Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Rock-physics Models for Gas-hydrate Systems Associated  

E-Print Network (OSTI)

at Austin, Austin, Texas, U.S.A. ABSTRACT R ock-physics models are presented describing gas-hydrate systems. Knapp, and R. Boswell, eds., Natural gas hydrates--Energy resource potential and associated geologic

Texas at Austin, University of

2

Rock physics at Los Alamos Scientific Laboratory  

DOE Green Energy (OSTI)

Rock physics refers to the study of static and dynamic chemical and physical properties of rocks and to phenomenological investigations of rocks reacting to man-made forces such as stress waves and fluid injection. A bibliography of rock physics references written by LASL staff members is given. Listing is by surname of first author. (RWR)

Not Available

1980-01-01T23:59:59.000Z

3

STANFORD ROCK PHYSICS BOREHOLE GEOPHYSICS PROJECT  

E-Print Network (OSTI)

TABLE OF CONTENTS A: Rock Physics and Geology. Pressure-solution models and the velocity......................................................... A3 Pressure trends of compressional-and shear-wave velocities measured measured in sands to 20 MPA.....................................................C3 Properties of pore fluids at very high pressures from equations of state. Walls & Dvorkin

Nur, Amos

4

Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields: Stochastic inversion of AVA and CSEM data  

SciTech Connect

Joint inversion of seismic AVA and CSEM data requires rock-physics relationships to link seismic attributes to electrical properties. Ideally, we can connect them through reservoir parameters (e.g., porosity and water saturation) by developing physical-based models, such as Gassmann’s equations and Archie’s law, using nearby borehole logs. This could be difficult in the exploration stage because information available is typically insufficient for choosing suitable rock-physics models and for subsequently obtaining reliable estimates of the associated parameters. The use of improper rock-physics models and the inaccuracy of the estimates of model parameters may cause misleading inversion results. Conversely, it is easy to derive statistical relationships among seismic and electrical attributes and reservoir parameters from distant borehole logs. In this study, we develop a Bayesian model to jointly invert seismic AVA and CSEM data for reservoir parameter estimation using statistical rock-physics models; the spatial dependence of geophysical and reservoir parameters are carried out by lithotypes through Markov random fields. We apply the developed model to a synthetic case, which simulates a CO{sub 2} monitoring application. We derive statistical rock-physics relations from borehole logs at one location and estimate seismic P- and S-wave velocity ratio, acoustic impedance, density, electrical resistivity, lithotypes, porosity, and water saturation at three different locations by conditioning to seismic AVA and CSEM data. Comparison of the inversion results with their corresponding true values shows that the correlation-based statistical rock-physics models provide significant information for improving the joint inversion results.

Chen, J.; Hoversten, G.M.

2011-09-15T23:59:59.000Z

5

ROCK PROPERTIES MODEL ANALYSIS MODEL REPORT  

SciTech Connect

The purpose of this Analysis and Model Report (AMR) is to document Rock Properties Model (RPM) 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties models are intended principally for use as input to numerical physical-process modeling, such as of ground-water flow and/or radionuclide transport. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. This work was conducted in accordance with the following planning documents: WA-0344, ''3-D Rock Properties Modeling for FY 1998'' (SNL 1997, WA-0358), ''3-D Rock Properties Modeling for FY 1999'' (SNL 1999), and the technical development plan, Rock Properties Model Version 3.1, (CRWMS M&O 1999c). The Interim Change Notice (ICNs), ICN 02 and ICN 03, of this AMR were prepared as part of activities being conducted under the Technical Work Plan, TWP-NBS-GS-000003, ''Technical Work Plan for the Integrated Site Model, Process Model Report, Revision 01'' (CRWMS M&O 2000b). The purpose of ICN 03 is to record changes in data input status due to data qualification and verification activities. These work plans describe the scope, objectives, tasks, methodology, and implementing procedures for model construction. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The work scope for this activity consists of the following: (1) Conversion of the input data (laboratory measured porosity data, x-ray diffraction mineralogy, petrophysical calculations of bound water, and petrophysical calculations of porosity) for each borehole into stratigraphic coordinates; (2) Re-sampling and merging of data sets; (3) Development of geostatistical simulations of porosity; (4) Generation of derivative property models via linear coregionalization with porosity; (5) Post-processing of the simulated models to impart desired secondary geologic attributes and to create summary and uncertainty models; and (6) Conversion of the models into real-world coordinates. The conversion to real world coordinates is performed as part of the integration of the RPM into the Integrated Site Model (ISM) 3.1; this activity is not part of the current analysis. The ISM provides a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site and consists of three components: (1) Geologic Framework Model (GFM); (2) RPM, which is the subject of this AMR; and (3) Mineralogic Model. The interrelationship of the three components of the ISM and their interface with downstream uses are illustrated in Figure 1. Figure 2 shows the geographic boundaries of the RPM and other component models of the ISM.

Clinton Lum

2002-02-04T23:59:59.000Z

6

Seismic-Scale Rock Physics of Methane Hydrate  

SciTech Connect

We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

Amos Nur

2009-01-08T23:59:59.000Z

7

Rock Physics of Geologic Carbon Sequestration/Storage  

SciTech Connect

This report covers the results of developing the rock physics theory of the effects of CO{sub 2} injection and storage in a host reservoir on the rock?s elastic properties and the resulting seismic signatures (reflections) observed during sequestration and storage. Specific topics addressed are: (a) how the elastic properties and attenuation vary versus CO{sub 2} saturation in the reservoir during injection and subsequent distribution of CO{sub 2} in the reservoir; (b) what are the combined effects of saturation and pore pressure on the elastic properties; and (c) what are the combined effects of saturation and rock fabric alteration on the elastic properties. The main new results are (a) development and application of the capillary pressure equilibrium theory to forecasting the elastic properties as a function of CO{sub 2} saturation; (b) a new method of applying this theory to well data; and (c) combining this theory with other effects of CO{sub 2} injection on the rock frame, including the effects of pore pressure and rock fabric alteration. An important result is translating these elastic changes into synthetic seismic responses, specifically, the amplitude-versus-offset (AVO) response depending on saturation as well as reservoir and seal type. As planned, three graduate students participated in this work and, as a result, received scientific and technical training required should they choose to work in the area of monitoring and quantifying CO{sub 2} sequestration.

Dvorkin, Jack; Mavko, Gary

2013-05-31T23:59:59.000Z

8

STANFORD ROCK PHYSICS BOREHOLE GEOPHYSICS PROJECT  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B1 Velocity-pressure and porosity-pressure trends in sands Zimmer, Prasad & Mavko. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B2 Comparison between hydrostatic pressure and polyaxial stress tests in sands Vega, Prasad, Mavko to the grain material properties, porosity, pressure, and pore fluid. By comparing these models to experimental

Nur, Amos

9

Rock Physics Based Determination of Reservoir Microstructure for Reservoir Characterization  

E-Print Network (OSTI)

One of the most important, but often ignored, factors affecting the transport and the seismic properties of hydrocarbon reservoir is pore shape. Transport properties depend on the dimensions, geometry, and distribution of pores and cracks. Knowledge of pore shape distribution is needed to explain the often-encountered complex interrelationship between seismic parameters (e.g. seismic velocity) and the independent physical properties (e.g. porosity) of hydrocarbon reservoirs. However, our knowledge of reservoir pore shape distribution is very limited. This dissertation employs a pore structure parameter via a rock physics model to characterize mean reservoir pore shape. The parameter was used to develop a new physical concept of critical clay content in the context of pore compressibility as a function of pore aspect ratio for a better understanding of seismic velocity as a function of porosity. This study makes use of well log dataset from offshore Norway and from North Viking Graben in the North Sea. In the studied North Sea reservoir, porosity and measured horizontal permeability was found to increase with increasing pore aspect ratio (PAR). PAR is relatively constant at 0.23 for volumes of clay (V_cl) less than 32% with a significant decrease to 0.04 for V_cl above 32%. The point of inflexion at 32% in the PAR –V_cl plane is defined as the critical clay volume. Much of the scatters in the compressional velocity-porosity cross-plots are observed where V_cl is above this critical value. For clay content higher than the critical value, Hertz-Mindlin (HM) contact theory over-predicts compressional velocity (V_p) by about 69%. This was reduced to 4% when PAR distribution was accounted for in the original HM formulation. The pore structure parameter was also used to study a fractured carbonate reservoir in the Sichuan basin, China. Using the parameter, the reservoir interval can be distinguished from those with no fracture. The former has a pore structure parameter value that is ? 3.8 whereas it was < 3.8 for the latter. This finding was consistent with the result of fracture analysis, which was based on FMI image. The results from this dissertation will find application in reservoir characterization as the industry target more complex, deeper, and unconventional reservoirs.

Adesokan, Hamid 1976-

2013-05-01T23:59:59.000Z

10

Control physical models  

Science Conference Proceedings (OSTI)

This paper describes design of model physical model of rectification column. Physical model is appointed as a demonstration system control for distillation by means of control system SIMATIC PCS7 from company SIEMENS. The SIMATIC PCS7 Process control ... Keywords: description, distillation, physical model, process control system

Tomáš Dvo?ák; Jan Bílek

2005-03-01T23:59:59.000Z

11

Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields: Stochastic inversion of AVA and CSEM data  

E-Print Network (OSTI)

impedance, density, electrical resistivity, lithotypes,are inverted for electrical resistivity. Secondly, physical-and logarithmic electrical resistivity, between depths 2100

Chen, J.

2013-01-01T23:59:59.000Z

12

MULTI-ATTRIBUTE SEISMIC/ROCK PHYSICS APPROACH TO CHARACTERIZING FRACTURED RESERVOIRS  

SciTech Connect

This project consists of three key interrelated Phases, each focusing on the central issue of imaging and quantifying fractured reservoirs, through improved integration of the principles of rock physics, geology, and seismic wave propagation. This report summarizes the results of Phase I of the project. The key to successful development of low permeability reservoirs lies in reliably characterizing fractures. Fractures play a crucial role in controlling almost all of the fluid transport in tight reservoirs. Current seismic methods to characterize fractures depend on various anisotropic wave propagation signatures that can arise from aligned fractures. We are pursuing an integrated study that relates to high-resolution seismic images of natural fractures to the rock parameters that control the storage and mobility of fluids. Our goal is to go beyond the current state-of-the art to develop and demonstrate next generation methodologies for detecting and quantitatively characterizing fracture zones using seismic measurements. Our study incorporates 3 key elements: (1) Theoretical rock physics studies of the anisotropic viscoelastic signatures of fractured rocks, including up scaling analysis and rock-fluid interactions to define the factors relating fractures in the lab and in the field. (2) Modeling of optimal seismic attributes, including offset and azimuth dependence of travel time, amplitude, impedance and spectral signatures of anisotropic fractured rocks. We will quantify the information content of combinations of seismic attributes, and the impact of multi-attribute analyses in reducing uncertainty in fracture interpretations. (3) Integration and interpretation of seismic, well log, and laboratory data, incorporating field geologic fracture characterization and the theoretical results of items 1 and 2 above. The focal point for this project is the demonstration of these methodologies in the Marathon Oil Company Yates Field in West Texas.

Gary Mavko

2000-10-01T23:59:59.000Z

13

Modeling from Physical Principles  

E-Print Network (OSTI)

This article, on the other hand, shall concentrate on issues relating to modeling the physical plant to be controlled. Modeling physical systems seems to be a straightforward task. Since physical systems and experiments are often reproducible in a reliable fashion, since measurements from physical systems are frequently available in abundance and of high quality, since the meta--laws of physics are mostly well understood, it seems to be a particularly easy task to come up with accurate mathematical descriptions of most physical plants. Yet, there are some typical pitfalls and frequent misconceptions about the modeling of physical systems, especially among control engineers. These shall be illustrated, and a sound methodological basis for modeling from physical principles shall then be created. 2 Common Misconceptions

François E. Cellier; Hilding Elmqvist; Martin Otter

1996-01-01T23:59:59.000Z

14

CRC handbook of physical properties of rocks. Volume III  

Science Conference Proceedings (OSTI)

This book presents topics on: Density of rocks and minerals, includes histograms of density ranges; elastic constants of minerals, elastic moduli, thermal properties; inelastic properties, strength and rheology for rocks and minerals, rock mechanics and friction, and stress-strain relations; radioactivity, decay constants and heat production of isotope systems in geology; seismic attenuation, in rocks, minerals, and the earth, with application to oil exploration and terrestrial studies; and index.

Carmichael, R.S.

1984-01-01T23:59:59.000Z

15

TWO-DIMENSIONAL MODELING OF LASER SPALLATION DRILLING OF ROCKS  

NLE Websites -- All DOE Office Websites (Extended Search)

DIMENSIONAL MODELING OF LASER SPALLATION DRILLING OF ROCKS DIMENSIONAL MODELING OF LASER SPALLATION DRILLING OF ROCKS P532 Zhiyue Xu, Yuichiro Yamashita 1 , and Claude B. Reed Argonne National Laboratory, Argonne, IL 60439, USA 1 Now with Kyushu University, Japan Abstract High power lasers can weaken, spall, melt and vaporize natural earth materials with thermal spallation being the most energy efficient rock removal mechanism. Laser rock spallation is a very complex phenomenon that depends on many factors. Computer numerical modeling would provides great tool to understand the fundamental of this complex phenomenon, which is crucial to the success of its applications. Complexity of modeling laser rock spallation is due to: 1) rock is a porous media, to which traditional theories of heat transfer and rock mechanics can not be directly

16

SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES  

Science Conference Proceedings (OSTI)

As part of our study on ''Relationships between seismic properties and rock microstructure'', we have (1) Studied relationships between velocity and permeability. (2) Used independent experimental methods to measure the elastic moduli of clay minerals as functions of pressure and saturation. (3) Applied different statistical methods for characterizing heterogeneity and textures from scanning acoustic microscope (SAM) images of shale microstructures. (4) Analyzed the directional dependence of velocity and attenuation in different reservoir rocks (5) Compared Vp measured under hydrostatic and non-hydrostatic stress conditions in sands. (6) Studied stratification as a source of intrinsic anisotropy in sediments using Vp and statistical methods for characterizing textures in sands.

Gary Mavko

2003-10-01T23:59:59.000Z

17

Coupled rock motion and gas flow modeling in blasting  

SciTech Connect

The spherical element computer code DMC (Distinct Motion Code) used to model rock motion resulting from blasting has been enhanced to allow routine computer simulations of bench blasting. The enhancements required for bench blast simulation include: (1) modifying the gas flow portion of DMC, (2) adding a new explosive gas equation of state capability, (3) modifying the porosity calculation, and (4) accounting for blastwell spacing parallel to the face. A parametric study performed with DMC shows logical variation of the face velocity as burden, spacing, blastwell diameter and explosive type are varied. These additions represent a significant advance in the capability of DMC which will not only aid in understanding the physics involved in blasting but will also become a blast design tool. 8 refs., 7 figs., 1 tab.

Preece, D.S. (Sandia National Labs., Albuquerque, NM (United States)); Knudsen, S.D. (RE/SPEC, Inc., Albuquerque, NM (United States))

1991-01-01T23:59:59.000Z

18

Modeling rock fracturing in bench-blasting problems  

SciTech Connect

A computational model of rock blasting is being developed to examine the blasting problems associated with in situ oil shale processing. This model, however, will also be useful as a design tool for the traditional problems in rock blasting. The model includes fundamental treatment of both shock-wave propagation and the accumulation of brittle fracture in the rock. As a result, the model accurately predicts the degree and extent of fracturing as functions of design parameters. The model has proven useful for making parametric studies and for evaluation of alternate blast designs. This paper demonstrates the use of the numerical model to simulate the fracturing induced by the detonation of a vertical explosive column near a bench. The fracturing induced by three different explosives indicate that (in the chosen geometry) the most efficient breakage is done by a column of ammonium nitrate and fuel oil mixture (ANFO) used with a toe charge of aluminized ANFO. There was too much unfractured rock left when ANFO was used alone; aluminized ANFO used for the entire explosive column caused excessive fracturing. A final case involves ANFO used alone to fracture a different rock type. This case points out that in a different rock type, the ANFO will not leave excessive unfractured rock.

Kuszmaul, J.S.

1987-01-01T23:59:59.000Z

19

A coupled model of fluid flow in jointed rock  

SciTech Connect

We present a fully coupled model of fluid flow in jointed rock, where the fluid flow depends on the joint openings and the joint openings depend on the fluid pressure. The joints and rock blocks are modeled discretely using the finite element method. Solutions for the fluid and rock are obtained and iteration is performed until both solutions converge. Example applications include an examination of the effects of back-pressure on flow in a geothermal reservoir and transient fluid injection into a reservoir.

Swenson, Daniel; Martineau, Rick; James, Mark; Brown, Don

1991-01-01T23:59:59.000Z

20

SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES  

SciTech Connect

As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) How to quantify elastic properties of clay minerals using Atomic Force Acoustic Microscopy. We show how bulk modulus of clay can be measured using atomic force acoustic microscopy (AFAM) (2) We have successfully measured elastic properties of unconsolidated sediments in an effort to quantify attributes for detection of overpressures from seismic (3) We have initiated efforts for velocity upscaling to quantify long-wavelength and short-wavelength velocity behavior and the scale-dependent dispersion caused by sediment variability in different depositional environments.

Gary Mavko

2002-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Rock Physics-Based Carbonate Reservoir Pore Type Evaluation by Combining Geological, Petrophysical and Seismic Data  

E-Print Network (OSTI)

Pore type variations account for complex velocity-porosity relationship and intensive permeability heterogeneity and consequently low oil and gas recovery in carbonate reservoir. However, it is a challenge for geologist and geophysicist to quantitatively estimate the influences of pore type complexity on velocity variation at a given porosity and porosity-permeability relationship. A new rock physics-based integrated approach in this study was proposed to quantitatively characterize the diversity of pore types and its influences on wave propagation in carbonate reservoir. Based on above knowledge, permeability prediction accuracy from petrophysical data can be improved compared to conventional approach. Two carbonate reservoirs with different reservoir features, one is a shallow carbonate reservoir with average high porosity (>10%) and another one is a supper-deep carbonate reservoir with average low porosity (Permian basin, West Texas. Meanwhile, the complex paleokarst system is explained by using a carbonate platform hydrological model, similar to modern marine hydrological environments within carbonate islands. How to evaluate carbonate reservoir permeability heterogeneity from 3D seismic data has been a dream for reservoir geoscientists, which is a key factor to optimize reservoir development strategy and enhance reservoir recovery. A two-step seismic inversions approach by integrating angle-stack seismic data and rock physics model is proposed to characterize pore-types complexity and further to identify the relative high permeability gas-bearing zones in low porosity reservoir (< 5%) using ChangXing super-deep carbonate reservoir as an example. Compared to the conventional permeability calculation method by best-fit function between porosity and permeability, the results in this study demonstrate that gas zones and non-gas zones in low porosity reservoir can be differentiated by using above integrated permeability characterization method.

Dou, Qifeng

2011-05-01T23:59:59.000Z

22

Capabilities for measuring physical and chemical properties of rocks at high pressure  

SciTech Connect

The Experimental Geophysics Group of the Earth Sciences Department at Lawrence Livermore National Laboratory (LLNL) has experimental equipment that measures a variety of physical properties and phase equilibria and kinetics on rocks and minerals at extreme pressures (to 500 GPa) and temperatures (from 10 to 2800 K). These experimental capabilities are described in this report in terms of published results, photographs, and schematic diagrams.

Durham, W.B. (comp.)

1990-01-01T23:59:59.000Z

23

Computer modeling of gas flow and gas loading of rock in a bench blasting environment  

SciTech Connect

Numerical modeling can contribute greatly to an understanding of the physics involved in the blasting process. This paper will describe the latest enhancements to the blast modeling code DMC (Distinct Motion Code) (Taylor and Preece, 1989) and will demonstrate the ability of DMC to model gas flow and rock motion in a bench blasting environment. DMC has been used previously to model rock motion associated with blasting in a cratering environment (Preece and Taylor, 1990) and in confined volume blasting associated with in-situ oil shale retorting (Preece, 1990 a b). These applications of DMC treated the explosive loading as force versus time functions on specific spheres which were adjusted to obtain correct face velocities. It was recognized that a great need in explosives modeling was the coupling of an ability to simulate gas flow with the rock motion simulation capability of DMC. This was accomplished by executing a finite difference code that computes gas flow through a porous media (Baer and Gross, 1989) in conjunction with DMC. The marriage of these two capabilities has been documented by Preece and Knudsen, 1991. The capabilities that have been added recently to DMC and which will be documented in this paper include: (1) addition of a new equation of state for the explosive gases; (2) modeling of gas flow and sphere loading in a bench environment. 8 refs., 5 figs.

Preece, D.S.; Baer, M.R. (Sandia National Labs., Albuquerque, NM (United States)); Knudsen, S.D. (RE/SPEC, Inc., Albuquerque, NM (United States))

1991-01-01T23:59:59.000Z

24

Reservoir modeling of the Phase II Hot Dry Rock System  

DOE Green Energy (OSTI)

The Phase II system has been created with a series of hydraulic fracturing experiments at the Fenton Hill Hot Dry Rock site. Experiment 2032, the largest of the fracturing operations, involved injecting 5.6 million gallons (21,200m/sup 3/) of water into wellbore EE-2 over the period December 6-9, 1983. The experiment has been modeled using geothermal simulator FEHM developed at Los Alamos National Laboratory. The modeling effort has produced strong evidence of a large highly fractured reservoir. Two long term heat extraction schemes for the reservoir are studied with the model.

Zyvoloski, G.

1984-01-01T23:59:59.000Z

25

Hot Dry Rock Geothermal Reservoir Model Development at Los Alamos  

DOE Green Energy (OSTI)

Discrete fracture and continuum models are being developed to simulate Hot Dry Rock (HDR) geothermal reservoirs. The discrete fracture model is a two-dimensional steady state simulator of fluid flow and tracer transport in a fracture network which is generated from assumed statistical properties of the fractures. The model's strength lies in its ability to compute the steady state pressure drop and tracer response in a realistic network of interconnected fractures. The continuum approach models fracture behavior by treating permeability and porosity as functions of temperature and effective stress. With this model it is practical to model transient behavior as well as the coupled processes of fluid flow, heat transfer, and stress effects in a three-dimensional system. The model capabilities being developed will also have applications in conventional geothermal systems undergoing reinjection and in fractured geothermal reservoirs in general.

Robinson, Bruce A.; Birdsell, Stephen A.

1989-03-21T23:59:59.000Z

26

Hot Dry Rock geothermal reservoir model development at Los Alamos  

DOE Green Energy (OSTI)

Discrete fracture and continuum models are being developed to simulate Hot Dry Rock (HDR) geothermal reservoirs. The discrete fracture model is a two-dimensional steady state simulator of fluid flow and tracer transport in a fracture network which is generated from assumed statistical properties of the fractures. The model's strength lies in its ability to compute the steady state pressure drop and tracer response in a realistic network of interconnected fractures. The continuum approach models fracture behavior by treating permeability and porosity as functions of temperature and effective stress. With this model it is practical to model transient behavior as well as the coupled processes of fluid flow, heat transfer, and stress effects in a three-dimensional system. The model capabilities being developed will also have applications in conventional geothermal systems undergoing reinjection and in fractured geothermal reservoirs in general. 15 refs., 7 figs.

Robinson, B.A.; Birdsell, S.A.

1989-01-01T23:59:59.000Z

27

Rock physics characterization of Conway granite from a DOE borehole, Conway, New Hampshire  

DOE Green Energy (OSTI)

The Conway granite of New Hampshire is a highly radioactive intrusive into which a 1-km-deep borehole was drilled and continuously cored in 1975. There are two major granitic units, the Osceola and the Conway. The Conway is cut by three lamprophyre dikes. Elastic moduli and petrographic studies were on 14 samples from the core. These data and observations have been used to determine groupings in the rocks by characterizing microstructure. An important result is that carefully taken physical properties data (for example, velocities and strains) are sensitive indicators of microstructure. Based on velocity and strain data, three distinct groups are found: the lamprophyre dike rocks and two groups each of which contain samples from both the Osceola and Conway formations. These groups are also distinguished by petrographic observations of microcrack patterns. The groups are apparently controlled by grain size and by uniformity of the mixing of the mineral phases in the samples, and not by mineral modes or depth. This last result implies the coring of the Conway samples may have intensified the amount of cracking over that in the rocks in situ, but not the type of cracking. Coring does not apparently induce a distinct population of very thin (low aspect ratio) cracks; that is, such cracks are not needed to explain the low pressure stress and velocity data of these samples.

Warren, N.

1979-11-01T23:59:59.000Z

28

Modeling the cracking process of rocks from continuity to discontinuity using a cellular automaton  

Science Conference Proceedings (OSTI)

A rock discontinuous cellular automaton (RDCA) was developed for modeling rock fracturing processes from continuous to discontinuous deformation under mechanical loading. RDCA is an integration of the following basic concepts: (1) representation of heterogeneity ... Keywords: Cracking process, Discontinuity, Elasto-plastic cellular automaton, Level set, Partition of unity, Rock discontinuous cellular automaton

Peng-Zhi Pan; Fei Yan; Xia-Ting Feng

2012-05-01T23:59:59.000Z

29

Discrete element modeling of rock deformation, fracture network development and permeability evolution under hydraulic stimulation  

SciTech Connect

Key challenges associated with the EGS reservoir development include the ability to reliably predict hydraulic fracturing and the deformation of natural fractures as well as estimating permeability evolution of the fracture network with time. We have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a network flow model. In DEM model, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external and internal load is applied. The natural fractures are represented by a series of connected line segments. Mechanical bonds that intersect with such line segments are removed from the DEM model. A network flow model using conjugate lattice to the DEM network is developed and coupled with the DEM. The fluid pressure gradient exerts forces on individual elements of the DEM network, which therefore deforms the mechanical bonds and breaks them if the deformation reaches a prescribed threshold value. Such deformation/fracturing in turn changes the permeability of the flow network, which again changes the evolution of fluid pressure, intimately coupling the two processes. The intimate coupling between fracturing/deformation of fracture networks and fluid flow makes the meso-scale DEM- network flow simulations necessary in order to accurately evaluate the permeability evolution, as these methods have substantial advantages over conventional continuum mechanical models of elastic rock deformation. The challenges that must be overcome to simulate EGS reservoir stimulation, preliminary results, progress to date and near future research directions and opportunities will be discussed. Methodology for coupling the DEM model with continuum flow and heat transport models will also be discussed.

Shouchun Deng; Robert Podgorney; Hai Huang

2011-02-01T23:59:59.000Z

30

Use of scale models to determine thermo-hydromechanics of hot-dry-rock reservoirs. Final report  

DOE Green Energy (OSTI)

The study reported here had as its main objective a determination of the feasibility of physical scale models as a way to confirm mathematical models and to explore fundamental behavior of hydraulically-fractured hot dry rock reservoirs. Included in the study are: similitude analyses, based on full-scale data, simplified mathematical models, and physical reasoning, formulation of scaling laws from the similitude analyses, preliminary determination of the processes and phenomena that can be reliably studied in scale model tests, and recommended test program to implement the results of the study. Many of the major studies conducted in hot dry rock reservoir engineering were reviewed and evaluated in the course of meeting the objectives of this study.

Dodge, F.T.

1982-03-01T23:59:59.000Z

31

Fracture network modeling of a Hot Dry Rock geothermal reservoir  

DOE Green Energy (OSTI)

Fluid flow and tracer transport in a fractured Hot Dry Rock (HDR) geothermal reservoir are modeled using fracture network modeling techniques. The steady state pressure and flow fields are solved for a two-dimensional, interconnected network of fractures with no-flow outer boundaries and constant-pressure source and sink points to simulate wellbore-fracture intersections. The tracer response is simulated by particle tracking, which follows the progress of a representative sample of individual tracer molecules traveling through the network. Solute retardation due to matrix diffusion and sorption is handled easily with these particle tracking methods. Matrix diffusion is shown to have an important effect in many fractured geothermal reservoirs, including those in crystalline formations of relatively low matrix porosity. Pressure drop and tracer behavior are matched for a fractured HDR reservoir tested at Fenton Hill, NM.

Robinson, B.A.

1988-01-01T23:59:59.000Z

32

Physical and Chemical Environmental Abstraction Model  

Science Conference Proceedings (OSTI)

As directed by a written development plan (CRWMS M&O 1999a), Task 1, an overall conceptualization of the physical and chemical environment (P/CE) in the emplacement drift is documented in this Analysis/Model Report (AMR). Included are the physical components of the engineered barrier system (EBS). The intended use of this descriptive conceptualization is to assist the Performance Assessment Department (PAD) in modeling the physical and chemical environment within a repository drift. It is also intended to assist PAD in providing a more integrated and complete in-drift geochemical model abstraction and to answer the key technical issues raised in the U.S. Nuclear Regulatory Commission (NRC) Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). EBS-related features, events, and processes (FEPs) have been assembled and discussed in ''EBS FEPs/Degradation Modes Abstraction'' (CRWMS M&O 2000a). Reference AMRs listed in Section 6 address FEPs that have not been screened out. This conceptualization does not directly address those FEPs. Additional tasks described in the written development plan are recommended for future work in Section 7.3. To achieve the stated purpose, the scope of this document includes: (1) the role of in-drift physical and chemical environments in the Total System Performance Assessment (TSPA) (Section 6.1); (2) the configuration of engineered components (features) and critical locations in drifts (Sections 6.2.1 and 6.3, portions taken from EBS Radionuclide Transport Abstraction (CRWMS M&O 2000b)); (3) overview and critical locations of processes that can affect P/CE (Section 6.3); (4) couplings and relationships among features and processes in the drifts (Section 6.4); and (5) identities and uses of parameters transmitted to TSPA by some of the reference AMRs (Section 6.5). This AMR originally considered a design with backfill, and is now being updated (REV 00 ICN1) to address the design without backfill. This design change is described in ''Monitored Geologic Repository Project Description Document'' (CRWMS M&O 2000c). The design change will result in a greater ability of the waste packages to reject heat after closure of the repository, thereby maintaining the two thermal requirements. The first requirement is for protection of the fuel cladding, and the second requires that a section of the rock pillar between drifts remain below the boiling temperature of water, providing a path for water drainage.

E. Nowak

2000-11-09T23:59:59.000Z

33

Core Analysis for the Development and Constraint of Physical Models of Geothermal Reservoirs  

DOE Green Energy (OSTI)

Effective reservoir exploration, characterization, and engineering require a fundamental understanding of the geophysical properties of reservoir rocks and fracture systems. Even in the best of circumstances, spatial variability in porosity, fracture density, salinity, saturation, tectonic stress, fluid pressures, and lithology can all potentially produce and/or contribute to geophysical anomalies. As a result, serious uniqueness problems frequently occur when interpreting assumptions based on a knowledge base founded in validated rock physics models of reservoir material.

Greg N. Boitnott

2003-12-14T23:59:59.000Z

34

Simulation of blasting induced rock motion using spherical element models  

SciTech Connect

Control of the rock motion associated with blasting can have significant economic benefits. For example, surface coal mining can be made more efficient if the overburden material can be cast further with explosives, leaving less work for mechanical equipment. The final muck pile shape in very type of surface and underground blasting is controlled by the blasting induced motion of the rock. A theoretically sound method of predicting rock motion will be beneficial to understanding the blasting process. Discrete element methods have been used for some time to predict rock motion resulting from blasting. What all of these approaches had in common was the use of polygonal elements with corners and sides as well as aspect ratio. Reasonably good results were obtained but treatment of the interactions of the corners and sides of elements was a computationally intensive process that made long simulations with many elements expensive to perform. The use of spherical elements showed increased efficiency but lacked the mechanisms for treating the bulking of the rock mass. The computer program developed was converted from an explicit code to an event-driven code and some bulking mechanisms were added that allowed spherical elements to exert a torque on other spherical elements with which contact was made. The architecture of this program and its event-driven nature made it difficult to vectorize for efficient execution on vector processing machines. A new code called DMC (Distinct Motion Code) has been developed this past year. DMC was designed and written especially to take advantage of super computer vector processing capabilities. This paper will discuss the use of DMC to perform accurate rock motion calculations with very reasonable computation times. 9 refs., 7 figs., 3 tabs.

Taylor, L.M.; Preece, D.S. (Hibbitt, Karlsson and Sorensen, Providence, RI (USA); Sandia National Labs., Albuquerque, NM (USA))

1989-01-01T23:59:59.000Z

35

Core Analysis For The Development And Constraint Of Physical Models Of  

Open Energy Info (EERE)

For The Development And Constraint Of Physical Models Of For The Development And Constraint Of Physical Models Of Geothermal Reservoirs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Core Analysis For The Development And Constraint Of Physical Models Of Geothermal Reservoirs Details Activities (2) Areas (2) Regions (0) Abstract: Effective reservoir exploration, characterization, and engineering require a fundamental understanding of the geophysical properties of reservoir rocks and fracture systems. Even in the best of circumstances, spatial variability in porosity, fracture density, salinity, saturation, tectonic stress, fluid pressures, and lithology can all potentially produce and/or contribute to geophysical anomalies. As a result, serious uniqueness problems frequently occur when interpreting

36

Modeling flow and transport in unsaturated fractured rock: An evaluation of the continuum approach  

Science Conference Proceedings (OSTI)

Because the continuum approach is relatively simple and straightforward to implement, it has been commonly used in modeling flow and transport in unsaturated fractured rock. However, the usefulness of this approach can be questioned in terms of its adequacy for representing fingering flow and transport in unsaturated fractured rock. The continuum approach thus needs to be evaluated carefully by comparing simulation results with field observations directly related to unsaturated flow and transport processes. This paper reports on such an evaluation, based on a combination of model calibration and prediction, using data from an infiltration test carried out in a densely fractured rock within the unsaturated zone of Yucca Mountain, Nevada. Comparisons between experimental and modeling results show that the continuum approach may be able to capture important features of flow and transport processes observed from the test. The modeling results also show that matrix diffusion may have a significant effect on the overall transport behavior in unsaturated fractured rocks, which can be used to estimate effective fracture-matrix interface areas based on tracer transport data. While more theoretical, numerical, and experimental studies are needed to provide a conclusive evaluation, this study suggests that the continuum approach is useful for modeling flow and transport in unsaturated, densely fractured rock.

Liu, Hui-Hai; Haukwa, Charles B.; Ahlers, C. Fredrik; Bodvarsson, Gudmundur S.; Flint, Alan L.; Guertal, William B.

2002-09-01T23:59:59.000Z

37

Bridging Physics and Biology Teaching through Modeling  

E-Print Network (OSTI)

As the frontiers of biology become increasingly interdisciplinary, the physics education community has engaged in ongoing efforts to make physics classes more relevant to life sciences majors. These efforts are complicated by the many apparent differences between these fields, including the types of systems that each studies, the behavior of those systems, the kinds of measurements that each makes, and the role of mathematics in each field. Nonetheless, physics and biology are both fundamental sciences that rely on observations and measurements to construct models of the natural world. In the present theoretical article, we propose that efforts to bridge the teaching of these two disciplines must emphasize shared scientific practices, particularly scientific modeling. We define modeling using language common to both disciplines and highlight how an understanding of the modeling process can help reconcile apparent differences between physics and biology. We elaborate how models can be used for explanatory, pre...

Hoskinson, Anne-Marie; Zwickl, Benjamin M; Hinko, Kathleen; Caballero, Marcos D

2013-01-01T23:59:59.000Z

38

Physical layer model design for wireless networks  

E-Print Network (OSTI)

Wireless network analysis and simulations rely on accurate physical layer models. The increased interest in wireless network design and cross-layer design require an accurate and efficient physical layer model especially when a large number of nodes are to be studied and building the real network is not possible. For analysis of upper layer characteristics, a simplified physical layer model has to be chosen to model the physical layer. In this dissertation, the widely used two-state Markov model is examined and shown to be deficient for low to moderate signal-to-noise ratios. The physical layer statistics are investigated, and the run length distributions of the good and bad frames are demonstrated to be the key statistics for accurate physical layer modeling. A four-state Markov model is proposed for the flat Rayleigh fading channel by approximating the run length distributions with a mixture of exponential distributions. The transition probabilities in the four-state Markov model can be established analytically without having to run extensive physical layer simulations, which are required for the two-state Markov model. Physical layer good and bad run length distributions are compared and it is shown that the four-state Markov model reasonably approximates the run length distributions. Ns2 simulations are performed and the four-state Markov model provides a much more realistic approximation compared to the popular two-state Markov model. Achieving good results with the flat Rayleigh fading channel, the proposed four-state Markov model is applied to a few diversity channels. A coded orthogonal fre- quency division multiplexing (OFDM) system with a frequency selective channel and the Alamouti multiple-input multiple-output system are chosen to verify the accuracy of the four-state Markov model. The network simulation results show that the four-state Markov model approximates the physical layer with diversity channel well whereas the traditional two-state Markov model estimates the network throughput poorly. The success of adapting the four-state Markov model to the diversity channel also shows the flexibility of adapting the four-state Markov model to various channel conditions.

Yu, Yi

2006-08-01T23:59:59.000Z

39

A combined heat transfer and quartz dissolution/deposition model for a hot dry rock geothermal reservoir  

DOE Green Energy (OSTI)

A kinetic model of silica transport has been coupled to a heat transfer model for a Hot Dry Rock (HDR) geothermal reservoir to examine the effect of silica rock-water interactions on fracture aperture and permeability. The model accounts for both the dissolution and deposition of silica. Zones of local dissolution and deposition were predicted, but their effect on aperture and permeability were fairly small for all cases studied. Initial rock temperature, reservoir size, and the ratio of rock surface area to fluid volume have the largest effect on the magnitude of silica mass transferred between the liquid and solid phases. 13 refs., 6 figs.

Robinson, B.A.; Pendergrass, J.

1989-01-01T23:59:59.000Z

40

A physically-based night sky model  

Science Conference Proceedings (OSTI)

This paper presents a physically-based model of the night sky for realistic image synthesis. We model both the direct appearance of the night sky and the illumination coming from the Moon, the stars, the zodiacal light, and the atmosphere. To accurately ...

Henrik Wann Jensen; Frédo Durand; Julie Dorsey; Michael M. Stark; Peter Shirley; Simon Premože

2001-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Definition: Rock Density | Open Energy Information  

Open Energy Info (EERE)

in crustal rocks. Rock density is a physical characteristic that is governed by the chemical composition (in situ minerals) and pore spaces of a specific rock or rock type.1...

42

Combined seismic and hydraulic method of modeling flow in fractured low permeability rocks  

DOE Green Energy (OSTI)

Modeling flow of ground water in hard rocks where a network of fractures provides the dominant flow paths is a major problem. This paper summarizes a program of investigations currently underway in this laboratory to characterize the geometry of fractured rocks and develop methods of handling flow in such systems. Numerical models have been developed to investigate flow behavior in two- and three-dimensional fracture networks. The results demonstrate the insights that can be gained from modeling studies of fractured rocks. A key problem is gathering the necessary data on fracture geometry. Investigations have been started to determine how vertical seismic profiling (VSP) might be improved and applied to this problem. A VSP experiment in The Geysers geothermal field in northern California, where fracture orientation is known, produced shear wave splitting and velocity anisotropy in agreement with theory. The results suggest the potential application of 3-component, multi-source VSP data in determining fracture orientation and average spacing. We believe a combination of seismic and hydraulic methods can greatly enhance an understanding of fluid flow and transport in low permeability rock systems where fractures provide the dominant paths. 40 refs, 16 figs., 4 tabs.

Witherspoon, P.A.; Long, J.C.S.; Majer, E.L.; Myer, L.R.

1987-06-01T23:59:59.000Z

43

Waste glass melter numerical and physical modeling  

SciTech Connect

Results of physical and numerical simulation modeling of high-level liquid waste vitrification melters are presented. Physical modeling uses simulant fluids in laboratory testing. Visualization results provide insight into convective melt flow patterns from which information is derived to support performance estimation of operating melters and data to support numerical simulation. Numerical simulation results of several melter configurations are presented. These are in support of programs to evaluate melter operation characteristics and performance. Included are investigations into power skewing and alternating current electric field phase angle in a dual electrode pair reference design and bi-modal convective stability in an advanced design. 9 refs., 9 figs., 1 tab.

Eyler, L.L.; Peters, R.D.; Lessor, D.L.; Lowery, P.S.; Elliott, M.L.

1991-10-01T23:59:59.000Z

44

Advanced Conceptual Models for Unsaturated and Two-Phase Flow in Fractured Rock  

DOE Green Energy (OSTI)

This project was initiated in FY03. As of December 2003, we have accomplished the following: (1) We conducted a more detailed evaluation of the preliminary experiments used to develop our investigative approach. In those experiments, water was invaded at a variety of flow rates into an air-filled, two dimensional analog fracture network. Results demonstrated the critical control that fracture intersections place on two-phase flow in fracture networks. At low flows, capillary and gravitational forces combined to create a narrow pulsing flow structure that spanned the system vertically. At higher flows, viscous forces acted to remove the pulsation; however, the flow structure remained narrow. The intersections acted to impose a narrow ''slender ladder'' structure on the flowing phase that did not expand with depth, but instead remained focused. A manuscript documenting this effort has been published in Water Resources Research [Glass et al., 2003a]. (2) We initiated a collaborative relationship with a research group at Seoul National University. This group, which is led by Dr. Kang-Kun Lee is also using a combined experimental numerical approach to consider DNAPL migration in fracture networks. They are particularly interested in the influence of ambient groundwater flows, making their work complementary to ours. The first fruit of that collaboration is an article demonstrating that modification of an Invasion Percolation algorithm to include gravity and the first-order effects of viscous forces shows good agreement with physical experiments in a simplistic fracture network. Results were published in Geophysical Research Letters [Ji et al., 2003a]. (3) We carried out an extensive review of models for fracture networks. These include models developed from observations of networks on outcrops at several scales and stochastic models that are prevalent in the literature from the 1980s to very recent developments. The results of this review were included as par t of a review paper co-authored by Rajaram, which was submitted to Reviews in Geophysics [Molz et al., in press]. (4) We prepared a manuscript based on previous work that will be used to support the development of our new conceptual model(s) for transport in fractured rock. Eight experiments were conducted to evaluate the repeatability of flow under nearly identical conditions and to characterize general patterns in flow behavior. Collected data revealed that flow generally converged to a single fracture in the bottom row of blocks. Periods of pathway switching were observed to be more common than periods with steady, constant flow pathways. We noted the importance of fracture intersections for integrating uniform flow and discharging a ''fluid cascade'', where water advances rapidly to the next capillary barrier creating a stop and start advance of water through the network. The results of this simple experiment suggest that the interaction of multiple fracture intersections in a network creates flow behavior not generally recognized in popular conceptual and numerical models. A manuscript documenting this effort has been accepted for publication in Vadose Zone Journal [Wood et al., 2003]. (5) Slender transport pathways have been found in laboratory and field experiments within unsaturated fractured rock. We considered the simulation of such structures with a Modified form of Invasion Percolation (MIP). Results show that slender pathways form in fracture networks for a wide range of expected conditions, can be maintained when subsequent matrix imbibition is imposed, and may arise even in the context of primarily matrix flow due to the action of fractures as barriers to inter-matrix block transport. A manuscript documenting this effort has been submitted to Geophysical Research Letters [Glass et al., 2003b].

Rajaram, Harihar

2003-06-01T23:59:59.000Z

45

A comparison of two heat transfer models for estimating thermal drawdown in Hot Dry Rock reservoirs  

DOE Green Energy (OSTI)

Estimates of thermal drawdown in Hot Dry Rock geothermal systems have been made with two different models of heat transfer from hydraulically fractured reservoir rock blocks to water circulated through the fracture permeability. One model is based on deconvolution of experimental tracer response curves into a network of flowpaths connected in parallel with heat transfer calculated individually in each flowpath. The second model is based on one-dimensional flow through the rock with a block size distribution described as a group of equivalent-radius spheres for which the heat transfer equations can be solved analytically. The two-models were applied to the planned Phase II long-term thermal drawdown experiment at Fenton Hill, NM. The results show good agreement between the two models, with estimates of temperature cooldown from 240/sup 0/C to 150/sup 0/C in a few years depending on selected operation parameters, but with somewhat differing cooldown curve characteristic shapes. Data from the long-term experiment will be helpful in improving the two models.

Robinson, B.A.; Kruger, P.

1988-01-01T23:59:59.000Z

46

Physically based modeling and animation of fire  

Science Conference Proceedings (OSTI)

We present a physically based method for modeling and animating fire. Our method is suitable for both smooth (laminar) and turbulent flames, and it can be used to animate the burning of either solid or gas fuels. We use the incompressible Navier-Stokes ... Keywords: blackbody radiation, chemical reaction, fire, flames, implicit surface, incompressible flow, smoke, stable fluids, vorticity confinement

Duc Quang Nguyen; Ronald Fedkiw; Henrik Wann Jensen

2002-07-01T23:59:59.000Z

47

MODELING SECURITY IN CYBER-PHYSICAL SYSTEMS  

E-Print Network (OSTI)

network at the Davis-Besse nuclear power plant in Oak Harbor, Ohio, was infected [39]. There have been-physical systems, threat models, protocols for treaty verification. 1. Introduction The rapid growth of information) sys- tems that monitor power, gas/oil transportation, water and waste-water distribution. Such systems

Burmester, Mike

48

Dilution physics modeling: Dissolution/precipitation chemistry  

Science Conference Proceedings (OSTI)

This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affect safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics.

Onishi, Y.; Reid, H.C.; Trent, D.S.

1995-09-01T23:59:59.000Z

49

Research on the physical properties of geothermal reservoir rock. Quarterly report, March 1978  

DOE Green Energy (OSTI)

A laboratory study of the P-wave velocity and electric resistivity was undertaken on Cenozoic volcanic rocks collected from the Columbia Plateau volcanic basin (C) and the Jemez volcanic field (NM). Electric resistivities of cylindrical samples saturated with 0.1 N NaCl solution were measured using a four electrode system and a 1.0 KHz frequency source. Seismic P-wave velocities were calculated from measured transit time of mechanical pulses generated and received by piezoelectric transducers. The electric resistivity of water saturated samples decreased as temperature increased to the boiling point of water. Above boiling point, resistivity increased rapidly as water changed to vapor. Resistivity is most sensitive to temperature changes between 35/sup 0/C to 65/sup 0/C. Resistivities of samples increased with decrease in saturation. The effect is more pronounced at lower temperatures. No dependence of seismic P-wave velocities on temperature was observed. Both resistivity and P-wave velocity depend on porosity. The increase in porosity results in a decrease in the resistivity formation factor. Assuming a relationship FF = a phi/sup -m/ (Archie's Law), where FF and phi represent the formation factor and porosity respectively, least squares indicate a variation of a between .5 and 2.0. The value of m varied between 1.2 to 1.7. Seismic velocities (v) decrease as porosity increases. Porosity appears to be linearly related to log v. Several samples show anomalous relationship between porosity and resistivity. Most of these samples also show anomalous seismic velocities. The majority of these samples have coarse grains or large pores. The effect of saturation on P-wave velocity is small and can be observed in few samples. In these samples, seismic velocities decrease with increase in saturation at high saturation (100% to 85%), and show a reverse relationship at low saturation. Between 15% and 85% saturation in velocity is constant.

Keller, G.V.; Grose, L.T.; Pickett, G.R.

1978-03-30T23:59:59.000Z

50

Physics Beyond the Standard Model: Supersymmetry  

SciTech Connect

This collection of studies on new physics at the LHC constitutes the report of the supersymmetry working group at the Workshop 'Physics at TeV Colliders', Les Houches, France, 2007. They cover the wide spectrum of phenomenology in the LHC era, from alternative models and signatures to the extraction of relevant observables, the study of the MSSM parameter space and finally to the interplay of LHC observations with additional data expected on a similar time scale. The special feature of this collection is that while not each of the studies is explicitly performed together by theoretical and experimental LHC physicists, all of them were inspired by and discussed in this particular environment.

Nojiri, M.M.; /KEK, Tsukuba /Tsukuba, Graduate U. Adv. Studies /Tokyo U.; Plehn, T.; /Edinburgh U.; Polesello, G.; /INFN, Pavia; Alexander, John M.; /Edinburgh U.; Allanach, B.C.; /Cambridge U.; Barr, Alan J.; /Oxford U.; Benakli, K.; /Paris U., VI-VII; Boudjema, F.; /Annecy, LAPTH; Freitas, A.; /Zurich U.; Gwenlan, C.; /University Coll. London; Jager, S.; /CERN /LPSC, Grenoble

2008-02-01T23:59:59.000Z

51

Searches for physics beyond the standard model  

Science Conference Proceedings (OSTI)

Jefferson Lab has now demonstrated ablility to test the fundamental symmetries of nature, and thereby probe for new physics beyond the Standard Model. Here we review the tremendous advances in precision parity-violation measurements with CEBAF that enable searches for new physics. This has been demonstrated with a determination of the weak charge of the proton, which is found to be in agreement with the prediction of the standard electroweak theory, and at a precision that rules out relevant new physics to the TeV scale. We also review the planned future experiments which aim to further test the electroweak theory at Jefferson Lab, including a further improvement on the proton weak charge, an ultra-precise Møller measurement, and a probe of the axial quark charges in PVDIS.

Julie Roche, Willem T H van Oers, Ross D Young

2011-06-01T23:59:59.000Z

52

Results from a discrete fracture network model of a Hot Dry Rock system  

Science Conference Proceedings (OSTI)

The work described represents a move towards better representations of the natural fracture system. The discrete fracture network model used during the study was the NAPSAC code (Grindrod et al, 1992). The goals of the work were to investigate the application of discrete fracture network models to Hot Dry Rock systems, increase the understanding of the basic thermal extraction process and more specifically the understanding of the Rosemanowes Phase 2B system. The aim in applying the work to the Rosemanowes site was to use the discrete fracture network approach to integrate a diverse set of field measurements into as simple a model as possible.

Lanyon, G.W.; Batchelor, A.S.; Ledingham, P.

1993-01-28T23:59:59.000Z

53

Application of real rock pore-threat statistics to a regular pore network model  

SciTech Connect

This work reports the application of real rock statistical data to a previously developed regular pore network model in an attempt to produce an accurate simulation tool with low computational overhead. A core plug from the St. Peter Sandstone formation in Indiana was scanned with a high resolution micro CT scanner. The pore-throat statistics of the three-dimensional reconstructed rock were extracted and the distribution of the pore-throat sizes was applied to the regular pore network model. In order to keep the equivalent model regular, only the throat area or the throat radius was varied. Ten realizations of randomly distributed throat sizes were generated to simulate the drainage process and relative permeability was calculated and compared with the experimentally determined values of the original rock sample. The numerical and experimental procedures are explained in detail and the performance of the model in relation to the experimental data is discussed and analyzed. Petrophysical properties such as relative permeability are important in many applied fields such as production of petroleum fluids, enhanced oil recovery, carbon dioxide sequestration, ground water flow, etc. Relative permeability data are used for a wide range of conventional reservoir engineering calculations and in numerical reservoir simulation. Two-phase oil water relative permeability data are generated on the same core plug from both pore network model and experimental procedure. The shape and size of the relative permeability curves were compared and analyzed and good match has been observed for wetting phase relative permeability but for non-wetting phase, simulation results were found to be deviated from the experimental ones. Efforts to determine petrophysical properties of rocks using numerical techniques are to eliminate the necessity of regular core analysis, which can be time consuming and expensive. So a numerical technique is expected to be fast and to produce reliable results. In applied engineering, sometimes quick result with reasonable accuracy is acceptable than the more time consuming results. Present work is an effort to check the accuracy and validity of a previously developed pore network model for obtaining important petrophysical properties of rocks based on cutting-sized sample data.

Rakibul, M.; Sarker, H.; McIntyre, D.; Ferer, M.; Siddiqui, S.; Bromhal. G.

2011-01-01T23:59:59.000Z

54

Application of real rock pore-throat statistics to a regular pore network model  

SciTech Connect

This work reports the application of real rock statistical data to a previously developed regular pore network model in an attempt to produce an accurate simulation tool with low computational overhead. A core plug from the St. Peter Sandstone formation in Indiana was scanned with a high resolution micro CT scanner. The pore-throat statistics of the three-dimensional reconstructed rock were extracted and the distribution of the pore-throat sizes was applied to the regular pore network model. In order to keep the equivalent model regular, only the throat area or the throat radius was varied. Ten realizations of randomly distributed throat sizes were generated to simulate the drainage process and relative permeability was calculated and compared with the experimentally determined values of the original rock sample. The numerical and experimental procedures are explained in detail and the performance of the model in relation to the experimental data is discussed and analyzed. Petrophysical properties such as relative permeability are important in many applied fields such as production of petroleum fluids, enhanced oil recovery, carbon dioxide sequestration, ground water flow, etc. Relative permeability data are used for a wide range of conventional reservoir engineering calculations and in numerical reservoir simulation. Two-phase oil water relative permeability data are generated on the same core plug from both pore network model and experimental procedure. The shape and size of the relative permeability curves were compared and analyzed and good match has been observed for wetting phase relative permeability but for non-wetting phase, simulation results were found to be deviated from the experimental ones. Efforts to determine petrophysical properties of rocks using numerical techniques are to eliminate the necessity of regular core analysis, which can be time consuming and expensive. So a numerical technique is expected to be fast and to produce reliable results. In applied engineering, sometimes quick result with reasonable accuracy is acceptable than the more time consuming results. Present work is an effort to check the accuracy and validity of a previously developed pore network model for obtaining important petrophysical properties of rocks based on cutting-sized sample data. Introduction

Sarker, M.R.; McIntyre, D.; Ferer, M.; Siddigui, S.; Bromhal. G.

2011-01-01T23:59:59.000Z

55

Fractured rock modeling in the National Waste Terminal Storage Program: a review of requirements and status  

Science Conference Proceedings (OSTI)

Generalized computer codes capable of forming the basis for numerical models of fractured rock masses are being used within the NWTS program. Little additional development of these codes is considered justifiable, except in the area of representation of discrete fractures. On the other hand, model preparation requires definition of medium-specific constitutive descriptions and site characteristics and is therefore legitimately conducted by each of the media-oriented projects within the National Waste Terminal Storage program. However, it is essential that a uniform approach to the role of numerical modeling be adopted, including agreement upon the contribution of modeling to the design and licensing process and the need for, and means of, model qualification for particular purposes. This report discusses the role of numerical modeling, reviews the capabilities of several computer codes that are being used to support design or performance assessment, and proposes a framework for future numerical modeling activities within the NWTS program.

St. John, C.; Krug, A.; Key, S.; Monsees, J.

1983-05-01T23:59:59.000Z

56

Modelling Complex Fenestration Systems using physical and virtual models  

Science Conference Proceedings (OSTI)

Physical or virtual models are commonly used to visualize the conceptual ideas of architects, lighting designers and researchers; they are also employed to assess the daylighting performance of buildings, particularly in cases where Complex Fenestration Systems (CFS) are considered. Recent studies have however revealed a general tendency of physical models to over-estimate this performance, compared to those of real buildings; these discrepancies can be attributed to several reasons. In order to identify the main error sources, a series of comparisons in-between a real building (a single office room within a test module) and the corresponding physical and virtual models was undertaken. The physical model was placed in outdoor conditions, which were strictly identical to those of the real building, as well as underneath a scanning sky simulator. The virtual model simulations were carried out by way of the Radiance program using the GenSky function; an alternative evaluation method, named Partial Daylight Factor method (PDF method), was also employed with the physical model together with sky luminance distributions acquired by a digital sky scanner during the monitoring of the real building. The overall daylighting performance of physical and virtual models were assessed and compared. The causes of discrepancies between the daylighting performance of the real building and the models were analysed. The main identified sources of errors are the reproduction of building details, the CFS modelling and the mocking-up of the geometrical and photometrical properties. To study the impact of these errors on daylighting performance assessment, computer simulation models created using the Radiance program were also used to carry out a sensitivity analysis of modelling errors. The study of the models showed that large discrepancies can occur in daylighting performance assessment. In case of improper mocking-up of the glazing for instance, relative divergences of 25-40% can be found in different room locations, suggesting that more light is entering than actually monitored in the real building. All these discrepancies can however be reduced by making an effort to carefully mock up the geometry and photometry of the real building. A synthesis is presented in this article which can be used as guidelines for daylighting designers to avoid or estimate errors during CFS daylighting performance assessment. (author)

Thanachareonkit, Anothai; Scartezzini, Jean-Louis [Solar Energy and Building Physics Laboratory (LESO-PB), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

2010-04-15T23:59:59.000Z

57

Modeling of Physical Properties of Composite Materials  

E-Print Network (OSTI)

Recent progress in three different areas involving the modeling of the physical properties of composites is reviewed. These include: (i) theoretical approaches to microstructure/property relations; (ii) X-ray microtomography, an imaging technique that enables one to obtain high-resolution three-dimensional microstructural phase information of a composite sample in a non-intrusive manner; and (ii) topology optimization, a promising numerical technique that enables one to design composites with tailored material properties. Current limitations and future research needs are described.

S. Torquato

2000-01-01T23:59:59.000Z

58

Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks  

SciTech Connect

Colorado School of Mines conducted research and training in the development and validation of an advanced CO{sub 2} GS (Geological Sequestration) probabilistic simulation and risk assessment model. CO{sub 2} GS simulation and risk assessment is used to develop advanced numerical simulation models of the subsurface to forecast CO2 behavior and transport; optimize site operational practices; ensure site safety; and refine site monitoring, verification, and accounting efforts. As simulation models are refined with new data, the uncertainty surrounding the identified risks decrease, thereby providing more accurate risk assessment. The models considered the full coupling of multiple physical processes (geomechanical and fluid flow) and describe the effects of stochastic hydro-mechanical (H-M) parameters on the modeling of CO{sub 2} flow and transport in fractured porous rocks. Graduate students were involved in the development and validation of the model that can be used to predict the fate, movement, and storage of CO{sub 2} in subsurface formations, and to evaluate the risk of potential leakage to the atmosphere and underground aquifers. The main major contributions from the project include the development of: 1) an improved procedure to rigorously couple the simulations of hydro-thermomechanical (H-M) processes involved in CO{sub 2} GS; 2) models for the hydro-mechanical behavior of fractured porous rocks with random fracture patterns; and 3) probabilistic methods to account for the effects of stochastic fluid flow and geomechanical properties on flow, transport, storage and leakage associated with CO{sub 2} GS. The research project provided the means to educate and train graduate students in the science and technology of CO{sub 2} GS, with a focus on geologic storage. Specifically, the training included the investigation of an advanced CO{sub 2} GS simulation and risk assessment model that can be used to predict the fate, movement, and storage of CO{sub 2} in underground formations, and the evaluation of the risk of potential CO{sub 2} leakage to the atmosphere and underground aquifers.

Gutierrez, Marte

2013-05-31T23:59:59.000Z

59

Lepton-Flavor Violation and Physics beyond the Standard Model  

E-Print Network (OSTI)

This talk discusses recent studies of (charged) lepton-flavor violation in physics beyond the standard model.

Junji Hisano

2012-12-20T23:59:59.000Z

60

Detailed Physical Trough Model for NREL's Solar Advisor Model: Preprint  

SciTech Connect

Solar Advisor Model (SAM) is a free software package made available by the National Renewable Energy Laboratory (NREL), Sandia National Laboratory, and the US Department of Energy. SAM contains hourly system performance and economic models for concentrating solar power (CSP) systems, photovoltaic, solar hot-water, and generic fuel-use technologies. Versions of SAM prior to 2010 included only the parabolic trough model based on Excelergy. This model uses top-level empirical performance curves to characterize plant behavior, and thus is limited in predictive capability for new technologies or component configurations. To address this and other functionality challenges, a new trough model; derived from physical first principles was commissioned to supplement the Excelergy-based empirical model. This new 'physical model' approaches the task of characterizing the performance of the whole parabolic trough plant by replacing empirical curve-fit relationships with more detailed calculations where practical. The resulting model matches the annual performance of the SAM empirical model (which has been previously verified with plant data) while maintaining run-times compatible with parametric analysis, adding additional flexibility in modeled system configurations, and providing more detailed performance calculations in the solar field, power block, piping, and storage subsystems.

Wagner, M. J.; Blair, N.; Dobos, A.

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Modeling of thermally driven hydrological processes in partially saturated fractured rock  

Science Conference Proceedings (OSTI)

This paper is a review of the research that led to an in-depth understanding of flow and transport processes under strong heat stimulation in fractured, porous rock. It first describes the anticipated multiple processes that come into play in a partially saturated, fractured porous volcanic tuff geological formation, when it is subject to a heat source such as that originating from the decay of radionuclides. The rationale is then given for numerical modeling being a key element in the study of multiple processes that are coupled. The paper outlines how the conceptualization and the numerical modeling of the problem evolved, progressing from the simplified to the more realistic. Examples of numerical models are presented so as to illustrate the advancement and maturation of the research over the last two decades. The most recent model applied to in situ field thermal tests is characterized by (1) incorporation of a full set of thermal-hydrological processes into a numerical simulator, (2) realistic representation of the field test geometry, in three dimensions, and (3) use of site-specific characterization data for model inputs. Model predictions were carried out prior to initiation of data collection, and the model results were compared to diverse sets of measurements. The approach of close integration between modeling and field measurements has yielded a better understanding of how coupled thermal hydrological processes produce redistribution of moisture within the rock, which affects local permeability values and subsequently the flow of liquid and gases. The fluid flow in turn will change the temperature field. We end with a note on future research opportunities, specifically those incorporating chemical, mechanical, and microbiological factors into the study of thermal and hydrological processes.

Tsang, Yvonne; Birkholzer, Jens; Mukhopadhyay, Sumit

2009-03-15T23:59:59.000Z

62

Physics Modeling of ARIES-AT  

E-Print Network (OSTI)

Bull. Am. Phys. Soc. 56, 340 (2011)53rd American Physical Society Annual Meeting of Division of Plasma Physics Salt Lake City Utah, US, 2011999619015

St John, H.E.

2011-07-28T23:59:59.000Z

63

Modeling Fluid Flow and Electrical Resistivity in Fractured Geothermal Reservoir Rocks  

DOE Green Energy (OSTI)

Phase change of pore fluid (boiling/condensing) in rock cores under conditions representative of geothermal reservoirs results in alterations of the electrical resistivity of the samples. In fractured samples, phase change can result in resistivity changes that are more than an order of magnitude greater than those measured in intact samples. These results suggest that electrical resistivity monitoring may provide a useful tool for monitoring the movement of water and steam within fractured geothermal reservoirs. We measured the electrical resistivity of cores of welded tuff containing fractures of various geometries to investigate the resistivity contrast caused by active boiling and to determine the effects of variable fracture dimensions and surface area on water extraction. We then used the Nonisothermal Unsaturated Flow and Transport model (NUFT) (Nitao, 1998) to simulate the propagation of boiling fronts through the samples. The simulated saturation profiles combined with previously reported measurements of resistivity-saturation curves allow us to estimate the evolution of the sample resistivity as the boiling front propagates into the rock matrix. These simulations provide qualitative agreement with experimental measurements suggesting that our modeling approach may be used to estimate resistivity changes induced by boiling in more complex systems.

Detwiler, R L; Roberts, J J; Ralph, W; Bonner, B P

2003-01-14T23:59:59.000Z

64

Electrical Resistivity as an Indicator of Saturation in Fractured Geothermal Reservoir Rocks: Experimental Data and Modeling  

DOE Green Energy (OSTI)

The electrical resistivity of rock cores under conditions representative of geothermal reservoirs is strongly influenced by the state and phase (liquid/vapor) of the pore fluid. In fractured samples, phase change (vaporization/condensation) can result in resistivity changes that are more than an order of magnitude greater than those measured in intact samples. These results suggest that electrical resistivity monitoring of geothermal reservoirs may provide a useful tool for remotely detecting the movement of water and steam within fractures, the development and evolution of fracture systems and the formation of steam caps. We measured the electrical resistivity of cores of welded tuff containing fractures of various geometries to investigate the resistivity contrast caused by active boiling and to determine the effects of variable fracture dimensions and surface area on water extraction from the matrix. We then used the Nonisothermal Unsaturated Flow and Transport model (NUFT) (Nitao, 1998) to simulate the propagation of boiling fronts through the samples. The simulated saturation profiles combined with previously reported measurements of resistivity-saturation curves allow us to estimate the evolution of the sample resistivity as the boiling front propagates into the rock matrix. These simulations provide qualitative agreement with experimental measurements suggesting that our modeling approach may be used to estimate resistivity changes induced by boiling in more complex systems.

Detwiler, R L; Roberts, J J

2003-06-23T23:59:59.000Z

65

Transport and seismoelectric properties of porous permeable rock : numerical modeling and laboratory measurements  

E-Print Network (OSTI)

The objective of this thesis is to better understand the transport and seismoelectric (SE) properties of porous permeable rock. Accurate information of rock transport properties, together with pore geometry, can aid us to ...

Zhan, Xin, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

66

Modeling of thermally driven hydrological processes in partially saturated fractured rock  

E-Print Network (OSTI)

the heat source and encounters cooler rock, it condenses,fractured rock near the radioactive-decay heat source isrock, giving rise to a reflux of liquid back to the heat source.

Tsang, Yvonne

2010-01-01T23:59:59.000Z

67

A numerical model of hydro-thermo-mechanical coupling in a fractured rock mass  

DOE Green Energy (OSTI)

Coupled hydro-thermo-mechanical codes with the ability to model fractured materials are used for predicting groundwater flow behavior in fractured aquifers containing thermal sources. The potential applications of such a code include the analysis of groundwater behavior within a geothermal reservoir. The capability of modeling hydro-thermo systems with a dual porosity, fracture flow model has been previously developed in the finite element code, FEHM. FEHM has been modified to include stress coupling with the dual porosity feature. FEHM has been further developed to implicitly couple the dependence of fracture hydraulic conductivity on effective stress within two dimensional, saturated aquifers containing fracture systems. The cubic law for flow between parallel plates was used to model fracture permeability. The Bartin-Bandis relationship was used to determine the fracture aperture within the cubic law. The code used a Newton Raphson iteration to implicitly solve for six unknowns at each node. Results from a model of heat flow from a reservoir to the moving fluid in a single fracture compared well with analytic results. Results of a model showing the increase in fracture flow due to a single fracture opening under fluid pressure compared well with analytic results. A hot dry rock, geothermal reservoir was modeled with realistic time steps indicating that the modified FEHM code does successfully model coupled flow problems with no convergence problems.

Bower, K.M.

1996-06-01T23:59:59.000Z

68

Analyzing Unsatirated Flow Patterns in Fractured Rock Using an Integrated Modeling Approach  

Science Conference Proceedings (OSTI)

Characterizing percolation patterns in unsaturated fractured rock has posed a greater challenge to modeling investigations than comparable saturated zone studies, because of the heterogeneous nature of unsaturated media and the great number of variables impacting unsaturated flow. This paper presents an integrated modeling methodology for quantitatively characterizing percolation patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository site for storing high-level radioactive waste. The modeling approach integrates a wide variety of moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model for modeling analyses. It takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain's highly heterogeneous, unsaturated fractured tuffs. Modeling results are examined against different types of field-measured data and then used to evaluate different hydrogeological conceptualizations and their results of flow patterns in the unsaturated zone. In particular, this model provides a much clearer understanding of percolation patterns and flow behavior through the unsaturated zone, both crucial issues in assessing repository performance. The integrated approach for quantifying Yucca Mountain's flow system is demonstrated to provide a practical modeling tool for characterizing flow and transport processes in complex subsurface systems.

Y.S. Wu; G. Lu; K. Zhang; L. Pan; G.S. Bodvarsson

2006-08-03T23:59:59.000Z

69

Quantitative model of vapor dominated geothermal reservoirs as heat pipes in fractured porous rock  

DOE Green Energy (OSTI)

We present a numerical model of vapor-dominated reservoirs which is based on the well-known conceptual model of White, Muffler, and Truesdell. Computer simulations show that upon heat recharge at the base, a single phase liquid-dominated geothermal reservoir in fractured rock with low matrix permeability will evolve into a two-phase reservoir with B.P.D. (boiling point-for-depth) pressure and temperature profiles. A rather limited discharge event through cracks in the caprock, involving loss of only a few percent of fluids in place, is sufficient to set the system off to evolve a vapor-dominated state. The attributes of this state are discussed, and some features requiring further clarification are identified. 26 refs., 5 figs.

Pruess, K.

1985-03-01T23:59:59.000Z

70

A Physical Model for Wildland Fires J.H. Balbi*  

E-Print Network (OSTI)

1 A Physical Model for Wildland Fires J.H. Balbi* , J.B. Filippi, F. Morandini, F. Rinieri and X. Silvani Corresponding author: Pr. Jacques-Henri Balbi, balbi@univ-corse.fr. Laboratory for the Physical

Paris-Sud XI, Université de

71

Mechanical and transport properties of rocks at high temperatures and pressures. Task I. The physical nature of fracturing at depth. Final report  

DOE Green Energy (OSTI)

The deformational behavior of granitic rocks is important to a wide variety of national and academic concerns. Both transient and steady state behavior at elevated temperature and pressure, in the presence and absence of excess H2O, have been investigated recently in solid pressure medium equipment and deformation mechanisms and empirical steady state flow laws have been determined. Efforts in the more precise gas and fluid pressure media apparatus have generally been concentrated on low pressure transient creep in order to evaluate effects of stress, temperature, pore pressure and, most recently, strain rate on failure times and static fatigue processes. Additional research is required and the stage is now set for a thorough physical understanding of the evolution from elastic-brittle, through transient (work-hardening)-semibrittle to steady-state-semibrittle to ductile flow of granitic rocks under both dry and wet (saline fluid pore pressure) conditions. 31 refs., 9 figs.

Carter, N.L.

1984-02-28T23:59:59.000Z

72

A Coupled Model for Natural Convection and Condensation in Heated Subsurface Enclosures Embedded in Fractured Rock  

E-Print Network (OSTI)

and Mass Transfer in Yucca Mountain Drifts,” Proceedings ofMD- 000001 REV 00, Yucca Mountain Project Report, Bechtelthe fractured rock at Yucca Mountain have been investigated

Halecky, N.; Birkholzer, J.T.; Webb, S.W.; Peterson, P.F.; Bodvarsson, G.S.

2006-01-01T23:59:59.000Z

73

THERMO-HYDRO-MECHANICAL MODELING OF WORKING FLUID INJECTION AND THERMAL ENERGY EXTRACTION IN EGS FRACTURES AND ROCK MATRIX  

DOE Green Energy (OSTI)

Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing), to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid-heat system and our ability to reliably predict how reservoirs behave under stimulation and production. Reliable performance predictions of EGS reservoirs require accurate and robust modeling for strongly coupled thermal-hydrological-mechanical (THM) processes. Conventionally, these types of problems have been solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulators with a solid mechanics simulator via input files. An alternative approach is to solve the system of nonlinear partial differential equations that govern multiphase fluid flow, heat transport, and rock mechanics simultaneously, using a fully coupled, fully implicit solution procedure, in which all solution variables (pressure, enthalpy, and rock displacement fields) are solved simultaneously. This paper describes numerical simulations used to investigate the poro- and thermal- elastic effects of working fluid injection and thermal energy extraction on the properties of the fractures and rock matrix of a hypothetical EGS reservoir, using a novel simulation software FALCON (Podgorney et al., 2011), a finite element based simulator solving fully coupled multiphase fluid flow, heat transport, rock deformation, and fracturing using a global implicit approach. Investigations are also conducted on how these poro- and thermal-elastic effects are related to fracture permeability evolution.

Robert Podgorney; Chuan Lu; Hai Huang

2012-01-01T23:59:59.000Z

74

Expanded rock blast modeling capabilities of DMC{_}BLAST, including buffer blasting  

SciTech Connect

A discrete element computer program named DMC{_}BLAST (Distinct Motion Code) has been under development since 1987 for modeling rock blasting. This program employs explicit time integration and uses spherical or cylindrical elements that are represented as circles in 2-D. DMC{_}BLAST calculations compare favorably with data from actual bench blasts. The blast modeling capabilities of DMC{_}BLAST have been expanded to include independently dipping geologic layers, top surface, bottom surface and pit floor. The pit can also now be defined using coordinates based on the toe of the bench. A method for modeling decked explosives has been developed which allows accurate treatment of the inert materials (stemming) in the explosive column and approximate treatment of different explosives in the same blasthole. A DMC{_}BLAST user can specify decking through a specific geologic layer with either inert material or a different explosive. Another new feature of DMC{_}BLAST is specification of an uplift angle which is the angle between the normal to the blasthole and a vector defining the direction of explosive loading on particles adjacent to the blasthole. A buffer (choke) blast capability has been added for situations where previously blasted material is adjacent to the free face of the bench preventing any significant lateral motion during the blast.

Preece, D.S. [Sandia National Labs., Albuquerque, NM (United States); Tidman, J.P.; Chung, S.H. [ICI Explosives (Canada)

1996-12-31T23:59:59.000Z

75

An Analytical Model for Solute Transport in Unsaturated Flow through a Single Fracture and Porous Rock Matrix  

E-Print Network (OSTI)

fracture – matrix solute source rock matrix rock matrix vin fracture; b) solute source in rock matrix. Draft 8-11-04for a point source in the rock matrix are presented in

Houseworth, J.E.

2004-01-01T23:59:59.000Z

76

Exploring Perturbed Physics Ensembles in a Regional Climate Model  

Science Conference Proceedings (OSTI)

Perturbed physics ensembles (PPEs) have been widely used to assess climate model uncertainties and have provided new estimates of climate sensitivity and parametric uncertainty in state-of-the-art climate models. So far, mainly global climate ...

Omar Bellprat; Sven Kotlarski; Daniel Lüthi; Christoph Schär

2012-07-01T23:59:59.000Z

77

Hydraulic Physical Modeling and Observations of a Severe Gap Wind  

Science Conference Proceedings (OSTI)

Strong gap winds in Howe Sound, British Columbia, are simulated using a small-scale physical model. Model results are presented and compared with observations recorded in Howe Sound during a severe gap wind event in December 1992. Hydraulic ...

Timothy D. Finnigan; Jason A. Vine; Peter L. Jackson; Susan E. Allen; Gregory A. Lawrence; Douw G. Steyn

1994-12-01T23:59:59.000Z

78

Comparative Analyses of Physically Based Snowmelt Models for Climate Simulations  

Science Conference Proceedings (OSTI)

A comparative study of three snow models with different complexities was carried out to assess how a physically detailed snow model can improve snow modeling within general circulation models. The three models were (a) the U.S. Army Cold Regions ...

J. Jin; X. Gao; Z.-L. Yang; R. C. Bales; S. Sorooshian; R. E. Dickinson; S. F. Sun; G. X. Wu

1999-08-01T23:59:59.000Z

79

Economic modeling of electricity production from hot dry rock geothermal reservoirs: methodology and analyses. Final report  

DOE Green Energy (OSTI)

An analytical methodology is developed for assessing alternative modes of generating electricity from hot dry rock (HDR) geothermal energy sources. The methodology is used in sensitivity analyses to explore relative system economics. The methodology used a computerized, intertemporal optimization model to determine the profit-maximizing design and management of a unified HDR electric power plant with a given set of geologic, engineering, and financial conditions. By iterating this model on price, a levelized busbar cost of electricity is established. By varying the conditions of development, the sensitivity of both optimal management and busbar cost to these conditions are explored. A plausible set of reference case parameters is established at the outset of the sensitivity analyses. This reference case links a multiple-fracture reservoir system to an organic, binary-fluid conversion cycle. A levelized busbar cost of 43.2 mills/kWh ($1978) was determined for the reference case, which had an assumed geothermal gradient of 40/sup 0/C/km, a design well-flow rate of 75 kg/s, an effective heat transfer area per pair of wells of 1.7 x 10/sup 6/ m/sup 2/, and plant design temperature of 160/sup 0/C. Variations in the presumed geothermal gradient, size of the reservoir, drilling costs, real rates of return, and other system parameters yield minimum busbar costs between -40% and +76% of the reference case busbar cost.

Cummings, R.G.; Morris, G.E.

1979-09-01T23:59:59.000Z

80

Definition: Rock Lab Analysis | Open Energy Information  

Open Energy Info (EERE)

to core recovered from boreholes. They typically involve measuring the physical and chemical properties of the rock. Physical properties include density, elastic modulus, seismic...

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Quasi-three dimensional ground-water modeling of the hydrologic influence of paleozoic rocks on the ground-water table at Yucca Mountain, Nevada  

E-Print Network (OSTI)

The proposed high-level radioactive waste repository site at Yucca Mountain, Nevada, has created a need to understand the, ground-water system at the site. One of the important hydrologic characteristics is a steep gradient on the ground-water table north of the repository site. This study investigates the cause of the steep gradient, based on the possible influence by Paleozoic rocks under the Yucca Mountain area. A quasi-three dimensional, steady-state, finite-difference model of the groundwater flow system of the Yucca Mountain Site and vicinity, was developed using a manual trial-and-error calibration technique to model the ground-water table. The ground-water system in the model was divided into a two layers, which consist of Cenozoic volcanic rocks and Paleozoic carbonate rocks. The carbonate rocks were defined to be a confined aquifer. The model simulates vertical flow from the volcanic rocks to the underlying carbonate rocks in an area where the Eleana Formation, a Paleozoic clastic aquitard, is absent. The model requires a vertical hydrologic connection in a particular region and a large difference in hydraulic heads between the volcanic rocks and the carbonates to create the steep gradient north of the repository site. The regions of different hydraulic gradient on the water-table surface could be simulated by spatial variations of the horizontal hydraulic conductivity in the volcanic rocks.

Lee, Si-Yong

1994-01-01T23:59:59.000Z

82

Establishment of Stress-Permeabilty relationship of fractured rock mass by numerical modeling  

Office of Scientific and Technical Information (OSTI)

Accepted for publication in International Journal of Rock Mechanics & Mining Sciences Accepted for publication in International Journal of Rock Mechanics & Mining Sciences Stress-Dependent Permeability of Fractured Rock Masses: A Numerical Study Ki-Bok Min *1 , J Rutqvist 2 , Chin-Fu Tsang 2 , and Lanru Jing 1 1 Engineering Geology and Geophysics Research Group, Royal Institute of Technology (KTH), Stockholm, Sweden 2 Earth Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA * corresponding author. Tel.: +46-8-790-7919; fax: +46-8-790-6810. E-mail address: kibok@kth.se (Ki-Bok Min) 1 Abstract We investigate the stress-dependent permeability issue in fractured rock masses considering the effects of nonlinear normal deformation and shear dilation of fractures using a two-dimensional

83

Workshop on hydrology of crystalline basement rocks  

DOE Green Energy (OSTI)

This workshop covered the following subjects: measurements in relatively shallow boreholes; measurement and interpretation of data from deep boreholes; hydrologic properties of crystalline rocks as interpreted by geophysics and field geology; rock mechanics related to hydrology of crystalline rocks; the possible contributions of modeling to the understanding of the hydrology of crystalline rocks; and geochemical interpretations of the hydrology of crystalline rocks. (MHR)

Davis, S.N. (comp.)

1981-08-01T23:59:59.000Z

84

Relativistic models in nuclear and particle physics  

SciTech Connect

A comparative overview is presented of different approaches to the construction of phenomenological dynamical models that respect basic principles of quantum theory and relativity. Wave functions defined as matrix elements of products of field operators on one hand and wave functions that are defined as representatives of state vectors in model Hilbert spaces are related differently to observables and dynamical models for these wave functions have each distinct advantages and disadvantages 34 refs.

Coester, F.

1988-01-01T23:59:59.000Z

85

Hierarchical causal conceptual physical models - Springer  

Science Conference Proceedings (OSTI)

nomena like the ENSO, variation of monsoon in the Indian subcontinent, etc. For a clear presentation of systems modeling methods and purpose see Flood and ...

86

Physics-based activity modelling in phase space  

Science Conference Proceedings (OSTI)

In this paper, we employ ideas grounded in physics to examine activities in video. We build the Multi-Resolution Phase Space (MRPS) descriptor, which is a set of feature descriptors that is able to represent complex activities in multiple domains directly ... Keywords: activity modeling, phase space, physics-based

Ricky J. Sethi; Amit K. Roy-Chowdhury

2010-12-01T23:59:59.000Z

87

Fusion modeling in plasma physics: Vlasov-like systems  

E-Print Network (OSTI)

The methods developed by authors are applied to some reductions of BBGKY hierarchy, namely, various examples of Vlasov-like systems which are important both for fusion modeling and for particular physical problems related to plasma/beam physics. We mostly concentrate on phenomena of localization and pattern formation.

Antonina N. Fedorova; Michael G. Zeitlin

2010-12-22T23:59:59.000Z

88

A Physically Based Daily Hydrometeorological Model for Complex Mountain Terrain  

Science Conference Proceedings (OSTI)

This paper describes the continued development of the physically based hydrometeorological model Generate Earth Systems Science input (GENESYS) and its application in simulating snowpack in the St. Mary (STM) River watershed, Montana. GENESYS is ...

Ryan J. MacDonald; James M. Byrne; Stefan W. Kienzle

2009-12-01T23:59:59.000Z

89

An Implicitly Balanced Hurricane Model with Physics-Based Preconditioning  

Science Conference Proceedings (OSTI)

A numerical framework for simulating hurricanes based upon solving a nonlinear equation set with an implicitly balanced solution procedure is described in this paper. The physical model is the Navier–Stokes equations plus a highly simplified and ...

J. M. Reisner; A. Mousseau; A. A. Wyszogrodzki; D. A. Knoll

2005-04-01T23:59:59.000Z

90

SENSPECTRA : an elastic, strain-aware physical modeling interface  

E-Print Network (OSTI)

Senspectra is a computationally augmented physical modeling toolkit designed for sensing and visualization of structural strain. The system functions as a distributed sensor network consisting of nodes, embedded with ...

Leclerc, Vincent, S.M. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

91

U.S. National Committee for Rock Mechanics; and Conceptual model of fluid infiltration in fractured media. Project summary, July 28, 1997--July 27, 1998  

SciTech Connect

The title describes the two tasks summarized in this report. The remainder of the report contains information on meetings held or to be held on the subjects. The US National Committee for Rock Mechanics (USNC/RM) provides for US participation in international activities in rock mechanics, principally through adherence to the International Society for Rock Mechanics (ISRM). It also keeps the US rock mechanics community informed about new programs directed toward major areas of national concern in which rock mechanics problems represent critical or limiting factors, such as energy resources, excavation, underground storage and waste disposal, and reactor siting. The committee also guides or produces advisory studies and reports on problem areas in rock mechanics. A new panel under the auspices of the US National Committee for Rock Mechanics has been appointed to conduct a study on Conceptual Models of Fluid Infiltration in Fractured Media. The study has health and environmental applications related to the underground flow of pollutants through fractured rock in and around mines and waste repositories. Support of the study has been received from the US Nuclear Regulatory Commission and the Department of Energy`s Yucca Mountain Project Office. The new study builds on the success of a recent USNC/RM report entitled Rock Fractures and Fluid Flow: Contemporary Understanding and Applications (National Academy Press, 1996, 551 pp.). A summary of the new study is provided.

1998-09-01T23:59:59.000Z

92

Commodity market modeling and physical trading strategies  

E-Print Network (OSTI)

Investment and operational decisions involving commodities are taken based on the forward prices of these commodities. These prices are volatile, and a model of their evolution must correctly account for their volatility ...

Ellefsen, Per Einar

2010-01-01T23:59:59.000Z

93

THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES  

E-Print Network (OSTI)

with a constant bulk heat capacity CH = p m c m ) for thec ] at' w w r r where p c is the heat capacity of fluid andp c is the heat capacity of the rock. (c) at {; j [~pU

Wang, J.S.Y.

2013-01-01T23:59:59.000Z

94

Technical Manual for the SAM Physical Trough Model  

SciTech Connect

NREL, in conjunction with Sandia National Lab and the U.S Department of Energy, developed the System Advisor Model (SAM) analysis tool for renewable energy system performance and economic analysis. This paper documents the technical background and engineering formulation for one of SAM's two parabolic trough system models in SAM. The Physical Trough model calculates performance relationships based on physical first principles where possible, allowing the modeler to predict electricity production for a wider range of component geometries than is possible in the Empirical Trough model. This document describes the major parabolic trough plant subsystems in detail including the solar field, power block, thermal storage, piping, auxiliary heating, and control systems. This model makes use of both existing subsystem performance modeling approaches, and new approaches developed specifically for SAM.

Wagner, M. J.; Gilman, P.

2011-06-01T23:59:59.000Z

95

Electroweak limits on physics beyond the Standard Model  

E-Print Network (OSTI)

We briefly review the global Standard Model fit to electroweak precision data, and discuss the status of electroweak constraints on new interactions. We follow a general effective Lagrangian approach to obtain model-independent limits on the dimension-six operators, as well as on several common new physics extensions.

de Blas, J

2013-01-01T23:59:59.000Z

96

ASTROPHYSICAL EVIDENCE ON PHYSICS BEYOND THE STANDARD MODEL  

E-Print Network (OSTI)

Astrophysics and cosmology can be used to test the standard model of particle physics under conditions and over distance and time scales not accessible to laboratory experiments. Most of the astrophysical observations are in good agreement with the standard model. In particular, primordial nucleosynthesis, supernova explosions, stellar evolution and cosmic background radiations have been used to derive strong limits on physics beyond the standard model. However, the solution of some important astrophysical and cosmological problems may require new physics beyond the standard model. These include the origin of the initial conditions, large scale structure formation, the baryon asymmetry in the observed Universe, the dark matter problem, the solar neutrino problem and some cosmic ray puzzles. Here I review some important developments relevant to some of these problems, which took place most recently.

Arnon Dar

1995-02-20T23:59:59.000Z

97

Search for Beyond the Standard Model Physics at D0  

SciTech Connect

The standard model (SM) of particle physics has been remarkably successful at predicting the outcomes of particle physics experiments, but there are reasons to expect new physics at the electroweak scale. Over the last several years, there have been a number of searches for beyond the standard model (BSM) physics at D0. Here, we limit our focus to three: searches for diphoton events with large missing transverse energy (E{sub T}), searches for leptonic jets and E{sub T}, and searches for single vector-like quarks. We have discussed three recent searches at D0. There are many more, including limits on heavy neutral gauge boson in the ee channel, a search for scalar top quarks, a search for quirks, and limits on a new resonance decaying to WW or WZ.

Kraus, James

2011-08-01T23:59:59.000Z

98

Physical and numerical modeling of Joule-heated melters  

SciTech Connect

The Joule-heated ceramic-lined melter is an integral part of the high level waste immobilization process under development by the US Department of Energy. Scaleup and design of this waste glass melting furnace requires an understanding of the relationships between melting cavity design parameters and the furnace performance characteristics such as mixing, heat transfer, and electrical requirements. Developing empirical models of these relationships through actual melter testing with numerous designs would be a very costly and time consuming task. Additionally, the Pacific Northwest Laboratory (PNL) has been developing numerical models that simulate a Joule-heated melter for analyzing melter performance. This report documents the method used and results of this modeling effort. Numerical modeling results are compared with the more conventional, physical modeling results to validate the approach. Also included are the results of numerically simulating an operating research melter at PNL. Physical Joule-heated melters modeling results used for qualiying the simulation capabilities of the melter code included: (1) a melter with a single pair of electrodes and (2) a melter with a dual pair (two pairs) of electrodes. The physical model of the melter having two electrode pairs utilized a configuration with primary and secondary electrodes. The principal melter parameters (the ratio of power applied to each electrode pair, modeling fluid depth, electrode spacing) were varied in nine tests of the physical model during FY85. Code predictions were made for five of these tests. Voltage drops, temperature field data, and electric field data varied in their agreement with the physical modeling results, but in general were judged acceptable. 14 refs., 79 figs., 17 tabs.

Eyler, L.L.; Skarda, R.J.; Crowder, R.S. III; Trent, D.S.; Reid, C.R.; Lessor, D.L.

1985-10-01T23:59:59.000Z

99

Teaching and learning physics: A model for coordinating physics instruction, outreach, and research  

E-Print Network (OSTI)

This paper describes the development of a new university physics course designed to integrate physics, education, research, and community partnerships. The coordinated system of activities links the new course to local community efforts in pre-college education, university education, university outreach, and research on teaching and learning. As documented both by gains on conceptual surveys and by qualitative analyses of field-notes and audiotapes of class, the course facilitates student learning of physics, as well as student mastery of theories and practices of teaching and learning physics. Simultaneously, the course supports university efforts in community outreach and creates a rich environment for education research. The following narrative describes the motivation, structure, implementation, effectiveness, and potential for extending and sustaining this alternative model for university level science education.

Finkelstein, N D

2005-01-01T23:59:59.000Z

100

Transforming High School Physics with Modeling and Computation  

E-Print Network (OSTI)

The Engage to Excel (PCAST) report, the National Research Council's Framework for K-12 Science Education, and the Next Generation Science Standards all call for transforming the physics classroom into an environment that teaches students real scientific practices. This work describes the early stages of one such attempt to transform a high school physics classroom. Specifically, a series of model-building and computational modeling exercises were piloted in a ninth grade Physics First classroom. Student use of computation was assessed using a proctored programming assignment, where the students produced and discussed a computational model of a baseball in motion via a high-level programming environment (VPython). Student views on computation and its link to mechanics was assessed with a written essay and a series of think-aloud interviews. This pilot study shows computation's ability for connecting scientific practice to the high school science classroom.

Aiken, John M

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Physical model of a fractured reservoir | Open Energy Information  

Open Energy Info (EERE)

model of a fractured reservoir model of a fractured reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Physical model of a fractured reservoir Details Activities (1) Areas (1) Regions (0) Abstract: The objectives of the physical modeling effort are to: (1) evaluate injection-backflow testing for fractured reservoirs under conditions of known reservoir parameters (porosity, fracture width, etc.); (2) study the mechanisms controlling solute transport in fracture systems; and (3) provide data for validation of numerical models that explicitly simulate solute migration in fracture systems. The fracture network is 0.57-m wide, 1.7-m long, and consists of two sets of fractures at right angles to one another with a fracture spacing of 10.2 cm. A series of

102

Hot rocks  

Science Conference Proceedings (OSTI)

Four kilometers down below the orange earth of Australia¿s Cooper Basin lies some of the hottest nonvolcanic rock in the world¿rock that the geothermal industry had never seriously considered using to make electricity. But next month Geodynamics, an ...

S. Upson

2009-01-01T23:59:59.000Z

103

A Reaction-Transport Model for Calcite Precipitation andEvaluation of Infiltration Fluxes in unsaturated fractured rock  

Science Conference Proceedings (OSTI)

The percolation flux in the unsaturated zone (UZ) is an important parameter addressed in site characterization and flow and transport modeling of the potential nuclear-waste repository at Yucca Mountain, NV, USA. The US Geological Survey (USGS) has documented hydrogenic calcite abundances in fractures and lithophysal cavities at Yucca Mountain to provide constraints on percolation fluxes in the UZ. The purpose of this study was to investigate the relationship between percolation flux and measured calcite abundances using reactive transport modeling. Our model considers the following essential factors affecting calcite precipitation: (1) infiltration, (2) the ambient geothermal gradient, (3) gaseous CO2 diffusive transport and partitioning in liquid and gas phases, (4) fracture matrix interaction for water flow and chemical constituents, and (5) water rock interaction. Over a bounding range of 2 20 mm/year infiltration rate, the simulated calcite distributions capture the trend in calcite abundances measured in a deep borehole (WT-24) by the USGS. The calcite is found predominantly in fractures in the welded tuffs, which is also captured by the model simulations. Simulations showed that from about 2 to 6 mm/year, the amount of calcite precipitated in the welded Topopah Spring tuff is sensitive to the infiltration rate. This dependence decreases at higher infiltration rates owing to a modification of the geothermal gradient from the increased percolation flux. The model also confirms the conceptual model for higher percolation fluxes in the fractures compared to the matrix in the welded units, and the significant contribution of Ca from water rock interaction. This study indicates that reactive transport modeling of calcite deposition can yield important constraints on the unsaturated zone infiltration-percolation flux and provide useful insight into processes such as fracture matrix interaction as well as conditions and parameters controlling calcite deposition.

Xu, Tianfu; Sonnenthal, Eric; Bodvarsson, Gudmundur

2001-06-15T23:59:59.000Z

104

A Physically Based Runoff Routing Model for Land Surface and Earth System Models  

Science Conference Proceedings (OSTI)

A new physically based runoff routing model, called the Model for Scale Adaptive River Transport (MOSART), has been developed to be applicable across local, regional, and global scales. Within each spatial unit, surface runoff is first routed ...

Hongyi Li; Mark S. Wigmosta; Huan Wu; Maoyi Huang; Yinghai Ke; André M. Coleman; L. Ruby Leung

2013-06-01T23:59:59.000Z

105

Underwater acoustic imaging: physically-motivated sparse models  

E-Print Network (OSTI)

Underwater acoustic imaging: physically-motivated sparse models and validation on real data N hal-00677287,version1-4Jun2012 #12;Underwater acoustic imaging (UWA)hal-00677287,version1-4Jun2012 #12;Underwater acoustic imaging: direct problem Successive emission sequences, or pings, indexed by p. ep

Paris-Sud XI, Université de

106

Modeling Explosive/Rock Interaction During Presplitting Using ALE Computational Methods  

SciTech Connect

Arbitrary Lagrangian Eulerian (ALE) computational techniques allow treatment of gases, liq- uids, and solids in the same simulation. ALE methods include the ability to treat shockwaves in gases, liquids, and solids and the interaction of shockwaves with each other and with media from one of the other categories. ALE codes can also treat explosive detonation and the expansion of the explosive gases and their interaction with air and solids. ALEGRA is a 3-DALE code that has been developed at Sandia National Laboratories over the past few years. ALEGRA has been applied to a 2-D simulation of presplitting using decoupled explosives in rock blasting with very interesting results. The detonation of the explosive at the bottom of the hole sends a shock wave up the borehole driven by the explosive gas expanding into air. The explosive gas compresses the air against the stemming column where it rebounds and recompresses at the bottom of the borehole. This type of ringing takes several cycles to damp out. The explosively induced expansion of the borehole is also treated by ALEGRA as well as the shock wave imparted to the rock. The presentation of this paper will include sev- eral computer animations to aid in understanding this complex phenomenon.

Jensen, Richard P.; Preece, Dale S.

1999-04-27T23:59:59.000Z

107

Low Energy Probes of Physics Beyond the Standard Model  

E-Print Network (OSTI)

Low-energy tests of fundamental symmetries and studies of neutrino properties provide a powerful window on physics beyond the Standard Model (BSM). In this article, we provide a basic theoretical framework for a subsequent set of articles that review the progress and opportunities in various aspects of the low-energy program. We illustrate the physics reach of different low-energy probes in terms of an effective BSM mass scale and illustrate how this reach matches and, in some cases, even exceeds that accessible at the high energy frontier.

Cirigliano, Vincenzo

2013-01-01T23:59:59.000Z

108

Future high precision experiments and new physics beyond Standard Model  

SciTech Connect

High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.

Luo, Mingxing.

1993-01-01T23:59:59.000Z

109

Future high precision experiments and new physics beyond Standard Model  

SciTech Connect

High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.

Luo, Mingxing

1993-04-01T23:59:59.000Z

110

Model Independent Search For New Physics At The Tevatron  

SciTech Connect

The Standard Model of elementary particles can not be the final theory. There are theoretical reasons to expect the appearance of new physics, possibly at the energy scale of few TeV. Several possible theories of new physics have been proposed, each with unknown probability to be confirmed. Instead of arbitrarily choosing to examine one of those theories, this thesis is about searching for any sign of new physics in a model-independent way. This search is performed at the Collider Detector at Fermilab (CDF). The Standard Model prediction is implemented in all final states simultaneously, and an array of statistical probes is employed to search for significant discrepancies between data and prediction. The probes are sensitive to overall population discrepancies, shape disagreements in distributions of kinematic quantities of final particles, excesses of events of large total transverse momentum, and local excesses of data expected from resonances due to new massive particles. The result of this search, first in 1 fb{sup -1} and then in 2 fb{sup -1}, is null, namely no considerable evidence of new physics was found.

Choudalakis, Georgios; /MIT

2008-05-01T23:59:59.000Z

111

Using Modelica for Physical Modeling of Air-Conditioning Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Modelica for Physical Modeling of Air-Conditioning Systems Using Modelica for Physical Modeling of Air-Conditioning Systems Speaker(s): Jonas Eborn Date: August 23, 2007 - 12:00pm Location: 90-4133 Seminar Host/Point of Contact: Michael Wetter The Air Conditioning library is a commercial Modelica library for the steady-state and transient simulation of air conditioning systems using both compact micro-channel heat exchangers as well as fin-and-tube type heat exchangers. Currently it is mostly used by automotive OEMs and suppliers that need high-accuracy system level models to evaluate energy efficiency of systems developed under the pressure of reduced design cycle times. The library also has applications in other areas, including aircraft cooling systems and residential air-conditioning. The Air Conditioning library contains published correlations for heat and mass transfer and

112

An Integrated Modeling Analysis of Unsaturated Flow Patterns in Fractured Rock  

E-Print Network (OSTI)

study, heat flow simulations use a 3-D thermal model grid (model grid, which is used for gas flow and ambient heat-flowgrid showing a smaller model domain, used for modeling gas and heat

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

2008-01-01T23:59:59.000Z

113

Modeling brine-rock interactions in an enhanced geothermal system deep fractured reservoir at Soultz-Sous-Forets (France): a joint approach using two geochemical codes: frachem and toughreact  

E-Print Network (OSTI)

rock interactions in enhanced geothermal systems (EGS).31 th Workshop on Geothermal Reservoir Engineering, 301998). Computer modeling for geothermal systems: predicting

Andre, Laurent; Spycher, Nicolas; Xu, Tianfu; Vuataz, Francois-D.; Pruess, Karsten.

2006-01-01T23:59:59.000Z

114

Physics models in the toroidal transport code PROCTR  

DOE Green Energy (OSTI)

The physics models that are contained in the toroidal transport code PROCTR are described in detail. Time- and space-dependent models are included for the plasma hydrogenic-ion, helium, and impurity densities, the electron and ion temperatures, the toroidal rotation velocity, and the toroidal current profile. Time- and depth-dependent models for the trapped and mobile hydrogenic particle concentrations in the wall and a time-dependent point model for the number of particles in the limiter are also included. Time-dependent models for neutral particle transport, neutral beam deposition and thermalization, fusion heating, impurity radiation, pellet injection, and the radial electric potential are included and recalculated periodically as the time-dependent models evolve. The plasma solution is obtained either in simple flux coordinates, where the radial shift of each elliptical, toroidal flux surface is included to maintain an approximate pressure equilibrium, or in general three-dimensional torsatron coordinates represented by series of helical harmonics. The detailed coupling of the plasma, scrape-off layer, limiter, and wall models through the neutral transport model makes PROCTR especially suited for modeling of recycling and particle control in toroidal plasmas. The model may also be used in a steady-state profile analysis mode for studying energy and particle balances starting with measured plasma profiles.

Howe, H.C.

1990-08-01T23:59:59.000Z

115

Thermal modeling of the Clear Lake magmatic system, California: Implications for conventional and hot dry rock geothermal development  

Science Conference Proceedings (OSTI)

The combination of recent volcanism, high heat flow ({ge} HFU or 167 mW/m{sup 2}), and high conductive geothermal gradient (up to 120{degree} C/km) makes the Clear Lake region of northern California one of the best prospects for hot dry rock (HDR) geothermal development in the US. The lack of permeability in exploration wells and lack of evidence for widespread geothermal reservoirs north of the Collayomi fault zone are not reassuring indications for conventional geothermal development. This report summarizes results of thermal modeling of the Clear Lake magmatic system, and discusses implications for HDR site selection in the region. The thermal models incorporate a wide range of constraints including the distribution and nature of volcanism in time and space, water and gas geochemistry, well data, and geophysical surveys. The nature of upper crustal magma bodies at Clear Lake is inferred from studying sequences of related silicic lavas, which tell a story of multistage mixing of silicic and mafic magma in clusters of small upper crustal chambers. Thermobarometry on metamorphic xenoliths yield temperature and pressure estimates of {approximately}780--900 C and 4--6 kb respectively, indicating that at least a portion of the deep magma system resided at depths from 14 to 21 km (9 to 12 mi). The results of thermal modeling support previous assessments of the high HDR potential of the area, and suggest the possibility that granitic bodies similar to The Geysers felsite may underlie much of the Clear Lake region at depths as little as 3--6 km. This is significant because future HDR reservoirs could potentially be sited in relatively shallow granitoid plutons rather than in structurally complex Franciscan basement rocks.

Stimac, J.; Goff, F.; Wohletz, K.

1997-06-01T23:59:59.000Z

116

Analyzing flow patterns in unsaturated fractured rock of Yucca Mountain using an integrated modeling approach  

E-Print Network (OSTI)

heat flow simulations use the 3-D thermal model grid (Figuremodel grid, which is used for gas flow and ambient heat flowgrid showing a smaller model domain, used for modeling gas and heat

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

2008-01-01T23:59:59.000Z

117

Analyzing flow patterns in unsaturated fractured rock of Yucca Mountain using an integrated modeling approach  

E-Print Network (OSTI)

zone site-scale model, Yucca Mountain Site Characterizationzone site- scale model, Yucca Mountain Project Milestonelateral diversion at Yucca Mountain, Nevada, Water Resources

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

2008-01-01T23:59:59.000Z

118

A Global Eddy-Resolving Coupled Physical-Biological Model: Physical Influences on a Marine Ecosystem in the North Pacific  

Science Conference Proceedings (OSTI)

Physical influences on a marine ecosystem in the open ocean are investigated using a simplified four-component ecosystem model embedded in an eddy-resolving ocean general-circulation model (OGCM). The annual cycle of temperature, nitrate, and phytoplankton ... Keywords: Marine ecosystem, North Pacific, eddy-resolving OGCM, physical processes

Yoshikazu Sasai; Akio Ishida; Hideharu Sasaki; Shintaro Kawahara; Hitoshi Uehara; Yasuhiro Yamanaka

2006-07-01T23:59:59.000Z

119

Hot dry rock reservoir characterization and modeling. Progress report, October 1, 1978-September 30, 1979. Final report  

DOE Green Energy (OSTI)

Resuls of analytical and experimental studies on hydraulic fracturing and on the characterization and modeling of hot dry rock geothermal energy reservoirs are presented. The first four Chapters are concerned with problems of thermal cracking and heat transfer, with fluid flow through large cracks, and with the stable and unstable growth of water-filled cracks under internal pressure and thermal loading. Experiments are reported, which present visually observable hydraulic fractures in transparent materials to demonstrate the interaction between hydraulic fractures and the development of thermal cracks. Seismic detection of hydraulic fractures is discussed, and a method to invert crack-scattering data is presented. Separate abstracts were prepared for each of the six chapters.

Achenbach, J.D.; Bazant, Z.P.; Dundurs, J.; Keer, L.M.; Nemat-Nasser, S.; Mura, T.; Weertman, J.

1980-02-01T23:59:59.000Z

120

The Resolution Dependence of Model Physics: Illustrations from Nonhydrostatic Model Experiments  

Science Conference Proceedings (OSTI)

The goal of this paper is to gain insight into the resolution dependence of model physics, the parameterization of moist convection in particular, which is required for accurately predicting large-scale features of the atmosphere. To achieve this ...

Joon-Hee Jung; Akio Arakawa

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Water injection into a Low-Permeability Rock - 2: Control Model  

Science Conference Proceedings (OSTI)

In Part 1, we have demonstrated the inevitable growth of the fluid injection hydrofractures in low-permeability rocks. Thus, a smart controller that manages fluid injection in the presence of hydrofracture extension is highly desirable. Such a controller will be an essential part of automated waterflood project surveillance and control. Here we design an optimal injection controller using methods of optimal control theory. The controller inputs are the history of the injection pressure and the cumulative injection, along with the fracture size. The output parameter is the injection pressure and the control objective is the injection rate. We demonstrate that the optimal injection pressure depends not only on the instantaneous measurements, but it is determined by the whole history of the injection and of the fracture area growth. We show the controller robustness when the inputs are delayed and noisy and when the fracture undergoes abrupt extensions. Finally, we propose a procedure that allows estimation of the hydrofracture size at no additional cost.

Silin, Dmitriy B.; Patzek, Tad W.

1999-06-01T23:59:59.000Z

122

Impact of Proposed Disturbed Rock Zone Conceptual Model Modifications to the Waste Isolation Pilot Plant Performance Assessment  

Science Conference Proceedings (OSTI)

The United States Department of Energy (DOE) and Sandia National Laboratories (SNL) have recently proposed a set of updates that integrate data from recent site characterization studies to two conceptual models for the Waste Isolation Pilot Plant's Performance Assessment (WIPP PA) program. This paper discusses the changes to the Disturbed Rock Zone (DRZ) model, which describes the macroscopic manifestation of grain-scale microcracks and larger macro-cracks that are created by induced stresses in the salt surrounding excavations. The DRZ, as modeled in WIPP PA, is an important component of the repository system because its properties affect the quantity of available brine and its ability to enter the waste areas as well as the connectivity of panels after closure. The DOE and SNL have proposed decreasing the region that represents the DRZ in WIPP PA. Additionally, it has been proposed to make the permeability of DRZ a time-dependent quantity to reflect the long-term behavior. In this paper, the implementation of the proposed DRZ model changes is outlined, and the impact of the DRZ modifications on the long-term performance of the WIPP is discussed. The DRZ modifications generally reduced the amount of brine that entered into the repository, as well as reduced the pressure in the repository, except for scenarios in which a pressurized brine pocket was encountered. Overall, the saturation and pressure changes affected the frequency and magnitude of the direct brine and spalling volumes. (authors)

Clayton, D.J.; Ismail, A.E. [Sandia National Laboratories, Carlsbad, NM (United States)

2008-07-01T23:59:59.000Z

123

THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES  

E-Print Network (OSTI)

improving production by hydraulic fracturing 8 the focus otfor fractures. (d) Hydraulic Fracturing: The model has been

Wang, J.S.Y.

2013-01-01T23:59:59.000Z

124

Adsorption of water vapor on reservoir rocks  

DOE Green Energy (OSTI)

Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

Not Available

1993-07-01T23:59:59.000Z

125

Modeling of Damage, Permeability Changes and Pressure Responses during Excavation of the TSX Tunnel in Granitic Rock at URL, Canada  

E-Print Network (OSTI)

rock: implications for nuclear fuel waste disposal, Int Jdisposal for spent nuclear fuel requires consideration ofof the EDZ at a spent nuclear fuel repository. 2 Relevant

Rutqvist, Jonny

2009-01-01T23:59:59.000Z

126

Analyzing flow patterns in unsaturated fractured rock of YuccaMountain using an integrated modeling approach  

SciTech Connect

This paper presents a series of modeling investigations to characterize percolation patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository site for storing high-level radioactive waste. The investigations are conducted using a modeling approach that integrates a wide variety of moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model through model calibration. This integrated modeling approach, based on a dual-continuum formulation, takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain's highly heterogeneous, unsaturated fractured tuffs. In particular, the model results are examined against different types of field-measured data and used to evaluate different hydrogeological conceptual models and their effects on flow patterns in the unsaturated zone. The objective of this work to provide understanding of percolation patterns and flow behavior through the unsaturated zone, which is a crucial issue in assessing repository performance.

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson,Gudmundur S.

2003-11-03T23:59:59.000Z

127

Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Physics Physics Print Because a large proportion of ALS experiments are "physics" experiments, it's useful to separate them into two categories - one focused on Materials/Condensed Matter, and this one, with a dual focus on AMO (atomic, molecular, and optical) physics and accelerator physics. Light sources such as the ALS have opened up research frontiers that may hold the answers to fundamental questions about structure and dynamics in AMO physics. The advanced spectroscopies that have been developed here provide the ability to control and probe atomic and molecular processes with unprecedented precision. In particular, the spectral resolution, brightness, broad tunability, and polarization control generate novel avenues for the study of tailored states, inner-shell processes, and nonperturbative electron interactions. Driven by the high brightness of the ALS, a whole new world of vacuum ultraviolet (VUV) and soft x-ray physics has emerged through the development of combined techniques to excite, select, and probe atoms, molecules, and clusters.

128

Physical model studies of dispersion in fracture systems  

DOE Green Energy (OSTI)

The purposes of the laboratory-scale fracture network experiments are to study mechanisms controlling solute transport under conditions of known fracture parameters, to evaluate injection-backflow test procedures under conditions of known reservoir parameters, and to acquire data for validation of numerical models. Validation of computer codes against laboratory data collected under controlled conditions provides reassurance that the codes deal with important processes in a realistic manner. Preliminary simulations of the dual-permeability physical model have been made using the FRACSL reservoir code. These simulations permit locating electrodes and piezometers in the most advantageous positions to record tracer migration and pressure response. Much of the physical modeling effort this year was oriented towards validating the particle tracking algorithm used in FRACSL, and developing a better theoretical understanding of transport processes in fractures. Experiments were conducted in single fractures and single fracture junctions, and data on tracer migration collected. The Prickett, Naymik, and Lonnquist Random Walk aquifer simulation program has been modfied to simulate flow in single fractures. The particle tracking algorithm was also used to simulate infinite parallel plates under conditions where analytical solutions to the transport equation could be derived. The first case is for zero diffusion in the fracture, and transport based on a parabolic velocity profile. The second case is for diffusion homogenizing the tracer solution across the fracture. The particle tracking algorithm matched both analytical solutions quite well, with the same grid for both simulations. 48 refs., 41 figs., 2 tabs.

Hull, L.C.

1985-04-01T23:59:59.000Z

129

Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns  

DOE Green Energy (OSTI)

We applied coupled nonisothermal, multiphase fluid flow and geomechanical numerical modeling to study the coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in concrete-lined rock caverns. The paper focuses on CAES in lined caverns at relatively shallow depth (e.g., 100 m depth) in which a typical CAES operational pressure of 5 to 8 MPa is significantly higher than both ambient fluid pressure and in situ stress. We simulated a storage operation that included cyclic compression and decompression of air in the cavern, and investigated how pressure, temperature and stress evolve over several months of operation. We analyzed two different lining options, both with a 50 cm thick low permeability concrete lining, but in one case with an internal synthetic seal such as steel or rubber. For our simulated CAES system, the thermodynamic analysis showed that 96.7% of the energy injected during compression could be recovered during subsequent decompression, while 3.3% of the energy was lost by heat conduction to the surrounding media. Our geomechanical analysis showed that tensile effective stresses as high as 8 MPa could develop in the lining as a result of the air pressure exerted on the inner surface of the lining, whereas thermal stresses were relatively smaller and compressive. With the option of an internal synthetic seal, the maximum effective tensile stress was reduced from 8 to 5 MPa, but was still in substantial tension. We performed one simulation in which the tensile tangential stresses resulted in radial cracks and air leakage though the lining. This air leakage, however, was minor (about 0.16% of the air mass loss from one daily compression) in terms of CAES operational efficiency, and did not significantly impact the overall energy balance of the system. However, despite being minor in terms of energy balance, the air leakage resulted in a distinct pressure increase in the surrounding rock that could be quickly detected using pressure monitoring outside the concrete lining.

Rutqvist, J.; Kim, H. -M.; Ryu, D. -W.; Synn, J. -H.; Song, W. -K.

2012-02-01T23:59:59.000Z

130

Proceedings of the workshop on numerical modeling of thermohydrological flow in fractured rock masses  

DOE Green Energy (OSTI)

Nineteen papers were presented at the workshop on modeling thermohydrologic flow in fractured masses. This workshop was a result of the interest currently being given to the isolation of nuclear wastes in geologic formations. Included in these proceedings are eighteen of the presentations, one abstract and summaries of the panel discussions. The papers are listed under the following categories: introduction; overviews; fracture modelings; repository studies; geothermal models; and recent developments. Eighteen of the papers have been abstracted and indexed.

Not Available

1980-09-01T23:59:59.000Z

131

Physical model for the latent heat of fusion  

E-Print Network (OSTI)

The atomic movement induced on melting has to overcome a viscous drag resistance. It is suggested that the latent heat of fusion supplies the required energy for this physical process. The viscosity model introduced here allows computation of the latent heat from viscosity, molar volume, melting temperature, and atomic mass and diameter. The correlation between these parameters and the latent heat of 14 elements with body and face centered cubic structures was exceptional, with the correlation coefficients of 0.97 and 0.95 respectively.

Jozsef Garai

2004-07-15T23:59:59.000Z

132

A damage model for rock fragmentation and comparison of calculations with blasting experiments in granite  

SciTech Connect

Early attempts at estimation of stress wave damage due to blasting by use of finite element calculations met with limited success due to numerical instabilities that prevented calculations from being carried to late times. An improved damage model allows finite element calculations which remain stable at late times. Reasonable agreement between crater profiles calculated with this model using the PRONTO finite element program and excavated crater profiles from blasting experiments in granite demonstrate a successful application of this model. Detailed instructions for use of this new damage model with the PRONTO finite element programs are included. 18 refs., 16 figs.

Thorne, B.J.

1990-10-01T23:59:59.000Z

133

THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES  

E-Print Network (OSTI)

thermal calculations for the WIPP site in southeastern NewWaste Isolation Pilot Plant (WIPP) in bedded salt. The codepersonal communication 1980). WIPP The modeling for WIPP is

Wang, J.S.Y.

2013-01-01T23:59:59.000Z

134

An Integrated Modeling Analysis of Unsaturated Flow Patterns in Fractured Rock  

E-Print Network (OSTI)

zone transport model of Yucca Mountain, Las Alamos Nationalisotope distributions at Yucca Mountain, Las Alamos Nationalpneumatic response of at Yucca Mountain, Nevada, Journal of

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

2008-01-01T23:59:59.000Z

135

Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling  

E-Print Network (OSTI)

modeling fluid and heat flow in fractured porous media, Soc.fluid and heat flows of multiphase, multicomponent fluid mixtures in porous and fractured media.

Mukhopadhyay, S.

2009-01-01T23:59:59.000Z

136

THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES  

E-Print Network (OSTI)

media and land surface subsidence: Proceedings, 12th AnnualSymnposium on Land Subsidence, Anaheim, California 9A. Witherspoon, 1977a, Modeling subsidence due to geothermal

Wang, J.S.Y.

2013-01-01T23:59:59.000Z

137

Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Print Physics Print Because a large proportion of ALS experiments are "physics" experiments, it's useful to separate them into two categories - one focused on Materials/Condensed Matter, and this one, with a dual focus on AMO (atomic, molecular, and optical) physics and accelerator physics. Light sources such as the ALS have opened up research frontiers that may hold the answers to fundamental questions about structure and dynamics in AMO physics. The advanced spectroscopies that have been developed here provide the ability to control and probe atomic and molecular processes with unprecedented precision. In particular, the spectral resolution, brightness, broad tunability, and polarization control generate novel avenues for the study of tailored states, inner-shell processes, and nonperturbative electron interactions. Driven by the high brightness of the ALS, a whole new world of vacuum ultraviolet (VUV) and soft x-ray physics has emerged through the development of combined techniques to excite, select, and probe atoms, molecules, and clusters.

138

Geological disposal analysis in salt leaching rock through modeling and simulation  

Science Conference Proceedings (OSTI)

The improvement in geology and the progress in computer technology have provided geo-science with entirely new possibilities in recent years. Embedding modeling and simulation allow easy handling of structural geological data which is of enormous value. ... Keywords: geological modeling, methodological approach, partitioning, salt leaching

Dietmar P. F. Möller; Rolf Bielecki

2010-07-01T23:59:59.000Z

139

Modeling Effects of Physical Factors on Controller Area Network in Cyber-physical Systems  

Science Conference Proceedings (OSTI)

Cyber-physical systems (CPS) are becoming a promising research field to integrate the computing components, the physical processes, and the communication networks. A primary challenge in designing CPS is to understand the effect of physical factors on ... Keywords: Cyber-physical systems (CPS), Controller Area Network (CAN), performance analysis, temperature, electromagnetic interference

Bo Shen, Xingshe Zhou, Ru Wang

2013-08-01T23:59:59.000Z

140

Dynamic rock fragmentation: oil shale applications  

SciTech Connect

Explosive rock fragmentation techniques used in many resource recovery operations have in the past relied heavily upon traditions of field experience for their design. As these resources, notably energy resources, become less accessible, it becomes increasingly important that fragmentation techniques be optimized and that methods be developed to effectively evaluate new or modified explosive deployment schemes. Computational procedures have significant potential in these areas, but practical applications must be preceded by a thorough understanding of the rock fracture phenomenon and the development of physically sound computational models. This paper presents some of the important features of a rock fragmentation model that was developed as part of a program directed at the preparation of subterranean beds for in situ processing of oil shale. The model, which has been implemented in a two-dimensional Lagrangian wavecode, employs a continuum damage concept to quantify the degree of fracturing and takes into account experimental observations that fracture strength and fragment dimensions depend on tensile strain rates. The basic premises of the model are considered in the paper as well as some comparisons between calculated results and observations from blasting experiments.

Boade, R. R.; Grady, D. E.; Kipp, M. E.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

What does cosmology tell us about particle physics beyond the Standard Model?  

Science Conference Proceedings (OSTI)

Cosmology demands particle physics beyond the Standard Model: we need to explain the nature of dark matter and dark energy

Eiichiro Komatsu

2012-01-01T23:59:59.000Z

142

Dispersivity as an oil reservoir rock characteristic  

Science Conference Proceedings (OSTI)

The main objective of this research project is to establish dispersivity, {alpha}{sub d}, as an oil reservoir rock characteristic and to use this reservoir rock property to enhance crude oil recovery. A second objective is to compare the dispersion coefficient and the dispersivity of various reservoir rocks with other rock characteristics such as: porosity, permeability, capillary pressure, and relative permeability. The dispersivity of a rock was identified by measuring the physical mixing of two miscible fluids, one displacing the other in a porous medium. 119 refs., 27 figs., 12 tabs.

Menzie, D.E.; Dutta, S.

1989-12-01T23:59:59.000Z

143

An Integrated Modeling Analysis of Unsaturated Flow Patterns inFractured Rock  

Science Conference Proceedings (OSTI)

Characterizing percolation patterns in unsaturated zones hasposed a greater challenge to numerical modeling investigations thancomparable saturated zone studies, because of the heterogeneous nature ofunsaturated media as well as the great number of variables impactingunsaturated zone flow. This paper presents an integrated modelingmethodology for quantitatively characterizing percolation patterns in theunsaturated zone of Yucca Mountain, Nevada, a proposed undergroundrepository site for storing high-level radioactive waste. It takes intoaccount the multiple coupled processes of air, water, heat flow andchemical isotopic transport in Yucca Mountain s highly heterogeneous,unsaturated fractured tuffs. The modeling approach integrates a widevariety of moisture, pneumatic, thermal, and isotopic geochemical fielddata into a comprehensive three-dimensional numerical model for modelinganalyses. Modeling results are examined against different types offield-measured data and then used to evaluate different hydrogeologicalconceptual models and their results of flow patterns in the unsaturatedzone. In particular, this integration model provides a much clearerunderstanding of percolation patterns and flow behavior through theunsaturated zone, both crucial issues in assessing repositoryperformance. The integrated approach for quantifying Yucca Mountain sflow system is also demonstrated to provide a comprehensive modeling toolfor characterizing flow and transport processes in complex subsurfacesystems.

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson,Gudmundur S.

2005-03-21T23:59:59.000Z

144

A discrete fracture model for a hot dry rock geothermal reservoir  

DOE Green Energy (OSTI)

Modeling results are presented for the Fenton Hill Phase II reservoir using a two-dimensional steady state simulator of fluid flow and solute transport in fractured porous media. Fluid flow and tracer response data are simulated using a fracture flow model in which the fracture apertures are string functions of pressure. The model is used to match the available steady state data of pressure drop versus flow rate and the tracer data. Various schemes for improving reservoir performance, such as high backpressure, chemical etching, stimulation using a viscous fluid, and the drilling of a second production wellbore, are then examined. 15 refs., 7 figs., 4 tabs.

Robinson, B.A.

1989-01-01T23:59:59.000Z

145

Physical Model Explaining the Periodic Pattern of the Chemical Elements  

E-Print Network (OSTI)

The fundamental organizing principle resulting in the periodic table is the nuclear charge. Arranging the chemical elements in an increasing atomic number order, a symmetry pattern known as the Periodic Table is detectable. The correlation between nuclear charge and the Periodic System of the Chemical Elements (PSCE) indicates that the symmetry emerges from the nucleus. Nuclear symmetry can only be developed if the positions of the nucleons are preserved. Thus the phase of the nucleus must be solid where the positions of the nucleons are preserved in a lattice. A lattice model, representing the protons and the neutrons by equal spheres and arranging them alternately in a face centered cubic structure forming a double tetrahedron, is able to reproduce all of the properties of the nucleus including the quantum numbers and the periodicity of the elements. Using this nuclear structure model, an attempt is made here to give a physical explanation for the periodicity of the chemical elements.

Jozsef Garai

2011-01-24T23:59:59.000Z

146

Analyzing flow patterns in unsaturated fractured rock of Yucca Mountain using an integrated modeling approach  

E-Print Network (OSTI)

Flint, E. L. , A. L. , Flint, and J. S. Selker, Influence ofWater Resources Research, 39, (4), 4- Flint, A. L. , J. A.Hevesi, and L. E. Flint, Conceptual and numerical model of

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

2008-01-01T23:59:59.000Z

147

An Integrated Modeling Analysis of Unsaturated Flow Patterns in Fractured Rock  

E-Print Network (OSTI)

Flint, E. L. , A. L. , Flint, and J. S. Selker, Influence ofResources Research, 39, (4), 4-1–4-17, Flint, A. L. , J. A.Hevesi, and L. E. Flint, Conceptual and numerical model of

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

2008-01-01T23:59:59.000Z

148

Application of a damage model for rock fragmentation to the Straight Creek Mine blast experiments  

SciTech Connect

Early attempts at estimation of stress wave damage due to blasting by use of finite element calculations met with limited success due to numerical instabilities that prevented calculations from being carried past the fragmentation limit. More recently, the improved damage model PRONTO has allowed finite element calculations which remain stable and yield good agreement between calculated fragmented regions and excavated crater profiles for blasting experiments in granite. Application of this damage model to blast experiments at the Straight Creek Mine in Bell County, Kentucky were complicated by anisotropic conditions and uncertainties in material properties. It appears that significant modifications to the damage model and extensive material testing may be necessary in order to estimate damage in these anisotropic materials. 18 refs., 18 figs.

Thorne, B.J.

1991-09-01T23:59:59.000Z

149

Robust Characterization of Model Physics Uncertainty for Simulations of Deep Moist Convection  

Science Conference Proceedings (OSTI)

This study explores the functional relationship between model physics parameters and model output variables for the purpose of 1) characterizing the sensitivity of the simulation output to the model formulation and 2) understanding model ...

Derek J. Posselt; Tomislava Vukicevic

2010-05-01T23:59:59.000Z

150

3D Modeling of Coupled Rock Deformation and Thermo-Poro-Mechanical Processes in Fractures  

E-Print Network (OSTI)

Problems involving coupled thermo-poro-chemo-mechanical processes are of great importance in geothermal and petroleum reservoir systems. In particular, economic power production from enhanced geothermal systems, effective water-flooding of petroleum reservoirs, and stimulation of gas shale reservoirs are significantly influenced by coupled processes. During such procedures, stress state in the reservoir is changed due to variation in pore fluid pressure and temperature. This can cause deformation and failure of weak planes of the formation with creation of new fractures, which impacts reservoir response. Incorporation of geomechanical factor into engineering analyses using fully coupled geomechanics-reservoir flow modeling exhibits computational challenges and numerical difficulties. In this study, we develop and apply efficient numerical models to solve 3D injection/extraction geomechanics problems formulated within the framework of thermo-poro-mechanical theory with reactive flow. The models rely on combining Displacement Discontinuity (DD) Boundary Element Method (BEM) and Finite Element Method (FEM) to solve the governing equations of thermo-poro-mechanical processes involving fracture/reservoir matrix. The integration of BEM and FEM is accomplished through direct and iterative procedures. In each case, the numerical algorithms are tested against a series of analytical solutions. 3D study of fluid injection and extraction into the geothermal reservoir illustrates that thermo-poro-mechanical processes change fracture aperture (fracture conductivity) significantly and influence the fluid flow. Simulations that consider joint stiffness heterogeneity show development of non-uniform flow paths within the crack. Undersaturated fluid injection causes large silica mass dissolution and increases fracture aperture while supersaturated fluid causes mineral precipitation and closes fracture aperture. Results show that for common reservoir and injection conditions, the impact of fully developed thermoelastic effect on fracture aperture tend to be greater compare to that of poroelastic effect. Poroelastic study of hydraulic fracturing demonstrates that large pore pressure increase especially during multiple hydraulic fracture creation causes effective tensile stress at the fracture surface and shear failure around the main fracture. Finally, a hybrid BEFEM model is developed to analyze stress redistribution in the overburden and within the reservoir during fluid injection and production. Numerical results show that fluid injection leads to reservoir dilation and induces vertical deformation, particularly near the injection well. However, fluid withdrawal causes reservoir to compact. The Mandel-Cryer effect is also successfully captured in numerical simulations, i.e., pore pressure increase/decrease is non-monotonic with a short time values that are above/below the background pore pressure.

Rawal, Chakra

2012-05-01T23:59:59.000Z

151

An analytical and numerical model to determine stresses in a Rock Melt Drill produced glass liner for potential use on Mars  

E-Print Network (OSTI)

A numerical and analytical model was constructed to determine the resultant stress state imposed on a Rock Melt Drill produced liner. The purpose of this study was to determine if the liner produced would possess the strength required to prevent a failure in the borehole wall. Derivation of energy, mass and momentum conservation equations was performed to aid in the identification of applicable loads acting on the melted material that will form the liner. A finite difference model was coded to produce a temperature profile in the liner thickness. An analytical stress model, using the results of the derived equations and the numerical thermal model, was constructed to determine the magnitude of the stresses the liner is subjected to after operation of the Rock Melt Drill. By using values from the Rock Melt Drill design and formation material properties taken from the literature, from experiment and through calculations, a baseline resultant stress was able to be determined for the liner. Utilizing the thermal and stress model, a parametric analysis of the stresses and temperature profile was conducted over a range of Rock Melt Drill operational parameters and formation material property parameters. This parametric analysis was conducted to determine trends between the above parameters and the resultant temperature and stress profiles. It was determined that the liner would have enough strength to prevent failure by collapse up to the required depths of 5 km, under ideal conditions. Additional loads applied to the liner in the form of an increase pressure gradient or formation fluid load may be enough to cause collapse of the liner. Also, the resultant tensile stress in the liner at shallow depths is great enough to cause crack propagation near the surface. It is a conclusion of this study that the Rock Melt Drill may be a potentially viable drilling system for use on Mars, in terms of preventing borehole collapse. Further study is necessary to determine the state of the liner in more realistic conditions, such as including pressurized fluids in the models, and additional work is needed to optimize the Rock Melt Drill system.

McConnell, Joshua B

2000-01-01T23:59:59.000Z

152

A model for the development of a lobate alpine rock glacier in southwest Colorado, USA: implications for water on Mars  

E-Print Network (OSTI)

Rock glaciers play a significant role in the alpine debris transport system. For practical and engineering considerations, identifying the internal structure and its relationship to surface characteristics is significant in terms of how a rock glacier settles during periods of melting, and the mode of deformation. A better understanding of these factors is important for engineers, engineering geologists and geomorphologists who must make prudent evaluations of rock glaciers as potential sites for human development and uses. It is equally important for evaluating potential stores for water on other planets such as Mars. Ground penetrating radar (GPR) shows that the internal structure of a lobate rock glacier located in the San Juan Mountains of southwest Colorado consists of continuous to semi-continuous horizontal layers of ice-supersaturated sediments and coarse blocky rockslide debris which likely formed through catastrophic episodes of rockfall from the cirque headwall. Folds in the uppermost layers correspond to the surface expression of ridges and furrows, indicating that compressive stresses originating in the steep accumulation zone are transmitted downslope through the rock glacier. The rock glacier is a composite feature that formed by a process involving the development and overlap of discrete flow lobes that have overridden older glacial moraine and protalus rampart materials. The latter materials have been incorporated into the present flow structure of the rock glacier. The discovery of rock glacier-like features on Mars suggests the presence of flowing, or once-flowing ice-rock mixtures. These landforms, which include lobate debris aprons, concentric crater fill and lineated valley fill, hold significant promise as reservoirs of stored water ice that could be used as fuel sources for human exploration of Mars and provide a frozen record of the climatic history of the planet. To this end, the rock glacier in this study was used as a surrogate for similar Martian landforms. Liquid water, found to be abundant in this rock glacier, occurs within a network of interconnected channels that permeate throughout the landform. In terms of water storage within Martian analogs, consideration must include the possibility that some water ice may be stored in relatively pure form within lenses and vein networks that are supplied by seasonal frost accumulation and/or water influx from below.

Degenhardt, John Jerome

2002-08-01T23:59:59.000Z

153

Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

e-prints - see the 'hep' sections CERN Document Server Over a million records on high-energy physics (HEP) from CERN INSPIRE HEP papers updated daily (a collaboration of CERN,...

154

A multidimensional data model and OLAP analysis for soil physical characteristics  

Science Conference Proceedings (OSTI)

The paper describes the construction of a multidimensional data model intended for the analysis of soil physical properties. The data from the model are provided by two agricultural soil/land databases. Based on the multidimensional data model we build ... Keywords: OLAP operations, data cube, land use, multidimensional data model, on-line analytical processing (OLAP), soil physical properties

Constanta Zoie Radulescu; Marius Radulescu; Virgil Vlad; Dumitru Marian Motelica

2008-06-01T23:59:59.000Z

155

Physical Property Modeling of Concentrated Cesium Eluate Solutions, Part I - Derivation of Models  

SciTech Connect

Major analytes projected to be present in the Hanford Waste Treatment Plant cesium ion-exchange eluate solutions were identified from the available analytical data collected during radioactive bench-scale runs, and a test matrix of cesium eluate solutions was designed within the bounding concentrations of those analytes. A computer model simulating the semi-batch evaporation of cesium eluate solutions was run in conjunction with a multi-electrolyte aqueous system database to calculate the physical properties of each test matrix solution concentrated to the target endpoints of 80% and 100% saturation. The calculated physical properties were analyzed statistically and fitted into mathematical expressions for the bulk solubility, density, viscosity, heat capacity and volume reduction factor as a function of temperature and concentration of each major analyte in the eluate feed. The R{sup 2} of the resulting physical property models ranged from 0.89 to 0.99.

Choi, A.S.; Pierce, R. A.; Edwards, T. B.; Calloway, T. B.

2005-09-15T23:59:59.000Z

156

Compass and Kitaev models -- Theory and Physical Motivations  

E-Print Network (OSTI)

Compass models are theories of matter in which the couplings between the internal spin (or other relevant field) components are inherently spatially (typically, direction) dependent. Compass-type interactions appear in diverse physical systems including Mott insulators with orbital degrees of freedom (where interactions sensitively depend on the spatial orientation of the orbitals involved), the low energy effective theories of frustrated quantum magnets, systems with strong spin-orbit couplings (such as the iridates), vacancy centers, and cold atomic gases. Kitaev's models, in particular the compass variant on the honeycomb lattice, realize basic notions of topological quantum computing. The fundamental inter-dependence between internal (spin, orbital, or other) and external (i.e., spatial) degrees of freedom which underlies compass models generally leads to very rich behaviors including the frustration of (semi-)classical ordered states on non-frustrated lattices and to enhanced quantum effects prompting, in certain cases, the appearance of zero temperature quantum spin liquids. As a consequence of these frustrations, new types of symmetries and their associated degeneracies may appear. These intermediate symmetries lie midway between the extremes of global symmetries and local gauge symmetries and lead to effective dimensional reductions. We review compass models in a unified manner, paying close attention to exact consequences of these symmetries, and to thermal and quantum fluctuations that stabilize orders via order out of disorder effects. We review non-trivial statistics and the appearance of topological quantum orders in compass systems in which, by virtue of their intermediate symmetry standard orders do not arise. This is complemented by a survey of numerical results. Where appropriate theoretical and experimental results are compared.

Zohar Nussinov; Jeroen van den Brink

2013-03-24T23:59:59.000Z

157

Computational load in model physics of the parallel NCAR community climate model  

SciTech Connect

Maintaining a balance of computational load over processors is a crucial issue in parallel computing. For efficient parallel implementation, complex codes such as climate models need to be analyzed for load imbalances. In the present study we focus on the load imbalances in the physics portion of the community climate model`s (CCM2) distributed-memory parallel implementation on the Intel Touchstone DELTA computer. We note that the major source of load imbalance is the diurnal variation in the computation of solar radiation. Convective weather patterns also cause some load imbalance. Land-ocean contrast is seen to have little effect on computational load in the present version of the model.

Michalakes, J.G.; Nanjundiah, R.S.

1994-11-01T23:59:59.000Z

158

Assessment of Physical Parameterizations Using a Global Climate Model with Stretchable Grid and Nudging  

Science Conference Proceedings (OSTI)

The Laboratoire de Météorologie Dynamique atmospheric general circulation model with zooming capability (LMDZ) has been used in a nudged mode to enable comparison of model outputs with routine observations and evaluate the model physical ...

O. Coindreau; F. Hourdin; M. Haeffelin; A. Mathieu; C. Rio

2007-04-01T23:59:59.000Z

159

Physical Sediment Model Test in the Reservoir of Laomukong Hydropower Station in Minjiang River  

Science Conference Proceedings (OSTI)

A physical model is used to investigate the sediment transport in the reservoir of Lamukong hydropower station under design. The model test results are the main theoretical basis for the dyke line layout in the two sides of the reservoir. The test results ... Keywords: physical model, suspended sediment transport, reservoir dyke layout, reservoir operation mode

Yunli Wang; Xujin Zhang; Zhihui Ni

2012-05-01T23:59:59.000Z

160

The Standard Model of Particle Physics. Neutrino Oscillations  

E-Print Network (OSTI)

The Standard Model (SM) of Particle Physics was tested to great precision by experiments at the highest energy colliders (LEP, Hera, Tevatron, SLAC). The only missing particle is the Higgs boson, which will be the first particle to be searched for at the new Large Hadron Collider (LHC) at CERN. The SM anticipated that there are 3 types of left handed neutrinos. Experiments on atmospheric and solar neutrinos (made in Japan, Italy, Canada, Russia and the US) have shown the existence of neutrino oscillations, which imply that neutrinos have very small mass differences and violate the conservation of individual leptonic numbers. Neutrino oscillations were verified in long baseline neutrino experiments (in Japan and in the USA); and cosmology has given reasonably precise indications on the sum of the neutrino masses. In this general lecture will be summarized some of the main properties of the SM and some of the main results obtained in the field and the experiments in preparation. Some of the main open questions will be briefly discussed.

Giorgio Giacomelli

2009-01-16T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Results of a near field physical model study  

DOE Green Energy (OSTI)

A physical model study is ongoing to investigate the sensitivity of recirculation and near field plume dynamics to variation in OTEC plant design and ambient ocean conditions. A thermally-stratified 18 x 12 x 0.6 m basin at a nominal scale of 1/300 allows the upper 180 m of the ocean to be studied for plant sizes up to 600 MW(e). Tests have been conducted for stagnant conditions and for conditions with a current, using both the mixed discharge (combined evaporator and condenser) and non-mixed discharge concepts. Separate tests were made to investigate interactions between evaporator and condenser discharges in a non-mixed concept. Measurements include temperature, dye concentration, mean velocity and visual observations obtained from still and motion pictures. Results for the stagnant water tests showed no significant recirculation except for those tests where the discharge ports were oriented (slightly) upward or where the largest plant size (600 MW(e)) was tested. No significant difference in recirculation could be discerned between the mixed and the non-mixed discharge designs although differences in the equilibrium positions of the discharge plumes were noted. Tests in a current are still in progress but some preliminary results are presented.

Adams, E.E.; Fry, D.J.; Coxe, D.H.

1979-01-01T23:59:59.000Z

162

Low Dose Radiation Research Program: Modeling the Physics of...  

NLE Websites -- All DOE Office Websites (Extended Search)

spatial patterns of damage produced. This project focuses on refining the physics of electron transport in a heterogeneous cellular medium. We intend to expand current...

163

Applications of Thermo-Chemical and Thermo-Physical Models in ...  

Science Conference Proceedings (OSTI)

Presentation Title, Applications of Thermo-Chemical and Thermo-Physical Models in the ... Continuous Casting Simulation of 2304 Duplex Stainless Steel Via ...

164

Lithium-Ion Battery Safety Study Using Multi-Physics Internal Short-Circuit Model (Presentation)  

DOE Green Energy (OSTI)

This presentation outlines NREL's multi-physics simulation study to characterize an internal short by linking and integrating electrochemical cell, electro-thermal, and abuse reaction kinetics models.

Kim, G-.H.; Smith, K.; Pesaran, A.

2009-06-01T23:59:59.000Z

165

The Performance of a Medium-Range Forecast Model in Winter–Impact of Physical Parameterizations  

Science Conference Proceedings (OSTI)

We present the results of a series of forecasts on seven weather situations from February 1976 using two models which differ only in their physical parameterizations.

A. Hollingsworth; K. Arpe; M. Tiedtke; M. Capaldo; H. Savijärvi

1980-11-01T23:59:59.000Z

166

Rock mechanics contributions from defense programs  

SciTech Connect

An attempt is made at illustrating the many contributions to rock mechanics from US defense programs, over the past 30-plus years. Large advances have been achieved in the technology-base area covering instrumentation, material properties, physical modeling, constitutive relations and numerical simulations. In the applications field, much progress has been made in understanding and being able to predict rock mass behavior related to underground explosions, cratering, projectile penetration, and defense nuclear waste storage. All these activities stand on their own merit as benefits to national security. But their impact is even broader, because they have found widespread applications in the non-defense sector; to name a few: the prediction of the response of underground structures to major earthquakes, the physics of the earth`s interior at great depths, instrumentation for monitoring mine blasting, thermo-mechanical instrumentation useful for civilian nuclear waste repositories, dynamic properties of earthquake faults, and transient large-strain numerical modeling of geological processes, such as diapirism. There is not pretense that this summary is exhaustive. It is meant to highlight success stories representative of DOE and DOD geotechnical activities, and to point to remaining challenges.

Heuze, F.E.

1992-02-01T23:59:59.000Z

167

DisplayObjects: prototyping functional physical interfaces on 3d styrofoam, paper or cardboard models  

Science Conference Proceedings (OSTI)

This paper introduces DisplayObjects, a rapid prototyping workbench that allows functional interfaces to be projected onto real 3D physical prototypes. DisplayObjects uses a Vicon motion capture system to track the location of physical models. 3D software ... Keywords: augmented reality, early prototyping, organic user interfaces, physical user interfaces

Eric Akaoka; Tim Ginn; Roel Vertegaal

2010-01-01T23:59:59.000Z

168

Building an advanced climate model: Program plan for the CHAMMP (Computer Hardware, Advanced Mathematics, and Model Physics) Climate Modeling Program  

SciTech Connect

The issue of global warming and related climatic changes from increasing concentrations of greenhouse gases in the atmosphere has received prominent attention during the past few years. The Computer Hardware, Advanced Mathematics, and Model Physics (CHAMMP) Climate Modeling Program is designed to contribute directly to this rapid improvement. The goal of the CHAMMP Climate Modeling Program is to develop, verify, and apply a new generation of climate models within a coordinated framework that incorporates the best available scientific and numerical approaches to represent physical, biogeochemical, and ecological processes, that fully utilizes the hardware and software capabilities of new computer architectures, that probes the limits of climate predictability, and finally that can be used to address the challenging problem of understanding the greenhouse climate issue through the ability of the models to simulate time-dependent climatic changes over extended times and with regional resolution.

1990-12-01T23:59:59.000Z

169

Modeling coupled physics and biology in ocean straits  

E-Print Network (OSTI)

In this thesis, we conduct research toward understanding coupled physics-biology processes in ocean straits. Our focus is on new analytical studies and higher-order simulations of idealized dynamics that are relevant to ...

Burton, Lisa Janelle

2009-01-01T23:59:59.000Z

170

Physically modeling and mathematically simulating pressure transients in transfer lines  

E-Print Network (OSTI)

Characterizing transient flow is not a trivial venture. It provides an excellent challenge for a senior mechanical engineering lab class. This project aimed at developing a new physical system for such a class based on the ...

Humbert, Matthew S

2008-01-01T23:59:59.000Z

171

A Simple Physical Model to Estimate Incident Solar Radiation at the Surface from GOES Satellite Data  

Science Conference Proceedings (OSTI)

We present a model designed to estimate the incident solar radiation at the suface from GOES satellite brightness measurements in clear and cloudy conditions. In this simple physical model, the effect of Rayleigh scattering is taken into account. ...

Catherine Gautier; Georges Diak; Serge Masse

1980-08-01T23:59:59.000Z

172

A physics-based emissions model for aircraft gas turbine combustors  

E-Print Network (OSTI)

In this thesis, a physics-based model of an aircraft gas turbine combustor is developed for predicting NO. and CO emissions. The objective of the model is to predict the emissions of current and potential future gas turbine ...

Allaire, Douglas L

2006-01-01T23:59:59.000Z

173

A Vertically Nested Regional Numerical Weather Prediction Model with Second-Order Closure Physics  

Science Conference Proceedings (OSTI)

The model we describe involves a unique strategy in which a high vertical resolution grid is nested within the coarse vertical resolution grid of a regional numerical weather prediction (NWP) model. Physics computations performed on the high ...

Stephen D. Burk; William T. Thompson

1989-11-01T23:59:59.000Z

174

Tests of an Adjoint Mesoscale Model with Explicit Moist Physics on the Cloud Scale  

Science Conference Proceedings (OSTI)

An adjoint modeling system based upon the Naval Research Laboratory’s Coupled Ocean–Atmosphere Mesoscale Prediction System’s atmospheric component has been developed. The system includes the adjoint model of the explicit moist physics ...

Clark Amerault; Xiaolei Zou; James Doyle

2008-06-01T23:59:59.000Z

175

Determination of Forecast Errors Arising from Different Components of Model Physics and Dynamics  

Science Conference Proceedings (OSTI)

This paper addresses a procedure to extract error estimates for the physical and dynamical components of a forecast model. This is a two-step process in which contributions to the forecast tendencies from individual terms of the model equations ...

T. N. Krishnamurti; J. Sanjay; A. K. Mitra; T. S. V. Vijaya Kumar

2004-11-01T23:59:59.000Z

176

Effects of Numerics on the Physics in a Third-Generation Wind-Wave Model  

Science Conference Proceedings (OSTI)

Numerical errors in third-generation ocean wave models can result in a misinterpretation of the physics in the model. Using idealized situations, it is shown that numerical errors significantly influence the initial growth, the response of wave ...

Hendrik L. Tolman

1992-10-01T23:59:59.000Z

177

Real Time Physically-Based Modeling and Simulation of Cratering and Fragmentation of Terrain  

Science Conference Proceedings (OSTI)

Cratering and fragmentation of terrain due to eXplosions are the behaviors of interest in this effort. We propose a physically-based approach to model the eXplosion event and the process of terrain fragmentation resulting in the formation of craters. ... Keywords: dynamic terrain, eXplosion simulation, physics-based modeling, real time system, simulation, terrain database

Nabil Rami; Michael D. Proctor

2007-12-01T23:59:59.000Z

178

Guiding the selection of physical experiments supporting validation of electric power system models  

Science Conference Proceedings (OSTI)

As engineering analyses rely more on computer simulation, it is important to develop a methodology that accounts for inaccuracies present in all simulation models. Typically, simulation models are validated against the physical system they try to explain. ... Keywords: physical experiments, power system grounding, quantitative validation

Diomar Infante; James Langston; Lukas Graber; Michael Steurer

2011-06-01T23:59:59.000Z

179

NEAR FIELD MODELING OF SPE1 EXPERIMENT AND PREDICTION OF THE SECOND SOURCE PHYSICS EXPERIMENTS (SPE2)  

SciTech Connect

Motion along joints and fractures in the rock has been proposed as one of the sources of near-source shear wave generation, and demonstrating the validity of this hypothesis is a focal scientific objective of the source physics experimental campaign in the Climax Stock granitic outcrop. A modeling effort has been undertaken by LLNL to complement the experimental campaign, and over the long term provide a validated computation capability for the nuclear explosion monitoring community. The approach involves performing the near-field nonlinear modeling with hydrodynamic codes (e.g., GEODYN, GEODYN-L), and the far-field seismic propagation with an elastic wave propagation code (e.g., WPP). the codes will be coupled together to provide a comprehensive source-to-sensor modeling capability. The technical approach involves pre-test predictions of each of the SPE experiments using their state of the art modeling capabilities, followed by code improvements to alleviate deficiencies identified in the pre-test predictions. This spiral development cycle wherein simulations are used to guide experimental design and the data from the experiment used to improve the models is the most effective approach to enable a transition from the descriptive phenomenological models in current use to the predictive, hybrid physics models needed for a science-based modeling capability for nuclear explosion monitoring. The objective of this report is to describe initial results of non-linear motion predictions of the first two SPE shots in the Climax Stock: a 220-lb shot at a depth of 180 ft (SPE No.1), and a 2570-lb shot at a depth of 150 ft (SPE No.2). The simulations were performed using the LLNL ensemble granite model, a model developed to match velocity and displacement attenuation from HARDHAT, PILE DRIVER, and SHOAL, as well as Russian and French nuclear test data in granitic rocks. This model represents the state of the art modeling capabilities as they existed when the SPE campaign was launched in 2010, and the simulation results presented here will establish a baseline that will be used for gauging progress as planned modeling improvements are implemented during the remainder of the SPE program. The initial simulations were performed under 2D axisymmetric conditions assuming the geologic medium to be a homogeneous half space. However, logging data obtained from the emplacement hole reveal two major faults that intersect the borehole at two different depth intervals (NSTec report, 2011) and four major joint sets. To evaluate the effect of these discrete structures on the wave forms generated they have performed 2D and 3D analysis with a Lagrangian hydrocode, GEODYN-L that shares the same material models with GEODYN but can explicitly take joints and fault into consideration. They discuss results obtained using these two different approaches in this report.

Antoun, T; Xu, H; Vorobiev, O; Lomov, I

2011-10-20T23:59:59.000Z

180

Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock  

Science Conference Proceedings (OSTI)

Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of radioactive waste. Figure 1-1 presents the distribution of clay/shale formations within the USA.

Liu, H.H.; Li, L.; Zheng, L.; Houseworth, J.E.; Rutqvist, J.

2011-06-20T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations  

Science Conference Proceedings (OSTI)

This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptual drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer drilling tests, as well as single impact tests, have been designed and executed. Both Berea sandstone and Mancos shale samples are used. In single impact tests, three impacts are sequentially loaded at the same rock location to investigate rock response to repetitive loadings. The crater depth and width are measured as well as the displacement and force in the rod and the force in the rock. Various pressure differences across the rock-indentor interface (i.e. bore pressure minus pore pressure) are used to investigate the pressure effect on rock penetration. For hammer drilling tests, an industrial fluid hammer is used to drill under both underbalanced and overbalanced conditions. Besides calibrating the modeling tool, the data and cuttings collected from the tests indicate several other important applications. For example, different rock penetrations during single impact tests may reveal why a fluid hammer behaves differently with diverse rock types and under various pressure conditions at the hole bottom. On the other hand, the shape of the cuttings from fluid hammer tests, comparing to those from traditional rotary drilling methods, may help to identify the dominant failure mechanism that percussion drilling relies on. If so, encouraging such a failure mechanism may improve hammer performance. The project is summarized in this report. Instead of compiling the information contained in the previous quarterly or other technical reports, this report focuses on the descriptions of tasks, findings, and conclusions, as well as the efforts on promoting percussion drilling technologies to industries including site visits, presentations, and publications. As a part of the final deliveries, the 3D numerical model for rock mechanics is also attached.

Michael S. Bruno

2005-12-31T23:59:59.000Z

182

CFD modeling of entrained-flow coal gasifiers with improved physical and chemical sub-models  

Science Conference Proceedings (OSTI)

Optimization of an advanced coal-fired integrated gasification combined cycle system requires an accurate numerical prediction of gasifier performance. While the turbulent multiphase reacting flow inside entrained-flow gasifiers has been modeled through computational fluid dynamic (CFD), the accuracy of sub-models requires further improvement. Built upon a previously developed CFD model for entrained-flow gasification, the advanced physical and chemical sub-models presented here include a moisture vaporization model with consideration of high mass transfer rate, a coal devolatilization model with more species to represent coal volatiles and heating rate effect on volatile yield, and careful selection of global gas phase reaction kinetics. The enhanced CFD model is applied to simulate two typical oxygen-blown entrained-flow configurations including a single-stage down-fired gasifier and a two-stage up-fired gasifier. The CFD results are reasonable in terms of predicted carbon conversion, syngas exit temperature, and syngas exit composition. The predicted profiles of velocity, temperature, and species mole fractions inside the entrained-flow gasifier models show trends similar to those observed in a diffusion-type flame. The predicted distributions of mole fractions of major species inside both gasifiers can be explained by the heterogeneous combustion and gasification reactions and the homogeneous gas phase reactions. It was also found that the syngas compositions at the CFD model exits are not in chemical equilibrium, indicating the kinetics for both heterogeneous and gas phase homogeneous reactions are important. Overall, the results achieved here indicate that the gasifier models reported in this paper are reliable and accurate enough to be incorporated into process/CFD co-simulations of IGCC power plants for systemwide design and optimization.

Ma, J.; Zitney, S.

2012-01-01T23:59:59.000Z

183

Effects of uncertainty in rock-physics models on reservoir parameter estimation using marine seismic AVA and CSEM data  

E-Print Network (OSTI)

and Thomas Dickens, ExxonMobil Upstream Research CompanyAcknowledgments We thank ExxonMobil Upstream Research

Chen, Jinsong; Dickens, Thomas

2008-01-01T23:59:59.000Z

184

An investigation of anisotropy using AVAZ and rock physics modeling in the Woodford Shale, Anadarko Basin, OK.  

E-Print Network (OSTI)

??The Woodford Shale formation is currently an important unconventional gas resource that extends across parts of the mid-continent of the United States. A resource shale… (more)

Lamb, Alexander Peter Joseph

2012-01-01T23:59:59.000Z

185

Effects of uncertainty in rock-physics models on reservoir parameter estimation using marine seismic AVA and CSEM data  

E-Print Network (OSTI)

pdfs of water saturation, shale content, and porosity whenS w , porosity j , and shale content c. As in the modelreservoir embedded in a shale section, lying 1200 m under

Chen, Jinsong; Dickens, Thomas

2008-01-01T23:59:59.000Z

186

Effects of uncertainty in rock-physics models on reservoir parameter estimation using marine seismic AVA and CSEM data  

E-Print Network (OSTI)

are related to electrical resistivity using Archie’s law,S w and porosity j to electrical resistivity using Archie’sr denotes the electrical resistivity of a given reservoir

Chen, Jinsong; Dickens, Thomas

2008-01-01T23:59:59.000Z

187

Equilibration in an Eddy Resolving Model with Simplified Physics  

Science Conference Proceedings (OSTI)

The role of waves in maintaining the midlatitude tropospheric climate is investigated in a dry high-resolution quasigeostrophic ?-plane channel model coupled to both a simplified model of the atmospheric boundary layer and an interactive static ...

Amy Solomon; Peter H. Stone

2001-03-01T23:59:59.000Z

188

Definition: Rock Sampling | Open Energy Information  

Open Energy Info (EERE)

Sampling Sampling Jump to: navigation, search Dictionary.png Rock Sampling Systematic rock sampling can be used to characterize a geothermal reservoir. The physical and chemical properties of rock samples provide important information for determining whether a power generation or heat utilization facility can be developed. Some general rock properties can be measured by visual inspection, but detailed properties require laboratory techniques. View on Wikipedia Wikipedia Definition A core sample is a cylindrical section of (usually) a naturally occurring substance. Most core samples are obtained by drilling with special drills into the substance, for example sediment or rock, with a hollow steel tube called a core drill. The hole made for the core sample is called the "core hole". A variety of core samplers exist to sample

189

Physics and Engineering Models | National Nuclear Security Administrat...  

National Nuclear Security Administration (NNSA)

initiatives such as academic alliances and Russian programs are included here. Thermal & Fluid Response This area develops and delivers predictive science-based models that...

190

Using Modelica for Physical Modeling of Air-Conditioning Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

and ready-to-use models for all relevant components of automotive air conditioning systems like condenser, evaporator, compressor, expansion devices and accumulatorreceiver...

191

ALCF Project Seeks Evidence of Physics Beyond the Standard Model...  

NLE Websites -- All DOE Office Websites (Extended Search)

Beyond the Standard Model November 21, 2013 Printer-friendly version Finding the Higgs boson at CERN's Large Hadron Collider was a monumental discovery that confirmed the...

192

Search for Physics Beyond the Standard Model at BaBar and Belle  

E-Print Network (OSTI)

Recent results on the search for new physics at BaBar and Belle B-factories are presented. The search for a light Higgs boson produced in the decay of different Y resonances is shown. In addition, recent measurements aimed to discover invisible final states produced by new physics mechanisms beyond the standard model are presented.

Calderini, G

2012-01-01T23:59:59.000Z

193

A simplified physical model for assessing solar radiation over Brazil using GOES 8 visible imagery  

E-Print Network (OSTI)

A simplified physical model for assessing solar radiation over Brazil using GOES 8 visible imagery; published 30 January 2004. [1] Solar radiation assessment by satellite is constrained by physical.4 and 1.3 MJ mÃ?2 for daily irradiation). A comparison with monthly means from about 80 automatic weather

194

The Effects of Assimilation on the Physics of an Ocean Model. Part I: Theoretical Model and Barotropic Results  

Science Conference Proceedings (OSTI)

Although data assimilation is now an established oceanographic technique, little work has been done on the interaction of the assimilation scheme and the physics of the underlying model. The way in which even a simple assimilation scheme (here ...

Rebecca A. Woodgate; Peter D. Killworth

1997-08-01T23:59:59.000Z

195

A Physically Consistent Formulation of Lateral Friction in Shallow-Water Equation Ocean Models  

Science Conference Proceedings (OSTI)

Dissipation in numerical ocean models has two purposes: to simulate processes in which the friction is physically relevant and to prevent numerical instability by suppressing accumulation of energy in the smallest resolved scales. This study ...

Alexander F. Shchepetkin; James J. O'Brien

1996-06-01T23:59:59.000Z

196

The Variability of Adjoint Sensitivity with Respect to Model Physics and Basic-State Trajectory  

Science Conference Proceedings (OSTI)

Adjoint sensitivity fields have generally been viewed deterministically in the atmospheric science literature. However, uncertainty exists in the components of the adjoint model, such as the physics and the basic-state trajectories used to ...

Brian C. Ancell; Clifford F. Mass

2008-12-01T23:59:59.000Z

197

Singular-Vector Perturbation Growth in a Primitive Equation Model with Moist Physics  

Science Conference Proceedings (OSTI)

Finite-time growth of perturbations in the presence of moist physics (specifically, precipitation) is investigated using singular vectors (SVs) in the context of a primitive equation regional model. Two difficulties appear in the explicit ...

Martin Ehrendorfer; Ronald M. Errico; Kevin D. Raeder

1999-06-01T23:59:59.000Z

198

Physics of “Saturation-Based” Dissipation Functions Proposed for Wave Forecast Models  

Science Conference Proceedings (OSTI)

The dissipation term is one of the three most important source functions of the radiative transfer equation employed by all spectral wave models to predict the wave spectrum. In this paper, the issue of physics of such dissipation functions is ...

Alexander V. Babanin; AndréJ. van der Westhuysen

2008-08-01T23:59:59.000Z

199

Physically Based Satellite Retrieval of Precipitation Using a 3D Passive Microwave Radiative Transfer Model  

Science Conference Proceedings (OSTI)

A precipitation retrieval algorithm based on the application of a 3D radiative transfer model to a hybrid physical-stochastic 3D cloud model is described. The cloud model uses a statistical rainfall clustering scheme to generate 3D cloud ...

J. L. Haferman; E. N. Anagnostou; D. Tsintikidis; W. F. Krajewski; T. F. Smith

1996-08-01T23:59:59.000Z

200

Proceedings of hot dry rock geothermal workshop  

DOE Green Energy (OSTI)

Abstracts of 38 papers are included on the following subjects: rock mechanics, part 1: hydraulic fracturing; fracture imaging and borehole surveying; fluid flow-pressure analyses; rock mechanics, part 2: hydraulic fracturing and thermal cracking; geochemistry; heat extraction modeling; and economics and energy conversion. (MHR)

Elsner, D.B. (comp.)

1978-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Phenomenological models in biological physics : cell growth and pluripotency maintenance  

E-Print Network (OSTI)

A persistent challenge in quantitatively modeling a biological system is that the system often involves many components and just as dizzying number of interactions among those components. To further complicate matters, the ...

Youk, Hyun

2010-01-01T23:59:59.000Z

202

Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance  

Science Conference Proceedings (OSTI)

This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operational costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 1×10{sup -18} m{sup 2} would result in an acceptable air leakage rate of less than 1%, with the operational pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operational air pressure and when the lining is kept moist at a relatively high liquid saturation. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability off less than 1×10{sup -18} m{sup 2}, heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage and energy efficiency viewpoint. Our numerical approach and energy analysis will next be applied in designing and evaluating the performance of a planned full-scale pilot test of the proposed underground CAES concept.

Kim, H.-M.; Rutqvist, J.; Ryu, D.-W.; Choi, B.-H.; Sunwoo, C.; Song, W.-K.

2011-07-15T23:59:59.000Z

203

Applicability of Regression Technique for Physical Modeling: A case study on Adsorption in Wastewater Treatment  

E-Print Network (OSTI)

The reliability of Physical Modeling in applications such as Adsorption and Heat transfer studies is not accurate since their mechanisms are complex and a proper understanding of the physics of the system is incomplete. In order to verify the applicability of Regression technique for Physical Modeling, a physical model is developed based on Multiple regression technique to predict the Pollutant Removal efficiency of fluoride in adsorption studies. Two sets of data points are collected viz., of twenty-one points consisting of homogeneous data with respect to adsorbent and of forty-eight points (heterogeneous data, including the above twenty-one points) and tested with the model. Results showed that, the physical model is giving encouraging results for homogeneous data (Standard Deviation (SD): 0.157) but is giving erratic results (SD: 0.361) for the heterogeneous data. The heterogeneous data consists of non-linear adsorption data, which the model could not predict accurately indicating that, the Regression technique holds a limitation in understanding the physics of the system. Novel techniques such as ANN can be used to predict the output from the data set with better accuracy than that using Regression technique. Back propagation Network of ANN is used as a test trial for the above database and the results are encouraging (SD: 0.29) with respect to heterogeneous data.

B. V. Babu; V. Ramakrishna

2002-01-01T23:59:59.000Z

204

Digital sound synthesis of brass instruments by physical modeling, Digital Audio Effects (DAFx) 04  

E-Print Network (OSTI)

The Functional Transformation Method (FTM) is an established method for sound synthesis by physical modeling, which has proven its feasibility so far by the application to strings and membranes. Based on integral transformations, it provides a discrete solution for continuous physical problems given in form of initialboundary-value problems. This paper extends the range of applications of the FTM to brass instruments. A full continuous physical model of the instrument, consisting of an air column, a mouthpiece and the player’s lips is introduced and solved in the discrete domain. It is shown, that the FTM is a suitable method also for sound synthesis of brass instruments. 1.

Bernhard Krach; Stefan Petrausch; Rudolf Rabenstein

2004-01-01T23:59:59.000Z

205

A simple model for particle physics and cosmology  

E-Print Network (OSTI)

We propose a simple extension of the minimal supersymmetric standard model by introducing a gauge singlet in addition to right-handed neutrinos. The model resolves the strong CP problem by Pecci-Quinn symmetry, explains the origin of left-handed neutrino masses as well as MSSM $\\mu$-parameter. It also gives rise to thermal inflation, baryogenesis and dark matter in a remarkably consistent way. Interestingly, resolution of moduli problem by thermal inflation constrains tightly axion coupling constant and flaton decay temperature to be $f_a \\sim 10^{12} \\GeV$ and $T_\\mathrm{d} \\sim 100 \\MeV$, respectively. Model parameters in this case are likely to give right amount of baryon asymmetry and dark matter at present. The main component of dark matter is expected to be the axino whose mass is nearly fixed to be about $1 \\GeV$.

Wan-Il Park

2010-04-14T23:59:59.000Z

206

Physics of Hall-effect thruster by particle model  

SciTech Connect

A realistic three-dimensional fully kinetic particle simulation of a Hall-effect thruster discharge has been developed. The model consists of a Particle-in-Cell methodology tracking electrons, Xe{sup +} and Xe{sup ++} ions in their selfconsistent electric field. A detailed secondary electron emission from lateral walls is also implemented in addition with electron-atom and electron-ion volume collisions. The model is able to capture the most relevant features of axial, radial and azimuthal behaviors of the start-up transient and steady state phases detecting inverted sheaths and azimuthal modulation in the acceleration region. The model has the potentiality to investigate the driving mechanisms at the origin of the electron anomalous cross-field transport.

Taccogna, Francesco; Minelli, Pierpaolo; Capitelli, Mario; Longo, Savino [Istituto di Metodologie Inorganiche e dei Plasmi (IMIP), CNR, via Amendola 122/D 70126 Bari (Italy); Dipartimento di Chimica, Universita degli Studi di Bari Aldo Moro, via Orabona 4 70126 Bari (Italy)

2012-11-27T23:59:59.000Z

207

Benchmark hydrogeophysical data from a physical seismic model  

Science Conference Proceedings (OSTI)

Theoretical fluid flow models are used regularly to predict and analyze porous media flow but require verification against natural systems. Seismic monitoring in a controlled laboratory setting at a nominal scale of 1:1000 in the acoustic frequency range ... Keywords: Gassmann, Hertz-Mindlin, Saturation, Sensors, Soil

Juan M. Lorenzo; David E. Smolkin; Christopher White; Shannon R. Chollett; Ting Sun

2013-01-01T23:59:59.000Z

208

Dynamic physical and economic modelling of riparian restoration options  

Science Conference Proceedings (OSTI)

A dynamic simulation framework is used to compare benefit-cost ratios of riparian restoration investment strategies to pursue ecosystem service benefits. The model is meant to be adaptable to generic restoration planning applications, with the Middle ... Keywords: Adaptive management, Benefit-cost analysis, Choice experiment, Dynamic simulation, Ecosystem service, Rio Grande, River restoration

Matthew A. Weber; Vincent C. Tidwell; Jennifer A. Thacher

2010-12-01T23:59:59.000Z

209

Physical Scalar Mass Particles in the 331 Model  

Science Conference Proceedings (OSTI)

We get to diagonalize the mass matrix considering all terms in the scalar lagrangian sector, given in the SU(3)xSU(3)xU(1) model cited below. This will let us in the future realize the phenomenological consequences.

Ravinez, O.; Diaz, H.; Romero, D. [Instituto de Fisica, Universidad Nacional de Ingenieria (Peru)

2007-10-26T23:59:59.000Z

210

Physical model of a hybrid electric drive train  

E-Print Network (OSTI)

A motor and flywheel system was designed to simulate the dynamics of the electric drive train and inertial mass of a hybrid electric vehicle. The model will serve as a test bed for students in 2.672 to study the energy ...

Young, Brady W. (Brady William)

2006-01-01T23:59:59.000Z

211

A Mountain-Scale Thermal Hydrologic Model for Simulating Fluid Flow and Heat Transfer in Unsaturated Fractured Rock  

E-Print Network (OSTI)

grain-specific heat for each model grid layer, are providedand heat flow is simulated using the 3-D TH model grid (

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, Gudmundur S.

2005-01-01T23:59:59.000Z

212

ASSEMBLAGES ON WASTE ROCK  

E-Print Network (OSTI)

Abstract: Natural regeneration on waste rock was investigated at the old Wangaloa coal mine, south-east Otago. A 450-m long waste rock stack had been created 40–50 years ago, and has had little anthropogenic intervention since. The stack is made up of a gradient of three main waste rock types, defined as ‘silt-rich’, ‘mixed’, and ‘quartz-rich’, which reflect different proportions of loess siltstone and quartz gravel conglomerate. Plant species assemblages were quantified in four 5-m 2 quadrats in each waste rock type. Invertebrates were heat extracted from substrate cores (7 cm diameter; depth 5 cm) collected from quadrats over an eight-week period in spring 2003. Ordination analysis showed statistically distinct plant and invertebrate assemblages had arisen on each waste rock type. Revegetation patterns were dominated by native, woody individuals on all waste rock types, particularly manuka (Leptospermum scoparium) and kanuka (Kunzea ericoides). Plant cover on ‘silt-rich ’ waste rock was four-fold that on ‘quartz-rich ’ waste rock. Total numbers of invertebrates were highest on ‘quartz-rich’ waste rock, but richness greatest on ‘silt-rich ’ waste rock. Collembola dominated the fauna but their numbers were proportionally greatest in poorly vegetated areas. Further work is required to explain the absence of plants and invertebrates from local areas of waste rock. ___________________________________________________________________________________________________________________________________

C. G. Rufaut; S. Hammit; D. Craw; S. G. Clearwater

2006-01-01T23:59:59.000Z

213

Using Initial Condition and Model Physics Perturbations in Short-Range Ensemble Simulations of Mesoscale Convective Systems  

Science Conference Proceedings (OSTI)

Two separate numerical model ensembles are created by using model configurations with different model physical process parameterization schemes and identical initial conditions, and by using different model initial conditions from a Monte Carlo ...

David J. Stensrud; Jian-Wen Bao; Thomas T. Warner

2000-07-01T23:59:59.000Z

214

A physical model for characteristics of an optical amplifier-switch integrated device  

Science Conference Proceedings (OSTI)

A physical model is develpoed for operation of a functional quantum well optoelectronic integrated device (QW-OEID). Based on the model, static and dynamic characteristics of the device is analyzed numerically considering the effects of parameters such ... Keywords: integrated device, optoelectronic, quantum well

M. H. Sheikhi; V. Ahmadi; M. K. Moravvej-Farshi

2002-12-01T23:59:59.000Z

215

Physical modelling and particle swarm design of coplanar waveguide square spiral inductor  

Science Conference Proceedings (OSTI)

This paper presents simple lumped element equivalent circuit for the coplanar waveguide (CPW) square spiral inductor. The circuit is based on physical modelling which takes into consideration the parasitic effects inherent in the CPW spiral inductor. ... Keywords: circuit modelling, coplanar waveguide, inductor, particle swarm optimization

N. I. Dib; J. I. Ababneh

2008-03-01T23:59:59.000Z

216

A digital rock density map of New Zealand  

Science Conference Proceedings (OSTI)

Digital geological maps of New Zealand (QMAP) are combined with 9256 samples with rock density measurements from the national rock catalogue PETLAB and supplementary geological sources to generate a first digital density model of New Zealand. This digital ... Keywords: Crust, Database, Density, Geological mapping, Gravimetry, Rock types

Robert Tenzer; Pascal Sirguey; Mark Rattenbury; Julia Nicolson

2011-08-01T23:59:59.000Z

217

Multi-Dimensional Modeling of Nova with Realistic Nuclear Physics  

DOE Green Energy (OSTI)

This contract covered the period from 03/09/2010 to 09/30/2010. Over this period, we adapted the low Mach number hydrodynamics code MAESTRO to perform simulations of novae. A nova is the thermonuclear runaway of an accreted hydrogen layer on the surface of a white dwarf. As the accreted layer grows in mass, the temperature and density at the base increase to the point where hydrogen fusion can begin by the CNO cycle - a burning process that uses carbon, nitrogen, and oxygen to complete the fusion of four hydrogen nuclei into one helium-4 nucleus. At this point, we are running initial models of nova, exploring the details of the convection. In the follow-on contract to this one, we will continue this investigation.

Zingale, M; Hoffman, R D

2011-01-27T23:59:59.000Z

218

Critical Feynman-Wilson gas: A model for multiparticle physics  

SciTech Connect

We develop a model in which hadron production in the true asymptotic region proceeds via the exchange of a factorizable singularity at J = 1, which implies a sensible meson spectrum. The rise of the hadronic total cross section and the inclusive plateau are ascribed to threshold effects of this mechanism, which is estimated to take effect at Fermilab energies. In the true asymptotic region the total cross section decreases like a small power of the rapidity, while fireball structure appears in the one-particle distribution. Both the exclusive (multiperipheral) and inclusive (Mueller) approaches are exploited. The discussion is in the language of statistical mechanics and our key assumptions are (i) existence of sensible thermodynamic limit, (ii) Koba-Nielsen-Olesen scaling, and (iii) factorization. We show that the nearest-neighbour interaction implied in the Feynman-Wilson ''gas'' by our factorizable singularity is responsible for its critical behaviour at infinite rapidity.

Antoniou, N.G.; Vlassopulos, S.D.P.

1978-12-01T23:59:59.000Z

219

Using Van Manen's model to assess levels of reflectivity among preservice physical education teachers  

E-Print Network (OSTI)

The intent of this study was two-fold. The first purpose was to apply Van Manen's model to specific strategies (i.e., written assignments) and supervisory practices (i.e., interviews) to examine levels of reflectivity demonstrated and if there were any changes in the reflectivity of student teachers throughout a student teaching period. The second purpose was to assess the applicability of Van Manen's model to a preservice physical education setting. Five physical education majors enrolled in a student teaching experience volunteered to participate. Five weekly web-based written assignments were selected and analyzed using Van Manen's model of reflection. In addition, two interviews were audiotaped, transcribed, and subjected to thematic analysis techniques. Using Naturalistic Inquiry as a method of analysis suggests that utilizing supervisory approaches, written assignments, and reflective teaching can foster important changes in reflectivity levels which encourage reflective thinking in physical education student teachers. Increased levels of sophistication among the participants as the semester progressed were noted and may be attributed to a developmental effect similar to Fuller's Concerns Theory. The results also support Pultorak's (1993) assertion that students can increase reflective thinking when fostered and encouraged in preservice programs. This study combines available resources (i.e., technology, supervisors) with Van Manen's model to assess reflectivity levels in a physical education setting. Findings indicate that Van Manen's model can be used objectively in a physical education setting and can be utilized in applying a quantitative measure to qualitative responses.

Ballard, Kristy Kay

2006-08-01T23:59:59.000Z

220

Improvements in physical-property models used in micellar/polymer flooding  

Science Conference Proceedings (OSTI)

This is one of three companion papers describing a micellar/polymer or chemical flood simulator and comparing its results to experimental data. Various physical-property models required by chemical flood simulators have been improved and others developed. The most significant development is the use of pseudophases to model phase behavior. The method allows representation of four pseudocomponents. This is made possible by assuming that alcohol is distributed among the other three pseudocomponents, thus forming three pseudophases that are assumed to be in thermodynamic equilibrium. Another improvement related to the ion-exchange model. Cations are considered to exchange with both surfactant micelles and clays. The model assumes the exchange to be entirely a result of electrostatic association. A model for treating physical dispersion coefficients as a function of saturations has been added. The model is based on experimental evidence and is purely empirical.

Camilleri, D.; Fil, A.; Pope, G.A.; Rouse, B.A.; Sepehrnoori, K.

1987-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Data Set Models and Exponential Families in Statistical Physics and Beyond  

E-Print Network (OSTI)

The exponential family of models is defined in a general setting, not relying on probability theory. Some results of information geometry are shown to remain valid. Exponential families both of classical and of quantum mechanical statistical physics fit into the new formalism. Other less obvious applications are predicted. For instance, quantum states can be modeled as points in a classical phase space and the resulting model belongs to the exponential family.

Jan Naudts; Ben Anthonis

2011-11-02T23:59:59.000Z

222

Physics-Based Stress Corrosion Cracking Component Reliability Model cast in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Physics-Based Stress Corrosion Cracking Component Reliability Model Physics-Based Stress Corrosion Cracking Component Reliability Model cast in an R7-Compatible Cumulative Damage Framework Physics-Based Stress Corrosion Cracking Component Reliability Model cast in an R7-Compatible Cumulative Damage Framework The Risk-Informed Safety Margin Characterization (RISMC) pathway is a set of activities defined under the U.S. Department of Energy Light Water Reactor Sustainability Program. The overarching objective of RISMC is to support plant life-extension decision-making by providing a state-of-knowledge characterization of safety margins in key systems, structures, and components (SSCs). The methodology emerging from the RISMC pathway is not a conventional probabilistic risk assessment (PRA)-based one; rather, it relies on a reactor systems simulation framework in which

223

Physics-Based Stress Corrosion Cracking Component Reliability Model cast in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Physics-Based Stress Corrosion Cracking Component Reliability Model Physics-Based Stress Corrosion Cracking Component Reliability Model cast in an R7-Compatible Cumulative Damage Framework Physics-Based Stress Corrosion Cracking Component Reliability Model cast in an R7-Compatible Cumulative Damage Framework The Risk-Informed Safety Margin Characterization (RISMC) pathway is a set of activities defined under the U.S. Department of Energy Light Water Reactor Sustainability Program. The overarching objective of RISMC is to support plant life-extension decision-making by providing a state-of-knowledge characterization of safety margins in key systems, structures, and components (SSCs). The methodology emerging from the RISMC pathway is not a conventional probabilistic risk assessment (PRA)-based one; rather, it relies on a reactor systems simulation framework in which

224

Modeling Northern Hemisphere Summer Heat Extreme Changes and Their Uncertainties Using a Physics Ensemble of Climate Sensitivity Experiments  

Science Conference Proceedings (OSTI)

Changes in extreme daily temperature events are examined using a perturbed physics ensemble of global model simulations under present-day and doubled CO2 climates where ensemble members differ in their representation of various physical ...

Robin T. Clark; Simon J. Brown; James M. Murphy

2006-09-01T23:59:59.000Z

225

A Mountain-Scale Thermal Hydrologic Model for Simulating Fluid Flow and Heat Transfer in Unsaturated Fractured Rock  

E-Print Network (OSTI)

Studies Using the Yucca Mountain Unsaturated Zone Model,Unsaturated Zone at Yucca Mountain, Nevada, to Thermal LoadUnsaturated Zone, Yucca Mountain, Nevada, Water-Resources

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, Gudmundur S.

2005-01-01T23:59:59.000Z

226

Modeling Thermal-Hydrologic Processes for a Heated Fractured Rock System: Impact of a Capillary-Pressure Maximum  

E-Print Network (OSTI)

drift-scale thermal test at Yucca Mountain, Nevada. Lawrencemechanical analyses of the Yucca Mountain Drift Scale Test–waste repository at Yucca Mountain, Nevada. The modeling

Sun, Y.; Buscheck, T. A.; Lee, K. H.; Hao, Y.; James, S. C.

2010-01-01T23:59:59.000Z

227

Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns  

E-Print Network (OSTI)

Modeling of Coupled Thermodynamic and Geomechanicalto study the coupled thermodynamic and geomechanicalCAES system, the thermodynamic analysis showed that 96.7% of

Rutqvist, J.

2013-01-01T23:59:59.000Z

228

URANIUM IN ALKALINE ROCKS  

E-Print Network (OSTI)

District, Teller County, Colorado," U.S. Geol. Survey Bull.Jamestown District, Colorado," Econ. Geol. , v. 68, pp 1247-Rocks at Powderhorn, Colorado; Economic Geology, Vol. 60,

Murphy, M.

2011-01-01T23:59:59.000Z

229

Modeling Thermal-Hydrologic Processes for a Heated Fractured Rock System: Impact of a Capillary-Pressure Maximum  

E-Print Network (OSTI)

Tsang, Y.W. : Modeling the thermal-hydrologic processes in aanalyses of heterogeneity and thermal-loading factors for a2005 Lin, W. , Sun, Y. : Thermal hydrological processes in

Sun, Y.; Buscheck, T. A.; Lee, K. H.; Hao, Y.; James, S. C.

2010-01-01T23:59:59.000Z

230

A Mountain-Scale Thermal Hydrologic Model for Simulating Fluid Flow and Heat Transfer in Unsaturated Fractured Rock  

E-Print Network (OSTI)

for Modeling Fluid and Heat Flow in Fractured Porous Media,with fluid and heat flow in fractured porous media arefluid and heat flow in porous media, heat pipe, reservoir simulation, fractured

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, Gudmundur S.

2005-01-01T23:59:59.000Z

231

Characterising and modelling the excavation damaged zone (EDZ) in crystalline rock in the context of radioactive waste disposal  

E-Print Network (OSTI)

potential for thermo-hydro- mechanical-chemical modelling ofweight should be given to hydro-thermo-mechanical couplings.of impacts of thermo-hydro-chemical (THC) and thermo-hydro-

Hudson, J.A.

2009-01-01T23:59:59.000Z

232

STANFORD ROCK PHYSICS BOREHOLE GEOPHYSICS PROJECT  

E-Print Network (OSTI)

of magnetism at work, an individual would witness "an impulse...conjoined to an event...which according

Nur, Amos

233

Physical Models:  

Science Conference Proceedings (OSTI)

... (These units range from 12.0 to 13.25 SEER at ARI ... in this study to assess the impact of an ... for the cost premium ?FC were estimated as described ...

2006-10-03T23:59:59.000Z

234

Modeling of Damage, Permeability Changes and Pressure Responses during Excavation of the TSX Tunnel in Granitic Rock at URL, Canada  

SciTech Connect

This paper presents numerical modeling of excavation-induced damage, permeability changes, and fluid-pressure responses during excavation of the TSX tunnel at the underground research laboratory (URL) in Canada. Four different numerical models were applied, using a wide range of approaches to model damage and permeability changes in the excavation disturbed zone (EDZ) around the tunnel. Using in situ calibration of model parameters the modeling could reproduce observed spatial distribution of damage and permeability changes around the tunnel, as a combination of disturbance induced by stress redistribution around the tunnel and by the drill-and-blast operation. The modeling showed that stress-induced permeability increase above the tunnel is a result of micro and macrofracturing under high deviatoric (shear) stress, whereas permeability increases alongside the tunnel as a result of opening of existing microfractures under decreased mean stress. The remaining observed fracturing and permeability changes around the periphery of the tunnel were attributed to damage from the drill-and-blast operation. Moreover, a reasonably good agreement was achieved between simulated and observed excavation-induced pressure responses around the TSX tunnel for 1 year following its excavation. The simulations showed that these pressure responses are caused by poroelastic effects as a result of increasing or decreasing mean stress, with corresponding contraction or expansion of the pore volume. The simulation results for pressure evolution were consistent with previous studies, indicating that the observed pressure responses could be captured in a Biot model using a relatively low Biot-Willis coefficient, {alpha} {approx} 0.2, a porosity of n {approx} 0.007, and a relatively low permeability of k {approx} 2 x 10{sup -22} m{sup 2}, which is consistent with the very tight, unfractured granite at the site.

Rutqvist, Jonny; Borgesson, Lennart; Chijimatsu, Masakazu; Hernelind, Jan; Jing, Lanru; Kobayashi, Akira; Nguyen, Son

2008-08-01T23:59:59.000Z

235

Session: Hard Rock Penetration  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

1992-01-01T23:59:59.000Z

236

Nonlinear separation of show-through image mixtures using a physical model trained with ICA  

Science Conference Proceedings (OSTI)

Often, when we scan a document, the image from the back page shows through, due to partial transparency of the paper, giving rise to a mixture of two images. We address the problem of separating these images through the use of a physical model of the ... Keywords: Image mixture, Independent component analysis (ICA), MISEP method, Minimal nonlinear distortion (MND), Nonlinear separation

Mariana S. C. Almeida; LuíS B. Almeida

2012-04-01T23:59:59.000Z

237

A Semianalytic Energy Balance Climate Model with Explicit Sea Ice and Snow Physics  

Science Conference Proceedings (OSTI)

An energy balance climate model (EBCM) is presented having 1) a seasonal cycle; 2) surface-air, land-sea, and latitudinal resolution; 3) simulation of sea ice in terms of a number of explicit physical processes and in such a way that the sea ice ...

L. D. Danny Harvey

1988-11-01T23:59:59.000Z

238

An error-free data collection method exploiting hierarchical physical models of wireless sensor networks  

Science Conference Proceedings (OSTI)

Various studies have shown that a substantial portion of the data gathered in real-world sensing applications is faulty. Most existing fault-detection approaches are off-line, centralised, and rely heavily on expert domain knowledge which may not always ... Keywords: adaptive design, physical model, robust learning, stationarity of sensor data

Lei Fang, Simon Dobson, Danny Hudges

2013-11-01T23:59:59.000Z

239

Efficiency of Wireless Networks: Approximation Algorithms for the Physical Interference Model  

Science Conference Proceedings (OSTI)

In this monograph we survey results from a newly emerging line of research that targets algorithm analysis in the physical interference model. In the main part of our monograph we focus on wireless scheduling: given a set of communication requests, arbitrarily ...

Olga Goussevskaia; Yvonne-Anne Pignolet; Roger Wattenhofer

2010-03-01T23:59:59.000Z

240

Rock-ravintolatoiminta : elävää rock-musiikkia ravintolaympäristössä; Rock venue activity : live rock music in the restaurant setting.  

E-Print Network (OSTI)

??Työn tavoitteena oli tutkia rock-ravintolatoimintaa ja elävää rock-musiikkia ravintolaympäristössä ravintolan, artistin ja asiakkaan näkökulmasta. Tutkimuksessa pyrittiin selvittämään rock-ravintolayrittämisen toimintatapoja ja kartoittamaan alan tämän hetkistä tilaa.… (more)

Väyliö, Jari

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Prediction of the Environmental Mobility of Arsenic: Evaluation of a Mechanistic Approach to Modeling Water-Rock Partitioning  

Science Conference Proceedings (OSTI)

Arsenic chemistry is important to the drinking water, waste management, and energy industries because of its potential health effects from low levels of exposure, breadth of occurrence, and expense of current treatment and disposal technologies. Since predicting arsenic behavior and mobility in the environment is currently not well developed, this project was undertaken to increase knowledge by testing and evaluating a mechanistic model for arsenic water-mineral partitioning.

2000-09-06T23:59:59.000Z

242

Prototype Data Models and Data Dictionaries for Hanford Sediment Physical and Hydraulic Properties  

Science Conference Proceedings (OSTI)

The Remediation Decision Support (RDS) project, managed by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) and the CH2M HILL Plateau Remediation Company (CHPRC), has been compiling physical and hydraulic property data and parameters to support risk analyses and waste management decisions at Hanford. In FY09 the RDS project developed a strategic plan for a physical and hydraulic property database. This report documents prototype data models and dictionaries for these properties and associated parameters. Physical properties and hydraulic parameters and their distributions are required for any type of quantitative assessment of risk and uncertainty associated with predictions of contaminant transport and fate in the subsurface. The central plateau of the Hanford Site in southeastern Washington State contains most of the contamination at the Site and has up to {approx}100 m of unsaturated and unconsolidated or semi-consolidated sediments overlying the unconfined aquifer. These sediments contain a wide variety of contaminants ranging from organic compounds, such as carbon tetrachloride, to numerous radionuclides including technetium, plutonium, and uranium. Knowledge of the physical and hydraulic properties of the sediments and their distributions is critical for quantitative assessment of the transport of these contaminants in the subsurface, for evaluation of long-term risks and uncertainty associated with model predictions of contaminant transport and fate, and for evaluating, designing, and operating remediation alternatives. One of the goals of PNNL's RDS project is to work with the Hanford Environmental Data Manager (currently with CHPRC) to develop a protocol and schedule for incorporation of physical property and hydraulic parameter datasets currently maintained by PNNL into HEIS. This requires that the data first be reviewed to ensure quality and consistency. New data models must then be developed for HEIS that are approved by the HTAG that oversees HEIS development. After approval, these new data models then need to be implemented in HEIS by the EDM before there is an actual repository for the data. This document summarizes modifications to previously developed data models, and new data models and data dictionaries for physical and hydraulic property data and parameters to be transferred to HEIS. A prototype dataset that conforms to the specifications of these recommended data models has been identified and processed, and is ready for transfer to CHPRC for inclusion in HEIS. Additional datasets are planned for transfer from PNNL to CHPRC in FY11.

Rockhold, Mark L.; Last, George V.; Middleton, Lisa A.

2010-09-30T23:59:59.000Z

243

Proceedings of the Workshop on Numerical Modeling of Thermohydrological Flow in Fractured Rock Masses, Feb. 19-20, 1980, Berkeley, CA  

E-Print Network (OSTI)

and fluid flow in the hydraulic fracturing process." Ph.D.depth by means of hydraulic fracturing." in Rock Mechanics:production by hydraulic fracturing, the focus of fracture

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

244

Semi-Supervised Anomaly Detection - Towards Model-Independent Searches of New Physics  

E-Print Network (OSTI)

Most classification algorithms used in high energy physics fall under the category of supervised machine learning. Such methods require a training set containing both signal and background events and are prone to classification errors should this training data be systematically inaccurate for example due to the assumed MC model. To complement such model-dependent searches, we propose an algorithm based on semi-supervised anomaly detection techniques, which does not require a MC training sample for the signal data. We first model the background using a multivariate Gaussian mixture model. We then search for deviations from this model by fitting to the observations a mixture of the background model and a number of additional Gaussians. This allows us to perform pattern recognition of any anomalous excess over the background. We show by a comparison to neural network classifiers that such an approach is a lot more robust against misspecification of the signal MC than supervised classification. In cases where the...

Kuusela, Mikael; Malmi, Eric; Raiko, Tapani; Aaltonen, Timo; Nagai, Yoshikazu

2011-01-01T23:59:59.000Z

245

Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo forest, Puerto Rico  

E-Print Network (OSTI)

This paper presents the development of a rainfall-triggered landslide module within an existing physically based spatially distributed ecohydrologic model. The model, tRIBS-VEGGIE (Triangulated Irregular Networks-based ...

Arnone, E.

246

Oldest Rock on Earth  

NLE Websites -- All DOE Office Websites (Extended Search)

Canada." and "Some of the oldest surface rock can be found in the Canadian Shield, Australia, Africa and in other more specific places around the world. The ages of...

247

Geometric Origin of Physical Constants in a Kaluza-Klein Tetrad Model  

E-Print Network (OSTI)

An important feature of Kaluza-Klein theories is their ability to relate fundamental physical constants to the radii of higher dimensions. In previous Kaluza-Klein theory, which unifies the electromagnetic field with gravity as dimensionless components of a Kaluza-Klein metric, i) all fields have the same physical dimensions, ii) the Lagrangian has no explicit dependence on any physical constants except mass, and hence iii) all physical constants in the field equations except for mass originate from geometry. While it seems natural in Kaluza-Klein theory to add fermion fields by defining higher dimensional bispinor fields on the Kaluza-Klein manifold, these Kaluza-Klein theories do not satisfy conditions (i), (ii), and (iii). In this paper, we show how conditions (i), (ii), and (iii) can be satisfied by including bispinor fields in a tetrad formulation of the Kaluza-Klein model, as well as in an equivalent teleparallel model. This demonstrates an unexpected feature of Dirac's bispinor equation, since conditions (i), (ii), (iii) imply a special relation among the terms in the Kaluza-Klein or teleparallel Lagrangian that would not be satisfied in general.

Frank Reifler; Randall Morris

2007-06-12T23:59:59.000Z

248

Low Dose Radiation Research Program: Modeling the Physics of Damage Cluster  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling the Physics of Damage Cluster Formation in a Cellular Environment Modeling the Physics of Damage Cluster Formation in a Cellular Environment Larry Toburen East Carolina University Why This Project Modern tools of radiobiology are leading to many new discoveries regarding how cells and tissues respond to radiation exposure. We can now irradiate single cells and observe responses in adjacent cells. We can also measure clusters of radiation damage produced in DNA. The primary tools available to describe the initial spatial pattern of damage formed by the absorption of ionizing radiation are based on (MC) Monte Carlo simulations of the structure of charged particle tracks. Although many MC codes exist and considerable progress is being made in the incorporation of detailed macromolecular target structures into these codes, much of the interaction

249

Multi-State Physics Models of Aging Passive Components in Probabilistic Risk Assessment  

SciTech Connect

Multi-state Markov modeling has proved to be a promising approach to estimating the reliability of passive components - particularly metallic pipe components - in the context of probabilistic risk assessment (PRA). These models consider the progressive degradation of a component through a series of observable discrete states, such as detectable flaw, leak and rupture. Service data then generally provides the basis for estimating the state transition rates. Research in materials science is producing a growing understanding of the physical phenomena that govern the aging degradation of passive pipe components. As a result, there is an emerging opportunity to incorporate these insights into PRA. This paper describes research conducted under the Risk-Informed Safety Margin Characterization Pathway of the Department of Energy’s Light Water Reactor Sustainability Program. A state transition model is described that addresses aging behavior associated with stress corrosion cracking in ASME Class 1 dissimilar metal welds – a component type relevant to LOCA analysis. The state transition rate estimates are based on physics models of weld degradation rather than service data. The resultant model is found to be non-Markov in that the transition rates are time-inhomogeneous and stochastic. Numerical solutions to the model provide insight into the effect of aging on component reliability.

Unwin, Stephen D.; Lowry, Peter P.; Layton, Robert F.; Heasler, Patrick G.; Toloczko, Mychailo B.

2011-03-13T23:59:59.000Z

250

Physical Model Development and Benchmarking for MHD Flows in Blanket Design  

SciTech Connect

An advanced simulation environment to model incompressible MHD flows relevant to blanket conditions in fusion reactors has been developed at HyPerComp in research collaboration with TEXCEL. The goals of this phase-II project are two-fold: The first is the incorporation of crucial physical phenomena such as induced magnetic field modeling, and extending the capabilities beyond fluid flow prediction to model heat transfer with natural convection and mass transfer including tritium transport and permeation. The second is the design of a sequence of benchmark tests to establish code competence for several classes of physical phenomena in isolation as well as in select (termed here as “canonical”,) combinations. No previous attempts to develop such a comprehensive MHD modeling capability exist in the literature, and this study represents essentially uncharted territory. During the course of this Phase-II project, a significant breakthrough was achieved in modeling liquid metal flows at high Hartmann numbers. We developed a unique mathematical technique to accurately compute the fluid flow in complex geometries at extremely high Hartmann numbers (10,000 and greater), thus extending the state of the art of liquid metal MHD modeling relevant to fusion reactors at the present time. These developments have been published in noted international journals. A sequence of theoretical and experimental results was used to verify and validate the results obtained. The code was applied to a complete DCLL module simulation study with promising results.

Ramakanth Munipalli; P.-Y.Huang; C.Chandler; C.Rowell; M.-J.Ni; N.Morley; S.Smolentsev; M.Abdou

2008-06-05T23:59:59.000Z

251

H Diffusion for Impurity and Defect Passivation: A Physical Model for Solar Cell Processing; Preprint  

DOE Green Energy (OSTI)

We propose a physical model for diffusion of H in Si containing impurities and defects. The diffusion occurs via several parallel mechanisms, involving complex formation (trapping) and dissociation (detrapping) at impurities and defects, hopping in lattice interstitial sites, and charge-state conversion. The role of bulk and process-induced traps is considered to explain observations from plasma, ion implantation, and PECVD-nitridation processes.

Sopori, B. L.; Zhang, Y.; Reedy, R.

2002-05-01T23:59:59.000Z

252

Assessment of Energy Removal Impacts on Physical Systems: Hydrodynamic Model Domain Expansion and Refinement, and Online Dissemination of Model Results  

Science Conference Proceedings (OSTI)

In this report we describe the 1) the expansion of the PNNL hydrodynamic model domain to include the continental shelf along the coasts of Washington, Oregon, and Vancouver Island; and 2) the approach and progress in developing the online/Internet disseminations of model results and outreach efforts in support of the Puget Sound Operational Forecast System (PS-OPF). Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics, for fiscal year 2010 of the Environmental Effects of Marine and Hydrokinetic Energy project.

Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping

2010-08-01T23:59:59.000Z

253

Relative Permeability of Fractured Rock  

DOE Green Energy (OSTI)

Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

Mark D. Habana

2002-06-30T23:59:59.000Z

254

CheckMATE: Confronting your Favourite New Physics Model with LHC Data  

E-Print Network (OSTI)

In the first three years of running, the LHC has delivered a wealth of new data that is now being analysed. With over 20 fb$^{-1}$ of integrated luminosity, both ATLAS and CMS have performed many searches for new physics that theorists are eager to test their model against. However, tuning the detector simulations, understanding the particular analysis details and interpreting the results can be a tedious task. CheckMATE (Check Models At Terascale Energies) is a program package which accepts simulated event files in many formats for any model. The program then determines whether the model is excluded or not at 95% C.L. by comparing to many recent experimental analyses. Furthermore the program can calculate confidence limits and provide detailed information about signal regions of interest. It is simple to use and the program structure allows for easy extensions to upcoming LHC results in the future. CheckMATE can be found at: http://checkmate.hepforge.org

Drees, Manuel; Kim, Jong Soo; Schmeier, Daniel; Tattersall, Jamie

2013-01-01T23:59:59.000Z

255

Exploration for hot dry rock geothermal resources in the Midcontinent USA. Hot dry rock conceptual models for exploration, HDR test site investigations, and the Illinois Deep Drill Hole Project. Volume 2  

DOE Green Energy (OSTI)

Three potential sources of HDR, each covering approximately a 2/sup 0/ x 2/sup 0/ area, were identified and subjected to preliminary evaluation with ad hoc exploration strategies. In the Mississippi Embayment test site, lateral thermal conductivity variations and subcrustal heat sources may be involved in producing abnormally high subsurface temperatures. Studies indicate that enhanced temperatures are associated primarily with basement rift features where vertical displacement of aquifers and faults cause the upward migration of hot waters leading to anomalously high, local, upper crustal temperatures. The Western Nebraska test site is a potential low temperature HDR source also related, at least in part, to groundwater movement. There appear to be much more widespread possibilities for similar HDR sites in the Great Plains area. The Southeast Michigan test site was selected for study because of the possible presence of radiogenic plutons overlain by a thickened sedimentary blanket. There is no direct information on the presence of abnormally high temperatures in this area, but the study does show that a combination of gravity and magnetic anomaly mapping with regional geological information derived from sparse drill holes in the Phanerozoic rocks is useful on a widespread basis for focusing on local areas for detailed evaluation.

Hinze, W.J.; Braile, L.W.; von Frese, R.R.B.; Lidiak, E.G.; Denison, R.E.; Keller, G.R.; Roy, R.F.; Swanberg, C.A.; Aiken, C.L.V.; Morgan, P.

1986-02-01T23:59:59.000Z

256

Flavor changing neutral decay effects in models with two Higgs boson doublets: Applications to LHC Physics  

E-Print Network (OSTI)

In this Thesis we have investigated some effects appearing in top quark and Higgs boson decays with flavor changing neutral currents (FCNC) in the framework of generic Two Higgs Doblet Models (2HDM) and the Minimal Supersymmetric Standard Model (MSSM). We have applied these two extensions to the SM to see whether they can produce new FCNC effects. Introductory chapters deal with the 2HDM and the MSSM. In the next chapters we have computed the following FCNC decays: (1) the branching ratios (B) of the top quark to Higgs bosons and charm quark in the 2HDM; (2) B and number of events at the Large Hadron Collider (LHC) of the Higgs bosons to top and charm quarks in the 2HDM; (3) B of the Higgs bosons to bottom and strange quarks in the MSSM; (4) cross section and number of events at the LHC of the Higgs bosons to FCNC final states involving the heavy quarks like the top and bottom quark in the MSSM (Higgs bosons = h^0, H^0, A^0). We also studied the experimental signatures that would allow discover of the nature of these Higgs bosons in the LHC. In this study we have applied the severe restrictions from observed low-energy FCNC processes like b -> s\\gamma. Our general conclusion is that the physics of the processes with flavor changing neutral currents can be very important in seeing the physics beyond the Standard Model and to disentangle the nature of the most adequate model. Experiments at the LHC can be crucial to unravel signs of FCNC physics beyond the SM.

Santi Bejar

2006-06-12T23:59:59.000Z

257

A Physical Model For The Origin Of Volcanism Of The Tyrrhenian Margin- The  

Open Energy Info (EERE)

Model For The Origin Of Volcanism Of The Tyrrhenian Margin- The Model For The Origin Of Volcanism Of The Tyrrhenian Margin- The Case Of Neapolitan Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Physical Model For The Origin Of Volcanism Of The Tyrrhenian Margin- The Case Of Neapolitan Area Details Activities (0) Areas (0) Regions (0) Abstract: The onset of volcanism in the Neapolitan area and the tensile tectonics of the Tyrrhenian margin of the Apennine chain have been related to the opening of the Tyrrhenian Basin, which may have resulted in horizontal asthenosphere flows giving rise, in turn, to crustal distension, local mantle upwellings and ensuing volcanism. Geological and structural data were taken into consideration: the existence of a shallow crust-mantle discontinuity in the Neapolitan area, the onset of volcanism in a

258

Impacts of WRF Physics and Measurement Uncertainty on California Wintertime Model Wet Bias  

SciTech Connect

The Weather and Research Forecast (WRF) model version 3.0.1 is used to explore California wintertime model wet bias. In this study, two wintertime storms are selected from each of four major types of large-scale conditions; Pineapple Express, El Nino, La Nina, and synoptic cyclones. We test the impacts of several model configurations on precipitation bias through comparison with three sets of gridded surface observations; one from the National Oceanographic and Atmospheric Administration, and two variations from the University of Washington (without and with long-term trend adjustment; UW1 and UW2, respectively). To simplify validation, California is divided into 4 regions (Coast, Central Valley, Mountains, and Southern California). Simulations are driven by North American Regional Reanalysis data to minimize large-scale forcing error. Control simulations are conducted with 12-km grid spacing (low resolution) but additional experiments are performed at 2-km (high) resolution to evaluate the robustness of microphysics and cumulus parameterizations to resolution changes. We find that the choice of validation dataset has a significant impact on the model wet bias, and the forecast skill of model precipitation depends strongly on geographic location and storm type. Simulations with right physics options agree better with UW1 observations. In 12-km resolution simulations, the Lin microphysics and the Kain-Fritsch cumulus scheme have better forecast skill in the coastal region while Goddard, Thompson, and Morrison microphysics, and the Grell-Devenyi cumulus scheme perform better in the rest of California. The effect of planetary boundary layer, soil-layer, and radiation physics on model precipitation is weaker than that of microphysics and cumulus processes for short- to medium-range low-resolution simulations. Comparison of 2-km and 12-km resolution runs suggests a need for improvement of cumulus schemes, and supports the use of microphysics schemes in coarser-grid applications.

Chin, H S; Caldwell, P M; Bader, D C

2009-07-22T23:59:59.000Z

259

Exploration, Drilling and Development Operations in the Bottle Rock Area of the Geysers Steam Field, With New Geologic Insights and Models Defining Reservoir Parameters  

Science Conference Proceedings (OSTI)

MCR Geothermal Corporation pioneered successful exploratiory drilling the Bottle Rock area of the Geysers Steam Field in 1976. The wellfield is characterized by a deep reservoir with varied flowrates, temperatures, pressures, and stem chemistries being quite acceptable. More detailed reservoir engineering tests will follow as production commences.

Hebein, Jeffrey J.

1983-12-15T23:59:59.000Z

260

Adsorption of water vapor on reservoir rocks. First quarterly report, January--March 1993  

DOE Green Energy (OSTI)

Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

Not Available

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling of nuclear reactors  

E-Print Network (OSTI)

288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling of nuclear reactors: current practices in a nutshell Christophe Demazière Department of Applied Physics, Division of Nuclear Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden Email

Demazière, Christophe

262

Searches for Physics Beyond the Standard Model and Triggering on Proton-Proton Collisions at 14 TEV LHC  

SciTech Connect

This document describes the work achieved under the OJI award received May 2008 by Peter Wittich as Principal Investigator. The proposal covers experimental particle physics project searching for physics beyond the standard model at the Large Hadron Collider (LHC) at the European Organization for Nuclear Research.

Wittich, Peter

2011-10-14T23:59:59.000Z

263

Comprehensive physical models and simulation package for plasma/material interactions during plasma instabilities.  

SciTech Connect

Damage to plasma-facing components (PFCS) from plasma instabilities remains a major obstacle to a successful tokamak concept. The extent of the damage depends on the detailed physics of the disrupting plasma, as well as on the physics of plasma-material interactions. A comprehensive computer package called High Energy Interaction with General Heterogeneous Target Systems (HEIGHTS) has been developed and consists of several integrated computer models that follow the beginning of a plasma disruption at the scrape-off layer (SOL) through the transport of the eroded debris and splashed target materials to nearby locations as a result of the deposited energy. The package can study, for the first time, plasma-turbulent behavior in the SOL and predict the plasma parameters and conditions at the divertor plate. Full two-dimensional (2-D) comprehensive radiation magnetohydrodynamic (MHD) models are coupled with target thermodynamics and liquid hydrodynamics to evaluate the integrated response of plasma-facing materials. Factors that influence the lifetime of plasma-facing and nearby components, such as loss of vapor-cloud confinement and vapor removal due to MHD effects, damage to nearby components due to intense vapor radiation, melt splashing, and brittle destruction of target materials, are also modeled and discussed.

Hassanein, A.

1998-08-26T23:59:59.000Z

264

Physical and Numerical Models of Pore-Scale Trapping of CO2  

Science Conference Proceedings (OSTI)

Numerical simulations of deep geological carbon sequestration are being used to design field-scale implementations, predict their long-term performance, and evaluate associated risks. However, conventional field-scale simulators are unable to explicitly resolve the pore-scale processes that exert significant control on the migration and fate of supercritical CO2 in the subsurface. A combination of physical and numerical experiments with explicit pore-scale resolution are being performed in order to identify conditions under which continuum model approximations may fail, and to propose alternative simulation approaches that can be used in such cases.

Scheibe, Timothy D.; Tartakovsky, Alexandre M.; Bandara, Uditha C.; Palmer, Bruce J.; Oostrom, Martinus; Zhang, Changyong; Bonneville, Alain HR

2011-11-18T23:59:59.000Z

265

The Landscape of Klamath Basin Rock Art  

E-Print Network (OSTI)

the Lines: Ethnographic Sources and Rock Art Interpretationwhen applying these sources toward rock art interpretation.information source for developing rock art interpretations.

David, Robert James

2012-01-01T23:59:59.000Z

266

Semi-Supervised Anomaly Detection - Towards Model-Independent Searches of New Physics  

E-Print Network (OSTI)

Most classification algorithms used in high energy physics fall under the category of supervised machine learning. Such methods require a training set containing both signal and background events and are prone to classification errors should this training data be systematically inaccurate for example due to the assumed MC model. To complement such model-dependent searches, we propose an algorithm based on semi-supervised anomaly detection techniques, which does not require a MC training sample for the signal data. We first model the background using a multivariate Gaussian mixture model. We then search for deviations from this model by fitting to the observations a mixture of the background model and a number of additional Gaussians. This allows us to perform pattern recognition of any anomalous excess over the background. We show by a comparison to neural network classifiers that such an approach is a lot more robust against misspecification of the signal MC than supervised classification. In cases where there is an unexpected signal, a neural network might fail to correctly identify it, while anomaly detection does not suffer from such a limitation. On the other hand, when there are no systematic errors in the training data, both methods perform comparably.

Mikael Kuusela; Tommi Vatanen; Eric Malmi; Tapani Raiko; Timo Aaltonen; Yoshikazu Nagai

2011-12-14T23:59:59.000Z

267

Hearing the shape of Ising models: on the distinguishability power of Physics  

E-Print Network (OSTI)

Two objects can be distinguished if they have different measurable properties. Thus, distinguishability depends on the Physics of the objects. In considering graphs, we revisit the Ising model as a framework to define physically meaningful spectral invariants. In this context, we introduce a family of refinements of the classical spectrum and consider the quantum partition function. We demonstrate that the energy spectrum of the quantum Ising Hamiltonian is a stronger invariant than the classical one without refinements. For the purpose of implementing the related physical systems, we perform experiments on a programmable annealer with superconducting flux technology. Departing from the paradigm of adiabatic computation, we take advantage of a noisy evolution of the device to generate statistics of low energy states. The graphs considered in the experiments have the same classical partition functions, but different quantum spectra. The data obtained from the annealer distinguish non-isomorphic graphs via information contained in the classical refinements of the functions but not via the differences in the quantum spectra.

Walter Vinci; Klas Markström; Sergio Boixo; Aidan Roy; Federico M. Spedalieri; Paul A. Warburton; Simone Severini

2013-07-03T23:59:59.000Z

268

Numerical Sensitivity Experiments of Varying Model Physics on the Structure, Evolution and Dynamics of Two Mesoscale Convective Systems  

Science Conference Proceedings (OSTI)

The effects of different model physics and different convective and boundary layer parameterization schemes are investigated using an 18-h nested-grid numerical simulation of the mesoscale convective systems (MCSs) that were responsible for the ...

Da-Lin Zhang; J. Michael Fritsch

1988-01-01T23:59:59.000Z

269

Impact of a Newtonian Assimilation and Physical Initialization an the Initialization and Prediction by a Tropical Mesoscale Model  

Science Conference Proceedings (OSTI)

This study illustrates the capability of Newtonian nudging and physical initialization in improving the initialized state and forecasts in the Florida State University high-resolution regional tropical mesoscale model. In particular it is shown ...

Kok-Seng Yap

1995-03-01T23:59:59.000Z

270

Consequences of Using the Splitting Method for Implementing Physical Forcings in a Semi-Implicit Semi-Lagrangian Model  

Science Conference Proceedings (OSTI)

Any comprehensive numerical model is composed of two parts: a dynamical kernel solving for the fluid mechanical field equations and a physical package to parameterize the ensemble effect of subgrid-scale processes upon the resolved scales of the ...

Alain Caya; René Laprise; Peter Zwack

1998-06-01T23:59:59.000Z

271

Impact of Parameter Estimation on the Performance of the FSU Global Spectral Model Using Its Full-Physics Adjoint  

Science Conference Proceedings (OSTI)

The full-physics adjoint of the Florida State University Global Spectral Model at resolution T42L12 is applied to carry out parameter estimation using an initialized analysis dataset. The three parameters, that is, the biharmonic horizontal ...

Yanqiu Zhu; I. M. Navon

1999-07-01T23:59:59.000Z

272

A Global Multilevel Atmospheric Model Using a Vector Semi-Lagrangian Finite-Difference Scheme. Part II: Version with Physics  

Science Conference Proceedings (OSTI)

Full physical parameterzations have been incorporated into the global model using a two-time-level, semi-Lagrangian, semi-implicit finite-difference integration scheme that was described in Part I of this work. Virtual temperature effects have ...

S. Moorthi; R. W. Higgins; J. R. Bates

1995-05-01T23:59:59.000Z

273

A dynamic battery model for co-design in cyber-physical systems Fumin Zhang, Zhenwu Shi  

E-Print Network (OSTI)

A dynamic battery model for co-design in cyber-physical systems Fumin Zhang, Zhenwu Shi School, Georgia 30332 Email: wolf@ece.gatech.edu Abstract We introduce a dynamic battery model that describes the variations of the capacity of a battery under time varying discharge current. This model supports a co

Zhang, Fumin

274

Rock Harbor UNITED STATES  

E-Print Network (OSTI)

Passage Conglomerate Bay Five Finger Bay Lane Cove Stockly Bay Lake Ojibway Siskiwit River Creek Little River Washington Moskey M cCargoe Cove Robinson Bay Amygdaloid Channel Pickerel Cove Chippewa Harbor Crystal Cove Belle Isle Canoe Rocks Caribou Island Saginaw Point Tookers Island The Palisades Raspberry

275

Flow dynamics and potential for Biodegradation of Organic Contaminants in Fractured Rock Vadose Zones  

SciTech Connect

We present an experimental approach for investigating the potential for bioremediation of volatile organic chemicals (VOCs) in fractured-rock vadose zones. This approach is based on the coupling of fluid flow dynamics and biotransformation processes. Fluid flow and distribution within fracture networks may be a significant factor in the ability of microorganisms to degrade VOCs, as they affect the availability of substrate, moisture and nutrients. Biological activity can change liquid surface tension and generate biofilms that may change the nettability of solid surfaces, locally alter fracture permeability and redirect infiltrating liquids. Our approach has four components: (1) establishing a conceptual model for fluid and contaminant distribution in the geologic matrix of interest; (2) physical and numerical experiments of liquid seepage in the fracture plane; (3) non-destructive monitoring of biotransformations on rock surfaces at the micron-scale; and, (4) integration of flow and biological activity in natural rock ''geocosms''. Geocosms are core-scale flow cells that incorporate some aspects of natural conditions, such as liquid seepage in the fracture plane and moisture content. The experimental work was performed with rock samples and indigenous microorganisms from the site of the US Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL), located in a basalt flow basin where VOC contamination threatens the Snake River Aquifer. The insights gained from this approach should contribute to the design of techniques to monitor and stimulate naturally occurring biological activity and control the spread of organic contaminants.

Geller, J.T.; Holman, H.-Y.; Su, T.-S.; Liou, M.S.; Conrad, M.S.; Pruess, K.; Hunter-Devera, J.C.

1998-12-01T23:59:59.000Z

276

Rock properties in support of geothermal resource development  

DOE Green Energy (OSTI)

Geothermal rock mechanics needs have been defined and subsequently a test system was designed and built for providing appropriate material properties. The development areas identified as requiring rock mechanics were stimulation, reservoir engineering, subsidence prediction, surface exploration and subsurface evaluation, and drilling. The resulting test system provides mechanical, electrical, thermal and physical properties on 2 and 4 inch diameter cores at confining pressures and pore fluid pressures to 200 MPa (30,000 psi) and temperatures to 535/sup 0/C (1000/sup 0/F). The test system development was continued and site specific rock mechanics requirements were identified. (MHR)

Butters, S.W.

1979-01-01T23:59:59.000Z

277

A validation of ground penetrating radar for reconstructing the internal structure of a rock glacier: Mount Mestas, Colorado, USA  

E-Print Network (OSTI)

Rock glaciers are dynamic landforms and, as such, exhibit interesting and welldeveloped structural features, which translate to surface morphology in the form of ridges and furrows. These distinguishing features have led researchers to study the physics behind the movement and internal deformation of rock glaciers. For years researchers had no access to the internal makeup of rock glaciers. Thus, proposed models and discussion have been based on theoretical concepts of electromagnetic (EM) wave propogation. With the application of ground penetrating radar (GPR) to provide a view of the interior structure of a rock glacier, researchers had “real” data to verify their models. However, no comparison has been made between a GPR profile and an actual cross-section of a rock glacier. The purpose of this thesis is to validate the fidelity of GPR in showing the actual structure of a rock glacier. A trench that was excavated through the toe of a rock glacier on Mount Mestas in south central Colorado provided a view of the actual structure of the landform. The structure in the trench was compared with GPR and EM data. The GPR study was conducted using a PulsEKKOTM 100A subsurface imaging radar with 25, 50, and 100 MHz antennas, to detect dielectric contrasts within the rock glacier. A frequency domain EM34 by Geonics LtdTM was also used to supplement the GPR data by measuring the rock glacier’s conductivity at various depths. This thesis proved, by utilizing statistics, that GPR is a useful tool in visualizing the interior structure of rock glaciers. The 100 MHz antennas clearly show small scale reflection horizons caused by changes in clast orientation and subsurface material composition. These events coincide with structures seen in the trench. Individual clasts greater than 0.375 m were also recognized as point sources in the GPR profiles. Large continuous bedding layers were observed with the 25 and 50 MHz antennas, which reflect the structure seen in the trench. A large scale thrust fault was also located with the GPR. However, this was not visible in the panoramic photograph because the fault occurs below the base of the trench.

Jorgensen, William Revis

2007-05-01T23:59:59.000Z

278

Robust recognition of physical team behaviors using spatio-temporal models  

E-Print Network (OSTI)

This paper presents a framework for robustly recognizing physical team behaviors by exploiting spatio-temporal patterns. Agent team behaviors in athletic and military domains typically exhibit an observable structure characterized by the relative positions of teammates and external landmarks, such as a team of soldiers ambushing an opponent or a soccer player moving to receive a pass. We demonstrate how complex team relationships that are not easily expressed by region-based heuristics can be modeled from data and domain knowledge in a way that is robust to noise and spatial variation. To represent team behaviors in our domain of MOUT (Military Operations in Urban Terrain) planning, we employ two classes of spatial models: 1) team templates that encode static relationships between team members and external landmarks; and 2) spatially-invariant Hidden Markov Models (HMMs) to represent evolving agent team configurations over time. These two classes of models can be combined to improve recognition accuracy, particularly for behaviors that appear similar in static snapshots. We evaluate our modeling techniques on large urban maps and position traces of two-person human teams performing MOUT behaviors in a customized version of Unreal Tournament (a commercially available first-person shooter game).

Gita Sukthankar; Katia Sycara

2006-01-01T23:59:59.000Z

279

Unit physics performance of a mix model in Eulerian fluid computations  

SciTech Connect

In this report, we evaluate the performance of a K-L drag-buoyancy mix model, described in a reference study by Dimonte-Tipton [1] hereafter denoted as [D-T]. The model was implemented in an Eulerian multi-material AMR code, and the results are discussed here for a series of unit physics tests. The tests were chosen to calibrate the model coefficients against empirical data, principally from RT (Rayleigh-Taylor) and RM (Richtmyer-Meshkov) experiments, and the present results are compared to experiments and to results reported in [D-T]. Results show the Eulerian implementation of the mix model agrees well with expectations for test problems in which there is no convective flow of the mass averaged fluid, i.e., in RT mix or in the decay of homogeneous isotropic turbulence (HIT). In RM shock-driven mix, the mix layer moves through the Eulerian computational grid, and there are differences with the previous results computed in a Lagrange frame [D-T]. The differences are attributed to the mass averaged fluid motion and examined in detail. Shock and re-shock mix are not well matched simultaneously. Results are also presented and discussed regarding model sensitivity to coefficient values and to initial conditions (IC), grid convergence, and the generation of atomically mixed volume fractions.

Vold, Erik [Los Alamos National Laboratory; Douglass, Rod [Los Alamos National Laboratory

2011-01-25T23:59:59.000Z

280

Physical Properties Models for Simulation of Processes to Treat INEEL Tank Farm Waste: Thermodynamic Equilibrium  

SciTech Connect

A status is presented of the development during FY2002 of a database for physical properties models for the simulation of the treatment of Sodium-Bearing Waste (SBW) at the Idaho National Engineering and Environmental Laboratory. An activity coefficient model is needed for concentrated, aqueous, multi-electrolyte solutions that can be used by process design practitioners. Reasonable first-order estimates of activity coefficients in the relevant media are needed rather than an incremental improvement in theoretical approaches which are not usable by practitioners. A comparison of the Electrolyte Non-Random Two-Liquid (ENRTL) and Pitzer ion-interaction models for the thermodynamic representation of SBW is presented. It is concluded that Pitzer's model is superior to ENRTL in modeling treatment processes for SBW. The applicability of the Pitzer treatment to high concentrations of pertinent species and to the determination of solubilities and chemical equilibria is addressed. Alternate values of Pitzer parameters for HCl, H2SO4, and HNO3 are proposed, applicable up to 16m, and 12m, respectively. Partial validation of the implementation of Pitzer's treatment within the commercial process simulator ASPEN Plus was performed.

Nichols, T.T.; Taylor, D.D.

2002-07-18T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Physical Properties Models for Simulation of Processes to Treat INEEL Tank Farm Waste: Thermodynamic Equilibrium  

SciTech Connect

A status is presented of the development during FY2002 of a database for physical properties models for the simulation of the treatment of Sodium-Bearing Waste (SBW) at the Idaho National Engineering and Environmental Laboratory. An activity coefficient model is needed for concentrated, aqueous, multi-electrolyte solutions that can be used by process design practitioners. Reasonable first-order estimates of activity coefficients in the relevant media are needed rather than an incremental improvement in theoretical approaches which are not usable by practitioners. A comparison of the Electrolyte Non-Random Two-Liquid (ENRTL) and Pitzer ion-interaction models for the thermodynamic representation of SBW is presented. It is concluded that Pitzer's model is superior to ENRTL in modeling treatment processes for SBW. The applicability of the Pitzer treatment to high concentrations of pertinent species and to the determination of solubilities and chemical equilibria is addressed. Alternate values of Pitzer parameters for HCl, H2SO4, and HNO3 are proposed, applicable up to 16m, and 12m, respectively. Partial validation of the implementation of Pitzer's treatment within the commercial process simulator ASPEN Plus was performed.

Nichols, Todd Travis; Taylor, Dean Dalton

2002-07-01T23:59:59.000Z

282

Microwave assisted hard rock cutting  

DOE Patents (OSTI)

An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

Lindroth, David P. (Apple Valley, MN); Morrell, Roger J. (Bloomington, MN); Blair, James R. (Inver Grove Heights, MN)

1991-01-01T23:59:59.000Z

283

MHK Projects/Modeling the Physical and Biochemical Influence of Ocean  

Open Energy Info (EERE)

Modeling the Physical and Biochemical Influence of Ocean Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.9,"lon":158.75,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

284

Hot Dry Rock; Geothermal Energy  

SciTech Connect

The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

1990-01-01T23:59:59.000Z

285

Physics Model of a Gas-Cooled Fast Reactor - Review and Assessment (A27223)  

E-Print Network (OSTI)

Presented At The American Nuclear Society Advances In Reactor Physics (PHYSOR 2012), Knoxville, Tennessee (2012)American Nuclear Society Advances in Reactor Physics(2012) Knoxville Tennessee, US, 2012999619043

Choi, H.

2012-02-29T23:59:59.000Z

286

The Physical Properties of the Atmosphere in the New Hadley Centre Global Environmental Model (HadGEM1). Part I: Model Description and Global Climatology  

Science Conference Proceedings (OSTI)

The atmospheric component of the new Hadley Centre Global Environmental Model (HadGEM1) is described and an assessment of its mean climatology presented. HadGEM1 includes substantially improved representations of physical processes, increased ...

G. M. Martin; M. A. Ringer; V. D. Pope; A. Jones; C. Dearden; T. J. Hinton

2006-04-01T23:59:59.000Z

287

Unit physics testing of a mix model in an eulerian fluid computation  

Science Conference Proceedings (OSTI)

A K-L turbulence mix model driven with a drag-buoyancy source term is tested in an Eulerian code in a series of basic unit-physics tests, as part of a mix validation milestone. The model and the closure coefficient values are derived in the work of Dimonte-Tipton [D-T] in Phys.Flu.18, 085101 (2006), and many of the test problems were reported there, where the mix model operated in Lagrange computations. The drag-buoyancy K-L mix model was implemented within the Eulerian code framework by A.J. Scannapieco. Mix model performance is evaluated in terms of mix width growth rates compared to experiments in select regimes. Results in our Eulerian code are presented for several unit-physics I-D test problems including the decay of homogeneous isotropic turbulence (HIT), Rayleigh-Taylor (RT) unstable mixing, shock amplification of initial turbulence, Richtmyer-Meshkov (RM) mixing in several single shock test cases and in comparison to two RM experiments including re-shock (Vetter-Sturtevant and Poggi, et.al.). Sensitivity to model parameters, to Atwood number, and to initial conditions are examined. Results here are in good agreement in some tests (HIT, RT) with the previous results reported for the mix model in the Lagrange calculations. The HIT turbulent decay agrees closely with analytic expectations, and the RT growth rate matches experimental values for the default values of the model coefficients proposed in [D-T]. Results for RM characterized with a power law growth rate differ from the previous mix model work but are still within the range for reasonable agreement with experiments. Sensitivity to IC values in the RM studies are examined; results are sensitive to initial values of L[t=O], which largely determines the RM mix layer growth rate, and generally differs from the IC values used in the RT studies. Result sensitivity to initial turbulence, K[t=O], is seen to be small but significant above a threshold value. Initial conditions can be adjusted so that single shock RM mix width results match experiments but we have not been able to obtain a good match for first shock and re-shock growth rates in the same experiment with a single set of parameters and Ie. Problematic issues with KH test problems are described. Resolution studies for an RM test problem show the K-L mix growth rate decreases as it converges at a supra-linear rate, and, convergence requires a fine grid (on the order of 10 microns). For comparison, a resolution study of a second mix model [Scannapieco and Cheng, Phys.Lett.A, 299(1),49, (2002)] acting on a two fluid interface problem was examined. The mix in this case was found to increase with grid resolution at low to moderate resolutions, but converged at comparably fine resolutions. In conclusion, these tests indicate that the Eulerian code K-L model, using the Dimonte Tipton default model closure coefficients, achieve reasonable results across many of the unit-physics experimental conditions. However, we were unable to obtain good matches simultaneously for shock and re-shock mix in a single experiment. Results are sensitive to initial conditions in the regimes under study, with different IC best suited to RT or RM mix. It is reasonable to expect IC sensitivity in extrapolating to high energy density regimes, or to experiments with deceleration due to arbitrary combinations of RT and RM. As a final comparison, the atomically generated mix fraction and the mix width were each compared for the K-L mix model and the Scannapieco model on an identical RM test problem. The Scannapieco mix fraction and width grow linearly. The K-L mix fraction and width grow with the same power law exponent, in contrast to expectations from analysis. In future work it is proposed to do more head-to-head comparisons between these two models and other mix model options on a full suite of physics test problems, such as interfacial deceleration due to pressure build-up during an idealized ICF implosion.

Vold, Erik [Los Alamos National Laboratory; Douglass, Rod [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

288

Characterization of Bead Trajectories Through the Draft Tube of a Turbine Physical Model.  

DOE Green Energy (OSTI)

Using high-speed video imaging, trajectories, and kinematics of beads passing below the turbine runner and through the draft tube region of the 1:25 scale model of a single turbine unit from Bonneville Dam powerhouse 1 were collected from May 6-9, 2003 at U.S. Army Corps of Engineers (USACE) Environmental Research and Development Center (ERDC) in Vicksburg, MS. An individual camera was used to produce 2-dimensional trajectories and paired cameras with overlapping fields of view were used to produce 3-dimension trajectories of near neutrally buoyant beads as they passed through the draft tube region of the turbine model. Image data was collected at two turbine operating levels, lower 1% efficiency and maximum rated output for beads released mid-depth into the turbine intake from each of the three gatewell slots. The purpose of this study was to determine the feasibility of using video imaging to track the trajectories of beads through the draft tube of turbine physical models and from the trajectories calculate the kinematics of the bead trajectory and the beads response to turbulence in the model. This project is part of a research program supported by the U.S. Department of Energy Advanced Hydropower Turbine System Program (AHTS) who's goal is to increase the operating potential of hydroelectric facilities while also reducing the reducing the risk of injury and death to fish as they pass through the turbines.

Weiland, Mark A.; Mueller, Robert P.; Carlson, Thomas J.; Deng, Zhiquan; McKinstry, Craig A.

2005-02-18T23:59:59.000Z

289

Session: Hot Dry Rock  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

1992-01-01T23:59:59.000Z

290

Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment  

DOE Green Energy (OSTI)

This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum production systems, stripping towers for mineral production processes, nuclear waste storage, CO2 sequestration strategies, global warming). Although funding decreases cut short completion of several research activities, we made significant progress on these abbreviated projects.

Nancy Moller Weare

2006-07-25T23:59:59.000Z

291

Coupled gas flow/solid dynamics model for predicting the formation of fracture patterns in gas well simulation experiments. [Propellant mixture used instead of explosives to fracture rock surrounding borehole  

DOE Green Energy (OSTI)

A two-dimensional finite element model for predicting fracture patterns obtained in high energy gas fracture experiments is presented. In these experiments, a mixture of propellants is used instead of explosives to fracture the rock surrounding the borehole. The propellant mixture is chosen to tailor the pressure pulse so that multiple fractures emanate from the borehole. The model allows the fracture pattern and pressure pulse to be calculated for different combinations of propellant mixture, in situ stress conditions, and rock properties. The model calculates the amount of gas generated by the burning propellants using a burn rate given by a power law in pressure. By assuming that the gas behaves as a perfect gas and that the flow down the fractures is isothermal, the loss of gas from the borehole due to flow down the cracks is accounted for. The flow of gas down the cracks is included in an approximate manner by assuming self-similar pressure profiles along the fractures. Numerical examples are presented and compared to three different full-scale experiments. Results show a good correlation with the experimental data over a wide variety of test parameters. 9 reference, 10 figures, 3 tables.

Taylor, L.M.; Swenson, D.V.; Cooper, P.W.

1984-07-01T23:59:59.000Z

292

A distributed atomic physics database and modeling system for plasma spectroscopy  

SciTech Connect

We are undertaking to develop a set of computational capabilities which will facilitate the access, manipulation, and understanding of atomic data in calculations of x-ray spectral modeling. In this present limited description we will emphasize the objectives for this work, the design philosophy, and aspects of the atomic database, as a more complete description of this work is available. The project is referred to as the Plasma Spectroscopy Initiative; the computing environment is called PSI, or the ``PSI shell`` since the primary interface resembles a UNIX shell window. The working group consists of researchers in the fields of x-ray plasma spectroscopy, atomic physics, plasma diagnostics, line shape theory, astrophysics, and computer science. To date, our focus has been to develop the software foundations, including the atomic physics database, and to apply the existing capabilities to a range of working problems. These problems have been chosen in part to exercise the overall design and implementation of the shell. For successful implementation the final design must have great flexibility since our goal is not simply to satisfy our interests but to vide a tool of general use to the community.

Nash, J.K.; Liedahl, D.; Chen, M.H.; Iglesias, C.A.; Lee, R.W. [Lawrence Livermore National Lab., CA (United States); Salter, J.M. [South Gosforth Computer Systems, Newcastle upon Tyne (United Kingdom)

1995-08-01T23:59:59.000Z

293

REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS  

SciTech Connect

Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Many research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical analysis. The fuel assembly was modeled using MONTEBURNS(MCNP5/ ORIGEN2.2) and MCNPX/CINDER90. The results from the models have been compared to each other and to the measured data.

Nichols, T.; Beals, D.; Sternat, M.

2011-07-18T23:59:59.000Z

294

A Physically Based Model of Soil Freezing in Humid Climates Using Air Temperature and Snow Cover Data  

Science Conference Proceedings (OSTI)

A one-dimensional heat flow model is developed to estimate depths of soil freezing and thawing using a daily time step. This physically based model assumes near-saturated soil moisture conditions and simulates freezing under bare soil and sod ...

Arthur T. DeGaetano; Daniel S. Wilks; Megan McKay

1996-06-01T23:59:59.000Z

295

The Effects of Assimilation on the Physics of an Ocean Model. Part II: Baroclinic Identical-Twin Experiments  

Science Conference Proceedings (OSTI)

Part I has shown that a simple assimilation scheme can have a significant effect on the physics of the model. Part II concentrates on the effects of nudging assimilation in a full primitive equation model, the Free Surface Cox Code, illustrating ...

Rebecca A. Woodgate

1997-08-01T23:59:59.000Z

296

Hot Dry Rock - Summary  

SciTech Connect

Hot Dry Rock adds a new flexibility to the utilization of geothermal energy. Almost always the approach has been to limit that utilization to places where there is a natural source of water associated with a source of heat. Actually, the result was that steam was mined. Clearly there are much larger heat resources available which lack natural water to transport that energy to the surface. Also, as is found in hydrothermal fields being mined for steam, the water supply finally gets used up. There is a strong motive in the existing capital investment to revitalize those resources. Techniques for introducing, recovering and utilizing the water necessary to recover the heat from below the surface of the earth is the subject of this session. Implicit in that utilization is the ability to forecast with reasonable accuracy the busbar cost of that energy to the utility industry. The added element of supplying the water introduces costs which must be recovered while still supplying energy which is competitive. Hot Dry Rock technology can supply energy. That has been proved long since. The basic barrier to its use by the utility industry has been and remains proof to the financial interests that the long term cost is competitive enough to warrant investment in a technology that is new to utility on-grid operations. As the opening speaker for this session states, the test that is underway will ''simulate the operations of a commercial facility in some ways, but it will not show that energy from HDR can be produced at a variety of locations with different geological settings''. Further, the Fenton Hill system is a research facility not designed for commercial production purposes, but it can give indications of how the system must be changed to provide economic HDR operations. And so it is that we must look beyond the long term flow test, at the opportunities and challenges. Proving that the huge HDR resources can be accessed on a worldwide scale must involve the construction of additional sites, preferably to the specifications of the now Federal geothermal community. These facilities will have to be engineered to produce and market energy at competitive prices. At the same time, we must not rest on our technological laurels, though they be many. Design and operational techniques have been conceived which could lead to improved economics and operations for HDR. These must be pursued and where merit is found, vigorously pursued. Accelerated research and development ought to include revolutionary drilling techniques, reservoir interrogation, and system modeling to assure the competitiveness and geographical diversity of applications of HDR. Much of this work will be applicable to the geothermal industry in general. More advanced research ought to include such innovations as the utilization of other operating fluids. Supercritical carbon dioxide and the ammonia/water (Kalina) cycle have been mentioned. But even as the near and more distant outlook is examined, today's work was reported in the HDR session. The start-up operations for the current test series at the Fenton Hill HDR Pilot Plant were described. The surface plant is complete and initial operations have begun. While some minor modifications to the system have been required, nothing of consequence has been found to impede operations. Reliability, together with the flexibility and control required for a research system were shown in the system design, and demonstrated by the preliminary results of the plant operations and equipment performance. Fundamental to the overall success of the HDR energy resource utilization is the ability to optimize the pressure/flow impedance/time relationships as the reservoir is worked. Significant new insights are still being developed out of the data which will substantially affect the operational techniques applied to new systems. However, again, these will have to be proved to be general and not solely specific to the Fenton Hill site. Nevertheless, high efficiency use of the reservoir without unintended reservoir grow

Tennyson, George P. Jr.

1992-03-24T23:59:59.000Z

297

Model reduction and physical understanding of slowly oscillating processes : the circadian cycle.  

Science Conference Proceedings (OSTI)

A differential system that models the circadian rhythm in Drosophila is analyzed with the computational singular perturbation (CSP) algorithm. Reduced nonstiff models of prespecified accuracy are constructed, the form and size of which are time-dependent. When compared with conventional asymptotic analysis, CSP exhibits superior performance in constructing reduced models, since it can algorithmically identify and apply all the required order of magnitude estimates and algebraic manipulations. A similar performance is demonstrated by CSP in generating data that allow for the acquisition of physical understanding. It is shown that the processes driving the circadian cycle are (i) mRNA translation into monomer protein, and monomer protein destruction by phosphorylation and degradation (along the largest portion of the cycle); and (ii) mRNA synthesis (along a short portion of the cycle). These are slow processes. Their action in driving the cycle is allowed by the equilibration of the fastest processes; (1) the monomer dimerization with the dimer dissociation (along the largest portion of the cycle); and (2) the net production of monomer+dimmer proteins with that of mRNA (along the short portion of the cycle). Additional results (regarding the time scales of the established equilibria, their origin, the rate limiting steps, the couplings among the variables, etc.) highlight the utility of CSP for automated identification of the important underlying dynamical features, otherwise accessible only for simple systems whose various suitable simplifications can easily be recognized.

Goussis, Dimitris A. (Ploutonos 7, Palaio Faliro, Greece); Najm, Habib N.

2006-01-01T23:59:59.000Z

298

Scaled physical model studies of the steam drive process. Second annual report, September 1978-September 1979  

SciTech Connect

A scaled physical model was operated to simulate steam drive operations in five-spot patterns with reservoir and operational parameters similar to those encountered in California reservoirs. The goal of this study was to elucidate the role of two important controllable parameters, viz., steam injection rate and steam quality and to explore the role of two important factors, oil viscosity and reservoir permeability on the performance of the steam drive. In addition, the influence of bottom water and a basal permeable layer were investigated. The experiments demonstrated that there is an optimum injection rate; that in the vicinity of this optimum an increased quantity results in improved oil steam ratios; that the viscosity of the oil at steam temperature, raised to a fractional power, 0.5, appears to correlate with oil production; that permeabilities in the darcy range have little effect on performance, but an increasing one with low viscosity oil, and that bottom water, which facilitates injection, results in toorer early performance but one which eventually rivals the oil/steam ratio of a uniform reservoir at a somewhat higher recovery of original oil in place. It has been concluded that the major value of the physical model is in describing the role of the reservoir and operational parameters of a class of steam drive operations rather than providing an exact prediction of a given operation.The problem of supplying the latter lies in the virtually impossible-to-define distribution of oil, gas and water in the reservoir on initiating the steam drive. Two years of this project have now been completed. During the forthcoming final phase of the program, effort will be devoted to studying the relative effects of solvent and gas addition to the steam, of diurnal injection, and of (horizontal) well placement.

Dosher, T.M.

1981-02-01T23:59:59.000Z

299

Physical Orbit for Lambda Virginis and a Test of Stellar Evolution Models  

E-Print Network (OSTI)

Lambda Virginis (LamVir) is a well-known double-lined spectroscopic Am binary with the interesting property that both stars are very similar in abundance but one is sharp-lined and the other is broad-lined. We present combined interferometric and spectroscopic studies of LamVir. The small scale of the LamVir orbit (~20 mas) is well resolved by the Infrared Optical Telescope Array (IOTA), allowing us to determine its elements as well as the physical properties of the components to high accuracy. The masses of the two stars are determined to be 1.897 Msun and 1.721 Msun, with 0.7% and 1.5% errors respectively, and the two stars are found to have the same temperature of 8280 +/- 200 K. The accurately determined properties of LamVir allow comparisons between observations and current stellar evolution models, and reasonable matches are found. The best-fit stellar model gives LamVir a subsolar metallicity of Z=0.0097, and an age of 935 Myr. The orbital and physical parameters of LamVir also allow us to study its tidal evolution time scales and status. Although currently atomic diffusion is considered to be the most plausible cause of the Am phenomenon, the issue is still being actively debated in the literature. With the present study of the properties and evolutionary status of LamVir, this system is an ideal candidate for further detailed abundance analyses that might shed more light on the source of the chemical anomalies in these A stars.

M. Zhao; J. D. Monnier; G. Torres; A. F. Boden; A. Claret; R. Millan-Gabet; E. Pedretti; J. -P. Berger; W. A. Traub; F. P. Schloerb; N. P. Carleton; P. Kern; M. G. Lacasse; F. Malbet; K. Perraut

2006-12-05T23:59:59.000Z

300

Experiment-Based Model for the Chemical Interactions between Geothermal  

Open Energy Info (EERE)

Experiment-Based Model for the Chemical Interactions between Geothermal Experiment-Based Model for the Chemical Interactions between Geothermal Rocks, Supercritical Carbon Dioxide and Water Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Experiment-Based Model for the Chemical Interactions between Geothermal Rocks, Supercritical Carbon Dioxide and Water Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Project Description The geochemical model will be developed on a foundation of both theory and measurements of chemical and physical interactions between minerals, rocks, scCO2 and water. An experimentally validated reservoir modeling capability is critically important for the evaluation of the scCO2-EGS concept, the adoption of which could significantly enhance energy production in the USA.

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Influence of Rock Types on Seismic Monitoring of CO2 Sequestration in Carbonate Reservoirs  

E-Print Network (OSTI)

Although carbonates hold more than 60 percent of the world's oil reserves, they, nevertheless, exhibit much lower average recovery factor values than terrigenous sandstone reservoirs. Thus, utilization of advanced enhanced oil recovery (EOR) techniques such as high pressure CO2 injection may normally be required to recover oil in place in carbonate reservoirs. This study addresses how different rock types can influence the seismic monitoring of CO2 sequestration in carbonates. This research utilizes an elastic parameter, defined in a rock physics model of poroelasticity and so-­called as the frame flexibility factor, to successfully quantify the carbonate pore types in core samples available from the Great Bahama Bank (GBB). This study shows that for carbonate samples of a given porosity the lower the frame flexibility factors the higher is the sonic wave velocity. Generally, samples with frame flexibility values of 4 are rocks with intercrystalline and microporosity. Hence, different carbonate pore geometries can be quantitatively predicted using the elastic parameters capable of characterizing the porous media with a representation of their internal structure on the basis of the flexibility of the frame and pore connectivity. In this research, different fluid substitution scenarios of liquid and gaseous CO2 saturations are demonstrated to characterize the variations in velocity for carbonate-specific pore types. The results suggest that the elastic response of CO2 flooded rocks is mostly governed by pore pressure conditions and carbonate rock types. Ultrasonic P-­wave velocities in the liquid-­phase CO2 flooded samples show a marked decrease in the order of 0.6 to 16 percent. On the contrary, samples flooded with gaseous-­phase CO2 constitute an increase in P-­wave velocities for moldic and intraframe porosities, while establishing a significant decrease for samples with intercrystalline and micro-­porosities. Such velocity variations are explained by the stronger effect of density versus compressibility, accounting for the profound effect of pore geometries on the acoustic properties in carbonates. The theoretical results from this research could be a useful guide for interpreting the response of time-­lapse seismic monitoring of carbonate formations following CO2 injection at depth. In particular, an effective rock-­physics model can aid in better discrimination of the profound effects of different pore geometries on seismic monitoring of CO2 sequestration in carbonates.

Mammadova, Elnara

2011-08-01T23:59:59.000Z

302

Mimbres rock art: a graphic legacy of cultural expression  

E-Print Network (OSTI)

Rock art abounds along the Mimbres River banks and drainage tributaries reflecting the rich cultural remains of the ancient Mimbres people. The Mimbres are a well established cultural group who lived in southwest New Mexico and northern Mexico from A.D. 200 and A.D. 1150. Physical remains of pithouses, pueblos, irrigation systems, artifacts, and rock art have survived the years to provide clues for contemporary understanding of this prehistoric culture and society. Knowledge of the symbolism and belief system has eluded understanding or remained sketchy as a result of examining only physical remains. Based on the hypothesis that by studying the archaeological record and the established characteristics of cultures with origins similar to those of the Mimbres, then assumptions can be made and applied to the understanding of the symbolism, purpose, and use of the rock art for the Mimbres. Specific to this study is the rock art adjacent to and within a one and one-half mile radius of the NAN Ranch Ruin. Research reveals how the rock art of the NAN Ranch Ruin connects to: 1) cultural context to other regional systems, 2) spatial context within the landscape, 3) temporal context with respect to Mimbres development, and 4) symbolic context, tying the rock art to its environment and revealing it as a living part of the universe as it fits into the world view of those who created it.

Tidemann, Kathryn

2002-01-01T23:59:59.000Z

303

A General Interface between an Atmospheric General Circulation Model and Underlying Ocean and Land Surface Models: Delocalized Physics Scheme  

Science Conference Proceedings (OSTI)

In order to represent in a most adequate way the various feedback mechanisms that govern the atmosphere–ocean or atmosphere–surface couplings, a “delocalized physics” method is introduced, in which the subgrid-scale physical parameterizations of ...

Augustin Vintzileos; Robert Sadourny

1997-05-01T23:59:59.000Z

304

Session: Hot Dry Rock  

SciTech Connect

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

1992-01-01T23:59:59.000Z

305

Development of a HEX-Z Partially Homogenized Benchmark Model for the FFTF Isothermal Physics Measurements  

SciTech Connect

A series of isothermal physics measurements were performed as part of an acceptance testing program for the Fast Flux Test Facility (FFTF). A HEX-Z partially-homogenized benchmark model of the FFTF fully-loaded core configuration was developed for evaluation of these measurements. Evaluated measurements include the critical eigenvalue of the fully-loaded core, two neutron spectra, 32 reactivity effects measurements, an isothermal temperature coefficient, and low-energy gamma and electron spectra. Dominant uncertainties in the critical configuration include the placement of radial shielding around the core, reactor core assembly pitch, composition of the stainless steel components, plutonium content in the fuel pellets, and boron content in the absorber pellets. Calculations of criticality, reactivity effects measurements, and the isothermal temperature coefficient using MCNP5 and ENDF/B-VII.0 cross sections with the benchmark model are in good agreement with the benchmark experiment measurements. There is only some correlation between calculated and measured spectral measurements; homogenization of many of the core components may have impacted computational assessment of these measurements. This benchmark evaluation has been added to the IRPhEP Handbook.

John D. Bess

2012-05-01T23:59:59.000Z

306

Rock Art in the Public Trust: Managing Prehistoric Rock Art on Federal Land  

E-Print Network (OSTI)

Archaic North America. ? In Handbook of Rock Art Research,Rock Art Analysis. ? In Handbook of Archaeological Methods,Rock Art Analysis,? in Handbook of Archaeological Methods,

Hale, John Patrick

2010-01-01T23:59:59.000Z

307

Rock Sampling | Open Energy Information  

Open Energy Info (EERE)

Rock Sampling Rock Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Sampling Details Activities (13) Areas (13) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Rock samples are used to define lithology. Field and lab analyses can be used to measure the chemical and isotopic constituents of rock samples. Stratigraphic/Structural: Provides information about the time and environment which formed a particular geologic unit. Microscopic rock textures can be used to estimate the history of stress and strain, and/or faulting. Hydrological: Isotope geochemistry can reveal fluid circulation of a geothermal system.

308

Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields: Stochastic inversion of AVA and CSEM data  

E-Print Network (OSTI)

e.g. , CO2 sand and non-CO2 sand and shale) or three (e.g. ,CO2 sand, shale and brine sand). Let vectors ? and S be theif the lithotype is not shale, we have f ( S i | L i ) N ( ?

Chen, J.

2013-01-01T23:59:59.000Z

309

Energy from hot dry rock  

DOE Green Energy (OSTI)

The Hot Dry Rock Geothermal Energy Program is described. The system, operation, results, development program, environmental implications, resource, economics, and future plans are discussed. (MHR)

Hendron, R.H.

1979-01-01T23:59:59.000Z

310

Overview: Hard Rock Penetration  

DOE Green Energy (OSTI)

The Hard Rock Penetration program is developing technology to reduce the costs of drilling and completing geothermal wells. Current projects include: lost circulation control, rock penetration mechanics, instrumentation, and industry/DOE cost shared projects of the Geothermal Drilling organization. Last year, a number of accomplishments were achieved in each of these areas. A new flow meter being developed to accurately measure drilling fluid outflow was tested extensively during Long Valley drilling. Results show that this meter is rugged, reliable, and can provide useful measurements of small differences in fluid inflow and outflow rates. By providing early indications of fluid gain or loss, improved control of blow-out and lost circulation problems during geothermal drilling can be expected. In the area of downhole tools for lost circulation control, the concept of a downhole injector for injecting a two-component, fast-setting cementitious mud was developed. DOE filed a patent application for this concept during FY 91. The design criteria for a high-temperature potassium, uranium, thorium logging tool featuring a downhole data storage computer were established, and a request for proposals was submitted to tool development companies. The fundamental theory of acoustic telemetry in drill strings was significantly advanced through field experimentation and analysis. A new understanding of energy loss mechanisms was developed.

Dunn, J.C.

1992-08-01T23:59:59.000Z

311

Overview - Hard Rock Penetration  

DOE Green Energy (OSTI)

The Hard Rock Penetration program is developing technology to reduce the costs of drilling and completing geothermal wells. Current projects include: lost circulation control, rock penetration mechanics, instrumentation, and industry/DOE cost shared projects of the Geothermal Drilling Organization. Last year, a number of accomplishments were achieved in each of these areas. A new flow meter being developed to accurately measure drilling fluid outflow was tested extensively during Long Valley drilling. Results show that this meter is rugged, reliable, and can provide useful measurements of small differences in fluid inflow and outflow rates. By providing early indications of fluid gain or loss, improved control of blow-out and lost circulation problems during geothermal drilling can be expected. In the area of downhole tools for lost circulation control, the concept of a downhole injector for injecting a two-component, fast-setting cementitious mud was developed. DOE filed a patent application for this concept during FY 91. The design criteria for a high-temperature potassium, uranium, thorium logging tool featuring a downhole data storage computer were established, and a request for proposals was submitted to tool development companies. The fundamental theory of acoustic telemetry in drill strings was significantly advanced through field experimentation and analysis. A new understanding of energy loss mechanisms was developed.

Dunn, James C.

1992-03-24T23:59:59.000Z

312

Overview: Hard Rock Penetration  

DOE Green Energy (OSTI)

The Hard Rock Penetration program is developing technology to reduce the costs of drilling and completing geothermal wells. Current projects include: lost circulation control, rock penetration mechanics, instrumentation, and industry/DOE cost shared projects of the Geothermal Drilling organization. Last year, a number of accomplishments were achieved in each of these areas. A new flow meter being developed to accurately measure drilling fluid outflow was tested extensively during Long Valley drilling. Results show that this meter is rugged, reliable, and can provide useful measurements of small differences in fluid inflow and outflow rates. By providing early indications of fluid gain or loss, improved control of blow-out and lost circulation problems during geothermal drilling can be expected. In the area of downhole tools for lost circulation control, the concept of a downhole injector for injecting a two-component, fast-setting cementitious mud was developed. DOE filed a patent application for this concept during FY 91. The design criteria for a high-temperature potassium, uranium, thorium logging tool featuring a downhole data storage computer were established, and a request for proposals was submitted to tool development companies. The fundamental theory of acoustic telemetry in drill strings was significantly advanced through field experimentation and analysis. A new understanding of energy loss mechanisms was developed.

Dunn, J.C.

1992-01-01T23:59:59.000Z

313

B Physics (Experiment)  

E-Print Network (OSTI)

In past few years the flavor physics made important transition from the work on confirmation the standard model of particle physics to the phase of search for effects of a new physics beyond standard model. In this paper we review current state of the physics of b-hadrons with emphasis on results with a sensitivity to new physics.

Michal Kreps

2010-08-02T23:59:59.000Z

314

Scaled-physical-model studies of the steam-drive process. Final report  

SciTech Connect

The main goal of this project was to gain an understanding of the influence of controllable, operating practices and of reservoir parameters on the steam drive. The steam drive, because the chief phenomena of fluid flow and heat flow obey the same laws of diffusion, can be physically scaled. The validity of the results of the scaled models is evidenced by the correspondence of the results with those reported in field operations. In order to conserve on resources, this report is limited to a summary statement of the findings and conclusions of the overall project with separate chapters devoted to an account of specific tasks which came to fruition during the latter part of the project. Summary of results are presented for the following projects: gravitational instability of a steam drive; roles of oil viscosity and steam temperature on the production of crude oil when the steam flow is stratified; extension of the steam drive to tars and bitumens; occurrence of the optimum steam injection rate; emulsification and oil productivity; role of reservoir thickness; cyclic injection of steam in a steam drive; high gravity crudes; partial substitution of inert gas for steam. Two projects completed and described in detail are: effect of oil viscosity on reservoir thickness on the steam drive; and anticipated effect of diurnal injection on steam efficiency.

Doscher, T.M.

1982-11-01T23:59:59.000Z

315

Models for Type I X-Ray Bursts with Improved Nuclear Physics  

DOE Green Energy (OSTI)

Multi-zone models of Type I X-ray bursts are presented that use an adaptive nuclear reaction network of unprecedented size, up to 1300 isotopes, for energy generation and include the most recent measurements and estimates of critical nuclear physics. Convection and radiation transport are included in calculations that carefully follow the changing composition in the accreted layer, both during the bursts themselves and in their ashes. Sequences of bursts, up to 15 in one case, are followed for two choices of accretion rate and metallicity, up to the point where quasi-steady state is achieved. For M = 1.75 x 10{sup -9} M{sub {circle_dot}} yr{sup -1} (and M = 3.5 x 10{sup -10} M{sub {circle_dot}} yr{sup -1}, for low metallicity), combined hydrogen-helium flashes occur. These bursts have light curves with slow rise times (seconds) and long tails. The rise times, shapes, and tails of these light curves are sensitive to the efficiency of nuclear burning at various waiting points along the rp-process path and these sensitivities are explored. Each displays ''compositional inertia'' in that its properties are sensitive to the fact that accretion occurs onto the ashes of previous bursts which contain left-over hydrogen, helium and CNO nuclei.

Woosley, S E; Heger, A; Cumming, A; Hoffman, R D; Pruet, J; Rauscher, T; Schatz, H; Brown, B A; Wiescher, M; Fisker, J L

2004-02-02T23:59:59.000Z

316

Numerical modeling of liquid geothermal systems  

DOE Green Energy (OSTI)

A mathematical model describing the physical behavior of hot-water geothermal systems is presented. The model consists of a set of coupled partial differential equations for heat and mass transfer in porous media and an equation of state relating fluid density to temperature and pressure. The equations are solved numerically using an integrated finite difference method which can treat arbitrary nodal configurations in one, two, or three dimensions. The model is used to analyze cellular convection in permeable rock layers heated from below. Results for cases with constant fluid and rock properties are in good agreement with numerical and experimental results from other authors.

Sorey, M.L.

1978-01-01T23:59:59.000Z

317

Cyber-physical modeling, analysis, and optimization - a shipboard smartgrid reconfiguration case study.  

E-Print Network (OSTI)

??Many physical and engineered systems (e.g., smart grid, transportation and biomedical systems) are increasingly being monitored and controlled over a communication network. These systems where… (more)

Bose, Sayak

2012-01-01T23:59:59.000Z

318

Development of a model for physical and economical optimization of distributed PV systems.  

E-Print Network (OSTI)

?? There are a number of factors that influence both the physical and the economical performance of a photovoltaic solar energy (PV) installation. The aim… (more)

Näsvall, David

2013-01-01T23:59:59.000Z

319

A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel  

E-Print Network (OSTI)

. Introduction It is well recognized that hydrogen represents an abundant, clean and mobile energy carrier. For the hydrogen economy to be fully realized though, efficient hydrogen storage and transportation, for exampleA statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture

Ritchie, Robert

320

Development of a Physics of Failure Model and Quantitative Assessment of the Fire Fatality Risk of Compressed Natural Gas Bus Cylinders.  

E-Print Network (OSTI)

??Title of Dissertation: DEVELOPMENT OF A PHYSICS OF FAILURE MODEL AND QUANTITATIVE ASSESSMENT OF THE FIRE FATALITY RISKS OF COMPRESSED NATURAL GAS BUS CYLINDERS The… (more)

Chamberlain, Samuel Seamore

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Models of polarized states of the physical vacuum and torsion fields  

Science Conference Proceedings (OSTI)

of the Solar System was established. ... y-quanta of definite energies as the process of destruction of the elements of the physical vacuum. Such an ... this charge, a charge polarization of the physical vacuum is produced, as this is condition-.

322

PHYSICAL REVIEW C 83, 064612 (2011) Advanced Monte Carlo modeling of prompt fission neutrons for thermal and fast neutron-induced  

E-Print Network (OSTI)

PHYSICAL REVIEW C 83, 064612 (2011) Advanced Monte Carlo modeling of prompt fission neutrons of the 6th All Union Conference on Neutron Physics, Kiev, 2­6 October 1983, p. 285, EXFOR entry 40871, A. F. Semenov, and B. I. Starostov, Proceedings of the 6th All Union Conference on Neutron Physics

Danon, Yaron

323

Physical model of leptons : Massive electrons, muons, tauons and their massless neutrons  

E-Print Network (OSTI)

The physical model (PhsMdl) of the leptons is offered by means of the PhsMdls of the vacuum and electron,described in our recent works. It is assumed that the vacuum is consistent by dynamides, streamlined in junctions of some tight crystalline lattice. Every dynamide contains a neutral pair of massless point-like (PntLk) contrary elementary electric charges (ElmElcChrgs): electrino $(-)$ and positrino $(+)$. The PntLk ElmElcChrgs of the massless electrino and positrino of some dynamide in the fluctuated vacuum may been excited or deviated by means of some energy, introduced by some photon or other micro particles (MicrPrts). The massless leptons (neutrinos) are neutral long-living solitary spherical vortical oscillation excitations of the uncharged fluctuating vacuum. The massive leptons are charged long-living solitary spherical vortical excitations of its fine spread (FnSpr) elementary electric charge (ElmElcChrg). So-called zitterbewegung is self-consistent strong-correlated vortical harmonic oscillation motion of the FnSpr ElmElcChrg of massive leptons. Different leptons have different self-consistent strong-correlated vortical harmonic oscillation motion of different sizes of their FnSpr ElmElcChrg, which is determined by their Kompton length $\\lambda =\\frac{h}{m C} $, where $m$ is the mass of the massive leptons. At mutual transition of one massive lepton into another massive lepton its PntLk ElmElcChrg move up by dint of weak interaction in the form of the charged intermediate vector meson $W$ from one self-consistent strong-correlated vortical harmonic oscillation motion of one size into another self-consistent strong-correlated vortical harmonic oscillation motion of another size.

Josiph Mladenov Rangelov

2000-03-07T23:59:59.000Z

324

Effects of burial history, rock ductility and recovery magnitude on inversion of normal faulted strata  

E-Print Network (OSTI)

Inversion of normal faults at different burial depths is studied using physical models constructed with rock and deformed at confining pressure. Models consist of a 1 cm thick limestone layer above a fault dipping 70° in a rigid medium, and are subjected to a two-stage deformation path of layer-parallel extension followed by coaxial contraction. To investigate the effects of burial depth and relative ductility on kinematics of inversion, five model suites were run in which confining pressure and recovery magnitudes were varied. In all models, a normal fault forms in the limestone during extension. Subsequent inversion is accommodated in the limestone by reverse slip on the normal fault, creation and movement along new reverse faults, and distributed fracturing and folding. The relative contribution of these mechanisms depends on the relative ductility of the rock and magnitude of inversion. Reverse slip on the normal fault and distributed fracturing occur during early stages of inversion and new reverse faults form at intermediate stages. During late stage inversion, strata with low mean ductility shorten primarily by reverse slip on the pre-existing normal fault, whereas strata with high mean ductility shorten by continued slip on reverse faults. Evidence for inversion is provided by superposed fracture fabrics in the footwall at early stages (100% recovery). This change in fracture fabric during inversion could lead to an overpressured footwall in natural inversion structures. Reverse reactivation of the normal faults may occur during coaxial contraction even though such faults are unfavorably oriented assuming typical rock friction behavior and a homogeneous stress state. Localized reverse slip on normal faults is favored when strata display low ductility and less favored when strata work-harden during extension, however, the models show that the final inversion geometry is dependent on the ductility during both phases of deformation. Even a fault that is work-hardened during extension can reactivate if the ductility during contraction is low enough.

Kuhle, Nathan John

2001-01-01T23:59:59.000Z

325

Shotgun cartridge rock breaker  

DOE Patents (OSTI)

A rock breaker uses shotgun cartridges or other firearm ammunition as the explosive charge at the bottom of a drilled borehole. The breaker includes a heavy steel rod or bar, a gun with a firing chamber for the ammunition which screws onto the rod, a long firing pin running through a central passage in the rod, and a firing trigger mechanism at the external end of the bar which strikes the firing pin to fire the cartridge within the borehole. A tubular sleeve surround the main body of the rod and includes slits the end to allow it to expand. The rod has a conical taper at the internal end against which the end of the sleeve expands when the sleeve is forced along the rod toward the taper by a nut threaded onto the external end of the rod. As the sleeve end expands, it pushes against the borehole and holds the explosive gasses within, and also prevents the breaker from flying out of the borehole. The trigger mechanism includes a hammer with a slot and a hole for accepting a drawbar or drawpin which, when pulled by a long cord, allows the cartridge to be fired from a remote location.

Ruzzi, Peter L. (Eagan, NM); Morrell, Roger J. (Bloomington, MN)

1995-01-01T23:59:59.000Z

326

Higgs Mechanism in the Standard Model and a Possibility of its Direct Physical Realization  

E-Print Network (OSTI)

The aim of this work was to answer the question: Is the direct physical realization of the Higgs mechanism possible? It is shown that this mechanism cannot have a direct physical realization since the condition for this realization is not fulfilled. It means that if in the new collider at CERN a scalar particle is detected, it does not mean that it is a Higgs particle.

Kh. M. Beshtoev

2008-12-30T23:59:59.000Z

327

GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics  

Science Conference Proceedings (OSTI)

The physical climate formulation and simulation characteristics of two new global coupled carbon–climate Earth System Models, ESM2M and ESM2G, are described. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics ...

John P. Dunne; Jasmin G. John; Alistair J. Adcroft; Stephen M. Griffies; Robert W. Hallberg; Elena Shevliakova; Ronald J. Stouffer; William Cooke; Krista A. Dunne; Matthew J. Harrison; John P. Krasting; Sergey L. Malyshev; P. C. D. Milly; Peter J. Phillipps; Lori T. Sentman; Bonita L. Samuels; Michael J. Spelman; Michael Winton; Andrew T. Wittenberg; Niki Zadeh

2012-10-01T23:59:59.000Z

328

Low Pore Connectivity in Natural Rock  

SciTech Connect

As repositories for CO? and radioactive waste, as oil and gas reservoirs, and as contaminated sites needing remediation, rock formations play a central role in energy and environmental management. The connectivity of the rock's porespace strongly affects fluid flow and solute transport. This work examines pore connectivity and its implications for fluid flow and chemical transport. Three experimental approaches (imbibition, tracer concentration profiles, and imaging) were used in combination with network modeling. In the imbibition results, three types of imbibition slope [log (cumulative imbibition) vs. log (imbibition time)] were found: the classical 0.5, plus 0.26, and 0.26 transitioning to 0.5. The imbibition slope of 0.26 seen in Indiana sandstone, metagraywacke, and Barnett shale indicates low pore connectivity, in contrast to the slope of 0.5 seen in the well-connected Berea sandstone. In the tracer profile work, rocks exhibited different distances to the plateau porosity, consistent with the pore connectivity from the imbibition tests. Injection of a molten metal into connected pore spaces, followed by 2-D imaging of the solidified alloy in polished thin sections, allowed direct assessment of pore structure and lateral connection in the rock samples. Pore-scale network modeling gave results consistent with measurements, confirming pore connectivity as the underlying cause of both anomalous behaviors: imbibition slope not having the classical value of 0.5, and accessible porosity being a function of distance from the edge. A poorly connected porespace will exhibit anomalous behavior in fluid flow and chemical transport, such as a lower imbibition slope (in air–water system) and diffusion rate than expected from classical behavior.

Hu, Qinhong; Ewing, Robert P.; Dultz, Stefan

2012-05-15T23:59:59.000Z

329

Rock Density | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rock Density Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Density Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Density of different lithologic units. Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 10.001,000 centUSD 0.01 kUSD 1.0e-5 MUSD 1.0e-8 TUSD / sample

330

Post Rock | Open Energy Information  

Open Energy Info (EERE)

Rock Rock Jump to: navigation, search Name Post Rock Facility Post Rock Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Capital Group Developer Wind Capital Group Energy Purchaser Westar Energy Location Ellsworth KS Coordinates 38.87269233°, -98.33059788° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.87269233,"lon":-98.33059788,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

Physical Interpretation of the Adjoint Functions for Sensitivity Analysis of Atmospheric Models  

Science Conference Proceedings (OSTI)

The adjoint functions for an atmospheric model are the solution to a system of equations derived from a differential form of the model's equations. The adjoint functions can be used to calculate efficiently the sensitivity of one of the model's ...

Matthew C. G. Hall; Dan G. Cacuci

1983-10-01T23:59:59.000Z

332

Hot Dry Rock Geothermal Energy Development Program  

DOE Green Energy (OSTI)

During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

1989-12-01T23:59:59.000Z

333

Isotopic Analysis- Rock | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Rock Isotopic Analysis- Rock Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotopic Analysis- Rock Details Activities (13) Areas (11) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Water rock interaction Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Isotopic Analysis- Rock: Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.

334

A General Strategy for Physics-Based Model Validation Illustrated with Earthquake Phenomenology, Atmospheric Radiative Transfer, and Computational Fluid Dynamics  

E-Print Network (OSTI)

Validation is often defined as the process of determining the degree to which a model is an accurate representation of the real world from the perspective of its intended uses. Validation is crucial as industries and governments depend increasingly on predictions by computer models to justify their decisions. In this article, we survey the model validation literature and propose to formulate validation as an iterative construction process that mimics the process occurring implicitly in the minds of scientists. We thus offer a formal representation of the progressive build-up of trust in the model, and thereby replace incapacitating claims on the impossibility of validating a given model by an adaptive process of constructive approximation. This approach is better adapted to the fuzzy, coarse-grained nature of validation. Our procedure factors in the degree of redundancy versus novelty of the experiments used for validation as well as the degree to which the model predicts the observations. We illustrate the new methodology first with the maturation of Quantum Mechanics as the arguably best established physics theory and then with several concrete examples drawn from some of our primary scientific interests: a cellular automaton model for earthquakes, an anomalous diffusion model for solar radiation transport in the cloudy atmosphere, and a computational fluid dynamics code for the Richtmyer-Meshkov instability. This article is an augmented version of Sornette et al. [2007] that appeared in Proceedings of the National Academy of Sciences in 2007 (doi: 10.1073/pnas.0611677104), with an electronic supplement at URL http://www.pnas.org/cgi/content/full/0611677104/DC1. Sornette et al. [2007] is also available in preprint form at physics/0511219.

Didier Sornette; Anthony B. Davis; James R. Kamm; Kayo Ide

2007-10-01T23:59:59.000Z

335

A Global Time-Dependent Model of Thunderstorm Electricity. Part I: Mathematical Properties of the Physical and Numerical Models  

Science Conference Proceedings (OSTI)

A time-dependent model that simulates the interaction of a thunderstorm with its electrical environment is introduced. The model solves the continuity equation of the Maxwell current density that includes conduction, displacement, and source ...

G. L. Browning; I. Tzur; R. G. Roble

1987-08-01T23:59:59.000Z

336

A Double Fourier Series (DFS) Dynamical Core in a Global Atmospheric Model with Full Physics  

Science Conference Proceedings (OSTI)

This study describes an application of the double Fourier series (DFS) spectral method developed by Cheong as an alternative dynamical option in a model system that was ported into the Global/Regional Integrated Model System (GRIMs). A message ...

Hoon Park; Song-You Hong; Hyeong-Bin Cheong; Myung-Seo Koo

2013-09-01T23:59:59.000Z

337

A Double Fourier Series (DFS) Dynamic Core in a Global Atmospheric Model with Full Physics  

Science Conference Proceedings (OSTI)

This study describes an application of the double Fourier series (DFS) spectral method developed by Cheong (2006) as an alternative dynamic option in a model system that was ported in the Global/Regional Integrated Model system (GRIMs). A message-...

Hoon Park; Song-You Hong; Hyeong-Bin Cheong; Myung-Seo Koo

338

A New Cloud Physics Parameterization in a Large-Eddy Simulation Model of Marine Stratocumulus  

Science Conference Proceedings (OSTI)

A new bulk microphysical parameterization for large-eddy simulation (LES) models of the stratocumulus-topped boundary layer has been developed using an explicit (drop spectrum resolving) microphysical model as a data source and benchmark for ...

Marat Khairoutdinov; Yefim Kogan

2000-01-01T23:59:59.000Z

339

Melting and Shedding of Graupel and Hail. Part I: Model Physics  

Science Conference Proceedings (OSTI)

A detailed model of the melting, shedding, and wet growth of spherical graupel and hail is presented. This model is based upon recent experimental studies by Rasmussen et al. and Lesins et al. The model is presented in the form of five easy-to-...

Roy M. Rasmussen; Andrew J. Heymsfield

1987-10-01T23:59:59.000Z

340

RockPhy-RSI  

NLE Websites -- All DOE Office Websites (Extended Search)

eandp.info November 2007 | E&P | 1 A real seismic-stack profile from an offshore hydrate reservoir is matched with a synthetic gather produced on a simplified earth model to...

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Great Plains ASPEN Model Development: ASPEN physical property evaluation. Final topical report  

Science Conference Proceedings (OSTI)

This report documents the steps taken to evaluate pure component properties in the ASPEN data bank for those compounds required to simulate the Great Plains Coal Gasification Plant where the compounds are also available in the DIPPR (Design Institute for Physical Property Data) data bank. DIPPR is a cooperative effort of industry, institutes, and federal agencies interested in the compilation, measurement, and evaluation of physical property data for industrially important compounds. It has been found that the ASPEN data bank is reliable, for the most part, the main problem being lack of documentation. In the few instances where values either were found to be missing or to be unacceptable, recommended constants or equation parameters are presented in this report, along with associated literature citations. In the cases where temperature dependent data were subjected to regression analysis to obtain new equation parameters, the detailed methods employed are presented also. 32 references.

Millman, M.C.

1985-01-01T23:59:59.000Z

342

Flavor physics and CP violation  

E-Print Network (OSTI)

Lectures on flavor physics presented at the 2012 CERN HEP Summer School. Content: 1) flavor physics within the Standard Model, 2) phenomenology of B and D decays, 3) flavor physics beyond the Standard Model.

Gino Isidori

2013-02-04T23:59:59.000Z

343

Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ...

344

A Physically Based Approach for Modeling Multiphase Fracture-Matrix Interaction in Fractured Porous Media  

E-Print Network (OSTI)

in modeling multiphase flow in porous and fractured media,multiphase tracer transport in heterogeneous fractured porousof multiphase flow through fractured or porous media.

Wu, Yu-Shu; Pan, Lehua; Pruess, Karsten

2004-01-01T23:59:59.000Z

345

A physically based numerical approach for modeling fracture-matrix interaction in fractured reservoirs  

E-Print Network (OSTI)

in modeling multiphase flow in porous and fractured media,multiphase tracer transport in heterogeneous fractured porousof multiphase flow through fractured or porous media. 3.

Wu, Yu-Shu; Pruess, Karsten

2004-01-01T23:59:59.000Z

346

A physically based numerical approach for modeling fracture-matrix interaction in fractured reservoirs  

E-Print Network (OSTI)

modeling fluid and heat flow in fractured porous media, Soc.flow through unsaturated fractured porous media, Proceedings of the Second International Symposium on Dynamics of Fluids

Wu, Yu-Shu; Pruess, Karsten

2004-01-01T23:59:59.000Z

347

A Physically Based Approach for Modeling Multiphase Fracture-Matrix Interaction in Fractured Porous Media  

E-Print Network (OSTI)

modeling fluid and heat flow in fractured porous media, Soc.flow through unsaturated fractured porous media, Proceedings of the Second International Symposium on Dynamics of Fluids

Wu, Yu-Shu; Pan, Lehua; Pruess, Karsten

2004-01-01T23:59:59.000Z

348

Summaries of physical research in the geosciences  

DOE Green Energy (OSTI)

The Department of Energy supports research in the geosciences in order to provide a sound basis of fundamental knowledge in those areas of the earth, atmospheric, and solar/terrestrial sciences which relate to DOE's many missions. The summaries in this document, prepared by the investigators, describe the work performed during 1978, include the scope of the work to be performed in 1979 and provide information regarding some of the research planned for 1980. The following is an outline of the research areas included: geology, geophysics, and earch dynamics (large-scale earth movements; evolution of geologic structures; properties of earth materials; rock flow, fracture, and failure; continental drilling for scientific purposes); geochemistry (geothermal fluids; static rock--water interactions; organic geochemistry; geochemical migration); energy resource recognition, evaluation, and utilization (resource definition and utilization; reservoir dynamics and modeling; magma energy resources; information compilation, evaluation, and dissemination); hydrologic and marine sciences (ground water hydrology; fresh water systems; oceanography); and solar--terrestrial/atmospheric interactions (magnetospheric physics and chemistry; upper atmosphere chemistry and physics; solar radiation; meteorology and climatology). (RWR)

Not Available

1979-08-01T23:59:59.000Z

349

Journal of the Korean Physical Society, Vol. 59, No. 2, August 2011, pp. 983986 Modelling a Resonance Dependent Angular Distribution via DBRC in Monte  

E-Print Network (OSTI)

for Neutron Physics and Reactor Technology, 76021 Karlsruhe, Germany Y. Danon, M. Rapp and D. Barry RensselaerJournal of the Korean Physical Society, Vol. 59, No. 2, August 2011, pp. 983986 Modelling Institute (RPI). The main advantage of this facility is the ability to move the neutron production source

Danon, Yaron

350

Rock Lab Analysis | Open Energy Information  

Open Energy Info (EERE)

Rock Lab Analysis Rock Lab Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Lab Analysis Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Lab Analysis Techniques Information Provided by Technique Lithology: Core and cuttings analysis is done to define lithology. Water rock interaction. Can determine detailed information about rock composition and morphology. Density of different lithologic units. Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Core analysis can locate faults or fracture networks. Oriented core can give additional important information on anisotropy. Historic structure and deformation of land.

351

Performance of 4D-Var with Different Strategies for the Use of Adjoint Physics with the FSU Global Spectral Model  

Science Conference Proceedings (OSTI)

A set of four-dimensional variational data assimilation (4D-Var) experiments were conducted using both a standard method and an incremental method in an identical twin framework. The full physics adjoint model of the Florida State University ...

Zhijin Li; I. M. Navon; Yanqiu Zhu

2000-03-01T23:59:59.000Z

352

Laser Rock Perforation Demo - The NE Multimedia Collection  

NLE Websites -- All DOE Office Websites (Extended Search)

rock perforation demo High power laser beam can be used in oil well completion application for perforating oil reservoir rock and increasing rock's permeability for high oil...

353

Hot dry rock geothermal energy. Draft final report  

DOE Green Energy (OSTI)

This second EPRI workshop on hot dry rock (HDR) geothermal energy, held in May 1994, focused on the status of worldwide HDR research and development and used that status review as the starting point for discussions of what could and should be done next: by U.S. federal government, by U.S. industry, by U.S. state governments, and by international organizations or through international agreements. The papers presented and the discussion that took place indicate that there is a community of researchers and industrial partners that could join forces, with government support, to begin a new effort on hot dry rock geothermal development. This new heat mining effort would start with site selection and confirmatory studies, done concurrently. The confirmatory studies would test past evaluations against the most current results (from the U.S. site at Fenton Hill, New Mexico, and from the two sites in Japan, the one in Russia, and the two in western Europe) and the best models of relevant physical and economic aspects. Site selection would be done in the light of the confirmatory studies and would be influenced by the need to find a site where success is probable and which is representative enough of other sites so that its success would imply good prospects for success at numerous other sites. The test of success would be circulation between a pair of wells, or more wells, in a way that confirmed, with the help of flow modeling, that a multi-well system would yield temperatures, flows and lifetimes that support economically feasible power generation. The flow modeling would have to have previously achieved its own confirmation from relevant data taken from both heat mining and conventional hydrothermal geothermal experience. There may be very relevant experience from the enhancement of ''hot wet rock'' sites, i.e., sites where hydrothermal reservoirs lack, or have come to lack, enough natural water or steam and are helped by water injected cold and produced hot. The new site would have to be selected in parallel with the confirmatory studies because it would have to be modeled as part of the studies and because its similarity to other candidate sites must be known well enough to assure that results at the selected site are relevant to many others. Also, the industry partners in the joint effort at the new site must be part of the confirmatory studies, because they must be convinced of the economic feasibility. This meeting may have brought together the core of people who can make such a joint effort take place. EPRI sponsored the organization of this meeting in order to provide utilities with an update on the prospects for power generation via heat mining. Although the emerging rules for electric utilities competing in power generation make it very unlikely that the rate-payers of any one utility (or small group of utilities) can pay the differential to support this new heat mining research and development effort, the community represented at this meeting may be able to make the case for national or international support of a new heat mining effort, based on the potential size and economics of this resource as a benefit for the nation as a whole and as a contribution to reduced emissions of fossil CO{sub 2} worldwide.

Not Available

1994-09-01T23:59:59.000Z

354

2008 Rock Deformation GRC - Conference August 3-8, 2008  

Science Conference Proceedings (OSTI)

The GRC on Rock Deformation highlights the latest research in brittle and ductile rock mechanics from experimental, field and theoretical perspectives. The conference promotes a multi-disciplinary forum for assessing our understanding of rock strength and related physical properties in the Earth. The theme for the 2008 conference is 'Real-time Rheology'. Using ever-improving geophysical techniques, our ability to constrain the rheological behavior during earthquakes and post-seismic creep has improved significantly. Such data are used to investigate the frictional behavior of faults, processes responsible for strain localization, the viscosity of the lower crust, and viscous coupling between the crust and mantle. Seismological data also provide information on the rheology of the lower crust and mantle through analysis of seismic attenuation and anisotropy. Geologists are improving our understanding of rheology by combining novel analyses of microstructures in naturally deformed rocks with petrologic data. This conference will bring together experts and students in these research areas with experimentalists and theoreticians studying the same processes. We will discuss and assess where agreement exists on rheological constraints derived at different length/time scales using different techniques - and where new insight is required. To encompass the elements of these topics, speakers and discussion leaders with backgrounds in geodesy, experimental rock deformation, structural geology, earthquake seismology, geodynamics, glaciology, materials science, and mineral physics will be invited to the conference. Thematic sessions will be organized on the dynamics of earthquake rupture, the rheology of the lower crust and coupling with the upper mantle, the measurement and interpretation of seismic attenuation and anisotropy, the dynamics of ice sheets and the coupling of reactive porous flow and brittle deformation for understanding geothermal and chemical properties of the shallow crust that are important for developing ideas in CO2 sequestration, geothermal and petrochemical research and the mechanics of shallow faults.

James G. Hirth

2009-09-21T23:59:59.000Z

355

Toward a Physically Based Gravity Wave Source Parameterization in a General Circulation Model  

Science Conference Proceedings (OSTI)

Middle atmospheric general circulation models (GCMs) must employ a parameterization for small-scale gravity waves (GWs). Such parameterizations typically make very simple assumptions about gravity wave sources, such as uniform distribution in ...

Jadwiga H. Richter; Fabrizio Sassi; Rolando R. Garcia

2010-01-01T23:59:59.000Z

356

The Importance of Three Physical Processes in a Minimal Three-Dimensional Tropical Cyclone Model  

Science Conference Proceedings (OSTI)

The minimal three-dimensional tropical cyclone model developed by Zhu et al. is used to explore the role of shallow convection, precipitation-cooled downdrafts, and the vertical transport of momentum by deep convection on the dynamics of tropical ...

Hongyan Zhu; Roger K. Smith

2002-06-01T23:59:59.000Z

357

The Sensitivity of Numerically Simulated Cyclic Mesocyclogenesis to Variations in Model Physical and Computational Parameters  

Science Conference Proceedings (OSTI)

In a previous paper, a three-dimensional numerical model was used to study the evolution of successive mesocyclones produced by a single supercell storm, that is, cyclic mesocyclogenesis. Not all supercells, simulated or observed, exhibit this ...

Edwin J. Adlerman; Kelvin K. Droegemeier

2002-11-01T23:59:59.000Z

358

A Probabilistic View on the Rain Drop Size Distribution Modeling: a Physical Interpretation of Rain Microphysics  

Science Conference Proceedings (OSTI)

The Rain Drop Size Distribution (RDSD) is defined as the relative frequency of raindrops per given diameter in a volume. This paper describes a mathematically-consistent modeling of the RDSD drawing on probability theory. It is shown that this ...

Francisco J. Tapiador; Ziad S. Haddad; Joe Turk

359

Physical Model of Diurnal Heating in the Vicinity of a Two-Dimensional Ridge  

Science Conference Proceedings (OSTI)

Laboratory experiments were conducted to simulate the diurnal heating-cooling cycle in the vicinity of a ridge of constant cross section. In the model the fluid is a water solution stratified with salt to simulate the background stratification of ...

Rui-Rong Chen; Neil S. Berman; Don L. Boyer; Harindra J. S. Fernando

1996-01-01T23:59:59.000Z

360

Tests of a Perturbed Physics Ensemble Approach for Regional Climate Modeling  

Science Conference Proceedings (OSTI)

Ensemble simulations were performed with the regional climate model RegCM2 using ranges of plausible values for two parameters in the deep convection scheme. The timescale for release of convective instability was varied through a range of five ...

Zhiwei Yang; Raymond W. Arritt

2002-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Assimilation of Precipitation Information Using Column Model Physics as a Weak Constraint  

Science Conference Proceedings (OSTI)

Currently, operational weather forecasting systems use observations to optimize the initial state of a forecast without considering possible model deficiencies. For precipitation assimilation, this could be an issue since precipitation ...

Arthur Y. Hou; Sara Q. Zhang

2007-11-01T23:59:59.000Z

362

Lectures on Higgs Boson Physics in the Standard Model and Beyond  

E-Print Network (OSTI)

These lectures focus on the structure of various Higgs boson theories. Topics in the first lectures include: mass generation in chiral theories, spontaneous symmetry breaking, neutrino masses, perturbative unitarity, vacuum stability, vacuum alignment, flavor changing neutral current solutions with multiple Higgs doublets, analysis of type I theory with Z2 symmetry, and rephasing symmetries. After an Essay on the Hierarchy Problem, additional topics are covered that more directly relate to naturalness of the electroweak theory. Emphasis is on their connection to Higgs boson physics. Topics in these later lectures include: supersymmetry, supersymmetric Higgs sector in the Runge basis, leading-order radiative corrections of supersymmetric light Higgs boson mass, theories of extra dimensions, and radion mixing with the Higgs boson in warped extra dimensions. And finally, one lecture is devoted to Higgs boson connections to the hidden sector.

Wells, James D

2009-01-01T23:59:59.000Z

363

Constraints on B and Higgs physics in minimal low energy supersymmetric models  

SciTech Connect

We study the implications of minimal flavor violating low energy supersymmetry scenarios for the search of new physics in the B and Higgs sectors at the Tevatron collider and the LHC. We show that the already stringent Tevatron bound on the decay rate B{sub s} {yields} {mu}{sup +}{mu}{sup -} sets strong constraints on the possibility of generating large corrections to the mass difference {Delta} M{sub s} of the B{sub s} eigenstates. We also show that the B{sub s} {yields} {mu}{sup +}{mu}{sup -} bound together with the constraint on the branching ratio of the rare decay b {yields} s{gamma} has strong implications for the search of light, non-standard Higgs bosons at hadron colliders. In doing this, we demonstrate that the former expressions derived for the analysis of the double penguin contributions in the Kaon sector need to be corrected by additional terms for a realistic analysis of these effects. We also study a specific non-minimal flavor violating scenario, where there are flavor changing gluino-squark-quark interactions, governed by the CKM matrix elements, and show that the B and Higgs physics constraints are similar to the ones in the minimal flavor violating case. Finally we show that, in scenarios like electroweak baryogenesis which have light stops and charginos, there may be enhanced effects on the B and K mixing parameters, without any significant effect on the rate of B{sub s} {yields} {mu}{sup +}{mu}{sup -}.

Carena, Marcela; /Fermilab; Menon, A.; /Argonne /Chicago U., EFI; Noriega-Papaqui, R.; /Fermilab /Puebla U., Inst. Fis.; Szynkman, A.; /Fermilab /Montreal U. /La Plata U.; Wagner, C.E.M.; /Argonne /Chicago U., EFI

2006-03-01T23:59:59.000Z

364

A Bayesian approach to comparing theoretic models to observational data: A case study from solar flare physics  

E-Print Network (OSTI)

Solar flares are large-scale releases of energy in the solar atmosphere, which are characterized by rapid changes in the hydrodynamic properties of plasma from the photosphere to the corona. Solar physicists have typically attempted to understand these complex events using a combination of theoretical models and observational data. From a statistical perspective, there are many challenges associated with making accurate and statistically significant comparisons between theory and observations, due primarily to the large number of free parameters associated with physical models. This class of ill-posed statistical problem is ideally suited to Baysian methods. In this paper, the solar flare studied by Raftery et al. (2008) is reanalysed using a Baysian framework. This enables us to study the evolution of the flare's temperature, emission measure and energy loss in a statistically self-consistent manner. The Baysian-based techniques confirm that both conductive and non-thermal beam heating play important roles i...

Adamakis, S; Walsh, R W; Gallagher, P T

2011-01-01T23:59:59.000Z

365

PARKER-HEADGATE ROCK & PARKER-GILA  

NLE Websites -- All DOE Office Websites (Extended Search)

PARKER-HEADGATE ROCK & PARKER-GILA 161-kV TRANSMISSION LINE Cross Arm Repair and Helicopter Staging Areas Figure 1. Project Location Project Location j PARKER-HEADGATE ROCK &...

366

Nonlinear pressure and temperature waves propagation in fluid-saturated rocks  

Science Conference Proceedings (OSTI)

A numerical study for the simulation of rock deformation due to nonlinear temperature and pressure waves in fluid saturated porous rock is presented. The problem of an homogeneous, thermoelastic, and isotropic fluid-saturated matrix, lying over an aquifer ... Keywords: Fluid dynamics, Geothermics, Nonlinear model, Quasi-Newton solver

M. De' Michieli Vitturi; F. Beux

2005-10-01T23:59:59.000Z

367

Deriving the shape factor of a fractured rock matrix  

SciTech Connect

Fluid flow from a fractured rock matrix was investigated for accurately predicting oil recovery from fractured reservoirs. To relate the oil rate with rock geometry and average rock matrix pressure, a shape factor is used in the mathematical model of fractured reservoirs. The shape factor in the transfer function was derived by solving the three-dimensional diffusivity equation of a rock matrix block under unsteady-state production, in contrast to the quasi-steady-state condition assumed by most previous studies denoted in the literature. The diffusivity equation in the x, y, and z coordinate was solved in four cases by assuming different boundary conditions of (1) constant fracture pressure; (2) constant flow rate; (3) constant fracture pressure followed by linearly declining fracture pressure; and (4) linearly declining fracture pressure followed by constant fracture pressure. Shape factor values are high at the initial depletion stage under an unsteady-state condition. When the fracture pressure is constant, the shape factor converges to {pi}{sup 2}/L{sup 2}, 2{pi}{sup 2}/L{sup 2}, and 3{pi}{sup 2}/L{sup 2} for one-, two-, and three-dimensional rock matrix, respectively, at the dimensionless time ({tau}) of about 0.1. When the flow rate between the rock matrix and the fracture is constant, the fracture pressure varies with location on the rock surface. Based on the average fracture pressure, the shape factor decreases with production time until a {tau} value of 0.1 is reached. The boundary conditions of constant fracture pressure followed by a constant decline in fracture pressure are equivalent to the condition of a constant fracture pressure followed by a period of constant flow rate.

Chang, Ming-Ming

1993-09-01T23:59:59.000Z

368

Rock bed storage with heat pump. Final report  

SciTech Connect

The study, Rock Bed Storage with Heat Pump, established the feasibility of mating a heat pump to a rock bed storage to effect optimal performance at the lowest cost in single family residences. The operating characteristics of off-the-shelf components of heat pump/rock bed storage systems were studied, and the results were used to formulate configurations of representative systems. These systems were modeled and subsequently analyzed using the TRNSYS computer program and a life cycle cost analysis program called LCCA. A detailed load model of a baseline house was formulated as part of the TRNSYS analysis. Results of the analysis involved the development of a technique to confine the range of heat pump/rock bed storage systems to those systems which are economical for a specific location and set of economic conditions. Additionally, the results included a comparison of the detailed load model with simple UA models such as the ASHRAE bin method. Several modifications and additions were made to the TRNSYS and LCCA computer programs during the course of the study.

Remmers, H.E.; Mills, G.L.

1979-05-01T23:59:59.000Z

369

Rock mass response to the decline in underground coal mining  

SciTech Connect

Geomechanical problems of mining in the Ostrava-Karvina Coal Basin were studied on the basis of longterm experience gained from seismological observations. They could serve as reasonable models of rock-mass response to temporary reduction and gradual decline in mining activities and mine closure.

Holub, K. [Academy of Science in Czech Republic, Prague (Czech Republic)

2006-01-15T23:59:59.000Z

370

Physically realistic homology models built with ROSETTA can be more accurate than their templates  

E-Print Network (OSTI)

structure-based and sequence-based alignments for each of the test cases. All atoms, including hydro- gens of biological systems. Large-scale genomic sequenc- ing efforts are providing increasing numbers of sequences, but the number of experimentally determined structures remains small by comparison. The goal of homology modeling

Baker, David

371

Physically-based models of low-power wireless links using signal power simulation  

Science Conference Proceedings (OSTI)

We propose deriving wireless simulation models from experimental traces of radio signal strength. Because experimental traces have holes due to packet losses, we explore two algorithms for filling the gaps in lossy experimental traces. Using completed ... Keywords: Burstiness, Low-power wireless networks, Sensor networks, Signal strength, Wireless link simulation

Tal Rusak; Philip Levis

2010-03-01T23:59:59.000Z

372

Ground movements due to excavation in clay: physical and analytical models  

E-Print Network (OSTI)

-22 CHAPTER 7 CONCLUSIONS AND FUTURE DEVELOPMENTS 7.1 Introduction 7-1 7.2 Achievements 7-2 7.2.1 Development of a novel technique for deep excavation in centrifuge 7-2 7.2.2 Observations from small scale centrifuge model tests...

Lam, Sze Yue

2010-11-16T23:59:59.000Z

373

Searching for particle physics beyond the standard model at the LHC and elsewhere  

SciTech Connect

Following a general introduction to open questions beyond the Standard Model, the prospects for addressing them in the new era opened up by the LHC are reviewed. Sample highlights are given of ways in which the LHC is already probing beyond previous experiments, including the searches for supersymmetry, quark and gluon substructure and microscopic black holes.

Ellis, John [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); King's College London, Department of Physics, Strand, London WC2R 2LS (United Kingdom)

2012-06-20T23:59:59.000Z

374

Modification of the Physics and Numerics in a Third-Generation Ocean Wave Model  

Science Conference Proceedings (OSTI)

The ocean wave model WAM was recently upgraded to improve the coupling between the sea state and the air flow and, in particular, enhance the growth of young wind sea over that of old wind sea. Prior to this change, numerous validations of the ...

Leslie C. Bender

1996-06-01T23:59:59.000Z

375

Hot Dry Rock Overview at Los Alamos  

DOE Green Energy (OSTI)

The Hot Dry Rock (HDR) geothermal energy program is a renewable energy program that can contribute significantly to the nation's balanced and diversified energy mix. Having extracted energy from the first Fenton Hill HDR reservoir for about 400 days, and from the second reservoir for 30 days in a preliminary test, Los Alamos is focusing on the Long Term Flow Test and reservoir studies. Current budget limitations have slowed preparations thus delaying the start date of that test. The test is planned to gather data for more definitive reservoir modeling with energy availability or reservoir lifetime of primary interest. Other salient information will address geochemistry and tracer studies, microseismic response, water requirements and flow impedance which relates directly to pumping power requirements. During this year of ''preparation'' we have made progress in modeling studies, in chemically reactive tracer techniques, in improvements in acoustic or microseismic event analysis.

Berger, Michael; Hendron, Robert H.

1989-03-21T23:59:59.000Z

376

Los Alamos hot dry rock geothermal energy experiment  

DOE Green Energy (OSTI)

Recent heat flow data indicates that about 95,000 sq. mi. in 13 western U.S. states is underlain, at a depth of 5 km (16,400 ft) by hot dry rock at temperatures above 290/sup 0/C (440/sup 0/F.). Therefore a geothermal energy development program was undertaken to develop methods from extracting thermal energy from hot rock in the earth crust by man-made underground circulation systems; demonstrate the commercial feasibility of such systems; and encourage use of this technology. Experiments performed on the Jemez Plateau in New Mexico are described with information on the drilling of boreholes, hydraulic fracturing of hot rocks, well logging, and environmental monitoring to establish base line data and define the potential effects of the project. The technical achievements of the project include boreholes were drilled to 3k (10,000 ft) with bottomhole temperatures of approximately 200/sup 0/C (390/sup 0/F); hydraulic fracturing produced fractured regions with 150 m (500 ft) radii; at least 90 percent of the water injected was recovered; and data was obtained on geologic conditions, seismic effects, and thermal, fracturing, and chemical properties of the downhole rocks. A geothermal power-production system model was formulated for evaluating the total cost of developing power production using a hot-dry-rock geothermal energy source. (LCL)

Pettitt, R.A.

1976-01-01T23:59:59.000Z

377

Modeling and simulation for cyber-physical system security research, development and applications.  

SciTech Connect

This paper describes a new hybrid modeling and simulation architecture developed at Sandia for understanding and developing protections against and mitigations for cyber threats upon control systems. It first outlines the challenges to PCS security that can be addressed using these technologies. The paper then describes Virtual Control System Environments (VCSE) that use this approach and briefly discusses security research that Sandia has performed using VCSE. It closes with recommendations to the control systems security community for applying this valuable technology.

Pollock, Guylaine M.; Atkins, William Dee; Schwartz, Moses Daniel; Chavez, Adrian R.; Urrea, Jorge Mario; Pattengale, Nicholas; McDonald, Michael James; Cassidy, Regis H.; Halbgewachs, Ronald D.; Richardson, Bryan T.; Mulder, John C.

2010-02-01T23:59:59.000Z

378

Flavor Physics in the Randall-Sundrum Model: I. Theoretical Setup and Electroweak Precision Tests  

E-Print Network (OSTI)

A complete discussion of tree-level flavor-changing effects in the Randall-Sundrum (RS) model with brane-localized Higgs sector and bulk gauge and matter fields is presented. The bulk equations of motion for the gauge and fermion fields, supplemented by boundary conditions taking into account the couplings to the Higgs sector, are solved exactly. For gauge fields the Kaluza-Klein (KK) decomposition is performed in a covariant R_xi gauge. For fermions the mixing between different generations is included in a completely general way. The hierarchies observed in the fermion spectrum and the quark mixing matrix are explained naturally in terms of anarchic five-dimensional Yukawa matrices and wave-function overlap integrals. Detailed studies of the flavor-changing couplings of the Higgs boson and of gauge bosons and their KK excitations are performed, including in particular the couplings of the standard W and Z bosons. A careful analysis of electroweak precision observables including the S and T parameters and the Zbb couplings shows that the simplest RS model containing only Standard Model particles and their KK excitations is consistent with all experimental bounds for a KK scale as low as a few TeV, if one allows for a heavy Higgs boson and/or for an ultra-violet cutoff below the Planck scale. The study of flavor-changing effects includes analyses of the non-unitarity of the quark mixing matrix, anomalous right-handed couplings of the W bosons, tree-level flavor-changing neutral current couplings of the Z and Higgs bosons, the rare decays t-->c(u)+Z and t-->c(u)+h, and the flavor mixing among KK fermions. The results obtained in this work form the basis for general calculations of flavor-changing processes in the RS model and its extensions.

S. Casagrande; F. Goertz; U. Haisch; M. Neubert; T. Pfoh

2008-07-31T23:59:59.000Z

379

LASL Hot Dry Rock Geothermal Project. Progress report, July 1, 1975--June 30, 1976  

DOE Green Energy (OSTI)

Successful drilling into hard crystalline rock was accomplished to depths of about 3 km. Hydraulic fractures in the crystalline rock with radii as large as 150 m were produced. Values of in situ permeability of the Fenton Hill granite were measured. Directional drilling at depths of up to 3 km was accomplished. At least 90 to 95 percent of water injected into fractured regions was recovered. A connection was established between two deep boreholes through a fractured region of hot granite for the first time. Instruments were developed to operate for several hours under the downhole conditions. The compressional and shear components of seismic signals produced by fracture extension and inflation were detected downholes. Acoustic ranging has generally identified the relative positions of two boreholes at several depths. Self-potential and induced potential techniques have determined vertical fracture lengths at the borehole. Pressure-flow and fluid residence time distribution studies have measured properties of the downhole system. Core sample studies have provided physical and chemical data. Techniques were developed to examine reservoir performance. A geothermal power-production model was formulated. (MHR)

Blair, A.G.; Tester, J.W.; Mortensen, J.J. (comps.)

1976-10-01T23:59:59.000Z

380

Fluid-rock interaction: A reactive transport approach  

SciTech Connect

Fluid-rock interaction (or water-rock interaction, as it was more commonly known) is a subject that has evolved considerably in its scope over the years. Initially its focus was primarily on interactions between subsurface fluids of various temperatures and mostly crystalline rocks, but the scope has broadened now to include fluid interaction with all forms of subsurface materials, whether they are unconsolidated or crystalline ('fluid-solid interaction' is perhaps less euphonious). Disciplines that previously carried their own distinct names, for example, basin diagenesis, early diagenesis, metamorphic petrology, reactive contaminant transport, chemical weathering, are now considered to fall under the broader rubric of fluid-rock interaction, although certainly some of the key research questions differ depending on the environment considered. Beyond the broadening of the environments considered in the study of fluid-rock interaction, the discipline has evolved in perhaps an even more important way. The study of water-rock interaction began by focusing on geochemical interactions in the absence of transport processes, although a few notable exceptions exist (Thompson 1959; Weare et al. 1976). Moreover, these analyses began by adopting a primarily thermodynamic approach, with the implicit or explicit assumption of equilibrium between the fluid and rock. As a result, these early models were fundamentally static rather than dynamic in nature. This all changed with the seminal papers by Helgeson and his co-workers (Helgeson 1968; Helgeson et al. 1969) wherein the concept of an irreversible reaction path was formally introduced into the geochemical literature. In addition to treating the reaction network as a dynamically evolving system, the Helgeson studies introduced an approach that allowed for the consideration of a multicomponent geochemical system, with multiple minerals and species appearing as both reactants and products, at least one of which could be irreversible. Helgeson's pioneering approach was given a more formal kinetic basis (including the introduction of real time rather than reaction progress as the independent variable) in subsequent studies (Lasaga 1981; Aagaard and Helgeson 1982; Lasaga 1984). The reaction path approach can be used to describe chemical processes in a batch or closed system (e.g., a laboratory beaker), but such systems are of limited interest in the Earth sciences where the driving force for most reactions is transport. Lichtner (1988) clarified the application of the reaction path models to water-rock interaction involving transport by demonstrating that they could be used to describe pure advective transport through porous media. By adopting a reference frame which followed the fluid packet as it moved through the medium, the reaction progress variable could be thought of as travel time instead. Multi-component reactive transport models that could treat any combination of transport and biogeochemical processes date back to the early 1980s. Berner and his students applied continuum reactive transport models to describe processes taking place during the early diagenesis of marine sediments (Berner 1980). Lichtner (1985) outlined much of the basic theory for a continuum model for multicomponent reactive transport. Yeh and Tripathi (1989) also presented the theoretical and numerical basis for the treatment of reactive contaminant transport. Steefel and Lasaga (1994) presented a reactive flow and transport model for nonisothermal, kinetically-controlled water-rock interaction and fracture sealing in hydrothermal systems based on simultaneous numerical solution of both reaction and transport This chapter begins with a review of the important transport processes that affect or even control fluid-rock interaction. This is followed by a general introduction to the governing equations for reactive transport, which are broadly applicable to both qualitative and quantitative interpretations of fluid-rock interactions. This framework is expanded through a discussion of specific topics that are the f

Steefel, C.; Maher, K.

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Physical test of a particle simulation model in a sheared granular system  

SciTech Connect

We report a detailed comparison of a slow gravity driven sheared granular flow with a computational model performed with the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). To our knowledge, this is the first thorough test of the LAMMPS model with a laboratory granular flow. In the experiments, grains flow inside a silo with a rectangular cross-section, and are sheared by a rough boundary on one side and smooth boundaries on the other sides. Individual grain position and motion are measured using a particle index matching imaging technique where a fluorescent dye is added to the interstitial liquid which has the same refractive index as the glass beads. The boundary imposes a packing order, and the grains are observed to flow in layers which get progressively more disordered with distance from the walls. The computations use a Cundall--Strack contact model between the grains, using contact parameters that have been used in many other previous studies, and ignore the hydrodynamic effects of the interstitial liquid. Computations are performed to understand the effect of particle coefficient of friction, elasticity, contact model, and polydispersity on mean flow properties. After appropriate scaling, we find that the mean velocity of the grains and the number density as a function of flow cross-section observed in the experiments and the simulations are in excellent agreement. The mean flow profile is observed to be unchanged over a broad range of coefficient of friction, except near the smooth wall. We show that the flow profile is not sensitive to atleast 10\\percent polydispersity in particle size. Because the grain elasticity used is smaller in the computations as compared with glass grains, wave-like features can be noted over short time scales in the mean velocity and the velocity auto-correlations measured in the simulations. These wave features occur over an intermediate timescale larger than the particle interaction but smaller than the timescale of the macroscopic flow features. The wave features become more prominent as grain elasticity is further reduced. We then perform a detailed comparison of the particle fluctuation properties as measured by the displacement probability distribution function and the mean square displacement. Excellent agreement is observed over a time interval over which particles can be tracked effectively in the experiments. Using the longer tracking intervals possible in the simulations, we find that the diffusion inthe layers is greater in the flow direction, than in the perpendicular direction. Further signatures of confinement and hopping between layers is observed. All in all, our study provides strong support for the LAMMPS model of granular flow, and further supports the hypothesis that the interstitial liquid has negligible effects on granular fluctuations provided the flow is slow.

Rycroft, Chris; Orpe, Ashish; Kudrolli, Arshad

2009-01-15T23:59:59.000Z

382

Hot dry rock energy project  

DOE Green Energy (OSTI)

A proof-of-concept experimental project by the Los Alamos Scientific Laboratory endeavors to establish the feasibility of exploitation of the thermal energy contained in the earth's crust where such energy and a transporting fluid have not been juxtaposed in nature. A region of high heat flow and apparently unfaulted basement rock formation was selected. Two boreholes, drilled to a total depth of about 3 km (10,000 ft) and penetrating about 2.5 km (7500 ft) into the Precambrian formation, to a rock temperature of 200/sup 0/C, have been connected at depth by a hydraulically fractured zone to form the heat extraction surface. Energy was extracted at a rate of 3.2 MW(t) with water temperature of 132/sup 0/C during a 96-h preliminary circulating test run performed late in September 1977. This paper traces the progress of the project, summarizes procedures and salient events, and references detailed reports and specialized topics.

Hendron, R.H.

1977-01-01T23:59:59.000Z

383

ON THE TRANSITIONAL DISK CLASS: LINKING OBSERVATIONS OF T TAURI STARS AND PHYSICAL DISK MODELS  

Science Conference Proceedings (OSTI)

Two decades ago 'transitional disks' (TDs) described spectral energy distributions (SEDs) of T Tauri stars with small near-IR excesses, but significant mid- and far-IR excesses. Many inferred this indicated dust-free holes in disks possibly cleared by planets. Recently, this term has been applied disparately to objects whose Spitzer SEDs diverge from the expectations for a typical full disk (FD). Here, we use irradiated accretion disk models to fit the SEDs of 15 such disks in NGC 2068 and IC 348. One group has a 'dip' in infrared emission while the others' continuum emission decreases steadily at all wavelengths. We find that the former have an inner disk hole or gap at intermediate radii in the disk and we call these objects 'transitional disks' and 'pre-transitional disks' (PTDs), respectively. For the latter group, we can fit these SEDs with FD models and find that millimeter data are necessary to break the degeneracy between dust settling and disk mass. We suggest that the term 'transitional' only be applied to objects that display evidence for a radical change in the disk's radial structure. Using this definition, we find that TDs and PTDs tend to have lower mass accretion rates than FDs and that TDs have lower accretion rates than PTDs. These reduced accretion rates onto the star could be linked to forming planets. Future observations of TDs and PTDs will allow us to better quantify the signatures of planet formation in young disks.

Espaillat, C.; Andrews, S.; Qi, C.; Wilner, D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-78, Cambridge, MA 02138 (United States); Ingleby, L.; Calvet, N. [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Hernandez, J. [Centro de Investigaciones de Astronomia (CIDA), Merida 5101-A (Venezuela, Bolivarian Republic of); Furlan, E. [National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719 (United States); D'Alessio, P. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, 58089 Morelia, Michoacan (Mexico); Muzerolle, J., E-mail: cespaillat@cfa.harvard.edu, E-mail: sandrews@cfa.harvard.edu, E-mail: cqi@cfa.harvard.edu, E-mail: dwilner@cfa.harvard.edu, E-mail: lingleby@umich.edu, E-mail: ncalvet@umich.edu, E-mail: jesush@cida.ve, E-mail: Elise.Furlan@jpl.nasa.gov, E-mail: p.dalessio@crya.unam.mx, E-mail: muzerol@stsci.edu [Space Telescope Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

2012-03-10T23:59:59.000Z

384

Modeling of Some Physical Properties of Zirconium Alloys for Nuclear Applications in Support of UFD Campaign  

SciTech Connect

Zirconium-based alloys Zircaloy-2 and Zircaloy-4 are widely used in the nuclear industry as cladding materials for light water reactor (LWR) fuels. These materials display a very good combination of properties such as low neutron absorption, creep behavior, stress-corrosion cracking resistance, reduced hydrogen uptake, corrosion and/or oxidation, especially in the case of Zircaloy-4. However, over the last couple of years, in the post-Fukushima Daiichi world, energetic efforts have been undertaken to improve fuel clad oxidation resistance during off-normal temperature excursions. Efforts have also been made to improve upon the already achieved levels of mechanical behavior and reduce hydrogen uptake. In order to facilitate the development of such novel materials, it is very important to achieve not only engineering control, but also a scientific understanding of the underlying material degradation mechanisms, both in working conditions and in storage of used nuclear fuel. This report strives to contribute to these efforts by constructing the thermodynamic models of both alloys; constructing of the respective phase diagrams, and oxidation mechanisms. A special emphasis was placed upon the role of zirconium suboxides in hydrogen uptake reduction and the atomic mechanisms of oxidation. To that end, computational thermodynamics calculations were conducted concurrently with first-principles atomistic modeling.

Michael V. Glazoff

2013-08-01T23:59:59.000Z

385

Physics and modeling of thermal flow and soil mechanics in unconsolidated porous media  

SciTech Connect

This paper describes a new formulation of nonlinear soil mechanics and multiphase thermal flow. The nonlinearites of the soil behavior and their interactions with fluid flow causing shear failure of the soil are the dominant features of the process. The numerical formulation of the coupled flow/stress solution model includes nonlinear compressibility and flow properties as functions of pressure, stress, and temperature; nonlinear, incremental, thermal poroelastic stress analysis; and shear or tensile failure and its effects on transport properties, porosity, and stress. An efficient sequential numerical scheme was developed. It is mass conservative and applicable to external coupling of existing simulators. The 1D examples show some startling new features of reservoir mechanics in unconsolidated media.

Settari, A. (Simtech Consulting Services Ltd. (US))

1992-02-01T23:59:59.000Z

386

Probing new physics with flavor physics (and probing flavor physics with new physics)  

E-Print Network (OSTI)

This is a written version of a series of lectures aimed at graduate students and postdoctoral fellows in particle theory/string theory/particle experiment familiar with the basics of the Standard Model. We begin with an overview of flavor physics and its implications for new physics. We emphasize the "new physics flavor puzzle". Then, we give four specific examples of flavor measurements and the lessons that have been (or can be) drawn from them: (i) Charm physics: lessons for supersymmetry from the upper bound on $\\Delta m_D$. (ii) Bottom physics: model independent lessons on the KM mechanism and on new physics in neutral B mixing from $S_{\\psi K_S}$. (iii) Top physics and beyond: testing minimal flavor violation at the LHC. (iv) Neutrino physics: interpreting the data on neutrino masses and mixing within flavor models.

Yosef Nir

2007-08-14T23:59:59.000Z

387

Development Status of the PEBBLES Code for Pebble Mechanics: Improved Physical Models and Speed-up  

SciTech Connect

PEBBLES is a code for simulating the motion of all the pebbles in a pebble bed reactor. Since pebble bed reactors are packed randomly and not precisely placed, the location of the fuel elements in the reactor is not deterministically known. Instead, when determining operating parameters the motion of the pebbles can be simulated and stochastic locations can be found. The PEBBLES code can output information relevant for other simulations of the pebble bed reactors such as the positions of the pebbles in the reactor, packing fraction change in an earthquake, and velocity profiles created by recirculation. The goal for this level three milestone was to speedup the PEBBLES code through implementation on massively parallel computer. Work on this goal has resulted in speeding up both the single processor version and creation of a new parallel version of PEBBLES. Both the single processor version and the parallel running capability of the PEBBLES code have improved since the fiscal year start. The hybrid MPI/OpenMP PEBBLES version was created this year to run on the increasingly common cluster hardware profile that combines nodes with multiple processors that share memory and a cluster of nodes that are networked together. The OpenMP portions use the Open Multi-Processing shared memory parallel processing model to split the task across processors in a single node that shares memory. The Message Passing Interface (MPI) portion uses messages to communicate between different nodes over a network. The following are wall clock speed up for simulating an NGNP-600 sized reactor. The single processor version runs 1.5 times faster compared to the single processor version at the beginning of the fiscal year. This speedup is primarily due to the improved static friction model described in the report. When running on 64 processors, the new MPI/OpenMP hybrid version has a wall clock speed up of 22 times compared to the current single processor version. When using 88 processors, a speed up of 23 times is achieved. This speedup and other improvements of PEBBLES combine to make PEBBLES more capable and more useful for simulation of a pebble bed reactor. This report details the implementation and effects of the speedup work done over the course of the fiscal year.

Joshua J. Cogliati; Abderrafi M. Ougouag

2009-12-01T23:59:59.000Z

388

Development Status of the PEBBLES Code for Pebble Mechanics: Improved Physical Models and Speed-up  

DOE Green Energy (OSTI)

PEBBLES is a code for simulating the motion of all the pebbles in a pebble bed reactor. Since pebble bed reactors are packed randomly and not precisely placed, the location of the fuel elements in the reactor is not deterministically known. Instead, when determining operating parameters the motion of the pebbles can be simulated and stochastic locations can be found. The PEBBLES code can output information relevant for other simulations of the pebble bed reactors such as the positions of the pebbles in the reactor, packing fraction change in an earthquake, and velocity profiles created by recirculation. The goal for this level three milestone was to speedup the PEBBLES code through implementation on massively parallel computer. Work on this goal has resulted in speeding up both the single processor version and creation of a new parallel version of PEBBLES. Both the single processor version and the parallel running capability of the PEBBLES code have improved since the fiscal year start. The hybrid MPI/OpenMP PEBBLES version was created this year to run on the increasingly common cluster hardware profile that combines nodes with multiple processors that share memory and a cluster of nodes that are networked together. The OpenMP portions use the Open Multi-Processing shared memory parallel processing model to split the task across processors in a single node that shares memory. The Message Passing Interface (MPI) portion uses messages to communicate between different nodes over a network. The following are wall clock speed up for simulating an NGNP-600 sized reactor. The single processor version runs 1.5 times faster compared to the single processor version at the beginning of the fiscal year. This speedup is primarily due to the improved static friction model described in the report. When running on 64 processors, the new MPI/OpenMP hybrid version has a wall clock speed up of 22 times compared to the current single processor version. When using 88 processors, a speed up of 23 times is achieved. This speedup and other improvements of PEBBLES combine to make PEBBLES more capable and more useful for simulation of a pebble bed reactor. This report details the implementation and effects of the speedup work done over the course of the fiscal year.

Joshua J. Cogliati; Abderrafi M. Ougouag

2009-09-01T23:59:59.000Z

389

1/12-scale physical modeling experiments in support of tank 241-SY- 101 hydrogen mitigation  

DOE Green Energy (OSTI)

Hanford tank 241-SY-101 is a 75-ft-dia double-shell tank that contains approximately 1.1 M gal of radioactive fuel reprocessing waste. Core samples have shown that the tank contents are separated into two main layers, a article laden supernatant liquid at the top of the tank and a more dense slurry on the bottom. Two additional layers may be present, one being a potentially thick sludge lying beneath the slurry at the bottom of the tank and the other being the crust that has formed on the surface of the supernatant liquid. The supernatant is more commonly referred to as the convective layer and the slurry as the non-convective layer. Accumulation of gas (partly hydrogen) in the non-convective layer is suspected to be the key mechanism behind the gas burp phenomena, and several mitigation schemes are being developed to encourage a more uniform gas release rate (Benegas 1992). To support the full-scale hydraulic mitigation test, scaled experiments were performed to satisfy two objectives: 1. provide an experimental database for numerical- model validation; 2. establish operating parameter values required to mobilize the settled solids and maintain the solids in suspension.

Fort, J.A.; Bamberger, J.A.; Bates, J.M.; Enderlin, C.W.; Elmore, M.R.

1993-01-01T23:59:59.000Z

390

High accuracy power spectra including baryonic physics in dynamical Dark Energy models  

E-Print Network (OSTI)

The next generation mass probes will obtain information on non--linear power spectra P(k,z) and their evolution, allowing us to investigate the nature of Dark Energy. To exploit such data we need high precision simulations, extending at least up to scales of k\\simeq 10 h^-1 Mpc, where the effects of baryons can no longer be neglected. In this paper, we present a series of large scale hydrodynamical simulations for LCDM and dynamical Dark Energy (dDE) models, in which the equation of state parameter is z-dependent. The simulations include gas cooling, star formation and Supernovae feedback. They closely approximate the observed star formation rate and the observationally derived star/Dark Matter mass ratio in collapsed systems. Baryon dynamics cause spectral shifts exceeding 1% at k > 2-3 hMpc^-1 compared to pure n-body simulations in the LCDM simulations. This agrees with previous studies, although we find a smaller effect (~50%) on the power spectrum amplitude at higher k's. dDE exhibits similar behavior, ev...

Casarini, Luciano; Bonometto, Silvio A; Stinson, Greg S

2010-01-01T23:59:59.000Z

391

Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters  

DOE Green Energy (OSTI)

This paper describes the modeling work by Makai Ocean Engineering, Inc. to simulate the biochemical effects of of the nutrient-enhanced seawater plumes that are discharged by one or several 100 megawatt OTEC plants. The modeling is needed to properly design OTEC plants that can operate sustainably with acceptably low biological impact. In order to quantify the effect of discharge configuration and phytoplankton response, Makai Ocean Engineering implemented a biological and physical model for the waters surrounding O`ahu, Hawai`i, using the EPA-approved Environmental Fluid Dynamics Code (EFDC). Each EFDC grid cell was approximately 1 square kilometer by 20 meters deep, and used a time step of three hours. The biological model was set up to simulate the biochemical response for three classes of organisms: Picoplankton (< 2 um) such as prochlorococccus, nanoplankton (2-20 um), and microplankton (> 20 um) e.g., diatoms. The dynamic biological phytoplankton model was calibrated using chemical and biological data collected for the Hawaii Ocean Time Series (HOTS) project. Peer review of the biological modeling was performed. The physical oceanography model uses boundary conditions from a surrounding Hawai'i Regional Ocean Model, (ROM) operated by the University of Hawai`i and the National Atmospheric and Oceanic Administration. The ROM provided tides, basin scale circulation, mesoscale variability, and atmospheric forcing into the edges of the EFDC computational domain. This model is the most accurate and sophisticated Hawai'ian Regional Ocean Model presently available, assimilating real-time oceanographic observations, as well as model calibration based upon temperature, current and salinity data collected during 2010 near the simulated OTEC site. The ROM program manager peer-reviewed Makai's implementation of the ROM output into our EFDC model. The supporting oceanographic data was collected for a Naval Facilities Engineering Command / Makai project. Results: The model was run for a 100 MW OTEC Plant consisting of four separate ducts, discharging a total combined flow rate of 420 m3/s of warm water and 320 m3/s of cold water in a mixed discharge at 70 meters deep. Each duct was assumed to have a discharge port diameter of 10.5m producing a downward discharge velocity of about 2.18 m/s. The natural system, as measured in the HOTS program, has an average concentration of 10-15 mgC/m3. To calibrate the biological model, we first ran the model with no OTEC plant and varied biological parameters until the simulated data was a good match to the HOTS observations. This modeling showed that phytoplankton concentration were patchy and highly dynamic. The patchiness was a good match with the data variability observed within the HOTS data sets. We then ran the model with simulated OTEC intake and discharge flows and associated nutrients. Directly under the OTEC plant, the near-field plume has an average terminal depth of 172 meters, with a volumetric dilution of 13:1. The average terminal plume temperature was 19.8oC. Nitrate concentrations are 1 to 2 umol/kg above ambient. The advecting plume then further dilutes to less than 1 umol/kg above ambient within a few kilometers downstream, while remaining at depth. Because this terminal near-field plume is well below the 1% light limited depths (~120m), no immediate biological utilization of the nutrients occurs. As the nitrate is advected and dispersed downstream, a fraction of the deep ocean nutrients (< 0.5 umol/kg perturbation) mix upward where they are utilized by the ambient phytoplankton population. This occurs approximately twenty-five kilometers downstream from the plant at 110 - 70 meters depth. For pico-phytoplankton, modeling results indicate that this nutrient perturbation causes a phytoplankton perturbation of approximately 1 mgC/m3 (~10% of average ambient concentrations) that covers an area 10x5 km in size at the 70 to 90m depth. Thus, the perturbations are well within the natural variability of the system, generally corresponding to a 10 to 15% increase above the a

PAT GRANDELLI, P.E.; GREG ROCHELEAU; JOHN HAMRICK, Ph.D.; MATT CHURCH, Ph.D.; BRIAN POWELL, Ph.D.

2012-09-29T23:59:59.000Z

392

Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters  

Science Conference Proceedings (OSTI)

This paper describes the modeling work by Makai Ocean Engineering, Inc. to simulate the biochemical effects of of the nutrient-enhanced seawater plumes that are discharged by one or several 100 megawatt OTEC plants. The modeling is needed to properly design OTEC plants that can operate sustainably with acceptably low biological impact. In order to quantify the effect of discharge configuration and phytoplankton response, Makai Ocean Engineering implemented a biological and physical model for the waters surrounding O`ahu, Hawai`i, using the EPA-approved Environmental Fluid Dynamics Code (EFDC). Each EFDC grid cell was approximately 1 square kilometer by 20 meters deep, and used a time step of three hours. The biological model was set up to simulate the biochemical response for three classes of organisms: Picoplankton ( 20 um) e.g., diatoms. The dynamic biological phytoplankton model was calibrated using chemical and biological data collected for the Hawaii Ocean Time Series (HOTS) project. Peer review of the biological modeling was performed. The physical oceanography model uses boundary conditions from a surrounding Hawai'i Regional Ocean Model, (ROM) operated by the University of Hawai`i and the National Atmospheric and Oceanic Administration. The ROM provided tides, basin scale circulation, mesoscale variability, and atmospheric forcing into the edges of the EFDC computational domain. This model is the most accurate and sophisticated Hawai'ian Regional Ocean Model presently available, assimilating real-time oceanographic observations, as well as model calibration based upon temperature, current and salinity data collected during 2010 near the simulated OTEC site. The ROM program manager peer-reviewed Makai's implementation of the ROM output into our EFDC model. The supporting oceanographic data was collected for a Naval Facilities Engineering Command / Makai project. Results: The model was run for a 100 MW OTEC Plant consisting of four separate ducts, discharging a total combined flow rate of 420 m3/s of warm water and 320 m3/s of cold water in a mixed discharge at 70 meters deep. Each duct was assumed to have a discharge port diameter of 10.5m producing a downward discharge velocity of about 2.18 m/s. The natural system, as measured in the HOTS program, has an average concentration of 10-15 mgC/m3. To calibrate the biological model, we first ran the model with no OTEC plant and varied biological parameters until the simulated data was a good match to the HOTS observations. This modeling showed that phytoplankton concentration were patchy and highly dynamic. The patchiness was a good match with the data variability observed within the HOTS data sets. We then ran the model with simulated OTEC intake and discharge flows and associated nutrients. Directly under the OTEC plant, the near-field plume has an average terminal depth of 172 meters, with a volumetric dilution of 13:1. The average terminal plume temperature was 19.8oC. Nitrate concentrations are 1 to 2 umol/kg above ambient. The advecting plume then further dilutes to less than 1 umol/kg above ambient within a few kilometers downstream, while remaining at depth. Because this terminal near-field plume is well below the 1% light limited depths (~120m), no immediate biological utilization of the nutrients occurs. As the nitrate is advected and dispersed downstream, a fraction of the deep ocean nutrients (< 0.5 umol/kg perturbation) mix upward where they are utilized by the ambient phytoplankton population. This occurs approximately twenty-five kilometers downstream from the plant at 110 - 70 meters depth. For pico-phytoplankton, modeling results indicate that this nutrient perturbation causes a phytoplankton perturbation of approximately 1 mgC/m3 (~10% of average ambient concentrations) that covers an area 10x5 km in size at the 70 to 90m depth. Thus, the perturbations are well within the natural variability of the system, generally corresponding to a 10 to 15% increase above the a

PAT GRANDELLI, P.E.; GREG ROCHELEAU; JOHN HAMRICK, Ph.D.; MATT CHURCH, Ph.D.; BRIAN POWELL, Ph.D.

2012-09-29T23:59:59.000Z

393

Physics Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Find people (by last name) Go Advanced search Physics Home High Energy & Nuclear Physics Directorate Research Current Research Areas BNL Physics Timeline Administrative...

394

BABAR Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics A BABAR event display. BABAR physics results span a broad range of topics, including B, charm, and tau physics; CP violation; precision CKM measurements; charmonium and...

395

painless physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Division Head RF August 30, 1996 By Pat Colestock, Accelerator Division FIXED TARGET PHYSICS September 20, 1996 By Peter H. Garbincius, Physics Section FIXED TARGET PHYSICS PART...

396

Fluid Migration During Ice/Rock Planetesimal Differentiation  

E-Print Network (OSTI)

Much speculation on extraterrestrial life has focused on finding environments where water is present. Heating of smaller icy bodies may create and sustain a possible liquid layer below the surface. If liquid water was sustained for geologically significant times (> 108 years) within the ubiquitous small bodies in the outer solar system, the opportunities for development of simple life are much greater. The lifetime of the liquid water layer will depend on several factors, including the rate of rock/water reaction, which will depend on the rate at which water can be segregated from a melting ice/rock core. For the liquid water phase to migrate toward the surface, the denser rock phase must compact. The primary question that this thesis will answer is how fast melt water can segregate from the core of an ice-rich planetesimal. To answer this question we treat the core as two phase flow problem: a compacting viscous “solid” (ice/rock mixture) and a segregating liquid (melt water). The model developed here is based on the approach derived to study a different partially molten solid: in the viscously deforming partially molten upper mantle. We model a planetesimal core that initially a uniform equal mixture of solid ice and rock. We assume chondritic levels of radiogenic heating as the only heat source, and numerically solve for the evolution of solid and melt velocities and the distribution of melt fraction (“porosity”) during the first few million years after accretion. From a suite of numerical models, we have determined that the meltwater is segregated out of the core as fast as it is created, except in the case of very fast melting times (0.75 My vs. 0.62 My), and small ore radius (~25 to 150 km, depending on the viscosity of the ice/rock mixture in the solid core). In these latter cases, segregation is slower than migration and a high water fraction develops in the core. Heat released by water-rock reactions (not included in this model) will tend to drive up melting rates in all cases, which may favor this latter endmember.

Raney, Robert 1987-

2012-12-01T23:59:59.000Z

397

Numerical evaluation of effective unsaturated hydraulic properties for fractured rocks  

Science Conference Proceedings (OSTI)

To represent a heterogeneous unsaturated fractured rock by its homogeneous equivalent, Monte Carlo simulations are used to obtain upscaled (effective) flow properties. In this study, we present a numerical procedure for upscaling the van Genuchten parameters of unsaturated fractured rocks by conducting Monte Carlo simulations of the unsaturated flow in a domain under gravity-dominated regime. The simulation domain can be chosen as the scale of block size in the field-scale modeling. The effective conductivity is computed from the steady-state flux at the lower boundary and plotted as a function of the averaging pressure head or saturation over the domain. The scatter plot is then fitted using van Genuchten model and three parameters, i.e., the saturated conductivity K{sub s}, the air-entry parameter {alpha}, the pore-size distribution parameter n, corresponding to this model are considered as the effective K{sub s}, effective {alpha}, and effective n, respectively.

Lu, Zhiming [Los Alamos National Laboratory; Kwicklis, Edward M [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

398

LANL | Physics | High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring high energy physics Physics Division scientists and engineers investigate the field of high energy physics through experiments that strengthen our fundamental...

399

Determination of permeability of granitic rocks in GT-2 from hydraulic fracturing data  

DOE Green Energy (OSTI)

The Los Alamos Scientific Laboratory is currently conducting a study to determine the feasibility to extract geothermal energy from dry hot rock. The investigated concept calls for the creation of a hydraulic fracture in hot, impermeable rock. Heat will be exchanged subsequently at the fracture surface between the rock and a circulating fluid. The successful creation of hydraulic fractures in the granitic section of exploratory holes GT-1 and GT-2 yielded sufficient data to calculate the average permeability of the rock next to a fracture by means of the mathematical model. The calculated permeabilities were found to be in the microdarcy range and proved the granitic rock penetrated by GT-1 and GT-2 to be sufficiently impermeable to test the above concept. (auth)

Delisle, G.

1975-11-01T23:59:59.000Z

400

Nonclassical transport processes in geologic media: Review of field and laboratory observations and basic physical concepts  

Science Conference Proceedings (OSTI)

We present an overview of the problem of solute transport in unsaturated heterogeneous media. We first review field and laboratory observations that demonstrate nonclassical flow and transport behavior. The main physical principles causing anomalous transport regimes in fractured rock media are identified. The basic factors and physical concepts needed to describe anomalous transport in saturated and unsaturated fractured rock are discussed in detail.

Bolshov, L.; Kondratenko, P.; Pruess, K.; Semenov, V.

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Rock Energy Cooperative (Illinois) | Open Energy Information  

Open Energy Info (EERE)

Cooperative (Illinois) Jump to: navigation, search Name Rock Energy Cooperative Place Illinois Utility Id 16196 References EIA Form EIA-861 Final Data File for 2010 - File220101...

402

DOE hot dry rock program  

DOE Green Energy (OSTI)

Hydraulic fracturing has been used to create and subsequently to enlarge the first hot dry rock heat-extraction loop at Fenton Hill, New Mexico. Encouraging results prompted the DOE to expand this project into a program of national scope. The elements of that Program and their present status are discussed. Emphasis is given the ongoing Fenton Hill Project where techniques and information developed in the existing research system will soon be used to produce a multiply-fractured engineering system in hotter rock at the same site. Recent results from research loop operation and progress in constructing the engineering system are reported. Although acoustic mapping and system geometry indicate that the primary hydraulic fractures are essentially vertical, relatively low fracturing pressure and absence of a sharp breakdown suggest that at Fenton Hill fracture initiation occurs by reopening of old natural fractures rather than by initiation of new ones. Flow patterns and temperature behavior suggest opening of additional old fractures as the loop is operated. Except where the hot fluid leaves the crack system to enter the production well, flow impedances are very low without either artificial propping or inflation by pressurization.

Nunz, G.J.

1980-01-01T23:59:59.000Z

403

Schmid et al. Inclusion Behavior in Deforming Rocks Inclusion Behavior in Deforming Rocks  

E-Print Network (OSTI)

Schmid et al. Inclusion Behavior in Deforming Rocks Inclusion Behavior in Deforming Rocks Dani Podladchikov, PGP, University of Oslo, Norway Intro 1 #12;Schmid et al. Inclusion Behavior in Deforming Rocks Motivation 2 The single most useful thing to understand! #12;Schmid et al. Inclusion Behavior in Deforming

Cesare, Bernardo

404

On ENSO Physics  

Science Conference Proceedings (OSTI)

Two extended integrations of general circulation models (GCMs) are examined to determine the physical processes operating during an ENSO cycle. The first integration is from the Hamburg version of the ECMWF T21 atmospheric model forced with ...

T. P. Barnett; M. Latif; E. Kirk; E. Roeckner

1991-05-01T23:59:59.000Z

405

Observations and Modeling of Long Negative Laboratory Discharges: Identifying the Physics Important to an Electrical Spark in Air  

SciTech Connect

There are relatively few reports in the literature focusing on negative laboratory leaders. Most of the reports focus exclusively on the simpler positive laboratory leader that is more commonly encountered in high voltage engineering [Gorin et al., 1976; Les Renardieres Group, 1977; Gallimberti, 1979; Domens et al., 1994; Bazelyan and Raizer 1998]. The physics of the long, negative leader and its positive counterpart are similar; the two differ primarily in their extension mechanisms [Bazelyan and Raizer, 1998]. Long negative sparks extend primarily by an intermittent process termed a 'step' that requires the development of secondary leader channels separated in space from the primary leader channel. Long positive sparks typically extend continuously, although, under proper conditions, their extension can be temporarily halted and begun again, and this is sometimes viewed as a stepping process. However, it is emphasized that the nature of positive leader stepping is not like that of negative leader stepping. There are several key observational studies of the propagation of long, negative-polarity laboratory sparks in air that have aided in the understanding of the stepping mechanisms exhibited by such sparks [e.g., Gorin et al., 1976; Les Renardieres Group, 1981; Ortega et al., 1994; Reess et al., 1995; Bazelyan and Raizer, 1998; Gallimberti et al., 2002]. These reports are reviewed below in Section 2, with emphasis placed on the stepping mechanism (the space stem, pilot, and space leader). Then, in Section 3, reports pertaining to modeling of long negative leaders are summarized.

Biagi, C J; Uman, M A

2011-12-13T23:59:59.000Z

406

Developing physical surrogates for benthic biodiversity using co-located samples and regression tree models: a conceptual synthesis for a sandy temperate embayment  

Science Conference Proceedings (OSTI)

Marine physical and geochemical data can be valuable surrogates for predicting the distributions and assemblages of marine species. This study investigated the bio-environment surrogacy relationships in Jervis Bay, a sandy marine embayment in south-eastern ... Keywords: Jervis Bay, benthic biodiversity, conceptual model, surrogates

Zhi Huang; Matthew McArthur; Lynda Radke; Tara Anderson; Scott Nichol; Justy Siwabessy; Brendan Brooke

2012-11-01T23:59:59.000Z

407

ROCK DEFORMATION 2010 GORDON RESEARCH CONFERENCE, AUGUST 8-13, 2010  

DOE Green Energy (OSTI)

Creep in the crust and mantle is commonly considered a steady-state process. This view prevails despite the fact that earthquakes do not represent steady-state and at the base of the seismogenic zone, for example, the stresses that drive creep must vary with the earthquake cycle. The contribution of transient versus steady-state behavior is not easy to determine from naturally-deformed brittle or plastic rocks and our view of steady-state depends on whether we consider geological or shorter time-scales. Perhaps we avoid a non steady-state picture because we lack appropriate descriptive or quantitative tools. The aim of the 2010 Gordon Research Conference (GRC) in rock deformation is to explore what we know about non steady-state deformation and how we might advance our understanding through geological and geophysical field investigations, laboratory experiments and modeling. This will require an appraisal of the applicability of steady-state concepts as well as an exploration of transient behavior, in which processes and physical properties cycle between different states as might be the case during earthquake cycles, and transitions in behavior, where finite strain or changing environmental conditions lead to changes in processes and properties. Conference sessions will cover seven broad and interlinked topics. (1) What is steady state?; an appraisal of applicability of the steady-state concept in rock deformation. (2) Seismogenic Faulting and Brittle Fault Rocks; where transience in rates and conditions are accepted but not fully understood. (3) Episodic Creep During the Seismic Cycle; with a focus on processes in areas adjacent to the base of the seismogenic zone. (4) Creep in Zones of Stress and Temperature Cycling; considering deformation in real-world complex systems (5) Deformation, Metamorphism, and Fluids; exploring the interaction of diagenesis/metamorphism and thermal instabilities with deformation. (6) Mechanism and Microstructure Transitions During Deformation; quantifying evolution as a function of strain and associated with changes in deformation kinematics or conditions. (7) Mechanism and Microstructure Transitions Related to Mantle Geophysics; with a focus on the link between mechanisms affecting processes on geological time-scales on the time-scales associated with seismic wave propagation. The GRC on Rock Deformation aims to bring together researchers with diverse expertise, and to shape the scientific debate and provide inspiration for young researchers to fill the still extensive gaps in our knowledge of how the Earth deforms. The processes that will be discussed have wide applications in both basic and applied research. A key issue, of fundamental importance to our understanding of the Earth, for discussion at this meeting will be the transition from time-dependent (and distributed) rock deformation, including both high temperature creep and brittle creep, to episodic (and more localized) events. Such transitions have both a scientific and a socio-economic impact since they control the precursory phases of important geohazards such as earthquake rupture and volcanic eruptions, and also influence effective recovery of hydrocarbon and geothermal energy resources, and the integrity of long-term storage facilities for hazardous waste.

David Prior

2010-08-13T23:59:59.000Z

408

Optimizing neural network classifiers with ROOT on a rocks Linux cluster  

Science Conference Proceedings (OSTI)

We present a study to optimizemulti-layer perceptron (MLP) classification power with a Rocks Linux cluster [1]. Simulated data from a future high energy physics experiment at the Large Hadron Collider (LHC) is used to teach a neural network to separate ...

Tomas Lindén; Francisco García; Aatos Heikkinen; Sami Lehti

2006-06-01T23:59:59.000Z

409

The hot dry rock geothermal energy program  

DOE Green Energy (OSTI)

The paper presents a simplified description of the Department of Energy's Hot-Dry-Rock program conducted at Fenton Hill, New Mexico. What a hot-dry-rock resource is and what the magnitude of the resource is are also described.

Smith, M.C.

1987-09-01T23:59:59.000Z

410

Engineering Characterization of Strong Ground Motion Recorded at Rock Sites  

Science Conference Proceedings (OSTI)

The objective of this project is to define the engineering characteristics of strong ground motion recorded at rock sites. Particular emphasis is placed upon resolving the factors that control the shape of response spectra in both WNA (western North America) and ENA (central and eastern North America) tectonic environments. To accomplish this objective, a simple band-limited white noise (BLWN) ground motion model employing a constant-stress-drop, single-corner-frequency, omega-square source combined with...

1995-08-17T23:59:59.000Z

411

Comparison and analysis of reservoir rocks and related clays  

Science Conference Proceedings (OSTI)

A series of instrumental and chemical analyses was made on sedimentary rocks to determine the surface chemical properties of sedimentry rocks and the physical characteristic of the pores. A scanning electron microscope (SEM) with energy dispersive X-ray analytic capability was used to study the morphology of the samples, surface mineral composition and type and location of clays, and to obtain a qualitative estimate of the pore sizes. A centrifuge was used to determine the pore size distributions which are correlated with SEM observations. An atomic absorption spectrophotometer equipped with an inductively coupled plasma for complete spectral analysis was used to obtain analyses of the rocks, clays, and effluents from ion exchange tests. Two of the results are as follows: (1) Sweetwater gas sands have a bimodal pore size distribution composed of pores with a mean diameter of 0.2 microns which is attributed to intergranular spaces and cracks in the expanded laborboratory sample but which will be close under the pressure of the overburden formations, and these Sweetwater sands have a distribution of pores at 2 microns which are solution vugs rather than intergranular porosity since the sand grains are completely packed together with the cementing material due to the high overburden pressures; and (2) Ion-exchange capacities of two rocks were 5.3 meq/kg and 18.0 meq/kg, and the surface areas were 0.9 m/sup 2//g and 2.30 m/sup 2//g, respectively, even though each had almost identical mineral composition, clay type and quantity, and permeability. 7 references, 12 figures, 3 tables.

Crocker, M.E.; Donaldson, E.C.; Marchin, L.M.

1983-10-01T23:59:59.000Z

412

Eagle Rock Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Eagle Rock Geothermal Facility Eagle Rock Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Eagle Rock Geothermal Facility General Information Name Eagle Rock Geothermal Facility Facility Eagle Rock Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.826770222484°, -122.80002593994° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.826770222484,"lon":-122.80002593994,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

FRACTURE DETECTION IN CRYSTALLINE ROCK USING ULTRASONIC SHEAR WAVES  

E-Print Network (OSTI)

the piezoelectric source plate and the rock surface. With aThe S^j sources were bonded to the rock surface with a fast-^ source plate was epoxied in position on the rock specimen.

Waters, K.H.

2011-01-01T23:59:59.000Z

414

Report on THMC Modeling of the Near Field Evolution of a Generic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Evolution of a Generic Clay Repository: Model Validation and Demonstration Rev 2 Shale and clay-rich rock formations have been considered as potential host rocks for...

415

Electricity from hot dry rock geothermal energy: technical and economic issues  

SciTech Connect

Extraction of energy from hot dry rock would make available a nearly unlimited energy source. Some of the technical problems and possible economic tradeoffs involved in a power generating system are examined and possible solutions proposed. An intertemporal optimization computer model of electricity production from a hot dry rock geothermal source has been constructed. The effects of reservoir degradation, variable fluid flow rate, and drilling operations are examined to deetermine optimal strategies for reservoir management and necessary conditions for economic feasibility.

Tester, J.W.; Morris, G.E.; Cummings, R.G.; Bivins, R.L.

1979-01-01T23:59:59.000Z

416

Multiscale framework for predicting the coupling between deformation and fluid diffusion in porous rocks  

SciTech Connect

In this project, a predictive multiscale framework will be developed to simulate the strong coupling between solid deformations and fluid diffusion in porous rocks. We intend to improve macroscale modeling by incorporating fundamental physical modeling at the microscale in a computationally efficient way. This is an essential step toward further developments in multiphysics modeling, linking hydraulic, thermal, chemical, and geomechanical processes. This research will focus on areas where severe deformations are observed, such as deformation bands, where classical phenomenology breaks down. Multiscale geometric complexities and key geomechanical and hydraulic attributes of deformation bands (e.g., grain sliding and crushing, and pore collapse, causing interstitial fluid expulsion under saturated conditions), can significantly affect the constitutive response of the skeleton and the intrinsic permeability. Discrete mechanics (DEM) and the lattice Boltzmann method (LBM) will be used to probe the microstructure---under the current state---to extract the evolution of macroscopic constitutive parameters and the permeability tensor. These evolving macroscopic constitutive parameters are then directly used in continuum scale predictions using the finite element method (FEM) accounting for the coupled solid deformation and fluid diffusion. A particularly valuable aspect of this research is the thorough quantitative verification and validation program at different scales. The multiscale homogenization framework will be validated using X-ray computed tomography and 3D digital image correlation in situ at the Advanced Photon Source in Argonne National Laboratories. Also, the hierarchical computations at the specimen level will be validated using the aforementioned techniques in samples of sandstone undergoing deformation bands.

Josà © E. Andrade; John W. Rudnicki

2012-12-14T23:59:59.000Z

417

Simulation of rock blasting with the SHALE code  

SciTech Connect

The SHALE code and its special features for simulating rock blasting are described. SHALE first simulates the detonation of the explosive and then follows the effect of the resulting shocks and stress waves on the surrounding rock. A general description is given for SHALE as a finite-difference stress-wave-propagation code, followed by a brief discussion of numerical methods, and a section on the treatment of the explosive. The constitutive model in SHALE is the BCM (Bedded Crack Model), which describes the response of the rock, including fracture. The use of SHALE is illustrated in a discussion of the basic phenomenology of crater blasting, as seen in simulations of field experiments in oil shale. Predicted peak surface velocities are found to agree with field measurements. Comparisons between predicted fracture and observed craters give insight into the relative roles played by shock waves and the high-pressure-explosive product gases. The two-dimensional version of SHALE is being documented and will be available for use by other investigators. A three-dimensional version is planned.

Adams, T.F.; Demuth, R.B.; Margolin, L.G.; Nichols, B.D.

1983-01-01T23:59:59.000Z

418

A Study of Hydraulic Fracturing Initiation in Transversely Isotropic Rocks  

E-Print Network (OSTI)

Hydraulic fracturing of transverse isotropic reservoirs is of major interest for reservoir stimulation and in-situ stress estimation. Rock fabric anisotropy not only causes in-situ stress anisotropy, but also affects fracture initiation from the wellbore. In this study a semi-analytical method is used to investigate these effects with particular reference to shale stimulation. Using simplifying assumptions, equations are derived for stress distribution around the wellbore's walls. The model is then used to study the fracture initiation pressure variations with anisotropy. A sensitivity analysis is carried out on the impact of Young's modulus and Poisson's ration, on the fracture initiation pressure. The results are useful in designing hydraulic fractures and also can be used to develop information about in-situ rock properties using failure pressure values observed in the field. Finally, mechanical and permeability anisotropy are measured using Pulse Permeameter and triaxial tests on Pierre shale.

Serajian, Vahid

2011-08-01T23:59:59.000Z

419

Some approaches to rock mass hydrofracture theory  

Science Conference Proceedings (OSTI)

A new engineering method has been developed at the Leningrad Mining Institute for defining hot dry rock hydrofracturing parameters. It reflects the structural features of a real jointed rock mass, its gravity-tectonic components of the stress tensor and volume character of deformations, taking into account the inertial effects of hydrodynamics in the non-Darcy zone of radial fluid flow near the injection well, and conversion of the heat energy extracted from hot rock by circulating water partly into filtration-flow additional pressure. Results of calculations are compared to field experiments at Fenton Hill, NM, and are used for the first HDR circulation systems in the USSR.

Dyadkin, Yuri, D.

1991-01-01T23:59:59.000Z

420

Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances  

DOE Green Energy (OSTI)

This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.

Faybishenko, B. (ed.)

1999-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock physics modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances  

SciTech Connect

This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.

Faybishenko, B. (ed.)

1999-02-01T23:59:59.000Z

422

Evaluation of the Fenton Hill Hot Dry Rock Geothermal Reservoir. Part I. Heat extraction performance and modeling. Part II. Flow characteristics and geochemistry. Part III. Reservoir characterization using acoustic techniques  

DOE Green Energy (OSTI)

On May 28, 1977, as the production well GT-2 at Fenton Hill was being redrilled along a planned trajectory, it intersected a low-impedance hydraulic fracture in direct communication with the injection well, EE-1. Thus, a necessary prerequisite for a full-scale test of the LASL Hot Dry Rock Concept, that of establishing a high flow rate between wells at low wellhead differential pressures, was satisified. Full-scale operation of the loop occurred for 75 days from January 27 to April 12, 1978. This test is referred to as Phase 1, Segment 2 and was designed to examine the thermal drawdown, flow characteristics, water losses, and fluid geochemistry of the system in detail. Results of these studies are the major topic of this paper which is divided into three separate parts covering first the heat extraction performance, second the flow characteristics and geochemistry and third the use of acoustic techniques to describe the geometry of the fracture system. In the third section, dual-well acoustic measurements used to detect fractures are described. These measurements were made using modified Dresser Atlas logging tools. Signals intersecting hydraulic fractures in the reservoir under both hydrostatic and pressurized conditions were simultaneously detected in both wells. Signal attenuation and characteristic waveforms can be used to describe the extent of fractured rock in the reservoir.

Murphy, H.D.; Grigsby, C.O.; Tester, J.W.; Albright, J.N.

1978-01-01T23:59:59.000Z

423

Diffusive separation of noble gases and noble gas abundance patterns in sedimentary rocks  

SciTech Connect

The mechanisms responsible for noble gas concentrations, abundance patterns, and strong retentivity in sedimentary lithologies remain poorly explained. Diffusion-controlled fractionation of noble gases is modeled and examined as an explanation for the absolute and relative abundances of noble gases observed in sediments. Since the physical properties of the noble gases are strong functions of atomic mass, the individual diffusion coefficients, adsorption coefficients and atomic radii combine to impede heavy noble gas (Xe) diffusion relative to light noble gas (Ne) diffusion. Filling of lithic grains/half-spaces by diffusive processes thus produces Ne enrichments in the early and middle stages of the filling process with F(Ne) values similar to that observed in volcanic glasses. Emptying lithic grains/half-spaces produces a Xe-enriched residual in the late (but not final) stages of the process producing F(Xe) values similar to that observed in shales. 'Exotic but unexceptional' shales that exhibit both F(Ne) and F(Xe) enrichments can be produced by incomplete emptying followed by incomplete filling. This mechanism is consistent with literature reported noble gas abundance patterns but may still require a separate mechanism for strong retention. A system of labyrinths-with-constrictions and/or C-, Si-nanotubes when combined with simple adsorption can result in stronger diffusive separation and non-steady-state enrichments that persist for longer times. Enhanced adsorption to multiple C atoms inside C-nanotubes as well as dangling functional groups closing the ends of nanotubes can provide potential mechanisms for 'strong retention'. We need new methods of examining noble gases in rocks to determine the role and function of angstrom-scale structures in both the diffusive enrichment process and the 'strong retention' process for noble gas abundances in terrestrial rocks.

Torgersen, T.; Kennedy, B.M.; van Soest, M.C.

2004-06-14T23:59:59.000Z

424

Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model  

SciTech Connect

Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

Huang, Hai; Plummer, Mitchell; Podgorney, Robert

2013-02-01T23:59:59.000Z

425

Summary - Hot Dry Rock R&D Strategies and Applications  

DOE Green Energy (OSTI)

In geothermal energy technology, the hydrothermal systems rely on volcanic hot rocks being fortuitously co-located with an adequate supply of natural ground water, usually at some considerable depth within the earth. This represents essentially two accidents in the same place, and the occurrence is relatively rare. Yellowstone Park and the desert valley of southern California are the most noteworthy US. examples. Since the heat is the energy needed, if we could just get the water down to it and back. Well, that's what is being done with the hot dry rock program. A well is drilled down to where there is adequate heat in the rocks. The well is then pressurized until the rock fractures creating what amounts to a reservoir full of hot, shattered rock. Finally, a well is drilled into the reservoir and water is pumped in one well, heated by the rock, and taken out through the other well at useful temperatures and pressures. We are getting ready to run significant long-term flow tests at the Fenton Hill Hot Dry Rock site west of Los Alamos, New Mexico. We expect the operational information to provide the data to forecast the energy life of the wells as a production facility. This kind of resource is much more common than regular geothermal resources. Robert H. Hendron described the Long Term Flow Test and reservoir studies for which the project is preparing. A shortfall of available funding has slowed preparations, delaying the start of that test. The test is planning to gather data for more definitive reservoir modeling with energy availability or reservoir lifetime of primary interest. Other interests include geochemistry and tracer studies, microseismic response, water requirements and flow impedance which relates directly to the pumping power required. Progress has been made in modeling studies, chemically reactive tracer techniques, and in improvements in acoustic or microseismic event analysis. Donald W. Brown discussed reservoir modeling as it relates to production management of the HDR well. For wells which are fracture dominated rather than matrix-permeability controlled, a knowledge of the pressure-dependent permeability of the interconnected system of natural joints (or pre-existing fractures is critical to long-term power production from the wells) through optimized pressure management. It was mentioned that a knowledge of the pressure-dependent joint permeability could aid in designing more appropriate secondary recovery strategies in petroleum reservoirs, or reinjection I procedures of geothermal reservoirs. Dr. Bruce A. Robinson discussed the development of fluid flow and transport models for simulation of HDR geothermal reservoirs. These models are also expected to provide accurate predictions of long-term behavior and help in the development of strategies for reservoir improvement and operation. Two approaches were discussed. The discrete fracture approach is based on a random fracture network subject to prescribed statistical properties of the fracture set. It is used to simulate steady state fluid flow and solute transport. The other approach used the continuum approximation. This type of model is appropriate when the reservoir consists of many interconnected fractures, as is the case at Fenton Hill.

Tennyson, George P..

1989-03-21T23:59:59.000Z

426

Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Details Activities (5) Areas (2) Regions (0) Abstract: Two hot dry rock (HDR) geothermal energy reservoirs have been created by hydraulic fracturing of Precambrian granitic rock between two wells on the west flank of the Valles Caldera in the Jemez Mountains of northern New Mexico. Heat is extracted by injecting water into one well,

427

Simulation of water transport in heated rock salt  

Science Conference Proceedings (OSTI)

This paper summarizes computer simulation studies on water transport in German rock salt. Based on JOCKWERS experimental investigations on water content and water liberation, the object of these studies was to select a water transport model, that matches the water inflow which was measured in some heater experiments in the Asse Salt Mine. The main result is, that an evaporation front model, with Knudsen-type vapor transport combined with fluid transport by thermal expansion of the adsorbed water layers in the non evaporated zone, showed the best agreement with experimental evidence.

Schlich, M.; Jockwer, N.

1986-01-01T23:59:59.000Z

428

Open Source Physics  

E-Print Network (OSTI)

Open Source Physics (Brown, 2012; Christian, 2010; Esquembre, 2012; Hwang, 2010) empowers teachers and students to create and use these free tools with the associated intellectual property rights given to customise (Wee & Mak, 2009) the computer models/tools to suit their teaching and learning needs. Open Source Physics (OSP) focuses on design of computer models, such as Easy Java Simulations (EJS) and the use of video modeling and analysis (Tracker). They allow students to investigate, explore and analyse data which is either real or simulated. The OSP approach helps users overcome barriers in creating, using and scaling up meaningful ICT use in education. In Singapore, teachers and students have created or customised existing computer models to design and re-purpose EJS models to suit their context and learning needs. Tracker tools allow students to analyse different aspects of a physics phenomena to deepen their understanding of abstract physics concepts. Using Tracker, students record the motion of ob...

Wee, Loo Kang

2013-01-01T23:59:59.000Z

429

Comparison of nucleon form factors from lattice QCD against the light front cloudy bag model and extrapolation to the physical mass regime  

Science Conference Proceedings (OSTI)

We explore the possibility of extrapolating state of the art lattice QCD calculations of nucleon form factors to the physical regime. We find that the lattice results can be reproduced using the light front cloudy bag model by letting its parameters be analytic functions of the quark mass. We then use the model to extend the lattice calculations to large values of Q{sup 2} of interest to current and planned experiments. These functions are also used to define extrapolations to the physical value of the pion mass, thereby allowing us to study how the predicted zero in G{sub E}(Q{sup 2})/G{sub M}(Q{sup 2}) varies as a function of quark mass.

Matevosyan, Hrayr H.; Miller, Gerald A.; Thomas, Anthony W. [Louisiana State University, Department of Physics and Astronomy, 202 Nicholson Hall, Tower Dr., Baton Rouge, Louisiana 70803 (United States); and Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, Virginia 23606 (United States); University of Washington, Department of Physics, Box 351560, Seattle, Washington 98195-1560 (United States); Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, Virginia 23606 (United States)

2005-05-01T23:59:59.000Z

430

Symmetries in physics  

E-Print Network (OSTI)

The concept of symmetries in physics is briefly reviewed. In the first part of these lecture notes, some of the basic mathematical tools needed for the understanding of symmetries in nature are presented, namely group theory, Lie groups and Lie algebras, and Noether's theorem. In the second part, some applications of symmetries in physics are discussed, ranging from isospin and flavor symmetry to more recent developments involving the interacting boson model and its extension to supersymmetries in nuclear physics.

Roelof Bijker

2005-09-02T23:59:59.000Z

431

Rock of Ages | Open Energy Information  

Open Energy Info (EERE)

of Ages of Ages Jump to: navigation, search Name Rock of Ages Facility Rock of Ages Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Rock of Ages Energy Purchaser Rock of Ages Location Graniteville VT Coordinates 44.14668574°, -72.48180896° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.14668574,"lon":-72.48180896,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

Definition: Isotopic Analysis- Rock | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Rock Isotopic Analysis- Rock Jump to: navigation, search Dictionary.png Isotopic Analysis- Rock Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.[1] View on Wikipedia Wikipedia Definition References ↑ http://wwwrcamnl.wr.usgs.gov/isoig/isopubs/itchch2.html Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Isotopic_Analysis-_Rock&oldid=687702" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties

433

Rock bed heat accumulators. Final report  

DOE Green Energy (OSTI)

The principal objectives of the research program on rock bed heat accumulators (or RBHA) are: (1) to investigate the technical and economic feasibility of storing large amounts of thermal energy (in the tens of MWt range) at high temperature (up to 500/sup 0/C) over extended periods of time (up to 6 months) using native earth or rock materials; (2) to conduct studies to establish the performance characteristics of large rock bed heat accumulators at various power and temperature levels compatible with thermal conversion systems; and (3) to assess the materials and environmental problems associated with the operation of such large heat accumulators. Results of the study indicate that rock bed heat accumulators for seasonal storage are both technically and economically feasible, and hence could be exploited in various applications in which storage plays an essential role such as solar power and total energy systems, district and cogeneration heating systems.

Riaz, M.

1977-12-01T23:59:59.000Z