Sample records for rock hill sc

  1. Rock Hill Utilities- Water Heater and Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed...

  2. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems I. Fluid...

  3. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems II....

  4. Peer Review of the Hot Dry Rock Project at Fenton Hill, New Mexico

    SciTech Connect (OSTI)

    None

    1998-12-01T23:59:59.000Z

    This report briefly describes the history of the hot dry rock experiment project conducted by the U.S. Department of Energy and Los Alamos National Laboratory at Fenton Hill, New Mexico, from about 1971 through 1995. The authors identify the primary lessons learned and techniques developed during the course of the Fenton Hill project, and summarize the extent to which these technologies have been transferred to the U.S. geothermal industry.

  5. SC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited Release Printed March 2012B.Workshop on-- Sample4,7,SC

  6. Subsurface Geology of the Fenton Hill Hot Dry Rock Geothermal Energy Site

    SciTech Connect (OSTI)

    Levey, Schon S.

    2010-12-01T23:59:59.000Z

    The Precambrian rock penetrated by wells EE-2A and -3A belongs to one or more granitic to granodioritic plutons. The plutonic rock contains two major xenolith zones of amphibolite, locally surrounded by fine-grained mafic rock of hybrid igneous origin. The granodiorite is cut by numerous leucogranite dikes that diminish in abundance with depth. The most prominent structural feature is the main breccia zone, in which the rock is highly fractured and moderately altered. This zone is at least 75 m thick and is of uncertain but near-horizontal orientation. Fracture abundance decreases with increasing depth below the main breccia zone, and fractures tend to be associated with leucogranite dikes. This association suggests that at least some of the fractures making up the geothermal reservoir are of Precambrian age or have long-range orientations controlled by the presence of Precambrian-age granitic dikes.

  7. Susceptibility of Granite Rock to scCO2/Water at 200 degrees C and 250 degrees C

    SciTech Connect (OSTI)

    Sugama, T.; Gill, S., Ecker, L., Butcher, T., Warren, J.

    2011-01-01T23:59:59.000Z

    Granite rock comprising anorthoclase-type albite and quartz as its major phases and biotite mica as the minor one was exposed to supercritical carbon dioxide (scCO{sub 2})/water at 250 C and 13.78 MPa pressure for 104 hours. For comparison purpose, four other rocks, albite, hornblende, diorite, and quartz, also were exposed. During the exposure of granite, ionic carbonic acid, known as the wet carbonation reactant, preferentially reacted with anorthoclase-type albite and biotite, rather than with quartz. The susceptibility of biotite to wet carbonation was higher than that of anorthoclase-type albite. All the carbonation by-products of anorthoclase-type albite were amorphous phases including Na- and K-carbonates, a kaolinite clay-like compound, and silicon dioxide, while wet carbonation converted biotite into potassium aluminum silicate, siderite, and magnesite in crystalline phases and hydrogen fluoride (HF). Three of these reaction by-products, Na- and K-carbonates and HF, were highly soluble in water. Correspondingly, the carbonated top surface layer, about 1.27 mm thick as carbonation depth, developed porous microstructure with numerous large voids, some of which have a size of {>=} 10 {mu}m, reflecting the erosion of granite by the leaching of these water-soluble reaction by-products. Comparing with this carbonation depth, its depth of other minerals was considerable lower, particularly, for hornblende and diorite with 0.07 and 0.02 mm, while no carbonate compound was detected in quartz. The major factor governing these low carbonation depths in these rocks was the formation of water-insensitive scale-like carbonate by-products such as calcite (CaCO{sub 3}), siderite (FeCO{sub 3}), and magnesite (MgCO{sub 3}). Their formation within the superficial layer of these minerals served as protective barrier layer that inhibits and retards further carbonation of fresh underlying minerals, even if the exposure time was extended. Thus, the coverage by this barrier layer of the non-carbonated surfaces of the underlying rock was reason why the hornblende and diorite exhibited a minimum depth of carbonation. Under exposure to the scCO{sub 2}/water at 200 C and 10.34 MPa pressure for up to 42 days, the ranking of the magnitude of erosion caused by wet carbonation was in the following order; granite > albite > hornblende > diorite > quartz. The eroding-caused weight loss of granite (0.88 %) was {approx}2.4, {approx}5.2, {approx}9.8, and {approx}17.6 times greater than that of albite, hornblends, diorite, and quartz, respectively.

  8. Rocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResources ResourcesRobust, High-ThroughputRocks Rocks

  9. Microcracks, residual strain, velocity, and elastic properties of igneous rocks from a geothermal test-hole at Fenton Hill, New Mexico

    E-Print Network [OSTI]

    Ciampa, John David

    1980-01-01T23:59:59.000Z

    - Comparison of Young's modulus determined by . static and dynamic methods for two cores from sample 2714. 2 Figure 42 - Comparison of Poisson's ratio determined by static and dynamic methods for two cores from sample 2714. 2 95 xiv Page Figure 41... cracked rock. Young's modulus and Poisson's ratio were investigated by static and dynamic methods. These values increase with confining pressure. In addition, the static values increase with the differential-stress level. These results are also a...

  10. Cardwell Hills, Lupine Meadows, Bald Hill and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Benton County, including Cardwell Hills, Lupine Meadows, Bald Hill and Fitton Green Natural Area. This area has been identi- fied as a key site in the U.S. Fish and Wildlife...

  11. Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota

    E-Print Network [OSTI]

    Rudnick, Roberta L.

    Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota Fang pegmatite and possible metasedimentary source rocks in the Black Hills, South Dakota, USA. The Harney Peak.5 and overlap with post- Archean shales and the Harney Peak Granite. For the granite suite

  12. Rock Art

    E-Print Network [OSTI]

    Huyge, Dirk

    2009-01-01T23:59:59.000Z

    The archaeology of early Egypt: Social transformations inAlexander 1938 Rock-drawings of southern Upper Egypt. Vol.1. London: The Egypt Exploration Society. 1939 Rock-drawings

  13. TThe {\\sc Majorana} Project

    E-Print Network [OSTI]

    The MAJORANA collaboration

    2009-10-23T23:59:59.000Z

    The {\\sc Majorana} Project, a neutrinoless double-beta decay experiment is described with an emphasis on the choice of Ge-detector configuration.

  14. Beverly Hills High Emily Bloom

    E-Print Network [OSTI]

    Hwang, Kai

    Students Ali Abadi Beverly Hills High Emily Bloom Bakersfield High Camila Castro Rodriguez Mills E. Godwin High Nafiz'Ammar Fatani Da Vinci Science High Diana Felix San Marino High Karen Girdner

  15. Inflation over the hill

    E-Print Network [OSTI]

    Konstantinos Tzirakis; William H. Kinney

    2007-06-13T23:59:59.000Z

    We calculate the power spectrum of curvature perturbations when the inflaton field is rolling over the top of a local maximum of a potential. We show that the evolution of the field can be decomposed into a late-time attractor, which is identified as the slow roll solution, plus a rapidly decaying non-slow roll solution, corresponding to the field rolling ``up the hill'' to the maximum of the potential. The exponentially decaying transient solution can map to an observationally relevant range of scales because the universe is also expanding exponentially. We consider the two branches separately and we find that they are related through a simple transformation of the slow roll parameter $\\eta$ and they predict identical power spectra. We generalize this approach to the case where the inflaton field is described by both branches simultaneously and find that the mode equation can be solved exactly at all times. Even though the slow roll parameter $\\eta$ is evolving rapidly during the transition from the transient solution to the late-time attractor solution, the resultant power spectrum is an exact power-law spectrum. Such solutions may be useful for model-building on the string landscape.

  16. City of Rock Hill, South Carolina (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity of Okolona,Plummer, IdahoCity ofRedRobinson,

  17. M.Sc. Finance M.Sc. Investment and Finance

    E-Print Network [OSTI]

    Mottram, Nigel

    M.Sc. Finance M.Sc. Investment and Finance M.Sc. International Banking and Finance and M.Sc. International Accounting and Finance 2014-15 Introductory Meeting Information Welcome to the full-time postgraduate taught programmes for the Department of Accounting and Finance at the University of Strathclyde

  18. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide

    Broader source: Energy.gov [DOE]

    Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250ºC, and to develop chemical modeling of CO2-reservior rock interactions.

  19. GEORGE WATTS HILL ALUMNI CENTER

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    BR IN KH O U S- BU LLITT CHILLER BUILDING F KENAN STADIUM GEORGE WATTS HILL ALUMNI CENTER EHRINGHAUS FIELD DEPARTMENT OF PUBLIC SAFETY C AR PEN TRY SH O P CHILLER BUILDING NEURO SCIENCES WATER TOWER ITS MANNING CHILLER BUILDING PUBLIC SAFETY BLDG. MORRISON RIDGEROAD EHRINGHAUS BOSHAMER BASEBALL STADIUM

  20. Strategic Petroleum Reserve (SPR) geological site characterization report, Big Hill Salt Dome

    SciTech Connect (OSTI)

    Hart, R.J.; Ortiz, T.S.; Magorian, T.R.

    1981-09-01T23:59:59.000Z

    Geological and geophysical analyses of the Big Hill Salt Dome were performed to determine the suitability of this site for use in the Strategic Petroleum Reserve (SPR). Development of 140 million barrels (MMB) of storage capacity in the Big Hill Salt Dome is planned as part of the SPR expansion to achieve 750 MMB of storage capacity. Objectives of the study were to: (1) Acquire, evaluate, and interpret existing data pertinent to geological characterization of the Big Hill Dome; (2) Characterize the surface and near-surface geology and hydrology; (3) Characterize the geology and hydrology of the overlying cap rock; (4) Define the geometry and geology of the dome; (5) Determine the feasibility of locating and constructing 14 10-MMB storage caverns in the south portion of the dome; and (6) Assess the effects of natural hazards on the SPR site. Recommendations are included. (DMC)

  1. Q00906010024 rock check dam

    E-Print Network [OSTI]

    00906010024 rock check dam Q00906010025 rock check dam Q00906010021 rock check dam Q00906010022 rock check dam Q00906010027 rock check dam Q00906010026 rock check dam Q00906010018 rock check dam Q00906010023 rock check dam Q00906010011 rock check dam Q00906010008 rock check dam Q00906010007 rock check dam Q

  2. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy Jump to: navigation,Geothermal

  3. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy Jump to:

  4. Black Hills Power- Commercial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Black Hills Power provides rebates for its commercial customers who install energy efficient heat pumps, motors, variable frequency drives, lighting, and water heaters. Custom rebates for approved...

  5. Black Hills Power- Residential Customer Rebate Program

    Broader source: Energy.gov [DOE]

    Black Hills Power offers cash rebates to residential customers who purchase and install energy efficient equipment in their homes. Incentives exist for water heaters, demand control units, air...

  6. WIND DATA REPORT Quincy, Quarry Hills

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy, Quarry Hills 9/1/2006 ­ 11/30/2006 Prepared for Massachusetts Technology.......................................................................................................................... 7 Tower Effects on Measured Wind Speed

  7. WIND DATA REPORT Quincy Quarry Hills

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy Quarry Hills December 2006 to February 2007 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  8. WIND DATA REPORT Quincy Quarry Hills

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy Quarry Hills March 2007 to May 2007 Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  9. Microsoft Word - ThurstonHills_CX.docx

    Broader source: Energy.gov (indexed) [DOE]

    Dorie Welch Project Manager - KEWM-4 Proposed Action: Thurston Hills property funding Fish and Wildlife Project No.: 2011-003-00, BPA-007071 Categorical Exclusion Applied (from...

  10. Synchrotron X-ray Studies of Super-critical Carbon Dioxide / Reservoir Rock Interfaces

    Broader source: Energy.gov [DOE]

    Project obectives: Utilize synchrotron X-ray measurements, to monitor all aspects of atomic to nanoscale structural changes resulting from chemical interactions of scCO2-H2O binary fluids with rocks under environments directly relevant to EGS.

  11. Graham Hill | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal TechnologiesGeothermalGo for theEnergyandGraham Hill About

  12. Bull Hill | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility Jump to:Brunei:Hill Jump to: navigation,

  13. Laurel Hill | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront Tow Tank JumpLatvia: Energy Resources JumpHill

  14. Trinity Hills | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas, Texas Zip:Hills Jump to: navigation,

  15. Cedro Hill | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGoCaterpillar JumpCedro Hill Jump to:

  16. New Ellenton, SC SRS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilverNephelineNeuralNew AdvancesNew Crystal40Aiken

  17. Highlights From SC11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbetand Modeling EricHighlights LANS invests

  18. SC e-journals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs Running jobsS2. ReceiptsSCSC LogosSC

  19. Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area (Goff & Decker, 1983) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique...

  20. Loess Hills and Southern Iowa Development and Conservation (Iowa)

    Broader source: Energy.gov [DOE]

    The Loess Hills Development and Conservation Authority, the Loess Hills Alliance, and the Southern Iowa Development and Conservation Authority are regional organizations with representatives from...

  1. Deep drilling technology for hot crystalline rock

    SciTech Connect (OSTI)

    Rowley, J.C.

    1984-01-01T23:59:59.000Z

    The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

  2. Introduction

    Broader source: Energy.gov (indexed) [DOE]

    otemprogram.html April 2005 12 TEPP Planning Tools * Documents provide guidance & graphics April 2005 13 Case History Links Location - York County, SC (Rock Hill, near...

  3. Black Hills Energy- Solar Power Program

    Broader source: Energy.gov [DOE]

    All incentive payments are subject to the availability of funds and a pre-installation site inspection. Black Hills Energy has established participation caps for each tier. The status of funding ...

  4. V00306010057 rock check dam

    E-Print Network [OSTI]

    ¬« ¬« ¬« ¬« ¬« XY! 16-020 16-030(c) 16-026(l) 16-028(c) 16-026(l) V00306010057 rock check dam V00306010012 rock check dam V00306010040 rock check dam V00306010039 rock check dam V00306010058 rock check dam V00306010064 rock check dam V00306010061 rock check dam V00306010062 rock check dam V00306010063

  5. SC Correspondence Control Center (SC CCC) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSC Correspondence Control Center (SC CCC)

  6. C.Sc. 131: Systems ArchitectureC.Sc. 131: Systems ArchitectureC.Sc. 131: Systems Architecture ---200620062006 Systems Architecture

    E-Print Network [OSTI]

    Cheverst, Keith

    1 C.Sc. 131: Systems ArchitectureC.Sc. 131: Systems ArchitectureC.Sc. 131: Systems Architecture --- 200620062006 C.Sc. 131: Systems Architecture Dr Keith Cheverst kc@comp.lancs.ac.uk C42, infolab C.Sc. 131: Systems ArchitectureC.Sc. 131: Systems ArchitectureC.Sc. 131: Systems Architecture --- 200620062006 CSc101

  7. Rock magnetism of remagnetized carbonate rocks: another look

    E-Print Network [OSTI]

    Jackson, M.; Swanson-Hysell, N. L

    2012-01-01T23:59:59.000Z

    and significance of magnetism in sedimentary rocks. Journal1997. Rock Magnetism. ¨ zdemir, O Dunlop, D. J. & Oon July 30, 2013 ROCK MAGNETISM: REMAGNETIZED CARBONATES

  8. V01406010015 rock check dam

    E-Print Network [OSTI]

    XY! ¬« ¬« V01406010015 rock check dam V01406010014 rock check dam V01406010013 rock check dam 1501403010012 earthen berm V01403010008 earthen berm V01406010003 rock check dam V01406010004 rock check dam V01406010010 rock check dam V01406010011 rock check dam 15-0651 15-0307 15-0588 15-0532 15-0575 stormdrain 7160

  9. SC Logos | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSC Correspondence Control Center (SCSC Logos

  10. SC Projects | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSC Correspondence Control Center (SCSC

  11. Elk Hills: still out in front

    SciTech Connect (OSTI)

    Rintoul, B.

    1982-07-01T23:59:59.000Z

    The producing history and capacity of the Elk Hills Oil and Gas Fields in California are described. Developments in the field are discussed, including waterflooding. The field presently produces ca. 160,000 bpd of oil and 350 mmcfd of natural gas. Gas liquids production totals ca. 683,000 gal/day. Waterflooding is expected to pay an increasingly important role in the production of crude oil. Steaming techniques also are viewed with favor after analysis of results of pilot projects. Exploratory develoment in Elk Hills also continues.

  12. Town of Chapel Hill- Energy Conservation Requirements for Town Buildings

    Broader source: Energy.gov [DOE]

    The Town of Chapel Hill’s energy-conservation ordinance requires that all town-owned buildings be designed to achieve a goal of achieving a Silver level certification as defined by the Green...

  13. Black Hills Energy (Gas)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Black Hills Energy offers its residential Iowa customers incentives to encourage energy efficiency in their homes. Black Hills Energy offers a free home energy evaluation to customers (both owners...

  14. Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    of the Fenton Hill HDR Reservoir Donald W. Brown (1994) How to Achieve a Four-Fold Productivity Increase at Fenton Hill Additional References Retrieved from "http:en.openei.org...

  15. Hot Dry Rock Geothermal Energy Development Program

    SciTech Connect (OSTI)

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01T23:59:59.000Z

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  16. Vehicle route to Stag Hill Campus

    E-Print Network [OSTI]

    Stevenson, Paul

    HILL COURT (1­44) UNIVERSITY COURT (45­66) SCS HC Yorkie's Bridge Rising Barrier Path to Ridgemount MILLENNIUMHOUSE SE AQA Car Park AQA Car Park PM Barrier Entrance Exit IAC LC Senate Car Park Guildford Railway 18 16 21 19 14 23 22 20 R Chancellors SU Mole 23 W Bourne 22 Black Water 21 Wey 27 Thames 24 Wandle

  17. Ecology, Silviculture, and Management of Black Hills

    E-Print Network [OSTI]

    Fried, Jeremy S.

    . Battaglia United States Department of Agriculture Forest Service Rocky Mountain Research Station General Technical Report RMRS-GTR-97 September 2002 #12;Shepperd, Wayne D.; Battaglia, Michael A. 2002. Ecology in Arizona, and the Black Hills of South Dakota. Michael A. Battaglia is a research associate with METI

  18. T00406010008 rock check dam

    E-Print Network [OSTI]

    XY! ¬« T00406010008 rock check dam T00406010009 rock check dam T00406010010 rock check dam T00406010011 rock check dam T-SMA-2.85 0.344 Acres 35-014(g) 35-016(n) T00406010005 rock check dam T00406010006 rock check dam T00403090004 curb T00402040007 established vegetation, green hatch area 7200 7200 7180

  19. Evan Marshall Trevathan Admissible SC-Graphs

    E-Print Network [OSTI]

    Donnelly, Rob

    Evan Marshall Trevathan Admissible SC-Graphs Page 1 Admissible SC-Graphs Define: ( , )G ( 2)nB n ( 4)nD n ( 6,7,8)nE n 4F 2G 2H 3H #12;Evan Marshall Trevathan Admissible SC-Graphs Page 2 the form of a #12;Evan Marshall Trevathan Admissible SC-Graphs Page 3 "loop", like ,with no other

  20. Significant results of deep drilling at Elk Hills, Kern County, California

    SciTech Connect (OSTI)

    Fishburn, M.D. (Dept. of Energy, Elk Hills, CA (USA))

    1990-05-01T23:59:59.000Z

    Naval Petroleum Reserve 1 (Elk Hills) is located in the southwestern San Joaquin basin one of the most prolific oil-producing areas in the US. Although the basin is in a mature development stage, the presence of favorable structures and high-quality source rocks continue to make the deeper parts of the basin, specifically Elk Hills, an inviting exploration target. Of the three deep tests drilled by the US Department of Energy since 1976, significant geologic results were achieved in two wells. Well 987-25R reached low-grade metamorphic rock at 18,761 ft after penetrating over 800 ft of salt below the Eocene Point of Rocks Sandstone. In well 934-29R, the deepest well in California, Cretaceous sedimentary rocks were encountered at a total depth of 24,426 ft. In well 934-29R several major sand units were penetrated most of which encountered significant gas shows. Minor amounts of gas with no water were produced below 22,000 ft. In addition, production tests at 17,000 ft produced 46{degree} API gravity oil. Geochemical analysis of cores and cuttings indicated that the potential for hydrocarbon generation exists throughout the well and is significant because the possibility of hydrocarbon production exists at a greater depth than previously expected. A vertical seismic profile in the well indicated that basement at this location is at approximately 25,500 ft. Successful drilling of well 934-29R was attributed to the use of an oil-based mud system. The well took 917 days to drill, including 9,560 rotating hr with 134 bits. Bottom-hole temperature was 431{degree}F and pressures were approximately 18,000 psi. The high overburden pressure at 24,000 ft created drilling problems that ultimately led to the termination of drilling at 24,426 ft.

  1. 3D Model of the McGinness Hills Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15º eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.

  2. 3D Model of the McGinness Hills Geothermal Area

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-12-31T23:59:59.000Z

    The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15º eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.

  3. EA-1581: Sand Hills Wind Project, Wyoming

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management, with DOE’s Western Area Power Administration as a cooperating agency, was preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action had been implemented, Western would have interconnected the proposed facility to an existing transmission line. This project has been canceled.

  4. J00206010020 rock check dam

    E-Print Network [OSTI]

    XY! J00206010020 rock check dam J00206010023 rock check dam 09-009 09-009 09-009 PJ-SMA-2 0.901 Acres J00206010021 rock check dam J00206010019 rock check dam J00206010014 rock check dam J00203010007 Smith DATE: 14-November-2014 REVISION NUMBER: 8 XY! IP sampler location Berm Channel/swale Check dam

  5. W02106010008 rock check dam

    E-Print Network [OSTI]

    W-SMA-14.1 5.169 Acres W02106010008 rock check dam W02106010009 rock check dam W02106010010 rock check dam W02106010011 rock check dam W02106010012 rock check dam W02103010018 earthen berm W02103010016 dam Established vegetation Seed and mulch Sediment trap/basin Gabion Cap SWMU boundary SMA drainage

  6. NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT

    SciTech Connect (OSTI)

    Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

    2004-05-06T23:59:59.000Z

    Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas and natural gas liquids production on a remote part of the Uintah & Ouray Reservation. Much of the natural gas and natural gas liquids are being produced from the Wingate Formation, which to our knowledge has never produced commercially anywhere. Another large percentage of the natural gas is being produced from the Entrada Formation which has not previously produced in this part of the Uinta Basin. In all, at least nine geologic formations are contributing hydrocarbons to these wells. This survey has clearly established the fact that high-quality data can be obtained in this area, despite the known obstacles.

  7. Chapter Eight Rock Varnish

    E-Print Network [OSTI]

    Dorn, Ron

    ) Coating Description Carbonate skin Coating composed primarily of carbonate, usually calcium carbonate; the agent may be manganese, sulphate, carbonate, silica, iron, oxalate, organisms, or anthropogenic Dust, cyanobacteria, algae Nitrate crust Potassium and calcium nitrate coatings on rocks, often in caves and rock

  8. DOE/SC-ARM-0606

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24,7,INL is aSC Lehman0606

  9. DOE/SC-ARM-0903

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24,7,INL is aSC

  10. NERSC Training at SC11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReports Usage Reports

  11. NERSC Training at SC11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReports Usage

  12. NERSC Training at SC11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReports UsageParallel

  13. NERSC Training at SC11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReports

  14. NERSC Training at SC11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReportsHPC Archive

  15. NERSC Training at SC12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReportsHPC Archive

  16. NERSC Training at SC12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReportsHPC ArchivePGAS

  17. NERSC Training at SC12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReportsHPC

  18. NERSC Training at SC12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReportsHPCProxy

  19. Incident at the Rock Pile

    E-Print Network [OSTI]

    Birgfeld, Doug

    2015-01-01T23:59:59.000Z

    At the off limit rock pile At a Portland school Where theDoug. “Incident at the Rock Pile” http://escholarship.org/Doug. “Incident at the Rock Pile” http://escholarship.org/

  20. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME December 1, 2006 ­ February 28, 2007...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

  1. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME March 1st 2006 to May 31th 2006 Prepared.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  2. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME September 1st 2006 to November 30th 2006.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  3. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME December 1st 2005 to February 28th 2006.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  4. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME June 1st 2006 to August 31th 2006 Prepared.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  5. Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff & Janik, 2002) Exploration Activity...

  6. Cuttings Analysis At Fenton Hill HDR Geothermal Area (Laughlin...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Fenton Hill HDR Geothermal Area (Laughlin, Et Al., 1983) Exploration Activity...

  7. Core Analysis At Fenton Hill HDR Geothermal Area (Brookins &...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Fenton Hill HDR Geothermal Area (Brookins & Laughlin, 1983) Exploration Activity...

  8. Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Grigsby...

    Open Energy Info (EERE)

    Area (Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill HDR Geothermal Area...

  9. Conceptual Model At Fenton Hill HDR Geothermal Area (Grigsby...

    Open Energy Info (EERE)

    Grigsby & Tester, 1989) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Fenton Hill HDR Geothermal Area (Grigsby & Tester,...

  10. Black Hills Energy (Gas)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy offers multiple programs for Colorado commercial and industrial customers to save natural gas in eligible facilities. The commercial prescriptive rebate program provides...

  11. Black Hills Energy (Gas)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy (BHE) offers a variety of rebates for residential Colorado customers who purchase and install energy efficient natural gas appliances, heating equipment and insulation materials....

  12. Black Hills Energy (Electric)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy also offers the custom rebate program to commercial and industrial customers for projects that reduce energy usage. Eligible projects include chillers, unitary HVAC equipment,...

  13. Black Hills Energy (Gas)- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Black Hills Energy offers commercial and industrial customers incentives to encourage energy efficiency in eligible businesses. Prescriptive rebates are available for furnace and boiler...

  14. Reinterpretation of Rb/Sr isotopic data for the Little Elk Granite: Implications for the timing of deformational events, Black Hills, South Dakota

    SciTech Connect (OSTI)

    Dahl, P.S.; Gardner, E.T.; Holm, D.K. (Kent State Univ., OH (United States). Dept. of Geology)

    1993-04-01T23:59:59.000Z

    Early Proterozoic rift sediments in the Black Hills were multiply deformed (into refolded nappe structures) during the Trans-Hudson Orogeny, which culminated in Harney Peak Granite (HPG) emplacement at 1,715--1,697 Ma. A reset whole-rock Rb/Sr age of 1,840 [+-] 70 Ma obtained from the Archean (2,549 [+-] 11 Ma) Little Elk Granite (LEG, Zartman and Stern, 1967) is widely interpreted as being coeval with D2, based upon parallelism of gneissic foliation in the granite and F2 foliation predominant elsewhere in the Black Hills. However, the authors have recalculated the whole-rock Rb/Sr age by applying the IUGS-recommended [sup 87]Rb decay constant (Steiger and Jager, 1977) to the original isotopic data, obtaining a revised age of 1,905 [+-] 59 Ma. The authors interpret this age as representing a whole-rock isotopic resetting event associated with Early Proterozoic (2,170--1,880 Ma) rifting in the Black Hills. The authors envision the LEG to have experienced a convective hydrothermal fluid-flow regime associated with the rifting. This scenario would allow for the sustained heating and isotopic exchange between granite and abundant water-rich fluid (seawater ) that would be required to effect complete resetting of an Rb/Sr whole-rock isochron. They favor an age for the refolding event and the development of F2 structures that is more closely linked in time with HPG emplacement. Such an age is more compatible with published field/petrologic observations and Proterozoic tectonothermal models for the Black Hills.

  15. Hot dry rock energy: Hot dry rock geothermal development program. Progress report. Fiscal year 1993

    SciTech Connect (OSTI)

    Salazar, J.; Brown, M. [eds.

    1995-03-01T23:59:59.000Z

    Extended flow testing at the Fenton Hill Hot Dry Rock (HDR) test facility concluded in Fiscal Year 1993 with the completion of Phase 2 of the long-term flow test (LTFT) program. As is reported in detail in this report, the second phase of the LTFT, although only 55 days in duration, confirmed in every way the encouraging test results of the 112-day Phase I LTFT carried out in Fiscal Year 1992. Interim flow testing was conducted early in FY 1993 during the period between the two LTFT segments. In addition, two brief tests involving operation of the reservoir on a cyclic schedule were run at the end of the Phase 2 LTFT. These interim and cyclic tests provided an opportunity to conduct evaluations and field demonstrations of several reservoir engineering concepts that can now be applied to significantly increase the productivity of HDR systems. The Fenton Hill HDR test facility was shut down and brought into standby status during the last part of FY 1993. Unfortunately, the world`s largest, deepest, and most productive HDR reservoir has gone essentially unused since that time.

  16. Mobilization and Transport of Organic Compounds from Reservoir Rock and Caprock in Geological Carbon Sequestration Sites

    SciTech Connect (OSTI)

    Zhong, Lirong; Cantrell, Kirk J.; Mitroshkov, Alexandre V.; Shewell, Jesse L.

    2014-05-06T23:59:59.000Z

    Supercritical CO2 (scCO2) is an excellent solvent for organic compounds, including benzene, toluene, ethyl-benzene, and xylene (BTEX), phenols, and polycyclic aromatic hydrocarbons (PAHs). Monitoring results from geological carbon sequestration (GCS) field tests has shown that organic compounds are mobilized following CO2 injection. Such results have raised concerns regarding the potential for groundwater contamination by toxic organic compounds mobilized during GCS. Knowledge of the mobilization mechanism of organic compounds and their transport and fate in the subsurface is essential for assessing risks associated with GCS. Extraction tests using scCO2 and methylene chloride (CH2Cl2) were conducted to study the mobilization of volatile organic compounds (VOCs, including BTEX), the PAH naphthalene, and n-alkanes (n-C20 – n-C30) by scCO2 from representative reservoir rock and caprock obtained from depleted oil reservoirs and coal from an enhanced coal-bed methane recovery site. More VOCs and naphthalene were extractable by scCO2 compared to the CH2Cl2 extractions, while scCO2 extractable alkane concentrations were much lower than concentrations extractable by CH2Cl2. In addition, dry scCO2 was found to extract more VOCs than water saturated scCO2, but water saturated scCO2 mobilized more naphthalene than dry scCO2. In sand column experiments, moisture content was found to have an important influence on the transport of the organic compounds. In dry sand columns the majority of the compounds were retained in the column except benzene and toluene. In wet sand columns the mobility of the BTEX was much higher than that of naphthalene. Based upon results determined for the reservoir rock, caprock, and coal samples studied here, the risk to aquifers from contamination by organic compounds appears to be relatively low; however, further work is necessary to fully evaluate risks from depleted oil reservoirs.

  17. HILL Plateau Remediation Company are using American

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal HeatonHEP/NERSC/ASCRJune 2012Wind EnergyCH2M HILL

  18. Arbor Hills Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,Anza ElectricIncAboutAquila IncHills

  19. Blue Hill Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyonsBirchBlockVI JumpBlue Hill Partners

  20. Campbell Hill Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8thCalwind II CEC WindCamelot1Q08)Campbell Hill

  1. Crofton Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands2007)Criterion JumpHills Wind Farm

  2. Barren Hills Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard, Vermont:Carolina: EnergyBarren County,Hills

  3. Black Hills Power Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 | OpenEIBixby, Oklahoma: EnergyBlackHawkBlack Hills

  4. Rolling Hills Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio:RockwallRolling Hills Electric Coop Jump

  5. B.Sc)1997,(,M.Sc)2001,(,Ph.D)2005( .2007

    E-Print Network [OSTI]

    Rimon, Elon

    1 " " " ' * '". B.Sc)1997,(,M.Sc)2001,(,Ph.D)2005( . .2007 )ETH. Fulbright)2003(, )2001( . High-Tech. : )machine learning(, , , , ,, . " B.Sc)1997(-M Competition. : , , , - . #12;4 " * '". )2003( Ph.D .Danish Technical University )1997(- M

  6. Hill crossing during preheating after hilltop inflation

    E-Print Network [OSTI]

    Antusch, Stefan; Orani, Stefano

    2015-01-01T23:59:59.000Z

    In 'hilltop inflation', inflation takes place when the inflaton field slowly rolls from close to a maximum of its potential (i.e. the 'hilltop') towards its minimum. When the inflaton potential is associated with a phase transition, possible topological defects produced during this phase transition, such as domain walls, are efficiently diluted during inflation. It is typically assumed that they also do not reform after inflation, i.e. that the inflaton field stays on its side of the 'hill', finally performing damped oscillations around the minimum of the potential. In this paper we study the linear and the non-linear phases of preheating after hilltop inflation. We find that the fluctuations of the inflaton field during the tachyonic oscillation phase grow strong enough to allow the inflaton field to form regions in position space where it crosses 'over the top of the hill' towards the 'wrong vacuum'. We investigate the formation and behaviour of these overshooting regions using lattice simulations: Rather t...

  7. Hill crossing during preheating after hilltop inflation

    E-Print Network [OSTI]

    Stefan Antusch; David Nolde; Stefano Orani

    2015-03-20T23:59:59.000Z

    In 'hilltop inflation', inflation takes place when the inflaton field slowly rolls from close to a maximum of its potential (i.e. the 'hilltop') towards its minimum. When the inflaton potential is associated with a phase transition, possible topological defects produced during this phase transition, such as domain walls, are efficiently diluted during inflation. It is typically assumed that they also do not reform after inflation, i.e. that the inflaton field stays on its side of the 'hill', finally performing damped oscillations around the minimum of the potential. In this paper we study the linear and the non-linear phases of preheating after hilltop inflation. We find that the fluctuations of the inflaton field during the tachyonic oscillation phase grow strong enough to allow the inflaton field to form regions in position space where it crosses 'over the top of the hill' towards the 'wrong vacuum'. We investigate the formation and behaviour of these overshooting regions using lattice simulations: Rather than durable domain walls, these regions form oscillon-like structures (i.e. localized bubbles that oscillate between the two vacua) which should be included in a careful study of preheating in hilltop inflation.

  8. CITY Of MORGAN HILL DEVELOPMENT SERVIC ES CENTER

    E-Print Network [OSTI]

    Energy Efficiency Standards as part of the implementation of our local energy ordinance. As the BuildingCITY Of MORGAN HILL DEVELOPMENT SERVIC ES CENTER 1757 5 PEAKAVENUE MORGAN HILL, CA 95037-41 28 (408 Commissioner Arthur H . Rosenfeld Ph.D. Commissioner Julia Levin, J.D. California Energy Commission 1516 Ninth

  9. Hill SyStem PlaStic mulcHed

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    a Hill SyStem PlaStic mulcHed Strawberry Production Guide for colder areaS #12;#12;i Trade names do they intend or imply discrimination against those not mentioned. Hill SyStem PlaStic mulcHed ..................................................................27 Consider Fall Laying of Extra Plastic Mulch

  10. Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik...

    Open Energy Info (EERE)

    Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik & Goff, 2002) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique Water-Gas...

  11. Hot Dry Rock Geothermal Energy- Important Lessons From Fenton Hill | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania: EnergyHopkinsville,WindEnergyOpen EnergyEnergy

  12. Geology Of The Fenton Hill, New Mexico, Hot Dry Rock Site | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) | Open Energy(Blackwell, EtRaft river valley,

  13. SC11 Education Program Applications due July 31

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SC11 Education Program Applications due July 31 SC11 Education Program Applications due July 31 June 9, 2011 by Francesca Verdier (0 Comments) Applications for the Education...

  14. Neutron fluence effects on SC coils and comments

    E-Print Network [OSTI]

    McDonald, Kirk

    SH#3 SH#4 SC#1-5 SC#6-10 SC#11-15 SC#1 7.9W 2.0W 1.0W 0.7W 0.9W 1.4W COMET NF/MC Same size SC wires to increase the SC wire temperature (may be up to the room temperature) to recover their property by anneal on SC#6-10 : 3.5 days HTS instead of resistive magnets looks no hope. #12;Anneal Effect: SC -Tc

  15. Hot-dry-rock geothermal-energy development program. Annual report, fiscal year 1981

    SciTech Connect (OSTI)

    Smith, M.C.; Ponder, G.M. (comps.)

    1981-01-01T23:59:59.000Z

    During fiscal year 1981, activities of the Hot Dry Rock Geothermal Energy Development Program were concentrated in four principal areas: (1) data collection to permit improved estimates of the hot dry rock geothermal energy resource base of various regions of the United States and of the United States as a whole, combined with detailed investigations of several areas that appear particularly promising either for further energy extraction experiments or for future commercial development; (2) successful completion of a 9-month, continuous, closed-loop, recirculating flow test in the enlarged Phase I System at Fenton Hill, New Mexico - a pressurized-water heat-extraction loop developed in low-permeability granitic rock by hydraulic fracturing; (3) successful completion at a depth of 4084 m (13,933 ft) of well EE-3, the production well of a larger, deeper, and hotter, Phase II System at Fenton Hill. Well EE-3 was directionally drilled with control of both azimuth and inclination. Its inclined section is about 380 m (1250 ft) vertically above the injection well, EE-2, which was completed in FY80; and (4) supporting activities included new developments in downhole instrumentation and equipment, geochemical and geophysical studies, rock-mechanics and fluid-mechanics investigations, computer analyses and modeling, and overall system design. Under an International Energy Agency agreement, the New Energy Development Organization, representing the Government of Japan has joined Kernforschungsanlage-Juelich GmbH, representing the Federal Republic of Germany, and the US Department of Energy as an active participant in the Fenton Hill Hot Dry Rock Project.

  16. Hot dry rock geothermal energy development program. Annual report, fiscal year 1980

    SciTech Connect (OSTI)

    Cremer, G.M. (comp.)

    1981-07-01T23:59:59.000Z

    Investigation and flow testing of the enlarged Phase I heat-extraction system at Fenton Hill continued throughout FY80. Temperature drawdown observed at that time indicated an effective fracture of approximately 40,000 to 60,000 m/sup 2/. In May 1980, hot dry rock (HDR) technology was used to produce electricity in an interface demonstration experiment at Fenton Hill. A 60-kVA binary-cycle electrical generator was installed in the Phase I surface system and heat from about 3 kg/s of geothermal fluid at 132/sup 0/C was used to boil Freon R-114, whose vapor drove a turboalternator. A Phase II system was designed and is now being constructed at Fenton Hill that should approach commercial requirements. Borehole EE-2, the injection well, was completed on May 12, 1980. It was drilled to a vertical depth of about 4500 m, where the rock temperature is approximately 320/sup 0/C. The production well, EE-3 had been drilled to a depth of 3044 m and drilling was continuing. Environmental monitoring of Fenton Hill site continued. Development of equipment, instruments, and materials for technical support at Fenton Hill continued during FY80. Several kinds of models were also developed to understand the behavior of the Phase I system and to develop a predictive capability for future systems. Data from extensive resource investigations were collected, analyzed, and assembled into a geothermal gradient map of the US, and studies were completed on five specific areas as possible locations for HDR Experimental Site 2.

  17. 222 Old Cherry Road Clemson, SC 29631

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    at the farm or purchased from commercial vendors. The birds housed at the farm are used for research, teaching Clemson,SC29634-0385 #12;Solar Brooder House The incubation/hatching facility is located in the Solar

  18. INTRA Programme B.Sc. Biotechnology

    E-Print Network [OSTI]

    Humphrys, Mark

    Analysis n Environmental Monitoring & Analysis n Waste Treatment Work Areas To date, Biotechnology Engineering Environmental Biotechnology Food Biotechnology RESEARCH PROJECT Literature Survey LaboratoryINTRA Programme B.Sc. Biotechnology Biotechnology is defined as the controlled and deliberate

  19. Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1979

    SciTech Connect (OSTI)

    Cremer, G.M.; Duffield, R.B.; Smith, M.C.; Wilson, M.G. (comps.)

    1980-08-01T23:59:59.000Z

    The Fenton Hill Project is still the principal center for developing methods, equipment, and instrumentation for creating and utilizing HDR geothermal reservoirs. The search for a second site for a similar experimental system in a different geological environment has been intensified, as have the identification and characterization of other HDR areas that may prove suitable for either experimental or commercial development. The Phase I fracture system was enlarged during FY79. Drilling of the injection well of the Phase II system began at Fenton Hill in April 1979. Environmental monitoring of the Fenton Hill area continued through FY79. The environmental studies indicate that the hot dry rock operations have caused no significant environmental impact. Other supporting activities included rock physics, rock mechanics, fracture mapping, and instrumentation development. Two closely related activities - evaluation of the potential HDR energy resource of the US and the selection of a site for development of a second experimental heat-extraction system generally similar to that at Fenton Hill - have resulted in the collection of geology, hydrology, and heat-flow data on some level of field activity in 30 states. The resource-evaluation activity included reconnaissance field studies and a listing and preliminary characterization of US geothermal areas in which HDR energy extraction methods may be applicable. The selection of Site 2 has taken into account such legal, institutional, and economic factors as land ownership and use, proximity to possible users, permitting and licensing requirements and procedures, environmental issues, areal extent of the geothermal area, and visibility to and apparent interest by potential industrial developers.

  20. The Landscape of Klamath Basin Rock Art

    E-Print Network [OSTI]

    David, Robert James

    2012-01-01T23:59:59.000Z

    the Lines: Ethnographic Sources and Rock Art Interpretationwhen applying these sources toward rock art interpretation.information source for developing rock art interpretations.

  1. Characteristics of the C Shale and D Shale reservoirs, Monterey Formation, Elk Hills Field, Kern County, California

    SciTech Connect (OSTI)

    Reid, S.A.; McIntyre, J.L. [Bechtel Petroleum Operations, Inc., Tupman, CA (United States); McJannet, G.S. [Dept. of Energy, Tupman, CA (United States)

    1996-12-31T23:59:59.000Z

    The upper Miocene C Shale and D Shale reservoirs of the Elk Hills Shale Member of the Monterey Formation have cumulative oil and gas production much higher than the originally estimated recovery. These San Joaquin basin reservoirs are the lowest of the Stevens producing zones at Elk Hills and currently produce from a 2800-acre area on the 31 S anticline. The C Shale contains lower slope and basin plain deposits of very fine grained, thinly bedded, graded turbidites, pelagic and hemipelagic claystone, and slump deposits. Although all units are oil-bearing, only the lower parts of the graded turbidity intervals have sufficient horizontal permeability to produce oil. The D Shale consists of chart, claystone, carbonates and slump deposits, also originating in a lower slope to basin plain setting. All D Shale rock types contain oil, but the upper chart interval is the most productive. The chart has high matrix porosity, and due to a complex horizontal and vertical microfracture system, produces at a highly effective rate. Core samples indicate more oil-in-place is present in the thin, graded C Shale beds and in the porous D Shale chart than is identifiable from conventional electric logs. High gas recovery rates are attributed mostly to this larger volume of associated oil. Gas also enters the reservoirs from the adjacent 26R reservoir through a leaky normal fault. Significant gas volumes also may desorb from immature organic material common in the rock matrix.

  2. Characteristics of the C Shale and D Shale reservoirs, Monterey Formation, Elk Hills Field, Kern County, California

    SciTech Connect (OSTI)

    Reid, S.A.; McIntyre, J.L. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); McJannet, G.S. (Dept. of Energy, Tupman, CA (United States))

    1996-01-01T23:59:59.000Z

    The upper Miocene C Shale and D Shale reservoirs of the Elk Hills Shale Member of the Monterey Formation have cumulative oil and gas production much higher than the originally estimated recovery. These San Joaquin basin reservoirs are the lowest of the Stevens producing zones at Elk Hills and currently produce from a 2800-acre area on the 31 S anticline. The C Shale contains lower slope and basin plain deposits of very fine grained, thinly bedded, graded turbidites, pelagic and hemipelagic claystone, and slump deposits. Although all units are oil-bearing, only the lower parts of the graded turbidity intervals have sufficient horizontal permeability to produce oil. The D Shale consists of chart, claystone, carbonates and slump deposits, also originating in a lower slope to basin plain setting. All D Shale rock types contain oil, but the upper chart interval is the most productive. The chart has high matrix porosity, and due to a complex horizontal and vertical microfracture system, produces at a highly effective rate. Core samples indicate more oil-in-place is present in the thin, graded C Shale beds and in the porous D Shale chart than is identifiable from conventional electric logs. High gas recovery rates are attributed mostly to this larger volume of associated oil. Gas also enters the reservoirs from the adjacent 26R reservoir through a leaky normal fault. Significant gas volumes also may desorb from immature organic material common in the rock matrix.

  3. Software Engineer RockAuto www.RockAuto.com

    E-Print Network [OSTI]

    Liblit, Ben

    Software Engineer ­ RockAuto www.RockAuto.com Position Description Software is the foundation · Familiarity with open-source development technologies like PHP, Perl, JavaScript and C (Linux system Lane, Madison, WI 53719) Why RockAuto? Strategic and tactical impact. We're an e-commerce company

  4. Observation Wells At Fenton Hill HDR Geothermal Area (Shevenell...

    Open Energy Info (EERE)

    Basis Geophone emplacement holes PC-1 and PC-2 were drilled at Fenton Hill by Maness Drilling Company of Farmington, NM for Los Alamos National Laboratory in 1984. These wells...

  5. Town of Kill Devil Hills- Wind Energy Systems Ordinance

    Broader source: Energy.gov [DOE]

    In October 2007, the town of Kill Devil Hills adopted an ordinance to regulate the use of wind-energy systems. The ordinance directs any individual or organization wishing to install a wind-energy...

  6. Black Hills Energy (Gas)- Residential New Construction Rebate Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy offers new construction rebates for home builders in the eligible service area. Rebates between $800 and $5,000 are available for a range of efficiency measures incorporated into...

  7. Town of Chapel Hill- Land-Use Management Ordinance

    Broader source: Energy.gov [DOE]

    In 2003, the Town of Chapel Hill adopted a land-use management ordinance that includes prohibitions against neighborhood or homeowners association covenants or other conditions of sale that...

  8. Carbon and Water Cycling in a Texas Hill Country Woodland 

    E-Print Network [OSTI]

    Kamps, Ray Herbert

    2014-12-11T23:59:59.000Z

    Two tree species, Plateau live oak (Quercus fusiformis) and Ashe juniper (Juniperus ashei) survive and thrive in a dense woodland on thin soil overlying massive limestone formations in the Texas Hill Country with recurrent annual summer drought...

  9. Farmington Hills Partners With Michigan Saves With Eyes on the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hills is one of 50 communities competing to reduce energy over the next two years to win GUEP's 5 million prize. "We don't want financing to be a barrier," Michigan Saves...

  10. Microwave assisted hard rock cutting

    DOE Patents [OSTI]

    Lindroth, David P. (Apple Valley, MN); Morrell, Roger J. (Bloomington, MN); Blair, James R. (Inver Grove Heights, MN)

    1991-01-01T23:59:59.000Z

    An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

  11. B.Sc.)(-M.Sc. )1989,1996.(Ph.D. )2001.( -,.

    E-Print Network [OSTI]

    Rimon, Elon

    " " " B.Sc.)(-M.Sc. )1989,1996.(Ph.D. )2001.( - ,. : - , , . - ,DTM;" Diplome d' Lngeneur)1990( - -Brussels Free University)1995( -Ph.D.)2000( . - )2001-2002( )2002( .-M.S.),1996( .M.S.)1998(-Ph.D.)2001( +) (-CALTECH. - -MIT)2001-2002(, Irvine

  12. Development of Chemical Model to Predict the Interactions between Supercritical CO2and Fluid, and Rocks in EGS Reservoirs

    Broader source: Energy.gov [DOE]

    This project will develop a chemical model, based on existing models and databases, that is capable of simulating chemical reactions between supercritical (SC) CO2 and Enhanced Geothermal System (EGS) reservoir rocks of various compositions in aqueous, non-aqueous and 2-phase environments.

  13. SC e-journals About/FAQ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited Release Printed March 2012B.Workshop on--(SC) SC

  14. Prospects for hot dry rock in the future

    SciTech Connect (OSTI)

    Berger, M.E.; Murphy, H.D.

    1988-01-01T23:59:59.000Z

    The Hot Dry Rock (HDR) geothermal energy program is a renewable energy program that can contribute significantly to the nation's balanced and diversified energy mix. The program was reviewed five times in the past three years. Three of these reviews were done by the US Department of Energy (DOE) and a fourth was conducted by the National Research Council at the request of DOE. In addition, HDR was evaluated in the Energy Research Advisory Board's Solid Earth Sciences Report. Recent economic studies for HDR have been performed by Bechtel National, Inc., the Electric Power Research Institute, and the United Kingdom. These studies are reviewed in light of recent progress at Fenton Hill in reducing drilling costs, and mapping and in identifying drilling targets. All of the attention focused on HDR has resulted in evaluating the way in which HDR fits within the nation's energy mix and in estimating when HDR will contribute to energy security. To establish a framework for evaluating the future of HDR, the status and progress of HDR are reviewed and the remaining Fenton Hill program is outlined. Recommendations are also made for follow-on activities that will lead to achieving full development of HDR technologies in the appropriate time frame.

  15. SC Federal Project Directors | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSC Correspondence Control Center (SC

  16. Hot Dry Rock energy annual report fiscal year 1992

    SciTech Connect (OSTI)

    Winchester, W.W. [ed.; Duchane, D.V.

    1993-04-01T23:59:59.000Z

    Hot Dry Rock technology took a giant leap forward this year as the long-awaited long-term flow test (LTFT) of the Phase 2 HDR reservoir at Fenton Hill got underway. Energy was produced on a twenty-four hour a day basis for a continuous period of nearly four months of steady-state testing. Hot water was brought to the surface at 90--100 gallons per minute (gpm) with temperatures of 180{degrees}C (356{degrees}F) and higher. During that time, the HDR plant achieved an on-line record of 98.8%. Surface temperature measurements and temperature logging deep within the wellbore confirmed that no decline in the average temperature of fluid produced from the reservoir occurred. Tracer experiments indicated that flow paths within the reservoir were undergoing continuous change during the test. Remarkably, it appeared that longer flow paths carried a larger proportion of the flow as the test proceeded, while more direct fluid pathways disappeared or carried a significantly reduced flow. In sum, access to hot rock appeared to improve over the span of the test. Water losses during the test averaged 10--12% and showed a slow long-term decline. These results confirmed what had been previously discovered in static pressurization testing: Water consumption declines significantly during extended operation of an HDR reservoir. In combination with a recent demonstration by the Japanese that water losses can be greatly reduced by the proper placement of multiple production wells, the recent results at Fenton Hill have effectively demonstrated that excessive water consumption should not be an issue for a properly engineered HDR facility at a well chosen site.

  17. Hot Dry Rock energy annual report fiscal year 1992

    SciTech Connect (OSTI)

    Duchane, D.V.; Winchester, W.W.

    1993-04-01T23:59:59.000Z

    Hot Dry Rock technology took a giant leap forward this year as the long-awaited long-term flow test (LTFT) of the Phase II HDR reservoir at Fenton Hill got underway. Energy was produced on a twenty-four hour a day basis for a continuous period of nearly four months of steady-state testing. Hot water was brought to the surface at 90-100 gallons per minute (gpm) with temperatures of 180[degrees]C (356[degrees]F) and higher. During that time, the HDR plant achieved an on-line record of 98.8%. Surface temperature measurements and temperature logging deep within the wellbore confirmed that no decline in the average temperature of fluid produced from the reservoir occurred. Tracer experiments indicated that flow paths within the reservoir were undergoing continuous change during the test. Remarkably, it appeared that longer flow paths carried a larger proportion of the flow as the test proceeded, while more direct fluid pathways disappeared or carried a significantly reduced flow. In sum, access to hot rock appeared to improve over the span of the test. Water losses during the test averaged 10-12% and showed a slow long-term decline. These results confirmed what had been previously discovered in static pressurization testing: Water consumption declines significantly during extended operation of an HDR reservoir. In combination with a recent demonstration by the Japanese that water losses can be greatly reduced by the proper placement of multiple production wells, the recent results at Fenton Hill have effectively demonstrated that excessive water consumption should not be an issue for a properly engineered HDR facility at a well chosen site.

  18. Rock Bands/Rock Brands: Mediation and Musical Performance in Post-liberalization Bangalore

    E-Print Network [OSTI]

    Coventry, Chloe Louise

    2013-01-01T23:59:59.000Z

    these recorded sources important rock pedagogical tools inwere a primary source of western rock music for young fans,Nevertheless, a source of funding for rock music performance

  19. INTRA Programme B.Sc. Applied Physics

    E-Print Network [OSTI]

    Humphrys, Mark

    INTRA Programme B.Sc. Applied Physics The Objective of this four-year, full-time degree is to produce graduates with a thorough understanding of physics, with an emphasis on modern technological areas: n Computer programming, mathematics and computational physics n Electronics and instrumentation n

  20. MASTQt UCRL-15515 S/C 5299101

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    tritium breeder. About 521 of the energy incident on the blanket is deposited in the front radial tone? MASTQt UCRL-15515 S/C 5299101 UCRL--15515 DE83 006557 MARS HIGH-TEMPERATURE BLANKET TRW, INC : December 1982 ·nwBcfTBOKar.nug' 4 #12;MASS HIGH TtHPERATUK BLANKET J» D. Gordon, D, B. Berwald, B. A

  1. S.C. Honors College Scholarships

    E-Print Network [OSTI]

    Almor, Amit

    Foley Thesis Support Fund Eligibility will be determined by Kay Banks, the Honors College Thesis the spring semester. Yes Fall 2014 Pearl Fernandes 803.777.2187 pefernan@mailbox.sc.edu James Gadsden Holmes IV Scholarship The James Gadsden Holmes IV Scholarship is awarded to a worthy incoming freshman. No N

  2. Rock Properties Model

    SciTech Connect (OSTI)

    C. Lum

    2004-09-16T23:59:59.000Z

    The purpose of this model report is to document the Rock Properties Model version 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties model provides mean matrix and lithophysae porosity, and the cross-correlated mean bulk density as direct input to the ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021, REV 02 (BSC 2004 [DIRS 170042]). The constraints, caveats, and limitations associated with this model are discussed in Section 6.6 and 8.2. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7. The revision of this model report was performed as part of activities being conducted under the ''Technical Work Plan for: The Integrated Site Model, Revision 05'' (BSC 2004 [DIRS 169635]). The purpose of this revision is to bring the report up to current procedural requirements and address the Regulatory Integration Team evaluation comments. The work plan describes the scope, objectives, tasks, methodology, and procedures for this process.

  3. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Lime Lithium Magnesium Manganese Mercury Mica Molybdenum Nickel Nitrogen Peat Perlite Phosphate Rock . . . . . . . . . . . . . . . . . . . . . . . . 194 Appendix C--Resource/Reserve Definitions . . . . . . 195 Commodities: Abrasives (Manufactured

  4. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Mica Molybdenum Nickel Nitrogen Peat Perlite Phosphate Rock Platinum Potash Pumice Quartz Crystal Rare . . . . . . . . . . . . . . . . . . . . . . . . 190 Appendix C--A Resource/Reserve Classification for Minerals

  5. Analysis of Subsidence Data for the Big Hill Site, Texas

    SciTech Connect (OSTI)

    Bauer, Stephen J.

    1999-06-01T23:59:59.000Z

    The elevation change data measured at the Big Hill SPR site over the last 10 years has been studied and a model utilized to project elevation changes into the future. The subsidence rate at Big Hill is low in comparison with other Strategic Petroleum Reserve sites and has decreased with time due to the maintenance of higher operating pressures and the normal decrease in creep closure rate of caverns with time. However, the subsidence at the site is projected to continue. A model was developed to project subsidence values 20 years into the future; no subsidence related issues are apparent from these projections.

  6. West Lake Hills, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills, New York: Energy Resources JumpNorthLake Hills,

  7. Seven Hills, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma: EnergySeoulSettlers Hill GasHills, Ohio:

  8. Seven Mile Hill Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma: EnergySeoulSettlers Hill GasHills,Carbon

  9. Hidden Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation, search Name: Hi-GtelTennessee:Hills,Texas:Hills,

  10. Rolling Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio:RockwallRolling Hills Electric CoopHills,

  11. Town of Chapel Hill- Worthwhile Investments Save Energy (WISE) Homes and Buildings Program

    Broader source: Energy.gov [DOE]

    Chapel Hill is using money made available to it from the American Recovery and Reinvestment Act of 2009 to help subsidize energy efficiency improvements in Chapel Hill homes. Qualified homeowners...

  12. Piecewise Linear Hypersurfaces using the Marching Cubes Jonathan C. Roberts a and Steve Hill b

    E-Print Network [OSTI]

    Kent, University of

    Hill b a University of Kent at Canterbury, Computing Laboratory, Canterbury, England, UK. b Radan steve.hill@uk.radan.com #12; A two dimensional contour on a map, representing a particular height above

  13. ISO/IEC JTC1/SC7 Software & Systems Engineering

    E-Print Network [OSTI]

    Kindler, Ekkart

    ISO/IEC JTC1/SC7 Software & Systems Engineering Secretariat: CANADA (SCC) Address reply to: ISO Notre Dame Ouest, Montréal, Québec Canada H3C 1K3 secretariat@jtc1-sc7.org www.jtc1-sc7.org ISO/IEC JTC1 Members Medium Acrobat No. of Pages 54 Note #12;ISO/IEC JTC1/SC7 WD 19509-2 Date 2005-07-03 Reference

  14. Independent Activity Report, CH2M Hill Plateau Remediation Company- January 2011

    Broader source: Energy.gov [DOE]

    Review of the CH2M Hill Plateau Remediation Company Unreviewed Safety Question Procedure [ARPT-RL-2011-003

  15. Studienordnung fr den Masterstudiengang (M.Sc.) ,,Health Care Management"

    E-Print Network [OSTI]

    Greifswald, Ernst-Moritz-Arndt-Universität

    Studienordnung für den Masterstudiengang (M.Sc.) ,,Health Care Management" an der Ernst- Moritz den Masterstudiengang (M.Sc.) ,,Health Care Management" als Sat- zung: Inhaltsverzeichnis § 1.Sc.) ,,Health Care Management" an der Ernst-Moritz-Arndt-Universität Greifswald vom 18.07.2006 das Studium

  16. Studienordnung fr den Masterstudiengang (M.Sc.) ,,Health Care Management"

    E-Print Network [OSTI]

    Greifswald, Ernst-Moritz-Arndt-Universität

    Studienordnung für den Masterstudiengang (M.Sc.) ,,Health Care Management" an der Ernst- Moritz den Masterstudiengang (M.Sc.) ,,Health Care Management" als Satzung: Inhaltsverzeichnis § 1.Sc.) ,,Health Care Management" an der Ernst-Moritz- Arndt-Universität Greifswald vom 18.07.2006 das Studium

  17. Mesozoic and Cenozoic structural geology of the CP Hills, Nevada Test Site, Nye County, Nevada; and regional implications

    SciTech Connect (OSTI)

    Caskey, S.J. [Nevada Univ., Reno, NV (United States)

    1991-08-01T23:59:59.000Z

    Detailed mapping and structural analysis of upper Proterozoic and Paleozoic rocks in the CP Hills of the Nevada Test Site, together with analysis of published maps and cross sections and a reconnaissance of regional structural relations indicate that the CP thrust of Barnes and Poole (1968) actually comprises two separate, oppositely verging Mesozoic thrust systems: (1) the west-vergent CP thrust which is well exposed in the CP Hills and at Mine Mountain, and (2) the east-vergent Belted Range thrust located northwest of Yucca Flat. West-vergence of the CP thrust is indicated by large scale west-vergent recumbent folds in both its hangingwall and footwall and by the fact that the CP thrust ramps up section through hangingwall strata toward the northwest. Regional structural relations indicate that the CP thrust forms part of a narrow sigmoidal belt of west-vergent folding and thrusting traceable for over 180 km along strike. The Belted Range thrust represents earlier Mesozoic deformation that was probably related to the Last Chance thrust system in southeastern California, as suggested by earlier workers. A pre-Tertiary reconstruction of the Cordilleran fold and thrust belt in the region between the NTS and the Las Vegas Range bears a close resemblance to other regions of the Cordillera and has important implications for the development of hinterland-vergent deformation as well as for the probable magnitude of Tertiary extension north of Las Vegas Valley. Subsequent to Mesozoic deformation, the CP Hills were disrupted by at least two episodes of Tertiary extensional deformation: (1) an earlier episode represented by pre-middle Miocene low-angle normal faults, and (2) a later, post-11 Ma episode of high-angle normal faulting. Both episodes of extension were related to regional deformation, the latter of which has resulted in the present basin and range topography of the NTS region.

  18. Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust Takayuki Ushikubo a,

    E-Print Network [OSTI]

    Mcdonough, William F.

    Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust Takayuki Hills lithium weathering continental crust Hadean In situ Li analyses of 4348 to 3362 Ma detrital of REEs. The Jack Hills zircons also have fractionated lithium isotope ratios (7 Li=-19 to+13) about five

  19. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Phosphate Rock Platinum Potash Pumice Quartz Crystal Rare Earths Rhenium Rubidium Salt Sand and Gravel Graphite Peat Sulfur Beryllium Gypsum Perlite Talc Bismuth Hafnium Phosphate Rock Tantalum Boron Helium on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards

  20. EGS rock reactions with Supercritical CO2 saturated with water and water saturated with Supercritical CO2

    SciTech Connect (OSTI)

    Earl D. Mattson; Travis L. McLing; William Smith; Carl Palmer

    2013-02-01T23:59:59.000Z

    EGS using CO2 as a working fluid will likely involve hydro-shearing low-permeability hot rock reservoirs with a water solution. After that process, the fractures will be flushed with CO2 that is maintained under supercritical conditions (> 70 bars). Much of the injected water in the main fracture will be flushed out with the initial CO2 injection; however side fractures, micro fractures, and the lower portion of the fracture will contain connate water that will interact with the rock and the injected CO2. Dissolution/precipitation reactions in the resulting scCO2/brine/rock systems have the potential to significantly alter reservoir permeability, so it is important to understand where these precipitates form and how are they related to the evolving ‘free’ connate water in the system. To examine dissolution / precipitation behavior in such systems over time, we have conducted non-stirred batch experiments in the laboratory with pure minerals, sandstone, and basalt coupons with brine solution spiked with MnCl2 and scCO2. The coupons are exposed to liquid water saturated with scCO2 and extend above the water surface allowing the upper portion of the coupons to be exposed to scCO2 saturated with water. The coupons were subsequently analyzed using SEM to determine the location of reactions in both in and out of the liquid water. Results of these will be summarized with regard to significance for EGS with CO2 as a working fluid.

  1. Constitutive models for the Etchegoin Sands, Belridge Diatomite, and overburden formations at the Lost Hills oil field, California

    SciTech Connect (OSTI)

    FOSSUM,ARLO F.; FREDRICH,JOANNE T.

    2000-04-01T23:59:59.000Z

    This report documents the development of constitutive material models for the overburden formations, reservoir formations, and underlying strata at the Lost Hills oil field located about 45 miles northwest of Bakersfield in Kern County, California. Triaxial rock mechanics tests were performed on specimens prepared from cores recovered from the Lost Hills field, and included measurements of axial and radial stresses and strains under different load paths. The tested intervals comprise diatomaceous sands of the Etchegoin Formation and several diatomite types of the Belridge Diatomite Member of the Monterey Formation, including cycles both above and below the diagenetic phase boundary between opal-A and opal-CT. The laboratory data are used to drive constitutive parameters for the Extended Sandler-Rubin (ESR) cap model that is implemented in Sandia's structural mechanics finite element code JAS3D. Available data in the literature are also used to derive ESR shear failure parameters for overburden formations. The material models are being used in large-scale three-dimensional geomechanical simulations of the reservoir behavior during primary and secondary recovery.

  2. ORIGINAL ARTICLE Christopher E. Hill S. Elizabeth Campbell

    E-Print Network [OSTI]

    Hill, Christopher E.

    ORIGINAL ARTICLE Christopher E. Hill á S. Elizabeth Campbell J. Cully Nordby á John M. Burt á: +1-206-6853157 S.E. Campbell á J.C. Nordby á J.M. Burt á M.D. Beecher Department of Psychology sharing is correlated with mating success in brown-headed c

  3. Linda Hill, Ph.D.1 Olha Buchel, MLS.1

    E-Print Network [OSTI]

    Janée, Greg

    . The agendas for digital library and classification research in relating to KOS are also proposed. [Keywords ( ) [] [] Integration of Knowledge Organization Systems into Digital Library Architectures Linda Hill, Ph.D.1 Olha Buchel, MLS.1 Greg Janée, MS.1 Marcia Lei Zeng, Ph.D.2 1 (Alexandria Digital Library Project, University

  4. AT&T Bell Laboratories Murray Hill, New Jersey 07974

    E-Print Network [OSTI]

    Perry, Dewayne E.

    AT&T Bell Laboratories Murray Hill, New Jersey 07974 Software and Systems Research Center Technical Report Object-Oriented programs and Testing Dewayne E. Perry Gail E. Kaiser* appears in The Journal Of Object Oriented Programming January/February 1990 __________________ * Columbia University, Department

  5. Oil and Gas CDT Bots in Rocks: Intelligent Rock Deformation for Fault Rock

    E-Print Network [OSTI]

    Henderson, Gideon

    Heriot-Watt University, Institute of Petroleum Engineering Supervisory Team · Dr Helen Lewis, Heriot://www.pet.hw.ac.uk/staff-directory/jimsomerville.htm Key Words Nano/Micro sensors; faults; fault zones; geomechanics; rock mechanics; rock deformation-deformed equivalent, a different lab-deformed example and a geomechanical simulation of a fault zone showing permanent

  6. Compound and Elemental Analysis At Fenton Hill HDR Geothermal...

    Open Energy Info (EERE)

    by using USGS standard rock samples. Where necessary, the electron microprobe, scanning electron microscope, and X-ray diffractometer were used to identify mineral phases....

  7. Petrography Analysis At Fenton Hill HDR Geothermal Area (Laughlin...

    Open Energy Info (EERE)

    by using USGS standard rock samples. Where necessary, the electron microprobe, scanning electron microscope, and X-ray diffractometer were used to identify mineral phases....

  8. ICFT: An initial closed-loop flow test of the Fenton Hill Phase II HDR reservoir

    SciTech Connect (OSTI)

    Dash, Z.V. (ed.); Aguilar, R.G.; Dennis, B.R.; Dreesen, D.S.; Fehler, M.C.; Hendron, R.H.; House, L.S.; Ito, H.; Kelkar, S.M.; Malzahn, M.V.

    1989-02-01T23:59:59.000Z

    A 30-day closed-loop circulation test of the Phase II Hot Dry Rock reservoir at Fenton Hill, New Mexico, was conducted to determine the thermal, hydraulic, chemical, and seismic characteristics of the reservoir in preparation for a long-term energy-extraction test. The Phase II heat-extraction loop was successfully tested with the injection of 37,000 m/sup 3/ of cold water and production of 23,300 m/sup 3/ of hot water. Up to 10 MW/sub t/ was extracted when the production flow rate reached 0.0139 m/sup 3//s at 192/degree/C. By the end of the test, the water-loss rate had decreased to 26% and a significant portion of the injected water was recovered; 66% during the test and an additional 20% during subsequent venting. Analysis of thermal, hydraulic, geochemical, tracer, and seismic data suggests the fractured volume of the reservoir was growing throughout the test. 19 refs., 64 figs., 19 tabs.

  9. Production casing for hot-dry-rock wells EE-2 and EE-3

    SciTech Connect (OSTI)

    Nicholson, R.W.; Pettitt, R.; Sims, J.

    1982-01-01T23:59:59.000Z

    The production casing for a pair of hot dry rock (HDR) energy extraction wells had to be designed for unique conditions. Two hot dry rock wells (EE-2 and EE-3) were drilled and production casing installed at Fenton Hill, NM for the Los Alamos National Laboratory HDR program. The design of the production casing and subsequent completion operations in these wells revealed that thermal cycling, anticipated operating pressures, and wear during downhole operations are major considerations for both casing specifications and installation procedures. The first well (Energy Extraction No. 2; EE-2) is intended to be the injection well and EE-3 the production well. The top joint strain in EE-3 was monitored during installation, cementing and tensioning.

  10. Shotgun cartridge rock breaker

    DOE Patents [OSTI]

    Ruzzi, Peter L. (Eagan, NM); Morrell, Roger J. (Bloomington, MN)

    1995-01-01T23:59:59.000Z

    A rock breaker uses shotgun cartridges or other firearm ammunition as the explosive charge at the bottom of a drilled borehole. The breaker includes a heavy steel rod or bar, a gun with a firing chamber for the ammunition which screws onto the rod, a long firing pin running through a central passage in the rod, and a firing trigger mechanism at the external end of the bar which strikes the firing pin to fire the cartridge within the borehole. A tubular sleeve surround the main body of the rod and includes slits the end to allow it to expand. The rod has a conical taper at the internal end against which the end of the sleeve expands when the sleeve is forced along the rod toward the taper by a nut threaded onto the external end of the rod. As the sleeve end expands, it pushes against the borehole and holds the explosive gasses within, and also prevents the breaker from flying out of the borehole. The trigger mechanism includes a hammer with a slot and a hole for accepting a drawbar or drawpin which, when pulled by a long cord, allows the cartridge to be fired from a remote location.

  11. Strength of transversely isotropic rocks

    E-Print Network [OSTI]

    Pei, Jianyong, 1975-

    2008-01-01T23:59:59.000Z

    This thesis proposes a new Anisotropic Matsuoka-Nakai (AMN) criterion to characterize the failure of transversely isotropic rocks under true triaxial stress states. One major obstacle in formulating an anisotropic criterion ...

  12. Proceedings of the ACM/IEEE SC97 Conference (SC'97) 0-89791-985-8/97 $ 17.00 1997 IEEE

    E-Print Network [OSTI]

    Brightwell, Ron

    Proceedings of the ACM/IEEE SC97 Conference (SC'97) 0-89791-985-8/97 $ 17.00 © 1997 IEEE #12;Proceedings of the ACM/IEEE SC97 Conference (SC'97) 0-89791-985-8/97 $ 17.00 © 1997 IEEE #12;Proceedings of the ACM/IEEE SC97 Conference (SC'97) 0-89791-985-8/97 $ 17.00 © 1997 IEEE #12;Proceedings of the ACM

  13. Rock physics at Los Alamos Scientific Laboratory

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Rock physics refers to the study of static and dynamic chemical and physical properties of rocks and to phenomenological investigations of rocks reacting to man-made forces such as stress waves and fluid injection. A bibliography of rock physics references written by LASL staff members is given. Listing is by surname of first author. (RWR)

  14. PHYSICS ASSEMBLY LABORATORY HAER NO. SC-43

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize832 2.860SelectedGLOWAGREEMENT

  15. SC Johnson Waxdale Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY) JumpLand FocusSC Johnson Waxdale Plant

  16. SC e-journals Contact page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited Release Printed March 2012B.Workshop on--(SC)

  17. SC e-journals Help page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited Release Printed March 2012B.Workshop on--(SC)Help

  18. Environmental protection and regulatory compliance at the Elk Hills Field

    SciTech Connect (OSTI)

    Chappelle, H.H. (BCM Engineers, Inc., Plymouth Meeting, PA (United States)); Donahoe, R.L. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); Kato, T.T. (EG and G Energy Measurements, Inc., Las Vegas, NV (United States)); Ordway, H.E. (Chevron U.S.A., Inc., San Francisco, CA (United States))

    1991-01-01T23:59:59.000Z

    Environmental protection has played an integral role in the development and operation of the Elk Hills field since production at the maximum efficient rate was authorized in 1976. The field is located in a non-attainment area for California and National Ambient Air Quality Standards for two criteria pollutants and their associated precursors, is home to four endangered species, and operates within the California regulatory framework. Environmental protection and regulatory compliance is a multi-faceted program carried out through a substantial commitment of resources and workforce involvement. This paper describes the actions taken and resources employed to protect the environment, specific technologies and projects implement, and the ongoing nature of these efforts at Elk Hills.

  19. Environmental protection and regulatory compliance at the Elk Hills Field

    SciTech Connect (OSTI)

    Chappelle, H.H. [BCM Engineers, Inc., Plymouth Meeting, PA (United States); Donahoe, R.L. [Bechtel Petroleum Operations, Inc., Tupman, CA (United States); Kato, T.T. [EG and G Energy Measurements, Inc., Las Vegas, NV (United States); Ordway, H.E. [Chevron U.S.A., Inc., San Francisco, CA (United States)

    1991-12-31T23:59:59.000Z

    Environmental protection has played an integral role in the development and operation of the Elk Hills field since production at the maximum efficient rate was authorized in 1976. The field is located in a non-attainment area for California and National Ambient Air Quality Standards for two criteria pollutants and their associated precursors, is home to four endangered species, and operates within the California regulatory framework. Environmental protection and regulatory compliance is a multi-faceted program carried out through a substantial commitment of resources and workforce involvement. This paper describes the actions taken and resources employed to protect the environment, specific technologies and projects implement, and the ongoing nature of these efforts at Elk Hills.

  20. DOE to accept bids for Elk Hills crude

    SciTech Connect (OSTI)

    Not Available

    1992-05-04T23:59:59.000Z

    This paper reports that the Department of Energy will accept bids in a reoffering sale covering 53,400 b/d of Elk Hills field oil but later may exercise an option to cut sales volumes and ship 20,000 b/d to Strategic Petroleum Reserve sites in Texas. DOE rejected all 19 bids submitted in an earlier semiannual sale of crude oil from the California naval petroleum reserve, saying they were too low. DOE the, The unique combination of federal and state government policies affecting the movement of oil into and out of the California market has contributed to a situation in which it apparently is very difficult for the government to receive a price for Elk Hills oil that satisfies the minimum price tests that govern the sale of Elk Hills oil. The 12 winning bids in the reoffering sale averaged $13.58/bbl, with bids for the higher quality Stevens zone crude averaging $13.92/bbl, about 67 cents/bbl higher than bids rejected last month. DOE the 20,000 b/d is all local pipelines can ship to the interstate All-American pipeline for transfer to Texas beginning in June.

  1. Three dimensional simulation for Big Hill Strategic Petroleum Reserve (SPR).

    SciTech Connect (OSTI)

    Ehgartner, Brian L. (Sandia National Laboratories, Albuquerque, NM); Park, Byoung Yoon; Sobolik, Steven Ronald (Sandia National Laboratories, Albuquerque, NM); Lee, Moo Yul (Sandia National Laboratories, Albuquerque, NM)

    2005-07-01T23:59:59.000Z

    3-D finite element analyses were performed to evaluate the structural integrity of caverns located at the Strategic Petroleum Reserve's Big Hill site. State-of-art analyses simulated the current site configuration and considered additional caverns. The addition of 5 caverns to account for a full site and a full dome containing 31 caverns were modeled. Operations including both normal and cavern workover pressures and cavern enlargement due to leaching were modeled to account for as many as 5 future oil drawdowns. Under the modeled conditions, caverns were placed very close to the edge of the salt dome. The web of salt separating the caverns and the web of salt between the caverns and edge of the salt dome were reduced due to leaching. The impacts on cavern stability, underground creep closure, surface subsidence and infrastructure, and well integrity were quantified. The analyses included recently derived damage criterion obtained from testing of Big Hill salt cores. The results show that from a structural view point, many additional caverns can be safely added to Big Hill.

  2. Science Headlines | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    imageshighlights201502molecular-structure-thumb.jpg SC User Facility Combining computer simulations with laboratory measurements provides insights on molecular-level...

  3. Steam and Condensate System Optimization in Converse College, Spartanburg, SC

    E-Print Network [OSTI]

    Cruz, A.; Iordanova, N.; Stevenson, S.

    2007-01-01T23:59:59.000Z

    STEAM AND CONDENSATE SYSTEM OPTIMIZATION IN CONVERSE COLLEGE, SPARTANBURG, SC Alberto Cruz, CEM Nevena Iordanova, CEM Susan Stevenson Energy Systems Engineer Director of Engineering Services VP for Finance...

  4. Agenda | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    file (264KB) Links Databases Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown...

  5. Los Alamos National Laboratory Investigates Fenton Hill to Support...

    Broader source: Energy.gov (indexed) [DOE]

    for geothermal experiments in an attempt to generate energy using steam produced from pumping water into hot rocks deep in the ground. Most of the 10 areas of concern on the site...

  6. Clemson University Water System System No, SC3910006

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Clemson University Water System System No, SC3910006 Clemson, SC 2008 Annual Water-Quality Report and reliable supply of high-quality drinking water. We test our water using sophisticated equipment

  7. Clemson University Water System System No, SC3910006

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Clemson University Water System System No, SC3910006 Clemson, SC 2004 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  8. Clemson University Water System System No, SC3910006

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Clemson University Water System System No, SC3910006 Clemson, SC 2005 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  9. Clemson University Water System System No, SC3910006

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    of microbial contaminants. Maximum Residual Disinfectant Level Goal or (MRDLG): The level of drinking water1 Clemson University Water System System No, SC3910006 Clemson, SC 2007 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  10. Fant's Grove Water System System No, SC390112

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Fant's Grove Water System System No, SC390112 Clemson, SC 2003 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  11. Clemson University Water System System No, SC3910006

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    of microbial contaminants. Maximum Residual Disinfectant Level Goal or (MRDLG): The level of drinking water1 Clemson University Water System System No, SC3910006 Clemson, SC 2006 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  12. Clemson University Water System System No, SC3910006

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Clemson University Water System System No, SC3910006 Clemson, SC 2003 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  13. Fant's Grove Water System System No, SC390112

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Fant's Grove Water System System No, SC390112 Clemson, SC 2004 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  14. Next Story > SC DMV lifting drivers' suspensions this week

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    The State Next Story > SC DMV lifting drivers' suspensions this week Researcher: Zombie fads peak COLUMBIA, S.C. -- Zombies seem to be everywhere these days. In the popular TV series "The Walking Dead at the University of California at Davis. Lauro said she keeps track of zombie movies, TV shows and video games

  15. Reconstruction of Sedimentary Rock Based on Mechanical Properties

    E-Print Network [OSTI]

    Jin, Guodong; Patzek, Tad W.; Silin, Dmitry B.

    2008-01-01T23:59:59.000Z

    the veri?cation of rock mechanical properties. The dynamicis white. IV. ROCK MECHANICAL PROPERTIES FIG. 9: Cementationextracting meaningful rock transport properties from these

  16. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Kyanite Lead Lime Lithium Magnesium Manganese Mercury Mica Molybdenum Nickel Nitrogen Peat Perlite Graphite Peat Sulfur Beryllium Gypsum Perlite Talc Bismuth Hafnium Phosphate Rock Tantalum Boron Helium information on the USGS--the Federal source for science about the Earth, its natural and living resources

  17. Western Shallow Oil Zone, Elk Hills Field, Kern County, California:

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01T23:59:59.000Z

    This study, Appendix V, addresses the Gusher Sands and their sub units and pools. Basic pressure, production and assorted technical dta were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off points for exploitation engineers to develop specific programs towards these ends. 16 refs., 9 tabs.

  18. From the hills to the mountain. [Oil recovery in California

    SciTech Connect (OSTI)

    McDonald, J.

    1980-05-01T23:59:59.000Z

    The oil reserves at Elk Hills field, California, are listed as amounting to 835 million bbl. There is 12 times that amount lying in shallow sands in the San Joaquin Valley, although the oil is much heavier and requires more refining before use. Improved recovery techniques have enabled higher rates of recovery for heavy oil than in the past. Some of these techniques are described, including bottom-hole heating, steam injection, and oil mining. Bottom-hole heating alone raised recovery rates for heavy oil to 25%, and steam injection raised rates to 50%. It is predicted that oil mining may be able to accomplish 100% recovery of the heavy oil.

  19. Laguna Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups <LackawannaLago Vista, Texas:Hills, California:

  20. Laguna Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups <LackawannaLago Vista, Texas:Hills,

  1. Lea Hill, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana: Energy Resources JumpPrataHill, Washington:

  2. Lexington Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:NewJump to: navigation, searchCounty,Hills,

  3. Liberty Hill, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:NewJumpLiberia: EnergyTexas:Hill, Texas:

  4. EA-118 Hill County Electric Cooperative, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIX D9 STAT. 1117Hill County Electric Cooperative

  5. Brewster Hill, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBostonBrattleboro,Hampshire: EnergyBretHill, New York:

  6. Bunker Hill Village, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda, Washington: Energy(B2G)Bunker Hill Village, Texas:

  7. Waite Hill, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: EnergyWaipio,Waite Hill, Ohio:

  8. West Hills, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills, New York: Energy Resources Jump to: navigation,

  9. Westwood Hills, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills,2732°, -76.7798172°Westside

  10. Campton Hills, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits Manual JumpEnergy InformationCampton Hills,

  11. Cedar Hill, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey asWest, New Jersey: Energy Resources JumpWestHill,

  12. Cherry Hills Village, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelan County,ChenangoHills Village, Colorado: Energy

  13. Cimarron Hills, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower InternationalChuichu,Cima NanoTech Jump to:Hills,

  14. City of Blue Hill, Nebraska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity of Aplington, IowaCity of Blackwell,Blue Hill,

  15. Settlers Hill Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma: EnergySeoulSettlers Hill Gas Recovery

  16. Sewickley Hills, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma:Sevin Rosen FundsSewaren, NewHills,

  17. PP-118 Hill County Electric Cooperative Inc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse(Expired) | Department ofINCREASES |POlicy Flash8 Hill

  18. Jefferson Hills, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJane Capital4.1672949°,Information DavisHills,

  19. Heritage Hills, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|InformationInformationHensley, Arkansas: EnergyHills, New

  20. Hickory Hills, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation, search Name: Hi-GtelTennessee:Hills, Illinois:

  1. Humboldt Hill, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County,Ohio:Hughson,Hill, California: Energy

  2. Pine Hill, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermal Project JumpBeach,Hill, New York:

  3. Pine Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermal Project JumpBeach,Hill, New

  4. Pine Hills, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermal Project JumpBeach,Hill,

  5. Lost Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07) Wind Farm Jump1 JumpBeachVientosHills,

  6. City of Auburn Hills (Text Version) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag" | Department ofAddressing PolicyAuburn Hills

  7. Indian Hills, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7 Varnish cacheTransport and BuildingCreek,Hills,

  8. Mars Hill (2006) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconvertersourcesourceCharacterizationMark2015:Mars Hill

  9. Moulton Chandler Hills Wind Farm Phase II | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVistaZephyr) JumpMorroMoulton Chandler Hills

  10. Oak Hills Place, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,and Fees for GeothermalOTiltHills Place,

  11. Oak Hills, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,and Fees for GeothermalOTiltHills

  12. Orland Hills, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:Energy InformationOregon: Energy ResourcesOrion EnergyHills,

  13. Black Hills Power Inc (Montana) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyonsBirch Creek VillageForestBlack Hills

  14. Marshfield Hills, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,JemezMissouri:Marshfield Hills, Massachusetts: Energy

  15. McGinness Hills Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy ResourcesMaviMcCulloch County,McDowellMcGinness Hills

  16. Southern Minnesota Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity Corp Jumpsource HistoryCommunitySunbelt WindHills

  17. Crest Hill, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCp Holdings LlcCrenshaw County,Crest Hill, Illinois:

  18. Cumberland Hill, Rhode Island: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWing County,Electric Coop,Cumberland ElecHill,

  19. Dix Hills, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan:Emerling Farm <SiteLtd Di SDivideDix Hills,

  20. McGuinness Hills Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNewMassachusettsMayo Power JumpMcGuinness Hills

  1. Morgan Hill, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill, California: Energy Resources Jump to:

  2. Bay Hill, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County, Florida: Energy Resources JumpHill, Florida:

  3. Ben Hill County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmont County, Ohio: EnergyBelvedere,Hill County,

  4. Beverly Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina:Energy LLC Place:Beverly Hills, California: Energy

  5. Beverly Hills, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina:Energy LLC Place:Beverly Hills, California:

  6. Blue Hills, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |Bleckley County,Minnesota:OpenFlint EthanolHills,

  7. Puente Hills Energy Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublic Power &EnergyOpenPuente Hills Energy

  8. Quartz Hill, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublicPutnamQuail Valley,QuantumQuartz Hill,

  9. Raleigh Hills, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, search Name: Raghuraji AgroRajaram MaizeHills, Oregon:

  10. Rolling Hills Estates, California: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio:RockwallRolling Hills Electric Coop

  11. Fruit Hill, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° ShowCounty, California:Frontier, NorthFruit Hill,

  12. Valley Hill, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies andVacant Jump669°,Hill, North Carolina:

  13. City of Hill City, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity ofInformationHarmony,City ofCity ofHill City,

  14. Cockrell Hill, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York: Energy ResourcesCoastalCobbCockrell Hill, Texas:

  15. Hill County Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformation Hess Retail NaturalHifluxHighlineHill

  16. Agoura Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgoura Hills, California: Energy Resources Jump

  17. El Dorado Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open JumpEcologyEl Dorado Hills, California: Energy

  18. Lichen: the challenge for rock art conservation

    E-Print Network [OSTI]

    Dandridge, Debra Elaine

    2007-04-25T23:59:59.000Z

    This study investigates the effects that lichens have on rock surfaces in which ancient rock art (petroglyphs and pictographs) may be found. The study area includes four sites in the United States: one quartzite site in southwest Minnesota, two...

  19. ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM

    E-Print Network [OSTI]

    ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON, 1959 :y .iiJA/i-3ri ^' WUUUi. ANNUAL FISH PASSAGE REPORT - ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON, 1959 by Paul D. Zimmer, Clifton and observations 10 Summary 13 #12;#12;ANNUAL FISH PASSAGE REPORT - ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON

  20. ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM

    E-Print Network [OSTI]

    42) ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON 1961 Marine Biological. McKeman, Director ANNUAL FISH PASSAGE REPORT - ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON, 1961--Fisheries No. 421 Washington, D. C. April 1962 #12;Rock Island Dam, Columbia River, Washington ii #12;CONTENTS

  1. Annual Fish Passage Report -Rock Island Dam

    E-Print Network [OSTI]

    Annual Fish Passage Report - Rock Island Dam Columbia River, Washington, 1965 By Paul D. Zimmer L. McKeman, Director Annual Fish Passage Report - Rock Island Dam Columbia River, Washington, 1965;#12;Annual Fish Passage Report - Rock Island Dam Columbia River, Washington, 1965 By PAUL D. ZIMMER, Fishery

  2. Introduction 1.1 Why study rocks?

    E-Print Network [OSTI]

    Lee, Cin-Ty Aeolus

    2 Chapter 1 Introduction 1.1 Why study rocks? I am a petrologist and I study rocks. Petrology and modification of certain types of rocks. On one level, petrology involves the art of identifying and classifying. This is of course the reverse of the historical development of petrology. I have chosen this approach because all

  3. Rock magnetism of remagnetized carbonate rocks: another look MIKE JACKSON* & NICHOLAS L. SWANSON-HYSELL

    E-Print Network [OSTI]

    Swanson-Hysell, Nicholas

    Rock magnetism of remagnetized carbonate rocks: another look MIKE JACKSON* & NICHOLAS L. SWANSON-HYSELL Institute for Rock Magnetism, Winchell School of Earth Sciences, University of Minnesota, Minnesota, US, dominantly in the super- paramagnetic and stable single-domain size range, also give rise to distinctive rock-magnetic

  4. Water Rock Interaction [WRI 14] Chemical weathering of granitic rocks: experimental approach and Pb-Li

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of water/rock interactions both in terms of source and extent of weathering, by measuring major and traceWater Rock Interaction [WRI 14] Chemical weathering of granitic rocks: experimental approach and Pb, France Abstract In order to characterize water/rock interactions of granite, we performed laboratory

  5. Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the source rock slope (Figure 1), the falling mass strikes the talus slope and breaks up and/or bounces1 Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps J. Deparis, D reviews seismograms from 10 rock-fall events recorded between 1992 and 2001 by the permanent seismological

  6. 2.20 Properties of Rocks and Minerals -Magnetic Properties of Rocks and Minerals

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    2.20 Properties of Rocks and Minerals - Magnetic Properties of Rocks and Minerals R. J. Harrison, R 621 622 623 623 579 #12;580 Magnetic Properties of Rocks and Minerals 2.20.5.3 2.20.5.4 2, and are present in all types of rocks, sediments, and soils. These minerals retain a memory of the geomagnetic

  7. 37The Oldest Lunar Rocks Apollo astronauts recovered over 840 pounds of lunar rocks, and during

    E-Print Network [OSTI]

    37The Oldest Lunar Rocks Apollo astronauts recovered over 840 pounds of lunar rocks, and during applied to the different rock samples. Location Mission Rock Type Age (Myr) Mare Tranquillitatis Apollo-11 Basalt 3,500 Oceanus Procellarum Apollo-12 Basalt 3,200 Fra Mauro Formation Apollo-14 Basalt 4,150 Apollo

  8. HEPATIC MINERALS OF WHITE-TAILED AND MULE DEER IN THE SOUTHERN BLACK HILLS, SOUTH DAKOTA

    E-Print Network [OSTI]

    HEPATIC MINERALS OF WHITE-TAILED AND MULE DEER IN THE SOUTHERN BLACK HILLS, SOUTH DAKOTA Teresa J status, and species. Key words: Black Hills, elements, fire, liver, mule deer, Odocoileus hemionus and laboratory animals (Robbins, 1983). Liver concentrations of some trace elements have been measured in elk

  9. Connaught Hill Park 37.0 acres (Connaught Drive & Queensway St.)

    E-Print Network [OSTI]

    Northern British Columbia, University of

    CITY PARKS · Connaught Hill Park 37.0 acres (Connaught Drive & Queensway St.) Picnic Site 346.0 acres (Cranbrook Hill Rd.) Hiking Trails (15.0 km), Picnic Shelter and Sites, Viewpoint, Public (Heather Rd. & Austin Rd. West) Ball Diamonds, Soccer Pitch, Washrooms, Elks Centre · Recreation Place 33

  10. Petroleum source rock potential of Mesozoic condensed section deposits in southwestern Alabama

    SciTech Connect (OSTI)

    Mancini, E.A; Tew, B.H.; Mink, R.M. (Univ. of Alabama, Tuscaloosa (United States))

    1991-03-01T23:59:59.000Z

    Because condensed section deposits in carbonates and siliclastics are generally fine-grained lithologies often containing relatively high concentrations of organic matter, these sediments have the potential to be petroleum source rocks if buried under conditions favorable for hydrocarbon generation. In the Mesozoic deposits of southwestern Alabama, only the Upper Jurassic Smackover carbonate mudstones of the condensed section of the LZAGC-4.1 cycle have realized their potential as hydrocarbon source rocks. These carbonate mudstones contain organic carbon concentrations of algal and amorphous kerogen of up to 1.7% and have thermal alteration indices of 2- to 3+. The Upper Cretaceous Tuscaloosa marine claystones of the condensed section of the UZAGC-2.5 cycle are rich (up to 2.9%) in herbaceous and amorphous organic matter but have not been subjected to burial conditions favorable for hydrocarbon generation. The Jurassic Pine Hill/Norphlet black shales of the condensed section of the LZAGC-3.1 cycle and the Upper Jurassic Haynesville carbonate mudstones of the condensed section of the LZAGC-4.2 cycle are low (0.1%) in organic carbon. Although condensed sections within depositional sequences should have the highest source rock potential, specific environmental, preservational, and/or burial history conditions within a particular basin will dictate whether or not the potential is realized as evidenced by the condensed sections of the Mesozoic depositional sequences in southwestern Alabama. Therefore, petroleum geologists can use sequence stratigraphy to identify potential source rocks; however, only through geochemical analyses can the quality of these potential source rocks be determined.

  11. Mining earth's heat: development of hot-dry-rock geothermal reservoirs

    SciTech Connect (OSTI)

    Pettitt, R.A.; Becker, N.M.

    1983-01-01T23:59:59.000Z

    The energy-extraction concept of the Hot Dry Rock (HDR) Geothermal Program, as initially developed by the Los Alamos National Laboratory, is to mine this heat by creating a man-made reservoir in low-permeability, hot basement rock. This concept has been successfully proven at Fenton Hill in northern New Mexico by drilling two holes to a depth of approximately 3 km (10,000 ft) and a bottom temperature of 200/sup 0/C (392/sup 0/F), then connecting the boreholes with a large-diametervertical hydraulic fracture. Water is circulated down one borehole, heated by the hot rock, and rises up the second borehole to the surface where the heat is extracted and the cooled water is reinjected into the underground circulation loop. This system has operated for a cumulative 416 days during engineering and reservoir testing. An energy equivalent of 3 to 5 MW(t) was produced without adverse environmental problems. During one test, a generator was installed in the circulation loop and produced 60 kW of electricity. A second-generation system, recently drilled to 4.5 km (15,000 ft) and temperatures of 320/sup 0/C (608/sup 0/F), entails creating multiple, parallel fractures between a pair of inclined boreholes. This system should produce 5 to 10 MW(e) for 20 years. Significant contributions to underground technology have been made through the development of the program.

  12. Relative Permeability of Fractured Rock

    SciTech Connect (OSTI)

    Mark D. Habana

    2002-06-30T23:59:59.000Z

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  13. SC In Your State | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1U CO1)Programs »PoliciesRSS FeedsSC In

  14. Connect with SC | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC) BESACU.S.Computational

  15. Official List of SC User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact of ResearchNPNSBabout/jobs/

  16. Precipitation in cold-rolled Al–Sc–Zr and Al–Mn–Sc–Zr alloys prepared by powder metallurgy

    SciTech Connect (OSTI)

    Vlach, M., E-mail: martin.vlach@mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, CZ-121 16 Prague (Czech Republic); Stulikova, I.; Smola, B.; Kekule, T.; Kudrnova, H.; Danis, S. [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, CZ-121 16 Prague (Czech Republic); Gemma, R. [King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, 23955-6900 Thuwal (Saudi Arabia); Ocenasek, V. [SVÚM a.s., Podnikatelská 565, CZ-190 11 Prague (Czech Republic); Malek, J. [Czech Technical University in Prague, Faculty of Mechanical Engineering, CZ-120 00 Prague (Czech Republic); Tanprayoon, D.; Neubert, V. [Institut für Materialprüfung und Werkstofftechnik, Freiberger Strasse 1, D-38678 Clausthal-Zellerfeld (Germany)

    2013-12-15T23:59:59.000Z

    The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 °C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al{sub 3}Sc and/or Al{sub 3}(Sc,Zr) particles precipitated during extrusion at 350 °C in the alloys studied. Additional precipitation of the Al{sub 3}Sc and/or Al{sub 3}(Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 °C. The precipitation of the Al{sub 6}Mn- and/or Al{sub 6}(Mn,Fe) particles of a size ? 1.0 ?m at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 °C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al{sub 3}Sc particles formation and/or coarsening and that of the Al{sub 6}Mn and/or Al{sub 6}(Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al{sub 3}Sc-phase and the Al{sub 6}Mn-phase precipitation. - Highlights: • The Mn, Sc and Zr additions to Al totally suppresses recrystallization at 550 °C. • The Sc,Zr-containing particle precipitation is slightly facilitated by cold rolling. • The Mn-containing particle precipitation is highly enhanced by cold rolling. • Cold rolling has no effect on activation energy of the Al{sub 3}Sc and Al{sub 6}Mn precipitation. • The texture development is affected by high solid solution strengthening by Mn.

  17. Nidc Orgchart | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833...

  18. ALCF contributes papers, posters, and more to SC14 | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a DOE Office of Science User Facility, will have a strong presence at the high-performance computing community's premier annual event, Nov. 16-21 in New Orleans. SC is the...

  19. FY 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Small Business Technology Transfer U.S. Department of Energy SC-29Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-5707 F: (301) 903-5488 E:...

  20. Prfungsordnung fr den Masterstudiengang (M.Sc.) ,,Health Care Management "

    E-Print Network [OSTI]

    Greifswald, Ernst-Moritz-Arndt-Universität

    Prüfungsordnung für den Masterstudiengang (M.Sc.) ,,Health Care Management " an der Ernst ,,Health Care Management" (HCM) als Satzung: Inhaltsverzeichnis § 1 Regelungsgegenstand § 2* Regelungsgegenstand (1) Diese Prüfungsordnung regelt das Prüfungsverfahren im Masterstudiengang ,,Health Care

  1. Thermoelectric Transport in a ZrN/ScN Superlattice

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    at Springerlink.com Thermoelectric Transport in a ZrN/ScNthe potential for a high thermoelectric ?gure of merit. Theexperimental studies of the thermoelectric transport in ZrN/

  2. Western Shallow Oil Zone, Elk Hills Field, Kern County, California:

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01T23:59:59.000Z

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 with the United States Department of Energy. This study, Appendix II addresses the first Wilhelm Sands and its sub unites and pools. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off point for exploitation engineers to develop specific programs toward the end.

  3. DOE turns down all bids for Elk Hills crude

    SciTech Connect (OSTI)

    Not Available

    1992-03-30T23:59:59.000Z

    This paper reports that the U.S. Department of Energy has rejected all bids submitted in the Mar. 5 semiannual sale of crude oil from Elk Hills Naval Petroleum Reserve (NPR-1) in California. DOE the all 19 bids for the 53,740 b/d of crude were too low. The bids ranged from $11.71 to $14.06/bbl, with the top bids for the highest quality Stevens zone crude averaging $13.25/bbl. California oil companies the they bid what the market would bear, explaining a surplus of Alaskan crude on the West Coast has driven down the price of local crudes, notably heavy crudes. DOE will extend the current oil purchase contracts through April while it issues a new request for bids. It planned to issue the solicitation Mar. 23 and receive bids Apr. 15.

  4. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    None

    1990-01-01T23:59:59.000Z

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  5. The Naming, Identification, and Protection of Place in the Loess Hills of the Middle Missouri Valley

    E-Print Network [OSTI]

    McDermott, David Thomas

    2009-11-09T23:59:59.000Z

    tool for field work in physical geography. The only time I have carried a gun with lethal intent was in the Loess Hills of northern Missouri. A coworker and I drove into the hills just south of St. Joseph and walked, on a crisp fall morning, up.... 5 One part of the perceptual story about the Hills is their location. This study will approach that question from two perspectives. It first will offer a traditional analysis using physical data on soil, bedrock, elevation, and slope...

  6. Big Bang Day : Physics Rocks

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  7. Review of potential host rocks for radioactive waste disposal in the southeast United States-Southern Piedmont subregion

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    A literature study was conducted on the geology of the Southern Piedmont province in the states of Maryland, Virginia, North Carolina, South Carolina, and Georgia. The purpose was to identify geologic areas potentially suitable for containment of a repository for the long-term isolation of solidified radioactive waste. The crystalline rocks of the Southern Piedmont province range in age from Precambrian to Paleozoic, and are predominantly slates, phyllites, argillites, schists, metavolcanics, gneisses, gabbros, and granites. These rock units were classified as either favorable, potentially favorable, or unfavorable as potential study areas based on an evaluation of the geologic, hydrologic, and geotechnical characteristics. No socio-economic factors were considered. Rocks subjected to multiple periods of deformation and metamorphism, or described as highly fractured, or of limited areal extent were generally ranked as unfavorable. Potentially favorable rocks are primarily the high-grade metamorphic gneisses and granites. Sixteen areas were classified as being favorable for additional study. These areas are primarily large igneous granite plutons as follows: the Petersburg granite in Virginia; the Rolesville-Castallia, Churchland, and Landis plutons in North Carolina; the Liberty Hill, Winnsboro, and Ogden plutons in South Carolina; and the Siloam, Elberton, and six unnamed granite plutons in Georgia.

  8. Integrated geochemical and paleoecological approach to petroleum source rock evaluation, Cretaceous Niobrara formation, Lyons, Colorado

    SciTech Connect (OSTI)

    Barlow, L.K.; Pratt, L.M.

    1985-05-01T23:59:59.000Z

    Studies of the upper Turonian to upper Coniacian or lower part of Niobrara Formation (in ascending order, the Forty Hays Limestone Member and the marlstone, shale, and limestone of the lower part of the Smoky Hill Shale Member) reveal a significant relationship between petroleum source rock potential and paleoclimate. Trends in bioturbation, sigmaO/sup 18/ (oxygen isotopic ratio), and C/sub org/ (organic carbon content) during lower Niobrara deposition suggest that paleoclimatic factors limited bioturbation of the sediment, favored high C/sub org/ contents, and resulted in excellent source rock potential in the shale unit of the lower Smokey Hill Member. From the Fort Hays through the overlying malstone unit, sigmaO/sup 19/ in inoceramid shells shows a gradual shift from nearly normal marine values (-2 to -4%) to lighter values (-4 to -6%); over the same interval, C/sub org/ changes from relatively low values (0.1-1.4%) to moderate values (0.5-2.5%). Bioturbation throughout these units is high. A marked shift toward heavier sigmaO/sup 18/ (-6.0 to -9.1%) occurs upward into the shale unit and coincides with increase in C/sub org/ (2.3-4.9%) and an absence of bioturbation. In the limestone unit, sigmaO/sup 18/ shifts to less negative values (-6.2 to -6.5%), C/sub org/ decreases (average 1.5%), and bioturbation returns. The trend toward more negative sigmaO/sup 18/ and higher C/sub org/ values in the shale unit is inferred to reflect a lowering of surface-water salinity in the Western Interior seaway due to climatic warming and increased freshwater input. Resultant salinity stratification of the water column apparently inhibited vertical mixing and oxygenation of the bottom waters, resulting in limited benthic activity and enhanced preservation of organic matter.

  9. Laboratory characterization of rock joints

    SciTech Connect (OSTI)

    Hsiung, S.M.; Kana, D.D.; Ahola, M.P.; Chowdhury, A.H.; Ghosh, A. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

    1994-05-01T23:59:59.000Z

    A laboratory characterization of the Apache Leap tuff joints under cyclic pseudostatic and dynamic loads has been undertaken to obtain a better understanding of dynamic joint shear behavior and to generate a complete data set that can be used for validation of existing rock-joint models. Study has indicated that available methods for determining joint roughness coefficient (JRC) significantly underestimate the roughness coefficient of the Apache Leap tuff joints, that will lead to an underestimation of the joint shear strength. The results of the direct shear tests have indicated that both under cyclic pseudostatic and dynamic loadings the joint resistance upon reverse shearing is smaller than that of forward shearing and the joint dilation resulting from forward shearing recovers during reverse shearing. Within the range of variation of shearing velocity used in these tests, the shearing velocity effect on rock-joint behavior seems to be minor, and no noticeable effect on the peak joint shear strength and the joint shear strength for the reverse shearing is observed.

  10. The Landscape of Klamath Basin Rock Art

    E-Print Network [OSTI]

    David, Robert James

    2012-01-01T23:59:59.000Z

    I incorporate results from the XRF and projectile pointRay Fluorescence (hereafter, XRF) to help affiliate rock artstudies or reports in which XRF analysis have been done.

  11. Rock Bands/Rock Brands: Mediation and Musical Performance in Post-liberalization Bangalore

    E-Print Network [OSTI]

    Coventry, Chloe Louise

    2013-01-01T23:59:59.000Z

    as in its modes of fandom, production and dissemination. Inaspects of rock music fandom: America had everything a youngthe beginnings of rock music fandom in India, even while, as

  12. Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field...

    Open Energy Info (EERE)

    Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  13. EIS-0266: Glass Mountain/Four Mile Hill Geothermal Project, California

    Broader source: Energy.gov [DOE]

    The EIS analyzes BPA's proposed action to approve the Transmission Services Agreements (TSAs) and Power Purchase Agreements (PPAs) with Calpine Siskiyou Geothermal Partners, L.P. (Calpine) to acquire output from the Fourmile Hill Geothermal Development Project (Project).

  14. Kevin Wood Landscape: a study in Texas Hill Country landscape design

    E-Print Network [OSTI]

    Secker, William Walker

    2002-01-01T23:59:59.000Z

    Kevin Wood Landscape resides in Austin, Texas as the premier residential landscape design firm. The firm, although small in stature, tackles a variety of projects throughout Austin and the immediate Hill Country. Close inspection within...

  15. Constraints on the Age of Heating at the Fenton Hill Site, Valles...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Journal Article: Constraints on the Age of Heating at the Fenton Hill Site, Valles Caldera, New Mexico Abstract Subsurface samples and...

  16. Case Study Walnut Hill United Methodist Church - Dallas, Texas, Chiller Replacement Analysis

    E-Print Network [OSTI]

    Phillips, J.

    1998-01-01T23:59:59.000Z

    In March of 1992 Walnut Hill United Methodist Church in Dallas, Tx. decided that their existing thermal storage and electric reciprocating chiller system were both in need of replacement. After analyzing several options, they chose to install 150...

  17. ICFT- An Initial Closed-Loop Flow Test of the Fenton Hill Phase...

    Open Energy Info (EERE)

    ICFT- An Initial Closed-Loop Flow Test of the Fenton Hill Phase II HDR Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: ICFT- An Initial...

  18. Intern experience at CH?M Hill, Inc.: an internship report

    E-Print Network [OSTI]

    Winter, William John, 1949-

    2013-03-13T23:59:59.000Z

    A review of the author's internship experience with CH?M HILL, Inc. during the period September 1975 through May 1976 is presented. During this nine month internship the author worked as an Engineer II in the Industrial Processes...

  19. Restructuring the urban neighborhood : the dialogue between image and ideology in Phoenix Hill, Louisville, Kentucky

    E-Print Network [OSTI]

    Isaacs, Mark Andrew

    1980-01-01T23:59:59.000Z

    This thesis addresses the problems of restructuring the urban neighborhood as specifically applied to the Phoenix Hill community in Louisville, Kentucky. Theory and concepts are briefly presented as a basis for design ...

  20. Los Alamos National Laboratory Investigates Fenton Hill to Support Future Land Use

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – Supporting future land use for the U.S. Forest Service, Los Alamos National Laboratory’s Corrective Actions Program (CAP) completed sampling soil at Fenton Hill in the Jemez Mountains this month.

  1. A Cache of Mesquite Beans from the Mecca Hills, Salton Basin

    E-Print Network [OSTI]

    Swenson, James D

    1984-01-01T23:59:59.000Z

    University of Chicago Press. Bean, L. J. 1972 Mukat'sSmithsonian Institution. Bean, L. J. , and K. S. Saubel 1963Riverside. A Cache of Mesquite Beans from the Mecca Hills,

  2. Manufactured caverns in carbonate rock

    DOE Patents [OSTI]

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02T23:59:59.000Z

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  3. WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS

    E-Print Network [OSTI]

    Stewart, Sarah T.

    WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS C. L. Liu and Thomas J. Ahrens Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125 In order to record P- and S-waves on the interactions between incident P- and SV-waves and free-surfaces of rocks. The relations between particle

  4. Rheology of rock glaciers: a preliminary assessment

    SciTech Connect (OSTI)

    Giardino, J.R.; Vitek, J.D.; Hoskins, E.R.

    1985-01-01T23:59:59.000Z

    Movement of rock debris under the influence of gravity, i.e., mass movement, generates a range of phenomena from soil creep, through solifluction,debris flows and rock glaciers to rock falls. Whereas the resultant forms of these phenomena are different, common elements in the mechanics of movement are utilized in the basic interpretation of the processes of formation. Measurements of morphologic variables provide data for deductive analyses of processes that operate too slowly to observe or for processes that generated relict phenomena. External and internal characteristics or rock glacier morphometry and measured rates of motion serve as the basis for the development of a rheological model to explain phenomena classified as rock glaciers. A rock glacier in the Sangre de Cristo Mountains of Southern Colorado, which exhibits a large number of ridges and furrows and lichen bare fronts of lobes, suggests present day movement. A strain-net established on the surface provides evidence of movement characteristics. These data plus morphologic and fabric data suggest two rheological models to explain the flow of this rock glacier. Model one is based upon perfect plastic flow and model two is based upon stratified fluid movement with viscosity changing with depth. These models permit a better understanding of the movement mechanics and demonstrate that catastrophic events and slow creep contribute to the morphologic characteristics of this rock glacier.

  5. Damage and plastic deformation of reservoir rocks

    E-Print Network [OSTI]

    Ze'ev, Reches

    Damage and plastic deformation of reservoir rocks: Part 1. Damage fracturing Seth Busetti, Kyran mechanics, fluid flow in fractured reservoirs, and geomechanics in nonconventional reservoirs. Kyran Mish finite deformation of reservoir rocks. We present an at- tempt to eliminate the main limitations

  6. ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM

    E-Print Network [OSTI]

    ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON 1960 . SPECIAL SCIENTIFIC ISLAND DAM COLUMBIA RIVER, WASHINGTON, 1960 by Paul D. Zimmer and Clifton C. Davidson United States Fish This annual report of fishway operations at Rock Island Dam in 1960 is dedicated to the memory of co

  7. ROCK ELASTIC PROPERTIES: DEPENDENCE ON MICROSTRUCTURE

    E-Print Network [OSTI]

    ROCK ELASTIC PROPERTIES: DEPENDENCE ON MICROSTRUCTURE James G. Berryman and Patricia A. Berge Lawrence Livermore National Laboratory P. O. Box 808 L­202 Livermore, CA 94551­9900 #12; ROCK ELASTIC PROPERTIES: DEPENDENCE ON MICROSTRUCTURE James G. Berryman and Patricia A. Berge Lawrence Livermore National

  8. Improved oil recovery using horizontal wells at Elk Hills, California

    SciTech Connect (OSTI)

    Gangle, F.J.; Schultz, K.L.; McJannet, G.S.; Ezekwe, N.

    1995-03-01T23:59:59.000Z

    Eight horizontal wells have been drilled and completed in a steeply dipping Stevens sand reservoir in the Elk Hills field, Kern County, California. The subject reservoir, called the Stevens 26R, is a turbidite channel sand deposit one mile wide, three miles long, and one mile deep. Formation beds have a gross thickness up to 1,500 feet and dips as high as 60 degrees on the flanks. The original oil column of 1,810 feet has been pulled down to 200 feet by continual production since 1976. The reservoir management operating strategy has been full pressure maintenance by crestal gas injection since 1976. The steep dip of the formation makes gravity drainage the dominant drive mechanism. Additionally, improved recovery is coming from cycling dry gas through the large secondary gas cap region. The prudent placement of the horizontal wells above the oil/water contact promises to improve oil recovery and extend the operating life of the reservoir. Field results are given to compare the performance of the horizontal wells with the conventional wells. The horizontal wells produce at higher rates, lower draw downs, and lower gas/oil ratio which will extend the life of the project and result in higher recovery.

  9. Horizontal wells improve recovery at the Elk Hills Petroleum Reserve

    SciTech Connect (OSTI)

    Rintoul, B.

    1995-11-01T23:59:59.000Z

    In 1988 the US Department of Energy and Bechtel implemented a program to slow production declines in the Elk Hills 26R pool sand of the Naval Petroleum Reserve No. 1. It was also hoped horizontal wells would increase the production rate, decrease gas production and extend economic life of the reservoir. The Stevens sand pool targeted for the project is a high-quality, sand-rich turbidite channel system encapsulated within Miocene Monterey siliceous shales, mudstones and associated sediments. The pool is about 3-miles long by 3/4-mile wide. The paper describes the specifications and drilling of the first four out of the 14 horizontal wells drilled at this facility. Horizontal drilling technology has completely altered the future of the 26R pool. In 1980 estimated ultimate recovery (EUR) from the sand was 211 million bbl. With the latest horizontal well drilling campaign, the pool is expected to pass that estimate in 1997 when oil production is forecasted to be at least 13,000 b/d. EUR form the 26R sand now is more than 250 million bbl, and even that estimate is being revised upward.

  10. West Short Pine Hills field, Harding County, South Dakota

    SciTech Connect (OSTI)

    Strothman, B.

    1988-07-01T23:59:59.000Z

    The West Short Pine Hills field is a shallow gas field that produces from the Shannon Sandstone Member, on the Camp Crook anticline in southwestern Harding County, South Dakota. The Alma McCutchin 1-17 Heikkila discovery was drilled in the NW1/4, Sec. 17, T16N, R2E, to a depth of 1600 ft and completed in October 1977 for 600 MCFGD from perforations at 1405-1411 ft. To date, 40 gas wells have been completed with total estimated reserves of more than 20 bcf. The field encompasses 12,000 ac, with a current drill-site spacing unit of 160 ac. The field boundaries are fairly well defined, except on the south edge of the field. The wells range in depth from 1250 to 2200 ft, and cost $60,000-$85,000 to drill and complete. Core and log analyses indicate that the field has 70 ft of net pay, with average porosity of 30% and average permeability of 114 md. Most wells have been completed with nitrogen-sand frac. Williston Basin Interstate Pipeline Company of Bismarck, North Dakota, operates a compressor station and 2.5 mi of 4-in. line that connects the field to their 160 in. north-south transmission line to the Rapid City area. Currently, producers are netting $1.10-$1.25/million Btu. The late Mathew T. Biggs of Casper, Wyoming, was the geologist responsible for mapping and finding this gas deposit.

  11. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of Science (SC)

  12. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of Science (SC)About »

  13. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of Science (SC)About »About

  14. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of Science (SC)About

  15. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of Science (SC)AboutAbout »

  16. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of Science (SC)AboutAbout

  17. February 2007 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National LaboratoryJeffrey L KrauseEarthJuly 2007(SC)(SC)

  18. February 2008 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National LaboratoryJeffrey L KrauseEarthJuly 2007(SC)(SC)8

  19. Vignettes | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC) The(SC)andVignettes

  20. What's New | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC) The(SC)andVignettesNew

  1. What's New | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC) The(SC)andVignettesNew

  2. What's New | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC) The(SC)andVignettesNew

  3. 2012 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX1 DiscoveryScience (SC)

  4. Specific energy for pulsed laser rock drilling.

    SciTech Connect (OSTI)

    Xu, Z.; Reed, C. B.; Kornecki, G.; Gahan, B. C.; Parker, R. A.; Batarseh, S.; Graves, R. M.; Figueroa, H.; Skinner, N.; Technology Development

    2003-02-01T23:59:59.000Z

    Application of advanced high power laser technology to oil and gas well drilling has been attracting significant research interests recently among research institutes, petroleum industries, and universities. Potential laser or laser-aided oil and gas well drilling has many advantages over the conventional rotary drilling, such as high penetration rate, reduction or elimination of tripping, casing, and bit costs, and enhanced well control, perforating and side-tracking capabilities. The energy required to remove a unit volume of rock, namely the specific energy (SE), is a critical rock property data that can be used to determine both the technical and economic feasibility of laser oil and gas well drilling. When a high power laser beam is applied on a rock, it can remove the rock by thermal spallation, melting, or vaporization depending on the applied laser energy and the way the energy is applied. The most efficient rock removal mechanism would be the one that requires the minimum energy to remove a unit volume of rock. Samples of sandstone, shale, and limestone were prepared for laser beam interaction with a 1.6 kW pulsed Nd:yttrium-aluminum-garnet laser beam to determine how the beam size, power, repetition rate, pulse width, exposure time and energy can affect the amount of energy transferred to the rock for the purposes of spallation, melting, and vaporization. The purpose of the laser rock interaction experiment was to determine the optimal parameters required to remove a maximum rock volume from the samples while minimizing energy input. Absorption of radiant energy from the laser beam gives rise to the thermal energy transfer required for the destruction and removal of the rock matrix. Results from the tests indicate that each rock type has a set of optimal laser parameters to minimize specific energy (SE) values as observed in a set of linear track and spot tests. As absorbed energy outpaces heat diffusion by the rock matrix, local temperatures can rise to the melting points of the minerals and quickly increase observed SE values. Tests also clearly identified the spallation and melting zones for shale samples while changing the laser power. The lowest SE values are obtained in the spalling zone just prior to the onset of mineral melt. The laser thermally spalled and saw mechanically cut rocks show similarity of surface microstructure. The study also found that increasing beam repetition rate within the same material removal mechanism would increase the material removal rate, which is believed due to an increase of maximum temperature, thermal cycling frequency, and intensity of laser-driven shock wave within the rock.

  5. Carbonation of Clay Minerals Exposed to scCO2/Water at 200 degrees and 250 degrees C

    SciTech Connect (OSTI)

    Sugama, T.; Ecker, L.; Gill, S.; Butcher, T. (BNL); Bour, D. (AltaRock Energy, Inc.)

    2010-11-01T23:59:59.000Z

    To clarify the mechanisms of carbonation of clay minerals, such as bentonite, kaolinite, and soft clay, we exposed them to supercritical carbon dioxide (scCO2)/water at temperatures of 200 and 250 C and pressures of 1500 and 2000 psi for 72- and 107-hours. Bentonite, comprising three crystalline phases, montmorillonite (MMT), anorthoclase-type albite, and quartz was susceptible to reactions with ionic carbonic acid yielded by the interactions between scCO2 and water, particularly MMT and anorthoclase-type albite phases. For MMT, the cation-exchangeable ions, such as Na+ and Ca2+, present in its basal interplanar space, were replaced by proton, H+, from ionic carbonic acid; thereafter, the cations leaching from MMT directly reacted with CO32- as a counter ion of H+ to form carbonate compounds. Such in-situ carbonation process in basal space caused the shrinkage and breakage of the spacing structure within MMT. In contrast, the wet carbonation of anorthoclase-type albite, categorized as rock minerals, entailed the formation of three amorphous by-products, such as carbonates, kaolinite-like compounds, and silicon dioxide. Together, these two different carbonations caused the disintegration and corruption of bentonite. Kaolinite clay containing the amorphous carbonates and silicon dioxide was inert to wet carbonation. We noted only a gain in weight due to its water uptake, suggesting that kaolinite-like by-products generated by the wet carbonation of rock minerals might remain unchanged even during extended exposure. Soft clay consisting of two crystalline phases, dolomite and silicon dioxide, also was unaltered by wet carbonation, despite the uptake of water.

  6. Rocky Hill, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to: navigation,RockPortRocklandThis article is

  7. FRACTURE DETECTION IN CRYSTALLINE ROCK USING ULTRASONIC SHEAR WAVES

    E-Print Network [OSTI]

    Waters, K.H.

    2011-01-01T23:59:59.000Z

    the piezoelectric source plate and the rock surface. With aThe S^j sources were bonded to the rock surface with a fast-^ source plate was epoxied in position on the rock specimen.

  8. Integrated geochemical and paleoecological approach to petroleum source rock evaluation, Lower Niobrara Formation (Cretaceous), Lyons, Colorado

    SciTech Connect (OSTI)

    Barlow, L.K.

    1986-10-01T23:59:59.000Z

    A detailed study of paleoecological, geochemical, and stable isotopic properties of the lower Niobrara Formation (upper Turonian to lower Coniacian) was undertaken in order to evaluate petroleum source rock potential and to gain an understanding of the processes affecting variation in organic carbon content. The highest organic carbon contents in the lower Niobrara Formation occur in the lower shale unit of the Smoky Hill Shale Member. Trends in extent of bioturbation, organic carbon contents, and oxygen isotopic ratios of carbonates suggest that paleoclimatic factors influenced bottom water environments during deposition of this unit. A shift toward a more negative oxygen isotopic ratio in the lower shale unit is interpreted to be a result of decreased surface water salinity due to increased fresh water input and possibly to climatic warming. Resultant stratification of the water column limited benthic oxygenation thereby limiting benthic activity, enhancing the preservation of marine organic matter, and increasing source rock potential for petroleum. Data from underlying and overlying units in the lower Niobrara Formation suggest more normal marine conditions with well-oxygenated bottom waters, normal levels of bioturbation, and relatively low organic carbon contents. Pyrolysis data are interpreted to reflect a principally marine source of organic matter with substantial alteration due to bioturbation and thermal evolution. Elevated thermal maturity of the sections at Lyons is inferred to be a local feature caused by local heating associated with fluid movement along fault zones or with emplacement of tertiary sills.

  9. SC-RISE LECTURE SERIES BRIGHT HORIZONS IN SOLAR ENERGY

    E-Print Network [OSTI]

    SC-RISE LECTURE SERIES BRIGHT HORIZONS IN SOLAR ENERGY Sustainable Energy Opportunities, Options are being developed including biomass, geothermal, hydropower, ocean thermal energy conversion, solar electric, solar thermal, and wind. However, such aspects as low energy density, siting, and temporal

  10. Graduate Student ScHool of Graduate StudieS

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Graduate Student Handbook ScHool of Graduate StudieS 2012-2013 #12;Foreword This handbook should website http://gradstudies.case.edu for the most comprehensive and up to date information. The learning scholarly activity, the very search for knowledge is impaired. In these respects, each of us

  11. S1The Newsletter for all ScHARR graduates

    E-Print Network [OSTI]

    Oakley, Jeremy

    , corruption and poor management can often turn a challenge into a disaster. Tide From September, ScHARR's new Master of Public Health specialist programme in Management and Leadership will do its bit to turn the tide of public health. Management and governance of public health have been recognised as among

  12. M.Sc. Mathematics: Guidelines on Writing the Project Dissertation

    E-Print Network [OSTI]

    Wright, Francis

    M.Sc. Mathematics: Guidelines on Writing the Project Dissertation Aim The aim of the dissertation. Remember that your dissertation will be read by three examiners, all of whom will be asking themselves `Can The dissertation should be written in correct, grammatical English. The content should be clear and readable

  13. DOE/SC-0060 U. S. Department of Energy

    E-Print Network [OSTI]

    . The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severeDOE/SC-0060 U. S. Department of Energy Office of Science September, 2002 Fusion Energy Sciences Advisory Committee A BURNING PLASMA PROGRAM STRATEGY TO ADVANCE FUSION ENERGY #12;1 Report of the FESAC

  14. altered granitic rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22 Everglades National Park Groundwater wells Surface water monitoring locations Rock mining locations 12 Demers, Nora Egan 211 Nova Scotia Rock Garden Club Membership...

  15. Regional Geology: GIS Database for Alternative Host Rocks and...

    Energy Savers [EERE]

    Regional Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines Regional Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines...

  16. aspo hard rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  17. antarctic rocks colonized: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  18. algonquin class rocks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  19. acidic crystalline rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  20. aphanitic melt rocks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  1. aespoe hard rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  2. Stress and fault rock controls on fault zone hydrology, Coso...

    Open Energy Info (EERE)

    rock controls on fault zone hydrology, Coso geothermal field, CA Abstract In crystalline rock of the Coso Geothermal Field, CA, fractures are the primary source of permeability....

  3. EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Areva Eagle Rock Enrichment Facility in Bonneville County, ID EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville County, ID May 20, 2011 EIS-0471: Final Environmental...

  4. Science mentor program at Mission Hill Junior High School

    SciTech Connect (OSTI)

    Dahlquist, K. [Univ. of California, Santa Cruz, CA (United States)

    1994-12-31T23:59:59.000Z

    Science graduate students from the University of California at Santa Cruz mentor a class of 7th graders from the Mission Hill Junior High School. The program`s purpose is: (1) to create a scientific learning community where scientists interact at different levels of the educational hierarchy; (2) to have fun in order to spark interest in science; and (3) to support girls and minority students in science. A total of seven mentors met with the students at least once a week after school for one quarter to tutor and assist with science fair projects. Other activities included a field trip to a university earth science lab, judging the science fair, and assisting during laboratory exercises. Graduate students run the program with minimal organization and funding, communicating by electronic mail. An informal evaluation of the program by the mentors has concluded that the most valuable and effective activities have been the field trip and assisting with labs. The actual {open_quotes}mentor meetings{close_quotes} after school did not work effectively because they had a vaguely defined purpose and the kids did not show up regularly to participate. Future directions include redefining ourselves as mentors for the entire school instead of just one class and better coordinating our activities with the teachers` curriculum. We will continue to assist with the labs and organize formal tutoring for students having problems with math and science. Finally, we will arrange more activities and field trips such as an amateur astronomy night. We will especially target girls who attended the {open_quotes}Expanding Your Horizons{trademark} in Science, Mathematics, and Engineering{close_quotes} career day for those activities.

  5. Dry gas zone, Elk Hills Field, Kern County, California: General reservoir study: Engineering data, effective August 1, 1988

    SciTech Connect (OSTI)

    Not Available

    1989-01-10T23:59:59.000Z

    This reservoir study of the dry gas zone of Elk Hills Field is a data compilation with information relating to well: completion; production; pressure; and back pressure. (JF)

  6. Structure and Dynamics of Forsterite-scCO2/H2O Interfaces as...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forsterite-scCO2H2O Interfaces as a Function of Water Content. Structure and Dynamics of Forsterite-scCO2H2O Interfaces as a Function of Water Content. Abstract: Molecular...

  7. Rock bed behavior and reverse thermosiphon effects

    SciTech Connect (OSTI)

    Perry, J.E.

    1980-01-01T23:59:59.000Z

    Two rock beds, in the Mark Jones and Doug Balcomb houses, have been instrumented, monitored, and analyzed. Observed experimental operation has been compared with, or explained by, theoretical predictions. The latter are based on one-dimensional finite-difference computer calculation of rock bed charging and discharging, with fixed or variable inputs of air flow rate and temperature. Both rock beds exhibit appreciable loss of stored heat caused by lack of backdraft dampers or incomplete closure of such dampers. These topics are discussed, and some improvements that might be made in future installations are noted.

  8. ISO/IEC JTC1/SC29/WG1 N1584 13 March 2000

    E-Print Network [OSTI]

    Zeng, Wenjun "Kevin"

    ISO/IEC JTC1/SC29/WG1 N1584 13 March 2000 ISO/IEC JTC 1/SC 29/WG 1 (ITU-T SG8) Coding of Still Mailing List Contact: ISO/IEC JTC 1/SC 29/WG 1 Convener - Dr. Daniel T. Lee Hewlett-Packard Company, 11000-mail: Daniel_Lee@hp.com 1 #12;ISO/IEC JTC1/SC29/WG1 N1584 13 March 2000 Core Experiment Description

  9. ISO/IEC JTC1/SC29/WG1 N1716 22 June 2000

    E-Print Network [OSTI]

    Zeng, Wenjun "Kevin"

    ISO/IEC JTC1/SC29/WG1 N1716 22 June 2000 ISO/IEC JTC 1/SC 29/WG 1 (ITU-T SG8) Coding of Still: For information only DISTRIBUTION: WG 1 Mailing List Contact: ISO/IEC JTC 1/SC 29/WG 1 Convener - Dr. Daniel T 447 4160, Fax: +1 408 447 2842, E-mail: Daniel_Lee@hp.com 1 #12;ISO/IEC JTC1/SC29/WG1 N1716 22 June

  10. ISO/IEC JTC1/SC29/WG1 N1303 30 June 1999

    E-Print Network [OSTI]

    Zeng, Wenjun "Kevin"

    ISO/IEC JTC1/SC29/WG1 N1303 30 June 1999 ISO/IEC JTC 1/SC 29/WG 1 (ITU-T SG8) Coding of Still: ISO/IEC JTC 1/SC 29/WG 1 Convener - Dr. Daniel T. Lee Hewlett-Packard Company, 11000 Wolfe Road, MS42U_Lee@hp.com 1 #12;ISO/IEC JTC1/SC29/WG1 N1303 30 June 1999 Core Experiment Description/Results Summary

  11. DOE to ship 20,000 b/d of Elk Hills oil to SPR

    SciTech Connect (OSTI)

    Not Available

    1992-05-11T23:59:59.000Z

    This paper reports that the U.S. department of Energy has decided to ship 20,000 b/d of its Elk Hills field production in California to the Strategic Petroleum Reserve on the Gulf Coast. DOE says prices are too low to sell the high quality Elk Hills Stevens zone oil on the California market. It had warned local buyers it might divert the oil to the Gulf Coast. It says shipping the Elk Hills crude to the SPR site at Big Hill, Tex., will save $2/bbl under the price of comparable crude delivered there for storage in the SPR. Pipeline shipments are to begin June 1 and continue for 4 months, totaling about 2.4 million bbl. DOE may or may not continue the shipments, depending on results of the semiannual Elk Hills crude oil sale in September. Reductions in the existing 12 sales contracts will be prorated among buyers. The 20,000 b/d volume is the most that can be shipped from the West Coast to the Gulf Coast through available pipelines.

  12. College/University: 1999 B.Sc. University of Indonesia, Indonesia

    E-Print Network [OSTI]

    Manstein, Dietmar J.

    Education College/University: 1999 B.Sc. University of Indonesia, Indonesia 2003 M.Sc. University of Indonesia, Indonesia Highest degree: M.Sc. in Microbiology Medicine Major Subjects: Cell Biology, Embryonic name: Andri Last name: Pramono Date of birth: 21.08.1976 Country: Indonesia E-mail: pramesyanti @yahoo

  13. ccsd00001116 Nucleation of Al 3 Zr and Al 3 Sc in aluminum alloys

    E-Print Network [OSTI]

    ccsd­00001116 (version 1) : 4 Feb 2004 Nucleation of Al 3 Zr and Al 3 Sc in aluminum alloys: from 4, 2004) Zr and Sc precipitate in aluminum alloys to form the compounds Al3Zr and Al3Sc which

  14. M.Sc. and Ph.D. in Agricultural & Biological Engineering www.usask.ca

    E-Print Network [OSTI]

    Saskatchewan, University of

    Department of Chemical and Biological Engineering M.Sc. and Ph.D. in Agricultural & BioresourceM.Sc. and Ph.D. in Agricultural & Biological Engineering www.usask.ca College of Engineering Engineering M.Sc. and Ph.D. programs in Agricultural & Bioresource Engineering integrate engineering

  15. ISO/IEC JTC 1/SC 29/WG 1 N 867 Date: June 27, 1998

    E-Print Network [OSTI]

    Adams, Michael D.

    ISO/IEC JTC 1/SC 29/WG 1 N 867 Date: June 27, 1998 ISO/IEC JTC 1/SC 29/WG 1 (ITU­T SG8) Coding ACTION: Discussion DISTRIBUTION: July 1998 Meeting of WG1 Contact: ISO/IEC JTC 1/SC 29/WG 1 Convener

  16. ISO/IEC JTC 1/SC 29/WG 1 N 2415 Date: 2006-12-07

    E-Print Network [OSTI]

    Adams, Michael D.

    ISO/IEC JTC 1/SC 29/WG 1 N 2415 Date: 2006-12-07 ISO/IEC JTC 1/SC 29/WG 1 (ITU-T SG 16) Coding STATUS: REQUESTED ACTION: None DISTRIBUTION: Public Contact: ISO/IEC JTC 1/SC 29/WG 1 Convener

  17. Rock Slopes from Mechanics to Decision Making

    E-Print Network [OSTI]

    Einstein, Herbert H.

    Rock slope instabilities are discussed in the context of decision making for risk assessment and management. Hence, the state of the slope and possible failure mechanism need to be defined first. This is done with geometrical ...

  18. First Rocks from Outside the Solar System

    SciTech Connect (OSTI)

    Westphal, Andrew

    2014-10-17T23:59:59.000Z

    Andrew Westphal presents his findings in examining the first rocks from outside the solar system at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  19. Determination of mechanical properties of reservoir rock

    E-Print Network [OSTI]

    Barnett, Ashley

    1993-01-01T23:59:59.000Z

    Apparatus, experimental procedure, and methodology have been developed to determine the mechanical response of reservoir rock. The apparatus is capable of subjecting cylindrical core specimens to triaxial stress states and temperatures...

  20. Hot dry rock geothermal energy. Draft final report

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This second EPRI workshop on hot dry rock (HDR) geothermal energy, held in May 1994, focused on the status of worldwide HDR research and development and used that status review as the starting point for discussions of what could and should be done next: by U.S. federal government, by U.S. industry, by U.S. state governments, and by international organizations or through international agreements. The papers presented and the discussion that took place indicate that there is a community of researchers and industrial partners that could join forces, with government support, to begin a new effort on hot dry rock geothermal development. This new heat mining effort would start with site selection and confirmatory studies, done concurrently. The confirmatory studies would test past evaluations against the most current results (from the U.S. site at Fenton Hill, New Mexico, and from the two sites in Japan, the one in Russia, and the two in western Europe) and the best models of relevant physical and economic aspects. Site selection would be done in the light of the confirmatory studies and would be influenced by the need to find a site where success is probable and which is representative enough of other sites so that its success would imply good prospects for success at numerous other sites. The test of success would be circulation between a pair of wells, or more wells, in a way that confirmed, with the help of flow modeling, that a multi-well system would yield temperatures, flows and lifetimes that support economically feasible power generation. The flow modeling would have to have previously achieved its own confirmation from relevant data taken from both heat mining and conventional hydrothermal geothermal experience. There may be very relevant experience from the enhancement of ''hot wet rock'' sites, i.e., sites where hydrothermal reservoirs lack, or have come to lack, enough natural water or steam and are helped by water injected cold and produced hot. The new site would have to be selected in parallel with the confirmatory studies because it would have to be modeled as part of the studies and because its similarity to other candidate sites must be known well enough to assure that results at the selected site are relevant to many others. Also, the industry partners in the joint effort at the new site must be part of the confirmatory studies, because they must be convinced of the economic feasibility. This meeting may have brought together the core of people who can make such a joint effort take place. EPRI sponsored the organization of this meeting in order to provide utilities with an update on the prospects for power generation via heat mining. Although the emerging rules for electric utilities competing in power generation make it very unlikely that the rate-payers of any one utility (or small group of utilities) can pay the differential to support this new heat mining research and development effort, the community represented at this meeting may be able to make the case for national or international support of a new heat mining effort, based on the potential size and economics of this resource as a benefit for the nation as a whole and as a contribution to reduced emissions of fossil CO{sub 2} worldwide.

  1. Stress-induced transverse isotropy in rocks

    SciTech Connect (OSTI)

    Schwartz, L.M.; Murphy, W.F. III [Schlumberger-Doll Research Center, Ridgefield, CT (United States); Berryman, J.G. [Lawrence Livermore National Lab., CA (United States)

    1994-03-28T23:59:59.000Z

    The application of uniaxial pressure can induce elastic anisotropy in otherwise isotropic rock. We consider models based on two very different rock classes, granites and weakly consolidated granular systems. We show that these models share common underlying assumptions, that they lead to similar qualitative behavior, and that both provide a microscopic basis for elliptical anisotropy. In the granular case, we make experimentally verifiable predictions regarding the horizontally propagating modes based on the measured behavior of the vertical modes.

  2. Elk Hills endangered and threatened species program: Phase 1 progress summary

    SciTech Connect (OSTI)

    O'Farrell, T.P.

    1980-03-01T23:59:59.000Z

    The endangered San Joaquin kit fox, Vulpes macrotis mutica, and bluntnosed leopard lizard, Crotaphytus silus, are known to occur on the Elk Hills Naval Petroleum Reserve, NPR-1. An integrated, multiphased field program was designed to gather, synthesize, and interpret ecological information necessary for Biological Assessments required by the Secretary of Interior. These assessments will be used as the basis for a formal consultation with the Department of Interior to determine whether DOE activities on Elk Hills are compatible with the continued existence of the two species. Transects totalling 840 km were walked through all sections of Elk Hills to determine: (1) the presence and relative densities of endangered or threatened species; (2) past and potential impacts of NPR-1 activities on endangered and threatened species; and (3) the potential application of remote sensing for gathering necessary data.

  3. U.S. strategic petroleum reserve Big Hill 114 leak analysis 2012.

    SciTech Connect (OSTI)

    Lord, David L.; Roberts, Barry L.; Lord, Anna C. Snider; Sobolik, Steven Ronald; Park, Byoung Yoon; Rudeen, David Keith [GRAM, Inc., Albuquerque, NM

    2013-06-01T23:59:59.000Z

    This report addresses recent well integrity issues related to cavern 114 at the Big Hill Strategic Petroleum Reserve site. DM Petroleum Operations, M&O contractor for the U.S. Strategic Petroleum Reserve, recognized an apparent leak in Big Hill cavern well 114A in late summer, 2012, and provided written notice to the State of Texas as required by law. DM has since isolated the leak in well A with a temporary plug, and is planning on remediating both 114 A- and B-wells with liners. In this report Sandia provides an analysis of the apparent leak that includes: (i) estimated leak volume, (ii) recommendation for operating pressure to maintain in the cavern between temporary and permanent fixes for the well integrity issues, and (iii) identification of other caverns or wells at Big Hill that should be monitored closely in light of the sequence of failures there in the last several years.

  4. Conversion of the Big Hill geological site characterization report to a three-dimensional model.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Rautman, Christopher Arthur

    2003-02-01T23:59:59.000Z

    The Big Hill salt dome, located in southeastern Texas, is home to one of four underground oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Big Hill site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 14 oil storage caverns at the site. This work provides a realistic and internally consistent geologic model of the Big Hill site that can be used in support of future work.

  5. Design of tabular excavations in foliated rock: an integrated numerical

    E-Print Network [OSTI]

    to the mineralized zone (development openings), extracting the ore from the surrounding host rock (stopes. The first stage in the design process is the characterization of the rock mass using both in situ of the mining process, requiring that the rock mass stability, both within the orebody and in the rock adjacent

  6. Mixture Theories for Rock Properties James G. Berryman

    E-Print Network [OSTI]

    Mixture Theories for Rock Properties James G. Berryman Lawrence Livermore National Laboratory by Batchelor [3], Hale [41], Hashin [42], Torquato [95], and Willis [110] are also recommended. 1.1. Rocks Are Inhomogeneous Materials A rock is a naturally occurring mixture of minerals. Rocks are normally inhomogeneous

  7. POPULATION ESTIMATION PROCEDURES FOR ELK AND DEER IN THE BLACK HILLS, SOUTH DAKOTA: DEVELOPMENT OF A SIGHTABILITY

    E-Print Network [OSTI]

    POPULATION ESTIMATION PROCEDURES FOR ELK AND DEER IN THE BLACK HILLS, SOUTH DAKOTA: DEVELOPMENT PROCEDURES FOR ELK AND DEER IN THE BLACK HILLS, SOUTH DAKOTA: DEVELOPMENT OF A SIGHTABILITY MODEL my masters in elk research. It has been a wonderful learning and growing experience for which I am

  8. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis

  9. BIOLOGY AT NCBS, BANGALORE AND DBS, MUMBAI (PhD/Int-PhD/ M. Sc.-by-Research/ M. Sc. in Wildlife & Conservation)

    E-Print Network [OSTI]

    Bhalla, Upinder S.

    BIOLOGY AT NCBS, BANGALORE AND DBS, MUMBAI (PhD/Int-PhD/ M. Sc.-by-Research/ M. Sc. in Wildlife & Conservation) (Please check the websites: `Admissions' at www.ncbs.res.in; http at both Bangalore and Mumbai campuses. Internet access, e-mail and bibliography search support are also

  10. Magnetotelluric images of the crustal structure of Chyulu Hills volcanic field, Kenya

    E-Print Network [OSTI]

    Meju, Max

    Magnetotelluric images of the crustal structure of Chyulu Hills volcanic field, Kenya V. Sakkas volcanic chain on the eastern flank of the Kenya Rift in East Africa. Transient electromagnetic (TEM flank of the Kenya Rift deduced from wide-angle P-wave data. In: Fuchs, K., Altherr, R., Muller, B

  11. EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess potential environmental impacts of the proposed rebuild of its 26-mile 115 kilovolt (kV) wood-pole Hills Creek-Lookout Point transmission line, which is generally located between Lowell and Oakridge, in Lane County, Oregon.

  12. Corrosion of Metals in Composite Cements Anthony Setiadi*, J. Hill and N. B. Milestone

    E-Print Network [OSTI]

    Sheffield, University of

    Corrosion of Metals in Composite Cements Anthony Setiadi*, J. Hill and N. B. Milestone. However, there may be issues regarding the corrosion of some of the metal components which arise from reprocessing and decommissioning due to the alkaline environment in the cement grouts. The corrosion

  13. ROBOTICS WITHIN THE TEACHING OF PROBLEM-SOLVING SCOTT TURNER AND GARY HILL

    E-Print Network [OSTI]

    Hill, Gary

    ROBOTICS WITHIN THE TEACHING OF PROBLEM-SOLVING SCOTT TURNER AND GARY HILL DIVISION OF COMPUTING-solving approaches, are tasks using Mindstorm (LEGO, Denmark) robot kits. This is being done as a foundation step of a previous robot problem. Results of student evaluation and feedback will be presented and the use of two

  14. The 26 December (Boxing Day) 1997 sector collapse and debris avalanche at Soufriere Hills Volcano, Montserrat

    E-Print Network [OSTI]

    Belousov, Alexander

    , Russia 5 Institut de Physique du Globe de Paris (IPGP), 4 Place Jussieu, B 89, 75252 Cedex 05 Paris & Mullineaux 1981). At Soufriere Hills, an andesilic lava dome had grown over the unstable, hydro- thermally dome was exposed and depressurized, and it exploded to generate a powerful pyroclastic density current

  15. Search for Harmonic tremor in the Galapagos Jonathan M. Lees, University of North Carolina, Chapel Hill

    E-Print Network [OSTI]

    Geist, Dennis

    Search for Harmonic tremor in the Galapagos Jonathan M. Lees, University of North Carolina, Chapel Hill Harmonic volcano tremor can provide details of conduit physics during magma flow and volcano.71.2 Hz. Harmonic tremor has not been reported on Galapagos volcanoes, possibly because seismic

  16. Highway 280 North or South Take the Sand Hill Road exit, head east

    E-Print Network [OSTI]

    Ford, James

    Highway 280 North or South · Take the Sand Hill Road exit, head east · Turn right on Stock Farm for "all" below From Bayshore US Highway 101 NorthFrom Bayshore US Highway 101 North or South · Take · Turn left on Stock Farm Road LKSC ParkingTurn left on Stock Farm Road · Make the next lefthand turn

  17. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal

    E-Print Network [OSTI]

    Avouac, Jean-Philippe

    Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal J. Lave´1 of central Nepal, south of the Kathmandu Basin. The Main Frontal Thrust fault (MFT), which marks the southern analysis, complemented by geological investiga- tions in central Nepal. Active deformation in the Himalaya

  18. Ambient noise seismic imaging Journal: McGraw Hill 2008 Yearbook of Science & Technology

    E-Print Network [OSTI]

    Ritzwolle, Mike

    ForReview Ambient noise seismic imaging Journal: McGraw Hill 2008 Yearbook of Science & Technology List of Authors: Ritzwoller, Michael Keywords: ambient noise, seismology, seismic tomography, Rayleigh wave, Love wave, surface wave Abstract: A recent innovation in seismic imaging based on using long time

  19. Laboratory evaluation of damage criteria and permeability of Big Hill salt.

    SciTech Connect (OSTI)

    Ehgartner, Brian L.; Park, Byoung Yoon; Lee, Moo Yul; Bronowski, David R.

    2004-11-01T23:59:59.000Z

    To establish strength criteria of Big Hill salt, a series of quasi-static triaxial compression tests have been completed. This report summarizes the test methods, set-up, relevant observations, and results. The triaxial compression tests established dilatant damage criteria for Big Hill salt in terms of stress invariants (I{sub 1} and J{sub 2}) and principal stresses ({sigma}{sub a,d} and {sigma}{sub 3}), respectively: {radical}J{sub 2}(psi) = 1746-1320.5 exp{sup -0.00034I{sub 1}(psi)}; {sigma}{sub a,d}(psi) = 2248 + 1.25 {sigma}{sub 3} (psi). For the confining pressure of 1,000 psi, the dilatant damage strength of Big Hill salt is identical to the typical salt strength ({radical}J{sub 2} = 0.27 I{sub 1}). However, for higher confining pressure, the typical strength criterion overestimates the damage strength of Big Hill salt.

  20. Source rock maturation, San Juan sag

    SciTech Connect (OSTI)

    Gries, R.R.; Clayton, J.L.

    1989-09-01T23:59:59.000Z

    Kinetic modeling for thermal histories was simulated for seven wells in the San Juan sag honoring measured geochemical data. Wells in the area of Del Norte field (Sec. 9, T40N, R5E), where minor production has been established from an igneous sill reservoir, show that the Mancos Shale source rocks are in the mature oil generation window as a combined result of high regional heat flow and burial by approximately 2,700 m of Oligocene volcanic rocks. Maturation was relatively recent for this area and insignificant during Laramide subsidence. In the vicinity of Gramps field (Sec. 24, T33N, R2E) on the southwest flank of the San Juan sag, these same source rocks are exposed due to erosion of the volcanic cover but appear to have undergone a similar maturation history. At the north and south margins of the sag, two wells (Champlin 34A-13, Sec. 13, T35N, R4.5E; and Champlin 24A-1, Sec. 1, T44N, R5E) were analyzed and revealed that although the regional heat flow was probably similar to other wells, the depth of burial was insufficient to cause maturation (except where intruded by thick igneous sills that caused localized maturation). The Meridian Oil 23-17 South Fork well (Sec. 17, T39N, R4E) was drilled in a deeper part of the San Juan sag, and source rocks were intruded by numerous igneous sills creating a complex maturation history that includes overmature rocks in the lowermost Mancos Shale, possible CO{sub 2} generation from the calcareous Niobrara Member of the Mancos Shale, and mature source rocks in the upper Mancos Shale.

  1. Rock melting tool with annealer section

    DOE Patents [OSTI]

    Bussod, Gilles Y. (Santa Fe, NM); Dick, Aaron J. (Oakland, CA); Cort, George E. (Montrose, CO)

    1998-01-01T23:59:59.000Z

    A rock melting penetrator is provided with an afterbody that rapidly cools a molten geological structure formed around the melting tip of the penetrator to the glass transition temperature for the surrounding molten glass-like material. An annealing afterbody then cools the glass slowly from the glass transition temperature through the annealing temperature range to form a solid self-supporting glass casing. This allows thermally induced strains to relax by viscous deformations as the molten glass cools and prevents fracturing of the resulting glass liner. The quality of the glass lining is improved, along with its ability to provide a rigid impermeable casing in unstable rock formations.

  2. Oilfield rock bits: Are they a commodity

    SciTech Connect (OSTI)

    Caldwell, R.

    1994-05-01T23:59:59.000Z

    This paper discusses the quality of various types of rock drill bits and evaluates cost of these bits against service and performance to determine if bits should be viewed as a commodity when drilling a production or exploration well. Continuing advancements in materials technology, machining capabilities, hydraulics arrangements, bearing configuration, seal technology and cutter design continue to push the performance curve for oilfield rock bits. However, some very important advancements are patented, proprietary features of individual manufacturers. This paper reviews some of these design and performance features to help determine if they are worth the extra investment based on actual field drilling experience.

  3. Specific energy for laser removal of rocks.

    SciTech Connect (OSTI)

    Xu, Z.; Kornecki, G.; Reed, C. B.; Gahan, B. C.; Parker, R. A.; Batarseh, S.; Graves, R. M.

    2001-08-16T23:59:59.000Z

    Application of advanced high power laser technology into oil and gas well drilling has been attracting significant research interests recently among research institutes, petroleum industries, and universities. Potential laser or laser-aided oil and gas well drilling has many advantages over the conventional rotary drilling, such as high penetration rate, reduction or elimination of tripping, casing, and bit costs, and enhanced well control, perforating and side-tracking capabilities. The energy required to remove a unit volume of rock, namely the specific energy (SE), is a critical rock property data that can be used to determine both the technical and economic feasibility of laser oil and gas well drilling.

  4. Metamorphic Rocks, Processes, and Resources Metamorphic rocks are rocks changed from one form to another by intense heat, intense pressure,

    E-Print Network [OSTI]

    Li, X. Rong

    important ­ Rising temperature causes water to be released from unstable minerals ­ Hot water very reactive refers to the temperature and pressure under which a rock was metamorphosed, considered low grade or high ­ If range exceeded, new mineral structures result ­ If temperature gets high enough, melting will occur

  5. The calculated rovibronic spectrum of scandium hydride, ScH

    E-Print Network [OSTI]

    Lodi, Lorenzo; Tennyson\\, Jonathan

    2015-01-01T23:59:59.000Z

    The electronic structure of six low-lying electronic states of scandium hydride, $X\\,{}^{1}\\Sigma^+$, $a\\,{}^{3}\\Delta$, $b\\,{}^{3}\\Pi$, $A\\,{}^{1}\\Delta$ $c\\,{}^{3}\\Sigma^+$, and $B\\,{}^{1}\\Pi$, is studied using multi-reference configuration interaction as a function of bond length. Diagonal and off-diagonal dipole moment, spin-orbit coupling and electronic angular momentum curves are also computed. The results are benchmarked against experimental measurements and calculations on atomic scandium. The resulting curves are used to compute a line list of molecular ro-vibronic transitions for $^{45}$ScH.

  6. News Archives | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew UserCAMD Home | Beamlines |

  7. IACT | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen Storage inChang Curriculum Vitae' NetCDF

  8. DOE/SC Lehman Review of US ITER Project, USIPO,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24,7,INL is aSC Lehman

  9. Bionic Plants | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC) BESAC HomeU.S. DOE OfficeBionic

  10. Brochures | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC) BESAC HomeU.S. DOEhighlights/

  11. Ceremony | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC) BESACU.S. DOE Office ofCeremony

  12. Commercialization Assistance| U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC) BESACU.S. DOE

  13. Contacts | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC) BESACU.S.ComputationalContacts

  14. Contract Information | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)Contract Information Grants &

  15. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)Contract Information Grants

  16. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)Contract Information GrantsContract

  17. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)Contract Information

  18. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)Contract InformationContract

  19. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)Contract

  20. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)ContractContract Management Oak

  1. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)ContractContract Management

  2. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)ContractContract ManagementContract

  3. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)ContractContract

  4. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)ContractContractContract Management

  5. Cosmic Frontier | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)ContractContractContract

  6. Current Projects | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)ContractContractContractCurrent

  7. Designation Process | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of ScienceCurrent ProjectsResearch(SC)2/ Below

  8. Functions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of ScienceCurrentEmergencyU.S.U.S.(SC)

  9. News | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact of ResearchNPNSB Home

  10. Newsletters | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact of ResearchNPNSB HomeNewsletters About About

  11. Open FOAs | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact of ResearchNPNSBabout/jobs/CeO2 » Open FOAs

  12. Other Links | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact of ResearchNPNSBabout/jobs/CeO2Other Links

  13. Other Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact of ResearchNPNSBabout/jobs/CeO2Other

  14. Oversight | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact of

  15. Privacy Act | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome Pacific NorthwestHomePrivacy Act

  16. Programs | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome Pacific

  17. Project Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome PacificManagement Project Assessment

  18. Publications | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome PacificManagement ProjectPublications

  19. Recovery Act | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome PacificManagementRecovery Act News

  20. Reference Links | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome PacificManagementRecovery Act

  1. Reporting Fraud | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome PacificManagementRecovery

  2. Research News | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome PacificManagementRecoveryResearch

  3. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome

  4. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearch Biological and Environmental

  5. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearch Biological and

  6. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearch Biological andResearch Fusion

  7. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearch Biological andResearch

  8. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearch Biological

  9. Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearch BiologicalOrganization

  10. Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearch

  11. Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearchResources Brookhaven Site

  12. Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearchResources Brookhaven

  13. Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearchResources BrookhavenResources

  14. Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearchResources

  15. Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearchResourcesResources Pacific

  16. Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearchResourcesResources

  17. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of Science

  18. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of ScienceAbout » Staff Small

  19. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of ScienceAbout » Staff

  20. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of ScienceAbout » StaffAbout »

  1. Sustainability | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of ScienceAbout

  2. Technology Transfer | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of ScienceAboutTechnology

  3. Theoretical Physics | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe Life of Enrico

  4. Training | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe Life of

  5. User Agreements | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUser Agreements User

  6. User Safety | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUser AgreementsUser

  7. 1950's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork 100Gbps's The

  8. 1960's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork 100Gbps's

  9. 1960's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork 100Gbps's's

  10. 1970's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork 100Gbps's's's

  11. 1970's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork

  12. 1980's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's The Enrico

  13. 1980's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's The

  14. 1990's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's The's The

  15. 1990's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's The's The's

  16. 2000's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's The's

  17. 2000's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's The's's The

  18. 2009 Awards | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's Awards

  19. 2010's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's Awards's

  20. 2010's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's Awards's's

  1. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's33 Discovery

  2. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's33

  3. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's333 High

  4. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's333 High3

  5. 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's333 High344

  6. 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's333 High3444

  7. 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's333

  8. 2015 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's3332015

  9. 2015 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's3332015

  10. 2015 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's33320155

  11. 2015 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's333201555

  12. DOE SC Exascale Requirements Review: High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOST MANAGEMENT REPORT26,go!(RMP)08ResponseSC

  13. RMSSEC | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, andSmart SensorsData -Madison

  14. Agenda20120921 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5, 2009

  15. Agenda22610 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5, 2009February 26,

  16. Agenda31105 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5, 2009February

  17. Agenda31708 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5, 2009February7,

  18. Agenda3209 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,

  19. Agenda3211 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,Minutes March 02,

  20. Agenda3807 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,Minutes March

  1. Agenda61505 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,Minutes MarchJune

  2. Agenda72709 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,Minutes

  3. Agenda73010 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,Minutes30, 2010

  4. Agenda82108 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,Minutes30,

  5. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,Minutes30,Ames

  6. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,Minutes30,AmesAmes

  7. April 2004 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication Evaluation andApril 2004

  8. April | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication Evaluation andApril 2004April

  9. Archives | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication Evaluation andAprilArchives

  10. Aug 2011 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 Advanced Scientific

  11. August 2006 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 Advanced Scientific6

  12. August 2007 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 Advanced Scientific67

  13. August 2008 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 Advanced Scientific678

  14. August 2009 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 Advanced Scientific6789

  15. August 2010 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 Advanced Scientific67890

  16. August 2012 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 Advanced Scientific678902

  17. BERAC Minutes | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 AdvancedMinutes Biological

  18. BES Reports | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 AdvancedMinutesBES Reports

  19. BES Reports | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 AdvancedMinutesBES

  20. Biogeochemical Controls | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1Biogeochemical Controls