Sample records for rock physics modeling

  1. Rock-physics Models for Gas-hydrate Systems Associated

    E-Print Network [OSTI]

    Texas at Austin, University of

    Rock-physics Models for Gas-hydrate Systems Associated with Unconsolidated Marine Sediments Diana at Austin, Austin, Texas, U.S.A. ABSTRACT R ock-physics models are presented describing gas-hydrate systems associated with unconsolidated marine sediments. The goals are to predict gas-hydrate concentration from

  2. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    SciTech Connect (OSTI)

    Wardaya, P. D., E-mail: pongga.wardaya@utp.edu.my; Noh, K. A. B. M., E-mail: pongga.wardaya@utp.edu.my; Yusoff, W. I. B. W., E-mail: pongga.wardaya@utp.edu.my [Petroleum Geosciences Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Ridha, S. [Petroleum Engineering Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Nurhandoko, B. E. B. [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Dept. of Physics, Institute of Technology Bandung, Bandung, Indonesia and Rock Fluid Imaging Lab, Bandung (Indonesia)

    2014-09-25T23:59:59.000Z

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave velocity of rock.

  3. Rock physics at Los Alamos Scientific Laboratory

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Rock physics refers to the study of static and dynamic chemical and physical properties of rocks and to phenomenological investigations of rocks reacting to man-made forces such as stress waves and fluid injection. A bibliography of rock physics references written by LASL staff members is given. Listing is by surname of first author. (RWR)

  4. Big Bang Day : Physics Rocks

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  5. Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields: Stochastic inversion of AVA and CSEM data

    SciTech Connect (OSTI)

    Chen, J.; Hoversten, G.M.

    2011-09-15T23:59:59.000Z

    Joint inversion of seismic AVA and CSEM data requires rock-physics relationships to link seismic attributes to electrical properties. Ideally, we can connect them through reservoir parameters (e.g., porosity and water saturation) by developing physical-based models, such as Gassmann’s equations and Archie’s law, using nearby borehole logs. This could be difficult in the exploration stage because information available is typically insufficient for choosing suitable rock-physics models and for subsequently obtaining reliable estimates of the associated parameters. The use of improper rock-physics models and the inaccuracy of the estimates of model parameters may cause misleading inversion results. Conversely, it is easy to derive statistical relationships among seismic and electrical attributes and reservoir parameters from distant borehole logs. In this study, we develop a Bayesian model to jointly invert seismic AVA and CSEM data for reservoir parameter estimation using statistical rock-physics models; the spatial dependence of geophysical and reservoir parameters are carried out by lithotypes through Markov random fields. We apply the developed model to a synthetic case, which simulates a CO{sub 2} monitoring application. We derive statistical rock-physics relations from borehole logs at one location and estimate seismic P- and S-wave velocity ratio, acoustic impedance, density, electrical resistivity, lithotypes, porosity, and water saturation at three different locations by conditioning to seismic AVA and CSEM data. Comparison of the inversion results with their corresponding true values shows that the correlation-based statistical rock-physics models provide significant information for improving the joint inversion results.

  6. Rock Properties Model

    SciTech Connect (OSTI)

    C. Lum

    2004-09-16T23:59:59.000Z

    The purpose of this model report is to document the Rock Properties Model version 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties model provides mean matrix and lithophysae porosity, and the cross-correlated mean bulk density as direct input to the ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021, REV 02 (BSC 2004 [DIRS 170042]). The constraints, caveats, and limitations associated with this model are discussed in Section 6.6 and 8.2. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7. The revision of this model report was performed as part of activities being conducted under the ''Technical Work Plan for: The Integrated Site Model, Revision 05'' (BSC 2004 [DIRS 169635]). The purpose of this revision is to bring the report up to current procedural requirements and address the Regulatory Integration Team evaluation comments. The work plan describes the scope, objectives, tasks, methodology, and procedures for this process.

  7. Assisted Seismic Matching: Joint Inversion of Seismic, Rock Physics and Basin Modeling Ulisses T. Mello*, IBM T. J. Watson Res. Center, Stewart A. Levin, Halliburton, Vanessa Lopez, Andrew Conn,

    E-Print Network [OSTI]

    Zhang, Hongchao

    Assisted Seismic Matching: Joint Inversion of Seismic, Rock Physics and Basin Modeling Ulisses T physics, and seismic attributes, including seismic amplitude to match seismic data. Introduction a match to seismic data. In particular, we seek to match not just event timing (phase) but also reflection

  8. Rock Physics Characterization of Organic-Rich Shale Formations to Predict Organic Properties

    E-Print Network [OSTI]

    Bush, Brandon

    2013-07-29T23:59:59.000Z

    rely on to assess the economic potential of these formations are: total organic carbon (TOC), thermal maturity, hydrocarbon saturation, porosity, mineralogy and brittleness. In this thesis, I investigate rock physics models and methods for the possible...

  9. Rock-physics templates for hydrocarbon source rocks

    E-Print Network [OSTI]

    2014-05-27T23:59:59.000Z

    May 27, 2014 ... simple basin-evolution model with constant sedimentation rate and geothermal .... flow attenuation mechanism which yields velocity dispersion.

  10. Seismic-Scale Rock Physics of Methane Hydrate

    SciTech Connect (OSTI)

    Amos Nur

    2009-01-08T23:59:59.000Z

    We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

  11. Rock physics and geophysics for unconventional resource, multi-component seismic, quantitative interpretation

    E-Print Network [OSTI]

    Glinsky, Michael E; Sassen, Doug; Rael, Howard; Chen, Jinsong

    2013-01-01T23:59:59.000Z

    An extension of a previously developed, rock physics, model is made that quantifies the relationship between the ductile fraction of a brittle/ductile binary mixture and the isotropic seismic reflection response. Making a weak scattering (Born) approximation and plane wave (eikonal) approximation, with a subsequent ordering according to the smallness of the angle of incidence, a linear singular value decomposition analysis is done to understand the stack weightings, number of stacks, and the type of stacks that will optimally estimate the two fundamental rock physics parameters. It is concluded that the full PP stack and the "full" PS stack are the two optimal stacks needed to estimate the two rock physics parameters. They dominate over both the second order AVO "gradient" stack and the higher order (4th order) PP stack.

  12. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect (OSTI)

    Gary Mavko

    2004-08-01T23:59:59.000Z

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have continued our work on analyzing well logs and microstructural constraints on seismic signatures. We report results of three studies in this report. The first one deals with fractures and faults that provide the primary control on the underground fluid flow through low permeability massive carbonate rocks. Fault cores often represent lower transmissibility whereas the surrounding damaged rocks and main slip surfaces are high transmissibility elements. We determined the physical properties of fault rocks collected in and around the fault cores of large normal faults in central Italy. After studying the P- and S-wave velocity variation during cycles of confining pressure, we conclude that a rigid pore frame characterizes the fault gouge whereas the fractured limestone comprises pores with a larger aspect ratio. The second study was to characterize the seismic properties of brine as its temperature decreases from 25 C to -21 C. The purpose was to understand how the transmitted wave changes with the onset of freezing. The main practical reason for this experiment was to use partially frozen brine as an analogue for a mixture of methane hydrate and water present in the pore space of a gas hydrate reservoir. In the third study we analyzed variations in dynamic moduli in various carbonate reservoirs. The investigations include log and laboratory data from velocity, porosity, permeability, and attenuation measurements.

  13. Numerical Modelling of Unsaturated Flow in Uniform and Heterogeneous Waste Rock Piles

    E-Print Network [OSTI]

    Aubertin, Michel

    Numerical Modelling of Unsaturated Flow in Uniform and Heterogeneous Waste Rock Piles O Fala1 , M Aubertin1,3 , J Molson1 , B Bussière2,3 , G W Wilson4 , R Chapuis1 and V Martin1 ABSTRACT Waste rock piles these piles, many physical, geochemical and biological processes can contribute to the production of AMD

  14. Improving the Monitoring, Verification, and Accounting of CO{sub 2} Sequestered in Geologic Systems with Multicomponent Seismic Technology and Rock Physics Modeling

    SciTech Connect (OSTI)

    Alkan, Engin; DeAngelo, Michael; Hardage, Bob; Sava, Diana; Sullivan, Charlotte; Wagner, Donald

    2012-12-31T23:59:59.000Z

    Research done in this study showed that P-SV seismic data provide better spatial resolution of geologic targets at our Appalachian Basin study area than do P-P data. This finding is important because the latter data (P-P) are the principal seismic data used to evaluate rock systems considered for CO{sub 2} sequestration. The increase in P-SV{sub 1} resolution over P-P resolution was particularly significant, with P-SV{sub 1} wavelengths being approximately 40-percent shorter than P-P wavelengths. CO{sub 2} sequestration projects across the Appalachian Basin should take advantage of the increased resolution provided by converted-shear seismic modes relative to P-wave seismic data. In addition to S-wave data providing better resolution of geologic targets, we found S-wave images described reservoir heterogeneities that P-P data could not see. Specifically, a channel-like anomaly was imaged in a key porous sandstone interval by P-SV{sub 1} data, and no indication of the feature existed in P-P data. If any stratigraphic unit is considered for CO{sub 2} storage purposes, it is important to know all heterogeneities internal to the unit to understand reservoir compartmentalization. We conclude it is essential that multicomponent seismic data be used to evaluate all potential reservoir targets whenever a CO{sub 2} storage effort is considered, particularly when sequestration efforts are initiated in the Appalachian Basin. Significant differences were observed between P-wave sequences and S- wave sequences in data windows corresponding to the Oriskany Sandstone, a popular unit considered for CO{sub 2} sequestration. This example demonstrates that S-wave sequences and facies often differ from P-wave sequences and facies and is a principle we have observed in every multicomponent seismic interpretation our research laboratory has done. As a result, we now emphasis elastic wavefield seismic stratigraphy in our reservoir characterization studies, which is a science based on the concept that the same weight must be given to S-wave sequences and facies as is given to P-wave sequences and facies. This philosophy differs from the standard practice of depending on only conventional P-wave seismic stratigraphy to characterize reservoir units. The fundamental physics of elastic wavefield seismic stratigraphy is that S- wave modes sense different sequences and facies across some intervals than does a P-wave mode because S-wave displacement vectors are orthogonal to P- wave displacement vectors and thus react to a different rock fabric than do P waves. Although P and S images are different, both images can still be correct in terms of the rock fabric information they reveal.

  15. RELATING GEOPHYSICAL AND HYDROLOGIC PROPERTIES USING FIELD-SCALE ROCK PHYSICS

    E-Print Network [OSTI]

    Knight, Rosemary

    CMWRXVI 1 RELATING GEOPHYSICAL AND HYDROLOGIC PROPERTIES USING FIELD-SCALE ROCK PHYSICS STEPHEN has been made by rock physics investigations that define how pore-scale variations in properties like in pore-scale rock properties with an understanding of geophysical sampling at the field

  16. A NEW MODEL FOR PERFORMANCE PREDICTION OF HARD ROCK TBMS.

    E-Print Network [OSTI]

    TBMs. The model uses information on the rock properties and cutting geometry to calculate TBM rate on data collected in the field and is merely a regression between machine parameters, rock properties is introduced to provide an estimate of disc cutting forces as a function of rock properties and the cutting

  17. MULTI-ATTRIBUTE SEISMIC/ROCK PHYSICS APPROACH TO CHARACTERIZING FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    Gary Mavko

    2000-10-01T23:59:59.000Z

    This project consists of three key interrelated Phases, each focusing on the central issue of imaging and quantifying fractured reservoirs, through improved integration of the principles of rock physics, geology, and seismic wave propagation. This report summarizes the results of Phase I of the project. The key to successful development of low permeability reservoirs lies in reliably characterizing fractures. Fractures play a crucial role in controlling almost all of the fluid transport in tight reservoirs. Current seismic methods to characterize fractures depend on various anisotropic wave propagation signatures that can arise from aligned fractures. We are pursuing an integrated study that relates to high-resolution seismic images of natural fractures to the rock parameters that control the storage and mobility of fluids. Our goal is to go beyond the current state-of-the art to develop and demonstrate next generation methodologies for detecting and quantitatively characterizing fracture zones using seismic measurements. Our study incorporates 3 key elements: (1) Theoretical rock physics studies of the anisotropic viscoelastic signatures of fractured rocks, including up scaling analysis and rock-fluid interactions to define the factors relating fractures in the lab and in the field. (2) Modeling of optimal seismic attributes, including offset and azimuth dependence of travel time, amplitude, impedance and spectral signatures of anisotropic fractured rocks. We will quantify the information content of combinations of seismic attributes, and the impact of multi-attribute analyses in reducing uncertainty in fracture interpretations. (3) Integration and interpretation of seismic, well log, and laboratory data, incorporating field geologic fracture characterization and the theoretical results of items 1 and 2 above. The focal point for this project is the demonstration of these methodologies in the Marathon Oil Company Yates Field in West Texas.

  18. Rocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResources ResourcesRobust, High-ThroughputRocks Rocks

  19. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect (OSTI)

    Gary Mavko

    2003-06-30T23:59:59.000Z

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) Effects of pore texture on porosity, permeability, and sonic velocity. We show how a relation can be found between porosity, permeability, and velocity by separating the formations of rocks with similar pore textures.

  20. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect (OSTI)

    Gary Mavko

    2003-06-01T23:59:59.000Z

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) Elastic properties of clay minerals using Pulse Transmission experiments. We show measurements of elastic moduli and strain in clay minerals.

  1. The application of multidimensional wavelets to unveiling multi-phase diagrams and in situ physical properties of rocks

    E-Print Network [OSTI]

    Vasilyev, Oleg V.

    properties of rocks Oleg V. Vasilyeva,*, Taras V. Geryab,c , David A. Yuend a Department of Mechanical of complicated realistic multi-phase diagrams and related in situ physical properties of rocks by using calculation of equilibrium phase assemblages and prediction of in situ physical properties of rocks [15

  2. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect (OSTI)

    Gary Mavko

    2003-10-01T23:59:59.000Z

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have (1) Studied relationships between velocity and permeability. (2) Used independent experimental methods to measure the elastic moduli of clay minerals as functions of pressure and saturation. (3) Applied different statistical methods for characterizing heterogeneity and textures from scanning acoustic microscope (SAM) images of shale microstructures. (4) Analyzed the directional dependence of velocity and attenuation in different reservoir rocks (5) Compared Vp measured under hydrostatic and non-hydrostatic stress conditions in sands. (6) Studied stratification as a source of intrinsic anisotropy in sediments using Vp and statistical methods for characterizing textures in sands.

  3. Source rock evaluation, oil-source rock correlation, and kinetic modeling - San Juan Sag, CO

    SciTech Connect (OSTI)

    Clayton, J.L. (Geological survey, Denver, CO (USA)); Gries, R.R.

    1990-05-01T23:59:59.000Z

    Recently, oil and gas shows have been reported in Cretaceous and Tertiary rocks of the San Juan sag, and minor oil production was established from volcanic rocks (Kirby Petroleum 1 Jynnifer well, Sec. 9, T40N, R5E.). Potential source rocks present in the San Juan sag are the upper and lower (including the Niobrara Member) Mancos Shale (Upper Cretaceous). The combined upper and lower Mancos Shale is about 666 m thick and contains between about 0.5 and 5.5% organic carbon, although most values are between about 1.5 and 2.0%. The Niobrara Member of the lower Mancos Shale has the highest overall organic matter content in the section (organic carbon averages <2.0%). Pyrolysis and solvent extraction data (typically 2,000-6,000 and 1,000-4,000 ppm, respectively) indicate that the upper and lower Mancos Shale and the Niobrara Member are all good potential source rocks for oil and gas. Oil-source rock correlations using gas chromatography, mass spectrometry, and stable carbon isotope ratios indicate that the upper Mancos Shale is the most likely source for the oil produced from the 1 Jynnifer discovery well. The source of the oil produced from the nearby Gramps field is less certain, but may be the lower Mancos Shale or Niobrara Member. The hydrocarbon generation history of the San Juan sag is complex because of highly variable heat flow in the area caused by Oligocene volcanism. Sills have caused thermal alteration of organic matter in shales on a local scale, and larger volcanic bodies may have produced proportionality larger thermal effects. More regional heating by larger volcanic bodies is an important factor in the oil generation history of the area. The authors have constructed kinetic models at several locations in the area to estimate the timing and amount of hydrocarbon products generated from the source rocks. The main phase of oil and gas generation and expulsion occurred during the Oligocene.

  4. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect (OSTI)

    Gary Mavko

    2003-06-30T23:59:59.000Z

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) Methods for detection of stress-induced velocity anisotropy in sands. (2) We have initiated efforts for velocity upscaling to quantify long-wavelength and short-wavelength velocity behavior and the scale-dependent dispersion caused by sediment variability in different depositional environments.

  5. Multi-Attribute Seismic/Rock Physics Approach to Characterizing Fractured Reservoirs

    SciTech Connect (OSTI)

    Gary Mavko

    2004-11-30T23:59:59.000Z

    Most current seismic methods to seismically characterize fractures in tight reservoirs depend on a few anisotropic wave propagation signatures that can arise from aligned fractures. While seismic anisotropy can be a powerful fracture diagnostic, a number of situations can lessen its usefulness or introduce interpretation ambiguities. Fortunately, laboratory and theoretical work in rock physics indicates that a much broader spectrum of fracture seismic signatures can occur, including a decrease in P- and S-wave velocities, a change in Poisson's ratio, an increase in velocity dispersion and wave attenuation, as well as well as indirect images of structural features that can control fracture occurrence. The goal of this project was to demonstrate a practical interpretation and integration strategy for detecting and characterizing natural fractures in rocks. The approach was to exploit as many sources of information as possible, and to use the principles of rock physics as the link among seismic, geologic, and log data. Since no single seismic attribute is a reliable fracture indicator in all situations, the focus was to develop a quantitative scheme for integrating the diverse sources of information. The integrated study incorporated three key elements: The first element was establishing prior constraints on fracture occurrence, based on laboratory data, previous field observations, and geologic patterns of fracturing. The geologic aspects include analysis of the stratigraphic, structural, and tectonic environments of the field sites. Field observations and geomechanical analysis indicates that fractures tend to occur in the more brittle facies, for example, in tight sands and carbonates. In contrast, strain in shale is more likely to be accommodated by ductile flow. Hence, prior knowledge of bed thickness and facies architecture, calibrated to outcrops, are powerful constraints on the interpreted fracture distribution. Another important constraint is that fracturing is likely to be more intense near faults--sometimes referred to as the damaged zone. Yet another constraint, based on world-wide observations, is that the maximum likely fracture density increases with depth in a well-defined way. Defining these prior constrains has several benefits: they lead to a priori probability distributions of fractures, that are important for objective statistical integration; they limit the number of geologic hypotheses that need to be theoretically modeled; they provide plausible models for fracture distributions below the seismic resolution. The second element was theoretical rock physics modeling of optimal seismic attributes, including offset and azimuth dependence of traveltime, amplitude, and impedance signatures of anisotropic fractured rocks. The suggested workflow is to begin with an elastic earth model, based on well logs, theoretically add fractures to the likely facies as defined by the geologic prior information, and then compute synthetic seismic traces and attributes, including variations in P and S-wave velocities, Poisson's ratio, reflectivity, travel time, attenuation, and anisotropies of these parameters. This workflow is done in a Monte-Carlo fashion, yielding ranges of expected fracture signatures, and allowing realistic assessments of uncertainty to be honored. The third element was statistical integration of the geophysical data and prior constraints to map fracture intensity and orientations, along with uncertainties. A Bayesian framework was developed that allowed systematic integration of the prior constraints, the theoretical relations between fractures and their seismic signatures, and the various observed seismic observations. The integration scheme was successfully applied on an East Texas field site. The primary benefit from the study was the optimization and refinement of practical workflows for improved geophysical characterization of natural fractures and for quantifying the uncertainty of these interpretations. By presenting a methodology for integrating various types of information, the workflow will

  6. Differential effective medium modeling of rock elastic moduli with critical porosity constraints

    SciTech Connect (OSTI)

    Mukerji, T.; Mavko, G. [Stanford Univ. CA (United States)] [Stanford Univ. CA (United States); Berryman, J.; Berge, P. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States)

    1995-03-01T23:59:59.000Z

    Rocks generally have a percolation porosity at which they lose rigidity and fall apart. Percolation behaviour is a purely geometrical property, independent of any physical properties, and is a powerful constraint on any valid velocity-porosity relation. The authors show how the conventional Differential Effective Medium (DEM) theory can be modified to incorporate percolation of elastic moduli in rocks by taking the material at the critical porosity as one of the constituents of a two-phase composite. Any desired percolation porosity can be specified as an input. In contrast, the conventional DEM model always predicts percolation at a porosity of either 0 or 100 percent. Most sedimentary rocks however have intermediate percolation porosities and are therefore not well represented by the conventional theory. The modified DEM model incorporates percolation behavior, and at the same time is always consistent with the Hashin-Shtrikman bounds. The predictions compare favorably with laboratory sandstone data. 24 refs., 3 figs.

  7. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect (OSTI)

    Gary Mavko

    2002-05-01T23:59:59.000Z

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) How to quantify elastic properties of clay minerals using Atomic Force Acoustic Microscopy. We show how bulk modulus of clay can be measured using atomic force acoustic microscopy (AFAM) (2) We have successfully measured elastic properties of unconsolidated sediments in an effort to quantify attributes for detection of overpressures from seismic (3) We have initiated efforts for velocity upscaling to quantify long-wavelength and short-wavelength velocity behavior and the scale-dependent dispersion caused by sediment variability in different depositional environments.

  8. Rock mechanics models evaluation report. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1987-08-01T23:59:59.000Z

    This report documents the evaluation of the thermal and thermomechanical models and codes for repository subsurface design and for design constraint analysis. The evaluation was based on a survey of the thermal and thermomechanical codes and models that are applicable to subsurface design, followed by a Kepner-Tregoe (KT) structured decision analysis of the codes and models. The primary recommendations of the analysis are that the DOT code be used for two-dimensional thermal analysis and that the STEALTH and HEATING 5/6 codes be used for three-dimensional and complicated two-dimensional thermal analysis. STEALTH and SPECTROM 32 are recommended for thermomechanical analyses. The other evaluated codes should be considered for use in certain applications. A separate review of salt creep models indicate that the commonly used exponential time law model is appropriate for use in repository design studies. 38 refs., 1 fig., 7 tabs.

  9. INTEGRATION OF ROCK PHYSICS AND RESERVOIR SIMULATION FOR THE INTERPRETATION OF TIME-LAPSE

    E-Print Network [OSTI]

    INTEGRATION OF ROCK PHYSICS AND RESERVOIR SIMULATION FOR THE INTERPRETATION OF TIME-LAPSE SEISMIC is 15% to 20%, and should be detected in the time-lapse seismic data. Through interpretation of P This thesis research integrates reservoir simulation with time-lapse (4D) seismic monitoring of reservoir

  10. Mineral and Rock Physics [MR] MR21B MCW:Level 1 Tuesday 0800h

    E-Print Network [OSTI]

    Downs, Robert T.

    Mineral and Rock Physics [MR] MR21B MCW:Level 1 Tuesday 0800h Structural Refinement Studies Kunz, Advanced Light Source MR21B-0018 The Crystal Structure of Diopside at Pressure to 10 Gpa tetrahedra and M1 octahedra to try and understand the observed changes in pyroxenes with changing P, T, and x

  11. 1.4 PETROPHYSICS: Combined Rock and Fluid Character Integration of geological and petrophysical data allows development of a rock-fluid model for

    E-Print Network [OSTI]

    Schechter, David S.

    data allows development of a rock-fluid model for upper Spraberry rocks. This study identifies the different rock types that comprise the subject reservoirs, marginal reservoirs and non-reservoir rocks shales, clay rich siltstones and very fine sandstones units uses gamma-ray logs (Fig.1.2-1) and is widely

  12. Shear velocity as the function of frequency in heavy oils De-hua Han and Jiajin Liu, Rock Physics Lab, UH;

    E-Print Network [OSTI]

    Shear velocity as the function of frequency in heavy oils De-hua Han and Jiajin Liu, Rock Physics of heavy oils is discussed based on the measured data in our lab. Havriliak and Negami (HN) model is suggested to describe the frequency dispersion of heavy oils. Introduction The velocity behavior in heavy

  13. Physics of the Earth and Planetary Interiors 126 (2001) 93108 Rock-magnetic properties of TRM carrying baked and

    E-Print Network [OSTI]

    Utrecht, Universiteit

    2001-01-01T23:59:59.000Z

    Physics of the Earth and Planetary Interiors 126 (2001) 93­108 Rock-magnetic properties of TRM produced large areas of thermally altered sedimentary rocks with large magnetic moments. The natural remanent magnetization (NRM) and thermoremanent magnetization (TRM) intensities and low

  14. Creep of Two Alpine Rock Glaciers Observation and Modelling (tztal-and Stubai Alps, Austria)

    E-Print Network [OSTI]

    Brückl, Ewald

    glaciers. The source areas of these rock glaciers are situated at altitudes of 2700 to 2800 m aCreep of Two Alpine Rock Glaciers ­ Observation and Modelling (Ötztal- and Stubai Alps, Austria), Wolfram Mostler (Innsbruck) Abstract Our study concentrates on two active rock glaciers in the Eastern

  15. Modeling of crack initiation, propagation and coalescence in rocks

    E-Print Network [OSTI]

    Gonçalves da Silva, Bruno Miguel

    2009-01-01T23:59:59.000Z

    Natural or artificial fracturing of rock plays a very important role in geologic processes and for engineered structures in and on rock. Fracturing is associated with crack initiation, propagation and coalescence, which ...

  16. A CONSTITUTIVE MODEL TO PREDICT THE HYDROMECHANICAL BEHAVIOUR OF ROCK

    E-Print Network [OSTI]

    Aubertin, Michel

    in the presence of water to better assess the stability of rock structures under many situations. The accurate conditions. A rock mass behaviour can also be influenced by the water flow and ensuing pore pressure. For example, a previously stable rock structure can become unstable with an increase of water pressure inside

  17. Rock Physics of Geologic Carbon Sequestration/Storage | SciTech Connect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonantNovember 15 toAdvancesRock Physics of Geologic

  18. The effects of lithology and initial fault angle in physical models of fault-propagation folds

    E-Print Network [OSTI]

    McLain, Christopher Thomas

    2001-01-01T23:59:59.000Z

    Experimentally deformed physical rock models are used to examine the effects of changing mechanical stratigraphy and initial fault angle on the development of fault-propagation folds over a flat-ramp-flat thrust geometry. This study also...

  19. Critical porosity: The key to relating physical properties to porosity in rocks

    SciTech Connect (OSTI)

    Nur, A.M.; Mavko, G.; Dvorkin, J.; Gal, D.

    1995-12-31T23:59:59.000Z

    Many classes of rock such as sandstones, dolomites, chalks, and cracked igneous rocks have each a distinct characteristic porosity above which the material behaves as s suspension. The porosity at which this system changes, or transforms from isostress to solid load-bearing is defined here as the critical porosity {phi}{sub c}. It is easy to envision that at {phi}{sub c} not only the mechanical moduli, but also other properties such as strength and electrical conductivity, may also undergo transformations. Consequently, the critical porosity must be a fundamental property of a given porous system, not just of one of its physical properties. The observed values of {phi}{sub c} range from .005 for cracked granites to .30 or .40 for limestones, dolomites and sandstones, .60 for chalks and .90 for volcanic glasses. The data suggest that (1) A critical porosity value {phi}{sub c} exists which is typical of a given class of porous materials. Each class is defined on the basis of its common mineralogy or diagenetic porosity reduction processes. (2) Given {phi}{sub c} it may be possible to closely approximate the relation between porosity and velocity, over the entire range of porosity, with a modified mixture relation, in which the mixed components are the pure solid on one end, and a critical suspension on the other. (3) Without {phi}{sub c}, theory cannot yield reliable or useful velocity-porosity relations.

  20. Modeling of Seismic Signatures of Carbonate Rock Types 

    E-Print Network [OSTI]

    Jan, Badr H.

    2011-02-22T23:59:59.000Z

    Carbonate reservoirs of different rock types have wide ranges of porosity and permeability, creating zones with different reservoir quality and flow properties. This research addresses how seismic technology can be used ...

  1. Modeling of Seismic Signatures of Carbonate Rock Types

    E-Print Network [OSTI]

    Jan, Badr H.

    2011-02-22T23:59:59.000Z

    Carbonate reservoirs of different rock types have wide ranges of porosity and permeability, creating zones with different reservoir quality and flow properties. This research addresses how seismic technology can be used to identify different...

  2. Use of stratigraphic models as soft information to constrain stochastic modeling of rock properties: Development of the GSLIB-Lynx integration module

    SciTech Connect (OSTI)

    Cromer, M.V. [Spectra Research Inst., Albuquerque, NM (United States); Rautman, C.A. [Sandia National Labs., Albuquerque, NM (United States). Geohydrology Dept.

    1995-10-01T23:59:59.000Z

    Rock properties in volcanic units at Yucca Mountain are controlled largely by relatively deterministic geologic processes related to the emplacement, cooling, and alteration history of the tuffaceous lithologic sequence. Differences in the lithologic character of the rocks have been used to subdivide the rock sequence into stratigraphic units, and the deterministic nature of the processes responsible for the character of the different units can be used to infer the rock material properties likely to exist in unsampled regions. This report proposes a quantitative, theoretically justified method of integrating interpretive geometric models, showing the three-dimensional distribution of different stratigraphic units, with numerical stochastic simulation techniques drawn from geostatistics. This integration of soft, constraining geologic information with hard, quantitative measurements of various material properties can produce geologically reasonable, spatially correlated models of rock properties that are free from stochastic artifacts for use in subsequent physical-process modeling, such as the numerical representation of ground-water flow and radionuclide transport. Prototype modeling conducted using the GSLIB-Lynx Integration Module computer program, known as GLINTMOD, has successfully demonstrated the proposed integration technique. The method involves the selection of stratigraphic-unit-specific material-property expected values that are then used to constrain the probability function from which a material property of interest at an unsampled location is simulated.

  3. A rock physics strategy for quantifying uncertainty in common hydrocarbon indicators

    SciTech Connect (OSTI)

    Mavko, G.M.; Mukerji, T.

    1995-12-31T23:59:59.000Z

    We present a strategy for hydrocarbon detection and for quantifying the uncertainty in hydrocarbon indicators, by combining statistical techniques with deterministic rock physics relations derived from the laboratory and theory. A simple example combines Gassmann`s deterministic equation for fluid substitution with statistics inferred from log and core data, to detect hydrocarbons from observed seismic velocities. The formulation gives the most likely estimate of the pore fluid modulus, corresponding to each observed velocity, and also the uncertainty of that interpretation. The variances of seismic velocity and porosity in the calibration data determine the uncertainty of the pore fluid interpretation. As expected, adding information about shear wave velocity, from AVO for example, narrows the uncertainty of the hydrocarbon indicator. The formulation offers a convenient way to implement deterministic fluid substitution equations in the realistic case when the reference porosity and velocity span a range of values.

  4. A fibre optic sensor for the in situ determination of rock physical properties

    E-Print Network [OSTI]

    Reinsch, Thomas; Milsch, Harald; Bremer, Kort; Lewis, Elfed; Leen, Gabriel; Lochmann, Steffen; 10.1016/j.ijrmms.2012.06.011

    2012-01-01T23:59:59.000Z

    To understand the behaviour of rocks under changing load or temperature conditions, the determination of physical parameters like pore pressure or temperature within the pore space is essential. Within this study, the implementation of a novel fibre optic point sensor for pressure and temperature determination into a high pressure / high temperature triaxial cell is presented. For the first time, pressure was measured directly within the pore space of a Flechtinger sandstone specimen during a hydrostatic compression test at up to 70 MPa. The sensor used within this study consists of a miniature all-silica fibre optic Extrinsic Fabry-Perot Interferometer (EFPI) sensor which has an embedded Fibre Bragg Grating (FBG) reference sensor element to determine temperature and pressure directly at the point of measurement.

  5. Preliminary validation of rock mass models by comparison to laboratory frictional sliding experiments

    SciTech Connect (OSTI)

    Sobolik, S.R.; Miller, J.D.

    1996-09-01T23:59:59.000Z

    The U.S. Department of Energy`s (DOE) Yucca Mountain Site Characterization Project (YMP) is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization will be facilitated by the construction of an Exploratory Studies Facility (ESF). The ESF and potential repository will be excavated from both nonwelded and welded ashflow tuff with varying rock quality (degree of welding, rock mass strength, etc.) and fault and fracture characteristics. Design concerns for the construction of these facilities include the integrity of the structure during underground testing operations and, if it occurs, the emplacement and storage of high-level nuclear waste which could increase the local temperatures in the underground rock mass to as high as 300{degrees}C. Because of the associated issues regarding personnel and long-term environmental safety, sophisticated jointed rock mass models will be required to provide a high degree of confidence for decisions regarding the design, site characterization, and licensing of such facilities. The objective of the work documented in this report is to perform code validation calculations for three rock-mass computer models. The three rock-mass computer models used for this report are the discrete element code UDEC, Version 1.82; and the finite element continuum joint models JAC2D Version 5.10 and JAS3D Version 1.1. The rock mass behavior predicted by the models are compared to the results of laboratory experiments on layered polycarbonate (Lexan) and granite plate experiments. These experiments examine the rock mass behavior of well-defined jointed rock structures or models of jointed structures under uniaxial and biaxial loading. The laboratory environment allows control over the boundary conditions, material properties, and quality and quantity of the data obtained.

  6. Probabilistic Seismic Demand Model and Fragility Estimates for Symmetric Rigid Blocks Subject to Rocking Motions

    E-Print Network [OSTI]

    Bakhtiary, Esmaeel

    2013-01-15T23:59:59.000Z

    This thesis presents a probability model to predict the maximum rotation of rocking bodies exposed to seismic excitations given specific earthquake intensity measures. After obtaining the nonlinear equations of motion and clarification...

  7. Numerical and analytical modeling of heat transfer between fluid and fractured rocks

    E-Print Network [OSTI]

    Li, Wei, S.M. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Modeling of heat transfer between fluid and fractured rocks is of particular importance for energy extraction analysis in EGS, and therefore represents a critical component of EGS design and performance evaluation. In ...

  8. Predicting flow through low-permeability, partially saturated, fractured rock: A review of modeling and experimental efforts at Yucca Mountain

    SciTech Connect (OSTI)

    Eaton, R.R.; Bixler, N.E.; Glass, R.J.

    1989-11-01T23:59:59.000Z

    Current interest in storing high-level nuclear waste in underground repositories has resulted in an increased effort to understand the physics of water flow through low-permeability rock. The US Department of Energy is investigating a prospective repository site located in volcanic ash (tuff) hundreds of meters above the water table at Yucca Mountain, Nevada. Consequently, mathematical models and experimental procedures are being developed to provide a better understanding of the hydrology of this low-permeability, partially saturated, fractured rock. Modeling water flow in the vadose zone in soils and in relatively permeable rocks such as sandstone has received considerable attention for many years. The treatment of flow (including nonisothermal conditions) through materials such as the Yucca Mountain tuffs, however, has not received the same level of attention, primarily because it is outside the domain of agricultural and petroleum technology. This paper reviews the status of modeling and experimentation currently being used to understand and predict water flow at the proposed repository site. Several areas of research needs emphasized by the review are outlined. The extremely nonlinear hydraulic properties of these tuffs in combination with their heterogeneous nature makes it a challenging and unique problem from a computational and experimental view point. 101 refs., 14 figs., 1 tab.

  9. Modeling of Damage, Permeability Changes and Pressure Responses during Excavation of the TSX Tunnel in Granitic Rock at URL, Canada

    E-Print Network [OSTI]

    Rutqvist, Jonny

    2009-01-01T23:59:59.000Z

    in Granitic Rock at URL, Canada Jonny Rutqvist 1* , LennartSafety Commission, Ottawa, Canada * Corresponding author.laboratory (URL) in Canada. Four different numerical models

  10. Modelling by homogenization of the long term rock dissolution and geomechanical effects

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Modelling by homogenization of the long term rock dissolution and geomechanical effects Jolanta modifications of the hydrodynamical as well as geomechanical properties of the reservoir. The long-term safety the modelling of long term geomechanical effects related to CO2 storage are proposed. Of special interest

  11. Mechanical defradation of Emplacement Drifts at Yucca Mountain- A Modeling Case Study. Part I: Nonlithophysal Rock

    SciTech Connect (OSTI)

    M. Lin; D. Kicker; B. Damjanac; M. Board; M. Karakouzian

    2006-07-05T23:59:59.000Z

    This paper outlines rock mechanics investigations associated with mechanical degradation of planned emplacement drifts at Yucca Mountain, which is the designated site for the proposed U.S. high-level nuclear waste repository. The factors leading to drift degradation include stresses from the overburden, stresses induced by the heat released from the emplaced waste, stresses due to seismically related ground motions, and time-dependent strength degradation. The welded tuff emplacement horizon consists of two groups of rock with distinct engineering properties: nonlithophysal units and lithophysal units, based on the relative proportion of lithophysal cavities. The term 'lithophysal' refers to hollow, bubble like cavities in volcanic rock that are surrounded by a porous rim formed by fine-grained alkali feldspar, quartz, and other minerals. Lithophysae are typically a few centimeters to a few decimeters in diameter. Part I of the paper concentrates on the generally hard, strong, and fractured nonlithophysal rock. The degradation behavior of the tunnels in the nonlithophysal rock is controlled by the occurrence of keyblocks. A statistically equivalent fracture model was generated based on extensive underground fracture mapping data from the Exploratory Studies Facility at Yucca Mountain. Three-dimensional distinct block analyses, generated with the fracture patterns randomly selected from the fracture model, were developed with the consideration of in situ, thermal, and seismic loads. In this study, field data, laboratory data, and numerical analyses are well integrated to provide a solution for the unique problem of modeling drift degradation.

  12. Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling

    SciTech Connect (OSTI)

    Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.

    2009-01-15T23:59:59.000Z

    A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.

  13. Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling

    E-Print Network [OSTI]

    Mukhopadhyay, S.

    2009-01-01T23:59:59.000Z

    have assumed the same rock properties for the entire packed-earlier, among the rock properties (permeability, porosity,However, these are not rock properties and are constrained

  14. An Integrated Modeling Analysis of Unsaturated Flow Patterns in Fractured Rock

    E-Print Network [OSTI]

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

    2008-01-01T23:59:59.000Z

    because large contrasts in rock properties exist across thetransitional changes in rock properties argues that lateralthe distribution of rock properties within different units.

  15. Physically-based demand modeling 

    E-Print Network [OSTI]

    Calloway, Terry Marshall

    1980-01-01T23:59:59.000Z

    Transactions on Automatic Control, vol. AC-19, December 1974, pp. 887-893. L3] |4] LS] [6] [7] LB] C. W. Brice and S. K. Jones, MPhysically-Based Demand Modeling, d EC-77-5-01-5057, RF 3673, Electric Power Institute, Texas A&M University, October 1978.... C. W. Br ice and 5, K, Jones, MStochastically-Based Physical Load Models Topical Report, " EC-77-5-01-5057, RF 3673, Electric Power Institute, Texas A&M University, May 1979. S. K. Jones and C. W. Brice, "Point Process Models for Power System...

  16. Variation in physical rock properties determined from sonic logs at a South Texas lignite mine

    E-Print Network [OSTI]

    Cato, Kerry Don

    1985-01-01T23:59:59.000Z

    or underburden units which were identified as potential problem units. S1gn1ficance of Study In the planning and design of a Gulf Coast lignite mi ne, a need exists to deter nine the variability of phys1cal rock properties within strati graphic units...VARIATION IN PHVSICAL ROCK PROPERTIES DETERMINED FROM SONIC LOGS AT A SOUTH TEXAS LIGNITE MINE A Thesis by KERRV OON CATO Submitted to the Graduate College of Texas A&M University in Partial fulfillment of the requirements for the degree...

  17. Petrology and micromechanics of experimentally deformed natural rock salt: Physical processes: Topical report

    SciTech Connect (OSTI)

    Hansen, F.D.

    1987-09-01T23:59:59.000Z

    Effects of impurities and microprocesses on the creep of natural salt samples are presented. Salts are analyzed from four sites (Palo Duro Unit 4 and Palo Duro Unit 5, Texas; Avery Island, Louisiana; and Salina Basin, Michigan). The salts have been deformed at temperatures and pressures that simulate repository conditions. Bulk chemistry, optical petrology, and microprobe analyses are used to identify the species and to quantify the amount of each impurity. General effects of impurities on the rheology of natural salt are discussed. The physical processes that control creep deformation of salt are identified by etchpit techniques. The nature of desolation motion which controls the creep behavior of salt changes dramatically over the temperature range of 25 to 200/degree/C. Physical bases for constitutive modeling are established through observations documented in this report. Composition of the salts range from nearly pure, uniform halite to a heterogeneous composite of halite and anhydrite. Impurities evidently increase creep resistance at lower test temperatures. At higher test temperatures, creep deformation is much less sensitive to the presence of impurities. Anhydrite is the only mineral species that correlates strongly with creep response. Generally, greater amounts of anhydrite increase the creep resistance. 13 refs., 11 figs., 12 tabs.

  18. Laboratory measurements of frictional slip on interfaces in a polycarbonate rock mass model

    SciTech Connect (OSTI)

    Brown, S.R. [Sandia National Labs., Albuquerque, NM (United States). Geomechanics Dept.

    1994-08-01T23:59:59.000Z

    The evaluation of the stability of the openings for the Exploratory Studies Facility and a potential repository for high-level nuclear waste at Yucca Mountain, Nevada will require computer codes capable of predicting slip on rock joints resulting from changes in thermal stresses. The geometrical method of analysis of moire fringe analysis was used to evaluate the magnitude and extent of frictional sliding in a layered polycarbonate rock mass model containing a circular hole. Slips were observed in confined zones around the hole and micron resolutions were obtained. Unpredicted and uncontrolled uniform slip of several interfaces in the model were observed giving considerable uncertainty in the boundary conditions of the model, perhaps making detailed comparison with numerical models impossible.

  19. Stimulation Techniques Used In Enhanced Geothermal Systems: Perspectives From Geomechanics and Rock Physics

    SciTech Connect (OSTI)

    Stephen L. Karner; Joel Renner

    2005-01-01T23:59:59.000Z

    Understanding the processes that enhance fluid flow in crustal rocks is a key step towards extracting sustainable thermal energy from the Earth. To achieve this, geoscientists need to identify the fundamental parameters that govern how rocks respond to stimulation techniques, as well as the factors that control the evolution of permeability networks. These parameters must be assessed over variety of spatial scales: from microscopic rock properties (such as petrologic, mechanical, and diagenetic characteristics) to macroscopic crustal behavior (such as tectonic and hydro-dynamic properties). Furthermore, these factors must be suitably monitored and/or characterized over a range of temporal scales before the evolutionary behavior of geothermal fields can be properly assessed. I am reviewing the procedures currently employed for reservoir stimulation of geothermal fields. The techniques are analyzed in the context of the petrophysical characteristics of reservoir lithologies, studies of wellbore data, and research on regional crustal properties. I determine common features of geothermal fields that can be correlated to spatiotemporal evolution of reservoirs, with particular attention to geomechanics and petrophysical properties. The study of these correlations can then help guide procedures employed when targeting new prospective geothermal resources.

  20. Final Report - Advanced Conceptual Models for Unsaturated and Two-Phase Flow in Fractured Rock

    SciTech Connect (OSTI)

    Nicholl, Michael J.

    2006-07-10T23:59:59.000Z

    The Department of Energy Environmental Management Program is faced with two major issues involving two-phase flow in fractured rock; specifically, transport of dissolved contaminants in the Vadose Zone, and the fate of Dense Nonaqueous Phase Liquids (DNAPLs) below the water table. Conceptual models currently used to address these problems do not correctly include the influence of the fractures, thus leading to erroneous predictions. Recent work has shown that it is crucial to understand the topology, or ''structure'' of the fluid phases (air/water or water/DNAPL) within the subsurface. It has also been shown that even under steady boundary conditions, the influence of fractures can lead to complex and dynamic phase structure that controls system behavior, with or without the presence of a porous rock matrix. Complicated phase structures within the fracture network can facilitate rapid transport, and lead to a sparsely populated and widespread distribution of concentrated contaminants; these qualities are highly difficult to describe with current conceptual models. The focus of our work is to improve predictive modeling through the development of advanced conceptual models for two-phase flow in fractured rock.

  1. Soft-ratchet modeling of end-point memory in the nonlinear resonant response of sedimentary rocks

    E-Print Network [OSTI]

    Soft-ratchet modeling of end-point memory in the nonlinear resonant response of sedimentary rocks. The subsystem of ruptured bonds is shown to be of a soft-ratchet type, so that its response to an alternating

  2. Fractured rock modeling in the National Waste Terminal Storage Program: a review of requirements and status

    SciTech Connect (OSTI)

    St. John, C.; Krug, A.; Key, S.; Monsees, J.

    1983-05-01T23:59:59.000Z

    Generalized computer codes capable of forming the basis for numerical models of fractured rock masses are being used within the NWTS program. Little additional development of these codes is considered justifiable, except in the area of representation of discrete fractures. On the other hand, model preparation requires definition of medium-specific constitutive descriptions and site characteristics and is therefore legitimately conducted by each of the media-oriented projects within the National Waste Terminal Storage program. However, it is essential that a uniform approach to the role of numerical modeling be adopted, including agreement upon the contribution of modeling to the design and licensing process and the need for, and means of, model qualification for particular purposes. This report discusses the role of numerical modeling, reviews the capabilities of several computer codes that are being used to support design or performance assessment, and proposes a framework for future numerical modeling activities within the NWTS program.

  3. Actualistic and Geochemical Modeling of Reservoir Rock, CO2 and Formation Fluid Interaction, Citronelle Oil Field, Alabama

    SciTech Connect (OSTI)

    Weislogel, Amy

    2014-01-31T23:59:59.000Z

    This report includes description of the Citronelle field study area and the work carried out in the project to characterize the geology and composition of reservoir rock material and to collect an analyze the geochemical composition of produced fluid waters from the Citronelle field. Reservoir rock samples collected from well bore core were made into thin-sections and assessed for textural properties, including pore types and porosity distribution. Compositional framework grain modal data were collected via point-counting, and grain and cement mineralogy was assessed using SEM-EDS. Geochemistry of fluid samples is described and modeled using PHREEQC. Composition of rock and produced fluids were used as inputs for TOUGHREACT reactive transport modeling, which determined the rock-fluid system was in disequilibrium.

  4. Modeling of thermally driven hydrological processes in partially saturated fractured rock

    SciTech Connect (OSTI)

    Tsang, Yvonne; Birkholzer, Jens; Mukhopadhyay, Sumit

    2009-03-15T23:59:59.000Z

    This paper is a review of the research that led to an in-depth understanding of flow and transport processes under strong heat stimulation in fractured, porous rock. It first describes the anticipated multiple processes that come into play in a partially saturated, fractured porous volcanic tuff geological formation, when it is subject to a heat source such as that originating from the decay of radionuclides. The rationale is then given for numerical modeling being a key element in the study of multiple processes that are coupled. The paper outlines how the conceptualization and the numerical modeling of the problem evolved, progressing from the simplified to the more realistic. Examples of numerical models are presented so as to illustrate the advancement and maturation of the research over the last two decades. The most recent model applied to in situ field thermal tests is characterized by (1) incorporation of a full set of thermal-hydrological processes into a numerical simulator, (2) realistic representation of the field test geometry, in three dimensions, and (3) use of site-specific characterization data for model inputs. Model predictions were carried out prior to initiation of data collection, and the model results were compared to diverse sets of measurements. The approach of close integration between modeling and field measurements has yielded a better understanding of how coupled thermal hydrological processes produce redistribution of moisture within the rock, which affects local permeability values and subsequently the flow of liquid and gases. The fluid flow in turn will change the temperature field. We end with a note on future research opportunities, specifically those incorporating chemical, mechanical, and microbiological factors into the study of thermal and hydrological processes.

  5. Physics Beyond the Standard Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysics Physics Our science answersPhysics

  6. Sandia National Laboratories: Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from improved climate models to performance models for underground waste storage to 3D printing and digital rock physics. Marianne Walck (Director ... Sandia Team Attends World...

  7. Modeling of thermally driven hydrological processes in partially saturated fractured rock

    E-Print Network [OSTI]

    Tsang, Yvonne

    2010-01-01T23:59:59.000Z

    the heat source and encounters cooler rock, it condenses,fractured rock near the radioactive-decay heat source isrock, giving rise to a reflux of liquid back to the heat source.

  8. Transport and seismoelectric properties of porous permeable rock : numerical modeling and laboratory measurements

    E-Print Network [OSTI]

    Zhan, Xin, Ph. D. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    The objective of this thesis is to better understand the transport and seismoelectric (SE) properties of porous permeable rock. Accurate information of rock transport properties, together with pore geometry, can aid us to ...

  9. Multi-physics modeling of thermoelectric generators for waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    physics modeling of thermoelectric generators for waste heat recovery applications Multi-physics modeling of thermoelectric generators for waste heat recovery applications Model...

  10. Elements of fractal generalization of dual-porosity model for solute transport in unsaturated fractured rocks

    SciTech Connect (OSTI)

    Bolshov, L.; Kondratenko, P.; Matveev, L.; Pruess, K.

    2008-09-01T23:59:59.000Z

    In this study, new elements were developed to generalize the dual-porosity model for moisture infiltration on and solute transport in unsaturated rocks, taking into account fractal aspects of the percolation process. Random advection was considered as a basic mechanism of solute transport in self-similar fracture systems. In addition to spatial variations in the infiltration velocity field, temporal fluctuations were also taken into account. The rock matrix, a low-permeability component of the heterogeneous geologic medium, acts as a trap for solute particles and moisture. Scaling relations were derived for the moisture infiltration flux, the velocity correlation length, the average velocity of infiltration, and the velocity correlation function. The effect of temporal variations in precipitation intensity on the infiltration processes was analyzed. It showed that the mode of solute transport is determined by the power exponent in the advection velocity correlation function and the dimensionality of the trapping system, both of which may change with time. Therefore, depending on time, various transport regimes may be realized: superdiffusion, subdiffusion, or classical diffusion. The complex structure of breakthrough curves from changes in the transport regimes was also examined. A renormalization of the solute source strength due to characteristic fluctuations of highly disordered media was established.

  11. Development of Chemical Model to Predict the Interactions between Supercritical CO2and Fluid, and Rocks in EGS Reservoirs

    Broader source: Energy.gov [DOE]

    This project will develop a chemical model, based on existing models and databases, that is capable of simulating chemical reactions between supercritical (SC) CO2 and Enhanced Geothermal System (EGS) reservoir rocks of various compositions in aqueous, non-aqueous and 2-phase environments.

  12. Thermomechanical repository and shaft response analyses using the CAVS (Cracking And Void Strain) jointed rock model: Draft final report

    SciTech Connect (OSTI)

    Dial, B.W.; Maxwell, D.E.

    1986-12-01T23:59:59.000Z

    Numerical studies of the far-field repository and near-field shaft response for a nuclear waste repository in bedded salt have been performed with the STEALTH computer code using the CAVS model for jointed rock. CAVS is a constitutive model that can simulate the slip and dilatancy of fracture planes in a jointed rock mass. The initiation and/or propagation of fractures can also be modeled when stress intensity criteria are met. The CAVS models are based on the joint models proposed with appropriate modifications for numerical simulations. The STEALTH/CAVS model has been previously used to model (1) explosive fracturing of a wellbore, (2) earthquake effects on tunnels in a generic nuclear waste repository, (3) horizontal emplacement for a nuclear waste repository in jointed granite, and (4) tunnel response in jointed rock. The use of CAVS to model far-field repository and near-field shaft response was different from previous approaches because it represented a spatially oriented approach to rock response and failure, rather than the traditional stress invariant formulation for yielding. In addition, CAVS tracked the response of the joint apertures to the time-dependent stress changes in the far-field repository and near-field shaft regions. 28 refs., 21 figs., 11 tabs.

  13. MODELING COUPLED PROCESSES OF MULTIPHASE FLOW AND HEAT TRANSFER IN UNSATURATED FRACTURED ROCK

    SciTech Connect (OSTI)

    Y. Wu; S. Mukhopadhyay; K. Zhang; G.S. Bodvarsson

    2006-02-28T23:59:59.000Z

    A mountain-scale, thermal-hydrologic (TH) numerical model is developed for investigating unsaturated flow behavior in response to decay heat from the radioactive waste repository at Yucca Mountain, Nevada, USA. The TH model, consisting of three-dimensional (3-D) representations of the unsaturated zone, is based on the current repository design, drift layout, and thermal loading scenario under estimated current and future climate conditions. More specifically, the TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the most updated, best-estimated input parameters. This mountain-scale TH model simulates the coupled TH processes related to mountain-scale multiphase fluid flow, and evaluates the impact of radioactive waste heat on the hydrogeological system, including thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. For a better description of the ambient geothermal condition of the unsaturated zone system, the TH model is first calibrated against measured borehole temperature data. The ambient temperature calibration provides the necessary surface and water table boundary as well as initial conditions. Then, the TH model is used to obtain scientific understanding of TH processes in the Yucca Mountain unsaturated zone under the designed schedule of repository thermal load.

  14. Advanced Computing Tools and Models for Accelerator Physics

    E-Print Network [OSTI]

    Ryne, Robert D.

    2008-01-01T23:59:59.000Z

    TOOLS AND MODELS FOR ACCELERATOR PHYSICS * Robert D. Ryne,computing tools for accelerator physics. Following anscale computing in accelerator physics. INTRODUCTION To

  15. Effects of burial history, rock ductility and recovery magnitude on inversion of normal faulted strata

    E-Print Network [OSTI]

    Kuhle, Nathan John

    2001-01-01T23:59:59.000Z

    Inversion of normal faults at different burial depths is studied using physical models constructed with rock and deformed at confining pressure. Models consist of a 1 cm thick limestone layer above a fault dipping 70° in a rigid medium...

  16. The effects of gas-fluid-rock interactions on CO2 injection and storage: Insights from reactive transport modeling

    SciTech Connect (OSTI)

    Xiao, Y.; Xu, T.; Pruess, K.

    2008-10-15T23:59:59.000Z

    Possible means of reducing atmospheric CO{sub 2} emissions include injecting CO{sub 2} in petroleum reservoirs for Enhanced Oil Recovery or storing CO{sub 2} in deep saline aquifers. Large-scale injection of CO{sub 2} into subsurface reservoirs would induce a complex interplay of multiphase flow, capillary trapping, dissolution, diffusion, convection, and chemical reactions that may have significant impacts on both short-term injection performance and long-term fate of CO{sub 2} storage. Reactive Transport Modeling is a promising approach that can be used to predict the spatial and temporal evolution of injected CO{sub 2} and associated gas-fluid-rock interactions. This presentation will summarize recent advances in reactive transport modeling of CO{sub 2} storage and review key technical issues on (1) the short- and long-term behavior of injected CO{sub 2} in geological formations; (2) the role of reservoir mineral heterogeneity on injection performance and storage security; (3) the effect of gas mixtures (e.g., H{sub 2}S and SO{sub 2}) on CO{sub 2} storage; and (4) the physical and chemical processes during potential leakage of CO{sub 2} from the primary storage reservoir. Simulation results suggest that CO{sub 2} trapping capacity, rate, and impact on reservoir rocks depend on primary mineral composition and injecting gas mixtures. For example, models predict that the injection of CO{sub 2} alone or co-injection with H{sub 2}S in both sandstone and carbonate reservoirs lead to acidified zones and mineral dissolution adjacent to the injection well, and carbonate precipitation and mineral trapping away from the well. Co-injection of CO{sub 2} with H{sub 2}S and in particular with SO{sub 2} causes greater formation alteration and complex sulfur mineral (alunite, anhydrite, and pyrite) trapping, sometimes at a much faster rate than previously thought. The results from Reactive Transport Modeling provide valuable insights for analyzing and assessing the dynamic behaviors of injected CO{sub 2}, identifying and characterizing potential storage sites, and managing injection performance and reducing costs.

  17. Modeling added compressibility of porosity and the thermomechanical response of wet porous rock

    SciTech Connect (OSTI)

    Rubin, M.B.; Elata, D.; Attia, A.V.

    1995-06-01T23:59:59.000Z

    This paper concerned with modeling the response of a porous brittle solid whose pores may be dry or partially filled with fluid. A form for the Helmholtz free energy is proposed which incorporated known Mie-Grueneisen constitutive equations for the nonporous solid and for the fluid, and which uses an Eilnstein formulation with variable specific heat. In addition, a functional form for porosity is postulated which porous rock. Restrictions on constitutive assumptions for the composite of porous solid ad fluid are obtained which ensure thermodynamic consistency. Examples show that although the added compressibility of porosity is determined by fitting data for dry Mt. Helen Tuff, the predicted responses of saturated and partially saturated tuff agree well with experimental data.

  18. Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock

    E-Print Network [OSTI]

    Liu, H.H.

    2012-01-01T23:59:59.000Z

    hydraulic rock properties 25  a variety of rock properties and their relationships to flowmechanical and/or hydraulic rock properties. The theoretical

  19. Sandia National Laboratories: Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from improved climate models to performance models for underground waste storage to 3D printing and digital rock physics. Marianne Walck (Director ... NASA Award for Marginal...

  20. Geological Attributes from Conventional Well Logs: Relating Rock Types to Depositional Facies in Deepwater Turbidite Reservoirs

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    SPE 166178 Geological Attributes from Conventional Well Logs: Relating Rock Types to Depositional. The objective of this paper is to quantitatively classify rock and bed types based on conventional well logs to assist facies interpretation and stratigraphic reservoir modeling. We model physical properties and well

  1. On White's model of attenuation in rocks with partial gas saturation

    E-Print Network [OSTI]

    Dutta, N. C.; Seriff, A. J.

    approximate theory for the calculation of attenuation and dispersion of compressional seismic waves in porous rocks filled mostly with brine but containing ...

  2. MODELING SECURITY IN CYBER-PHYSICAL SYSTEMS

    E-Print Network [OSTI]

    Burmester, Mike

    network at the Davis-Besse nuclear power plant in Oak Harbor, Ohio, was infected [39]. There have been the behavior of the adversary is controlled by a threat model that captures both the cyber aspects (with-physical systems, threat models, protocols for treaty verification. 1. Introduction The rapid growth of information

  3. THERMO-HYDRO-MECHANICAL MODELING OF WORKING FLUID INJECTION AND THERMAL ENERGY EXTRACTION IN EGS FRACTURES AND ROCK MATRIX

    SciTech Connect (OSTI)

    Robert Podgorney; Chuan Lu; Hai Huang

    2012-01-01T23:59:59.000Z

    Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing), to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid-heat system and our ability to reliably predict how reservoirs behave under stimulation and production. Reliable performance predictions of EGS reservoirs require accurate and robust modeling for strongly coupled thermal-hydrological-mechanical (THM) processes. Conventionally, these types of problems have been solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulators with a solid mechanics simulator via input files. An alternative approach is to solve the system of nonlinear partial differential equations that govern multiphase fluid flow, heat transport, and rock mechanics simultaneously, using a fully coupled, fully implicit solution procedure, in which all solution variables (pressure, enthalpy, and rock displacement fields) are solved simultaneously. This paper describes numerical simulations used to investigate the poro- and thermal- elastic effects of working fluid injection and thermal energy extraction on the properties of the fractures and rock matrix of a hypothetical EGS reservoir, using a novel simulation software FALCON (Podgorney et al., 2011), a finite element based simulator solving fully coupled multiphase fluid flow, heat transport, rock deformation, and fracturing using a global implicit approach. Investigations are also conducted on how these poro- and thermal-elastic effects are related to fracture permeability evolution.

  4. PS-wave moveout inversion for tilted TI media: A physical-modeling study Pawan Dewangan and Ilya Tsvankin , Center for Wave Phenomena, Colorado School of Mines (CSM),

    E-Print Network [OSTI]

    PS-wave moveout inversion for tilted TI media: A physical-modeling study Pawan Dewangan and Ilya Tsvankin , Center for Wave Phenomena, Colorado School of Mines (CSM), Mike Batzle, Center for Rock Abuse, CSM, Kasper van Wijk, Physical Acoustics Laboratory, CSM, and Matt Haney, Center for Wave Phenomena

  5. Review of Some Promising Fractional Physical Models

    E-Print Network [OSTI]

    Vasily E. Tarasov

    2015-02-14T23:59:59.000Z

    Fractional dynamics is a field of study in physics and mechanics investigating the behavior of objects and systems that are characterized by power-law non-locality, power-law long-term memory or fractal properties by using integrations and differentiation of non-integer orders, i.e., by methods of the fractional calculus. This paper is a review of physical models that look very promising for future development of fractional dynamics. We suggest a short introduction to fractional calculus as a theory of integration and differentiation of non-integer order. Some applications of integro-differentiations of fractional orders in physics are discussed. Models of discrete systems with memory, lattice with long-range inter-particle interaction, dynamics of fractal media are presented. Quantum analogs of fractional derivatives and model of open nano-system systems with memory are also discussed.

  6. Rock Art

    E-Print Network [OSTI]

    Huyge, Dirk

    2009-01-01T23:59:59.000Z

    The archaeology of early Egypt: Social transformations inAlexander 1938 Rock-drawings of southern Upper Egypt. Vol.1. London: The Egypt Exploration Society. 1939 Rock-drawings

  7. Physical layer model design for wireless networks 

    E-Print Network [OSTI]

    Yu, Yi

    2009-06-02T23:59:59.000Z

    the relationship between wireless protocol design and physical layer models, it is necessary to first comprehend the network architecture, which groups the communication functions into related and manageable layers. The journal model is IEEE Transactions... data to the network format and vice versa. It is intended to provide independence from different represen- tations of application layer data. The session layer deals with sessions and connections between applications. It manages conversations between...

  8. Mental Models of Physical Mechanisms and Their

    E-Print Network [OSTI]

    de Kleer, Johan

    is that of mechanistic devices, including physical machines, electronic and hydraulic systems, and even hybrids such as electro--mechanical systems. Our top-level goals are: (1) to investigate what it means for a person to understand a complex system, in particular, the mental models that experts form of how a system functions

  9. Dilution physics modeling: Dissolution/precipitation chemistry

    SciTech Connect (OSTI)

    Onishi, Y.; Reid, H.C.; Trent, D.S.

    1995-09-01T23:59:59.000Z

    This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affect safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics.

  10. Physics-Based Mathematical Models for Nanotechnology

    E-Print Network [OSTI]

    Melnik, Roderick

    Physics-Based Mathematical Models for Nanotechnology 2008 J. Phys.: Conf. Ser. 107, 011001, doi: 10 for their excellent support during the workshop. Nanotechnology is the study and application of phenomena at or below. This workshop put strong emphasis on discussions of the new mathematics needed in nanotechnology especially

  11. End-to-End Models for Effects of System Noise on LIMS Analysis of Igneous Rocks

    SciTech Connect (OSTI)

    Clegg, Samuel M [Los Alamos National Laboratory; Bender, Steven [Los Alamos National Laboratory; Wiens, R. C. [Los Alamos National Laboratory; Carmosino, Marco L [MT. HOLYOKE COLLEGE; Speicher, Elly A [MT. HOLYOKE COLLEGE; Dyar, M. D. [MT. HOLYOKE COLLEGE

    2010-12-23T23:59:59.000Z

    The ChemCam instrument on the Mars Science Laboratory will be the first extraterrestial deployment of laser-induced breakdown spectroscopy (UBS) for remote geochemical analysis. LIBS instruments are also being proposed for future NASA missions. In quantitative LIBS applications using multivariate analysis techniques, it is essential to understand the effects of key instrument parameters and their variability on the elemental predictions. Baseline experiments were run on a laboratory instrument in conditions reproducing ChemCam performance on Mars. These experiments employed Nd:YAG laser producing 17 mJ/pulse on target and an with a 200 {micro}m FWHM spot size on the surface of a sample. The emission is collected by a telescope, imaged on a fiber optic and then interfaced to a demultiplexer capable of >40% transmission into each spectrometer. We report here on an integrated end-to-end system performance model that simulates the effects of output signal degradation that might result from the input signal chain and the impact on multivariate model predictions. There are two approaches to modifying signal to noise (SNR): degrade the signal and/or increase the noise. Ishibashi used a much smaller data set to show that the addition of noise had significant impact while degradation of spectral resolution had much less impact on accuracy and precision. Here, we specifically focus on aspects of remote LIBS instrument performance as they relate to various types of signal degradation. To assess the sensitivity of LIBS analysis to signal-to-noise ratio (SNR) and spectral resolution, the signal in each spectrum from a suite of 50 laboratory spectra of igneous rocks was variably degraded by increasing the peak widths (simulating misalignment) and decreasing the spectral amplitude (simulating decreases in SNR).

  12. Searches for physics beyond the standard model

    SciTech Connect (OSTI)

    Julie Roche, Willem T H van Oers, Ross D Young

    2011-06-01T23:59:59.000Z

    Jefferson Lab has now demonstrated ablility to test the fundamental symmetries of nature, and thereby probe for new physics beyond the Standard Model. Here we review the tremendous advances in precision parity-violation measurements with CEBAF that enable searches for new physics. This has been demonstrated with a determination of the weak charge of the proton, which is found to be in agreement with the prediction of the standard electroweak theory, and at a precision that rules out relevant new physics to the TeV scale. We also review the planned future experiments which aim to further test the electroweak theory at Jefferson Lab, including a further improvement on the proton weak charge, an ultra-precise Møller measurement, and a probe of the axial quark charges in PVDIS.

  13. U.S. National Committee for Rock Mechanics; and Conceptual model of fluid infiltration in fractured media. Project summary, July 28, 1997--July 27, 1998

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    The title describes the two tasks summarized in this report. The remainder of the report contains information on meetings held or to be held on the subjects. The US National Committee for Rock Mechanics (USNC/RM) provides for US participation in international activities in rock mechanics, principally through adherence to the International Society for Rock Mechanics (ISRM). It also keeps the US rock mechanics community informed about new programs directed toward major areas of national concern in which rock mechanics problems represent critical or limiting factors, such as energy resources, excavation, underground storage and waste disposal, and reactor siting. The committee also guides or produces advisory studies and reports on problem areas in rock mechanics. A new panel under the auspices of the US National Committee for Rock Mechanics has been appointed to conduct a study on Conceptual Models of Fluid Infiltration in Fractured Media. The study has health and environmental applications related to the underground flow of pollutants through fractured rock in and around mines and waste repositories. Support of the study has been received from the US Nuclear Regulatory Commission and the Department of Energy`s Yucca Mountain Project Office. The new study builds on the success of a recent USNC/RM report entitled Rock Fractures and Fluid Flow: Contemporary Understanding and Applications (National Academy Press, 1996, 551 pp.). A summary of the new study is provided.

  14. Pore Fluid Effects on Shear Modulus in a Model of Heterogeneous Rocks, Reservoirs, and Granular Media

    SciTech Connect (OSTI)

    Berryman, J G

    2005-03-23T23:59:59.000Z

    To provide quantitative measures of the importance of fluid effects on shear waves in heterogeneous reservoirs, a model material called a ''random polycrystal of porous laminates'' is introduced. This model poroelastic material has constituent grains that are layered (or laminated), and each layer is an isotropic, microhomogeneous porous medium. All grains are composed of exactly the same porous constituents, and have the same relative volume fractions. The order of lamination is not important because the up-scaling method used to determine the transversely isotropic (hexagonal) properties of the grains is Backus averaging, which--for quasi-static or long-wavelength behavior--depends only on the volume fractions and layer properties. Grains are then jumbled together totally at random, filling all space, and producing an overall isotropic poroelastic medium. The poroelastic behavior of this medium is then analyzed using the Peselnick-Meister-Watt bounds (of Hashin-Shtrikman type). We study the dependence of the shear modulus on pore fluid properties and determine the range of behavior to be expected. In particular we compare and contrast these results to those anticipated from Gassmann's fluid substitution formulas, and to the predictions of Mavko and Jizba for very low porosity rocks with flat cracks. This approach also permits the study of arbitrary numbers of constituents, but for simplicity the numerical examples are restricted here to just two constituents. This restriction also permits the use of some special exact results available for computing the overall effective stress coefficient in any two-component porous medium. The bounds making use of polycrystalline microstructure are very tight. Results for the shear modulus demonstrate that the ratio of compliance differences R (i.e., shear compliance changes over bulk compliance changes when going from drained to undrained behavior, or vice versa) is usually nonzero and can take a wide range of values, both above and below the value R = 4/15 valid for low porosity, very low aspect ratio flat cracks. Results show the overall shear modulus in this model can depend relatively strongly on mechanical properties of the pore fluids, sometimes (but rarely) more strongly than the dependence of the overall bulk modulus on the fluids.

  15. Characterising and modelling the excavation damaged zone (EDZ) in crystalline rock in the context of radioactive waste disposal

    SciTech Connect (OSTI)

    Hudson, J.A.; Backstrom, A.; Rutqvist, J.; Jing, L.; Backers, T.; Chijimatsu, M.; Christiansson, R.; Feng, X.-T.; Kobayashi, A.; Koyama, T.; Lee, H.-S.; Neretnieks, I.; Pan, P.Z.; Rinne, M.; Shen, B.-T.

    2008-10-01T23:59:59.000Z

    This paper describes current knowledge about the nature of and potential for thermo-hydro-mechanical-chemical modelling of the Excavation Damaged Zone (EDZ) around the excavations for an underground radioactive waste repository. In the first part of the paper, the disturbances associated with excavation are explained, together with reviews of Workshops that have been held on the subject. In the second part of the paper, the results of a DECOVALEX research programme on modelling the EDZ are presented. Four research teams used four different models to simulate the complete stress-strain curve for Avro granite from the Swedish Aespoe Hard Rock Laboratory. Subsequent research extended the work to computer simulation of the evolution of the repository using a 'wall block model' and a 'near-field model'. This included assessing the evolution of stress, failure and permeability and time dependent effects during repository evolution. As discussed, all the computer models are well suited to sensitivity studies for evaluating the influence of their respective supporting parameters on the complete stress-strain curve for rock and for modelling the EDZ.

  16. Modelling effective permeability of fracture networks in permeable rock formation by

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    such as underground nuclear waste disposal in claystone, geological CO2 storage or hydrocabure reservoir in a fractured porous rock are used to investigate its effective permeability. If the far field inflow is uniform, the theoretical solution shows that the pressure field in the matrix is a function of the discharge

  17. Detailed Physical Trough Model for NREL's Solar Advisor Model: Preprint

    SciTech Connect (OSTI)

    Wagner, M. J.; Blair, N.; Dobos, A.

    2010-10-01T23:59:59.000Z

    Solar Advisor Model (SAM) is a free software package made available by the National Renewable Energy Laboratory (NREL), Sandia National Laboratory, and the US Department of Energy. SAM contains hourly system performance and economic models for concentrating solar power (CSP) systems, photovoltaic, solar hot-water, and generic fuel-use technologies. Versions of SAM prior to 2010 included only the parabolic trough model based on Excelergy. This model uses top-level empirical performance curves to characterize plant behavior, and thus is limited in predictive capability for new technologies or component configurations. To address this and other functionality challenges, a new trough model; derived from physical first principles was commissioned to supplement the Excelergy-based empirical model. This new 'physical model' approaches the task of characterizing the performance of the whole parabolic trough plant by replacing empirical curve-fit relationships with more detailed calculations where practical. The resulting model matches the annual performance of the SAM empirical model (which has been previously verified with plant data) while maintaining run-times compatible with parametric analysis, adding additional flexibility in modeled system configurations, and providing more detailed performance calculations in the solar field, power block, piping, and storage subsystems.

  18. Hazard investigation of the Portillo Rock Avalanche site, central Andes, Chile, using an integrated field mapping and numerical modelling approach

    E-Print Network [OSTI]

    be required to trigger another rockslide from the original source area. The rock slope was otherwise foundHazard investigation of the Portillo Rock Avalanche site, central Andes, Chile, using an integrated Chilean Andes This paper reports a detailed rock slope hazard investigation of the Portillo Rock Avalanche

  19. Sandia National Laboratories: multi-physics engineering modeling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    multi-physics engineering modeling and simulation Caterpillar, Sandia CRADA Opens Door to Multiple Research Projects On April 17, 2013, in Capabilities, Computational Modeling &...

  20. Physics-based models of the plasmasphere

    SciTech Connect (OSTI)

    Jordanova, Vania K [Los Alamos National Laboratory; Pierrard, Vivane [BELGIUM; Goldstein, Jerry [SWRI; Andr'e, Nicolas [ESTEC/ESA; Kotova, Galina A [SRI, RUSSIA; Lemaire, Joseph F [BELGIUM; Liemohn, Mike W [U OF MICHIGAN; Matsui, H [UNIV OF NEW HAMPSHIRE

    2008-01-01T23:59:59.000Z

    We describe recent progress in physics-based models of the plasmasphere using the Auid and the kinetic approaches. Global modeling of the dynamics and inAuence of the plasmasphere is presented. Results from global plasmasphere simulations are used to understand and quantify (i) the electric potential pattern and evolution during geomagnetic storms, and (ii) the inAuence of the plasmasphere on the excitation of electromagnetic ion cyclotron (ElvIIC) waves a.nd precipitation of energetic ions in the inner magnetosphere. The interactions of the plasmasphere with the ionosphere a.nd the other regions of the magnetosphere are pointed out. We show the results of simulations for the formation of the plasmapause and discuss the inAuence of plasmaspheric wind and of ultra low frequency (ULF) waves for transport of plasmaspheric material. Theoretical formulations used to model the electric field and plasma distribution in the plasmasphere are given. Model predictions are compared to recent CLUSTER and MAGE observations, but also to results of earlier models and satellite observations.

  1. Use of Physical Models to Facilitate Transfer of Physics Learning to Understand Positron Emission Tomography*

    E-Print Network [OSTI]

    Zollman, Dean

    interactive learning with the aid of physical models. Three different types of non-scaffolded transfer haveUse of Physical Models to Facilitate Transfer of Physics Learning to Understand Positron Emission, positron emission tomography, transfer of learning PACS: 01.40Fk Supported by the National Science

  2. Validation of hadron shower models using data from CALICE, The 2013 European Physical Society Conference on High Energy Physics

    E-Print Network [OSTI]

    Dannheim, D

    2015-01-01T23:59:59.000Z

    Validation of hadron shower models using data from CALICE, The 2013 European Physical Society Conference on High Energy Physics

  3. Evaluation of experimentally measured and model-calculated pH for rock-brine-CO2 systems under geologic CO2 sequestration conditions

    SciTech Connect (OSTI)

    Shao, Hongbo; Thompson, Christopher J.; Cantrell, Kirk J.

    2013-11-01T23:59:59.000Z

    pH is an essential parameter for understanding the geochemical reactions that occur in rock-brine-CO2 systems when CO2 is injected into deep geologic formations for long-term storage. Due to a lack of reliable experimental methods, most laboratory studies conducted under geological CO2 sequestration (GCS) conditions have relied on thermodynamic modeling to estimate pH. The accuracy of these model predictions is typically uncertain. In our previous work, we have developed a method for pH determination by in-situ spectrophotometry. In the present work, we expanded the applicable pH range for this method and measured the pH of several rock-brine-CO2 systems at GCS conditions for five rock samples collected from ongoing GCS demonstration projects. Experimental measurements were compared with pH values calculated using several geochemical modeling approaches. The effect of different thermodynamic databases on the accuracy of model prediction was evaluated. Results indicate that the accuracy of model calculations is rock-dependent. For rocks comprised of carbonate and sandstone, model results generally agreed well with experimentally measured pH; however, for basalt, significant differences were observed. These discrepancies may be due to the models’ failure to fully account for certain reaction occurring between the basalt minerals the CO2-saturated brine solutions.

  4. Physical space and cosmology. I: Model

    E-Print Network [OSTI]

    Valeriy P. Polulyakh

    2011-02-01T23:59:59.000Z

    The nature of the physical space seems the most important subject in physics. A present paper proceeds from the assumption of physical reality of space contrary to the standard view of the space as a purely relational nonexistence - void. The space and its evolution are the primary sources of phenomena in Mega- and micro-worlds. Thus cosmology and particle physics have the same active agent - physical space.

  5. GEOTECHNICAL ASSESSMENT AND INSTRUMENTATION NEEDS FOR NUCLEAR WASTE ISOLATION IN CRYSTALLINE AND ARGILLACEOUS ROCKS SYMPOSIUM

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    INSTRUMENTATION NEEDS FOR DETERMINING ROCK PROPERTIES..Acknowledgements • ROCK PROPERTIES Participant Listing.OF MODELING IN ROCK PROPERTIES EVALUATION AND APPLICATION. •

  6. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns

    E-Print Network [OSTI]

    Rutqvist, J.

    2013-01-01T23:59:59.000Z

    reservoir storage project in Sesta, Italy [1]; as well as two pilot tests in rock caverns associated with abandoned

  7. aspo hard rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  8. antarctic rocks colonized: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  9. algonquin class rocks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  10. acidic crystalline rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  11. aphanitic melt rocks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  12. aespoe hard rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  13. A model of the large hydraulic gradient at Yucca Mountain, Nevada Test Site, based on hydraulic conductivity contrasts between Cenozoic and Paleozoic rocks

    E-Print Network [OSTI]

    Strom, Eric William

    1993-01-01T23:59:59.000Z

    A MODEL OF THE LARGE HYDRAULIC GRADIENT AT YUCCA MOUNTAIN, NEVADA TEST SITE, BASED ON HYDRAULIC CONDUCTIVITY CONTRASTS BETWEEN CENOZOIC AND PALEOZOIC ROCKS A Thesis ERIC WILLIAM STROM Submitted to the Offic of Graduate Studies of Texas A.... 4m W&~~ &&go~'~o~~i gp ??g Y, ) 4r y. odtli' ~ 6. A MODEL OF THE LARGE HYDRAULIC GRADIENT AT YUCCA MOUNTAIN, NEVADA TEST SITE, BASED ON HYDRAULIC CONDUCTIVITY CONTRASTS BETWEEN CENOZOIC AND PALEOZOIC ROCKS A Thesis ERIC WILLIAM STROM...

  14. Q00906010024 rock check dam

    E-Print Network [OSTI]

    00906010024 rock check dam Q00906010025 rock check dam Q00906010021 rock check dam Q00906010022 rock check dam Q00906010027 rock check dam Q00906010026 rock check dam Q00906010018 rock check dam Q00906010023 rock check dam Q00906010011 rock check dam Q00906010008 rock check dam Q00906010007 rock check dam Q

  15. Physical Modeling Synthesis Update Julius O. Smith III

    E-Print Network [OSTI]

    Smith III, Julius Orion

    Physical Modeling Synthesis Update Julius O. Smith III Center for Computer Research in Music. They model wave propagation in distributed media such as strings, bores, horns, plates, and acoustic spaces

  16. Cordis Anima Physical Modeling and Simulation System Analysis

    E-Print Network [OSTI]

    Kouroupetroglou, Georgios

    internal descriptions, finite difference model, modal decomposition, electrical analogous circuits, CA equation [3] the modal approach where the vibrating structure is represented through a series physical modeling techniques. Vibrating structures like all kind of elastic bodies, strings, membranes

  17. Development of an equivalent homogenous fluid model for pseudo-two-phase (air plus water) flow through fractured rock

    SciTech Connect (OSTI)

    Price, J.; Indraratna, B. [University of Wollongong, Wollongong, NSW (Australia). School of Civil Engineering

    2005-07-01T23:59:59.000Z

    Fracture flow of two-phase mixtures is particularly applicable to the coal mining and coal bed methane projects in Australia. A one-dimensional steady-state pseudo-two-phase flow model is proposed for fractured rock. The model considers free flow of a compressible mixture of air and water in an inclined planar fracture and is based upon the conservation of momentum and the 'cubic' law. The flow model is coupled to changes in the stress environment through the fracture normal stiffness, which is related to changes in fracture aperture. The model represents the individual air and water phases as a single equivalent homogenous fluid. Laboratory testing was performed using the two-phase high-pressure triaxial apparatus on 54 mm diameter (approximately 2: 1 height: diameter) borehole cores intersected by induced near-axial fractures. The samples were of Triassic arenaceous fine-medium grained sandstone (known as the Eckersley Formation) that is found locally in the Southern Coalfield of New South Wales. The sample fracture roughness was assessed using a technique based upon Fourier series analysis to objectively attribute a joint roughness coefficient. The proposed two-phase flow model was verified using the recorded laboratory data obtained over a range of triaxial confining pressures (i.e., fracture normal stresses).

  18. Physical Model of Current-Induced Scour at Ventura Harbor

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Physical Model of Current-Induced Scour at Ventura Harbor Steven A. Hughes1 and Bradd R at Ventura Harbor, California, USA. The physical model was calibrated by adjusting the total flow discharge to achieve equilibrium scour development that matched the scour hole measured at Ventura Harbor

  19. ACCEPTED MANUSCRIPT Physical modelling of chemical compaction, overpressure

    E-Print Network [OSTI]

    development, hydraulic fracturing and thrust detachments in organic-rich source rock. A. Zanella*, P rocks. Abnormally high values of pore fluid pressure are especially common within mature source rock of equal initial volumes of silica powder and beeswax micro-spheres, representing source rock, and (2) pure

  20. Adsorption of water vapor on reservoir rocks

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

  1. Comparing FRACHEM and TOUGHREACT for reactive transport modeling of brine-rock interactions in enhanced geothermal systems (EGS)

    E-Print Network [OSTI]

    Andre, L.; Spycher, N.; Xu, T.; Pruess, K.; Vuataz, F.-D.

    2008-01-01T23:59:59.000Z

    of the Soultz fractured reservoir. Proceedings EHDRAthrough a deep fractured reservoir. Different studies (Hot Fractured Rock system: comparison of two reservoirs at

  2. Dynamic measurements of the nonlinear elastic parameter A in rock under varying conditions

    E-Print Network [OSTI]

    saturation. INDEX TERMS: 5102 Physical Properties of Rocks: Acoustic properties; 5112 Physical Properties of Rocks: Microstructure; 5199 Physical Properties of Rocks: General or miscellaneous; 9810 GeneralDynamic measurements of the nonlinear elastic parameter A in rock under varying conditions Paul A

  3. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns

    SciTech Connect (OSTI)

    Rutqvist, J.; Kim, H. -M.; Ryu, D. -W.; Synn, J. -H.; Song, W. -K.

    2012-02-01T23:59:59.000Z

    We applied coupled nonisothermal, multiphase fluid flow and geomechanical numerical modeling to study the coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in concrete-lined rock caverns. The paper focuses on CAES in lined caverns at relatively shallow depth (e.g., 100 m depth) in which a typical CAES operational pressure of 5 to 8 MPa is significantly higher than both ambient fluid pressure and in situ stress. We simulated a storage operation that included cyclic compression and decompression of air in the cavern, and investigated how pressure, temperature and stress evolve over several months of operation. We analyzed two different lining options, both with a 50 cm thick low permeability concrete lining, but in one case with an internal synthetic seal such as steel or rubber. For our simulated CAES system, the thermodynamic analysis showed that 96.7% of the energy injected during compression could be recovered during subsequent decompression, while 3.3% of the energy was lost by heat conduction to the surrounding media. Our geomechanical analysis showed that tensile effective stresses as high as 8 MPa could develop in the lining as a result of the air pressure exerted on the inner surface of the lining, whereas thermal stresses were relatively smaller and compressive. With the option of an internal synthetic seal, the maximum effective tensile stress was reduced from 8 to 5 MPa, but was still in substantial tension. We performed one simulation in which the tensile tangential stresses resulted in radial cracks and air leakage though the lining. This air leakage, however, was minor (about 0.16% of the air mass loss from one daily compression) in terms of CAES operational efficiency, and did not significantly impact the overall energy balance of the system. However, despite being minor in terms of energy balance, the air leakage resulted in a distinct pressure increase in the surrounding rock that could be quickly detected using pressure monitoring outside the concrete lining.

  4. Quasi-three dimensional ground-water modeling of the hydrologic influence of paleozoic rocks on the ground-water table at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Lee, Si-Yong

    1994-01-01T23:59:59.000Z

    north of the repository site. This study investigates the cause of the steep gradient, based on the possible influence by Paleozoic rocks under the Yucca Mountain area. A quasi-three dimensional, steady-state, finite-difference model of the groundwater...

  5. A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories

    E-Print Network [OSTI]

    Rutqvist, Jonny

    2008-01-01T23:59:59.000Z

    European countries. The initial rock properties for the twoinduced changes in rock properties. The purpose of the model3. Some basic THM rock properties Parameter Bulk Density, [

  6. Proceedings of the workshop on numerical modeling of thermohydrological flow in fractured rock masses

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    Nineteen papers were presented at the workshop on modeling thermohydrologic flow in fractured masses. This workshop was a result of the interest currently being given to the isolation of nuclear wastes in geologic formations. Included in these proceedings are eighteen of the presentations, one abstract and summaries of the panel discussions. The papers are listed under the following categories: introduction; overviews; fracture modelings; repository studies; geothermal models; and recent developments. Eighteen of the papers have been abstracted and indexed.

  7. Role of fluids in the hydromechanical behavior of heterogeneous fractured rocks: in situ characterization and numerical modelling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    points and on different fracture types within a carbonate reservoir. Two kinds of experiments wereRole of fluids in the hydromechanical behavior of heterogeneous fractured rocks: in situ-Antipolis, France Abstract Hydromechanical coupled processes in a shallow fractured rock mass were investigated

  8. THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES

    E-Print Network [OSTI]

    Wang, J.S.Y.

    2013-01-01T23:59:59.000Z

    Doughty, 1979a, Aquifer thermal energy storage--a numericalical modeling of thermal energy storage in aquifers.Presented at the Thermal Energy Storage in Aquifers

  9. Engineered Barrier System: Physical and Chemical Environment Model

    SciTech Connect (OSTI)

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09T23:59:59.000Z

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  10. 3D Modeling of Coupled Rock Deformation and Thermo-Poro-Mechanical Processes in Fractures

    E-Print Network [OSTI]

    Rawal, Chakra

    2012-07-16T23:59:59.000Z

    and failure of weak planes of the formation with creation of new fractures, which impacts reservoir response. Incorporation of geomechanical factor into engineering analyses using fully coupled geomechanics-reservoir flow modeling exhibits computational...

  11. THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES

    E-Print Network [OSTI]

    Wang, J.S.Y.

    2013-01-01T23:59:59.000Z

    studies related to the Cerro Prieto Field: Proceedings, 1stSymposium on the Cerro Prieto Geothermal Field, San Diego,modeling studies of the Cerro Prieto Reservoir--A progress

  12. Modeling of thermally driven hydrological processes in partially saturated fractured rock

    E-Print Network [OSTI]

    Tsang, Yvonne

    2010-01-01T23:59:59.000Z

    Yucca Mountain, Journal of Nuclear Technology, 163(1), pp.Yucca Mountain, Nuclear Technology 148, 138-150. Birkholzer,1: Modeling and analysis. Nuclear Technology, 104, 418–448.

  13. Wet-Weather Flow Characterization for the Rock Creek through Monitoring and Modeling

    E-Print Network [OSTI]

    District of Columbia, University of the

    support of the following organizations: ­ DC Water Resources Research Institute ­ U.S. Geological Survey..................................................................16 Modeling of Urban Stormwater Management discharged to receiving waters demand that wet-weather flow control systems be planned and engineered

  14. SENSPECTRA : an elastic, strain-aware physical modeling interface

    E-Print Network [OSTI]

    Leclerc, Vincent, S.M. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    Senspectra is a computationally augmented physical modeling toolkit designed for sensing and visualization of structural strain. The system functions as a distributed sensor network consisting of nodes, embedded with ...

  15. Modeling SRAM Start-Up Behavior for Physical Unclonable Functions

    E-Print Network [OSTI]

    Kuzmanov, Georgi

    /data, which are highly prone to physical attacks [1­3]; hence, the methods are no longer secure. Ideally), and reports some industrial measurements to validate the model. Simulation of the impact of different

  16. Development and Application of a Strength and Damage Model for Rock under Dynamic Loading

    SciTech Connect (OSTI)

    Antoun, T H; Lomov, I N; Glenn, L A

    2001-03-12T23:59:59.000Z

    Simulating the behavior of geologic materials under impact loading conditions requires the use of a constitutive model that includes the effects of bulking, yielding, damage, porous compaction and loading rate on the material response. This paper describes the development, implementation and calibration of a thermodynamically consistent constitutive model that incorporates these features. The paper also describes a computational study in which the model was used to perform numerical simulations of PILE DRIVER, a deeply-buried underground nuclear explosion detonated in granite at the Nevada Test Site. Particle velocity histories, peak velocity and peak displacement as a function of slant range obtained from the code simulations compare favorably with PILE DRIVER data. The simulated attenuation of peak velocity and peak displacement also agrees with the results from several other spherical wave experiments in granite.

  17. Neutrinoless Double Beta Decay and Physics Beyond the Standard Model

    E-Print Network [OSTI]

    Frank F. Deppisch; Martin Hirsch; Heinrich Päs

    2012-08-03T23:59:59.000Z

    Neutrinoless double beta decay is the most powerful tool to probe not only for Majorana neutrino masses but for lepton number violating physics in general. We discuss relations between lepton number violation, double beta decay and neutrino mass, review a general Lorentz invariant parametrization of the double beta decay rate, highlight a number of different new physics models showing how different mechanisms can trigger double beta decay, and finally discuss possibilities to discriminate and test these models and mechanisms in complementary experiments.

  18. ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models

    E-Print Network [OSTI]

    -physical systems (CPS) safe. Formal methods make strong guarantees about the system behavior if accurate models of the sys- tem can be obtained, including models of the controller and of the physical dynamics. In CPS, models are essential; but any model we could possibly build necessarily deviates from the real world

  19. Advances in constitutive modelling of jointed rock hydro mechanical interactions at laboratory scale

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ) INPL-LAEGO-ENSMN, Parc de Saurupt, Ecole des mines, 54000 Nancy, France) (2) INERIS, Parc de Saurupt. The hydro mechanical modelling performed using 3DEC code can be improved from the previous analysis through débit hydraulique dans la fracture. La modélisation hydromécanique réalisée à l'aide du code 3DEC peut

  20. Commodity market modeling and physical trading strategies

    E-Print Network [OSTI]

    Ellefsen, Per Einar

    2010-01-01T23:59:59.000Z

    Investment and operational decisions involving commodities are taken based on the forward prices of these commodities. These prices are volatile, and a model of their evolution must correctly account for their volatility ...

  1. ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models

    E-Print Network [OSTI]

    Platzer, André

    dynamics. In CPS, models are essential; but any model we could possibly build necessarily deviates from. In CPS, models are essential; but a cyber- physical systems (CPS) safe. Formal methods make strong guarantees about the system behavior

  2. The lipid bilayer at the mesoscale: a physical continuum model

    E-Print Network [OSTI]

    Phillip L. Wilson; Huaxiong Huang; Shu Takagi

    2008-02-26T23:59:59.000Z

    We study a continuum model of the lipid bilayer based on minimizing the free energy of a mixture of water and lipid molecules. This paper extends previous work by Blom & Peletier (2004) in the following ways. (a) It formulates a more physical model of the hydrophobic effect to facilitate connections with microscale simulations. (b) It clarifies the meaning of the model parameters. (c) It outlines a method for determining parameter values so that physically-realistic bilayer density profiles can be obtained, for example for use in macroscale simulations. Points (a)-(c) suggest that the model has potential to robustly connect some micro- and macroscale levels of multiscale blood flow simulations. The mathematical modelling in point (a) is based upon a consideration of the underlying physics of inter-molecular forces. The governing equations thus obtained are minimized by gradient flows via a novel numerical approach; this enables point (b). The numerical results are shown to behave physically in terms of the effect of background concentration, in contrast to the earlier model which is shown here to not display the expected behaviour. A "short-tail" approximation of the lipid molecules also gives an analytical tool which yields critical values of some parameters under certain conditions. Point (c) involves the first quantitative comparison of the numerical data with physical experimental results.

  3. Technical Manual for the SAM Physical Trough Model

    SciTech Connect (OSTI)

    Wagner, M. J.; Gilman, P.

    2011-06-01T23:59:59.000Z

    NREL, in conjunction with Sandia National Lab and the U.S Department of Energy, developed the System Advisor Model (SAM) analysis tool for renewable energy system performance and economic analysis. This paper documents the technical background and engineering formulation for one of SAM's two parabolic trough system models in SAM. The Physical Trough model calculates performance relationships based on physical first principles where possible, allowing the modeler to predict electricity production for a wider range of component geometries than is possible in the Empirical Trough model. This document describes the major parabolic trough plant subsystems in detail including the solar field, power block, thermal storage, piping, auxiliary heating, and control systems. This model makes use of both existing subsystem performance modeling approaches, and new approaches developed specifically for SAM.

  4. Determining Identifiable Parameterizations for Large-scale Physical Models in

    E-Print Network [OSTI]

    Van den Hof, Paul

    /Novem (Dutch Government). ISAPP (Integrated Systems Approach to Petroleum Production) is a joint project as applied in the field of petroleum reservoir engineering. Starting from a large-scale, physics-based model models in petroleum reservoir engineering. Petroleum reservoir engineering is concerned with maximizing

  5. Heteropolymer freezing and design: Towards physical models of protein folding

    SciTech Connect (OSTI)

    Pande, Vijay S. [Chemistry Department, Stanford University, Stanford, California 94305-5080 (United States)] [Chemistry Department, Stanford University, Stanford, California 94305-5080 (United States); Grosberg, Alexander Yu. [Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455 (United States)] [Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Tanaka, Toyoichi [Department of Physics and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Department of Physics and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2000-01-01T23:59:59.000Z

    Protein folding has become one of the most actively studied problems in modern molecular biophysics. Approaches to the problem combine ideas from the physics of disordered systems, polymer physics, and molecular biology. Much can be learned from the statistical properties of model heteropolymers, the chain molecules having different monomers in irregular sequences. Even in highly evolved proteins, there is a strong random element in the sequences, which gives rise to a statistical ensemble of sequences for a given folded shape. Simple analytic models give rise to phase transitions between random, glassy, and folded states, depending on the temperature T and the design temperature T{sup des} of the ensemble of sequences. Besides considering the analytic results obtainable in a random-energy model and in the Flory mean-field model of polymers, the article reports on confirming numerical simulations. (c) 2000 The American Physical Society.

  6. Search for Beyond the Standard Model Physics at D0

    SciTech Connect (OSTI)

    Kraus, James

    2011-08-01T23:59:59.000Z

    The standard model (SM) of particle physics has been remarkably successful at predicting the outcomes of particle physics experiments, but there are reasons to expect new physics at the electroweak scale. Over the last several years, there have been a number of searches for beyond the standard model (BSM) physics at D0. Here, we limit our focus to three: searches for diphoton events with large missing transverse energy (E{sub T}), searches for leptonic jets and E{sub T}, and searches for single vector-like quarks. We have discussed three recent searches at D0. There are many more, including limits on heavy neutral gauge boson in the ee channel, a search for scalar top quarks, a search for quirks, and limits on a new resonance decaying to WW or WZ.

  7. The physics doped Quantum Dimer Models

    E-Print Network [OSTI]

    Paris-Sud 11, Université de

    -charge separation ­ Topological defects and holon statistics · Approach based on the Quantum Dimer Model ­ A wide ­ Hole doping: exotic properties of holons #12;3 Collaborators · Arnaud Ralko (Toulouse) · Frédéric Mila superconductor under doping Holon (Q=e, S=0) « spin-charge separation » #12;8 Variational approach of RVB #12

  8. Discrete Symmetry in the EPRL Model and Neutrino Physics

    E-Print Network [OSTI]

    Louis Crane

    2011-05-30T23:59:59.000Z

    In \\cite{C1}, we proposed a new interpretation of the EPRL quantization of the BC model for quantum general relativity using a monoidal functor we call the time functor. In this preliminary draft we apply the theory of modules over monoidal functors \\cite{Y1} to the time functor, to propose an extension of the EPRL model which would include the standard model. This is motivated by recent advances in neutrino Physics.

  9. A physically based approach to modeling and animating a sailboat 

    E-Print Network [OSTI]

    Miniati, Maria Pia

    2000-01-01T23:59:59.000Z

    A PHYSICALLY BASED APPROACH TO MODELING AND ANIMATING A SAILBOAT A Thesis by MARIA PIA MINIATI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... Approach to Modeling and Animating a Sailboat. (May 2000) Maria Pia Miniati, B. S. , Buenos Aires Institute of Technology Chair of Advisory Committee: Dr. Donald H. House This thesis describes a method for modeling and animating a sailboat, by means...

  10. A physically based approach to modeling and animating a sailboat

    E-Print Network [OSTI]

    Miniati, Maria Pia

    2000-01-01T23:59:59.000Z

    A PHYSICALLY BASED APPROACH TO MODELING AND ANIMATING A SAILBOAT A Thesis by MARIA PIA MINIATI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... Approach to Modeling and Animating a Sailboat. (May 2000) Maria Pia Miniati, B. S. , Buenos Aires Institute of Technology Chair of Advisory Committee: Dr. Donald H. House This thesis describes a method for modeling and animating a sailboat, by means...

  11. V00306010057 rock check dam

    E-Print Network [OSTI]

    ¬« ¬« ¬« ¬« ¬« XY! 16-020 16-030(c) 16-026(l) 16-028(c) 16-026(l) V00306010057 rock check dam V00306010012 rock check dam V00306010040 rock check dam V00306010039 rock check dam V00306010058 rock check dam V00306010064 rock check dam V00306010061 rock check dam V00306010062 rock check dam V00306010063

  12. Maximization of permanent trapping of CO{sub 2} and co-contaminants in the highest-porosity formations of the Rock Springs Uplift (Southwest Wyoming): experimentation and multi-scale modeling

    SciTech Connect (OSTI)

    Piri, Mohammad

    2014-03-31T23:59:59.000Z

    Under this project, a multidisciplinary team of researchers at the University of Wyoming combined state-of-the-art experimental studies, numerical pore- and reservoir-scale modeling, and high performance computing to investigate trapping mechanisms relevant to geologic storage of mixed scCO{sub 2} in deep saline aquifers. The research included investigations in three fundamental areas: (i) the experimental determination of two-­?phase flow relative permeability functions, relative permeability hysteresis, and residual trapping under reservoir conditions for mixed scCO{sub 2}-­?brine systems; (ii) improved understanding of permanent trapping mechanisms; (iii) scientifically correct, fine grid numerical simulations of CO{sub 2} storage in deep saline aquifers taking into account the underlying rock heterogeneity. The specific activities included: (1) Measurement of reservoir-­?conditions drainage and imbibition relative permeabilities, irreducible brine and residual mixed scCO{sub 2} saturations, and relative permeability scanning curves (hysteresis) in rock samples from RSU; (2) Characterization of wettability through measurements of contact angles and interfacial tensions under reservoir conditions; (3) Development of physically-­?based dynamic core-­?scale pore network model; (4) Development of new, improved high-­? performance modules for the UW-­?team simulator to provide new capabilities to the existing model to include hysteresis in the relative permeability functions, geomechanical deformation and an equilibrium calculation (Both pore-­? and core-­?scale models were rigorously validated against well-­?characterized core-­? flooding experiments); and (5) An analysis of long term permanent trapping of mixed scCO{sub 2} through high-­?resolution numerical experiments and analytical solutions. The analysis takes into account formation heterogeneity, capillary trapping, and relative permeability hysteresis.

  13. Complexity and Productivity Differentiation Models of Metallogenic Indicator Elements in Rocks and Supergene Media Around Daijiazhuang Pb-Zn Deposit in Dangchang County, Gansu Province

    SciTech Connect (OSTI)

    He, Jin-zhong, E-mail: viewsino@163.com; Yao, Shu-zhen [China University of Geosciences, State Key Laboratory of Geological Processes and Mineral Resources (China)] [China University of Geosciences, State Key Laboratory of Geological Processes and Mineral Resources (China); Zhang, Zhong-ping; You, Guan-jin [Geological Surveying Institute of Gansu Province (China)] [Geological Surveying Institute of Gansu Province (China)

    2013-03-15T23:59:59.000Z

    With the help of complexity indices, we quantitatively studied multifractals, frequency distributions, and linear and nonlinear characteristics of geochemical data for exploration of the Daijiazhuang Pb-Zn deposit. Furthermore, we derived productivity differentiation models of elements from thermodynamics and self-organized criticality of metallogenic systems. With respect to frequency distributions and multifractals, only Zn in rocks and most elements except Sb in secondary media, which had been derived mainly from weathering and alluviation, exhibit nonlinear distributions. The relations of productivity to concentrations of metallogenic elements and paragenic elements in rocks and those of elements strongly leached in secondary media can be seen as linear addition of exponential functions with a characteristic weak chaos. The relations of associated elements such as Mo, Sb, and Hg in rocks and other elements in secondary media can be expressed as an exponential function, and the relations of one-phase self-organized geological or metallogenic processes can be represented by a power function, each representing secondary chaos or strong chaos. For secondary media, exploration data of most elements should be processed using nonlinear mathematical methods or should be transformed to linear distributions before processing using linear mathematical methods.

  14. Rock magnetism of remagnetized carbonate rocks: another look

    E-Print Network [OSTI]

    Jackson, M.; Swanson-Hysell, N. L

    2012-01-01T23:59:59.000Z

    and significance of magnetism in sedimentary rocks. Journal1997. Rock Magnetism. ¨ zdemir, O Dunlop, D. J. & Oon July 30, 2013 ROCK MAGNETISM: REMAGNETIZED CARBONATES

  15. V01406010015 rock check dam

    E-Print Network [OSTI]

    XY! ¬« ¬« V01406010015 rock check dam V01406010014 rock check dam V01406010013 rock check dam 1501403010012 earthen berm V01403010008 earthen berm V01406010003 rock check dam V01406010004 rock check dam V01406010010 rock check dam V01406010011 rock check dam 15-0651 15-0307 15-0588 15-0532 15-0575 stormdrain 7160

  16. Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock

    SciTech Connect (OSTI)

    Liu, H.H.; Li, L.; Zheng, L.; Houseworth, J.E.; Rutqvist, J.

    2011-06-20T23:59:59.000Z

    Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of radioactive waste. Figure 1-1 presents the distribution of clay/shale formations within the USA.

  17. A model for the development of a lobate alpine rock glacier in southwest Colorado, USA: implications for water on Mars

    E-Print Network [OSTI]

    Degenhardt, John Jerome

    2004-09-30T23:59:59.000Z

    , 1993). Viking images of the northern plains on Mars reveal lobate flow bodies with wrinkled surfaces associated with rift valleys and the peripheral margins of splash-form craters. Lobate aprons have also been interpreted as possible viscous ice-flow... (i.e., massive ice); the coarse outer layer had to be removed before augering. The tool was useful at this locality because the volcanic source rock breaks down into small clasts, making hand excavation of the debris feasible. During the summer...

  18. Rheology of rock glaciers: a preliminary assessment

    SciTech Connect (OSTI)

    Giardino, J.R.; Vitek, J.D.; Hoskins, E.R.

    1985-01-01T23:59:59.000Z

    Movement of rock debris under the influence of gravity, i.e., mass movement, generates a range of phenomena from soil creep, through solifluction,debris flows and rock glaciers to rock falls. Whereas the resultant forms of these phenomena are different, common elements in the mechanics of movement are utilized in the basic interpretation of the processes of formation. Measurements of morphologic variables provide data for deductive analyses of processes that operate too slowly to observe or for processes that generated relict phenomena. External and internal characteristics or rock glacier morphometry and measured rates of motion serve as the basis for the development of a rheological model to explain phenomena classified as rock glaciers. A rock glacier in the Sangre de Cristo Mountains of Southern Colorado, which exhibits a large number of ridges and furrows and lichen bare fronts of lobes, suggests present day movement. A strain-net established on the surface provides evidence of movement characteristics. These data plus morphologic and fabric data suggest two rheological models to explain the flow of this rock glacier. Model one is based upon perfect plastic flow and model two is based upon stratified fluid movement with viscosity changing with depth. These models permit a better understanding of the movement mechanics and demonstrate that catastrophic events and slow creep contribute to the morphologic characteristics of this rock glacier.

  19. ModelCraft: Capturing Freehand Annotations and Edits on Physical 3D Models

    E-Print Network [OSTI]

    Keinan, Alon

    of affordable new desktop fabrication techniques such as 3D printing and laser cutting, physical models are used cur- rent 3D printing technology. ACM CLASSIFICATION: H5.2 [Information interfaces and presentation

  20. A physically-based abrasive wear model for composite materials

    SciTech Connect (OSTI)

    Lee, Gun Y.; Dharan, C.K.H.; Ritchie, Robert O.

    2001-05-01T23:59:59.000Z

    A simple physically-based model for the abrasive wear of composite materials is presented based on the mechanics and mechanisms associated with sliding wear in soft (ductile) matrix composites containing hard (brittle) reinforcement particles. The model is based on the assumption that any portion of the reinforcement that is removed as wear debris cannot contribute to the wear resistance of the matrix material. The size of this non-contributing portion of the reinforcement is estimated by modeling the three primary wear mechanisms, specifically plowing, interfacial cracking and particle removal. Critical variables describing the role of the reinforcement, such as its relative size and the nature of the matrix/reinforcement interface, are characterized by a single contribution coefficient, C. Predictions are compared with the results of experimental two-body (pin-on drum) abrasive wear tests performed on a model aluminum particulate-reinforced epoxy matrix composite material.

  1. T00406010008 rock check dam

    E-Print Network [OSTI]

    XY! ¬« T00406010008 rock check dam T00406010009 rock check dam T00406010010 rock check dam T00406010011 rock check dam T-SMA-2.85 0.344 Acres 35-014(g) 35-016(n) T00406010005 rock check dam T00406010006 rock check dam T00403090004 curb T00402040007 established vegetation, green hatch area 7200 7200 7180

  2. A MOUNTAIN-SCALE 3-D NUMERICAL MODEL FOR CHARACTERIZING UNSATURATED FLOW AND TRANSPORT IN FRACTURED VOLCANIC ROCK AT YUCCA MOUNTAIN

    SciTech Connect (OSTI)

    Yu-Shu Wu

    2006-02-28T23:59:59.000Z

    A three-dimensional site-scale numerical model has been developed to simulate water and gas flow, heat transfer, and radionuclide transport in the unsaturated zone of Yucca Mountain, Nevada, the American underground repository site for high level radioactive waste. The modeling approach is based on a mathematical formulation of coupled multiphase fluid and heat flow and tracer transport through porous and fractured rock. This model is intended for use in predicting current and future conditions in the unsaturated zone, so as to aid in assessing the system performance of the repository. In particular, an integrated modeling methodology is discussed for integrating a wide variety of moisture, pneumatic, thermal, and isotopic geochemical data into comprehensive modeling analyses. The reliability and accuracy of the model predictions were the subject of a comprehensive model calibration study, in which the model was calibrated against measured data, including liquid saturation, water potential, and temperature. This study indicates that the model is able to reproduce the overall system behavior at Yucca Mountain with respect to moisture profiles, pneumatic pressure and chloride concentration variations in different geological units, and ambient geothermal conditions.

  3. Why does theoretical physics fail to explain and predict earthquake occurrence?

    E-Print Network [OSTI]

    Kagan, Yan Y

    2006-01-01T23:59:59.000Z

    geotectonics, stress, rock properties, etc. For example, athe me- chanical properties of the rock medium are modeled,rock. The model which repro- duces branching properties of

  4. Physics and Seismic Modeling for Monitoring CO2 Storage JOSE M. CARCIONE,1

    E-Print Network [OSTI]

    Santos, Juan

    , methane-bearing coal beds and saline aquifers. An example of the latter is the Sleipner field in the North-elastical equations model the seismic properties of reservoir rocks saturated with CO2, methane, oil and brine-simulation methodology to compute synthetic seismograms for reservoirs subject to CO2 sequestration. The petro

  5. Final Report: Development of a Chemical Model to Predict the Interactions between Supercritical CO2, Fluid and Rock in EGS Reservoirs

    SciTech Connect (OSTI)

    McPherson, Brian J. [University of Utah; Pan, Feng [University of Utah

    2014-09-24T23:59:59.000Z

    This report summarizes development of a coupled-process reservoir model for simulating enhanced geothermal systems (EGS) that utilize supercritical carbon dioxide as a working fluid. Specifically, the project team developed an advanced chemical kinetic model for evaluating important processes in EGS reservoirs, such as mineral precipitation and dissolution at elevated temperature and pressure, and for evaluating potential impacts on EGS surface facilities by related chemical processes. We assembled a new database for better-calibrated simulation of water/brine/ rock/CO2 interactions in EGS reservoirs. This database utilizes existing kinetic and other chemical data, and we updated those data to reflect corrections for elevated temperature and pressure conditions of EGS reservoirs.

  6. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    SciTech Connect (OSTI)

    Kim, H.-M.; Rutqvist, J.; Ryu, D.-W.; Choi, B.-H.; Sunwoo, C.; Song, W.-K.

    2011-07-15T23:59:59.000Z

    This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operational costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 1×10{sup -18} m{sup 2} would result in an acceptable air leakage rate of less than 1%, with the operational pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operational air pressure and when the lining is kept moist at a relatively high liquid saturation. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability off less than 1×10{sup -18} m{sup 2}, heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage and energy efficiency viewpoint. Our numerical approach and energy analysis will next be applied in designing and evaluating the performance of a planned full-scale pilot test of the proposed underground CAES concept.

  7. Physical model for the latent heat of fusion

    E-Print Network [OSTI]

    Jozsef Garai

    2004-11-06T23:59:59.000Z

    The atomic movement induced on melting has to overcome a viscous drag resistance. It is suggested that the latent heat of fusion supplies the required energy for this physical process. The viscosity model introduced here allows computation of the latent heat from viscosity, molar volume, melting temperature, and atomic mass and diameter. The correlation between these parameters and the latent heat of 14 elements with body and face centered cubic structures was exceptional, with the correlation coefficients of 0.97 and 0.95 respectively.

  8. Neutrinoless Double Beta Decay and Physics Beyond the Standard Model

    E-Print Network [OSTI]

    Rabindra N. Mohapatra

    1995-07-05T23:59:59.000Z

    The various mechanisms for neutrinoless double beta decay in gauge theories are reviewed and the present experimental data is used to set limits on physics scenarios beyond the standard model. The positive indications for nonzero neutrino masses in various experiments such as those involving solar, atmospheric and accelerator neutrinos are discussed and it is pointed out how some neutrino mass textures consistent with all data can be tested by the ongoing double beta decay experiments. Finally, the outlook for observable neutrinoless double beta decay signal in grand unified theories is discussed.

  9. An Effective Guide to Beyond the Standard Model Physics

    E-Print Network [OSTI]

    Eduard Masso

    2014-07-23T23:59:59.000Z

    Effective Lagrangians with dimension-six operators are widely used to analyse Higgs and other electroweak data. We show how to build a basis of operators such that each operator corresponds to a coupling which is well measured or will be in the future. We choose a set of couplings such that the correspondence is one-to-one. In our framework, some important features of the Lagrangian are transparent. For example, one can clearly see the presence or absence of correlations among measurable quantities. This may be a useful guide when searching for physics beyond the Standard Model.

  10. Equilibrium Statistical-Thermal Models in High-Energy Physics

    E-Print Network [OSTI]

    Abdel Nasser Tawfik

    2014-10-25T23:59:59.000Z

    We review some recent highlights from the applications of statistical-thermal models to different experimental measurements and lattice QCD thermodynamics, that have been made during the last decade. We start with a short review of the historical milestones on the path of constructing statistical-thermal models for heavy-ion physics. We discovered that Heinz Koppe formulated in 1948 an almost complete recipe for the statistical-thermal models. In 1950, Enrico Fermi generalized this statistical approach, in which he started with a general cross-section formula and inserted into it simplifying assumptions about the matrix element of the interaction process that likely reflects many features of the high-energy reactions dominated by density in the phase space of final states. In 1964, Hagedorn systematically analysed the high-energy phenomena using all tools of statistical physics and introduced the concept of limiting temperature based on the statistical bootstrap model. It turns to be quite often that many-particle systems can be studied with the help of statistical-thermal methods. The analysis of yield multiplicities in high-energy collisions gives an overwhelming evidence for the chemical equilibrium in the final state. The strange particles might be an exception, as they are suppressed at lower beam energies. However, their relative yields fulfill statistical equilibrium, as well. We review the equilibrium statistical-thermal models for particle production, fluctuations and collective flow in heavy-ion experiments. We also review their reproduction of the lattice QCD thermodynamics at vanishing and finite chemical potential. During the last decade, five conditions have been suggested to describe the universal behavior of the chemical freeze out parameters.

  11. Stress-induced transverse isotropy in rocks

    SciTech Connect (OSTI)

    Schwartz, L.M.; Murphy, W.F. III [Schlumberger-Doll Research Center, Ridgefield, CT (United States); Berryman, J.G. [Lawrence Livermore National Lab., CA (United States)

    1994-03-28T23:59:59.000Z

    The application of uniaxial pressure can induce elastic anisotropy in otherwise isotropic rock. We consider models based on two very different rock classes, granites and weakly consolidated granular systems. We show that these models share common underlying assumptions, that they lead to similar qualitative behavior, and that both provide a microscopic basis for elliptical anisotropy. In the granular case, we make experimentally verifiable predictions regarding the horizontally propagating modes based on the measured behavior of the vertical modes.

  12. Modeling of Damage, Permeability Changes and Pressure Responses during Excavation of the TSX Tunnel in Granitic Rock at URL, Canada

    E-Print Network [OSTI]

    Rutqvist, Jonny

    2009-01-01T23:59:59.000Z

    Modeling of Damage, Permeability Changes and Pressureof excavation-induced damage, permeability changes, andrange of approaches to model damage and permeability changes

  13. Physical Modeling of Scaled Water Distribution System Networks.

    SciTech Connect (OSTI)

    O'Hern, Timothy J.; Hammond, Glenn Edward; Orear, Leslie ,; van Bloemen Waanders, Bart G.; Paul Molina; Ross Johnson

    2005-10-01T23:59:59.000Z

    Threats to water distribution systems include release of contaminants and Denial of Service (DoS) attacks. A better understanding, and validated computational models, of the flow in water distribution systems would enable determination of sensor placement in real water distribution networks, allow source identification, and guide mitigation/minimization efforts. Validation data are needed to evaluate numerical models of network operations. Some data can be acquired in real-world tests, but these are limited by 1) unknown demand, 2) lack of repeatability, 3) too many sources of uncertainty (demand, friction factors, etc.), and 4) expense. In addition, real-world tests have limited numbers of network access points. A scale-model water distribution system was fabricated, and validation data were acquired over a range of flow (demand) conditions. Standard operating variables included system layout, demand at various nodes in the system, and pressure drop across various pipe sections. In addition, the location of contaminant (salt or dye) introduction was varied. Measurements of pressure, flowrate, and concentration at a large number of points, and overall visualization of dye transport through the flow network were completed. Scale-up issues that that were incorporated in the experiment design include Reynolds number, pressure drop across nodes, and pipe friction and roughness. The scale was chosen to be 20:1, so the 10 inch main was modeled with a 0.5 inch pipe in the physical model. Controlled validation tracer tests were run to provide validation to flow and transport models, especially of the degree of mixing at pipe junctions. Results of the pipe mixing experiments showed large deviations from predicted behavior and these have a large impact on standard network operations models.3

  14. United States National Waste Terminal Storage argillaceous rock studies

    SciTech Connect (OSTI)

    Brunton, G.D.

    1981-01-01T23:59:59.000Z

    The past and present argillaceous rock studies for the US National Waste Terminal Storage Program consist of: (1) evaluation of the geological characteristics of several widespread argillaceous formations in the United States; (2) laboratory studies of the physical and chemical properties of selected argillaceous rock samples; and (3) two full-scale in situ surface heater experiments that simulate the emplacement of heat-generating radioactive waste in argillaceous rock.

  15. Linked multicontinuum and crack tensor approach for modeling of coupled geomechanics, fluid flow and transport in fractured rock

    E-Print Network [OSTI]

    Rutqvist, J.

    2014-01-01T23:59:59.000Z

    geomechanics in dual-porosity modeling of naturally fractured reservoirs. Society of Petroleum Engineers,

  16. J00206010020 rock check dam

    E-Print Network [OSTI]

    XY! J00206010020 rock check dam J00206010023 rock check dam 09-009 09-009 09-009 PJ-SMA-2 0.901 Acres J00206010021 rock check dam J00206010019 rock check dam J00206010014 rock check dam J00203010007 Smith DATE: 14-November-2014 REVISION NUMBER: 8 XY! IP sampler location Berm Channel/swale Check dam

  17. W02106010008 rock check dam

    E-Print Network [OSTI]

    W-SMA-14.1 5.169 Acres W02106010008 rock check dam W02106010009 rock check dam W02106010010 rock check dam W02106010011 rock check dam W02106010012 rock check dam W02103010018 earthen berm W02103010016 dam Established vegetation Seed and mulch Sediment trap/basin Gabion Cap SWMU boundary SMA drainage

  18. A Physically Based Runoff Routing Model for Land Surface and Earth System Models

    SciTech Connect (OSTI)

    Li, Hongyi; Wigmosta, Mark S.; Wu, Huan; Huang, Maoyi; Ke, Yinghai; Coleman, Andre M.; Leung, Lai-Yung R.

    2013-06-13T23:59:59.000Z

    A new physically based runoff routing model, called the Model for Scale Adaptive River Transport (MOSART), has been developed to be applicable across local, regional, and global scales. Within each spatial unit, surface runoff is first routed across hillslopes and then discharged along with subsurface runoff into a ‘‘tributary subnetwork’’ before entering the main channel. The spatial units are thus linked via routing through the main channel network, which is constructed in a scale-consistent way across different spatial resolutions. All model parameters are physically based, and only a small subset requires calibration.MOSART has been applied to the Columbia River basin at 1/ 168, 1/ 88, 1/ 48, and 1/ 28 spatial resolutions and was evaluated using naturalized or observed streamflow at a number of gauge stations. MOSART is compared to two other routing models widely used with land surface models, the River Transport Model (RTM) in the Community Land Model (CLM) and the Lohmann routing model, included as a postprocessor in the Variable Infiltration Capacity (VIC) model package, yielding consistent performance at multiple resolutions. MOSART is further evaluated using the channel velocities derived from field measurements or a hydraulic model at various locations and is shown to be capable of producing the seasonal variation and magnitude of channel velocities reasonably well at different resolutions. Moreover, the impacts of spatial resolution on model simulations are systematically examined at local and regional scales. Finally, the limitations ofMOSART and future directions for improvements are discussed.

  19. Switched System Models for Coordinated Cyber-Physical Attack Construction and Simulation

    E-Print Network [OSTI]

    Kundur, Deepa

    Switched System Models for Coordinated Cyber-Physical Attack Construction and Simulation Shan Liu the need to develop intelligent models of cyber-physical attacks that produce salient disruptions. In this paper, we present a foundation for the development of a class of intelligent cyber-physical attacks

  20. Finite Element Multi-physics Modeling for Ohmic Contact of Microswitches , D. Leray1, 2

    E-Print Network [OSTI]

    Boyer, Edmond

    Finite Element Multi-physics Modeling for Ohmic Contact of Microswitches H.Liu1, 2 , D. Leray1, 2-physics modelling of electrical contact is accomplished with the finite element commercial package ANSYSTM . Two behaviour of electrical contact with rough surface included. Keywords: multi-physics, finite element

  1. Chapter Eight Rock Varnish

    E-Print Network [OSTI]

    Dorn, Ron

    ) Coating Description Carbonate skin Coating composed primarily of carbonate, usually calcium carbonate; the agent may be manganese, sulphate, carbonate, silica, iron, oxalate, organisms, or anthropogenic Dust, cyanobacteria, algae Nitrate crust Potassium and calcium nitrate coatings on rocks, often in caves and rock

  2. Effects of uncertainty in rock-physics models on reservoir parameter estimation using marine seismic AVA and CSEM data

    E-Print Network [OSTI]

    Chen, Jinsong; Dickens, Thomas

    2008-01-01T23:59:59.000Z

    of reservoir parameters from geophysical data. TraditionalCSEM data, which are functions of reservoir resistivity rreservoir parameters from seismic AVA and CSEM data. In

  3. Physical Property Modeling of Concentrated Cesium Eluate Solutions, Part I - Derivation of Models

    SciTech Connect (OSTI)

    Choi, A.S.; Pierce, R. A.; Edwards, T. B.; Calloway, T. B.

    2005-09-15T23:59:59.000Z

    Major analytes projected to be present in the Hanford Waste Treatment Plant cesium ion-exchange eluate solutions were identified from the available analytical data collected during radioactive bench-scale runs, and a test matrix of cesium eluate solutions was designed within the bounding concentrations of those analytes. A computer model simulating the semi-batch evaporation of cesium eluate solutions was run in conjunction with a multi-electrolyte aqueous system database to calculate the physical properties of each test matrix solution concentrated to the target endpoints of 80% and 100% saturation. The calculated physical properties were analyzed statistically and fitted into mathematical expressions for the bulk solubility, density, viscosity, heat capacity and volume reduction factor as a function of temperature and concentration of each major analyte in the eluate feed. The R{sup 2} of the resulting physical property models ranged from 0.89 to 0.99.

  4. Incident at the Rock Pile

    E-Print Network [OSTI]

    Birgfeld, Doug

    2015-01-01T23:59:59.000Z

    At the off limit rock pile At a Portland school Where theDoug. “Incident at the Rock Pile” http://escholarship.org/Doug. “Incident at the Rock Pile” http://escholarship.org/

  5. ELASTIC ROCK PROPERTIES OF TIGHT GAS SANDSTONES FOR RESERVOIR CHARACTERIZATION

    E-Print Network [OSTI]

    to successfully produce low permeability gas reservoirs. My study links rock physics to well log and seismic data shales to reservoir sandstones. Typically, the presence of gas-saturated sandstones lowers the Vp/Vs evenELASTIC ROCK PROPERTIES OF TIGHT GAS SANDSTONES FOR RESERVOIR CHARACTERIZATION AT RULISON FIELD

  6. A physics department's role in preparing physics teachers: The Colorado learning assistant model

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    of all students in introductory physics and increases the numbers of talented physics majors becoming, and physics.7 Many undergraduates are not learn- ing the foundational content in the sciences,8,9 and average into engineering, re- search, science, and other related fields.10 The effects may be dramatic. For example, only

  7. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon...

    Open Energy Info (EERE)

    Task 3: Mechanical behaviors of carbonated minerals. - Task 4: Modeling of CO2- reservoir rock interactions. - Task 5: Preparation of report covering the four tasks previous task,...

  8. EMIT: explicit modeling of interactive-engagement techniques for physics graduate teaching assistants and the impact on instruction and student performance in calculus-based physics

    E-Print Network [OSTI]

    Ezrailson, Cathy Mariotti

    2005-02-17T23:59:59.000Z

    This study measures the effect of a model of explicit instruction (EMIT) on the: 1) physics graduate teaching assistants? adherence to reformed teaching methods, 2) impact of the instructional model on GTAs? beliefs about the nature of physics...

  9. Compass and Kitaev models -- Theory and Physical Motivations

    E-Print Network [OSTI]

    Zohar Nussinov; Jeroen van den Brink

    2013-03-24T23:59:59.000Z

    Compass models are theories of matter in which the couplings between the internal spin (or other relevant field) components are inherently spatially (typically, direction) dependent. Compass-type interactions appear in diverse physical systems including Mott insulators with orbital degrees of freedom (where interactions sensitively depend on the spatial orientation of the orbitals involved), the low energy effective theories of frustrated quantum magnets, systems with strong spin-orbit couplings (such as the iridates), vacancy centers, and cold atomic gases. Kitaev's models, in particular the compass variant on the honeycomb lattice, realize basic notions of topological quantum computing. The fundamental inter-dependence between internal (spin, orbital, or other) and external (i.e., spatial) degrees of freedom which underlies compass models generally leads to very rich behaviors including the frustration of (semi-)classical ordered states on non-frustrated lattices and to enhanced quantum effects prompting, in certain cases, the appearance of zero temperature quantum spin liquids. As a consequence of these frustrations, new types of symmetries and their associated degeneracies may appear. These intermediate symmetries lie midway between the extremes of global symmetries and local gauge symmetries and lead to effective dimensional reductions. We review compass models in a unified manner, paying close attention to exact consequences of these symmetries, and to thermal and quantum fluctuations that stabilize orders via order out of disorder effects. We review non-trivial statistics and the appearance of topological quantum orders in compass systems in which, by virtue of their intermediate symmetry standard orders do not arise. This is complemented by a survey of numerical results. Where appropriate theoretical and experimental results are compared.

  10. Physics of Aquatic Systems II, 9. Modeling Universitt HeidelbergInstitut fr Umweltphysik Physics of Aquatic Systems II

    E-Print Network [OSTI]

    Aeschbach-Hertig, Werner

    HeidelbergInstitut für Umweltphysik 5 Influence of mixing on transient gas tracer ages · 2-comp. mixing Mook, 2001 Example: Mixing of fast and slow runoff components in a river Physics of Aquatic Systems II, 9. Modeling Universität HeidelbergInstitut für Umweltphysik 10 Mixed reactor model (exponential

  11. Physics-Based, Reduced-Order Combustor Flow Modeling Sean D. Bradshaw

    E-Print Network [OSTI]

    Peraire, Jaime

    Physics-Based, Reduced-Order Combustor Flow Modeling by Sean D. Bradshaw B.S., Aeronautics-Based, Reduced-Order Combustor Flow Modeling by Sean D. Bradshaw Submitted to the Department of Aeronautics in Aeronautics And Astronautics Abstract A physics-based, reduced-order combustor flow model, CFLOW, is described

  12. A Rock Physics Based Investigation of Pore Structure Variations Associated with a CO2 Flood in a Clastic Reservoir, Delhi, LA

    E-Print Network [OSTI]

    Davidson, Daniel

    2013-08-14T23:59:59.000Z

    ) flood at the Delhi Holt-Bryant reservoir can be measured with acoustic data. The pore property change is measured by using the Baechle ratio, the Gassmann model, and the Sun framework flexibility factor. The change in the pore properties of the formation...

  13. FACTORS IN THE DESIGN OF A ROCK MECHANICS CENTRIFUGE FOR STRONG ROCK

    E-Print Network [OSTI]

    Clark, George B

    1984-01-01T23:59:59.000Z

    1 . Capacit i es of known centrifuges and v proposed SoftSolla I rock mechanics centrifuge r, ---------1~ --- dxB. , (1980), Geotechnical centrifuges for model studies and

  14. NEAR FIELD MODELING OF SPE1 EXPERIMENT AND PREDICTION OF THE SECOND SOURCE PHYSICS EXPERIMENTS (SPE2)

    SciTech Connect (OSTI)

    Antoun, T; Xu, H; Vorobiev, O; Lomov, I

    2011-10-20T23:59:59.000Z

    Motion along joints and fractures in the rock has been proposed as one of the sources of near-source shear wave generation, and demonstrating the validity of this hypothesis is a focal scientific objective of the source physics experimental campaign in the Climax Stock granitic outcrop. A modeling effort has been undertaken by LLNL to complement the experimental campaign, and over the long term provide a validated computation capability for the nuclear explosion monitoring community. The approach involves performing the near-field nonlinear modeling with hydrodynamic codes (e.g., GEODYN, GEODYN-L), and the far-field seismic propagation with an elastic wave propagation code (e.g., WPP). the codes will be coupled together to provide a comprehensive source-to-sensor modeling capability. The technical approach involves pre-test predictions of each of the SPE experiments using their state of the art modeling capabilities, followed by code improvements to alleviate deficiencies identified in the pre-test predictions. This spiral development cycle wherein simulations are used to guide experimental design and the data from the experiment used to improve the models is the most effective approach to enable a transition from the descriptive phenomenological models in current use to the predictive, hybrid physics models needed for a science-based modeling capability for nuclear explosion monitoring. The objective of this report is to describe initial results of non-linear motion predictions of the first two SPE shots in the Climax Stock: a 220-lb shot at a depth of 180 ft (SPE No.1), and a 2570-lb shot at a depth of 150 ft (SPE No.2). The simulations were performed using the LLNL ensemble granite model, a model developed to match velocity and displacement attenuation from HARDHAT, PILE DRIVER, and SHOAL, as well as Russian and French nuclear test data in granitic rocks. This model represents the state of the art modeling capabilities as they existed when the SPE campaign was launched in 2010, and the simulation results presented here will establish a baseline that will be used for gauging progress as planned modeling improvements are implemented during the remainder of the SPE program. The initial simulations were performed under 2D axisymmetric conditions assuming the geologic medium to be a homogeneous half space. However, logging data obtained from the emplacement hole reveal two major faults that intersect the borehole at two different depth intervals (NSTec report, 2011) and four major joint sets. To evaluate the effect of these discrete structures on the wave forms generated they have performed 2D and 3D analysis with a Lagrangian hydrocode, GEODYN-L that shares the same material models with GEODYN but can explicitly take joints and fault into consideration. They discuss results obtained using these two different approaches in this report.

  15. Estimation of hydrologic properties of an unsaturated, fractured rock mass

    SciTech Connect (OSTI)

    Klavetter, E.A.; Peters, R.R.

    1986-07-01T23:59:59.000Z

    In this document, two distinctly different approaches are used to develop continuum models to evaluate water movement in a fractured rock mass. Both models provide methods for estimating rock-mass hydrologic properties. Comparisons made over a range of different tuff properties show good qualitative and quantitative agreement between estimates of rock-mass hydrologic properties made by the two models. This document presents a general discussion of: (1) the hydrology of Yucca Mountain, and the conceptual hydrological model currently being used for the Yucca Mountain site, (2) the development of two models that may be used to estimate the hydrologic properties of a fractured, porous rock mass, and (3) a comparison of the hydrologic properties estimated by these two models. Although the models were developed in response to hydrologic characterization requirements at Yucca Mountain, they can be applied to water movement in any fractured rock mass that satisfies the given assumptions.

  16. Teaching and learning physics: A model for coordinating physics instruction, outreach, and research

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    student learning of physics, as well as student mastery of theories and practices of teaching and learning level science education. Keywords: physics, education, research, outreach, teaching, service learning I in Mathematics, Science, Engineering, and Technology Education (NSF's PFSMETE Grant Number: DGE-9809496) under

  17. PHYSICAL REVIEW C 73, 024607 (2006) Relativistic models for quasielastic neutrino scattering

    E-Print Network [OSTI]

    Gent, Universiteit

    2006-01-01T23:59:59.000Z

    PHYSICAL REVIEW C 73, 024607 (2006) Relativistic models for quasielastic neutrino scattering M. C for explor- ing fundamental questions in different domains of physics. The mass of the neutrino remains one of the greatest puzzles in elementary particle physics. In recent years, a number of positive neutrino oscillation

  18. URTeC 1620617 Thermal Shock in Reservoir Rock Enhances the Hydraulic

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    URTeC 1620617 Thermal Shock in Reservoir Rock Enhances the Hydraulic Fracturing of Gas Shales Saeid through strain and stress. As the temperature diffuses from hydraulic fracture into reservoir the rock matrix beyond hydraulic fracturing stimulation by cooling down the rock. The physics

  19. Gravitational wave background from Standard Model physics: Qualitative features

    E-Print Network [OSTI]

    Ghiglieri, J

    2015-01-01T23:59:59.000Z

    Because of physical processes ranging from microscopic particle collisions to macroscopic hydrodynamic fluctuations, any plasma in thermal equilibrium emits gravitational waves. For the largest wavelengths the emission rate is proportional to the shear viscosity of the plasma. In the Standard Model at T > 160 GeV, the shear viscosity is dominated by the most weakly interacting particles, right-handed leptons, and is relatively large. We estimate the order of magnitude of the corresponding spectrum of gravitational waves. Even though at small frequencies (corresponding to the sub-Hz range relevant for planned observatories such as eLISA) this background is tiny compared with that from non-equilibrium sources, the total energy carried by the high-frequency part of the spectrum is non-negligible if the production continues for a long time. We suggest that this may constrain (weakly) the highest temperature of the radiation epoch. Observing the high-frequency part directly sets a very ambitious goal for future ge...

  20. Numerical modelling of erosion processes in the Himalayas of Nepal: effects of spatial variations of rock strength and precipitation

    E-Print Network [OSTI]

    Demouchy, Sylvie

    Numerical modelling of erosion processes in the Himalayas of Nepal: effects of spatial variations of the morphology of mountain belts. Here we investigate the modalities of defor- mation in Central Nepal on a c that the pattern of uplift in Nepal is mainly dependent on both erodability and fault geometry, rather than

  1. Relative Permeability of Fractured Rock

    SciTech Connect (OSTI)

    Mark D. Habana

    2002-06-30T23:59:59.000Z

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  2. Influence of topographic stress on rock fracture : a two-dimensional numerical model for arbitrary surface topography and comparisons with borehole observations

    E-Print Network [OSTI]

    Slim, Mirna I

    2013-01-01T23:59:59.000Z

    Theoretical calculations indicate that topographic stresses in some landscapes may be large enough to fracture rocks, which in turn could influence slope stability, erosion rates, and bedrock hydrologic properties. These ...

  3. A physics-based emissions model for aircraft gas turbine combustors

    E-Print Network [OSTI]

    Allaire, Douglas L

    2006-01-01T23:59:59.000Z

    In this thesis, a physics-based model of an aircraft gas turbine combustor is developed for predicting NO. and CO emissions. The objective of the model is to predict the emissions of current and potential future gas turbine ...

  4. A Unifying Platform for Water Resources Management Using Physically-Based Model and Remote Sensing Data

    E-Print Network [OSTI]

    Shin, Yongchul

    2012-12-07T23:59:59.000Z

    of a soil system under various environmental conditions. One disadvantage of physical models is their inability to model the vertical and horizontal heterogeneity of hydraulic properties in a soil system at the regional scale. In order to overcome...

  5. Running head: GUIDING ATTENTION ON PHYSICS PROBLEMS 1 Guiding Attention on Physics Problems Using Visual Cues Modeled After Experts' Eye

    E-Print Network [OSTI]

    Zollman, Dean

    Visual Cues Modeled After Experts' Eye Movements Adrian Madsen, Adam Larson, Amy Rouinfar, Allison Coy by recording their eye movements. In Study 1, we record eye movements of introductory and graduate physics in visual attention. We use the eye movements of those who answer these questions correctly to design visual

  6. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysics Physics Our science answers questions

  7. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysics Physics Our science answers

  8. Characterizing fractured rock for fluid-flow, geomechanical, and paleostress modeling: Methods and preliminary results from Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Barton, C.C.; Larsen, E.; Page, W.R.; Howard, T.M.

    1993-12-31T23:59:59.000Z

    Fractures have been characterized for fluid-flow, geomechanical, and paleostress modeling at three localities in the vicinity of drill hole USW G-4 at Yucca Mountain in southwestern Nevada. A method for fracture characterization is introduced that integrates mapping fracture-trace networks and quantifying eight fracture parameters: trace length, orientation, connectivity, aperture, roughness, shear offset, trace-length density, and mineralization. A complex network of fractures was exposed on three 214- to 260-m 2 pavements cleared of debris in the upper lithophysal unit of the Tiva Canyon Member of the Miocene Paint-brush Tuff. The pavements are two-dimensional sections through the three-dimensional network of strata-bound fractures. All fractures with trace lengths greater than 0.2 m were mapped and studied.

  9. Fluid-rock interactions in the Rhine Graben: A thermodynamic model of the hydrothermal alteration observed in deep drilling

    SciTech Connect (OSTI)

    Komninou, A.; Yardley, B.W.D. [Univ. of Leeds (United Kingdom)] [Univ. of Leeds (United Kingdom)

    1997-02-01T23:59:59.000Z

    Deep drilling at Soultz-sous-Forets, France, on the western flanks of the Rhine Graben, has penetrated Hercynian granite underlying Mesozoic sediments. Veins are present throughout the drilled granite, and there are flows of warm water localized in fractures within the granite. Detailed mineralogical study of core material from the research drillhole EPSI has been carried out in order to assess the alteration history of the Soultz granite, part of the crystalline basement of the Rhine Graben. The results of the study have been used, in conjunction with analyses of present-day fluids from deep drilling in the Rhine Graben reported in the literature, to model thermodynamically the alteration process, and in particular to evaluate if it is likely to be continuing today. Reaction-path calculations show that if deep basinal brines, such as are known from sediments of the central Rhine Graben, react with Hercynian granite, they will form different alteration assemblages depending on both the path that the fluid follows (e.g., descending through sediments or through granite) and the extent of preexisting alteration of the granite. The calculations suggest that fluid now sampled from granite in EPS-1 achieved its peak temperature, c. 200{degrees}C while within Permo-Triassic sandstone. The modeling also indicates that present-day fluids from the Rhine Graben system are capable of producing the vein quartz and possibly also the baryte veins, seen in the EPSI core. Much of the alteration present in the granite in the vicinity of veins and fractures may have been produced by a flow regime similar to that prevailing today. 48 refs., 15 figs., 4 tabs.

  10. Physical influences on phytoplankton ecology : models and observations

    E-Print Network [OSTI]

    Clayton, Sophie A

    2013-01-01T23:59:59.000Z

    The physical environment in the oceans dictates not only how phytoplankton cells are dispersed and their populations intermingled, but also mediates the supply of nutrients to the surface mixed layer. In this thesis I ...

  11. Physical modeling of electrical conduction in printed circuit board insulation

    E-Print Network [OSTI]

    Sarathy, Vasanth

    2005-01-01T23:59:59.000Z

    This thesis is concerned with understanding the degradation of electrical and electronic components in automobiles due to environmental effects. A special emphasis is placed on understanding the physical processes underlying ...

  12. CFD modeling of entrained-flow coal gasifiers with improved physical and chemical sub-models

    SciTech Connect (OSTI)

    Ma, J.; Zitney, S.

    2012-01-01T23:59:59.000Z

    Optimization of an advanced coal-fired integrated gasification combined cycle system requires an accurate numerical prediction of gasifier performance. While the turbulent multiphase reacting flow inside entrained-flow gasifiers has been modeled through computational fluid dynamic (CFD), the accuracy of sub-models requires further improvement. Built upon a previously developed CFD model for entrained-flow gasification, the advanced physical and chemical sub-models presented here include a moisture vaporization model with consideration of high mass transfer rate, a coal devolatilization model with more species to represent coal volatiles and heating rate effect on volatile yield, and careful selection of global gas phase reaction kinetics. The enhanced CFD model is applied to simulate two typical oxygen-blown entrained-flow configurations including a single-stage down-fired gasifier and a two-stage up-fired gasifier. The CFD results are reasonable in terms of predicted carbon conversion, syngas exit temperature, and syngas exit composition. The predicted profiles of velocity, temperature, and species mole fractions inside the entrained-flow gasifier models show trends similar to those observed in a diffusion-type flame. The predicted distributions of mole fractions of major species inside both gasifiers can be explained by the heterogeneous combustion and gasification reactions and the homogeneous gas phase reactions. It was also found that the syngas compositions at the CFD model exits are not in chemical equilibrium, indicating the kinetics for both heterogeneous and gas phase homogeneous reactions are important. Overall, the results achieved here indicate that the gasifier models reported in this paper are reliable and accurate enough to be incorporated into process/CFD co-simulations of IGCC power plants for systemwide design and optimization.

  13. Fire Interactions and Pulsation - Theoretical and Physical Modeling

    E-Print Network [OSTI]

    Maynard, Trevor

    2013-01-01T23:59:59.000Z

    for our two-fire heat transfer model. They applied themerging fires. The heat transfer model proposed in Section 5addition, most radiant heat transfer models assume the flame

  14. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum Reserves Vision,4newsSolarrdPhysicistsPhysics

  15. The Landscape of Klamath Basin Rock Art

    E-Print Network [OSTI]

    David, Robert James

    2012-01-01T23:59:59.000Z

    the Lines: Ethnographic Sources and Rock Art Interpretationwhen applying these sources toward rock art interpretation.information source for developing rock art interpretations.

  16. Zangerl, C., Eberhardt, E., Loew, S., Evans, K., Coupled hydromechanical modelling of surface subsidence in crystalline rock masses due to tunnel drainage. ISRM 2003Technology roadmap for rock mechanics, South African Institute of Mining and Metallurgy, 2

    E-Print Network [OSTI]

    , South African Institute of Mining and Metallurgy, 2003. Coupled hydromechanical modelling of surface

  17. Software Engineer RockAuto www.RockAuto.com

    E-Print Network [OSTI]

    Liblit, Ben

    Software Engineer ­ RockAuto www.RockAuto.com Position Description Software is the foundation · Familiarity with open-source development technologies like PHP, Perl, JavaScript and C (Linux system Lane, Madison, WI 53719) Why RockAuto? Strategic and tactical impact. We're an e-commerce company

  18. ETFOD: a point model physics code with arbitrary input

    SciTech Connect (OSTI)

    Rothe, K.E.; Attenberger, S.E.

    1980-06-01T23:59:59.000Z

    ETFOD is a zero-dimensional code which solves a set of physics equations by minimization. The technique used is different than normally used, in that the input is arbitrary. The user is supplied with a set of variables from which he specifies which variables are input (unchanging). The remaining variables become the output. Presently the code is being used for ETF reactor design studies. The code was written in a manner to allow easy modificaton of equations, variables, and physics calculations. The solution technique is presented along with hints for using the code.

  19. Physics and Engineering Models | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysics Physics Our science answersPhysicsand

  20. Microwave assisted hard rock cutting

    DOE Patents [OSTI]

    Lindroth, David P. (Apple Valley, MN); Morrell, Roger J. (Bloomington, MN); Blair, James R. (Inver Grove Heights, MN)

    1991-01-01T23:59:59.000Z

    An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

  1. A Bond Graphs approach to Physical Modelling of Musical Instruments

    E-Print Network [OSTI]

    McGregor, Andrew

    is the equivalent of the current i flowing in the electric circuit. These equivalencies follow from the fact for representing physical systems, such as an electrical circuit or a mechanical engine. They provide a precise of vibrating media using a network of interconnected mechanical units, called mass and spring. On a computer

  2. Constructive Models of Discrete and Continuous Physical Phenomena

    E-Print Network [OSTI]

    Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2014 (Industrial Cyber-Physical Systems, supported by IBM and United Technologies), and the Center for Hybrid permission. Acknowledgement This work was supported in part by the iCyPhy Research Center (Industrial Cyber

  3. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide

    Broader source: Energy.gov [DOE]

    Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250ºC, and to develop chemical modeling of CO2-reservior rock interactions.

  4. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    None

    1990-01-01T23:59:59.000Z

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  5. Late breaking results: ARPipes: Aligning Virtual models to their Physical Counterparts with Spatial Augmented Reality

    E-Print Network [OSTI]

    Thomas, Bruce

    models to their physical representation. ARPipes provides both a visual overlay of physical plant. The paper describes the process of employing original CAD data of plant equipment and transforming the data with maintenance tasks in fabrication plants. This paper presents the first step in the AR process, the visual

  6. A simplified physical model for assessing solar radiation over Brazil using GOES 8 visible imagery

    E-Print Network [OSTI]

    A simplified physical model for assessing solar radiation over Brazil using GOES 8 visible imagery; published 30 January 2004. [1] Solar radiation assessment by satellite is constrained by physical Composition and Structure: Transmission and scattering of radiation; KEYWORDS: solar radiation, satellite

  7. Search for Physics Beyond the Standard Model at BaBar and Belle

    E-Print Network [OSTI]

    G. Calderini

    2012-04-19T23:59:59.000Z

    Recent results on the search for new physics at BaBar and Belle B-factories are presented. The search for a light Higgs boson produced in the decay of different Y resonances is shown. In addition, recent measurements aimed to discover invisible final states produced by new physics mechanisms beyond the standard model are presented.

  8. ECE 308 -Spring 2005 Physics and Models of Electronics and Optoelectronics Devices (3)

    E-Print Network [OSTI]

    Gilchrist, James F.

    ECE 308 - Spring 2005 Physics and Models of Electronics and Optoelectronics Devices (3) Lecture be able to understand the device physics and the operating principles of basic semiconductor electronic Email: Tansu@Lehigh.Edu Required Readings: 1. H. Craig Casey, Jr., Devices for Integrated Circuits

  9. Physically Based Model-Predictive Control for SOFC Stacks and Systems Tyrone L. Vincent, Borhan Sanandaji

    E-Print Network [OSTI]

    Sanandaji, Borhan M.

    for the sleeper cab on a long-haul truck. Depending upon the activities and appliances in the cab, the power incorporate physical knowledge of fuel-cell behavior into real-time multiple-input­multiple-output (MIMO model that represents the physical and chemical processes responsible for fuel-cell function. However

  10. Validation of hadronic models using CALICE highly granular calorimeters, 15th International Conference on Calorimetry in High Energy Physics

    E-Print Network [OSTI]

    The CALICE Collaboration

    2015-01-01T23:59:59.000Z

    Validation of hadronic models using CALICE highly granular calorimeters, 15th International Conference on Calorimetry in High Energy Physics

  11. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

    Broader source: Energy.gov [DOE]

    Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

  12. America's Atomic Army: The Historical Archaeology of Camp Desert Rock

    SciTech Connect (OSTI)

    Susan R. Edwards

    2007-11-02T23:59:59.000Z

    Established in 1951, Camp Desert Rock served as the training ground for America's 'Atomic Army'. For the next six years, U.S. ground troops traveled to the Nevada desert to participate in military maneuvers during atmospheric atomic weapons testing. Nearly 60,000 soldiers received physical and psychological training in atomic warfare. Abandoned when atmospheric testing ended, Camp Desert Rock was dismantled and its buildings moved to other locations. Today, the camp appears as a sterile expanse of desert marked by rock-lined tent platforms, concrete foundations, and trash scatters. Although visually unimposing, the site is rich with the history of America's nuclear testing program.

  13. An analytical and numerical model to determine stresses in a Rock Melt Drill produced glass liner for potential use on Mars

    E-Print Network [OSTI]

    McConnell, Joshua B

    2000-01-01T23:59:59.000Z

    with investigating the properties of the created liner. Research Goal The Rock Melt Drill is one of several drilling technologies that may possess the potential for being an optimum choice for drilling on Mars, as will be discussed in greater depth in Chapter...

  14. Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models

    E-Print Network [OSTI]

    Subramanian, Venkat

    Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models, Berkeley, California 94720-8168, USA Lithium-ion batteries are typically modeled using porous electrode the active materials of porous electrodes for a pseudo-two- dimensional model for lithium-ion batteries

  15. Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models

    E-Print Network [OSTI]

    Subramanian, Venkat

    Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models materials of porous electrodes for a rigorous pseudo-2D model for lithium-ion batteries. Concentration-ion battery models is the inclusion of solid phase diffusion in a second dimension r. It increases

  16. Interactive physically-based structural modeling of hydrocarbon systems Mael Bosson a,

    E-Print Network [OSTI]

    Redon, Stephane - NRIA Grenoble

    using scripts and/or modeling tools. For many systems, however, these building methods may models of hydrocarbon systems. As the user edits the geometry of the system, atomic positions are alsoInteractive physically-based structural modeling of hydrocarbon systems Mael Bosson a, , Sergei

  17. Simple Physical Models Connect Theory and Experiment in Protein Folding Kinetics

    E-Print Network [OSTI]

    Morozov, Alexandre V.

    Simple Physical Models Connect Theory and Experiment in Protein Folding Kinetics Eric Alm1 underlying the protein-folding problem can be tested by developing and characterizing simple models that make prefactor for protein folding. Finally, we discuss the limitations of simple native-state-based models

  18. Adsorption of water vapor on reservoir rocks. First quarterly report, January--March 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

  19. Noncommutative Geometry Models for Particle Physics and Cosmology

    E-Print Network [OSTI]

    Marcolli, Matilde

    Physics and Co #12;Dirac operators and Majorana mass terms D(Y ) = S T T ¯S , S = S1 (S3 13), T = YR (3) Y(3) 0 0 0 0 Y(3) 0 0 Yukawa matrices: Dirac masses and mixing angles in GLN=3(C) Ye = Y(1) (charged leptons) Y = Y(1) (neutrinos) Yd = Y(3) (d/s/b quarks) Yu = Y(3) (u/c/t quarks) M = Y t R Majorana

  20. Calibration of DEM models for granular materials using bulk physical tests 

    E-Print Network [OSTI]

    Johnstone, Mical William

    2010-01-01T23:59:59.000Z

    , when validation studies are conducted, discrepancies between bulk responses in physical tests and numerical predictions using measured particles properties may arise. The aire of this research is to develop a methodology to calibrate DEM models...

  1. Nordic electricity congestion's arrangement as a model for Europe : physical constraints or operators' opportunism?

    E-Print Network [OSTI]

    Glachant, Jean-Michel

    2002-01-01T23:59:59.000Z

    Congestion on power grids seems a physical reality, a "hard" fact easy to check. Our paper models a different idea: congestion signal may be distorted by transmission system operators (TSOs), which puts the European ...

  2. Physical modeling of wind turbine generators in a small scale analog system

    E-Print Network [OSTI]

    Wang, Xuntuo

    2014-01-01T23:59:59.000Z

    This project represents the physical modeling and experimental test of a Doubly-fed Induction Machine (DFIM), in order to substantially analyze the characteristic behaviors of wind turbines and its use in the micro-grid ...

  3. Laboratory characterization of rock joints

    SciTech Connect (OSTI)

    Hsiung, S.M.; Kana, D.D.; Ahola, M.P.; Chowdhury, A.H.; Ghosh, A. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

    1994-05-01T23:59:59.000Z

    A laboratory characterization of the Apache Leap tuff joints under cyclic pseudostatic and dynamic loads has been undertaken to obtain a better understanding of dynamic joint shear behavior and to generate a complete data set that can be used for validation of existing rock-joint models. Study has indicated that available methods for determining joint roughness coefficient (JRC) significantly underestimate the roughness coefficient of the Apache Leap tuff joints, that will lead to an underestimation of the joint shear strength. The results of the direct shear tests have indicated that both under cyclic pseudostatic and dynamic loadings the joint resistance upon reverse shearing is smaller than that of forward shearing and the joint dilation resulting from forward shearing recovers during reverse shearing. Within the range of variation of shearing velocity used in these tests, the shearing velocity effect on rock-joint behavior seems to be minor, and no noticeable effect on the peak joint shear strength and the joint shear strength for the reverse shearing is observed.

  4. Summer 2014 Undergraduate Research Experience in Physics: Materials and Modeling

    E-Print Network [OSTI]

    ) nuclear reactor found on a college campus. The MU Research Reactor (MURR) provides advanced research experiments, theory, and modeling and span a variety of research projects (see http

  5. Project Profile: Physics-Based Reliability Models for Supercritical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    developed models to predict the reliability of hybrid gas bearing (HGB) and dry gas seal (DGS) components in the turboexpander of a supercritical CO2 turbine. The...

  6. Physical modelling in Geotechnical Earthquake Engineering – 2: Session Report

    E-Print Network [OSTI]

    Madabhushi, Gopal

    2015-01-01T23:59:59.000Z

    earthquake loading. The model piles that were made from aluminium alloy were compared to model RC piles. The latter can develop cracks following slope movements and give the researchers the ability to study the post-cracking behaviour of piles inserted...

  7. Cellular Networks as Models for Planck-Scale Physics

    E-Print Network [OSTI]

    Manfred Requardt

    1998-06-17T23:59:59.000Z

    Starting from the working hypothesis that both physics and the corresponding mathematics have to be described by means of discrete concepts on the Planck scale, one of the many problems one has to face in this enterprise is to find the discrete protoforms of the building blocks of our ordinary continuum physics and mathematics. We base our own approach on what we call `cellular networks', consisting of cells (nodes) interacting with each other via bonds (figuring as elementary interactions) according to a certain `local law'. Geometrically our dynamical networks are living on graphs. Hence a substantial amount of the investigation is devoted to the developement of various versions of discrete (functional) analysis and geometry on such (almost random) webs. Another important topic we address is a suitable concept of intrinsic (fractal) dimension on erratic structures of this kind. In the course of the investigation we make comments concerning both different and related approaches to quantum gravity as, say, the spin network framework. It may perhaps be said that certain parts of our programme seem to be a realisation of ideas sketched by Smolin some time ago (see the introduction).

  8. Cyber-Physical System Requirements -A Model Driven Approach Cyber-physical systems (CPS) networked

    E-Print Network [OSTI]

    Minnesota, University of

    systems such as infusion pumps. Complete and consistent requirements are central to analysis. A generic patient controlled analgesia (GPCA) infusion pump system was used as a case example to provide: Generic Patient Controlled Analgesia Infusion Pump System. Figure: Infusion Pump Plant Model. Figure

  9. Crystallographic Preferred Orientations and Seismic Properties of Gabbroic Rocks Benot ILDEFONSE, David MAINPRICE & Cristina Maria GUSMO de BURGOS

    E-Print Network [OSTI]

    Demouchy, Sylvie

    Crystallographic Preferred Orientations and Seismic Properties of Gabbroic Rocks Benoît ILDEFONSE rocks are a key component of our understanding of the physical properties (rheology, seismic velocities of crystallographic fabrics in gabbroic rocks from the Oman ophiolite and from the lower crust at the South

  10. Physical modeling of the soil swelling curve vs. the shrinkage curve

    E-Print Network [OSTI]

    Chertkov, V Y

    2014-01-01T23:59:59.000Z

    Physical understanding of the links between soil swelling, texture, structure, cracking, and sample size is of great interest for the physical understanding of many processes in the soil-air-water system and for applications in civil, agricultural, and environmental engineering. The background of this work is an available chain of interconnected physical shrinkage curve models for clay, intra-aggregate matrix, aggregated soil without cracks, and soil with cracks. The objective of the work is to generalize these models to the case of swelling, and to construct the physical-swelling-model chain with a step-by-step transition from clay to aggregated soil with cracks. The generalization is based on thorough accounting for the analogies and differences between shrinkage and swelling and the corresponding use, modification, or replacement of the soil shrinkage features. Two specific soil swelling features to be used are: (i) air entrapping in pores of the contributing clay; and (ii) aggregate destruction with the f...

  11. Phenomenological models in biological physics : cell growth and pluripotency maintenance

    E-Print Network [OSTI]

    Youk, Hyun

    2010-01-01T23:59:59.000Z

    A persistent challenge in quantitatively modeling a biological system is that the system often involves many components and just as dizzying number of interactions among those components. To further complicate matters, the ...

  12. Statistical Thermal Models in High-Energy Nuclear Physics

    E-Print Network [OSTI]

    Ludwik Turko

    2009-01-15T23:59:59.000Z

    An examination of thermal models leads to the important signature of the expected critical behavior of the hadronic matter. A presentation is mainly devoted to the final volume effects. Canonical suppression factor are calculated.

  13. The application of high-resolution 3D seismic data to model the distribution of mechanical and hydrogeological properties of a potential host rock for the deep storage of radioactive waste in France

    E-Print Network [OSTI]

    Mari, Jean-Luc

    2014-01-01T23:59:59.000Z

    In the context of a deep geological repository of high-level radioactive wastes, the French National Radioactive Waste Management Agency (Andra) has conducted an extensive characterization of the Callovo-Oxfordian argillaceous rock and surrounding formations in the Eastern Paris Basin. As part of this project, an accurate 3D seismic derived geological model is needed. The paper shows the procedure used for building the 3D seismic constrained geological model in depth by combining time-to-depth conversion of seismic horizons, consistent seismic velocity model and elastic impedance in time. It also shows how the 3D model is used for mechanical and hydrogeological studies. The 3D seismic field data example illustrates the potential of the proposed depth conversion procedure for estimating density and velocity distributions, which are consistent with the depth conversion of seismic horizons using the Bayesian Kriging method. The geological model shows good agreement with well log data obtained from a reference we...

  14. applied physics iupap: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Mechanics. Graduate students are expected to pass Rock, Chris 4 Applied and Engineering Physics Materials Science Websites Summary: Applied and Engineering Physics...

  15. applying physical layer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Mechanics. Graduate students are expected to pass Rock, Chris 2 Applied and Engineering Physics Materials Science Websites Summary: Applied and Engineering Physics...

  16. applied physics division: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Mechanics. Graduate students are expected to pass Rock, Chris 6 Applied and Engineering Physics Materials Science Websites Summary: Applied and Engineering Physics...

  17. applied physics ieee: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Mechanics. Graduate students are expected to pass Rock, Chris 2 Applied and Engineering Physics Materials Science Websites Summary: Applied and Engineering Physics...

  18. applied physics military: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Mechanics. Graduate students are expected to pass Rock, Chris 3 Applied and Engineering Physics Materials Science Websites Summary: Applied and Engineering Physics...

  19. applied antineutrino physics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Mechanics. Graduate students are expected to pass Rock, Chris 2 Applied and Engineering Physics Materials Science Websites Summary: Applied and Engineering Physics...

  20. applied physics 305a: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Mechanics. Graduate students are expected to pass Rock, Chris 2 Applied and Engineering Physics Materials Science Websites Summary: Applied and Engineering Physics...

  1. applied plasma physics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Mechanics. Graduate students are expected to pass Rock, Chris 3 Applied and Engineering Physics Materials Science Websites Summary: Applied and Engineering Physics...

  2. applied physics laboratory: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Mechanics. Graduate students are expected to pass Rock, Chris 9 Applied and Engineering Physics Materials Science Websites Summary: Applied and Engineering Physics...

  3. Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models

    SciTech Connect (OSTI)

    Cetiner, Mustafa Sacit; none,; Flanagan, George F. [ORNL] [ORNL; Poore III, Willis P. [ORNL] [ORNL; Muhlheim, Michael David [ORNL] [ORNL

    2014-07-30T23:59:59.000Z

    An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two types of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.

  4. Source rock maturation, San Juan sag

    SciTech Connect (OSTI)

    Gries, R.R.; Clayton, J.L.

    1989-09-01T23:59:59.000Z

    Kinetic modeling for thermal histories was simulated for seven wells in the San Juan sag honoring measured geochemical data. Wells in the area of Del Norte field (Sec. 9, T40N, R5E), where minor production has been established from an igneous sill reservoir, show that the Mancos Shale source rocks are in the mature oil generation window as a combined result of high regional heat flow and burial by approximately 2,700 m of Oligocene volcanic rocks. Maturation was relatively recent for this area and insignificant during Laramide subsidence. In the vicinity of Gramps field (Sec. 24, T33N, R2E) on the southwest flank of the San Juan sag, these same source rocks are exposed due to erosion of the volcanic cover but appear to have undergone a similar maturation history. At the north and south margins of the sag, two wells (Champlin 34A-13, Sec. 13, T35N, R4.5E; and Champlin 24A-1, Sec. 1, T44N, R5E) were analyzed and revealed that although the regional heat flow was probably similar to other wells, the depth of burial was insufficient to cause maturation (except where intruded by thick igneous sills that caused localized maturation). The Meridian Oil 23-17 South Fork well (Sec. 17, T39N, R4E) was drilled in a deeper part of the San Juan sag, and source rocks were intruded by numerous igneous sills creating a complex maturation history that includes overmature rocks in the lowermost Mancos Shale, possible CO{sub 2} generation from the calcareous Niobrara Member of the Mancos Shale, and mature source rocks in the upper Mancos Shale.

  5. Simulation models for computational plasma physics: Concluding report

    SciTech Connect (OSTI)

    Hewett, D.W.

    1994-03-05T23:59:59.000Z

    In this project, the authors enhanced their ability to numerically simulate bounded plasmas that are dominated by low-frequency electric and magnetic fields. They moved towards this goal in several ways; they are now in a position to play significant roles in the modeling of low-frequency electromagnetic plasmas in several new industrial applications. They have significantly increased their facility with the computational methods invented to solve the low frequency limit of Maxwell`s equations (DiPeso, Hewett, accepted, J. Comp. Phys., 1993). This low frequency model is called the Streamlined Darwin Field model (SDF, Hewett, Larson, and Doss, J. Comp. Phys., 1992) has now been implemented in a fully non-neutral SDF code BEAGLE (Larson, Ph.D. dissertation, 1993) and has further extended to the quasi-neutral limit (DiPeso, Hewett, Comp. Phys. Comm., 1993). In addition, they have resurrected the quasi-neutral, zero-electron-inertia model (ZMR) and began the task of incorporating internal boundary conditions into this model that have the flexibility of those in GYMNOS, a magnetostatic code now used in ion source work (Hewett, Chen, ICF Quarterly Report, July--September, 1993). Finally, near the end of this project, they invented a new type of banded matrix solver that can be implemented on a massively parallel computer -- thus opening the door for the use of all their ADI schemes on these new computer architecture`s (Mattor, Williams, Hewett, submitted to Parallel Computing, 1993).

  6. The effect of rock fragments on the hydraulic properties of soils

    SciTech Connect (OSTI)

    Zimmerman, R.W.; Bodvarsson, G.S.

    1995-04-01T23:59:59.000Z

    Many soils contain rock fragments the sizes of which are much larger than the average pore size of the sieved soil. Due to the fact that these fragments are often fairly large in relation to the soil testing apparatus, it is common to remove them before performing hydrologic tests on the soil. The question then arises as to whether or not there is a simple way to correct the laboratory-measured values to account for the fragments, so as to arrive at property values that can apply to the soil in situ. This question has arisen in the surface infiltration studies that are part of the site characterization program at Yucca Mountain, where accurate values of the hydraulic conductivities of near-surface soils are needed in order to accurately estimate infiltration rates. Although this problem has been recognized for some time, and numerous review articles have been written there are as yet no proven models to account for the effect of rock fragments on hydraulic conductivity and water retention. In this report we will develop some simple physically-based models to account for the effects of rock fragments on gross hydrological properties, and apply the resulting equations to experimental data taken from the literature. These models are intended for application to data that is currently being collected by scientists from the USGS on near-surface soils from Yucca Mountain.

  7. VisualizationandHierarchicalAnalysisofFlowinDiscreteFractureNetworkModels Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of ow and transport in fractured rock has impor

    E-Print Network [OSTI]

    Hamann, Bernd

    . A steady-state ow solution for saturated water is obtained using FEHM (Finite Element Heat and Mass resource management, and hydrocarbon extraction. We have developed methods to explicitly model ow ective use of traditional visualization methods. We would also like quantitative analysis methods

  8. Toward Real-Time Simulation of Physics Based Lithium-Ion Battery Models

    E-Print Network [OSTI]

    Subramanian, Venkat

    Toward Real-Time Simulation of Physics Based Lithium-Ion Battery Models Venkat R. Subramanian Technological University, Cookeville, Tennessee 38505, USA Recent interest in lithium-ion batteries for electric on the computational efficiency of lithium-ion battery models. This paper presents an effective approach to simulate

  9. PANS turbulence model: investigation of computational and physical closure issues in flow past a circular cylinder

    E-Print Network [OSTI]

    Reyes, Dasia Ann

    2009-05-15T23:59:59.000Z

    into the PANS models. This study concludes with an investigation of a low Reynolds number correction for the PANS ku !u model which yields excellent iv improvement. v To my mother and father, I could not have done this without you. vi ACKNOWLEDGMENTS I would... . . . . . . . 58 V CONCLUSIONS : : : : : : : : : : : : : : : : : : : : : : : : : : : 63 A. Computational Issues Conclusions . . . . . . . . . . . . . . 63 B. Physical Issues Conclusions . . . . . . . . . . . . . . . . . 64 VI SUMMARY OF RECOMMENDATIONS...

  10. Physical causes and modeling challenges of anomalous diffusion of sediment tracers

    E-Print Network [OSTI]

    Physical causes and modeling challenges of anomalous diffusion of sediment tracers Douglas] #12;Velocity autocorrelation: Controlled by inertia 0.1 1 Dispersion: inertial at short time particles spend much more time at rest than in motion. Stochastic modeling approach: Direct solution of f

  11. PHYSICAL NATURE OF SHEAR BANDS FORMATION AND CONSTITUTIVE MODELLING FOR PLASTIC INSTABILITY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    697 PHYSICAL NATURE OF SHEAR BANDS FORMATION AND CONSTITUTIVE MODELLING FOR PLASTIC INSTABILITYtokrzyska 21,00-049 Warsaw,Poland Revue Phys. Appl. 23 (1988) 697 AVRIL 1988, Studies of plastic deformation dependent hardening property can be pivotal in the modelling for plastic deform- ation instability

  12. Nested and multi-physics modeling of tsunami evolution from generation to inundation

    E-Print Network [OSTI]

    Lynett, Patrick

    Nested and multi-physics modeling of tsunami evolution from generation to inundation Sangyoung Son. The fundamental purpose of the coupling effort is to develop the capability to seamlessly model tsunami evolution water equations Boussinesq equations Coupling Coherent structures Turbulence Tsunami a b s t r a c

  13. @ @ Computer Graphics, Volume 25, Number 4, July 1991 A Comprehensive Physical Model

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    @ @ Computer Graphics, Volume 25, Number 4, July 1991 A Comprehensive Physical Model for Light Graphics Cornell University Ithaca, NY 14853 Abstract A new general reflectance model for computer graphics and suitable for Computer Graphics appli- cations. Predicted reflectance distributions compare favorably

  14. Differences between Physical Water Models and Steel Continuous Casters: A Theoretical Evaluation

    E-Print Network [OSTI]

    Thomas, Brian G.

    lower surface velocities and surface waves in the water model, especially for thinner cross sections to the similar kinematic viscosity of water and steel, and the ease of constructing and visualizing flow in waterDifferences between Physical Water Models and Steel Continuous Casters: A Theoretical Evaluation R

  15. A physical model of particulate wash-off from rough impervious surfaces

    E-Print Network [OSTI]

    Walter, M.Todd

    ; accepted 23 January 2006 Summary Current urban water quality models rely on empirical, catchment of particulate available. Current urban stormwater models such as SWMM and HSPF are still based on this original urban storm runoff pollution. There are few published explanations of physical wash- off mechanisms

  16. Physical model of a hybrid electric drive train

    E-Print Network [OSTI]

    Young, Brady W. (Brady William)

    2006-01-01T23:59:59.000Z

    A motor and flywheel system was designed to simulate the dynamics of the electric drive train and inertial mass of a hybrid electric vehicle. The model will serve as a test bed for students in 2.672 to study the energy ...

  17. Computational and physical models of RNA structure Ralf Bundschuh

    E-Print Network [OSTI]

    Bundschuh, Ralf

    Partition function Definition The partition function of an RNA molecule with energy function E[S] is given;Molten RNA Energy model Energetics in molten phase Definition In the molten phase of RNA every base can;Boltzmann partition function Secondary structure Definition of RNA secondary structure Definition An RNA

  18. physics/0512181 Modelling dynamics of samples exposed to

    E-Print Network [OSTI]

    not only the sample but also the optical elements of the FEL beamline. Radiation damage by photons from December 2005 Abstract: We apply Boltzmann equations for modelling the radiation damage in samples. Rapid progress of radiation damage in these samples prevents an accurate determination

  19. Probing particle and nuclear physics models of neutrinoless double beta decay with different nuclei

    E-Print Network [OSTI]

    G. L. Fogli; E. Lisi; A. M. Rotunno

    2009-08-06T23:59:59.000Z

    Half-life estimates for neutrinoless double beta decay depend on particle physics models for lepton flavor violation, as well as on nuclear physics models for the structure and transitions of candidate nuclei. Different models considered in the literature can be contrasted - via prospective data - with a "standard" scenario characterized by light Majorana neutrino exchange and by the quasiparticle random phase approximation, for which the theoretical covariance matrix has been recently estimated. We show that, assuming future half-life data in four promising nuclei (Ge-76, Se-82, Te-130, and Xe-136), the standard scenario can be distinguished from a few nonstandard physics models, while being compatible with alternative state-of-the-art nuclear calculations (at 95% C.L.). Future signals in different nuclei may thus help to discriminate at least some decay mechanisms, without being spoiled by current nuclear uncertainties. Prospects for possible improvements are also discussed.

  20. Probing particle and nuclear physics models of neutrinoless double beta decay with different nuclei

    SciTech Connect (OSTI)

    Fogli, G. L.; Rotunno, A. M. [Dipartimento Interateneo di Fisica 'Michelangelo Merlin', Via Amendola 173, 70126 Bari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari (Italy); Lisi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari (Italy)

    2009-07-01T23:59:59.000Z

    Half-life estimates for neutrinoless double beta decay depend on particle physics models for lepton-flavor violation, as well as on nuclear physics models for the structure and transitions of candidate nuclei. Different models considered in the literature can be contrasted - via prospective data - with a 'standard' scenario characterized by light Majorana neutrino exchange and by the quasiparticle random phase approximation, for which the theoretical covariance matrix has been recently estimated. We show that, assuming future half-life data in four promising nuclei ({sup 76}Ge, {sup 82}Se, {sup 130}Te, and {sup 136}Xe), the standard scenario can be distinguished from a few nonstandard physics models, while being compatible with alternative state-of-the-art nuclear calculations (at 95% C.L.). Future signals in different nuclei may thus help to discriminate at least some decay mechanisms, without being spoiled by current nuclear uncertainties. Prospects for possible improvements are also discussed.

  1. Rock Bands/Rock Brands: Mediation and Musical Performance in Post-liberalization Bangalore

    E-Print Network [OSTI]

    Coventry, Chloe Louise

    2013-01-01T23:59:59.000Z

    these recorded sources important rock pedagogical tools inwere a primary source of western rock music for young fans,Nevertheless, a source of funding for rock music performance

  2. Characterizing Flow in Oil Reservoir Rock Using Smooth Particle Hydrodynamics

    E-Print Network [OSTI]

    Holmes, David W.

    In this paper, a 3D Smooth Particle Hydrodynamics (SPH) simulator for modeling grain scale fluid flow in porous rock is presented. The versatility of the SPH method has driven its use in increasingly complex areas of flow ...

  3. A Physically Based Analytical Model to Predict Quantized Eigen Energies and Wave Functions Incorporating Penetration Effect

    E-Print Network [OSTI]

    Nadim Chowdhury; Imtiaz Ahmed; Zubair Al Azim; Md. Hasibul Alam; Iftikhar Ahmad Niaz; Quazi D. M. Khosru

    2014-04-14T23:59:59.000Z

    We propose a physically based analytical compact model to calculate Eigen energies and Wave functions which incorporates penetration effect. The model is applicable for a quantum well structure that frequently appears in modern nano-scale devices. This model is equally applicable for both silicon and III-V devices. Unlike other models already available in the literature, our model can accurately predict all the eigen energies without the inclusion of any fitting parameters. The validity of our model has been checked with numerical simulations and the results show significantly better agreement compared to the available methods.

  4. Joint physical and numerical modeling of water distribution networks.

    SciTech Connect (OSTI)

    Zimmerman, Adam; O'Hern, Timothy John; Orear, Leslie Jr.; Kajder, Karen C.; Webb, Stephen Walter; Cappelle, Malynda A.; Khalsa, Siri Sahib; Wright, Jerome L.; Sun, Amy Cha-Tien; Chwirka, J. Benjamin; Hartenberger, Joel David; McKenna, Sean Andrew; van Bloemen Waanders, Bart Gustaaf; McGrath, Lucas K.; Ho, Clifford Kuofei

    2009-01-01T23:59:59.000Z

    This report summarizes the experimental and modeling effort undertaken to understand solute mixing in a water distribution network conducted during the last year of a 3-year project. The experimental effort involves measurement of extent of mixing within different configurations of pipe networks, measurement of dynamic mixing in a single mixing tank, and measurement of dynamic solute mixing in a combined network-tank configuration. High resolution analysis of turbulence mixing is carried out via high speed photography as well as 3D finite-volume based Large Eddy Simulation turbulence models. Macroscopic mixing rules based on flow momentum balance are also explored, and in some cases, implemented in EPANET. A new version EPANET code was developed to yield better mixing predictions. The impact of a storage tank on pipe mixing in a combined pipe-tank network during diurnal fill-and-drain cycles is assessed. Preliminary comparison between dynamic pilot data and EPANET-BAM is also reported.

  5. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Lime Lithium Magnesium Manganese Mercury Mica Molybdenum Nickel Nitrogen Peat Perlite Phosphate Rock . . . . . . . . . . . . . . . . . . . . . . . . 194 Appendix C--Resource/Reserve Definitions . . . . . . 195 Commodities: Abrasives (Manufactured

  6. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Mica Molybdenum Nickel Nitrogen Peat Perlite Phosphate Rock Platinum Potash Pumice Quartz Crystal Rare . . . . . . . . . . . . . . . . . . . . . . . . 190 Appendix C--A Resource/Reserve Classification for Minerals

  7. Physics-based statistical model and simulation method of RF propagation in urban environments

    DOE Patents [OSTI]

    Pao, Hsueh-Yuan (San Jose, CA); Dvorak, Steven L. (Tucson, AZ)

    2010-09-14T23:59:59.000Z

    A physics-based statistical model and simulation/modeling method and system of electromagnetic wave propagation (wireless communication) in urban environments. In particular, the model is a computationally efficient close-formed parametric model of RF propagation in an urban environment which is extracted from a physics-based statistical wireless channel simulation method and system. The simulation divides the complex urban environment into a network of interconnected urban canyon waveguides which can be analyzed individually; calculates spectral coefficients of modal fields in the waveguides excited by the propagation using a database of statistical impedance boundary conditions which incorporates the complexity of building walls in the propagation model; determines statistical parameters of the calculated modal fields; and determines a parametric propagation model based on the statistical parameters of the calculated modal fields from which predictions of communications capability may be made.

  8. New perspectives in physics beyond the standard model

    SciTech Connect (OSTI)

    Weiner, Neal Jonathan

    2000-09-09T23:59:59.000Z

    In 1934 Fermi postulated a theory for weak interactions containing a dimensionful coupling with a size of roughly 250 GeV. Only now are we finally exploring this energy regime. What arises is an open question: supersymmetry and large extra dimensions are two possible scenarios. Meanwhile, other experiments will begin providing definitive information into the nature of neutrino masses and CP violation. In this paper, we explore features of possible theoretical scenarios, and study the phenomenological implications of various models addressing the open questions surrounding these issues.

  9. Test of Physics beyond the Standard Model in Nuclei

    E-Print Network [OSTI]

    Amand Faessler; Fedor Simkovic

    1999-09-04T23:59:59.000Z

    The modern theories of Grand Unification (GUT) and supersymmetric (SUSY) extensions of standard model (SM) suppose that the conservation laws of the SM may be violated to some small degree. The nuclei are well-suited as a laboratory to test fundamental symmetries and fundamental interactions like lepton flavor (LF) and lepton number (LN) conservation. A prominent role between experiments looking for LF and total LN violation play yet not observed processes of neutrinoless double beta decay. The GUT's and SUSY models offer a variety of mechanisms which allow this process to occur. They are based on mixing of Majorana neutrinos and/or R-parity violation hypothesis. Although the neutrinoless double beta decay has not been seen it is possible to extract from the lower limits of the lifetime upper limits for the effective electron Majorana neutrino mass, effective right handed weak interaction parameters, the effective Majoron coupling constant, R-parity violating SUSY parameters etc. In this work the limits on the LN violating parameters extracted from current neutrinoless double beta decay experiments are listed. Studies in respect to future neutrinoless double beta decay experimental projects are also presented.

  10. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment

    SciTech Connect (OSTI)

    Nancy Moller Weare

    2006-07-25T23:59:59.000Z

    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum production systems, stripping towers for mineral production processes, nuclear waste storage, CO2 sequestration strategies, global warming). Although funding decreases cut short completion of several research activities, we made significant progress on these abbreviated projects.

  11. Life cycle assessment of a rock crusher

    SciTech Connect (OSTI)

    Landfield, A.H.; Karra, V.

    1999-07-01T23:59:59.000Z

    Nordberg, Inc., a capital equipment manufacturer, performed a Life Cycle Assessment study on its rock crusher to aid in making decisions on product design and energy improvements. Life Cycle Assessment (LCA) is a relatively new cutting edge environmental tool recently standardized by ISO that provides quantitative environmental and energy data on products or processes. This paper commences with a brief introduction to LCA and presents the system boundaries, modeling and assumptions for the rock crusher study. System boundaries include all life major cycle stages except manufacturing and assembly of the crusher. Results of the LCA show that over 99% of most of the flows into and out of the system may be attributed to the use phase of the rock crusher. Within the use phase itself, over 95% of each environmental inflow and outflow (with some exceptions) are attributed to electricity consumption, and not the replacement of spares/wears or lubricating oil over the lifetime of the crusher. Results tables and charts present selected environmental flows, including CO{sub 2} NOx, SOx, particulate matter, and energy consumption, for each of the rock crusher life cycle stages and the use phase. This paper aims to demonstrate the benefits of adopting a rigorous scientific approach to assess energy and environmental impacts over the life cycle of capital equipment. Nordberg has used these results to enhance its engineering efforts toward developing an even more energy efficient machine to further progress its vision of providing economic solutions to its customers by reducing the crusher operating (mainly electricity) costs.

  12. Multiporosity Flow in Fractured Low-Permeability Rocks

    E-Print Network [OSTI]

    Kuhlman, Kristopher L; Heath, Jason E

    2015-01-01T23:59:59.000Z

    A multiporosity extension of classical double and triple porosity fractured rock flow models for slightly compressible fluids is presented. The multiporosity model is an adaptation of the multirate solute transport model of Haggerty and Gorelick (1995) to viscous flow in fractured rock reservoirs. It is a generalization of both pseudo-steady-state and transient interporosity flow double porosity models. The model includes a fracture continuum and an overlapping distribution of multiple rock matrix continua, whose fracture-matrix exchange coefficients are specified through a discrete probability mass function. Semi-analytical cylindrically symmetric solutions to the multiporosity mathematical model are developed using the Laplace transform to illustrate its behavior. The multiporosity model presented here is conceptually simple, yet flexible enough to simulate common conceptualizations of double and triple porosity flow. This combination of generality and simplicity makes the multiporosity model a good choice ...

  13. A quasi-model-independent search for new high p{_}T physics at DO

    SciTech Connect (OSTI)

    Knuteson, Bruce O.

    2000-12-11T23:59:59.000Z

    We present a new quasi-model-independent strategy (''Sleuth'') for searching for physics beyond the standard model. We define final states to be studied, and construct a rule that identifies a set of relevant variables for any particular final state. A novel algorithm searches for regions of excess in those variables and quantifies the significance of any detected excess. This strategy is applied to search for new high p{_}T physics in approximately 100 pb{sup -1} of proton-anti-proton collisions at sqrt(s) = 1.8 TeV collected by the D0 experiment during 1992-1996 at the Fermilab Tevatron. We systematically analyze many exclusive final states, and demonstrate sensitivity to a variety of models predicting new phenomena at the electroweak scale. No evidence of new high p{_}T physics is observed.

  14. High Performance Computing Modeling Advances Accelerator Science for High Energy Physics

    SciTech Connect (OSTI)

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-04-29T23:59:59.000Z

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing (HPC) are essential for accurately modeling them. In the past decade, the DOE SciDAC program has produced such accelerator-modeling tools, which have beem employed to tackle some of the most difficult accelerator science problems. In this article we discuss the Synergia beam-dynamics framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable of handling the entire spectrum of beam dynamics simulations. We present the design principles, key physical and numerical models in Synergia and its performance on HPC platforms. Finally, we present the results of Synergia applications for the Fermilab proton source upgrade, known as the Proton Improvement Plan (PIP).

  15. High-Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Amundson, James [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Macridin, Alexandru [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Spentzouris, Panagiotis [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2014-11-01T23:59:59.000Z

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing (HPC) are essential for accurately modeling them. In the past decade, the DOE SciDAC program has produced such accelerator-modeling tools, which have beem employed to tackle some of the most difficult accelerator science problems. In this article we discuss the Synergia beam-dynamics framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable of handling the entire spectrum of beam dynamics simulations. We present the design principles, key physical and numerical models in Synergia and its performance on HPC platforms. Finally, we present the results of Synergia applications for the Fermilab proton source upgrade, known as the Proton Improvement Plan (PIP).

  16. High-Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-11-01T23:59:59.000Z

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing (HPC) are essential for accurately modeling them. In the past decade, the DOE SciDAC program has produced such accelerator-modeling tools, which have beem employed to tackle some of the most difficult accelerator science problems. In this article we discuss the Synergia beam-dynamics framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation packagemore »capable of handling the entire spectrum of beam dynamics simulations. We present the design principles, key physical and numerical models in Synergia and its performance on HPC platforms. Finally, we present the results of Synergia applications for the Fermilab proton source upgrade, known as the Proton Improvement Plan (PIP).« less

  17. Squirt flow in fully saturated rocks

    SciTech Connect (OSTI)

    Dvorkin, J.; Mavko, G.; Nur, A. [Stanford Univ., CA (United States). Dept. of Geophysics] [Stanford Univ., CA (United States). Dept. of Geophysics

    1995-01-01T23:59:59.000Z

    The authors estimate velocity/frequency dispersion and attenuation in fully saturated rocks by employing the squirt-flow mechanism of solid-fluid interaction. In this model, pore fluid is squeezed from thin soft cracks into the surrounding large pores. Information about the compliance of these soft cracks at low confining pressures is extracted from high-pressure velocity data. The frequency dependence of squirt-induced pressure in the soft cracks is linked with the porosity and permeability of the soft pore space, and the characteristic squirt-flow length. These unknown parameters are combined into one expression that is assumed to be a fundamental rock property that does not depend on frequency. The appropriate value of this expression for a given rock can be found by matching the authors theoretical predictions with the experimental measurements of attenuation or velocity. The low-frequency velocity limits, as given by their model, are identical to those predicted by Gassmann`s formula. The high-frequency limits may significant exceed those given by the Biot theory: the high-frequency frame bulk modulus is close to that measured at high confining pressure. They have applied their model to D`Euville Limestone, Navajo Sandstone, and Westerly Granite. The model realistically predicts the observed velocity/frequency dispersion, and attenuation.

  18. Fracture Dissolution of Carbonate Rock: An Innovative Process for Gas Storage

    SciTech Connect (OSTI)

    James W. Castle; Ronald W. Falta; David Bruce; Larry Murdoch; Scott E. Brame; Donald Brooks

    2006-10-31T23:59:59.000Z

    The goal of the project is to develop and assess the feasibility and economic viability of an innovative concept that may lead to commercialization of new gas-storage capacity near major markets. The investigation involves a new approach to developing underground gas storage in carbonate rock, which is present near major markets in many areas of the United States. Because of the lack of conventional gas storage and the projected growth in demand for storage capacity, many of these areas are likely to experience shortfalls in gas deliverability. Since depleted gas reservoirs and salt formations are nearly non-existent in many areas, alternatives to conventional methods of gas storage are required. The need for improved methods of gas storage, particularly for ways to meet peak demand, is increasing. Gas-market conditions are driving the need for higher deliverability and more flexibility in injection/withdrawal cycling. In order to meet these needs, the project involves an innovative approach to developing underground storage capacity by creating caverns in carbonate rock formations by acid dissolution. The basic concept of the acid-dissolution method is to drill to depth, fracture the carbonate rock layer as needed, and then create a cavern using an aqueous acid to dissolve the carbonate rock. Assessing feasibility of the acid-dissolution method included a regional geologic investigation. Data were compiled and analyzed from carbonate formations in six states: Indiana, Ohio, Kentucky, West Virginia, Pennsylvania, and New York. To analyze the requirements for creating storage volume, the following aspects of the dissolution process were examined: weight and volume of rock to be dissolved; gas storage pressure, temperature, and volume at depth; rock solubility; and acid costs. Hydrochloric acid was determined to be the best acid to use because of low cost, high acid solubility, fast reaction rates with carbonate rock, and highly soluble products (calcium chloride) that allow for the easy removal of calcium waste from the well. Physical and chemical analysis of core samples taken from prospective geologic formations for the acid dissolution process confirmed that many of the limestone samples readily dissolved in concentrated hydrochloric acid. Further, some samples contained oily residues that may help to seal the walls of the final cavern structure. These results suggest that there exist carbonate rock formations well suited for the dissolution technology and that the presence of inert impurities had no noticeable effect on the dissolution rate for the carbonate rock. A sensitivity analysis was performed for characteristics of hydraulic fractures induced in carbonate formations to enhance the dissolution process. Multiple fracture simulations were conducted using modeling software that has a fully 3-D fracture geometry package. The simulations, which predict the distribution of fracture geometry and fracture conductivity, show that the stress difference between adjacent beds is the physical property of the formations that has the greatest influence on fracture characteristics by restricting vertical growth. The results indicate that by modifying the fracturing fluid, proppant type, or pumping rate, a fracture can be created with characteristics within a predictable range, which contributes to predicting the geometry of storage caverns created by acid dissolution of carbonate formations. A series of three-dimensional simulations of cavern formation were used to investigate three different configurations of the acid-dissolution process: (a) injection into an open borehole with production from that same borehole and no fracture; (b) injection into an open borehole with production from that same borehole, with an open fracture; and (c) injection into an open borehole connected by a fracture to an adjacent borehole from which the fluids are produced. The two-well configuration maximizes the overall mass transfer from the rock to the fluid, but it results in a complex cavern shape. Numerical simulations were performed to evalua

  19. New Physics effects on decay $B_s \\to ??$ in Technicolor Model

    E-Print Network [OSTI]

    Qin XiuMei; Wujun Huo; Xiaofang Yang

    2011-01-12T23:59:59.000Z

    In this paper we calculate the contributions to the branching ratio of $B_s \\to \\gamma\\gamma$ from the charged Pseudo-Goldstone bosons appeared in one generation Technicolor model. We find that the theoretical values of the branching ratio, $BR(B_s\\to\\gamma\\gamma)$, including the contributions of PGBs, $P^\\pm$ and $P^{\\pm}_8$, are much different from the $SM$ prediction. The new physics effects can be enhance 2-3 levels to $SM$ result. It is shown that the decay $B_s\\to \\gamma\\gamma$ can give the test the new physics signals from the technicolor model.

  20. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Phosphate Rock Platinum Potash Pumice Quartz Crystal Rare Earths Rhenium Rubidium Salt Sand and Gravel Graphite Peat Sulfur Beryllium Gypsum Perlite Talc Bismuth Hafnium Phosphate Rock Tantalum Boron Helium on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards

  1. Physical modeling of the soil swelling curve vs. the shrinkage curve

    E-Print Network [OSTI]

    V. Y. Chertkov

    2014-04-14T23:59:59.000Z

    Physical understanding of the links between soil swelling, texture, structure, cracking, and sample size is of great interest for the physical understanding of many processes in the soil-air-water system and for applications in civil, agricultural, and environmental engineering. The background of this work is an available chain of interconnected physical shrinkage curve models for clay, intra-aggregate matrix, aggregated soil without cracks, and soil with cracks. The objective of the work is to generalize these models to the case of swelling, and to construct the physical-swelling-model chain with a step-by-step transition from clay to aggregated soil with cracks. The generalization is based on thorough accounting for the analogies and differences between shrinkage and swelling and the corresponding use, modification, or replacement of the soil shrinkage features. Two specific soil swelling features to be used are: (i) air entrapping in pores of the contributing clay; and (ii) aggregate destruction with the formation of new aggregate surfaces. The input for the prediction of the swelling curve of an aggregated soil coincides with that of the available model of the shrinkage curve. The analysis of available data on the maximum shrink-swell cycle of two soils with different texture and structure, accounting for sample size is conducted as applied to swelling curves and to the residual crack volume and maximum-swelling-volume decrease after the shrink-swell cycle. Results of the analysis show evidence in favor of the swelling model chain.

  2. Modeling of the AISI Two-Zone Smelter, Part II: Physical Modeling and the AISI Pilot Plant Trials

    SciTech Connect (OSTI)

    Keller, Joseph George; Zhang, X.; Fuehan, R. J.; Vassilicos, A.; Sarma, B.

    2001-06-01T23:59:59.000Z

    Physical modeling experiments were conducted for the American Iron and Steel Institute (AISI) two-zone smelter process. The effects of geometrical and operating parameters on backmixing flow rates were investigated. It was found that the driving force for a backmixing flow in the AISI smelter comes from gas stirring in a liquid bath. The backmixing flow rate in the AISI smelter is proportional to a bath depth and an opening area of a barrier. Based on the results of the physical modeling experiments, a dimensional analysis was performed to extrapolate the water modeling results to the operating conditions in the AISI pilot plant. Copper tracer trials were conducted at the AISI pilot plant to investigate the backmixing flow of the AISI two-zone smelter process. The results obtained from the pilot plant trials and the water modeling experiments were compared.

  3. Modeling basin- and plume-scale processes of CO2 storage for full-scale deployment

    E-Print Network [OSTI]

    Zhou, Q.

    2010-01-01T23:59:59.000Z

    exhibits varying rock properties in the vertical direction,Spatial Variability of Rock Properties The large number ofthe geologic model, rock properties, and in situ conditions

  4. Report on High Performance Building's Energy Modeling, Physical Building Information Modeling for Solar Building Design and Simulation

    E-Print Network [OSTI]

    Alcocer, J.; Haberl, J. S.

    2012-01-01T23:59:59.000Z

    This report was created for the National Science Foundation-Physical Building Information Modeling (NSF-PBIM) project. This report describes the analysis of a solar office building using the following software: the legacy tools (DOE 2.1e, the F...

  5. Report on High Performance Building's Energy Modeling, Physical Building Information Modeling for Solar Building Design and Simulation 

    E-Print Network [OSTI]

    Alcocer, J.; Haberl, J. S.

    2012-01-01T23:59:59.000Z

    This report was created for the National Science Foundation-Physical Building Information Modeling (NSF-PBIM) project. This report describes the analysis of a solar office building using the following software: the legacy tools (DOE 2.1e, the F...

  6. URANIUM IN ALKALINE ROCKS

    E-Print Network [OSTI]

    Murphy, M.

    2011-01-01T23:59:59.000Z

    Heinrich; Petrology and Mineralogy of the Mt. Rosa Area, ElDana 1958 A textbook of mineralogy with an extended treatiseon crystallography and physical mineralogy, Dana, E.S. , and

  7. Category: Subsurface Hydrology Theoretical prediction of poroelastic properties of argillaceous rocks

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    have to be measured with accuracy. Index terms: Physical properties of rocks: 5199 GeneralCategory: Subsurface Hydrology Theoretical prediction of poroelastic properties of argillaceous rocks from in situ specific storage coefficient Ph. Cosenza1 '2 , M. Ghoreychi3 , G. de Marsily \\ G

  8. Oil and Gas CDT Bots in Rocks: Intelligent Rock Deformation for Fault Rock

    E-Print Network [OSTI]

    Henderson, Gideon

    Heriot-Watt University, Institute of Petroleum Engineering Supervisory Team · Dr Helen Lewis, Heriot://www.pet.hw.ac.uk/staff-directory/jimsomerville.htm Key Words Nano/Micro sensors; faults; fault zones; geomechanics; rock mechanics; rock deformation-deformed equivalent, a different lab-deformed example and a geomechanical simulation of a fault zone showing permanent

  9. Project Profile: Physics-Based Reliability Models for Supercritical-CO2 Turbomachinery Components

    Broader source: Energy.gov [DOE]

    GE, under the Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) Program will be leveraging internally developed models to predict the reliability of hybrid gas bearing (HGB) and dry gas seal (DGS) components in the turboexpander of a supercritical CO2 turbine. The Bayesian model is to include phase changes, low cycle fatigue/high cycle fatigue, dynamic instabilities, and corrosion processes.

  10. Les Houches 2013: Physics at TeV Colliders: Standard Model Working Group Report

    E-Print Network [OSTI]

    J. Butterworth; G. Dissertori; S. Dittmaier; D. de Florian; N. Glover; K. Hamilton; J. Huston; M. Kado; A. Korytov; F. Krauss; G. Soyez; J. R. Andersen; S. Badger; L. Barzè; J. Bellm; F. U. Bernlochner; A. Buckley; J. Butterworth; N. Chanon; M. Chiesa; A. Cooper-Sarkar; L. Cieri; G. Cullen; H. van Deurzen; G. Dissertori; S. Dittmaier; D. de Florian; S. Forte; R. Frederix; B. Fuks; J. Gao; M. V. Garzelli; T. Gehrmann; E. Gerwick; S. Gieseke; D. Gillberg; E. W. N. Glover; N. Greiner; K. Hamilton; T. Hapola; H. B. Hartanto; G. Heinrich; A. Huss; J. Huston; B. Jäger; M. Kado; A. Kardos; U. Klein; F. Krauss; A. Kruse; L. Lönnblad; G. Luisoni; Daniel Maître; P. Mastrolia; O. Mattelaer; J. Mazzitelli; E. Mirabella; P. Monni; G. Montagna; M. Moretti; P. Nadolsky; P. Nason; O. Nicrosini; C. Oleari; G. Ossola; S. Padhi; T. Peraro; F. Piccinini; S. Plätzer; S. Prestel; J. Pumplin; K. Rabbertz; Voica Radescu; L. Reina; C. Reuschle; J. Rojo; M. Schönherr; J. M. Smillie; J. F. von Soden-Fraunhofen; G. Soyez; R. Thorne; F. Tramontano; Z. Trocsanyi; D. Wackeroth; J. Winter; C-P. Yuan; V. Yundin; K. Zapp

    2014-05-05T23:59:59.000Z

    This Report summarizes the proceedings of the 2013 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections and (2) the comparison of those cross sections with LHC data from Run 1, and projections for future measurements in Run 2.

  11. Modeling Physical Quantities in Industrial Systems using Fluid Stochastic Petri Nets

    E-Print Network [OSTI]

    Gribaudo, Marco

    of a case study, in which the quantity to be regulated is a real fluid quantity: the fuel demand in a gas: Start Fuel Controller 2 Fluid Stochastic Petri Nets Fluid Stochastic Petri Nets are Petri net basedModeling Physical Quantities in Industrial Systems using Fluid Stochastic Petri Nets M. Gribaudo

  12. A compact physical model for morphology induced intrinsic degradation of organic bulk heterojunction solar cell

    E-Print Network [OSTI]

    Alam, Muhammad A.

    for an intrinsic degradation concern for bulk heterojunction type organic photovoltaic (BH-OPV) cells that involveA compact physical model for morphology induced intrinsic degradation of organic bulk-induced degradation in Si-based cell (Staebler-Wronski effect), Cu diffusion in thin film (copper indium gallium

  13. A wave equation including leptons and quarks for the standard model of quantum physics in

    E-Print Network [OSTI]

    Boyer, Edmond

    A wave equation including leptons and quarks for the standard model of quantum physics in Clifford-m@orange.fr August 27, 2014 Abstract A wave equation with mass term is studied for all particles and an- tiparticles of color and antiquarks u and d. This wave equation is form invariant under the Cl 3 group generalizing

  14. A physical approach to metal insulator metal (MIM) tuning capacitor modeling

    E-Print Network [OSTI]

    Nelson, James Erich

    2000-01-01T23:59:59.000Z

    and behavior as lumped elements. Many attempts have been proposed to predict shunt capacitor MIM behavior. However, past models are valid for 20 GHz or less and do not directly correspond to the physical structure of the element. The research presented here...

  15. Physically based model of downstream fining in bedrock streams with lateral input

    E-Print Network [OSTI]

    Lajeunesse, Eric

    Click Here for Full Article Physically based model of downstream fining in bedrock streams not show a clear, monotonic pattern of size reduction in the downstream direction. Both abrasion and selective sorting may play important roles in generating downstream fining. The objective of this study

  16. Micellar/Polymer PhysicalProperty Models for Contaminant Cleanup Problems and

    E-Print Network [OSTI]

    Trangenstein, John A.

    /polymer phase behavior have been highly successful in simulating enhanced oil recovery processes using for contaminant cleanup [26] and for enhanced oil recovery [14]. Surfactants can be injected as dilute aqueousMicellar/Polymer Physical­Property Models for Contaminant Cleanup Problems and Enhanced Oil

  17. Physics-Based Low Order Galerkin Models in Fluid Dynamics & Flow Control

    E-Print Network [OSTI]

    Gorban, Alexander N.

    (Berlin Institute of Technology MB1, Germany) Marek Morzynski (Poznan University of Technology, Poland models of energy supply and consumption. Yet a third principle is the realization that governing flow to time-averaged energy dynamics of Galerkin modes, and gives rise to physically based, nonlinear sub

  18. Mathematical, physical and numerical principles essential for models of turbulent mixing

    SciTech Connect (OSTI)

    Sharp, David Howland [Los Alamos National Laboratory; Lim, Hyunkyung [STONY BROOK UNIV; Yu, Yan [STONY BROOK UNIV; Glimm, James G [STONY BROOK UNIV

    2009-01-01T23:59:59.000Z

    We propose mathematical, physical and numerical principles which are important for the modeling of turbulent mixing, especially the classical and well studied Rayleigh-Taylor and Richtmyer-Meshkov instabilities which involve acceleration driven mixing of a fluid discontinuity layer, by a steady accerleration or an impulsive force.

  19. Final Technical Report Modeling the Physical and Biochemical Influence of Ocean

    E-Print Network [OSTI]

    Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters DOE AWARD NO. DE sustainably with acceptably low biological impact. Ocean Thermal Energy Conversion (OTEC) uses large flowsFinal Technical Report Modeling the Physical and Biochemical Influence of Ocean Thermal Energy

  20. PHYSICS OF FLUIDS 24, 022109 (2012) Modeling resistance of nanofibrous superhydrophobic

    E-Print Network [OSTI]

    Tafreshi, Hooman Vahedi

    2012-01-01T23:59:59.000Z

    PHYSICS OF FLUIDS 24, 022109 (2012) Modeling resistance of nanofibrous superhydrophobic coatings of microstructural parameters on the performance of fibrous superhydrophobic coatings manufactured via dc and ac information with regards to the tolerance of fibrous superhydrophobic coatings against elevated pres- sures

  1. Port-Hamiltonian systems: network modeling and control of nonlinear physical systems

    E-Print Network [OSTI]

    Schaft, Arjan van der

    Port-Hamiltonian systems: network modeling and control of nonlinear physical systems A.J. van der systems (multi-body systems, electrical circuits, electromechanical systems, ..) naturally leads to a geometrically defined class of systems, called port-Hamiltonian systems. These are Hamiltonian systems defined

  2. 288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling of nuclear reactors

    E-Print Network [OSTI]

    Demazière, Christophe

    of nuclear reactors: current practices in a nutshell Christophe Demazière Department of Applied Physics of nuclear reactors are based on the use of different solvers for resolving the different physical fields and the corresponding approximations. Keywords: nuclear reactors; multi-physics; multi-scale; modelling; deterministic

  3. Shotgun cartridge rock breaker

    DOE Patents [OSTI]

    Ruzzi, Peter L. (Eagan, NM); Morrell, Roger J. (Bloomington, MN)

    1995-01-01T23:59:59.000Z

    A rock breaker uses shotgun cartridges or other firearm ammunition as the explosive charge at the bottom of a drilled borehole. The breaker includes a heavy steel rod or bar, a gun with a firing chamber for the ammunition which screws onto the rod, a long firing pin running through a central passage in the rod, and a firing trigger mechanism at the external end of the bar which strikes the firing pin to fire the cartridge within the borehole. A tubular sleeve surround the main body of the rod and includes slits the end to allow it to expand. The rod has a conical taper at the internal end against which the end of the sleeve expands when the sleeve is forced along the rod toward the taper by a nut threaded onto the external end of the rod. As the sleeve end expands, it pushes against the borehole and holds the explosive gasses within, and also prevents the breaker from flying out of the borehole. The trigger mechanism includes a hammer with a slot and a hole for accepting a drawbar or drawpin which, when pulled by a long cord, allows the cartridge to be fired from a remote location.

  4. Integrating Building Information Modeling with Object-Oriented Physical Modeling for Building Thermal Simulation

    E-Print Network [OSTI]

    Jeong, Woon Seong

    2014-09-05T23:59:59.000Z

    the framework, and (2) the model manually created using Lawrence Berkeley National Laboratory’s Modelica Buildings library. The results show that the framework: (1) enables BIM models to be translated into ModelicaBEM models, (2) enables system interface...

  5. A physical model of radiated enhancement of plasma-surrounded antenna

    SciTech Connect (OSTI)

    Gao, Xiaotian; Wang, Chunsheng, E-mail: wangcs@hit.edu.cn; Jiang, Binhao; Zhang, Zhonglin [Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, 150001 Harbin (China)

    2014-09-15T23:59:59.000Z

    A phenomenon that the radiated power may be enhanced when an antenna is surrounded by a finite plasma shell has been found in numerical and experimental studies. In this paper, a physical model was built to express the mechanism of the radiated enhancement. In this model, the plasma shell is treated as a parallel connection of a capacitance and a conductance whose parameters change with the system parameters (plasma density, collision frequency, and antenna frequency). So, the radiated enhancement can be explained by the resonance between the plasma shell and the infinite free space. Furthermore, the effects of system parameters on the radiated power are given and effects corresponding to mechanisms are performed based on the physical model.

  6. Low Pore Connectivity in Natural Rock

    SciTech Connect (OSTI)

    Hu, Qinhong; Ewing, Robert P.; Dultz, Stefan

    2012-05-15T23:59:59.000Z

    As repositories for CO? and radioactive waste, as oil and gas reservoirs, and as contaminated sites needing remediation, rock formations play a central role in energy and environmental management. The connectivity of the rock's porespace strongly affects fluid flow and solute transport. This work examines pore connectivity and its implications for fluid flow and chemical transport. Three experimental approaches (imbibition, tracer concentration profiles, and imaging) were used in combination with network modeling. In the imbibition results, three types of imbibition slope [log (cumulative imbibition) vs. log (imbibition time)] were found: the classical 0.5, plus 0.26, and 0.26 transitioning to 0.5. The imbibition slope of 0.26 seen in Indiana sandstone, metagraywacke, and Barnett shale indicates low pore connectivity, in contrast to the slope of 0.5 seen in the well-connected Berea sandstone. In the tracer profile work, rocks exhibited different distances to the plateau porosity, consistent with the pore connectivity from the imbibition tests. Injection of a molten metal into connected pore spaces, followed by 2-D imaging of the solidified alloy in polished thin sections, allowed direct assessment of pore structure and lateral connection in the rock samples. Pore-scale network modeling gave results consistent with measurements, confirming pore connectivity as the underlying cause of both anomalous behaviors: imbibition slope not having the classical value of 0.5, and accessible porosity being a function of distance from the edge. A poorly connected porespace will exhibit anomalous behavior in fluid flow and chemical transport, such as a lower imbibition slope (in air–water system) and diffusion rate than expected from classical behavior.

  7. Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo forest, Puerto Rico

    E-Print Network [OSTI]

    Arnone, E.

    This paper presents the development of a rainfall-triggered landslide module within an existing physically based spatially distributed ecohydrologic model. The model, tRIBS-VEGGIE (Triangulated Irregular Networks-based ...

  8. The Northwest Geysers EGS Demonstration Project Phase 1: Pre-stimulation coupled geomechanical modeling to guide stimulation and monitoring plans

    E-Print Network [OSTI]

    Rutqvist, J.

    2012-01-01T23:59:59.000Z

    geophysical logs and rock property data from previous coreincorporation of rock properties from previous unpublishedProject. Table 1. Rock properties for modeling of the

  9. Strength of transversely isotropic rocks

    E-Print Network [OSTI]

    Pei, Jianyong, 1975-

    2008-01-01T23:59:59.000Z

    This thesis proposes a new Anisotropic Matsuoka-Nakai (AMN) criterion to characterize the failure of transversely isotropic rocks under true triaxial stress states. One major obstacle in formulating an anisotropic criterion ...

  10. A Software System for Modeling and Controlling Accelerator Physics Parameters at the Advanced Light Source

    E-Print Network [OSTI]

    Schachinger, L.C.

    2011-01-01T23:59:59.000Z

    and Controlling Accelerator Physics Parameters at theLight Source for accelerator physics studies and accelerator

  11. Simulation and physical model based gamma-ray burst afterglow analysis

    E-Print Network [OSTI]

    van Eerten, Hendrik

    2015-01-01T23:59:59.000Z

    Advances in our numerical and theoretical understanding of gamma-ray burst afterglow processes allow us to construct models capable of dealing with complex relativistic jet dynamics and non-thermal emission, that can be compared directly to data from instruments such as Swift. Because afterglow blast waves and power law spectra are intrinsically scale-invariant under changes of explosion energy and medium density, templates can be generated from large-scale hydrodynamics simulations. This allows for iterative template-based model fitting using the physical model parameters (quantifying the properties of the burster, emission and observer) directly as fit variables. Here I review how such an approach to afterglow analysis works in practice, paying special attention to the underlying model assumptions, possibilities, caveats and limitations of this type of analysis. Because some model parameters can be degenerate in certain regions of parameter space, or unconstrained if data in a limited number of a bands is a...

  12. Hot Dry Rock Geothermal Energy Development Program

    SciTech Connect (OSTI)

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01T23:59:59.000Z

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  13. Physical Model Development and Benchmarking for MHD Flows in Blanket Design

    SciTech Connect (OSTI)

    Ramakanth Munipalli; P.-Y.Huang; C.Chandler; C.Rowell; M.-J.Ni; N.Morley; S.Smolentsev; M.Abdou

    2008-06-05T23:59:59.000Z

    An advanced simulation environment to model incompressible MHD flows relevant to blanket conditions in fusion reactors has been developed at HyPerComp in research collaboration with TEXCEL. The goals of this phase-II project are two-fold: The first is the incorporation of crucial physical phenomena such as induced magnetic field modeling, and extending the capabilities beyond fluid flow prediction to model heat transfer with natural convection and mass transfer including tritium transport and permeation. The second is the design of a sequence of benchmark tests to establish code competence for several classes of physical phenomena in isolation as well as in select (termed here as “canonical”,) combinations. No previous attempts to develop such a comprehensive MHD modeling capability exist in the literature, and this study represents essentially uncharted territory. During the course of this Phase-II project, a significant breakthrough was achieved in modeling liquid metal flows at high Hartmann numbers. We developed a unique mathematical technique to accurately compute the fluid flow in complex geometries at extremely high Hartmann numbers (10,000 and greater), thus extending the state of the art of liquid metal MHD modeling relevant to fusion reactors at the present time. These developments have been published in noted international journals. A sequence of theoretical and experimental results was used to verify and validate the results obtained. The code was applied to a complete DCLL module simulation study with promising results.

  14. Assessment of Energy Removal Impacts on Physical Systems: Hydrodynamic Model Domain Expansion and Refinement, and Online Dissemination of Model Results

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping

    2010-08-01T23:59:59.000Z

    In this report we describe the 1) the expansion of the PNNL hydrodynamic model domain to include the continental shelf along the coasts of Washington, Oregon, and Vancouver Island; and 2) the approach and progress in developing the online/Internet disseminations of model results and outreach efforts in support of the Puget Sound Operational Forecast System (PS-OPF). Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics, for fiscal year 2010 of the Environmental Effects of Marine and Hydrokinetic Energy project.

  15. Evaluation of Used Fuel Disposition in Clay-Bearing Rock

    SciTech Connect (OSTI)

    Jové Colón, Carlos F.; Weck, Philippe F.; Sassani, David H.; Zheng, Liange; Rutqvist, Jonny; Steefel, Carl I.; Kim, Kunhwi; Nakagawa, Seiji; Houseworth, James; Birkholzer, Jens; Caporuscio, Florie A.; Cheshire, Michael; Rearick, Michael S.; McCarney, Mary K.; Zavarin, Mavrik; Benedicto, Ana; Kersting, Annie B.; Sutton, Mark; Jerden, James; Frey, Kurt E.; Copple, Jacqueline M.; Ebert, William

    2014-08-29T23:59:59.000Z

    Radioactive waste disposal in shale/argillite rock formations has been widely considered given its desirable isolation properties (low permeability), geochemically reduced conditions, anomalous groundwater pressures, and widespread geologic occurrence. Clay/shale rock formations are characterized by their high content of clay minerals such as smectites and illites where diffusive transport and chemisorption phenomena predominate. These, in addition to low permeability, are key attributes of shale to impede radionuclide mobility. Shale host-media has been comprehensively studied in international nuclear waste repository programs as part of underground research laboratories (URLs) programs in Switzerland, France, Belgium, and Japan. These investigations, in some cases a decade or more long, have produced a large but fundamental body of information spanning from site characterization data (geological, hydrogeological, geochemical, geomechanical) to controlled experiments on the engineered barrier system (EBS) (barrier clay and seals materials). Evaluation of nuclear waste disposal in shale formations in the USA was conducted in the late 70’s and mid 80’s. Most of these studies evaluated the potential for shale to host a nuclear waste repository but not at the programmatic level of URLs in international repository programs. This report covers various R&D work and capabilities relevant to disposal of heat-generating nuclear waste in shale/argillite media. Integration and cross-fertilization of these capabilities will be utilized in the development and implementation of the shale/argillite reference case planned for FY15. Disposal R&D activities under the UFDC in the past few years have produced state-of-the-art modeling capabilities for coupled Thermal-Hydrological-Mechanical-Chemical (THMC), used fuel degradation (source term), and thermodynamic modeling and database development to evaluate generic disposal concepts. The THMC models have been developed for shale repository leveraging in large part on the information garnered in URLs and laboratory data to test and demonstrate model prediction capability and to accurately represent behavior of the EBS and the natural (barrier) system (NS). In addition, experimental work to improve our understanding of clay barrier interactions and TM couplings at high temperatures are key to evaluate thermal effects as a result of relatively high heat loads from waste and the extent of sacrificial zones in the EBS. To assess the latter, experiments and modeling approaches have provided important information on the stability and fate of barrier materials under high heat loads. This information is central to the assessment of thermal limits and the implementation of the reference case when constraining EBS properties and the repository layout (e.g., waste package and drift spacing). This report is comprised of various parts, each one describing various R&D activities applicable to shale/argillite media. For example, progress made on modeling and experimental approaches to analyze physical and chemical interactions affecting clay in the EBS, NS, and used nuclear fuel (source term) in support of R&D objectives. It also describes the development of a reference case for shale/argillite media. The accomplishments of these activities are summarized as follows: ? Development of a reference case for shale/argillite; ? Investigation of Reactive Transport and Coupled THM Processes in EBS: FY14; ? Update on Experimental Activities on Buffer/Backfill Interactions at elevated Pressure and Temperature; ? Thermodynamic Database Development: Evaluation Strategy, Modeling Tools, First-Principles Modeling of Clay, and Sorption Database Assessment; ? ANL Mixed Potential Model For Used Fuel Degradation: Application to Argillite and Crystalline Rock Environments.

  16. Modeling of coupled heat transfer and reactive transport processes in porous media: Application to seepage studies at Yucca Mountain, Nevad a

    E-Print Network [OSTI]

    Mukhopadhyay, Sumit; Sonnenthal, Eric L.; Spycher, Nicolas

    2008-01-01T23:59:59.000Z

    1941) in this paper. Rock Properties Except for the fracturethe hydrological properties of the rock. A model based onthe hydraulic properties of the rock (such as porosity,

  17. Physical model of the contact resistivity of metal-graphene junctions

    SciTech Connect (OSTI)

    Chaves, Ferney A., E-mail: ferneyalveiro.chaves@uab.cat; Jiménez, David [Departament d'Enginyeria Electrònica, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Cummings, Aron W. [ICN2–Institut Català de Nanociència i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Roche, Stephan [ICN2–Institut Català de Nanociència i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); ICREA, Institució Catalana de Recerca i Estudis Avançats, 08070 Barcelona (Spain)

    2014-04-28T23:59:59.000Z

    While graphene-based technology shows great promise for a variety of electronic applications, including radio-frequency devices, the resistance of the metal-graphene contact is a technological bottleneck for the realization of viable graphene electronics. One of the most important factors in determining the resistance of a metal-graphene junction is the contact resistivity. Despite the large number of experimental works that exist in the literature measuring the contact resistivity, a simple model of it is still lacking. In this paper, we present a comprehensive physical model for the contact resistivity of these junctions, based on the Bardeen Transfer Hamiltonian method. This model unveils the role played by different electrical and physical parameters in determining the specific contact resistivity, such as the chemical potential of interaction, the work metal-graphene function difference, and the insulator thickness between the metal and graphene. In addition, our model reveals that the contact resistivity is strongly dependent on the bias voltage across the metal-graphene junction. This model is applicable to a wide variety of graphene-based electronic devices and thus is useful for understanding how to optimize the contact resistance in these systems.

  18. Physical property parameter set for modeling ICPP aqueous wastes with ASPEN electrolyte NRTL model

    SciTech Connect (OSTI)

    Schindler, R.E.

    1996-09-01T23:59:59.000Z

    The aqueous waste evaporators at the Idaho Chemical Processing Plant (ICPP) are being modeled using ASPEN software. The ASPEN software calculates chemical and vapor-liquid equilibria with activity coefficients calculated using the electrolyte Non-Random Two Liquid (NRTL) model for local excess Gibbs free energies of interactions between ions and molecules in solution. The use of the electrolyte NRTL model requires the determination of empirical parameters for the excess Gibbs free energies of the interactions between species in solution. This report covers the development of a set parameters, from literature data, for the use of the electrolyte NRTL model with the major solutes in the ICPP aqueous wastes.

  19. Velocity and attenuation in partially molten rocks

    SciTech Connect (OSTI)

    Mavko, G.M.

    1980-10-10T23:59:59.000Z

    Interpretation of seismic velocity and attenuation in partially molten rocks has been limited, with few exceptions, to models that assume the melt to be distributed either as spheres or as thin films. However, other melt phase geometries, such as interconnected tubes along grain edges, might equally well account for seismic observations if there is a much larger fraction of melt. Seismic velocity and attenuation are estimated in rocks in which the melt phase has the tube geometry, and the results are compared with results expected for the more familiar film model under similar conditions. For a given melt fraction, tubes are found to give moduli intermediate between moduli for rigid spherical inclusions and compliant films. For example, in polycrystalline olivine at 20 kbar the model predicts a decrease in V/sub s/ of 10% and a decrease in V/sub p/ of 5% at 0.05 melt fraction, without considering inelastic relaxation. Shear attenuation appears to be dominated by viscous flow of melt between the tubes and/or films. For olivine the tube model predicts the increment of relaxation due to melt, ..delta mu../..mu.., to be 0.01 at 0.05 melt fraction. Relaxation of the bulk modulus is dominated by flow between melt pockets of different shape, heat flow, and solid-melt phase change. If melt is present, considerable bulk attenuation is expected, although the relaxation may be observable only at long periods, outside the seismic body wave band.

  20. Hybrid models for the simulation of microstructural evolution influenced by coupled, multiple physical processes.

    SciTech Connect (OSTI)

    Tikare, Veena; Hernandez-Rivera, Efrain; Madison, Jonathan D.; Holm, Elizabeth Ann [Carnegie Mellon University, Pittsburgh, PA; Patterson, Burton R. [University of Florida, Gainesville, FL; Homer, Eric R. [Brigham Young University, Provo, UT

    2013-09-01T23:59:59.000Z

    Most materials microstructural evolution processes progress with multiple processes occurring simultaneously. In this work, we have concentrated on the processes that are active in nuclear materials, in particular, nuclear fuels. These processes are coarsening, nucleation, differential diffusion, phase transformation, radiation-induced defect formation and swelling, often with temperature gradients present. All these couple and contribute to evolution that is unique to nuclear fuels and materials. Hybrid model that combines elements from the Potts Monte Carlo, phase-field models and others have been developed to address these multiple physical processes. These models are described and applied to several processes in this report. An important feature of the models developed are that they are coded as applications within SPPARKS, a Sandiadeveloped framework for simulation at the mesoscale of microstructural evolution processes by kinetic Monte Carlo methods. This makes these codes readily accessible and adaptable for future applications.

  1. Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields: Stochastic inversion of AVA and CSEM data

    E-Print Network [OSTI]

    Chen, J.

    2013-01-01T23:59:59.000Z

    seismic AVA and CSEM data for reservoir parameter estimationseismic AVA and CSEM data for reservoir parameter estimationCSEM and seismic data for reservoir parameters based on

  2. Mechanical interaction between rock, buffer and canister in repositories

    SciTech Connect (OSTI)

    Borgesson, L. [Clay Technology AB, Lund (Sweden)

    1993-12-31T23:59:59.000Z

    The bentonite clay buffer, which is used in the repository concept of Sweden as well as many other countries, has an important role for mechanical protection of the canister. Of special interest is the effect of a rock shear, i.e. displacement of the rock along a fracture intersecting the deposition hole, on the canister. The article shows the results of some FEM calculations of a rock shear when the new composite copper/steel canister, is used. The effect of the swelling pressure from the bentonite before shear and the effect of a symmetric as well as an asymmetric rock shear will be shown. The calculations have been preceded by extensive laboratory tests and verification calculations by which material models for the buffer and proper calculation techniques have been developed. The material model for the clay is an elastic plastic model in which porous elasticity, based on the effective stress theory, is combined with Drucker-Prager plasticity. The results indicate that the bentonite clay acts as a very good mechanical buffer against such rock displacements. Although plastic yielding may occur, mainly in the copper, the plastic strain is not more than a few percent just after the shear.

  3. An integrated experimental and numerical study: Developing a reaction transport model that couples chemical reactions of mineral dissolution/precipitation with spatial and temporal flow variations in CO2/brine/rock systems

    Broader source: Energy.gov [DOE]

    Project objectives: Generate and characterize mineral dissolution/precipitation reactions in supercritical CO2/brine/rock systems under pressure-temperature-chemistry conditions resembling CO2injection into EGS. Characterize three-dimensional spatial and temporal distributions of rock structures subject to mineral dissolution/precipitation processes by X-ray tomography, SEM imaging, and Microprobe analysis.

  4. Proceedings of the Workshop on Numerical Modeling of Thermohydrological Flow in Fractured Rock Masses, Feb. 19-20, 1980, Berkeley, CA

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2010-01-01T23:59:59.000Z

    Mathematical modeling of thermal energy storage in aquifers:presented at the Thermal Energy storage in aquifers1979; Aquifer thermal energy storage—a numerical simulation

  5. A Physically Based Approach for Modeling Multiphase Fracture-Matrix Interaction in Fractured Porous Media

    SciTech Connect (OSTI)

    Wu, Yu-Shu; Pan, Lehua; Pruess, Karsten

    2004-03-15T23:59:59.000Z

    Modeling fracture-matrix interaction within a complex multiple phase flow system is a key issue for fractured reservoir simulation. Commonly used mathematical models for dealing with such interactions employ a dual- or multiple-continuum concept, in which fractures and matrix are represented as overlapping, different, but interconnected continua, described by parallel sets of conservation equations. The conventional single-point upstream weighting scheme, in which the fracture relative permeability is used to represent the counterpart at the fracture-matrix interface, is the most common scheme by which to estimate flow mobility for fracture-matrix flow terms. However, such a scheme has a serious flaw, which may lead to unphysical solutions or significant numerical errors. To overcome the limitation of the conventional upstream weighting scheme, this paper presents a physically based modeling approach for estimating physically correct relative permeability in calculating multiphase flow between fractures and the matrix, using continuity of capillary pressure at the fracture-matrix interface. The proposed approach has been implemented into two multiphase reservoir simulators and verified using analytical solutions and laboratory experimental data. The new method is demonstrated to be accurate, numerically efficient, and easy to implement in dual- or multiple-continuum models.

  6. Modeling pion physics in the $?$-regime of two-flavor QCD using strong coupling lattice QED

    E-Print Network [OSTI]

    D. J. Cecile; Shailesh Chandrasekharan

    2007-08-03T23:59:59.000Z

    In order to model pions of two-flavor QCD we consider a lattice field theory involving two flavors of staggered quarks interacting strongly with U(1) gauge fields. For massless quarks, this theory has an $SU_L(2)\\times SU_R(2) \\times U_A(1)$ symmetry. By adding a four-fermion term we can break the U_A(1) symmetry and thus incorporate the physics of the QCD anomaly. We can also tune the pion decay constant F, to be small compared to the lattice cutoff by starting with an extra fictitious dimension, thus allowing us to model low energy pion physics in a setting similar to lattice QCD from first principles. However, unlike lattice QCD, a major advantage of our model is that we can easily design efficient algorithms to compute a variety of quantities in the chiral limit. Here we show that the model reproduces the predictions of chiral perturbation theory in the $\\epsilon$-regime.

  7. An ensemble Kalman filter for statistical estimation of physics constrained nonlinear regression models

    SciTech Connect (OSTI)

    Harlim, John, E-mail: jharlim@psu.edu [Department of Mathematics and Department of Meteorology, the Pennsylvania State University, University Park, PA 16802, Unites States (United States)] [Department of Mathematics and Department of Meteorology, the Pennsylvania State University, University Park, PA 16802, Unites States (United States); Mahdi, Adam, E-mail: amahdi@ncsu.edu [Department of Mathematics, North Carolina State University, Raleigh, NC 27695 (United States)] [Department of Mathematics, North Carolina State University, Raleigh, NC 27695 (United States); Majda, Andrew J., E-mail: jonjon@cims.nyu.edu [Department of Mathematics and Center for Atmosphere and Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States)

    2014-01-15T23:59:59.000Z

    A central issue in contemporary science is the development of nonlinear data driven statistical–dynamical models for time series of noisy partial observations from nature or a complex model. It has been established recently that ad-hoc quadratic multi-level regression models can have finite-time blow-up of statistical solutions and/or pathological behavior of their invariant measure. Recently, a new class of physics constrained nonlinear regression models were developed to ameliorate this pathological behavior. Here a new finite ensemble Kalman filtering algorithm is developed for estimating the state, the linear and nonlinear model coefficients, the model and the observation noise covariances from available partial noisy observations of the state. Several stringent tests and applications of the method are developed here. In the most complex application, the perfect model has 57 degrees of freedom involving a zonal (east–west) jet, two topographic Rossby waves, and 54 nonlinearly interacting Rossby waves; the perfect model has significant non-Gaussian statistics in the zonal jet with blocked and unblocked regimes and a non-Gaussian skewed distribution due to interaction with the other 56 modes. We only observe the zonal jet contaminated by noise and apply the ensemble filter algorithm for estimation. Numerically, we find that a three dimensional nonlinear stochastic model with one level of memory mimics the statistical effect of the other 56 modes on the zonal jet in an accurate fashion, including the skew non-Gaussian distribution and autocorrelation decay. On the other hand, a similar stochastic model with zero memory levels fails to capture the crucial non-Gaussian behavior of the zonal jet from the perfect 57-mode model.

  8. Searches for Physics Beyond the Standard Model and Triggering on Proton-Proton Collisions at 14 TEV LHC

    SciTech Connect (OSTI)

    Wittich, Peter

    2011-10-14T23:59:59.000Z

    This document describes the work achieved under the OJI award received May 2008 by Peter Wittich as Principal Investigator. The proposal covers experimental particle physics project searching for physics beyond the standard model at the Large Hadron Collider (LHC) at the European Organization for Nuclear Research.

  9. Iron and silicate regulation of new and export production in the equatorial Pacific: A physical-biological model study

    E-Print Network [OSTI]

    Maine, University of

    Iron and silicate regulation of new and export production in the equatorial Pacific: A physical and silicate availability on phytoplankton growth in the equatorial Pacific. The effects of elevated iron and silicate regulation of new and export production in the equatorial Pacific: A physical-biological model

  10. A Case Study on the Model-Based Design and Integration of Automotive Cyber-Physical Systems

    E-Print Network [OSTI]

    Koutsoukos, Xenofon D.

    A Case Study on the Model-Based Design and Integration of Automotive Cyber-Physical Systems Di--Cyber-physical systems (CPS), such as automotive systems, are very difficult to design due to the tight interactions of an integrated automotive control system. The system is composed of two independently designed controllers

  11. Impacts of WRF Physics and Measurement Uncertainty on California Wintertime Model Wet Bias

    SciTech Connect (OSTI)

    Chin, H S; Caldwell, P M; Bader, D C

    2009-07-22T23:59:59.000Z

    The Weather and Research Forecast (WRF) model version 3.0.1 is used to explore California wintertime model wet bias. In this study, two wintertime storms are selected from each of four major types of large-scale conditions; Pineapple Express, El Nino, La Nina, and synoptic cyclones. We test the impacts of several model configurations on precipitation bias through comparison with three sets of gridded surface observations; one from the National Oceanographic and Atmospheric Administration, and two variations from the University of Washington (without and with long-term trend adjustment; UW1 and UW2, respectively). To simplify validation, California is divided into 4 regions (Coast, Central Valley, Mountains, and Southern California). Simulations are driven by North American Regional Reanalysis data to minimize large-scale forcing error. Control simulations are conducted with 12-km grid spacing (low resolution) but additional experiments are performed at 2-km (high) resolution to evaluate the robustness of microphysics and cumulus parameterizations to resolution changes. We find that the choice of validation dataset has a significant impact on the model wet bias, and the forecast skill of model precipitation depends strongly on geographic location and storm type. Simulations with right physics options agree better with UW1 observations. In 12-km resolution simulations, the Lin microphysics and the Kain-Fritsch cumulus scheme have better forecast skill in the coastal region while Goddard, Thompson, and Morrison microphysics, and the Grell-Devenyi cumulus scheme perform better in the rest of California. The effect of planetary boundary layer, soil-layer, and radiation physics on model precipitation is weaker than that of microphysics and cumulus processes for short- to medium-range low-resolution simulations. Comparison of 2-km and 12-km resolution runs suggests a need for improvement of cumulus schemes, and supports the use of microphysics schemes in coarser-grid applications.

  12. Reconstruction of Sedimentary Rock Based on Mechanical Properties

    E-Print Network [OSTI]

    Jin, Guodong; Patzek, Tad W.; Silin, Dmitry B.

    2008-01-01T23:59:59.000Z

    the veri?cation of rock mechanical properties. The dynamicis white. IV. ROCK MECHANICAL PROPERTIES FIG. 9: Cementationextracting meaningful rock transport properties from these

  13. PHYSICAL REVIEW E 83, 046405 (2011) Dynamic model of streamer coupling for the homogeneity of glowlike dielectric barrier discharges

    E-Print Network [OSTI]

    Economou, Demetre J.

    2011-01-01T23:59:59.000Z

    PHYSICAL REVIEW E 83, 046405 (2011) Dynamic model of streamer coupling for the homogeneity. Economou Department of Chemical and Biomolecular Engineering, Plasma Processing Laboratory, University 2011; published 18 April 2011) A streamer coupling theory is developed to describe the formation

  14. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Kyanite Lead Lime Lithium Magnesium Manganese Mercury Mica Molybdenum Nickel Nitrogen Peat Perlite Graphite Peat Sulfur Beryllium Gypsum Perlite Talc Bismuth Hafnium Phosphate Rock Tantalum Boron Helium information on the USGS--the Federal source for science about the Earth, its natural and living resources

  15. MECHANICAL DEGRADATION OF EMPLACEMENT DRIFTS AT YUCCA MOUNTAIN - A CASE STUDY IN ROCK MECHANICS, PART 1: NONLITHOPHYSAL ROCK, PART 2: LITHOPHYSAL ROCK

    SciTech Connect (OSTI)

    M. Lin, D. Kicker, B. Damjanac, M. Board, and M. Karakouzian

    2006-02-27T23:59:59.000Z

    This paper outlines rock mechanics investigations associated with mechanical degradation of planned emplacement drifts at Yucca Mountain, which is the designated site for a US high-level nuclear waste repository. The factors leading to drift degradation include stresses from the overburden, stresses induced by the heat released from the emplaced waste, stresses due to seismically related ground motions, and time-dependent strength degradation. The welded tuff emplacement horizon consists of two groups of rock with distinct engineering properties: nonlithophysal units and lithophysal units, based on the relative proportion of lithophysal cavities. Part I of the paper concentrates on the generally hard, strong, and fractured nonlithophysal rock. The degradation behavior of the tunnels in the nonlithophysal rock is controlled by the occurrence of keyblocks. A statistically equivalent fracture model was generated based on extensive underground fracture mapping data from the Exploratory Studies Facility at Yucca Mountain. Three-dimensional distinct block analyses, generated with the fracture patterns randomly selected from the fracture model, were developed with the consideration of in situ, thermal, seismic loads. In this study, field data, laboratory data, and numerical analyses are well integrated to provide a solution for the unique problem of modeling drift degradation throughout the regulatory period for repository performance.

  16. Some Important Aspects of Physical Modelling of Liquefaction in 1-g Shaking Table

    SciTech Connect (OSTI)

    Alam, Md. Jahangir [Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Towhata, Ikuo [Department of Civil Engineering, University of Tokyo (Japan)

    2008-07-08T23:59:59.000Z

    Physical modeling of liquefaction in 1-g shaking table and dynamic centrifuge test become very popular to simulate the ground behavior during earthquake motion. 1-g shaking table tests require scaled down model ground which can be prepared in three methods; water sedimentation, moist tamping and dry deposition method. Moist tamping and dry deposition method need saturation of model ground which is expensive and very difficult to achieve. Some model tests were performed in 1-g shaking table to see the influence of preparation method of model ground. Wet tamping and water sedimentation method of ground preparation were compared in these tests. Behavior of level ground and slope were also examined. Slope and level ground model test increased the understanding of excess pore pressure generation in both cases. Wet tamping method has a possibility of not being fully saturated. Pore pressure transducers should be fixed vertically so that it can not settle down during shaking but can move with ground. There was insignificant difference in acceleration and excess pore pressure responses between wet tamping and water sedimentation method in case of level ground. Spiky accelerations were prominent in slope prepared by water sedimentation method. Spiky accelerations were the result of lateral displacement induced dilatancy of soil.

  17. A Physical Model for the Condensation and Decondensation of Eukaryotic Chromosomes

    E-Print Network [OSTI]

    Julien Mozziconacci; Christophe Lavelle; Maria Barbi; Annick Lesne; Jean-Marc Victor

    2007-09-03T23:59:59.000Z

    During the eukaryotic cell cycle, chromatin undergoes several conformational changes, which are believed to play key roles in gene expression regulation during interphase, and in genome replication and division during mitosis. In this paper, we propose a scenario for chromatin structural reorganization during mitosis, which bridges all the different scales involved in chromatin architecture, from nucleosomes to chromatin loops. We build a model for chromatin, based on available data, taking into account both physical and topological constraints DNA has to deal with. Our results suggest that the mitotic chromosome condensation/decondensation process is induced by a structural change at the level of the nucleosome itself.

  18. Lichen: the challenge for rock art conservation

    E-Print Network [OSTI]

    Dandridge, Debra Elaine

    2007-04-25T23:59:59.000Z

    This study investigates the effects that lichens have on rock surfaces in which ancient rock art (petroglyphs and pictographs) may be found. The study area includes four sites in the United States: one quartzite site in southwest Minnesota, two...

  19. Gauge Theory Model of the Neutrino and New Physics Beyond the Standard Model

    E-Print Network [OSTI]

    Yue-Liang Wu

    2012-03-05T23:59:59.000Z

    Majorana features of neutrinos and SO(3) gauge symmetry of three families enable us to construct a gauge model of neutrino for understanding naturally the observed smallness of neutrino masses and the nearly tri-bimaximal neutrino mixing when combining together with the mechanism of approximate global U(1) family symmetry. The vacuum structure of SO(3) symmetry breaking is found to play an important role. The mixing angle $\\theta_{13}$ and CP-violating phases governed by the vacuum of spontaneous symmetry breaking are in general non-zero and testable experimentally at the allowed sensitivity. The model predicts the existence of vector-like SO(3) triplet charged leptons and vector-like SO(3) triplet Majorana neutrinos as well as SO(3) tri-triplet Higgs bosons, some of them can be light and explored at the colliders LHC and ILC.

  20. Hydraulic transmissivity and heat exchanges: aperture lowpass filtering model 1 Natural open joints in rocks commonly present multi-scale self-affine apertures. This

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Hydraulic transmissivity and heat exchanges: aperture lowpass filtering model 1 SUMMARY Natural aperture that describes at best the macroscopic properties (hydraulic conductivity, heat exchange of the effective hydraulic and thermal properties (apertures). A detailed study of the influence of the bandwidth

  1. RIS-M-2260 HEAT GRADIENT INDUCED MIGRATION OF BRINE INCLUSIONS IN ROCK SALT

    E-Print Network [OSTI]

    RISØ-M-2260 HEAT GRADIENT INDUCED MIGRATION OF BRINE INCLUSIONS IN ROCK SALT Mathematical treatment project. Abstract. A mathematical model for the brine migration in rock salt around an infinite line heat source is set up. The tempera- ture field around the time dependent heat source is calculated by use

  2. 2008 Rock Deformation GRC - Conference August 3-8, 2008

    SciTech Connect (OSTI)

    James G. Hirth

    2009-09-21T23:59:59.000Z

    The GRC on Rock Deformation highlights the latest research in brittle and ductile rock mechanics from experimental, field and theoretical perspectives. The conference promotes a multi-disciplinary forum for assessing our understanding of rock strength and related physical properties in the Earth. The theme for the 2008 conference is 'Real-time Rheology'. Using ever-improving geophysical techniques, our ability to constrain the rheological behavior during earthquakes and post-seismic creep has improved significantly. Such data are used to investigate the frictional behavior of faults, processes responsible for strain localization, the viscosity of the lower crust, and viscous coupling between the crust and mantle. Seismological data also provide information on the rheology of the lower crust and mantle through analysis of seismic attenuation and anisotropy. Geologists are improving our understanding of rheology by combining novel analyses of microstructures in naturally deformed rocks with petrologic data. This conference will bring together experts and students in these research areas with experimentalists and theoreticians studying the same processes. We will discuss and assess where agreement exists on rheological constraints derived at different length/time scales using different techniques - and where new insight is required. To encompass the elements of these topics, speakers and discussion leaders with backgrounds in geodesy, experimental rock deformation, structural geology, earthquake seismology, geodynamics, glaciology, materials science, and mineral physics will be invited to the conference. Thematic sessions will be organized on the dynamics of earthquake rupture, the rheology of the lower crust and coupling with the upper mantle, the measurement and interpretation of seismic attenuation and anisotropy, the dynamics of ice sheets and the coupling of reactive porous flow and brittle deformation for understanding geothermal and chemical properties of the shallow crust that are important for developing ideas in CO2 sequestration, geothermal and petrochemical research and the mechanics of shallow faults.

  3. ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM

    E-Print Network [OSTI]

    ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON, 1959 :y .iiJA/i-3ri ^' WUUUi. ANNUAL FISH PASSAGE REPORT - ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON, 1959 by Paul D. Zimmer, Clifton and observations 10 Summary 13 #12;#12;ANNUAL FISH PASSAGE REPORT - ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON

  4. ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM

    E-Print Network [OSTI]

    42) ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON 1961 Marine Biological. McKeman, Director ANNUAL FISH PASSAGE REPORT - ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON, 1961--Fisheries No. 421 Washington, D. C. April 1962 #12;Rock Island Dam, Columbia River, Washington ii #12;CONTENTS

  5. Annual Fish Passage Report -Rock Island Dam

    E-Print Network [OSTI]

    Annual Fish Passage Report - Rock Island Dam Columbia River, Washington, 1965 By Paul D. Zimmer L. McKeman, Director Annual Fish Passage Report - Rock Island Dam Columbia River, Washington, 1965;#12;Annual Fish Passage Report - Rock Island Dam Columbia River, Washington, 1965 By PAUL D. ZIMMER, Fishery

  6. Introduction 1.1 Why study rocks?

    E-Print Network [OSTI]

    Lee, Cin-Ty Aeolus

    2 Chapter 1 Introduction 1.1 Why study rocks? I am a petrologist and I study rocks. Petrology and modification of certain types of rocks. On one level, petrology involves the art of identifying and classifying. This is of course the reverse of the historical development of petrology. I have chosen this approach because all

  7. Rock magnetism of remagnetized carbonate rocks: another look MIKE JACKSON* & NICHOLAS L. SWANSON-HYSELL

    E-Print Network [OSTI]

    Swanson-Hysell, Nicholas

    Rock magnetism of remagnetized carbonate rocks: another look MIKE JACKSON* & NICHOLAS L. SWANSON-HYSELL Institute for Rock Magnetism, Winchell School of Earth Sciences, University of Minnesota, Minnesota, US, dominantly in the super- paramagnetic and stable single-domain size range, also give rise to distinctive rock-magnetic

  8. Water Rock Interaction [WRI 14] Chemical weathering of granitic rocks: experimental approach and Pb-Li

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of water/rock interactions both in terms of source and extent of weathering, by measuring major and traceWater Rock Interaction [WRI 14] Chemical weathering of granitic rocks: experimental approach and Pb, France Abstract In order to characterize water/rock interactions of granite, we performed laboratory

  9. Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the source rock slope (Figure 1), the falling mass strikes the talus slope and breaks up and/or bounces1 Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps J. Deparis, D reviews seismograms from 10 rock-fall events recorded between 1992 and 2001 by the permanent seismological

  10. 2.20 Properties of Rocks and Minerals -Magnetic Properties of Rocks and Minerals

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    2.20 Properties of Rocks and Minerals - Magnetic Properties of Rocks and Minerals R. J. Harrison, R 621 622 623 623 579 #12;580 Magnetic Properties of Rocks and Minerals 2.20.5.3 2.20.5.4 2, and are present in all types of rocks, sediments, and soils. These minerals retain a memory of the geomagnetic

  11. 37The Oldest Lunar Rocks Apollo astronauts recovered over 840 pounds of lunar rocks, and during

    E-Print Network [OSTI]

    37The Oldest Lunar Rocks Apollo astronauts recovered over 840 pounds of lunar rocks, and during applied to the different rock samples. Location Mission Rock Type Age (Myr) Mare Tranquillitatis Apollo-11 Basalt 3,500 Oceanus Procellarum Apollo-12 Basalt 3,200 Fra Mauro Formation Apollo-14 Basalt 4,150 Apollo

  12. Extension of the quantum-kinetic model to lunar and Mars return physics

    SciTech Connect (OSTI)

    Liechty, D. S. [Aerothermodynamics Branch, NASA Langley Research Center, Hampton, Virginia 23681 (United States)] [Aerothermodynamics Branch, NASA Langley Research Center, Hampton, Virginia 23681 (United States); Lewis, M. J. [Department of Aerospace Engineering, University of Maryland, College Park, Maryland 20742 (United States)] [Department of Aerospace Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2014-02-15T23:59:59.000Z

    The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high-mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. A recently introduced molecular-level chemistry model, the quantum-kinetic, or Q-K, model that predicts reaction rates for gases in thermal equilibrium and non-equilibrium using only kinetic theory and fundamental molecular properties, is extended in the current work to include electronic energy level transitions and reactions involving charged particles. Like the Q-K procedures for neutral species chemical reactions, these new models are phenomenological procedures that aim to reproduce the reaction/transition rates but do not necessarily capture the exact physics. These engineering models are necessarily efficient due to the requirement to compute billions of simulated collisions in direct simulation Monte Carlo (DSMC) simulations. The new models are shown to generally agree within the spread of reported transition and reaction rates from the literature for near equilibrium conditions.

  13. Unit physics performance of a mix model in Eulerian fluid computations

    SciTech Connect (OSTI)

    Vold, Erik [Los Alamos National Laboratory; Douglass, Rod [Los Alamos National Laboratory

    2011-01-25T23:59:59.000Z

    In this report, we evaluate the performance of a K-L drag-buoyancy mix model, described in a reference study by Dimonte-Tipton [1] hereafter denoted as [D-T]. The model was implemented in an Eulerian multi-material AMR code, and the results are discussed here for a series of unit physics tests. The tests were chosen to calibrate the model coefficients against empirical data, principally from RT (Rayleigh-Taylor) and RM (Richtmyer-Meshkov) experiments, and the present results are compared to experiments and to results reported in [D-T]. Results show the Eulerian implementation of the mix model agrees well with expectations for test problems in which there is no convective flow of the mass averaged fluid, i.e., in RT mix or in the decay of homogeneous isotropic turbulence (HIT). In RM shock-driven mix, the mix layer moves through the Eulerian computational grid, and there are differences with the previous results computed in a Lagrange frame [D-T]. The differences are attributed to the mass averaged fluid motion and examined in detail. Shock and re-shock mix are not well matched simultaneously. Results are also presented and discussed regarding model sensitivity to coefficient values and to initial conditions (IC), grid convergence, and the generation of atomically mixed volume fractions.

  14. Physical Properties Models for Simulation of Processes to Treat INEEL Tank Farm Waste: Thermodynamic Equilibrium

    SciTech Connect (OSTI)

    Nichols, Todd Travis; Taylor, Dean Dalton

    2002-07-01T23:59:59.000Z

    A status is presented of the development during FY2002 of a database for physical properties models for the simulation of the treatment of Sodium-Bearing Waste (SBW) at the Idaho National Engineering and Environmental Laboratory. An activity coefficient model is needed for concentrated, aqueous, multi-electrolyte solutions that can be used by process design practitioners. Reasonable first-order estimates of activity coefficients in the relevant media are needed rather than an incremental improvement in theoretical approaches which are not usable by practitioners. A comparison of the Electrolyte Non-Random Two-Liquid (ENRTL) and Pitzer ion-interaction models for the thermodynamic representation of SBW is presented. It is concluded that Pitzer's model is superior to ENRTL in modeling treatment processes for SBW. The applicability of the Pitzer treatment to high concentrations of pertinent species and to the determination of solubilities and chemical equilibria is addressed. Alternate values of Pitzer parameters for HCl, H2SO4, and HNO3 are proposed, applicable up to 16m, and 12m, respectively. Partial validation of the implementation of Pitzer's treatment within the commercial process simulator ASPEN Plus was performed.

  15. Physical Properties Models for Simulation of Processes to Treat INEEL Tank Farm Waste: Thermodynamic Equilibrium

    SciTech Connect (OSTI)

    Nichols, T.T.; Taylor, D.D.

    2002-07-18T23:59:59.000Z

    A status is presented of the development during FY2002 of a database for physical properties models for the simulation of the treatment of Sodium-Bearing Waste (SBW) at the Idaho National Engineering and Environmental Laboratory. An activity coefficient model is needed for concentrated, aqueous, multi-electrolyte solutions that can be used by process design practitioners. Reasonable first-order estimates of activity coefficients in the relevant media are needed rather than an incremental improvement in theoretical approaches which are not usable by practitioners. A comparison of the Electrolyte Non-Random Two-Liquid (ENRTL) and Pitzer ion-interaction models for the thermodynamic representation of SBW is presented. It is concluded that Pitzer's model is superior to ENRTL in modeling treatment processes for SBW. The applicability of the Pitzer treatment to high concentrations of pertinent species and to the determination of solubilities and chemical equilibria is addressed. Alternate values of Pitzer parameters for HCl, H2SO4, and HNO3 are proposed, applicable up to 16m, and 12m, respectively. Partial validation of the implementation of Pitzer's treatment within the commercial process simulator ASPEN Plus was performed.

  16. Physics and modeling of an end-Hall (gridless) ion source

    SciTech Connect (OSTI)

    Oudini, N. [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d'Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); Hagelaar, G. J. M.; Boeuf, J.-P.; Garrrigues, L. [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d'Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, LAPLACE, F-31062 Toulouse (France)

    2011-04-01T23:59:59.000Z

    In an end-Hall source, an ion beam is extracted from a magnetized plasma and accelerated by the plasma electric field without grids. The principle of end-Hall sources is similar to that of Hall effect thrusters (or closed-drift thrusters), but their design is optimized for processing applications (ion beam assisted deposition or substrate cleaning) rather than propulsion. The beam divergence is larger in end-Hall ion sources, and these sources can operate at low ion energies. Although end-Hall sources are commonly used in the surface processing industry, no detailed modeling of these sources is available, and their operation is quite empirical. In this paper, a self-consistent, two-dimensional, quasineutral model of an end-Hall ion source is developed and used in order to improve the understanding of the basic physics of these plasma sources and to quantify the parameters controlling the properties of the extracted ion beam.

  17. Hot dry rock geothermal energy. Draft final report

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This second EPRI workshop on hot dry rock (HDR) geothermal energy, held in May 1994, focused on the status of worldwide HDR research and development and used that status review as the starting point for discussions of what could and should be done next: by U.S. federal government, by U.S. industry, by U.S. state governments, and by international organizations or through international agreements. The papers presented and the discussion that took place indicate that there is a community of researchers and industrial partners that could join forces, with government support, to begin a new effort on hot dry rock geothermal development. This new heat mining effort would start with site selection and confirmatory studies, done concurrently. The confirmatory studies would test past evaluations against the most current results (from the U.S. site at Fenton Hill, New Mexico, and from the two sites in Japan, the one in Russia, and the two in western Europe) and the best models of relevant physical and economic aspects. Site selection would be done in the light of the confirmatory studies and would be influenced by the need to find a site where success is probable and which is representative enough of other sites so that its success would imply good prospects for success at numerous other sites. The test of success would be circulation between a pair of wells, or more wells, in a way that confirmed, with the help of flow modeling, that a multi-well system would yield temperatures, flows and lifetimes that support economically feasible power generation. The flow modeling would have to have previously achieved its own confirmation from relevant data taken from both heat mining and conventional hydrothermal geothermal experience. There may be very relevant experience from the enhancement of ''hot wet rock'' sites, i.e., sites where hydrothermal reservoirs lack, or have come to lack, enough natural water or steam and are helped by water injected cold and produced hot. The new site would have to be selected in parallel with the confirmatory studies because it would have to be modeled as part of the studies and because its similarity to other candidate sites must be known well enough to assure that results at the selected site are relevant to many others. Also, the industry partners in the joint effort at the new site must be part of the confirmatory studies, because they must be convinced of the economic feasibility. This meeting may have brought together the core of people who can make such a joint effort take place. EPRI sponsored the organization of this meeting in order to provide utilities with an update on the prospects for power generation via heat mining. Although the emerging rules for electric utilities competing in power generation make it very unlikely that the rate-payers of any one utility (or small group of utilities) can pay the differential to support this new heat mining research and development effort, the community represented at this meeting may be able to make the case for national or international support of a new heat mining effort, based on the potential size and economics of this resource as a benefit for the nation as a whole and as a contribution to reduced emissions of fossil CO{sub 2} worldwide.

  18. Morphology and dynamics of explosive vents through cohesive rock formations

    E-Print Network [OSTI]

    Galland, Olivier

    to test the effects of these parameters. The experiments were used to test the effect of 2 on vent simulations were used to test the effect of 3 on vent morphology and dynamics. In the numerical models we see to underground explosions that blast the overlaying rock formations [e.g., Gisler, 2009]. This phenomenon occurs

  19. Colloquium: Physically based fluid modeling of collisionally dominated low-temperature plasmas

    SciTech Connect (OSTI)

    Robson, R.E.; White, R.D.; Petrovic, Z.Lj. [Research School of Physical Sciences and Engineering, Australian National University, Canberra 2600 (Australia); School of Mathematical and Physical Sciences, James Cook University, Townsville 4810 (Australia); Department of Experimental Physics, Institute of Physics, 11080 Zemun (Serbia and Montenegro)

    2005-10-15T23:59:59.000Z

    This colloquium examines the theoretical modeling of nonequilibrium low-temperature (tens of thousands of degrees) plasmas, which involves a juxtaposition of three distinct fields: atomic and molecular physics, for the input of scattering cross sections; statistical mechanics, for the kinetic modeling; and electromagnetic theory, for the simultaneous solution of Maxwell's equations. Cross sections come either from single-scattering beam experiments or, at very low energies (<0.5 eV), from multiple-scattering experiments on 'swarms' in gases--the free diffusion or large Debye length limit of a plasma, where they are embedded in transport coefficient data. The same Boltzmann kinetic theory that has been developed to a high level of sophistication over the past 50 years, specifically for the purpose of unfolding these transport data, can be employed for low-temperature plasmas with appropriate modification to allow for self-consistent rather than externally prescribed fields. A full kinetic treatment of low-temperature plasmas is, however, a daunting task and remains at the developmental level. Fortunately, since the accuracy requirements for modeling plasmas are generally much less stringent than for swarms, such a sophisticated phase-space treatment is not always necessary or desirable, and a computationally more efficient but correspondingly less accurate macroscopic theoretical model in configuration space at the fluid level is often considered sufficient. There has been a proliferation of such fluid modeling in recent times and this approach is now routinely used in the design and development of a large variety of plasma technologies, ranging from plasma display panels to plasma etching reactors for microelectronic device fabrication. However, many of these models have been developed empirically with specific applications in mind, and rigor and sophistication vary accordingly. In this colloquium, starting from the governing Boltzmann kinetic equation, a unified, general formulation of fluid equations is given for both ions and electrons in gaseous media with transparent and internally consistent approximations, all benchmarked against established results. Thereby a fluid model is obtained that is appropriate for practical application but at the same time is based on a firmer physical foundation.

  20. Characterization of Bead Trajectories Through the Draft Tube of a Turbine Physical Model.

    SciTech Connect (OSTI)

    Weiland, Mark A.; Mueller, Robert P.; Carlson, Thomas J.; Deng, Zhiquan; McKinstry, Craig A.

    2005-02-18T23:59:59.000Z

    Using high-speed video imaging, trajectories, and kinematics of beads passing below the turbine runner and through the draft tube region of the 1:25 scale model of a single turbine unit from Bonneville Dam powerhouse 1 were collected from May 6-9, 2003 at U.S. Army Corps of Engineers (USACE) Environmental Research and Development Center (ERDC) in Vicksburg, MS. An individual camera was used to produce 2-dimensional trajectories and paired cameras with overlapping fields of view were used to produce 3-dimension trajectories of near neutrally buoyant beads as they passed through the draft tube region of the turbine model. Image data was collected at two turbine operating levels, lower 1% efficiency and maximum rated output for beads released mid-depth into the turbine intake from each of the three gatewell slots. The purpose of this study was to determine the feasibility of using video imaging to track the trajectories of beads through the draft tube of turbine physical models and from the trajectories calculate the kinematics of the bead trajectory and the beads response to turbulence in the model. This project is part of a research program supported by the U.S. Department of Energy Advanced Hydropower Turbine System Program (AHTS) who's goal is to increase the operating potential of hydroelectric facilities while also reducing the reducing the risk of injury and death to fish as they pass through the turbines.

  1. Unit physics testing of a mix model in an eulerian fluid computation

    SciTech Connect (OSTI)

    Vold, Erik [Los Alamos National Laboratory; Douglass, Rod [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    A K-L turbulence mix model driven with a drag-buoyancy source term is tested in an Eulerian code in a series of basic unit-physics tests, as part of a mix validation milestone. The model and the closure coefficient values are derived in the work of Dimonte-Tipton [D-T] in Phys.Flu.18, 085101 (2006), and many of the test problems were reported there, where the mix model operated in Lagrange computations. The drag-buoyancy K-L mix model was implemented within the Eulerian code framework by A.J. Scannapieco. Mix model performance is evaluated in terms of mix width growth rates compared to experiments in select regimes. Results in our Eulerian code are presented for several unit-physics I-D test problems including the decay of homogeneous isotropic turbulence (HIT), Rayleigh-Taylor (RT) unstable mixing, shock amplification of initial turbulence, Richtmyer-Meshkov (RM) mixing in several single shock test cases and in comparison to two RM experiments including re-shock (Vetter-Sturtevant and Poggi, et.al.). Sensitivity to model parameters, to Atwood number, and to initial conditions are examined. Results here are in good agreement in some tests (HIT, RT) with the previous results reported for the mix model in the Lagrange calculations. The HIT turbulent decay agrees closely with analytic expectations, and the RT growth rate matches experimental values for the default values of the model coefficients proposed in [D-T]. Results for RM characterized with a power law growth rate differ from the previous mix model work but are still within the range for reasonable agreement with experiments. Sensitivity to IC values in the RM studies are examined; results are sensitive to initial values of L[t=O], which largely determines the RM mix layer growth rate, and generally differs from the IC values used in the RT studies. Result sensitivity to initial turbulence, K[t=O], is seen to be small but significant above a threshold value. Initial conditions can be adjusted so that single shock RM mix width results match experiments but we have not been able to obtain a good match for first shock and re-shock growth rates in the same experiment with a single set of parameters and Ie. Problematic issues with KH test problems are described. Resolution studies for an RM test problem show the K-L mix growth rate decreases as it converges at a supra-linear rate, and, convergence requires a fine grid (on the order of 10 microns). For comparison, a resolution study of a second mix model [Scannapieco and Cheng, Phys.Lett.A, 299(1),49, (2002)] acting on a two fluid interface problem was examined. The mix in this case was found to increase with grid resolution at low to moderate resolutions, but converged at comparably fine resolutions. In conclusion, these tests indicate that the Eulerian code K-L model, using the Dimonte Tipton default model closure coefficients, achieve reasonable results across many of the unit-physics experimental conditions. However, we were unable to obtain good matches simultaneously for shock and re-shock mix in a single experiment. Results are sensitive to initial conditions in the regimes under study, with different IC best suited to RT or RM mix. It is reasonable to expect IC sensitivity in extrapolating to high energy density regimes, or to experiments with deceleration due to arbitrary combinations of RT and RM. As a final comparison, the atomically generated mix fraction and the mix width were each compared for the K-L mix model and the Scannapieco model on an identical RM test problem. The Scannapieco mix fraction and width grow linearly. The K-L mix fraction and width grow with the same power law exponent, in contrast to expectations from analysis. In future work it is proposed to do more head-to-head comparisons between these two models and other mix model options on a full suite of physics test problems, such as interfacial deceleration due to pressure build-up during an idealized ICF implosion.

  2. 30 ENGINEERING & SCIENCE WI NTE R 2012 Whether processing radar signals in Norway or assessing rock properties in Nigeria, Calte

    E-Print Network [OSTI]

    30 ENGINEERING & SCIENCE WI NTE R 2012 Whether processing radar signals in Norway or assessing rock deeply into basic physics to solve problems. Oslo, Norway, José Navarro, PhD '94, Astronomy José Navarro

  3. Structure of the eastern Red Rocks and Wind Ridge thrust faults, Wyoming: how a thrust fault gains displacement along strike 

    E-Print Network [OSTI]

    Huntsman, Brent Stanley

    1983-01-01T23:59:59.000Z

    OF FIELD MAPPING Methods . Thrust Faults . The Wind Ridge Thrust Fault System The Red Rocks Thrust Fault System CLAY MODEL STUDIES Purpose and Description Model Results DISCUSSION OF RESULTS Kinematics of the Red Rocks Thrust Fault Termination... . Kinematics of the Southern Wind Ridge Thrust Fault . . . A Conceptual Model of the Red Rocks Thrust Fault Termination Implications of the Red Rocks Fault Termination . . . . . . Page V1 V11 1X X1 X11 7 9 17 18 18 21 24 27 35 35 38 49 49...

  4. Modeling CO{sub 2}-Brine-Rock Interaction Including Mercury and H{sub 2}S Impurities in the Context of CO{sub 2} Geologic Storage

    SciTech Connect (OSTI)

    Spycher, N.; Oldenburg, C.M.

    2014-01-01T23:59:59.000Z

    This study uses modeling and simulation approaches to investigate the impacts on injectivity of trace amounts of mercury (Hg) in a carbon dioxide (CO{sub 2}) stream injected for geologic carbon sequestration in a sandstone reservoir at ~2.5 km depth. At the range of Hg concentrations expected (7-190 ppbV, or ~ 0.06-1.6 mg/std.m{sup 3}CO{sub 2}), the total volumetric plugging that could occur due to complete condensation of Hg, or due to complete precipitation of Hg as cinnabar, results in a very small porosity change. In addition, Hg concentration much higher than the concentrations considered here would be required for Hg condensation to even occur. Concentration of aqueous Hg by water evaporation into CO{sub 2} is also unlikely because the higher volatility of Hg relative to H{sub 2}O at reservoir conditions prevents the Hg concentration from increasing in groundwater as dry CO{sub 2} sweeps through, volatilizing both H{sub 2}O and Hg. Using a model-derived aqueous solution to represent the formation water, batch reactive geochemical modeling show that the reaction of the formation water with the CO{sub 2}-Hg mixture causes the pH to drop to about 4.7 and then become buffered near 5.2 upon reaction with the sediments, with a negligible net volume change from mineral dissolution and precipitation. Cinnabar (HgS(s)) is found to be thermodynamically stable as soon as the Hg-bearing CO{sub 2} reacts with the formation water which contains small amounts of dissolved sulfide. Liquid mercury (Hg(l)) is not found to be thermodynamically stable at any point during the simulation. Two-dimensional radial reactive transport simulations of CO{sub 2} injection at a rate of 14.8 kg/s into a 400 m-thick formation at isothermal conditions of 106°C and average pressure near 215 bar, with varying amounts of Hg and H{sub 2}S trace gases, show generally that porosity changes only by about ±0.05% (absolute, i.e., new porosity = initial porosity ±0.0005) with Hg predicted to readily precipitate from the CO{sub 2} as cinnabar in a zone mostly matching the single-phase CO{sub 2} plume. The precipitation of minerals other than cinnabar, however, dominates the evolution of porosity. Main reactions include the replacement of primarily Fe-chlorite by siderite, of calcite by dolomite, and of K-feldspar by muscovite. Chalcedony is also predicted to precipitate from the dissolution of feldspars and quartz. Although the range of predicted porosity change is quite small, the amount of dissolution and precipitation predicted for these individual minerals is not negligible. These reactive transport simulations assume that Hg gas behaves ideally. To examine effects of non-ideality on these simulations, approximate calculations of the fugacity coefficient of Hg in CO{sub 2} were made. Results suggest that Hg condensation could be significantly overestimated when assuming ideal gas behavior, making our simulation results conservative with respect to impacts on injectivity. The effect of pressure on Henry’s constant for Hg is estimated to yield Hg solubilities about 10% lower than when this effect is not considered, a change that is considered too small to affect the conclusions of this report. Although all results in this study are based on relatively mature data and modeling approaches, in the absence of experimental data and more detailed site-specific information, it is not possible to fully validate the results and conclusions.

  5. Accelerator System Model (ASM) user manual with physics and engineering model documentation. ASM version 1.0

    SciTech Connect (OSTI)

    NONE

    1993-07-01T23:59:59.000Z

    The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the {open_quotes}construction{close_quotes} of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of the physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc.

  6. REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS

    SciTech Connect (OSTI)

    Nichols, T.; Beals, D.; Sternat, M.

    2011-07-18T23:59:59.000Z

    Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Many research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical analysis. The fuel assembly was modeled using MONTEBURNS(MCNP5/ ORIGEN2.2) and MCNPX/CINDER90. The results from the models have been compared to each other and to the measured data.

  7. Physically scaled two-dimensional models of miscible displacement of residual oil

    SciTech Connect (OSTI)

    Gharib, S.

    1980-01-01T23:59:59.000Z

    The displacement of residual oil by miscible fluid injection, subsequent to waterflooding, has been studied using scaled physical models of line-drive systems. The effects of flow rate, mobility ratio, density gradients, and the geometry of the system were investigated. At a low ratio of viscous to gravity forces (low injection rates), the override of low density solvents was visually confirmed by using colored solvents. There is a difference in performance depending upon the fluid velocity. At low velocities, fingering is much more pronounced, breakthrough is earlier, and ultimate recovery somewhat less than when using higher velocities or adjusting the solvent viscosity so that a favorable solvent/water viscosity ratio is achieved. A low permeability decreases gravity override. Volumetric conformance is enhanced, and greater quantities of movable water are displaced ahead of the solvent.

  8. Dynamic modeling of physical phenomena for probabilistic assessment of spent fuel accidents

    SciTech Connect (OSTI)

    Benjamin, A.S.

    1997-11-01T23:59:59.000Z

    If there should be an accident involving drainage of all the water from a spent fuel pool, the fuel elements will heat up until the heat produced by radioactive decay is balanced by that removed by natural convection to air, thermal radiation, and other means. If the temperatures become high enough for the cladding or other materials to ignite due to rapid oxidation, then some of the fuel might melt, leading to an undesirable release of radioactive materials. The amount of melting is dependent upon the fuel loading configuration and its age, the oxidation and melting characteristics of the materials, and the potential effectiveness of recovery actions. The authors have developed methods for modeling the pertinent physical phenomena and integrating the results with a probabilistic treatment of the uncertainty distributions. The net result is a set of complementary cumulative distribution functions for the amount of fuel melted.

  9. INSTITUTE OF PHYSICS PUBLISHING MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING Modelling Simul. Mater. Sci. Eng. 10 (2002) 341357 PII: S0965-0393(02)35520-7

    E-Print Network [OSTI]

    Melnik, Roderick

    2002-01-01T23:59:59.000Z

    INSTITUTE OF PHYSICS PUBLISHING MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING and heat transfer in processing polymeric materials with applications to biochemical engineering Roderick V reaction kinetics and heat transfer in polymeric materials. In this paper we consider mathematical models

  10. Properties of CO2-Rich Pore Fluids and Their Effect on Porosity Evolution in EGS Rocks

    Broader source: Energy.gov [DOE]

    Project objective: Quantify key parameters critically needed for developing and validating numerical modeling of chemical interactions between EGS reservoir rocks and supercritical CO2and CO2-rich aqueous fluids.

  11. Cyber-Physical Systems under Attack Models, Fundamental limitations, and Monitor Design

    E-Print Network [OSTI]

    Hu, Fei

    , FL, Dec 11, 2011 F. Pasqualetti, F. D¨orfler, F. Bullo Cyber-Physical Systems Under Attack Security are cyber-physical systems: power generation and distribution networks water networks and mass-efficient buildings (heat transfer) F. Pasqualetti, F. D¨orfler, F. Bullo Cyber-Physical Systems Under Attack Security

  12. Numerical evaluation of effective unsaturated hydraulic properties for fractured rocks

    SciTech Connect (OSTI)

    Lu, Zhiming [Los Alamos National Laboratory; Kwicklis, Edward M [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    To represent a heterogeneous unsaturated fractured rock by its homogeneous equivalent, Monte Carlo simulations are used to obtain upscaled (effective) flow properties. In this study, we present a numerical procedure for upscaling the van Genuchten parameters of unsaturated fractured rocks by conducting Monte Carlo simulations of the unsaturated flow in a domain under gravity-dominated regime. The simulation domain can be chosen as the scale of block size in the field-scale modeling. The effective conductivity is computed from the steady-state flux at the lower boundary and plotted as a function of the averaging pressure head or saturation over the domain. The scatter plot is then fitted using van Genuchten model and three parameters, i.e., the saturated conductivity K{sub s}, the air-entry parameter {alpha}, the pore-size distribution parameter n, corresponding to this model are considered as the effective K{sub s}, effective {alpha}, and effective n, respectively.

  13. Numerical and physical modeling of hydraulic structures Hydraulic structures are used to control the flow of water in hydropower developments, urban

    E-Print Network [OSTI]

    Barthelat, Francois

    Numerical and physical modeling of hydraulic structures Hydraulic structures are used to control, their solution is found either by physical hydraulic modeling or, more recently, by numerical modeling significantly reduce turbine efficiency and cause premature mechanical failure when they occur at hydropower

  14. Towards a comprehensive physically-based rainfall-runoff model Hydrology and Earth System Sciences, 6(5), 859881 (2002) EGS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    rainfall- runoff model deriving from the integration in space of the kinematic wave model. The TOPKAPI: rainfall-runoff modelling, topographic, kinematic wave approximation, spatial integration, physical meaning introduces TOPKAPI (TOPographic Kinematic APproximation and Integration), a new physically-based distributed

  15. A model independent search for new physics in final states containing leptons at the D0 experiment

    SciTech Connect (OSTI)

    Piper, Joel Michael; /Michigan State U.

    2009-12-01T23:59:59.000Z

    The standard model is known to be the low energy limit of a more general theory. Several consequences of the standard model point to a strong probability of new physics becoming experimentally visible in high energy collisions of a few TeV, resulting in high momentum objects. The specific signatures of these collisions are topics of much debate. Rather than choosing a specific signature, this analysis broadly searches the data, preferring breadth over sensitivity. In searching for new physics, several different approaches are used. These include the comparison of data with standard model background expectation in overall number of events, comparisons of distributions of many kinematic variables, and finally comparisons on the tails of distributions that sum the momenta of the objects in an event. With 1.07 fb{sup -1} at the D0 experiment, we find no evidence of physics beyond the standard model. Several discrepancies from the standard model were found, but none of these provide a compelling case for new physics.

  16. The Landscape of Klamath Basin Rock Art

    E-Print Network [OSTI]

    David, Robert James

    2012-01-01T23:59:59.000Z

    I incorporate results from the XRF and projectile pointRay Fluorescence (hereafter, XRF) to help affiliate rock artstudies or reports in which XRF analysis have been done.

  17. Rock Bands/Rock Brands: Mediation and Musical Performance in Post-liberalization Bangalore

    E-Print Network [OSTI]

    Coventry, Chloe Louise

    2013-01-01T23:59:59.000Z

    as in its modes of fandom, production and dissemination. Inaspects of rock music fandom: America had everything a youngthe beginnings of rock music fandom in India, even while, as

  18. Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field...

    Open Energy Info (EERE)

    Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  19. Statistical physics of a model binary genetic switch with linear feedback

    E-Print Network [OSTI]

    Paolo Visco; Rosalind J. Allen; Martin R. Evans

    2009-03-31T23:59:59.000Z

    We study the statistical properties of a simple genetic regulatory network that provides heterogeneity within a population of cells. This network consists of a binary genetic switch in which stochastic flipping between the two switch states is mediated by a "flipping" enzyme. Feedback between the switch state and the flipping rate is provided by a linear feedback mechanism: the flipping enzyme is only produced in the on switch state and the switching rate depends linearly on the copy number of the enzyme. This work generalises the model of [Phys. Rev. Lett., 101, 118104] to a broader class of linear feedback systems. We present a complete analytical solution for the steady-state statistics of the number of enzyme molecules in the on and off states, for the general case where the enzyme can mediate flipping in either direction. For this general case we also solve for the flip time distribution, making a connection to first passage and persistence problems in statistical physics. We show that the statistics of the model are non-Poissonian, leading to a peak in the flip time distribution. The occurrence of such a peak is analysed as a function of the parameter space. We present a new relation between the flip time distributions measured for two relevant choices of initial condition. We also introduce a new correlation measure to show that this model can exhibit long-lived temporal correlations, thus providing a primitive form of cellular memory. Motivated by DNA replication as well as by evolutionary mechanisms involving gene duplication, we study the case of two switches in the same cell. This results in correlations between the two switches; these can either positive or negative depending on the parameter regime.

  20. Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models

    SciTech Connect (OSTI)

    Jorge L. Sarmiento - Princeton PI, Anand Gnanadesikan - Princeton Co-I, Nicolas Gruber - UCLA PI, Xin Jin - UCLA PostDoc, Robert Armstrong - SUNY /Stony Brook Consultant

    2007-06-21T23:59:59.000Z

    This final report summarizes research undertaken collaboratively between Princeton University, the NOAA Geophysical Fluid Dynamics Laboratory on the Princeton University campus, the State University of New York at Stony Brook, and the University of California, Los Angeles between September 1, 2000, and November 30, 2006, to do fundamental research on ocean iron fertilization as a means to enhance the net oceanic uptake of CO2 from the atmosphere. The approach we proposed was to develop and apply a suite of coupled physical-ecological-biogeochemical models in order to (i) determine to what extent enhanced carbon fixation from iron fertilization will lead to an increase in the oceanic uptake of atmospheric CO2 and how long this carbon will remain sequestered (efficiency), and (ii) examine the changes in ocean ecology and natural biogeochemical cycles resulting from iron fertilization (consequences). The award was funded in two separate three-year installments: • September 1, 2000 to November 30, 2003, for a project entitled “Ocean carbon sequestration by fertilization: An integrated biogeochemical assessment.” A final report was submitted for this at the end of 2003 and is included here as Appendix 1. • December 1, 2003 to November 30, 2006, for a follow-on project under the same grant number entitled “Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models.” This report focuses primarily on the progress we made during the second period of funding subsequent to the work reported on in Appendix 1. When we began this project, we were thinking almost exclusively in terms of long-term fertilization over large regions of the ocean such as the Southern Ocean, with much of our focus being on how ocean circulation and biogeochemical cycling would interact to control the response to a given fertilization scenario. Our research on these types of scenarios, which was carried out largely during the first three years of our project, led to several major new insights on the interaction between ocean biogeochemistry and circulation. This work, which is described in the following Section II on “Large scale fertilization,” has continued to appear in the literature over the past few years, including two high visibility papers in Nature. Early on in the first three years of our project, it became clear that small "patch-scale" fertilizations over limited regions of order 100 km diameter were much more likely than large scale fertilization, and we carried out a series of idealized patch fertilization simulations reported on in Gnanadesikan et al. (2003). Based on this paper and other results we had obtained by the end of our first three-year grant, we identified a number of important issues that needed to be addressed in the second three-year period of this grant. Section III on “patch fertilization” discusses the major findings of this phase of our research, which is described in two major manuscripts that will be submitted for publication in the near future. This research makes use of new more realistic ocean ecosystem and iron cycling models than our first paper on this topic. We have several major new insights into what controls the efficiency of iron fertilization in the ocean. Section IV on “model development” summarizes a set of papers describing the progress that we made on improving the ecosystem models we use for our iron fertilization simulations.

  1. A sustainable business model for Open-Access journal publishing a proposed plan for High-Energy Physics

    E-Print Network [OSTI]

    Vigen, Jens

    2007-01-01T23:59:59.000Z

    The High Energy Physics community over the last 15 years has achieved so-called full green Open Access through the wide dissemination of preprints via arXiv, a central subject repository managed by Cornell University. However, green Open Access does not alleviate the economic difficulties of libraries as they are still expected to offer access to versions of record of the peer-reviewed literature. For this reason the particle physics community is now addressing the issue of gold Open Access by converting a set of the existing core journals to Open Access. A Working Party has been established to bring together funding agencies, laboratories and libraries into a single consortium, called SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics). This consortium will engage with publishers to build a sustainable model for Open Access publishing. In this model, subscription fees from multiple institutions are replaced by contracts with publishers of Open Access journals, where the SCOAP3 conso...

  2. Les Houches Physics at TeV Colliders 2005 Beyond the Standard Model Working Group: Summary Report

    SciTech Connect (OSTI)

    Allanach, B.C.; /Cambridge U., DAMTP; Grojean, C.; /Saclay, SPhT /CERN; Skands, P.; /Fermilab; Accomando, E.; Azuelos, G.; Baer, H.; Balazs, C.; Belanger, G.; Benakli, K.; Boudjema, F.; Brelier, B.; Bunichev, V.; Cacciapaglia, G.; Carena, M.; Choudhury, D.; Delsart, P.-A.; De Sanctis, U.; Desch, K.; Dobrescu, B.A.; Dudko, L.; El Kacimi, M.; /Saclay,

    2006-03-17T23:59:59.000Z

    The work contained herein constitutes a report of the ''Beyond the Standard Model'' working group for the Workshop ''Physics at TeV Colliders'', Les Houches, France, 2-20 May, 2005. We present reviews of current topics as well as original research carried out for the workshop. Supersymmetric and non-supersymmetric models are studied, as well as computational tools designed in order to facilitate their phenomenology.

  3. Abstract--A physically based, spatially-distributed water quality model is being developed to simulate spatial and temporal

    E-Print Network [OSTI]

    Abstract--A physically based, spatially-distributed water quality model is being developed, and water quality were used to estimate nonpoint source loading potential in the study watersheds. Animal to the monitored total phosphorous load indicates that both point and nonpoint sources are major contributors

  4. Allocating city space to multiple transportation modes: A new modeling approach consistent with the physics of transport

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Allocating city space to multiple transportation modes: A new modeling approach consistent with the physics of transport Eric J. Gonzales, Nikolas Geroliminis, Michael J. Cassidy and Carlos F. Daganzo WORKING PAPER UCB-ITS-VWP-2008-1 March 2008 #12;Allocating city space to multiple transportation modes

  5. Journal of Statistical Physics, Vol. 44, Nos. 1/2, 1986 A Solvable Model for Localized Adsorption

    E-Print Network [OSTI]

    Lebowitz, Joel

    Journal of Statistical Physics, Vol. 44, Nos. 1/2, 1986 A Solvable Model for Localized Adsorption for an interface with localized adsorption is presented, in which the surface has a distribution of sticky adhesive on the adsorption isotherm is discussed. KEY WORDS: Localized adsorption, Coulomb systems; one-component plasma; two

  6. PHYSICAL REVIEW C VOLUME 49, NUMBER 1 JANUARY 1994 Hanbury-Brown --Twiss analysis in a solvable model

    E-Print Network [OSTI]

    Bertsch George F.

    PHYSICAL REVIEW C VOLUME 49, NUMBER 1 JANUARY 1994 Hanbury-Brown --Twiss analysis in a solvable of meson correlations by Hanbury-~rown --Twiss interferometry is tested with a simple model of meson the correlation function depends on the Bose symmetry of the particles as in the Hanbury-Brown --Twiss (HBT

  7. A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel

    E-Print Network [OSTI]

    Ritchie, Robert

    and compressors, despite the fact that they can be extremely susceptible to such hydrogen embrittlement, is well documented. Hydrogen, either as an external gas, resulting from electrochemical reactionsA statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture

  8. PS-wave moveout inversion for tilted TI media: A physical-modeling study Pawan Dewangan1

    E-Print Network [OSTI]

    PS-wave moveout inversion for tilted TI media: A physical-modeling study Pawan Dewangan1 , Ilya Tsvankin2 , Mike Batzle3 , Kasper van Wijk4 , and Matthew Haney5 ABSTRACT Mode-converted PS-waves can- and PS- waves can be inverted for the parameters of a horizontal TI layer with a tilted symmetry axis

  9. A Fuzzy-Convolution Model for Physical Action and Behaviour Pattern Recognition of 3D Time Series

    E-Print Network [OSTI]

    Hu, Huosheng

    A Fuzzy-Convolution Model for Physical Action and Behaviour Pattern Recognition of 3D Time Series-- Pattern Classification, Action Recognition, Fuzzy Classifiers, Signal Convolution. I. INTRODUCTION researchers in pattern recognition on the field of intelligent surveillance. Fuzzy logic has been extensively

  10. Protein folding dynamics in lattice model with physical movement Sema Kachalo, Hsiao-Mei Lu and Jie Liang

    E-Print Network [OSTI]

    Dai, Yang

    Protein folding dynamics in lattice model with physical movement S¨ema Kachalo, Hsiao-Mei Lu analysis of the kinetic energy landscape. I. INTRODUCTION The dynamics of protein folding has been studied exten- sively [1, 3­5]; A remarkable empirical observation is that protein folding rates are well

  11. PHYSICAL REVIEW B 86, 165414 (2012) Acoustic energy dissipation and thermalization in carbon nanotubes: Atomistic modeling and

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    PHYSICAL REVIEW B 86, 165414 (2012) Acoustic energy dissipation and thermalization in carbon or bending buckling marks the transition from a regime of slow thermalization to a regime in which the energy bath" description of thermal energy in a mesoscopic model, which is capable of simulating systems

  12. Charmless $B \\to PV, VV $ decays and new physics effects in the mSUGRA model

    E-Print Network [OSTI]

    Wenjuan Zou; Zhenjun Xiao

    2005-10-24T23:59:59.000Z

    By employing the QCD factorization approach, we calculate the new physics contributions to the branching radios of the two-body charmless $ B \\to PV$ and $B \\to VV$ decays in the framework of the minimal supergravity (mSUGRA) model. we choose three typical sets of the mSUGRA input parameters in which the Wilson coefficient $C_{7\\gamma}(m_b)$ can be either SM-like (the case A and C) or has a flipped-sign (the case B). We found numerically that (a) the SUSY contributions are always very small for both case A and C; (b) for those tree-dominated decays, the SUSY contributions in case B are also very small; (c) for those QCD penguin-dominated decay modes, the SUSY contributions in case B can be significant, and can provide an enhancement about $30% \\sim 260%$ to the branching ratios of $B \\to K^*(\\pi,\\phi,\\rho)$ and $K \\phi$ decays, but a reduction about $30% \\sim 80%$ to $ B\\to K(\\rho, \\omega)$ decays; and (d) the large SUSY contributions in the case B may be masked by the large theoretical errors dominated by the uncertainty from our ignorance of calculating the annihilation contributions in the QCD factorization approach.

  13. Manufactured caverns in carbonate rock

    DOE Patents [OSTI]

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02T23:59:59.000Z

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  14. WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS

    E-Print Network [OSTI]

    Stewart, Sarah T.

    WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS C. L. Liu and Thomas J. Ahrens Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125 In order to record P- and S-waves on the interactions between incident P- and SV-waves and free-surfaces of rocks. The relations between particle

  15. Damage and plastic deformation of reservoir rocks

    E-Print Network [OSTI]

    Ze'ev, Reches

    Damage and plastic deformation of reservoir rocks: Part 1. Damage fracturing Seth Busetti, Kyran mechanics, fluid flow in fractured reservoirs, and geomechanics in nonconventional reservoirs. Kyran Mish finite deformation of reservoir rocks. We present an at- tempt to eliminate the main limitations

  16. ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM

    E-Print Network [OSTI]

    ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON 1960 . SPECIAL SCIENTIFIC ISLAND DAM COLUMBIA RIVER, WASHINGTON, 1960 by Paul D. Zimmer and Clifton C. Davidson United States Fish This annual report of fishway operations at Rock Island Dam in 1960 is dedicated to the memory of co

  17. ROCK ELASTIC PROPERTIES: DEPENDENCE ON MICROSTRUCTURE

    E-Print Network [OSTI]

    ROCK ELASTIC PROPERTIES: DEPENDENCE ON MICROSTRUCTURE James G. Berryman and Patricia A. Berge Lawrence Livermore National Laboratory P. O. Box 808 L­202 Livermore, CA 94551­9900 #12; ROCK ELASTIC PROPERTIES: DEPENDENCE ON MICROSTRUCTURE James G. Berryman and Patricia A. Berge Lawrence Livermore National

  18. Simulated diurnal rainfall physics in a multi-scale global climate model with embedded explicit convection

    E-Print Network [OSTI]

    Pritchard, Michael Stephen

    2011-01-01T23:59:59.000Z

    their Community Earth System Model (Richard Neale, personaldevelopment of Earth system models capable of reproducing

  19. On the Relationship between Stress and Elastic Strain for Porous and Fractured Rock

    SciTech Connect (OSTI)

    Liu, Hui-Hai; Rutqvist, Jonny; Berryman, James G.

    2008-02-25T23:59:59.000Z

    Modeling the mechanical deformations of porous and fractured rocks requires a stress-strain relationship. Experience with inherently heterogeneous earth materials suggests that different varieties of Hook's law should be applied within regions of the rock having significantly different stress-strain behavior, e.g., such as solid phase and various void geometries. We apply this idea by dividing a rock body conceptually into two distinct parts. The natural strain (volume change divided by rock volume at the current stress state), rather than the engineering strain (volume change divided by the unstressed rock volume), should be used in Hooke's law for accurate modeling of the elastic deformation of that part of the pore volume subject to a relatively large degree of relative deformation (i.e., cracks or fractures). This approach permits the derivation of constitutive relations between stress and a variety of mechanical and/or hydraulic rock properties. We show that the theoretical predictions of this method are generally consistent with empirical expressions (from field data) and also laboratory rock experimental data.

  20. A Physical Model For The Origin Of Volcanism Of The Tyrrhenian...

    Open Energy Info (EERE)

    mechanism was therefore analyzed in physical terms on the assumption of an elasto-plastic behaviour of the crust and with reference to the "limit analysis theorems". Authors...

  1. Table-Top Spatially-Augmented Reality: Bringing Physical Models to Life with Projected Imagery

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    the general notion of Spatially Augmented Reality (SAR), where physical objects are augmented with images need to calibrate the display environment and achieve static registration between the projectors

  2. Specific energy for pulsed laser rock drilling.

    SciTech Connect (OSTI)

    Xu, Z.; Reed, C. B.; Kornecki, G.; Gahan, B. C.; Parker, R. A.; Batarseh, S.; Graves, R. M.; Figueroa, H.; Skinner, N.; Technology Development

    2003-02-01T23:59:59.000Z

    Application of advanced high power laser technology to oil and gas well drilling has been attracting significant research interests recently among research institutes, petroleum industries, and universities. Potential laser or laser-aided oil and gas well drilling has many advantages over the conventional rotary drilling, such as high penetration rate, reduction or elimination of tripping, casing, and bit costs, and enhanced well control, perforating and side-tracking capabilities. The energy required to remove a unit volume of rock, namely the specific energy (SE), is a critical rock property data that can be used to determine both the technical and economic feasibility of laser oil and gas well drilling. When a high power laser beam is applied on a rock, it can remove the rock by thermal spallation, melting, or vaporization depending on the applied laser energy and the way the energy is applied. The most efficient rock removal mechanism would be the one that requires the minimum energy to remove a unit volume of rock. Samples of sandstone, shale, and limestone were prepared for laser beam interaction with a 1.6 kW pulsed Nd:yttrium-aluminum-garnet laser beam to determine how the beam size, power, repetition rate, pulse width, exposure time and energy can affect the amount of energy transferred to the rock for the purposes of spallation, melting, and vaporization. The purpose of the laser rock interaction experiment was to determine the optimal parameters required to remove a maximum rock volume from the samples while minimizing energy input. Absorption of radiant energy from the laser beam gives rise to the thermal energy transfer required for the destruction and removal of the rock matrix. Results from the tests indicate that each rock type has a set of optimal laser parameters to minimize specific energy (SE) values as observed in a set of linear track and spot tests. As absorbed energy outpaces heat diffusion by the rock matrix, local temperatures can rise to the melting points of the minerals and quickly increase observed SE values. Tests also clearly identified the spallation and melting zones for shale samples while changing the laser power. The lowest SE values are obtained in the spalling zone just prior to the onset of mineral melt. The laser thermally spalled and saw mechanically cut rocks show similarity of surface microstructure. The study also found that increasing beam repetition rate within the same material removal mechanism would increase the material removal rate, which is believed due to an increase of maximum temperature, thermal cycling frequency, and intensity of laser-driven shock wave within the rock.

  3. Hilbert transform based analyses on ship-rocking signals

    E-Print Network [OSTI]

    Huang, Wei; Kang, Deyong; Chen, Zhi

    2015-01-01T23:59:59.000Z

    The ship-rocking is a crucial factor which affects the accuracy of the ocean-based flight vehicle measurement. Here we have analyzed four groups of ship-rocking time series in horizontal and vertical directions utilizing a Hilbert based method from statistical physics. Our method gives a way to construct an analytic signal on the two-dimensional plane from a one-dimensional time series. The analytic signal share the complete property of the original time series. From the analytic signal of a time series, we have found some information of the original time series which are often hidden from the view of the conventional methods. The analytic signals of interest usually evolve very smoothly on the complex plane. In addition, the phase of the analytic signal is usually moves linearly in time. From the auto-correlation and cross-correlation functions of the original signals as well as the instantaneous amplitudes and phase increments of the analytic signals we have found that the ship-rocking in horizontal directi...

  4. Use of ``rock-typing`` to characterize carbonate reservoir heterogeneity. Final report

    SciTech Connect (OSTI)

    Ikwuakor, K.C.

    1994-03-01T23:59:59.000Z

    The objective of the project was to apply techniques of ``rock-typing`` and quantitative formation evaluation to borehole measurements in order to identify reservoir and non-reservoir rock-types and their properties within the ``C`` zone of the Ordovician Red River carbonates in the northeast Montana and northwest North Dakota areas of the Williston Basin. Rock-typing discriminates rock units according to their pore-size distribution. Formation evaluation estimates porosities and pore fluid saturation. Rock-types were discriminated using crossplots involving three rock-typing criteria: (1) linear relationship between bulk density and porosity, (2) linear relationship between acoustic interval transit-time and porosity, and (3) linear relationship between acoustic interval transit-time and bulk density. Each rock-type was quantitatively characterized by the slopes and intercepts established for different crossplots involving the above variables, as well as porosities and fluid saturations associated with the rock-types. All the existing production was confirmed through quantitative formation evaluation. Highly porous dolomites and anhydritic dolomites contribute most of the production, and constitute the best reservoir rock-types. The results of this study can be applied in field development and in-fill drilling. Potential targets would be areas of porosity pinchouts and those areas where highly porous zones are downdip from non-porous and tight dolomites. Such areas are abundant. In order to model reservoirs for enhanced oil recovery (EOR) operations, a more localized (e.g. field scale) study, expanded to involve other rock-typing criteria, is necessary.

  5. Estimation of host rock thermal conductivities using the temperature data from the drift-scale test at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Mukhopadhyay, Sumitra; Tsang, Y.W.

    2008-01-01T23:59:59.000Z

    used for heating rock as heat input to the analytical model.these numbers as the total heat input in the system. In thesensitivity analysis with heat input into our model as ±5%

  6. Rock Physics Based Determination of Reservoir Microstructure for Reservoir Characterization

    E-Print Network [OSTI]

    Adesokan, Hamid 1976-

    2013-01-09T23:59:59.000Z

    One of the most important, but often ignored, factors affecting the transport and the seismic properties of hydrocarbon reservoir is pore shape. Transport properties depend on the dimensions, geometry, and distribution of pores and cracks. Knowledge...

  7. FRACTURE DETECTION IN CRYSTALLINE ROCK USING ULTRASONIC SHEAR WAVES

    E-Print Network [OSTI]

    Waters, K.H.

    2011-01-01T23:59:59.000Z

    the piezoelectric source plate and the rock surface. With aThe S^j sources were bonded to the rock surface with a fast-^ source plate was epoxied in position on the rock specimen.

  8. Seismic anisotropy of fractured rock

    E-Print Network [OSTI]

    M. Schoenberg, C. M. Sayers

    2000-02-18T23:59:59.000Z

    of seismic anisotropy to determine the orientation of fracture sets is of ... this assumption of noninteraction does not imply that the ... conventional (2-subscript) condensed 6 x 6 matrix notation,. 11. 6, while ... have simple physical interpretations.

  9. Preliminary investigation results on fabrics and related physical properties of an anisotropic gneiss

    E-Print Network [OSTI]

    Fritz, Harald

    and the seismic wave propagation properties along the rock's principal strain axes were determinedPreliminary investigation results on fabrics and related physical properties of an anisotropic. In the rock mechanics laboratory, several strength and deformability tests on drilled rock samples were run

  10. Topological Performance Measures as Surrogates for Physical Flow Models for Risk and Vulnerability Analysis for Electric Power Systems

    E-Print Network [OSTI]

    LaRocca, Sarah; Hassel, Henrik; Guikema, Seth

    2013-01-01T23:59:59.000Z

    Critical infrastructure systems must be both robust and resilient in order to ensure the functioning of society. To improve the performance of such systems, we often use risk and vulnerability analysis to find and address system weaknesses. A critical component of such analyses is the ability to accurately determine the negative consequences of various types of failures in the system. Numerous mathematical and simulation models exist which can be used to this end. However, there are relatively few studies comparing the implications of using different modeling approaches in the context of comprehensive risk analysis of critical infrastructures. Thus in this paper, we suggest a classification of these models, which span from simple topologically-oriented models to advanced physical flow-based models. Here, we focus on electric power systems and present a study aimed at understanding the tradeoffs between simplicity and fidelity in models used in the context of risk analysis. Specifically, the purpose of this pa...

  11. Soft-ratchet modeling of slow dynamics in the nonlinear resonant response of sedimentary

    E-Print Network [OSTI]

    Soft-ratchet modeling of slow dynamics in the nonlinear resonant response of sedimentary rocks of Physics 0-7354-0330-9/06/$23.00 CREDIT LINE (BELOW) TO BE INSERTED ONLY ON THE FIRST PAGE OF THE #12;SOFT-RATCHET

  12. Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound

    E-Print Network [OSTI]

    Kite, Edwin

    Street, Suite 205, Boulder, CO 80301, USA e Department of Earth and Planetary Science, University distribution of sedimentary rocks. The global distribution of snowmelt has maxima in Valles Marineris. The pattern of sedimentary rocks on Mars is most consistent with a model Mars paleoclimate that only rarely

  13. Validating a physics-based back-of-the-envelope climate model with state-of-the-art data

    E-Print Network [OSTI]

    Benestad, Rasmus E

    2013-01-01T23:59:59.000Z

    An old conceptual physics-based back-of-the-envelope model for greenhouse effect is revisited and validated against state-of-the-art reanalyses. Untraditional diagnostics show a physically consistent picture, for which the state of earth's climate is constrained by well-known physical principles, such as energy balance, flow and, conservation. Greenhouse gas concentrations affect the atmospheric optical depth for infrared radiation, and increased opacity implies higher altitude from which earth's equivalent bulk heat loss takes place without being re-absorbed. Such increase is seen in the reanalyses. There has also been a reduction in the correlation between the spatial structure of outgoing long-wave radiation and surface temperature, consistent with increasingly more processes interfering with the upwelling infrared light before it reaches the top of the atmosphere. State-of-the-art reanalyses further imply increases in the overturning in the troposphere, consistent with a constant and continuous vertical e...

  14. altered granitic rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22 Everglades National Park Groundwater wells Surface water monitoring locations Rock mining locations 12 Demers, Nora Egan 211 Nova Scotia Rock Garden Club Membership...

  15. Regional Geology: GIS Database for Alternative Host Rocks and...

    Energy Savers [EERE]

    Regional Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines Regional Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines...

  16. Stress and fault rock controls on fault zone hydrology, Coso...

    Open Energy Info (EERE)

    rock controls on fault zone hydrology, Coso geothermal field, CA Abstract In crystalline rock of the Coso Geothermal Field, CA, fractures are the primary source of permeability....

  17. EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Areva Eagle Rock Enrichment Facility in Bonneville County, ID EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville County, ID May 20, 2011 EIS-0471: Final Environmental...

  18. Uncertainties propagation in the framework of a Rod Ejection Accident modeling based on a multi-physics approach

    SciTech Connect (OSTI)

    Le Pallec, J. C.; Crouzet, N.; Bergeaud, V.; Delavaud, C. [CEA/DEN/DM2S, CEA/Saclay, 91191 Gif sur Yvette Cedex (France)

    2012-07-01T23:59:59.000Z

    The control of uncertainties in the field of reactor physics and their propagation in best-estimate modeling are a major issue in safety analysis. In this framework, the CEA develops a methodology to perform multi-physics simulations including uncertainties analysis. The present paper aims to present and apply this methodology for the analysis of an accidental situation such as REA (Rod Ejection Accident). This accident is characterized by a strong interaction between the different areas of the reactor physics (neutronic, fuel thermal and thermal hydraulic). The modeling is performed with CRONOS2 code. The uncertainties analysis has been conducted with the URANIE platform developed by the CEA: For each identified response from the modeling (output) and considering a set of key parameters with their uncertainties (input), a surrogate model in the form of a neural network has been produced. The set of neural networks is then used to carry out a sensitivity analysis which consists on a global variance analysis with the determination of the Sobol indices for all responses. The sensitivity indices are obtained for the input parameters by an approach based on the use of polynomial chaos. The present exercise helped to develop a methodological flow scheme, to consolidate the use of URANIE tool in the framework of parallel calculations. Finally, the use of polynomial chaos allowed computing high order sensitivity indices and thus highlighting and classifying the influence of identified uncertainties on each response of the analysis (single and interaction effects). (authors)

  19. Rock bed behavior and reverse thermosiphon effects

    SciTech Connect (OSTI)

    Perry, J.E.

    1980-01-01T23:59:59.000Z

    Two rock beds, in the Mark Jones and Doug Balcomb houses, have been instrumented, monitored, and analyzed. Observed experimental operation has been compared with, or explained by, theoretical predictions. The latter are based on one-dimensional finite-difference computer calculation of rock bed charging and discharging, with fixed or variable inputs of air flow rate and temperature. Both rock beds exhibit appreciable loss of stored heat caused by lack of backdraft dampers or incomplete closure of such dampers. These topics are discussed, and some improvements that might be made in future installations are noted.

  20. Development of a Fast and Detailed Model of Urban-Scale Chemical and Physical Processing

    E-Print Network [OSTI]

    Prinn, Ronald G.

    A reduced form metamodel has been produced to simulate the effects of physical, chemical, and meteorological processing of highly reactive trace species in hypothetical urban areas, which is capable of efficiently simulating ...

  1. Top quark forward-backward asymmetry at the Tevatron: A comparative study in different new physics models

    SciTech Connect (OSTI)

    Cao Junjie; Wu Lei [College of Physics and Information Engineering, Henan Normal University, Xinxiang 453007 (China); Heng Zhaoxia; Yang Jinmin [Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Academia Sinica, Beijing 100190 (China)

    2010-01-01T23:59:59.000Z

    The top quark forward-backward asymmetry A{sub FB}{sup t} measured at the Tevatron is above the standard model prediction by more than 2{sigma} deviation, which might be a harbinger for new physics. In this work we examine the contribution to A{sub FB}{sup t} in two different new physics models: one is the minimal supersymmetric model without R parity which contributes to A{sub FB}{sup t} via sparticle-mediated t channel process dd{yields}tt; the other is the third-generation enhanced left-right model which contributes to A{sub FB}{sup t} via Z{sup '}-mediated t channel or s channel processes. We find that in the parameter space allowed by the tt production rate and the tt invariant mass distribution at the Tevatron, the left-right model can enhance A{sub FB}{sup t} to within the 2{sigma} region of the Tevatron data for the major part of the parameter space, and in optimal case A{sub FB}{sup t} can reach 12% which is slightly below the 1{sigma} lower bound. For the minimal supersymmetric model without R parity, only in a narrow part of the parameter space can the {lambda}{sup ''} couplings enhance A{sub FB}{sup t} to within the 2{sigma} region while the {lambda}{sup '} couplings just produce negative contributions to worsen the fit.

  2. Lithophysal Rock Mass Mechanical Properties of the Repository Host Horizon

    SciTech Connect (OSTI)

    D. Rigby

    2004-11-10T23:59:59.000Z

    The purpose of this calculation is to develop estimates of key mechanical properties for the lithophysal rock masses of the Topopah Spring Tuff (Tpt) within the repository host horizon, including their uncertainties and spatial variability. The mechanical properties to be characterized include an elastic parameter, Young's modulus, and a strength parameter, uniaxial compressive strength. Since lithophysal porosity is used as a surrogate property to develop the distributions of the mechanical properties, an estimate of the distribution of lithophysal porosity is also developed. The resulting characterizations of rock parameters are important for supporting the subsurface design, developing the preclosure safety analysis, and assessing the postclosure performance of the repository (e.g., drift degradation and modeling of rockfall impacts on engineered barrier system components).

  3. New physical effects on the decay $B_{s(d)} \\to ??$ in the sequential fourth Generation model

    E-Print Network [OSTI]

    H. Chen; W. Huo

    2011-01-24T23:59:59.000Z

    We study the contributions to the branching ratios of $B_{s(d)}\\to \\gamma \\gamma$ decay in the sequential fourth generation model (SM4). We find that the theoretical values of the branching ratios, ${\\rm BR}(B_{s(d)}\\to\\gamma\\gamma)$, including the contributions of $m_{t'}$ and the new $4 \\times 4$ CKM (CKM4) matrix factors, $|V^{*}_{t's}V_{t'b}|$ and $|V^{*}_{t'd}V_{t'b}|$, are much different from the minimal standard model (SM) predictions. The new physics effects, especially contributed from the CKM4 matrix factors, can provide more than one order enhancement to the SM prediction. It is shown that the decay $B_{s(d)}\\to \\gamma \\gamma$ can test the new physics signals from SM4.

  4. JOURNAL DE PHYSIQUE Colloque C6, supplkment au no 12, Tome 37, Dkcembre 1976, page C6-833 MINERALOGICAL ANA1,YSIS OF LUNAR ROCK PARTICLES

    E-Print Network [OSTI]

    Boyer, Edmond

    -833 MINERALOGICAL ANA1,YSIS OF LUNAR ROCK PARTICLES T. Z E M ~ ~ Kand K. RACLAVSKY Institute of Physical Metallurgy for mineralogical studies of lunar returned materials. The sensitivityof this method made it possible to perform

  5. Regionalization of subsurface stormflow parameters of hydrologic models: Up-scaling from physically based numerical simulations at hillslope scale

    SciTech Connect (OSTI)

    Ali, Melkamu; Ye, Sheng; Li, Hongyi; Huang, Maoyi; Leung, Lai-Yung R.; Fiori, Aldo; Sivapalan, Murugesu

    2014-07-19T23:59:59.000Z

    Subsurface stormflow is an important component of the rainfall-runoff response, especially in steep forested regions. However; its contribution is poorly represented in current generation of land surface hydrological models (LSMs) and catchment-scale rainfall-runoff models. The lack of physical basis of common parameterizations precludes a priori estimation (i.e. without calibration), which is a major drawback for prediction in ungauged basins, or for use in global models. This paper is aimed at deriving physically based parameterizations of the storage-discharge relationship relating to subsurface flow. These parameterizations are derived through a two-step up-scaling procedure: firstly, through simulations with a physically based (Darcian) subsurface flow model for idealized three dimensional rectangular hillslopes, accounting for within-hillslope random heterogeneity of soil hydraulic properties, and secondly, through subsequent up-scaling to the catchment scale by accounting for between-hillslope and within-catchment heterogeneity of topographic features (e.g., slope). These theoretical simulation results produced parameterizations of the storage-discharge relationship in terms of soil hydraulic properties, topographic slope and their heterogeneities, which were consistent with results of previous studies. Yet, regionalization of the resulting storage-discharge relations across 50 actual catchments in eastern United States, and a comparison of the regionalized results with equivalent empirical results obtained on the basis of analysis of observed streamflow recession curves, revealed a systematic inconsistency. It was found that the difference between the theoretical and empirically derived results could be explained, to first order, by climate in the form of climatic aridity index. This suggests a possible codependence of climate, soils, vegetation and topographic properties, and suggests that subsurface flow parameterization needed for ungauged locations must account for both the physics of flow in heterogeneous landscapes, and the co-dependence of soil and topographic properties with climate, including possibly the mediating role of vegetation.

  6. Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances

    SciTech Connect (OSTI)

    Faybishenko, B. (ed.)

    1999-02-01T23:59:59.000Z

    This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.

  7. Rock Slopes from Mechanics to Decision Making

    E-Print Network [OSTI]

    Einstein, Herbert H.

    Rock slope instabilities are discussed in the context of decision making for risk assessment and management. Hence, the state of the slope and possible failure mechanism need to be defined first. This is done with geometrical ...

  8. First Rocks from Outside the Solar System

    SciTech Connect (OSTI)

    Westphal, Andrew

    2014-10-17T23:59:59.000Z

    Andrew Westphal presents his findings in examining the first rocks from outside the solar system at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  9. Determination of mechanical properties of reservoir rock

    E-Print Network [OSTI]

    Barnett, Ashley

    1993-01-01T23:59:59.000Z

    Apparatus, experimental procedure, and methodology have been developed to determine the mechanical response of reservoir rock. The apparatus is capable of subjecting cylindrical core specimens to triaxial stress states and temperatures...

  10. Category:Isotopic Analysis- Rock | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?sourcehelpFluid Jump to:Rock

  11. Design of tabular excavations in foliated rock: an integrated numerical

    E-Print Network [OSTI]

    to the mineralized zone (development openings), extracting the ore from the surrounding host rock (stopes. The first stage in the design process is the characterization of the rock mass using both in situ of the mining process, requiring that the rock mass stability, both within the orebody and in the rock adjacent

  12. Mixture Theories for Rock Properties James G. Berryman

    E-Print Network [OSTI]

    Mixture Theories for Rock Properties James G. Berryman Lawrence Livermore National Laboratory by Batchelor [3], Hale [41], Hashin [42], Torquato [95], and Willis [110] are also recommended. 1.1. Rocks Are Inhomogeneous Materials A rock is a naturally occurring mixture of minerals. Rocks are normally inhomogeneous

  13. Flow dynamics and solute transport in unsaturated rock fractures

    SciTech Connect (OSTI)

    Su, G. W.

    1999-10-01T23:59:59.000Z

    Rock fractures play an important role in flow and contaminant transport in fractured aquifers, production of oil from petroleum reservoirs, and steam generation from geothermal reservoirs. In this dissertation, phenomenological aspects of flow in unsaturated fractures were studied in visualization experiments conducted on a transparent replica of a natural, rough-walled rock fracture for inlet conditions of constant pressure and flow rate over a range of angles of inclination. The experiments demonstrated that infiltrating liquid proceeds through unsaturated rock fractures along non-uniform, localized preferential flow paths. Even in the presence of constant boundary conditions, intermittent flow was a persistent flow feature observed, where portions of the flow channel underwent cycles of snapping and reforming. Two modes of intermittent flow were observed, the pulsating blob mode and the rivulet snapping mode. A conceptual model for the rivulet snapping mode was proposed and examined using idealized, variable-aperture fractures. The frequency of intermittent flow events was measured in several experiments and related to the capillary and Bond numbers to characterize this flow behavior.

  14. Decadal variability in the northeast Pacific in a physical-ecosystem model

    E-Print Network [OSTI]

    Maine, University of

    the lower trophic levels of the food web and if so by what means. The physical component is an ocean general in late winter, did not penetrate as deep in the central GOA. As a result, more phytoplankton remained that resulted in basin-wide changes in ocean temper- atures, currents, and mixed layer depth [e.g., Miller et al

  15. Model Aided Observational Study of Physical Processes in Fresh Water Reservoirs

    E-Print Network [OSTI]

    Al Senafi, Fahad

    2012-10-19T23:59:59.000Z

    of the instrument. Overall, the k-kl model simulation results appear to be closer to the observational results during the weakly and strongly stratified periods than the k-epsilon model....

  16. A physical model of the photo- and radiation-induced degradation of ytterbium-doped silica optical fibres

    SciTech Connect (OSTI)

    Mady, Franck, E-mail: franck.mady@unice.fr; Duchez, Jean-Bernard, E-mail: franck.mady@unice.fr; Mebrouk, Yasmine, E-mail: franck.mady@unice.fr; Benabdesselam, Mourad, E-mail: franck.mady@unice.fr [University of Nice Sophia Antipolis, Laboratoire de Physique de la Matière Condensée (LPMC), CNRS UMR 7336, Parc Valrose, 06108 Nice cedex 2 (France)

    2014-10-21T23:59:59.000Z

    We propose a model to describe the photo- or/and the radiation-induced darkening of ytterbium-doped silica optical fibers. This model accounts for the well-established experimental features of photo-darkening. Degradation behaviors predicted for fibers pumped in harsh environments are also fully confirmed by experimental data reported in the work by Duchez et al. (this proceeding), which gives a detailed characterization of the interplay between the effects of the pump and those of a superimposed ionizing irradiation (actual operation conditions in space-based applications for instance). In particular, dependences of the darkening build-up on the pump power, the total ionizing dose and the dose rate are all correctly reproduced. The presented model is a ‘sufficient’ one, including the minimal physical ingredients required to reproduce experimental features. Refinements could be proposed to improve, e.g., quantitative kinetics.

  17. Economic predictions for heat mining : a review and analysis of hot dry rock (HDR) geothermal energy technology

    E-Print Network [OSTI]

    Tester, Jefferson W.

    1990-01-01T23:59:59.000Z

    The main objectives of this study were first, to review and analyze several economic assessments of Hot Dry Rock (HDR) geothermal energy systems, and second, to reformulate an economic model for HDR with revised cost components.

  18. CGILS: Results from the First Phase of an International Project to Understand the Physical Mechanisms of Low Cloud Feedbacks in Single Column Models

    SciTech Connect (OSTI)

    Zhang, Minghua; Bretherton, Christopher S.; Blossey, Peter; Austin, Phillip A.; Bacmeister, J.; Bony, Sandrine; Brient, Florent; Cheedela, Suvarchal K.; Cheng, Anning; Del Genio, Anthony D.; De Roode, Stephan R.; Endo , Satoshi; Franklin, Charmaine N.; Golaz, Jean-Christophe; Hannay, Cecile; Heus, Thijs; Isotta, Francesco A.; Jean-Louis, Dufresne; Kang, In-Sik; Kawai, Hideaki; Koehler, M.; Larson, Vincent E.; Liu, Yangang; Lock, Adrian; Lohmann, U.; Khairoutdinov, Marat; Molod, Andrea M.; Neggers, Roel; Rasch, Philip J.; Sandu, Irina; Senkbeil, Ryan; Siebesma, A. P.; Siegenthaler-Le Drian, Colombe; Stevens, Bjorn; Suarez, Max; Xu, Kuan-Man; Von Salzen, Knut; Webb, Mark; Wolf, Audrey; Zhao, M.

    2013-12-26T23:59:59.000Z

    Large Eddy Models (LES) and Single Column Models (SCM) are used in a surrogate climate change 101 to investigate the physical mechanism of low cloud feedbacks in climate models. Enhanced surface-102 driven boundary layer turbulence and shallow convection in a warmer climate are found to be 103 dominant mechanisms in SCMs.

  19. A Physically Based Coupled Model for Simulating 1D Surface -2D Subsurface Flow and Plant Water Uptake in Irrigation Furrows.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of modeling the water movement processes in irrigation systems. These empirical approaches can provide Uptake in Irrigation Furrows. II: Model Test and Evaluation Th. W¨ohling , J.C. Mailhol Abstract A physically based seasonal furrow irrigation model - FIM - was developed which comprises three mod- ules

  20. Deep drilling technology for hot crystalline rock

    SciTech Connect (OSTI)

    Rowley, J.C.

    1984-01-01T23:59:59.000Z

    The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

  1. A Framework for Modeling Cyber-Physical Switching Attacks in Smart Grid

    E-Print Network [OSTI]

    Liu, Shan; Mashayekh, Salman; Kundur, Deepa; Zourntos, Takis; Butler-Purry, Karen

    2014-01-02T23:59:59.000Z

    and demonstrate how existence of the switching vulnerability is dependent on the local structure of the power grid. We identify and demonstrate how through successful cyber intrusion and local knowledge of the grid an opponent can compute and apply a coordinated... providing opponent(s) opportunities for remotely controlling physical power system components such as modern circuit breakers possibly via illicit security breaches and intrusion. Thus, our vulnerability is applicable to a smart grid system with remotely...

  2. Probing New Physics Models of Neutrinoless Double Beta Decay with SuperNEMO

    E-Print Network [OSTI]

    R. Arnold; C. Augier; J. Baker; A. S. Barabash; A. Basharina-Freshville; M. Bongrand; V. Brudanin; A. J. Caffrey; S. Cebrián; A. Chapon; E. Chauveau; Th. Dafni; F. F. Deppisch; J. Diaz; D. Durand; V. Egorov; J. J. Evans; R. Flack; K-I. Fushima; I. García Irastorza; X. Garrido; H. Gómez; B. Guillon; A. Holin; K. Holy; J. J. Horkley; Ph. Hubert; C. Hugon; F. J. Iguaz; N. Ishihara; C. M. Jackson; S. Jullian; M. Kauer; O. Kochetov; S. I. Konovalov; V. Kovalenko; T. Lamhamdi; K. Lang; G. Lutter; G. Luzón; F. Mamedov; Ch. Marquet; F. Mauger; F. Monrabal; A. Nachab; I. Nasteva; I. Nemchenok; C. H. Nguyen; M. Nomachi; F. Nova; H. Ohsumi; R. B. Pahlka; F. Perrot; F. Piquemal; P. P. Povinec; B. Richards; J. S. Ricol; C. L. Riddle; A. Rodríguez; R. Saakyan; X. Sarazin; J. K. Sedgbeer; L. Serra; Yu. Shitov; L. Simard; F. Šimkovic; S. Söldner-Rembold; I. Štekl; C. S. Sutton; Y. Tamagawa; J. Thomas; V. Timkin; V. Tretyak; Vl. I. Tretyak; V. I. Umatov; I. A. Vanyushin; R. Vasiliev; V. Vasiliev; V. Vorobel; D. Waters; N. Yahlali; A. Žukauskas

    2010-11-23T23:59:59.000Z

    The possibility to probe new physics scenarios of light Majorana neutrino exchange and right-handed currents at the planned next generation neutrinoless double beta decay experiment SuperNEMO is discussed. Its ability to study different isotopes and track the outgoing electrons provides the means to discriminate different underlying mechanisms for the neutrinoless double beta decay by measuring the decay half-life and the electron angular and energy distributions.

  3. Probing New Physics Models of Neutrinoless Double Beta Decay with SuperNEMO

    E-Print Network [OSTI]

    Arnold, R; Baker, J; Barabash, A S; Basharina-Freshville, A; Bongrand, M; Brudanin, V; Caffrey, A J; Cebrián, S; Chapon, A; Chauveau, E; Dafni, Th; Deppisch, F F; Diaz, J; Durand, D; Egorov, V; Evans, J J; Flack, R; Fushima, K-I; Irastorza, I García; Garrido, X; Gómez, H; Guillon, B; Holin, A; Holy, K; Horkey, J J; Hubert, Ph; Hugon, C; Iguaz, F J; Ishihara, N; Jackson, C M; Jullian, S; Kauer, M; Kochetov, O; Konovalov, S I; Kovalenko, V; Lamhamdi, T; Lang, K; Lutter, G; Luzón, G; Mamedov, F; Marquet, Ch; Mauger, F; Monrabal, F; Nachab, A; Nasteva, I; Nemchenok, I; Nguyen, C H; Nomachi, M; Nova, F; Ohsumi, H; Pahlka, R B; Perrot, F; Piquemal, F; Povinec, P P; Richards, B; Ricol, J S; Riddle, C L; Rodríguez, A; Saakyan, R; Sarazin, X; Sedgbeer, J K; Serra, L; Shitov, Yu; Simard, L; Šimkovic, F; Söldner-Rembold, S; Štekl, I; Sutton, C S; Tamagawa, Y; Thomas, J; Timkin, V; Tretyak, V; Tretyak, Vl I; Umatov, V I; Vanyushin, I A; Vasiliev, R; Vasiliev, V; Vorobel, V; Waters, D; Yahlali, N; Žukauskas, A

    2010-01-01T23:59:59.000Z

    The possibility to probe new physics scenarios of light Majorana neutrino exchange and right-handed currents at the planned next generation neutrinoless double beta decay experiment SuperNEMO is discussed. Its ability to study different isotopes and track the outgoing electrons provides the means to discriminate different underlying mechanisms for the neutrinoless double beta decay by measuring the decay half-life and the electron angular and energy distributions.

  4. ChemCam rock laser for Mars Science Laboratory "Curiosity"

    ScienceCinema (OSTI)

    Wiens, Roger

    2014-08-12T23:59:59.000Z

    Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. The Flight Model was shipped in August, 2010 for installation on the rover at JPL. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components were concurrently assembled at Los Alamos and in Toulouse, France. The Mars Science Laboratory is scheduled to launch in 2011. Animations courtesy of JPL/NASA.

  5. Fluid substitution in rocks saturated with viscoelastic fluids Dina Makarynska1

    E-Print Network [OSTI]

    , Jyoti Behura3 , and Mike Batzle4 ABSTRACT Heavy oils have high densities and extremely high viscosities sands.We model the viscoelastic properties of a heavy- oil-saturated rock sample using CPA and a measured frequency- dependent complex shear modulus of the heavy oil. Comparison of modeled results

  6. Physics Division: Subatomic Physics Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subatomic Physics Physics home Subatomic Physics Site Home About Us Groups Applied Modern Physics, P-21 Neutron Science and Technology, P-23 Plasma Physics, P-24 Subatomic...

  7. Physical Building Information Modeling for Solar Building Design and Simulation- Annual Report 2011

    E-Print Network [OSTI]

    Yan, W.; Haberl, J.; Clayton, M.; Jeong, W.; Kim, J.; Kota, S.; Alcocer, J.; Dixit, M.

    2011-01-01T23:59:59.000Z

    information from BIM to Radiance. For Building Integrated Photovoltaic (BIPV), we have researched on how to build solar models in BIM that can calculate solar position and solar insolation. 1.2 Research on BIM simplification methods, BIM topology, and data... we will continue investigating the use of Modelica to integrate the daylighting modeling with thermal modeling. 4 c) BIPV prototypes We have developed a Building Integrated Photovoltaic (BIPV) prototype in the BIM (Autodesk Revit) platform...

  8. advanced physics-based modeling: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  9. City of Rock Falls, Illinois (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation Smyrna Beach, FloridaCity ofCity ofRiverside,CityRock

  10. Computer aided modeling and simulation of complex physical systems, using components from multiple

    E-Print Network [OSTI]

    Zhao, Yuxiao

    .g., Modelica[1], gPROMS[2], and VHDL-AMS[3]) based on acausal modeling using Differential Algebraic Equations units (e.g., newton, meter, and ampere). Separately Compiled Components In for example Modelica Modelica models collected from industry to MKL. Perform experiments on a prototype implementation of MKL

  11. Addressing model bias and uncertainty in three dimensional groundwater transport forecasts for a physical aquifer experiment

    E-Print Network [OSTI]

    Vermont, University of

    Addressing model bias and uncertainty in three dimensional groundwater transport forecasts, and D. M. Rizzo (2008), Addressing model bias and uncertainty in three dimensional groundwater transport. Introduction [2] Eigbe et al. [1998] provide an excellent review of groundwater applications of the linear

  12. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    SciTech Connect (OSTI)

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01T23:59:59.000Z

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  13. Rock melting tool with annealer section

    DOE Patents [OSTI]

    Bussod, Gilles Y. (Santa Fe, NM); Dick, Aaron J. (Oakland, CA); Cort, George E. (Montrose, CO)

    1998-01-01T23:59:59.000Z

    A rock melting penetrator is provided with an afterbody that rapidly cools a molten geological structure formed around the melting tip of the penetrator to the glass transition temperature for the surrounding molten glass-like material. An annealing afterbody then cools the glass slowly from the glass transition temperature through the annealing temperature range to form a solid self-supporting glass casing. This allows thermally induced strains to relax by viscous deformations as the molten glass cools and prevents fracturing of the resulting glass liner. The quality of the glass lining is improved, along with its ability to provide a rigid impermeable casing in unstable rock formations.

  14. Oilfield rock bits: Are they a commodity

    SciTech Connect (OSTI)

    Caldwell, R.

    1994-05-01T23:59:59.000Z

    This paper discusses the quality of various types of rock drill bits and evaluates cost of these bits against service and performance to determine if bits should be viewed as a commodity when drilling a production or exploration well. Continuing advancements in materials technology, machining capabilities, hydraulics arrangements, bearing configuration, seal technology and cutter design continue to push the performance curve for oilfield rock bits. However, some very important advancements are patented, proprietary features of individual manufacturers. This paper reviews some of these design and performance features to help determine if they are worth the extra investment based on actual field drilling experience.

  15. Specific energy for laser removal of rocks.

    SciTech Connect (OSTI)

    Xu, Z.; Kornecki, G.; Reed, C. B.; Gahan, B. C.; Parker, R. A.; Batarseh, S.; Graves, R. M.

    2001-08-16T23:59:59.000Z

    Application of advanced high power laser technology into oil and gas well drilling has been attracting significant research interests recently among research institutes, petroleum industries, and universities. Potential laser or laser-aided oil and gas well drilling has many advantages over the conventional rotary drilling, such as high penetration rate, reduction or elimination of tripping, casing, and bit costs, and enhanced well control, perforating and side-tracking capabilities. The energy required to remove a unit volume of rock, namely the specific energy (SE), is a critical rock property data that can be used to determine both the technical and economic feasibility of laser oil and gas well drilling.

  16. Neutrino-less Double Beta Decay and Physics Beyond the Standard Model

    E-Print Network [OSTI]

    Jose W. F. Valle

    1995-09-15T23:59:59.000Z

    A brief sketch is given of the present observational status and future prospects of the physics of neutrino mass, including a survey of the various theoretical schemes of neutrino mass generation. Emphasis is given to those which are motivated by present experimental hints from solar and atmospheric neutrinos, as well as from cosmological data related to the dark matter question. The conceptual importance of neutrino-less double beta decay as a distinctive signature of the Majorana character of neutrinos is stressed. Barring accidental cancellations this process gives the strongest laboratory constraint on neutrino mass.

  17. CALCULATED THERMALLY INDUCED DISPLACEMENTS AND STRESSES FOR HEATER EXPERIMENTS AT STRIPA, SWEDEN. LINEAR THEFMOELASTIC MODELS USING CONSTANT MATERIAL PROPERTIES

    E-Print Network [OSTI]

    Chan, T.

    2010-01-01T23:59:59.000Z

    Modeling for variable rock properties and discontinuities5.2.1. Laboratory rock properties 5.2.2. Discontinuities andand Board, M. 1980. "Rock Properties and Their on Thermally

  18. ChemCam Rock Laser for the Mars Science Laboratory

    ScienceCinema (OSTI)

    LANL

    2009-09-01T23:59:59.000Z

    Los Alamos has a long history of space-related instr... Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components are concurrently being assembled at Los Alamos and in Toulouse, France, and will be delivered to JPL in July. The Mars Science Laboratory is scheduled to launch in 2009. Animations courtesy of JPL/NASA.

  19. Metamorphic Rocks, Processes, and Resources Metamorphic rocks are rocks changed from one form to another by intense heat, intense pressure,

    E-Print Network [OSTI]

    Li, X. Rong

    important ­ Rising temperature causes water to be released from unstable minerals ­ Hot water very reactive refers to the temperature and pressure under which a rock was metamorphosed, considered low grade or high ­ If range exceeded, new mineral structures result ­ If temperature gets high enough, melting will occur

  20. A wave equation including leptons and quarks for the standard model of quantum physics in Clifford Algebra

    E-Print Network [OSTI]

    Claude Daviau; Jacques Bertrand

    2014-08-27T23:59:59.000Z

    A wave equation with mass term is studied for all particles and antiparticles of the first generation: electron and its neutrino, positron and antineutrino, quarks $u$ and $d$ with three states of color and antiquarks $\\overline{u}$ and $\\overline{d}$. This wave equation is form invariant under the $Cl_3^*$ group generalizing the relativistic invariance. It is gauge invariant under the $U(1)\\times SU(2) \\times SU(3)$ group of the standard model of quantum physics. The wave is a function of space and time with value in the Clifford algebra $Cl_{1,5}$. All features of the standard model, charge conjugation, color, left waves, Lagrangian formalism, are linked to the geometry of this extended space-time.

  1. Predicting stress-induced velocity anisotropy in rocks

    SciTech Connect (OSTI)

    Mavko, G.; Mukerji, T.; Godfrey, N. [Stanford Univ., CA (United States). Rock Physics Lab.] [Stanford Univ., CA (United States). Rock Physics Lab.

    1995-07-01T23:59:59.000Z

    A simple transformation, using measured isotropic V{sub P} and V{sub S} versus hydrostatic pressure, is presented for predicting stress-induced seismic velocity anisotropy in rocks. The compliant, crack-like portions of the pore space are characterized by generalized compressional and shear compliances that are estimated form the isotropic V{sub P} and V{sub S}. The physical assumption that the compliant porosity is crack-like means that the pressure dependence of the generalized compliances is governed primarily by normal tractions resolved across cracks and defects. This allows the measured pressure dependence to be mapped form the hydrostatic stress state to any applied nonhydrostatic stress. Predicted P- and S-wave velocities agree reasonably well with uniaxial stress data for Barre Granite and Massillon Sandstone. While it is mechanically similar to methods based on idealized ellipsoidal cracks, the approach is relatively independent of any assumed crack geometry and is not limited to small crack densities.

  2. From scale properties of physical amplitudes to a predictive formulation of the Nambu-Jona-Lasinio model

    SciTech Connect (OSTI)

    Battistel, O. A. [Departamento de Fisica, Universidade Federal de Santa Maria, 97119-900 Santa Maria, Rio Grande do Sul (Brazil); Dallabona, G. [Departamento de Ciencias Exatas, Universidade Federal de Lavras, Cx. Postal 37, 37200-000, Lavras, Minas Gerais (Brazil)

    2009-10-15T23:59:59.000Z

    The predictive power of the Nambu-Jona-Lasinio model is considered in the light of a novel strategy to handle the divergences typical of perturbative calculations. The referred calculational strategy eliminates unphysical dependencies on the arbitrary choices for the routing of internal momenta and symmetry violating terms. In the present work we extend a previous one on the same issue by including vector interactions and performing the discussion in a more general context: the role of scale arbitrariness for the consistency of the calculations is considered. We show that the imposition of arbitrary scale independence for the consistent regularized amplitudes lead to additional properties for the irreducible divergent objects. These properties allow us to parametrize the remaining freedom in terms of a unique constant where resides all the arbitrariness involved. By searching for the best value for the arbitrary parameter we find a critical condition for the existence of an acceptable physical value for the dynamically generated quark mass. Such critical condition fixes the remaining arbitrariness turning the Nambu-Jona-Lasinio into a predictive model in the sense that its phenomenological consequences do not depend on possible choices made in intermediary steps. Numerical results are obtained for physical quantities like the vector and axial-vector masses and their coupling constants as genuine predictions.

  3. Using Van Manen's model to assess levels of reflectivity among preservice physical education teachers 

    E-Print Network [OSTI]

    Ballard, Kristy Kay

    2006-10-30T23:59:59.000Z

    The intent of this study was two-fold. The first purpose was to apply Van Manen's model to specific strategies (i.e., written assignments) and supervisory practices (i.e., interviews) to examine levels of reflectivity ...

  4. A PHYSICALLY-BASED SCHEME FOR THE URBAN ENERGY BUDGET IN ATMOSPHERIC MODELS

    E-Print Network [OSTI]

    Ribes, Aurélien

    of local canyon geometry is defined instead of the usual bare soil formulation currently used to represent cities in atmospheric models. This allows refinement of the radiative budgets as well as momentum

  5. A PHYSICS-BASED SOFTWARE FRAMEWORK FOR SUN-EARTH CONNECTION MODELING

    E-Print Network [OSTI]

    Stout, Quentin F.

    . The SWMF is a structured collection of software building blocks to develop components for Sun-Earth system modeling, to couple them, and to assemble them into applications. A component is created from the user

  6. PHYSICAL REVIEW B 87, 165406 (2013) Unified model of droplet epitaxy for compound semiconductor nanostructures

    E-Print Network [OSTI]

    Smereka, Peter

    Somaschini, and Stefano Sanguinetti L-NESS, Dipartimento di Scienza dei Materiali, Universita di Milano 2013) We present a unified model of compound semiconductor growth based on kinetic Monte Carlo

  7. Development of an Atmospheric Climate Model with Self-Adapting Grid and Physics

    SciTech Connect (OSTI)

    Penner, Joyce E. [University of Michigan] University of Michigan

    2013-08-10T23:59:59.000Z

    This project was targeting the development of a computational approach that would allow resolving cloud processes on small-scales within the framework of the most recent version of the NASA/NCAR Finite-Volume Community Atmospheric Model (FVCAM). The FVCAM is based on the multidimensional Flux-Form Semi-Lagrangian (FFSL) dynamical core and uses a ?vertically Lagrangian? finite-volume (FV) representation of the model equations with a mass-conserving re-mapping algorithm. The Lagrangian coordinate requires a remapping of the Lagrangian volume back to Eulerian coordinates to restore the original resolution and keep the mesh from developing distortions such as layers with overlapping interfaces. The main objectives of the project were, first, to develop the 3D library which allows refinement and coarsening of the model domain in spherical coordinates, and second, to develop a non-hydrostatic code for calculation of the model variables within the refined areas that could be seamlessly incorporated with the hydrostatic finite volume dynamical core when higher resolution is wanted. We also updated the aerosol simulation model in CAM in order to ready the model for the treatment of aerosol/cloud interactions.

  8. Esimation of field-scale thermal conductivities of unsaturated rocks from in-situ temperature data

    E-Print Network [OSTI]

    Mukhopadhyay, Sumit; Tsang, Yvonne W.; Birkholzer, Jens T.

    2008-01-01T23:59:59.000Z

    vicinity of the heat source, and rock temperature exceededand the dry rock near the heat source. The other differencesources, heat transfer takes place through the wet rock (see

  9. Seismic and Acoustic Investigations of Rock Fall Initiation, Processes, and Mechanics

    E-Print Network [OSTI]

    Zimmer, Valerie Louise

    2011-01-01T23:59:59.000Z

    systems  and  rock  fall  source  and  impact  areas,  it  meters  from  a  rock  fall  source  area.   The   success  possible  to  the  rock  fall  source  areas,   spacing  

  10. Coupled thermohydromechanical analysis of a heater test in unsaturated clay and fractured rock at Kamaishi Mine

    E-Print Network [OSTI]

    Rutqvist, J.

    2011-01-01T23:59:59.000Z

    Kamaishi mine. Laboratory rock property tests. Power reactor5.2 Near field rock properties and fiactire geometand hydraulic rock properties, and hydraulic conditions

  11. On the relationship between stress and elastic strain for porous and fractured rock

    E-Print Network [OSTI]

    Liu, Hui-Hai

    2009-01-01T23:59:59.000Z

    the other associated rock properties. Important examples ofand/or hydraulic rock properties. We show that theand other rock mechanical/hydraulic properties, and these

  12. SEARCH FOR UNDERGROUND OPENINGS FOR IN SITU TEST FACILITIES IN CRYSTALLINE ROCK

    E-Print Network [OSTI]

    Wallenberg, H.A.

    2010-01-01T23:59:59.000Z

    to complie and correlate rock properties and preliminaryProject Table 1. Rock properties and project characteristicsof Information Rock properties - Bad Creek area Exhibit 1.

  13. Dynamic modeling of physical phenomena for probabilistic risk assessments using artificial neural networks

    SciTech Connect (OSTI)

    Benjamin, A.S.; Paez, T.L.; Brown, N.N.

    1998-01-01T23:59:59.000Z

    In most probabilistic risk assessments, there is a subset of accident scenarios that involves physical challenges to the system, such as high heat rates and/or accelerations. The system`s responses to these challenges may be complicated, and their prediction may require the use of long-running computer codes. To deal with the many scenarios demanded by a risk assessment, the authors have been investigating the use of artificial neural networks (ANNs) as a fast-running estimation tool. They have developed a multivariate linear spline algorithm by extending previous ANN methods that use radial basis functions. They have applied the algorithm to problems involving fires, shocks, and vibrations. They have found that within the parameter range for which it is trained, the algorithm can simulate the nonlinear responses of complex systems with high accuracy. Running times per case are less than one second.

  14. Hot-dry-rock geothermal resource 1980

    SciTech Connect (OSTI)

    Heiken, G.; Goff, F.; Cremer, G. (ed.)

    1982-04-01T23:59:59.000Z

    The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

  15. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W. (Los Alamos, NM)

    1997-01-01T23:59:59.000Z

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  16. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11T23:59:59.000Z

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  17. Damage and plastic deformation of reservoir rocks

    E-Print Network [OSTI]

    Ze'ev, Reches

    Damage and plastic deformation of reservoir rocks: Part 2. Propagation of a hydraulic fracture Seth fracture and fault mechanics, fluid flow in fractured reservoirs, and geome- chanics in nonconventional the development of complex hydraulic fractures (HFs) that are commonly ob- served in the field and in experiments

  18. Transfer of hot dry rock technology

    SciTech Connect (OSTI)

    Smith, M.C.

    1985-11-01T23:59:59.000Z

    The Hot Dry Rock Geothermal Energy Development Program has focused worldwide attention on the facts that natural heat in the upper part of the earth's crust is an essentially inexhaustible energy resource which is accessible almost everywhere, and that practical means now exist to extract useful heat from the hot rock and bring it to the earth's surface for beneficial use. The Hot Dry Rock Program has successfully constructed and operated a prototype hot, dry rock energy system that produced heat at the temperatures and rates required for large-scale space heating and many other direct uses of heat. The Program is now in the final stages of constructing a larger, hotter system potentially capable of satisfying the energy requirements of a small, commercial, electrical-generating power plant. To create and understand the behavior of such system, it has been necessary to develop or support the development of a wide variety of equipment, instruments, techniques, and analyses. Much of this innovative technology has already been transferred to the private sector and to other research and development programs, and more is continuously being made available as its usefulness is demonstrated. This report describes some of these developments and indicates where this new technology is being used or can be useful to industry, engineering, and science.

  19. Radiocarbon dating of ancient rock paintings

    SciTech Connect (OSTI)

    Ilger, W.A.; Hyman, M.; Rowe, M.W. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry; Southon, J. [Lawrence Livermore National Lab., CA (United States)

    1995-06-20T23:59:59.000Z

    This report presents progress made on a technique for {sup 14}C dating pictographs. A low-temperature oxygen plasma is used coupled with high-vacuum technologies to selectively remove C-containing material in the paints without contamination from inorganic carbon from rock substrates or accretions.

  20. The accretion history of dark matter halos III: A physical model for the concentration-mass relation

    E-Print Network [OSTI]

    Correa, Camila A; Schaye, Joop; Duffy, Alan R

    2015-01-01T23:59:59.000Z

    We present a semi-analytic, physically motivated model for dark matter halo concentration as a function of halo mass and redshift. The semi-analytic model is intimately based on hierarchical structure formation. It uses an analytic model for the halo mass accretion history, based on extended Press Schechter (EPS) theory, and an empirical relation between concentration and an appropriate definition of formation time obtained through fits to the results of numerical simulations. The resulting concentration-mass relations are tested against the simulations and do not exhibit an upturn at high masses or high redshifts as claimed by recent works. Because our semi-analytic model is based on EPS theory, it can be applied to wide ranges in mass, redshift and cosmology. We predict a change of slope in the z=0 concentration-mass relation at a mass scale of $10^{11}\\rm{M}_{\\odot}$, that is caused by the varying power in the density perturbations. We provide best-fitting expressions of the $c-M$ relations as well as nume...