indirect measures were obtained of the generation of damage. The results of the simulations help to verify the model and suggest that the model captures the correct fracture behavior of rock salt. The model is used in this work to estimate the generation and location of damage around a cylindrical storage cavern. The results are interesting because stress conditions around the cylindrical cavern do not lead to large amounts of damage. Moreover, the damage is such that general failure can not readily occur, nor does the extent of the damage suggest possible increased permeation when the surrounding salt is impermeable.

Chan, K.S.; Fossum, A.F.; Munson, D.E.

1999-03-01T23:59:59.000Z

464

Homotypic clusters of transcription factor binding sites: a model system for understanding the physical mechanics of gene expression  

E-Print Network (OSTI)

architectures influence the physical mechanisms that ultimately lead to transcription. A first step towards developing a more mechanistic view of CRE organization is to dissect common and simple organizational patterns [1]. One of themost common CRE build- ing... ,25,26].With this new technology, it is possible to experimentally test how different TF binding site organizations influ- ence gene expression. Even with the development of techniques to synthesize DNA more efficiently, it is still very difficult to study how...

Ezer, Daphne; Zabet, Nicolae Radu; Adryan, Boris

2014-08-01T23:59:59.000Z

465

Planetary Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Planetary Physics Some of the most intriguing NIF experiments test the physics believed to determine the structures of planets down to their cores, both in our solar system and...

466

Electroweak Physics  

E-Print Network (OSTI)

Work on electroweak precision calculations and event generators for electroweak physics studies at current and future colliders is summarized.

W. Hollik

2005-01-26T23:59:59.000Z

467

The UK geothermal hot dry rock R&D programme  

SciTech Connect

The UK hot dry rock research and development programme is funded by the Department of Energy and aims to demonstrate the feasibility of commercial exploitation of HDR in the UK. The philosophy of the UK programme has been to proceed to a full-scale prototype HDR power station via a number of stages: Phase 1--Experiments at shallow depth (300 m) to assess the feasibility of enhancing the permeability of the rock. Phase 2--Studies at intermediate depth (2500 m) to determine the feasibility of creating a viable HDR subsurface heat exchanger. Phase 3--Establishment of an HDR prototype at commercial depth. The programme has run over a 15 year period, and has been formally reviewed at stages throughout its progress. The 1987 review towards the end of Phase 2 identified a number of technical objectives for continuing research and proposed that the initial design stage of the deep HDR prototype should start. Phase 3A is now complete. It addressed: the feasibility of creating an underground HDR heat exchanger suitable for commercial operation; techniques for improving hydraulic performance and correcting short circuits in HDR systems; modeling of the performance, resource size and economic aspects of HDR systems. The work has been conducted by a number of contractors, including Cambome School of Mines, Sunderland and Sheffield City Polytechnics and RTZ Consultants Limited. This paper focuses upon the experimental work at Rosemanowes in Cornwall and the recently completed conceptual design of a prototype HDR power station. The economics of HDR-generated electricity are also discussed and the conclusions of a 1990 program review are presented. Details of the HDR program to 1994, as announced by the UK Department of Energy in February 1991, are included.

MacDonald, Paul; Stedman, Ann; Symons, Geoff

1992-01-01T23:59:59.000Z

468

Analysis of major risks associated with hydrocarbon storage caverns in bedded salt rock  

Science Journals Connector (OSTI)

Salt rock is internationally accepted as an ideal medium for energy storage. As an energy storage structure, the safety of hydrocarbon storage caverns in salt rock is related to the national economy and to social public security. Risk analysis is an important method of engineering safety evaluation. In this paper the major risks associated with hydrocarbon storage caverns in bedded salt rock are defined. The major risks are classified under the headings of ‘oil and gas leakage’, ‘ground subsidence’, and ‘cavern failure’, and are discussed under these topical titles. The factors leading to the major risks associated with storage caverns are identified by reviewing descriptions of major accidents of salt storage caverns around the world. Fault tree models for the three major risks are established and analyzed. Basic paths of the risk and their occurrence probability ranking are derived. The risk factors which contribute greatly to the risk are identified by calculating the importance degree of all the basic events. Finally, a comprehensive evaluation methodology for major risk loss is generated based on the analytic hierarchy process. This provides a theoretical foundation for the evaluation and prevention of major risks in the construction and operation of storage caverns in bedded salt rock.

Chunhe Yang; Wenjun Jing; J.J.K. Daemen; Guimin Zhang; Chao Du

2013-01-01T23:59:59.000Z

469

Measurement of the half-life of the T=$\\frac{1}{2}$ mirror decay of $^{19}$Ne and its implication on physics beyond the standard model  

E-Print Network (OSTI)

The $\\frac{1}{2}^+ \\rightarrow \\frac{1}{2}^+$ superallowed mixed mirror decay of $^{19}$Ne to $^{19}$F is excellently suited for high precision studies of the weak interaction. However, there is some disagreement on the value of the half-life. In a new measurement we have determined this quantity to be $T_{1/2}$ = $17.2832 \\pm 0.0051_{(stat)}$ $\\pm 0.0066_{(sys)}$ s, which differs from the previous world average by 3 standard deviations. The impact of this measurement on limits for physics beyond the standard model such as the presence of tensor currents is discussed.

L. J. Broussard; H. O. Back; M. S. Boswell; A. S. Crowell; P. Dendooven; G. S. Giri; C. R. Howell; M. F. Kidd; K. Jungmann; W. L. Kruithof; A. Mol; C. J. G. Onderwater; R. W. Pattie Jr.; P. D. Shidling; M. Sohani; D. J. van der Hoek; A. Rogachevskiy; E. Traykov; O. O. Versolato; L. Willmann; H. W. Wilschut; A. R. Young

2014-05-28T23:59:59.000Z

470

Bridging the Gap between Fundamental Physics and Chemistry and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for HCCI Engines Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for...

471

Rock Rapids Municipal Utility | Open Energy Information  

Open Energy Info (EERE)

Rapids Municipal Utility Rapids Municipal Utility Jump to: navigation, search Name Rock Rapids Municipal Utility Place Iowa Utility Id 16206 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Power (Single-Phase) Commercial Commercial Power (Three-Phase) Commercial Residential Power Residential Average Rates Residential: $0.0807/kWh Commercial: $0.0633/kWh Industrial: $0.0899/kWh

472

THE JOURNAL OF CHEMICAL PHYSICS 140, 224502 (2014) Search for a liquid-liquid critical point in models of silica  

E-Print Network (OSTI)

from pure sil- ica are widely used by the telecommunications industry and, because silica and silicates in models of silica Erik Lascaris,1 Mahin Hemmati,2 Sergey V. Buldyrev,3 H. Eugene Stanley,1 and C. Austen indicated the possible existence of a liquid-liquid critical point (LLCP) in models of silica at high

Stanley, H. Eugene

473

226 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 1, NO. 4, DECEMBER 2002 A Practical SPICE Model Based on the Physics  

E-Print Network (OSTI)

of a single-electron inverter obtained from the SPICE simulation was within 15%. This new SPICE model can architectures. Index Terms--MOSFET, realistic single-electron transistor, single-electron inverter, SPICE model. I. INTRODUCTION MOTIVATED by the merits of density, power, and func- tionality, various structures

Lee, Jong Duk

474

Multiscale heterogeneity characterization of tidal channel, tidal delta and foreshore facies, Almond Formation outcrops, Rock Springs uplift, Wyoming  

SciTech Connect

In order to accurately predict fluid flow within a reservoir, variability in the rock properties at all scales relevant to the specific depositional environment needs to be taken into account. The present work describes rock variability at scales from hundreds of meters (facies level) to millimeters (laminae) based on outcrop studies of the Almond Formation. Tidal channel, tidal delta and foreshore facies were sampled on the eastern flank of the Rock Springs uplift, southeast of Rock Springs, Wyoming. The Almond Fm. was deposited as part of a mesotidal Upper Cretaceous transgressive systems tract within the greater Green River Basin. Bedding style, lithology, lateral extent of beds of bedsets, bed thickness, amount and distribution of depositional clay matrix, bioturbation and grain sorting provide controls on sandstone properties that may vary more than an order of magnitude within and between depositional facies in outcrops of the Almond Formation. These features can be mapped on the scale of an outcrop. The products of diagenesis such as the relative timing of carbonate cement, scale of cemented zones, continuity of cemented zones, selectively leached framework grains, lateral variability of compaction of sedimentary rock fragments, and the resultant pore structure play an equally important, although less predictable role in determining rock property heterogeneity. A knowledge of the spatial distribution of the products of diagenesis such as calcite cement or compaction is critical to modeling variation even within a single facies in the Almond Fin. because diagenesis can enhance or reduce primary (depositional) rock property heterogeneity. Application of outcrop heterogeneity models to the subsurface is greatly hindered by differences in diagenesis between the two settings. The measurements upon which this study is based were performed both on drilled outcrop plugs and on blocks.

Schatzinger, R.A.; Tomutsa, L. [BDM Petroleum Technologies, Bartlesville, OK (United States)

1997-08-01T23:59:59.000Z

475

Subsalt source rock maturity in the Sudanese Red Sea  

SciTech Connect

Thermal modeling can demonstrate that stratal salt deposits may provide a significant heat conduit and conceptually provide a basis for hypothermal fairways of hydrocarbon aspiration in regions of dominant thermal overmaturity. However, accurate evaluation of thermal maturity suppression by modeling must be geologically constrained. With respect to the Tertiary Tokar Delta of offshore Sudan, ID tectonic subsidence analysis of boreholes in the region reveals at least two major pu1ses of crustal extension and associated heating (24-20 m.a. and 5.4-2.7 m.a.). Integrating the borehole geochemical information with a Tokar Delta seismic stratigraphic interpretation allows the construction of constrained 2D thermal basin models through time using Procom BMT. The best match between the observed and modelled vitrinite reflectance values is achieved by using a two phase tectonic stretching model with pulses at 22{+-}2 m.a. and 4{+-}1.5 m.a. and incremental subcrustal stretching factors which vary between 2.65-2.75. Utilizing these parameters suggests the top of the oil window to occur within the Zeit Formation and bottom of the oil window to exist at the base of the Dungunab Salt. As only subsalt source rocks are observed, this model would tend to negate the possibility of the occurrence of liquid hydrocarbons. For the Tokar Delta the presently observed general high heat flow is so high that it leads in all cases to overcooked organics for a subsalt source. However, that hydrocarbons in the post-salt Zeit Formation of the Tokar Delta have been discovered suggests significant secondary hydrocarbon migration to have occurred within the late Miocene (15.4 - 5.4 m.a.). Potential migration pathways would be a1ong basement-induced fault conduits. If true, similar secondary migration play concepts may be applicable elsewhere in the Red Sea.

Geiger, C. [Univ. of Oklahoma, Norman, OK (United States)]|[Preussag Energie, Lingen (Germany); Pigott, J.; Forgotson, J.M. Jr. [Univ. of Oklahoma, Norman, OK (United States)] [and others

1995-08-01T23:59:59.000Z

476

Top Physics at the LHC  

E-Print Network (OSTI)

Top quark physics will be a prominent topic in Standard Model physics at the LHC. The enormous amount of top quarks expected to be produced will allow to perform a wide range of precision measurements. An overview of the planned top physics programme of the ATLAS and CMS experiments at the LHC is given.

Christian Weiser

2005-06-10T23:59:59.000Z

477

Rock Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Information  

Open Energy Info (EERE)

Mt Ranier Area (Frank, 1995) Mt Ranier Area (Frank, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Mt Ranier Area (Frank, 1995) Exploration Activity Details Location Mt Ranier Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes This paper relies primarily on minerals, gases, and water found in surficial deposits to construct a conceptual model for Mount Rainier that considers the following factors: - Locations of hydrothermal leakage at the surface; - Structures that provide permeable paths of fluid egress to the surface; - Amount of excess heat discharge; - Composition of surficial thermal fluids; - Composition, guided by mineralogy, of subsurface thermal fluids. Analytical data used as a basis for the model are from samples

478

Physics Northwest: An Academic Alliance  

Science Journals Connector (OSTI)

It's a weekday in mid-October late at night and with another teaching assignment not far below the horizon. Yet 40 teachers are laughing joking and sharing in the fun that is associated with physics teaching. The event: a Physics Northwest (PNW) meeting an organization that is in its 20th year and thriving. “Physics Northwest meetings are not only interesting educational and a source of great ideas for physics demonstrations they are also Phun ” says David Thiessen. David's response appears to be universal among PNW members and he continues to attend PNW meetings even though he is into his ninth year of retirement. Patti Sievert of Northern Illinois University tells us “I'm here tonight to learn how to form a Physics Northwest in the Rock River Valley ” and immediately three people from PNW volunteer to be there to help with her first meeting. Yes this happened and continues to happen monthly in many northwest Illinois suburban high schools. The history of this prosperous organization and its sister organization the Illinois State Physics Project (ISPP) 1 can be gleaned from the website in Ref. 2.

James L. Hicks

2007-01-01T23:59:59.000Z

479

international journal of rock mechanics and mining sciences  

E-Print Network (OSTI)

Original Research, New Developments and Case Studies in Rock Mechanics and Rock .... Prior to submitting your paper, please follow the instructions given below. ... Permission of the Publisher is required for resale or distribution ..... The Digital Object Identifier (DOI) may be used to cite and link to electronic documents.

480

GEOS898 History on the Rocks Assignment 2  

E-Print Network (OSTI)

can be broken down into four major rock groups (i.e. Clastic, biogenic, organic, chemical Flow chart for identifying sedimentary rocks (most text books have this or can be found on line) Acid, distribution of layers and chemistry. It is worthwhile for the teacher to spend about 10 minutes reviewing

Frank, Tracy D.

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Determining inert content in coal dust/rock dust mixture  

DOE Patents (OSTI)

A method and apparatus for determining the inert content of a coal dust and rock dust mixture uses a transparent window pressed against the mixture. An infrared light beam is directed through the window such that a portion of the infrared light beam is reflected from the mixture. The concentration of the reflected light is detected and a signal indicative of the reflected light is generated. A normalized value for the generated signal is determined according to the relationship .phi.=(log i.sub.c `log i.sub.co) / (log i.sub.c100 -log i.sub.co) where i.sub.co =measured signal at 0% rock dust i.sub.c100 =measured signal at 100% rock dust i.sub.c =measured signal of the mixture. This normalized value is then correlated to a predetermined relationship of .phi. to rock dust percentage to determine the rock dust content of the mixture. The rock dust content is displayed where the percentage is between 30 and 100%, and an indication of out-of-range is displayed where the rock dust percent is less than 30%. Preferably, the rock dust percentage (RD%) is calculated from the predetermined relationship RD%=100+30 log .phi.. where the dust mixture initially includes moisture, the dust mixture is dried before measuring by use of 8 to 12 mesh molecular-sieves which are shaken with the dust mixture and subsequently screened from the dust mixture.

Sapko, Michael J. (Finleyville, PA); Ward, Jr., Jack A. (Oakmont, PA)

1989-01-01T23:59:59.000Z

482

Fluid Migration During Ice/Rock Planetesimal Differentiation  

E-Print Network (OSTI)

/water reaction, which will depend on the rate at which water can be segregated from a melting ice/rock core. For the liquid water phase to migrate toward the surface, the denser rock phase must compact. The primary question that this thesis will answer is how...

Raney, Robert 1987-

2012-12-12T23:59:59.000Z

483

A comparative study on the CANDU-6 reactivity device model based on Wolsong-2 physics measurement data  

SciTech Connect

A benchmark calculation of a 713 MWe Canada deuterium uranium (CANDU) reactor was performed based on the physics measurement data of Wolsong-2 nuclear power plant by using WIMS-AECL, DRAGON, and RFSP codes. The benchmark calculation included sensitivity analyses on the number of energy groups, cross-section library, and the weighting spectrum of the homogenized lattice parameters. The effective multiplication factor, critical boron concentration, reactivity device worth and the flux distribution were estimated and compared with those obtained by the measurement and standard CANDU reactor physics design tools. In general, the prediction errors by WIMS-AECL, DRAGON and RFSP codes were within the acceptance limit for all the sensitivity calculations. The sensitivity calculations also showed that the calculation accuracy was improved when two energy groups were used especially for the prediction of the reactivity worth of strong absorbers such as mechanical control absorbers and shutoff rods. However, the prediction error increased when calculating the reactivity worth of the adjuster banks with two energy groups. Therefore a further study is recommended to obtain consistent results for the benchmark calculation. (authors)

Park, C. J.; Choi, H. [Korea Atomic Energy Research Inst., Deokjin-dong 150, Yuseong-gu, Daejeon (Korea, Republic of)

2006-07-01T23:59:59.000Z

484

Engineering assessment of inactive uranium mill tailings: Slick Rock sites, Slick Rock, Colorado  

SciTech Connect

Ford, Bacon and Davis Utah, Inc., has reevaluated the Slick Rock sites in order to revise the October 1977 engineering radioactive uranium mill tailings at Slick Rock, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 387,000 tons of tailings at the Slick Rock sites constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The five alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material, consolidation of the piles, and removal of the tailings to remote disposal sites and decontamination of the tailings sites. Cost estimates for the five options range from about $6,800,000 for stabilization in-place, to about $11,000,000 for disposal at a distance of about 6.5 mi. Three principal alternatives for the reprocessing of the Slick Rock tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be over $800/lb of U/sub 3/O/sub 8/ whether by conventional or heap leach plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present, nor for the foreseeable future.

none,

1981-09-01T23:59:59.000Z

485

Physical modeling and numerical simulation of subcooled boiling in one- and three-dimensional representation of bundle geometry  

SciTech Connect

Numerical simulation of subcooled boiling in one-dimensional geometry with the Homogeneous Equilibrium Model (HEM) may yield difficulties related to the very low sonic velocity associated with the HEM. These difficulties do not arise with subcritical flow. Possible solutions of the problem include introducing a relaxation of the vapor production rate. Three-dimensional simulations of subcooled boiling in bundle geometry typical of fast reactors can be performed by using two systems of conservation equations, one for the HEM and the other for a Separated Phases Model (SPM), with a smooth transition between the two models.

Bottoni, M.; Lyczkowski, R.; Ahuja, S.

1995-07-01T23:59:59.000Z

486

Property:HostRockLithology | Open Energy Information  

Open Energy Info (EERE)

HostRockLithology HostRockLithology Jump to: navigation, search Property Name HostRockLithology Property Type String Description Condensed description of the lithology of the reservoir rock. This is a property of type Page. Subproperties This property has the following 14 subproperties: B Beowawe Hot Springs Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area D Dese