Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rock hdr geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Economic predictions for heat mining : a review and analysis of hot dry rock (HDR) geothermal energy technology  

E-Print Network (OSTI)

The main objectives of this study were first, to review and analyze several economic assessments of Hot Dry Rock (HDR) geothermal energy systems, and second, to reformulate an economic model for HDR with revised cost components.

Tester, Jefferson W.

1990-01-01T23:59:59.000Z

2

Economic Predictions for Heat Mining: A Review and Analysis of Hot Dry Rock (HDR) Geothermal Energy Technology  

DOE Green Energy (OSTI)

The main objectives of this study were first, to review and analyze several economic assessments of Hot Dry Rock (HDR) geothermal energy systems, and second, to reformulate an economic model for HDR with revised cost components. The economic models reviewed include the following studies sponsored by Electric Power Research Institute (EPRI)-Cummings and Morris (1979), Los Alamos National Laboratory (LANL)-Murphy, et al. (1982), United Kingdom (UK)-Shock (1986), Japan-Hori, et al. (1986), Meridian-Entingh (1987) and Bechtel (1988). A general evaluation of the technical feasibility of HDR technology components was also conducted in view of their importance in establishing drilling and reservoir performance parameters required for any economic assessment. In this review, only economic projections for base load electricity produced from HDR systems were considered. Bases of 1989 collars ($) were selected to normalize costs. Following the evaluation of drilling and reservoir performance, power plant choices and cost estimates are discussed in section 6 of the report. In Section 7, the six economics studies cited above are reviewed and compared in terms of their key resource, reservoir and plant performance, and cost assumptions. Based on these comparisons, the report estimates parameters for three composite cases. Important parameters include: (1) resource quality-average geothermal gradient (C/km) and well depth, (2) reservoir performance-effective productivity, flow impedance, and lifetime (thermal drawdown rate), (3) cost components-drilling, reservoir formation, and power plant costs and (4) economic factors-discount and interest rates, taxes, etc. In Section 8, composite case conditions were used to reassess economic projections for HDR-produced electricity. In Section 9, a generalized economic model for HDR-produced electricity is presented to show the effects of resource grade, reservoir performance parameters, and other important factors on projected costs. A sensitivity and uncertainty analysis using this model is given in Section 10. Section 11 treats a modification of the economic model for predicting costs for direct, non-electric applications. HDR economic projections for the U.S. are broken down by region in Section 12. In Section 13, the report provides recommendations for continued research and development to reduce technical and economic uncertainties relevant to the commercialization of HDR. [DJE-2005

Tester, Jefferson W.; Herzog, Howard J.

1990-07-01T23:59:59.000Z

3

Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area  

Open Energy Info (EERE)

Grigsby, Et Al., 1983) Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J. Abbott, C. E. Holley, L. A. Blatz (1983) Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Fenton_Hill_Hdr_Geothermal_Area_(Grigsby,_Et_Al.,_1983)&oldid=511285

4

A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir  

Open Energy Info (EERE)

Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir Evaluation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir Evaluation Details Activities (0) Areas (0) Regions (0) Abstract: A two-dimensional numerical model of coupled fluid flow, heat transfer and rock mechanics in naturally fractured rock is developed. The model is applicable to assessments of hot dry rock (HDR) geothermal reservoir characterisation experiments, and to the study of hydraulic stimulations and the heat extraction potential of HDR reservoirs. Modelling assumptions are based on the characteristics of the experimental HDR reservoir in the Carnmenellis granite in Cornwall, S. W. England. In

5

Development Wells At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) |  

Open Energy Info (EERE)

Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Development Wells Activity Date Usefulness useful DOE-funding Unknown Notes Fenton Hill HDR site. References Z. V. Dash, H. D. Murphy, R. L. Aamodt, R. G. Aguilar, D. W. Brown, D. A. Counce, H. N. Fisher, C. O. Grigsby, H. Keppler, A. W. Laughlin, R. M. Potter, J. W. Tester, P. E. Trujillo Jr, G. Zyvoloski (1983) Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Retrieved from "http://en.openei.org/w/index.php?title=Development_Wells_At_Fenton_Hill_Hdr_Geothermal_Area_(Dash,_Et_Al.,_1983)&oldid=511310"

6

Injectivity Test At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) |  

Open Energy Info (EERE)

Injectivity Test At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Injectivity Test At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Injectivity Test Activity Date Usefulness useful DOE-funding Unknown Notes Fenton Hill HDR site. References Z. V. Dash, H. D. Murphy, R. L. Aamodt, R. G. Aguilar, D. W. Brown, D. A. Counce, H. N. Fisher, C. O. Grigsby, H. Keppler, A. W. Laughlin, R. M. Potter, J. W. Tester, P. E. Trujillo Jr, G. Zyvoloski (1983) Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Retrieved from "http://en.openei.org/w/index.php?title=Injectivity_Test_At_Fenton_Hill_Hdr_Geothermal_Area_(Dash,_Et_Al.,_1983)&oldid=511316"

7

Observation Wells At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) |  

Open Energy Info (EERE)

Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Observation Wells Activity Date Usefulness useful DOE-funding Unknown Notes Fenton Hill HDR site. References Z. V. Dash, H. D. Murphy, R. L. Aamodt, R. G. Aguilar, D. W. Brown, D. A. Counce, H. N. Fisher, C. O. Grigsby, H. Keppler, A. W. Laughlin, R. M. Potter, J. W. Tester, P. E. Trujillo Jr, G. Zyvoloski (1983) Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Retrieved from "http://en.openei.org/w/index.php?title=Observation_Wells_At_Fenton_Hill_Hdr_Geothermal_Area_(Dash,_Et_Al.,_1983)&oldid=511330"

8

Groundwater Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al.,  

Open Energy Info (EERE)

Groundwater Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., Groundwater Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Groundwater Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Groundwater Sampling Activity Date 1983 Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J. Abbott, C. E. Holley, L. A. Blatz (1983) Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Retrieved from "http://en.openei.org/w/index.php?title=Groundwater_Sampling_At_Fenton_Hill_Hdr_Geothermal_Area_(Grigsby,_Et_Al.,_1983)&oldid=689261"

9

Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al.,  

Open Energy Info (EERE)

Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J. Abbott, C. E. Holley, L. A. Blatz (1983) Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Retrieved from "http://en.openei.org/w/index.php?title=Surface_Gas_Sampling_At_Fenton_Hill_Hdr_Geothermal_Area_(Grigsby,_Et_Al.,_1983)&oldid=689258

10

Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983)  

Open Energy Info (EERE)

Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Injectivity Test Activity Date Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J. Abbott, C. E. Holley, L. A. Blatz (1983) Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Retrieved from "http://en.openei.org/w/index.php?title=Injectivity_Test_At_Fenton_Hill_Hdr_Geothermal_Area_(Grigsby,_Et_Al.,_1983)&oldid=511318

11

Geothermal Literature Review At Fenton Hill Hdr Geothermal Area (Goff &  

Open Energy Info (EERE)

Goff & Goff & Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Fenton Hill Hdr Geothermal Area (Goff & Decker, 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Geothermal Literature Review Activity Date Usefulness useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems in which promising EGS sites occur. References Fraser Goff, Edward R. Decker (1983) Candidate Sites For Future Hot Dry Rock Development In The United States Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Fenton_Hill_Hdr_Geothermal_Area_(Goff_%26_Decker,_1983)&oldid=511314"

12

Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Goff & Decker, 1983) Exploration...

13

Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Heiken & Goff, 1983) Exploration...

14

Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details...

15

A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal...  

Open Energy Info (EERE)

Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir Evaluation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A...

16

The economics of heat mining: An analysis of design options and performance requirements of hot dry rock (HDR) geothermal power systems  

SciTech Connect

A generalized economic model was developed to predict the breakeven price of HDR generated electricity. Important parameters include: (1) resource quality--average geothermal gradient ({sup o}C/km) and well depth, (2) reservoir performance--effective productivity, flow impedance, and lifetime (thermal drawdown rate), (3) cost components--drilling, reservoir formation, and power plant costs and (4) economic factors--discount and interest rates, taxes, etc. Detailed cost correlations based on historical data and results of other studies are presented for drilling, stimulation, and power plant costs. Results of the generalized model are compared to the results of several published economic assessments. Critical parameters affecting economic viability are drilling costs and reservoir performance. For example, high gradient areas are attractive because shallower well depths and/or lower reservoir production rates are permissible. Under a reasonable set of assumptions regarding reservoir impedance, accessible rock volumes and surface areas, and mass flow rates (to limit thermal drawdown rates to about 10 C per year), predictions for HDR-produced electricity result in competitive breakeven prices in the range of 5 to 9 cents/kWh for resources having average gradients above 50 C/km. Lower gradient areas require improved reservoir performance and/or lower well drilling costs.

Tester, Jefferson W.; Herzog, Howard J.

1991-01-25T23:59:59.000Z

17

Petrography Analysis At Fenton Hill Hdr Geothermal Area (Laughlin, Et Al.,  

Open Energy Info (EERE)

Fenton Hill Hdr Geothermal Area (Laughlin, Et Al., Fenton Hill Hdr Geothermal Area (Laughlin, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Petrography Analysis At Fenton Hill Hdr Geothermal Area (Laughlin, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Petrography Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Thin sections were prepared of the different lithologies from each core. Standard petrographic techniques were used to identify constituent minerals and to obtain modal analyses. The number of points counted varied from about 500 to several thousand, depending upon the grain size of the rock. Whole-rock chemical analysis was performed by John Husler, University of New Mexico, using a variety of techniques (Laughlin and Eddy, 1977). The

18

Hot Dry Rock; Geothermal Energy  

SciTech Connect

The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

1990-01-01T23:59:59.000Z

19

Next stages in HDR technology development. [Hot Dry Rock (HDR)  

DOE Green Energy (OSTI)

Twenty years of research and development have brought HDR heat mining technology from the purely conceptual stage to the establishment of an engineering-scale heat mine at Fenton Hill, NM. In April 1992, a long-term flow test (LTFT) of the HDR reservoir at Fenton Hill was begun. The test was carried out under steady-state conditions on a continuous basis for four months, but a major equipment failure in late July forced a temporary suspension of operations. Even this short test provided valuable information and extremely encouraging results as summarized below: There was no indication of thermal drawdown of the reservoir. There was evidence of increasing access to hot rock with time. Water consumption was in the rangki of 10--12%. Measured pumping costs were $0.003 per kilowatt of energy produced. Temperature logs conducted in the reservoir production zone during and after the flow test confirmed the fact that there was no decline in the average temperature of the fluid being produced from the reservoir. In fact, tracer testing showed that the fluid was taking more indirect pathways and thus contacting a greater amount of hot rock as the test progressed. Water usage quickly dropped to a level of 10--15 gallons per minute, an amount equivalent to about 10--12% of the injected fluid volume. At a conversion rate of 10--15%, these would translate to effective fuel costs'' of 2--3[cents] per kilowatt hour of electricity production potential. The completion of the LTFT will set the stage for commercialization of HDR but will not bring HDR technology to maturity. Relatively samples extensions of the current technology may bring significant improvements in efficiency, and these should be rapidly investigated. In the longer run, advanced operational concepts could further improve the efficiency of HDR energy extraction and may even offer the possibility of cogeneration schemes which solve both energy and water problems throughout the world.

Duchane, D.V.

1993-01-01T23:59:59.000Z

20

Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area  

Open Energy Info (EERE)

Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area (Brookins & Laughlin, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area (Brookins & Laughlin, 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Fenton Hill HDR Site References D. G. Brookins, A. W. Laughlin (1983) Rb-Sr Geochronologic Investigation Of Precambrian Samples From Deep Geothermal Drill Holes, Fenton Hill, New Mexico Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Fenton_Hill_Hdr_Geothermal_Area_(Brookins_%26_Laughlin,_1983)&oldid=511281"

Note: This page contains sample records for the topic "rock hdr geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Heiken &  

Open Energy Info (EERE)

Heiken & Heiken & Goff, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Heiken & Goff, 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes Development of a geologically-based model of the thermal and hydrothermal potential of the Fenton Hill HDR area. References Grant Heiken, Fraser Goff (1983) Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Fenton_Hill_Hdr_Geothermal_Area_(Heiken_%26_Goff,_1983)&oldid=511328

22

Flow Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) | Open  

Open Energy Info (EERE)

Grigsby, Et Al., 1983) Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J. Abbott, C. E. Holley, L. A. Blatz (1983) Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Retrieved from "http://en.openei.org/w/index.php?title=Flow_Test_At_Fenton_Hill_Hdr_Geothermal_Area_(Grigsby,_Et_Al.,_1983)&oldid=511312" Category: Exploration Activities What links here Related changes

23

Cuttings Analysis At Fenton Hill Hdr Geothermal Area (Laughlin, Et Al.,  

Open Energy Info (EERE)

Laughlin, Et Al., Laughlin, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Fenton Hill Hdr Geothermal Area (Laughlin, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Cuttings Analysis Activity Date Usefulness useful DOE-funding Unknown Notes A few cores (see Table I), cuttings collected at 1.5- or 3-m intervals, and random samples from a "junk basket" run behind the drill bit provided material for characterizing the basement rocks. References A. W. Laughlin, A. C. Eddy, R. Laney, M. J. Aldrich Jr (1983) Geology Of The Fenton Hill, New Mexico, Hot Dry Rock Site Retrieved from "http://en.openei.org/w/index.php?title=Cuttings_Analysis_At_Fenton_Hill_Hdr_Geothermal_Area_(Laughlin,_Et_Al.,_1983)&oldid=511306"

24

Analysis Of Macroscopic Fractures In Granite In The Hdr Geothermal Well  

Open Energy Info (EERE)

Macroscopic Fractures In Granite In The Hdr Geothermal Well Macroscopic Fractures In Granite In The Hdr Geothermal Well Eps-1, Soultz-Sous-Forets, France Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Analysis Of Macroscopic Fractures In Granite In The Hdr Geothermal Well Eps-1, Soultz-Sous-Forets, France Details Activities (0) Areas (0) Regions (0) Abstract: An exhaustive analysis of 3000 macroscopic fractures encountered in the geothermal Hot Dry Rock borehole, EPS-1, located inside the Rhine graben (Soultz-sous-Forets, France), was done on a continuous core section over a depth interval from 1420 to 2230 m: 97% of the macroscopic structures were successfully reorientated with a good degree of confidence by comparison between core and acoustic borehole imagery. Detailed structural analysis of the fracture population indicates that fractures are

25

Fenton Hill Hdr Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fenton Hill Hdr Geothermal Area Fenton Hill Hdr Geothermal Area (Redirected from Fenton Hill Hdr Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fenton Hill Hdr Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (26) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

26

Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Goff &  

Open Energy Info (EERE)

Decker, 1983) Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Goff & Decker, 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems in which promising EGS sites occur. References Fraser Goff, Edward R. Decker (1983) Candidate Sites For Future Hot Dry Rock Development In The United States Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Fenton_Hill_Hdr_Geothermal_Area_(Goff_%26_Decker,_1983)&oldid=511326"

27

Fenton Hill Hdr Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fenton Hill Hdr Geothermal Area Fenton Hill Hdr Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fenton Hill Hdr Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (26) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

28

Hot-dry-rock geothermal resource 1980  

DOE Green Energy (OSTI)

The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

Heiken, G.; Goff, F.; Cremer, G. (ed.)

1982-04-01T23:59:59.000Z

29

Water Sampling At Fenton Hill Hdr Geothermal Area (Rao, Et Al...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Fenton Hill Hdr Geothermal Area (Rao, Et Al., 1996) Exploration Activity...

30

Hot Dry Rock Geothermal Energy Development Program  

DOE Green Energy (OSTI)

The overall objective of the Hot Dry Rock (HDR) Geothermal Energy Development Program is to determine the technical and economic feasibility of HDR as a significant energy source and to provide a basis for its timely commercial development. Principal operational tasks are those activities required to enable a decision to be made by FY86 on the ultimate commercialization of HDR. These include development and analyis of a 20- to 50-MW Phase II HDR reservoir at Site 1 (Fenton Hill) with the potential construction of a pilot electric generating station, Phase III; selection of a second site with subsequent reservoir development and possible construction of a direct heat utilization pilot plant of at least 30 MW thermal thereon; the determination of the overall domestic HDR energy potential; and the evaluation of 10 or more target prospect areas for future HDR plant development by commercial developers. Phase I of the Los Alamos Scientific Laboratory's Fenton Hill project was completed. Phase I evaluated a small subterranean system comprised of two boreholes connected at a depth of 3 km by hydraulic fracturing. A closed-loop surface system has been constructed and tests involving round-the-clock operation have yielded promising data on heat extraction, geofluid chemistry, flow impedance, and loss of water through the underground reservoir between the two holes, leading to cautions optimism for the future prospects of private-sector HDR power plants. (MHR)

Franke, P.R.

1979-01-01T23:59:59.000Z

31

Industrial applications of hot dry rock geothermal energy  

DOE Green Energy (OSTI)

Geothermal resources in the form of naturally occurring hot water or steam have been utilized for many years. While these hydrothermal resources are found in many places, the general case is that the rock at depth is hot, but does not contain significant amounts of mobile fluid. An extremely large amount of geothermal energy is found around the world in this hot dry rock (HDR). Technology has been under development for more than twenty years at the Los Alamos National Laboratory in the United States and elsewhere to develop the technology to extract the geothermal energy from HDR in a form useful for electricity generation, space heating, or industrial processing. HDR technology is especially attractive for industrial applications because of the ubiquitous distribution of the HDR resource and the unique aspects of the process developed to recover it. In the HDR process, as developed at Los Alamos, water is pumped down a well under high pressure to open up natural joints in hot rock and create an artificial geothermal reservoir. Energy is extracted by circulating water through the reservoir. Pressurized hot water is returned to the surface through the production well, and its thermal energy is extracted for practical use. The same water is then recirculated through the system to mine more geothermal heat. Construction of a pilot HDR facility at Fenton Hill, NM, USA, has recently been completed by the Los Alamos National Laboratory. It consists of a large underground reservoir, a surface plant, and the connecting wellbores. This paper describes HDR technology and the current status of the development program. Novel industrial applications of geothermal energy based on the unique characteristics of the HDR energy extraction process are discussed.

Duchane, D.V.

1992-09-01T23:59:59.000Z

32

Industrial applications of hot dry rock geothermal energy  

DOE Green Energy (OSTI)

Geothermal resources in the form of naturally occurring hot water or steam have been utilized for many years. While these hydrothermal resources are found in many places, the general case is that the rock at depth is hot, but does not contain significant amounts of mobile fluid. An extremely large amount of geothermal energy is found around the world in this hot dry rock (HDR). Technology has been under development for more than twenty years at the Los Alamos National Laboratory in the United States and elsewhere to develop the technology to extract the geothermal energy from HDR in a form useful for electricity generation, space heating, or industrial processing. HDR technology is especially attractive for industrial applications because of the ubiquitous distribution of the HDR resource and the unique aspects of the process developed to recover it. In the HDR process, as developed at Los Alamos, water is pumped down a well under high pressure to open up natural joints in hot rock and create an artificial geothermal reservoir. Energy is extracted by circulating water through the reservoir. Pressurized hot water is returned to the surface through the production well, and its thermal energy is extracted for practical use. The same water is then recirculated through the system to mine more geothermal heat. Construction of a pilot HDR facility at Fenton Hill, NM, USA, has recently been completed by the Los Alamos National Laboratory. It consists of a large underground reservoir, a surface plant, and the connecting wellbores. This paper describes HDR technology and the current status of the development program. Novel industrial applications of geothermal energy based on the unique characteristics of the HDR energy extraction process are discussed.

Duchane, D.V.

1992-01-01T23:59:59.000Z

33

Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area  

Open Energy Info (EERE)

Fenton Hill Hdr Fenton Hill Hdr Area (Laughlin, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Thin sections were prepared of the different lithologies from each core. Standard petrographic techniques were used to identify constituent minerals and to obtain modal analyses. The number of points counted varied from about 500 to several thousand, depending upon the grain size of the rock. Whole-rock chemical analysis was performed by John Husler, University of New Mexico, using a variety of techniques (Laughlin and Eddy, 1977). The precision for SiO2 is + 1% relative; for the other oxides it is + 2% relative. Accuracy was monitored by using USGS standard rock samples. Where

34

Exploration for hot dry rock geothermal resources in the Midcontinent USA. Hot dry rock conceptual models for exploration, HDR test site investigations, and the Illinois Deep Drill Hole Project. Volume 2  

DOE Green Energy (OSTI)

Three potential sources of HDR, each covering approximately a 2/sup 0/ x 2/sup 0/ area, were identified and subjected to preliminary evaluation with ad hoc exploration strategies. In the Mississippi Embayment test site, lateral thermal conductivity variations and subcrustal heat sources may be involved in producing abnormally high subsurface temperatures. Studies indicate that enhanced temperatures are associated primarily with basement rift features where vertical displacement of aquifers and faults cause the upward migration of hot waters leading to anomalously high, local, upper crustal temperatures. The Western Nebraska test site is a potential low temperature HDR source also related, at least in part, to groundwater movement. There appear to be much more widespread possibilities for similar HDR sites in the Great Plains area. The Southeast Michigan test site was selected for study because of the possible presence of radiogenic plutons overlain by a thickened sedimentary blanket. There is no direct information on the presence of abnormally high temperatures in this area, but the study does show that a combination of gravity and magnetic anomaly mapping with regional geological information derived from sparse drill holes in the Phanerozoic rocks is useful on a widespread basis for focusing on local areas for detailed evaluation.

Hinze, W.J.; Braile, L.W.; von Frese, R.R.B.; Lidiak, E.G.; Denison, R.E.; Keller, G.R.; Roy, R.F.; Swanberg, C.A.; Aiken, C.L.V.; Morgan, P.

1986-02-01T23:59:59.000Z

35

Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Goff & Janik,  

Open Energy Info (EERE)

Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Goff & Janik, Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from HDR well References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Surface_Gas_Sampling_At_Fenton_Hill_Hdr_Geothermal_Area_(Goff_%26_Janik,_2002)&oldid=689255"

36

Hot Dry Rock Geothermal Energy Development in the USA David Duchane and Donald Brown  

E-Print Network (OSTI)

utility options such as pumped storage or compressed air energy storage (CAES) is that the HDR power plant1 Hot Dry Rock Geothermal Energy Development in the USA by David Duchane and Donald Brown Los energy resources lies right beneath our feet in the form of hot dry rock (HDR), the common geologic

37

Environmental investigations associated with the LASL hot dry rock geothermal energy development project  

DOE Green Energy (OSTI)

The Los Alamos Scientific Laboratory (LASL) is currently evaluating the feasibility of extracting thermal energy from hot dry rock (HDR) geothermal reservoirs. An overview of the environmental studies that LASL has conducted relative to its HDR Geothermal Energy Development Project is presented. Because HDR geothermal technology is a new field of endeavor, environmental guidelines have not been established. It is anticipated that LASL's research will lead to the techniques necessary to mitigate undesirable environmental impacts in future HDR developments. To date, results of environmental investigations have been positive in that no undesirable environmental impacts have been found.

Rea, K.H.

1977-12-01T23:59:59.000Z

38

HDR (Hot Dry Rock) technology transfer activities in the Clear Lake Area, California  

DOE Green Energy (OSTI)

A large Hot Dry Rock resource has been recognized in northern California. It underlies the region extending NE of The Geysers to N of the City of Clearlake. The long-range productive potential is thousands of megawatts. The geothermal resource is heterogeneous. There are two mechanisms of heat flow occurring together. One is fluid transport, up natural zones of permeability, to outflows as surface springs. The other is conductive heat flow through impermeable rock. The temperature isotherms are thought to be nearly level surfaces, for example, the 300{degree}C isotherm is at about 8000 ft depth, with spikes'' or ridges'' occurring around narrow zones of fluid flow. While there is accessible heat at shallow depth in the naturally permeable rocks, the really substantial resource is in the impermeable rock. This is the HDR resource. The potential reservoir rocks are Franciscan greywackes and greenstones. Recorded drilling problems appear to be mainly due to intersection with serpentinites or to the effects of stimulation, so are potentially avoidable. Greywacke is favoured as a reservoir rock, and is expected to fail by brittle fracture. The water shortages in Northern California appear to be surmountable. Leakoff rates are expected to be low. Sewerage water may be available for fill and makeup. There is a possibility of combining HDR heat power production with sewerage disposal. To establish the first HDR producer in Northern California offers challenges in technology transfer. Two significant challenges will be creation of dispersed permeability in a greywacke reservoir, and pressure management in the vicinity of naturally permeable zones. A successful demonstration of HDR production technology will improve the long-term prospects for the geothermal power industry in California. 29 refs., 20 figs., 4 tabs.

Burns, K.; Potter, R.

1990-01-01T23:59:59.000Z

39

Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al.,  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al., Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown References Fraser E. Goff, Charles O. Grigsby, Pat E. Trujillo Jr, Dale Counce, Andrea Kron (1981) Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Fenton_Hill_Hdr_Geothermal_Area_(Goff,_Et_Al.,_1981)&oldid=692519

40

Status and prospects for hot dry rock (HDR) in the United States  

DOE Green Energy (OSTI)

The vast majority of accessible geothermal energy exists in the form of heat stored in dry rock at depth. For nearly the last two decades, the Los Alamos National Laboratory has been engaged in a program to develop the technology to mine the thermal energy in this hot dry rock (HDR). The world's first heat mine was developed and operated at Fenton Hill, N.M. in the 1970's by using drilling and hydraulic fracturing techniques to create an artificial reservoir in hot rock and subsequently circulating water through this reservoir to mine the heat from the rock. Over the last ten years, a much larger, deeper, and hotter heat mine has been constructed at Fenton Hill and a permanent energy extraction plant has been built on the surface. A long-term testing program has recently begun to evaluate the potential for sustained energy extraction from the large Fenton Hill heat mine. This paper summarizes the history of HDR research and development at Los Alamos, reports the initial results of the long-term testing program at Fenton Hill, and discusses the possible future course of HDR technology.

Brown, D.; Duchane, D.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock hdr geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Goff & Janik,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) (Redirected from Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from HDR well References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles

42

Preliminary geological and geophysical evaluation of the Castle Dome HDR geothermal prospect, Southwestern Arizona  

DOE Green Energy (OSTI)

The Castle Dome HDR geothermal prospect is located in Yuma County, Arizona, in a region centered about 80 km north of Yuma along US Rte. 95. The area of interest is broadly defined by a negative residual Bouguer gravity anomaly which is about 45 km across, steep-sided in many places, and as much as 30 mgals in magnitude. The geology of this Basin and Range area is poorly known, but the few published reports and current Los Alamos Scientific Laboratory (LASL) field studies indicate that the Castle Dome Mountains and adjacent ranges are chiefly a thick pile of welded ash-flow tuffs of probable mid-Tertiary age. The tuffs rest unconformably on Mesozoic metasedimentary rocks exposed only outside steep edges of the gravity low. This gravity anomaly may reflect the presence of a large caldera. A regional magnetotelluric study now in progress will define the depths to electrical conductors within the crust and upper mantle and contribute to understanding of crustal structure, the gravity anomaly, and the Hot Dry Rock (HDR) geothermal potential of the Castle Dome area.

Gutmann, J.T.; Aiken, C.L.V.; Ander, M.E.; Laney, R.T.

1980-01-01T23:59:59.000Z

43

Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981) (Redirected from Isotopic Analysis At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown References Fraser E. Goff, Charles O. Grigsby, Pat E. Trujillo Jr, Dale Counce,

44

Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) (Redirected from Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J.

45

Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Details Activities (5) Areas (2) Regions (0) Abstract: Two hot dry rock (HDR) geothermal energy reservoirs have been created by hydraulic fracturing of Precambrian granitic rock between two wells on the west flank of the Valles Caldera in the Jemez Mountains of northern New Mexico. Heat is extracted by injecting water into one well,

46

Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff & Janik,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from HDR well References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long

47

Use of hot-dry-rock geothermal resources for space heating: a case study  

DOE Green Energy (OSTI)

This study shows that a hot dry rock (HDR) geothermal space heat system proposed for the National Aeronautics and Space Administrations's Wallops Flight Center (WFC) will cost $10.9 million, saving $4.1 million over the existing oil heating system over a 30-yr lifetime. The minimal, economically feasible plan for HDR at WFC is shown to be the design of a single-fracture reservoir using a combined HDR preheat and a final oil burner after the first 4 years of operation. The WFC cost savings generalize and range from $3.1 million to $7.2 million for other HDR sites having geothermal temperature gradients ranging from 25/sup 0/C/km to 40/sup 0/C/km and depths to basement rock of 2400 ft or 5700 ft compared to the 30/sup 0/C/km and 9000 ft to basement rock at WFC.

Cummings, R.G.; Arundale, C.J.; Bivins, R.L.; Burness, H.S.; Drake, R.H.; Norton, R.D.

1982-09-01T23:59:59.000Z

48

Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Rao, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Rao, Et Al., 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Rao, Et Al., 1996) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown References U. Fehn, R. T. D. Teng, Usha Rao, Fraser E. Goff (1996) Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New Mexico- A 36Cl Study Retrieved from

49

The xerolithic geothermal (``hot dry rock``) energy resource of the United States: An update  

DOE Green Energy (OSTI)

This report presents revised estimates, based upon the most current geothermal gradient data, of the xerolithic geothermal (``hot dry rock`` or HDR) energy resources of the United States. State-by-state tabular listings are provided of the HDR energy resource base, the accessible resource base, and the potentially useful resource base. The latter further subdivided into components with potential for electricity generation, process heat, and space heat. Comparisons are made with present estimates of fossil fuel reserves. A full-sized geothermal gradient contour map is provided as a supplement in a pocket inside the back cover of the report.

Nunz, G.J.

1993-07-01T23:59:59.000Z

50

Fracture network modeling of a Hot Dry Rock geothermal reservoir  

DOE Green Energy (OSTI)

Fluid flow and tracer transport in a fractured Hot Dry Rock (HDR) geothermal reservoir are modeled using fracture network modeling techniques. The steady state pressure and flow fields are solved for a two-dimensional, interconnected network of fractures with no-flow outer boundaries and constant-pressure source and sink points to simulate wellbore-fracture intersections. The tracer response is simulated by particle tracking, which follows the progress of a representative sample of individual tracer molecules traveling through the network. Solute retardation due to matrix diffusion and sorption is handled easily with these particle tracking methods. Matrix diffusion is shown to have an important effect in many fractured geothermal reservoirs, including those in crystalline formations of relatively low matrix porosity. Pressure drop and tracer behavior are matched for a fractured HDR reservoir tested at Fenton Hill, NM.

Robinson, B.A.

1988-01-01T23:59:59.000Z

51

Hot dry rock geothermal energy development program. Semiannual report, October 1, 1978-March 31, 1979  

DOE Green Energy (OSTI)

The potential of energy extracted from hot dry rock (HDR) was investigated as a commercailly feasible alternate energy source. Run Segments 3 and 4 were completed in the prototype reservoir of the Phase I energy-extraction system at Fenton Hill, New Mexico. Results of these tests yielded significant data on the existing system and this information will be applicable to future HDR systems. Plans and operations initiating a Phase II system are underway at the Fenton Hill site. This system, a deeper, hotter commercial-size reservoir, is intended to demonstrate the longevity and economics of an HDR system. Major activity occurred in evaluation of the national resource potential and in characterizing possible future HDR geothermal sites. Work has begun in the institutional and industrial support area to assess the economics and promote commercial interest in HDR systems as an alternate energy source.

Brown, M.C.; Nunz, G.J.; Cremer, G.M.; Smith, M.C.

1979-09-01T23:59:59.000Z

52

User's manual for HDR3 computer code  

DOE Green Energy (OSTI)

A description of the HDR3 computer code and instructions for its use are provided. HDR3 calculates space heating costs for a hot dry rock (HDR) geothermal space heating system. The code also compares these costs to those of a specific oil heating system in use at the National Aeronautics and Space Administration Flight Center at Wallops Island, Virginia. HDR3 allows many HDR system parameters to be varied so that the user may examine various reservoir management schemes and may optimize reservoir design to suit a particular set of geophysical and economic parameters.

Arundale, C.J.

1982-10-01T23:59:59.000Z

53

Hot Dry Rock Geothermal Reservoir Model Development at Los Alamos  

DOE Green Energy (OSTI)

Discrete fracture and continuum models are being developed to simulate Hot Dry Rock (HDR) geothermal reservoirs. The discrete fracture model is a two-dimensional steady state simulator of fluid flow and tracer transport in a fracture network which is generated from assumed statistical properties of the fractures. The model's strength lies in its ability to compute the steady state pressure drop and tracer response in a realistic network of interconnected fractures. The continuum approach models fracture behavior by treating permeability and porosity as functions of temperature and effective stress. With this model it is practical to model transient behavior as well as the coupled processes of fluid flow, heat transfer, and stress effects in a three-dimensional system. The model capabilities being developed will also have applications in conventional geothermal systems undergoing reinjection and in fractured geothermal reservoirs in general.

Robinson, Bruce A.; Birdsell, Stephen A.

1989-03-21T23:59:59.000Z

54

Hot Dry Rock geothermal reservoir model development at Los Alamos  

DOE Green Energy (OSTI)

Discrete fracture and continuum models are being developed to simulate Hot Dry Rock (HDR) geothermal reservoirs. The discrete fracture model is a two-dimensional steady state simulator of fluid flow and tracer transport in a fracture network which is generated from assumed statistical properties of the fractures. The model's strength lies in its ability to compute the steady state pressure drop and tracer response in a realistic network of interconnected fractures. The continuum approach models fracture behavior by treating permeability and porosity as functions of temperature and effective stress. With this model it is practical to model transient behavior as well as the coupled processes of fluid flow, heat transfer, and stress effects in a three-dimensional system. The model capabilities being developed will also have applications in conventional geothermal systems undergoing reinjection and in fractured geothermal reservoirs in general. 15 refs., 7 figs.

Robinson, B.A.; Birdsell, S.A.

1989-01-01T23:59:59.000Z

55

Alternate operating strategies for Hot Dry Rock geothermal reservoirs  

DOE Green Energy (OSTI)

Flow testing and heat extraction experiments in prototype Hot Dry Rock (HDR) geothermal reservoirs have uncovered several challenges which must be addressed before commercialization of the technology is possible. Foremost among these is the creation of a reservoir which simultaneously possesses high permeability pathways and a large volume of fractured rock. The current concept of heat extraction -- a steady state circulation system with fluid pumping from the injection well to a single, low pressure production well -- may limit our ability to create heat extraction systems which meet these goals. A single injection well feeding two production wells producing fluid at moderate pressures is shown to be a potentially superior way to extract heat. Cyclic production is also demonstrated to have potential as a method for sweeping fluid through a larger volume of rock, thereby inhibiting flow channeling and increasing reservoir lifetime. 10 refs., 4 figs., 2 tabs.

Robinson, B.A.

1991-01-01T23:59:59.000Z

56

Hot Dry Rock geothermal energy--- A new energy agenda for the twenty-first century  

SciTech Connect

Hot Dry Rock (HDR) geothermal energy, which utilizes the natural heat contained in the earth's crust, can provide a widely available source of nonpolluting energy. It can help mitigate the continued warming of the earth through the ''greenhouse effect,'' and the accelerating destruction of forests and crops by acid rain, two of the major environmental consequences of our ever-increasing use of fossil fuels for heating and power generation. In addition, HDR, as a readily available source of indigenous energy, can reduce our nation's dependence on imported oil, enhancing national security and reducing our trade deficit. The earth's heat represents an almost unlimited source of energy that can begin to be exploited within the next decade through the HDR heat-mining concept being actively developed in the United States and in several other countries. On a national scale, we can begin to develop this new energy source, using it directly for geothermal power or indirectly in hybrid geothermal/fossil-fueled systems, in diverse applications such as: baseload power generation, direct heat use, feedwater heating in conventional power plants, and pumped storage/load leveling power generation. This report describes the nature of the HDR resource and the technology required to implement the heat-mining concept in several applications. An assessment of the requirements for establishing HDR feasibility is presented in the context of providing a commercially competitive energy source. 37 refs., 6 figs.

Tester, J.W.; Brown, D.W.; Potter, R.M.

1989-07-01T23:59:59.000Z

57

Hot Dry Rock geothermal energy--- A new energy agenda for the twenty-first century  

DOE Green Energy (OSTI)

Hot Dry Rock (HDR) geothermal energy, which utilizes the natural heat contained in the earth's crust, can provide a widely available source of nonpolluting energy. It can help mitigate the continued warming of the earth through the ''greenhouse effect,'' and the accelerating destruction of forests and crops by acid rain, two of the major environmental consequences of our ever-increasing use of fossil fuels for heating and power generation. In addition, HDR, as a readily available source of indigenous energy, can reduce our nation's dependence on imported oil, enhancing national security and reducing our trade deficit. The earth's heat represents an almost unlimited source of energy that can begin to be exploited within the next decade through the HDR heat-mining concept being actively developed in the United States and in several other countries. On a national scale, we can begin to develop this new energy source, using it directly for geothermal power or indirectly in hybrid geothermal/fossil-fueled systems, in diverse applications such as: baseload power generation, direct heat use, feedwater heating in conventional power plants, and pumped storage/load leveling power generation. This report describes the nature of the HDR resource and the technology required to implement the heat-mining concept in several applications. An assessment of the requirements for establishing HDR feasibility is presented in the context of providing a commercially competitive energy source. 37 refs., 6 figs.

Tester, J.W.; Brown, D.W.; Potter, R.M.

1989-07-01T23:59:59.000Z

58

Eagle Rock Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Eagle Rock Geothermal Facility Eagle Rock Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Eagle Rock Geothermal Facility General Information Name Eagle Rock Geothermal Facility Facility Eagle Rock Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.826770222484°, -122.80002593994° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.826770222484,"lon":-122.80002593994,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

59

Heat flow and hot dry rock geothermal resources of the Clearlake Region, northern California  

DOE Green Energy (OSTI)

The Geysers-Clear Lake geothermal anomaly is an area of high heat flow in northern California. The anomaly is caused by abnormally high heat flows generated by asthenospheric uplift and basaltic magmatic underplating at a slabless window created by passage of the Mendocino Triple Junction. The Clear Lake volcanic field is underlain by magmatic igneous bodies in the form of a stack of sill-form intrusions with silicic bodies generally at the top and basic magmas at the bottom. The tabular shape and wide areal extent of the heat sources results in linear temperature gradients and near-horizontal isotherms in a broad region at the center of the geothermal anomaly. The Hot Dry Rock (HDR) portion of The Geysers-Clear Lake geothermal field is that part of the geothermal anomaly that is external to the steamfield, bounded by geothermal gradients of 167 mW/m2 (4 heat flow units-hfu) and 335 mW/m2 (8 hfu). The HDR resources, to a depth of 5 km, were estimated by piece-wise linear summation based on a sketch map of the heat flow. Approximately, the geothermal {open_quotes}accessible resource base{close_quotes} (Qa) is 1.68E+21 J; the {open_quotes}HDR resource base{close_quotes} (Qha) is 1.39E+21 J; and the {open_quotes}HDR power production resource{close_quotes} (Qhp) is 1.01E+21 J. The HDR power production resource (Qhp) is equivalent to 2.78E+ 11 Mwht (megawatt hours thermal), or 1.72E+11 bbls of oil.

Burns, K.L.

1996-08-01T23:59:59.000Z

60

Hot dry rock geothermal energy: status of exploration and assessment. Report No. 1 of the hot dry rock assessment panel  

DOE Green Energy (OSTI)

The status of knowledge of attempts to utilize hot dry rock (HDR) geothermal energy is summarized. It contains (1) descriptions or case histories of the ERDA-funded projects at Marysville, MT, Fenton Hill, NM, and Coso Hot Springs, CA; (2) a review of the status of existing techniques available for exploration and delineation of HDR; (3) descriptions of other potential HDR sites; (4) definitions of the probable types of HDR resource localities; and (5) an estimate of the magnitude of the HDR resource base in the conterminous United States. The scope is limited to that part of HDR resource assessment related to the determination of the extent and character of HDR, with emphasis on the igneous-related type. It is estimated that approximately 74 Q (1 Q = 1,000 Quads) of heat is stored in these sites within the conterminous U.S. at depths less than 10 km and temperatures above 150/sup 0/C, the minimum for power generation. (Q = 10/sup 18/ BTU = 10/sup 21/J; the total U.S. consumption for 1972 was approximately 0.07 Q). Approximately 6300 Q are stored in the conduction-dominated parts of the crust in the western U.S. (23% of the total surface area), again at depths less than 10 km and temperatures above 150/sup 0/C. Nearly 10,000 Q are believed to be contained in crustal rocks underlying the entire conterminous U.S., at temperatures above 150/sup 0/C. The resource base is significantly larger for lower grade heat. (JGB)

Not Available

1977-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock hdr geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Compound and Elemental Analysis At Fenton Hill Hdr Geothermal...  

Open Energy Info (EERE)

Accuracy was monitored by using USGS standard rock samples. Where necessary, the electron microprobe, scanning electron microscope, and X-ray diffractometer were used to...

62

Hot dry rock geothermal potential of Roosevelt Hot Springs area: review of data and recommendations  

DOE Green Energy (OSTI)

The Roosevelt Hot Springs area in west-central Utah possesses several features indicating potential for hot dry rock (HDR) geothermal development. The area is characterized by extensional tectonics and a high regional heat flow of greater than 105 mW/m/sup 2/. The presence of silicic volcanic rocks as young as 0.5 to 0.8 Myr and totaling 14 km/sup 3/ in volume indicates underlying magma reservoirs may be the heat source for the thermal anomaly. Several hot dry wells have been drilled on the periphery of the geothermal field. Information obtained on three of these deep wells shows that they have thermal gradients of 55 to 60/sup 0/C/km and bottom in impermeable Tertiary granitic and Precambrian gneissic units. The Tertiary granite is the preferred HDR reservoir rock because Precambrian gneissic rocks possess a well-developed banded foliation, making fracture control over the reservoir more difficult. Based on a fairly conservative estimate of 160 km/sup 2/ for the thermal anomaly present at Roosevelt Hot Springs, the area designated favorable for HDR geothermal exploration may be on the order of seven times or more than the hydrogeothermal area currently under development.

East, J.

1981-05-01T23:59:59.000Z

63

Hot dry rock geothermal energy in the USA: Moving toward practical use  

DOE Green Energy (OSTI)

The technology for extracting geothermal energy from the vast hot dry rock (HDR) geothermal resource has been under development by the Los Alamos National Laboratory for about 25 years. In 1992--1993, an extensive flow-testing program was conducted at the Fenton Hill, New Mexico HDR Test Facility. During two segments of this test energy was produced at a rate of 4 thermal megawatts on a continuous basis for periods of 112 and 65 days, respectively. Surface and logging measurements showed no decline in the temperature of the water produced from the HDR reservoir during the flow testing. In fact, tracer evidence indicated that the circulating water was continually gaining access to additional hot rock as the testing proceeded. Water consumption was low and all other test data were positive. The encouraging results of the flow testing at Fenton Hill provided the incentive for the United States Department of Energy (USDOE) to solicit the interest of private industry in a jointly funded program to construct and operate a facility that would produce and sell energy derived from HDR resources. A number of organizations responded positively. On the basis of the interest expressed in these responses, the USDOE subsequently authorized the issuance of a formal solicitation to initiate the project.

Duchane, D.

1995-12-31T23:59:59.000Z

64

The history of HDR research and development  

DOE Green Energy (OSTI)

An energy source rivaling the sun exists in the form of the heat emanating from the interior of the earth. Although limited quantities of this geothermal energy are produced today by bringing natural hot fluids to the surface, most of the earth`s heat is trapped in hot dry rock (HDR). The application of hydraulic fracturing technology to tap this vast HDR resource was pioneered by Los Alamos National Laboratory beginning in 1970. Since that time, engineered geothermal reservoirs have been constructed and operated at numerous locations around the world. Major work at the US HDR facility at Fenton Hill, NM, and at the British HDR site in Cornwall, UK, has been completed, but advanced HDR field work continues at two sites on the island of Honshu in Japan and at Soultz in northeastern France. In addition, plans are currently being completed for the construction of an HDR system on the continent of Australia. Over the past three decades the worldwide research and development effort has taken HDR from its early conceptual stage to its present state as a demonstrated technology that is on the verge of becoming commercially feasible. Extended flow tests in the United States, Japan, and Europe have proven that sustained operation of HDR reservoirs is possible. In support of these field tests, an international body of scientists and engineers have pursued a variety of innovative approaches for assessing HDR resources, constructing and characterizing engineered geothermal reservoirs, and operating HDR systems. Taken together, these developments form a strong base upon which to build the practical HDR systems that will provide clean energy for the world in the 21st century.

Duchane, D.

1998-12-31T23:59:59.000Z

65

Progress in making hot dry rock geothermal energy a viable renewable energy resource for America in the 21. century  

DOE Green Energy (OSTI)

An enormous geothermal energy resource exists in the form of rock at depth that is hot but essentially dry. For more than two decades, work has been underway at the Los Alamos National Laboratory to develop and demonstrate the technology to transport the energy in hot dry rock (HDR) to the surface for practical use. During the 1980`s, the world`s largest, deepest and hottest HDR reservoir was created at the Fenton Hill HDR test facility in northern New Mexico. The reservoir is centered in rock at a temperature of about 460 F at a depth of about 11,400 ft. After mating the reservoir to a fully automated surface plant, heat was mined at Fenton Hill for a total period of almost a year in a series of flow tests conducted between 1992 and 1995. These tests addressed the major questions regarding the viability of long-term energy extraction from HDR. The steady-state flow tests at Fenton Hill showed that energy can be produced from an HDR reservoir on a routine basis and that there are no major technical obstacles to implementation of this heat mining technology. Additional brief special flow tests also demonstrated that the energy output from HDR systems can be rapidly increased in a controlled manner to meet sudden changes in power demand.

Duchane, D.V. [Los Alamos National Lab., NM (United States). Earth and Environmental Sciences Div.

1996-01-01T23:59:59.000Z

66

Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1979  

DOE Green Energy (OSTI)

The Fenton Hill Project is still the principal center for developing methods, equipment, and instrumentation for creating and utilizing HDR geothermal reservoirs. The search for a second site for a similar experimental system in a different geological environment has been intensified, as have the identification and characterization of other HDR areas that may prove suitable for either experimental or commercial development. The Phase I fracture system was enlarged during FY79. Drilling of the injection well of the Phase II system began at Fenton Hill in April 1979. Environmental monitoring of the Fenton Hill area continued through FY79. The environmental studies indicate that the hot dry rock operations have caused no significant environmental impact. Other supporting activities included rock physics, rock mechanics, fracture mapping, and instrumentation development. Two closely related activities - evaluation of the potential HDR energy resource of the US and the selection of a site for development of a second experimental heat-extraction system generally similar to that at Fenton Hill - have resulted in the collection of geology, hydrology, and heat-flow data on some level of field activity in 30 states. The resource-evaluation activity included reconnaissance field studies and a listing and preliminary characterization of US geothermal areas in which HDR energy extraction methods may be applicable. The selection of Site 2 has taken into account such legal, institutional, and economic factors as land ownership and use, proximity to possible users, permitting and licensing requirements and procedures, environmental issues, areal extent of the geothermal area, and visibility to and apparent interest by potential industrial developers.

Cremer, G.M.; Duffield, R.B.; Smith, M.C.; Wilson, M.G. (comps.)

1980-08-01T23:59:59.000Z

67

Thermal conductivity of rocks associated with energy extraction from hot dry rock geothermal systems  

DOE Green Energy (OSTI)

Results of thermal conductivity measurements are given for 14 drill core rock samples taken from two exploratory HDR geothermal wellbores (maximum depth of 2929 m (9608 ft) drilled into Precambrian granitic rock in the Jemez Mountains of northern New Mexico. These samples have been petrographically characterized and in general represent fresh competent Precambrian material of deep origin. Thermal conductivities, modal analyses, and densities are given for all core samples studied under dry and water-saturated conditions. Additional measurements are reported for several sedimentary rocks encountered in the upper 760 m (2500 ft) of that same region. A cut-bar thermal conductivity comparator and a transient needle probe were used for the determinations with fused quartz and Pyroceram 9606 as the standards. The maximum temperature range of the measurements was from the ice point to 250/sup 0/C. The measurements on wet, water-saturated rock were limited to the temperature range below room temperature. Conductivity values of the dense core rock samples were generally within the range from 2 to 2.9 W/mK at 200/sup 0/C. Excellent agreement was achieved between these laboratory measurements of thermal conductivity and those obtained by in situ measurements used in the HDR wellbores. By using samples of sufficient thickness to provide a statistically representative heat flow path, no difference between conductivity values and their temperature coefficients for orthogonal directions (heat flow parallel or perpendicular to core axis) was observed. This isotropic behavior was even found for highly foliated gneissic specimens. Estimates of thermal conductivity based on a composite dispersion analysis utilizing pure minerallic phase conductivities and detailed modal analyses usually agreed to within 9 percent of the experimental values.

Sibbitt, W.L.; Dodson, J.G.; Tester, J.W.

1978-01-01T23:59:59.000Z

68

The UK geothermal hot dry rock R&D programme  

Science Conference Proceedings (OSTI)

The UK hot dry rock research and development programme is funded by the Department of Energy and aims to demonstrate the feasibility of commercial exploitation of HDR in the UK. The philosophy of the UK programme has been to proceed to a full-scale prototype HDR power station via a number of stages: Phase 1--Experiments at shallow depth (300 m) to assess the feasibility of enhancing the permeability of the rock. Phase 2--Studies at intermediate depth (2500 m) to determine the feasibility of creating a viable HDR subsurface heat exchanger. Phase 3--Establishment of an HDR prototype at commercial depth. The programme has run over a 15 year period, and has been formally reviewed at stages throughout its progress. The 1987 review towards the end of Phase 2 identified a number of technical objectives for continuing research and proposed that the initial design stage of the deep HDR prototype should start. Phase 3A is now complete. It addressed: the feasibility of creating an underground HDR heat exchanger suitable for commercial operation; techniques for improving hydraulic performance and correcting short circuits in HDR systems; modeling of the performance, resource size and economic aspects of HDR systems. The work has been conducted by a number of contractors, including Cambome School of Mines, Sunderland and Sheffield City Polytechnics and RTZ Consultants Limited. This paper focuses upon the experimental work at Rosemanowes in Cornwall and the recently completed conceptual design of a prototype HDR power station. The economics of HDR-generated electricity are also discussed and the conclusions of a 1990 program review are presented. Details of the HDR program to 1994, as announced by the UK Department of Energy in February 1991, are included.

MacDonald, Paul; Stedman, Ann; Symons, Geoff

1992-01-01T23:59:59.000Z

69

Geothermal gradient map of the United States  

Science Conference Proceedings (OSTI)

A geothermal gradient map is needed in order to determine the hot dry rock (HDR) geothermal resource of the United States. Based on published and unpublished data (including new measurements) the HDR program will produce updated gradient maps annually, to be used as a tool for resource evaluation and exploration. The 1980 version of this map is presented.

Kron, A.; Heiken, G.

1980-01-01T23:59:59.000Z

70

A combined heat transfer and quartz dissolution/deposition model for a hot dry rock geothermal reservoir  

DOE Green Energy (OSTI)

A kinetic model of silica transport has been coupled to a heat transfer model for a Hot Dry Rock (HDR) geothermal reservoir to examine the effect of silica rock-water interactions on fracture aperture and permeability. The model accounts for both the dissolution and deposition of silica. Zones of local dissolution and deposition were predicted, but their effect on aperture and permeability were fairly small for all cases studied. Initial rock temperature, reservoir size, and the ratio of rock surface area to fluid volume have the largest effect on the magnitude of silica mass transferred between the liquid and solid phases. 13 refs., 6 figs.

Robinson, B.A.; Pendergrass, J.

1989-01-01T23:59:59.000Z

71

Comparison of two hot dry rock geothermal reservoirs  

DOE Green Energy (OSTI)

Two hot dry rock (HDR) geothermal energy reservoirs were created by hydraulic fracturing of granite at 2.7 to 3.0 km (9000 to 10,000 ft) at the Fenton Hill site, near the Valles Caldera in northern New Mexico. Both reservoirs are research reservoirs, in the sense that both are fairly small, generally yielding 5 MWt or less, and are intended to serve as the basic building blocks of commercial-sized reservoirs, consisting of 10 to 15 similar fractures that would yield approximately 35 MWt over a 10 to 20 yr period. Both research reservoirs were created in the same well-pair, with energy extraction well number 1 (EE-1) serving as the injection well, and geothermal test well number 2 (GT-2) serving as the extraction, or production, well. The first reservoir was created in the low permeability host rock by fracturing EE-1 at a depth of 2.75 km (9020 ft) where the indigenous temperature was 185/sup 0/C (364/sup 0/F). A second, larger reservoir was formed by extending a small, existing fracture at 2.93 km (9620 ft) in the injection well about 100 m deeper and 10/sup 0/C hotter than the first reservoir. The resulting large fracture propagated upward to about 2.6 km (8600 ft) and appeared to Rave an inlet-to-outlet spacing of 300m (1000 ft), more then three times that of the first fracture. Comparisons are made with the first reservoir. Evaluation of the new reservoir was accomplished in two steps: (1) with a 23-day heat extraction experiment that began October 23, 1979, and (2) a second, longer-term heat extraction experiment still in progress, which as of November 25, 1980 has been in effect for 260 days. The results of this current experiment are compared with earlier experiments.

Murphy, H.D.; Tester, J.W.; Potter, R.M.

1980-01-01T23:59:59.000Z

72

Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ...

73

Economics of a conceptual 75 MW Hot Dry Rock geothermal electric power station  

DOE Green Energy (OSTI)

Man-made, Hot Dry Rock (HDR) geothermal energy reservoirs have been investigated for over ten years. As early as 1977 a research-sized reservoir was created at a depth of 2.9 km near the Valles Caldera, a dormant volcanic complex in New Mexico, by connecting two wells with hydraulic fractures. Thermal power was generated at rates of up to 5 MW(t) and the reservoir was operated for nearly a year with a thermal drawdown less than 10/sup 0/C. A small 60kW(e) electrical generation unit using a binary cycle (hot geothermal water and a low boiling point organic fluid, R-114) was operated. Interest is now worldwide with field research being conducted at sites near Le Mayet de Montagne, France; Falkenberg and Urach, Federal Republic of Germany; Yakedake, Japan; and Rosemanowes quarry in Cornwall, United Kingdom. To assess the commercial viability of future HDR electrical generating stations, an economic modeling study was conducted for a conceptual 75 MW(e) generating station operating at conditions similar to those prevailing at the New Mexico HDR site. The reservoir required for 75 MW(e), equivalent to 550 MW of thermal energy, uses at least 9 wells drilled to 4.3 km and the temperature of the water produced should average 230/sup 0/C. Thermodynamic considerations indicate that a binary cycle should result in optimum electricity generation and the best organic fluids are refrigerants R-22, R-32, R-115 or R-600a (Isobutane). The break-even bus bar cost of HDR electricity was computed by the levelized life-cycle method, and found to be competitive with most alternative electric power stations in the US.

Murphy, H.D.; Drake, R.H.; Tester, J.W.; Zyvoloski, G.A.

1984-01-01T23:59:59.000Z

74

Thermal modeling of the Clear Lake magmatic system, California: Implications for conventional and hot dry rock geothermal development  

Science Conference Proceedings (OSTI)

The combination of recent volcanism, high heat flow ({ge} HFU or 167 mW/m{sup 2}), and high conductive geothermal gradient (up to 120{degree} C/km) makes the Clear Lake region of northern California one of the best prospects for hot dry rock (HDR) geothermal development in the US. The lack of permeability in exploration wells and lack of evidence for widespread geothermal reservoirs north of the Collayomi fault zone are not reassuring indications for conventional geothermal development. This report summarizes results of thermal modeling of the Clear Lake magmatic system, and discusses implications for HDR site selection in the region. The thermal models incorporate a wide range of constraints including the distribution and nature of volcanism in time and space, water and gas geochemistry, well data, and geophysical surveys. The nature of upper crustal magma bodies at Clear Lake is inferred from studying sequences of related silicic lavas, which tell a story of multistage mixing of silicic and mafic magma in clusters of small upper crustal chambers. Thermobarometry on metamorphic xenoliths yield temperature and pressure estimates of {approximately}780--900 C and 4--6 kb respectively, indicating that at least a portion of the deep magma system resided at depths from 14 to 21 km (9 to 12 mi). The results of thermal modeling support previous assessments of the high HDR potential of the area, and suggest the possibility that granitic bodies similar to The Geysers felsite may underlie much of the Clear Lake region at depths as little as 3--6 km. This is significant because future HDR reservoirs could potentially be sited in relatively shallow granitoid plutons rather than in structurally complex Franciscan basement rocks.

Stimac, J.; Goff, F.; Wohletz, K.

1997-06-01T23:59:59.000Z

75

Artificial geothermal reservoirs in hot volcanic rock  

SciTech Connect

S>Some recent results from the Los Alamos program in which hydraulic fracturing is used for the recovery of geothermal energy are discussed. The location is about 4 kilometers west and south of the ring fault of the enormous Jemez Caldera in the northcentral part of New Mexico. It is shown that geothermal energy may be extracted from hot rock that does not contain circulating hot water or steam and is relatively impermeable. A fluid is pumped at high pressure into an isolated section of a wellbore. If the well is cased the pipe in this pressurized region is perforated as it is in the petroleum industry, so that the pressure may be applied to the rock, cracking it. A second well is drilled a few hundred feet away from the first. Cold water is injected through the first pipe, circulates through the crack, and hot water returns to the surface through the second pipe. Results are described and circumstances are discussed under which artiflcial geothermal reservoirs might be created in the basaltic rock of Hawaii. (MCW)

Aamodt, R.L.

1974-02-08T23:59:59.000Z

76

Geothermal: Sponsored by OSTI -- CO2-Rock Interactions in EGS...  

Office of Scientific and Technical Information (OSTI)

CO2-Rock Interactions in EGS-CO2: New Zealand TVZ Geothermal Systems as a Natural Analog Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

77

Session: Hot Dry Rock  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

1992-01-01T23:59:59.000Z

78

Economic modeling of electricity production from hot dry rock geothermal reservoirs: methodology and analyses. Final report  

DOE Green Energy (OSTI)

An analytical methodology is developed for assessing alternative modes of generating electricity from hot dry rock (HDR) geothermal energy sources. The methodology is used in sensitivity analyses to explore relative system economics. The methodology used a computerized, intertemporal optimization model to determine the profit-maximizing design and management of a unified HDR electric power plant with a given set of geologic, engineering, and financial conditions. By iterating this model on price, a levelized busbar cost of electricity is established. By varying the conditions of development, the sensitivity of both optimal management and busbar cost to these conditions are explored. A plausible set of reference case parameters is established at the outset of the sensitivity analyses. This reference case links a multiple-fracture reservoir system to an organic, binary-fluid conversion cycle. A levelized busbar cost of 43.2 mills/kWh ($1978) was determined for the reference case, which had an assumed geothermal gradient of 40/sup 0/C/km, a design well-flow rate of 75 kg/s, an effective heat transfer area per pair of wells of 1.7 x 10/sup 6/ m/sup 2/, and plant design temperature of 160/sup 0/C. Variations in the presumed geothermal gradient, size of the reservoir, drilling costs, real rates of return, and other system parameters yield minimum busbar costs between -40% and +76% of the reference case busbar cost.

Cummings, R.G.; Morris, G.E.

1979-09-01T23:59:59.000Z

79

Hot dry rock geothermal energy. Draft final report  

DOE Green Energy (OSTI)

This second EPRI workshop on hot dry rock (HDR) geothermal energy, held in May 1994, focused on the status of worldwide HDR research and development and used that status review as the starting point for discussions of what could and should be done next: by U.S. federal government, by U.S. industry, by U.S. state governments, and by international organizations or through international agreements. The papers presented and the discussion that took place indicate that there is a community of researchers and industrial partners that could join forces, with government support, to begin a new effort on hot dry rock geothermal development. This new heat mining effort would start with site selection and confirmatory studies, done concurrently. The confirmatory studies would test past evaluations against the most current results (from the U.S. site at Fenton Hill, New Mexico, and from the two sites in Japan, the one in Russia, and the two in western Europe) and the best models of relevant physical and economic aspects. Site selection would be done in the light of the confirmatory studies and would be influenced by the need to find a site where success is probable and which is representative enough of other sites so that its success would imply good prospects for success at numerous other sites. The test of success would be circulation between a pair of wells, or more wells, in a way that confirmed, with the help of flow modeling, that a multi-well system would yield temperatures, flows and lifetimes that support economically feasible power generation. The flow modeling would have to have previously achieved its own confirmation from relevant data taken from both heat mining and conventional hydrothermal geothermal experience. There may be very relevant experience from the enhancement of ''hot wet rock'' sites, i.e., sites where hydrothermal reservoirs lack, or have come to lack, enough natural water or steam and are helped by water injected cold and produced hot. The new site would have to be selected in parallel with the confirmatory studies because it would have to be modeled as part of the studies and because its similarity to other candidate sites must be known well enough to assure that results at the selected site are relevant to many others. Also, the industry partners in the joint effort at the new site must be part of the confirmatory studies, because they must be convinced of the economic feasibility. This meeting may have brought together the core of people who can make such a joint effort take place. EPRI sponsored the organization of this meeting in order to provide utilities with an update on the prospects for power generation via heat mining. Although the emerging rules for electric utilities competing in power generation make it very unlikely that the rate-payers of any one utility (or small group of utilities) can pay the differential to support this new heat mining research and development effort, the community represented at this meeting may be able to make the case for national or international support of a new heat mining effort, based on the potential size and economics of this resource as a benefit for the nation as a whole and as a contribution to reduced emissions of fossil CO{sub 2} worldwide.

Not Available

1994-09-01T23:59:59.000Z

80

Hot Dry Rock Geothermal Energy Development Program Annual Report Fiscal Year 1988  

DOE Green Energy (OSTI)

The complete list of HDR objectives is provided in Reference 10, and is tabulated below in Tables 1 and 2 for the reader's convenience. The primary, level 1, objective for HDR is ''to improve the technology to the point where electricity could be produced commercially from a substantial number of known HDR resource sites in a cost range of 5 to 8 cents/kWh by 1997''. A critically important milestone in attaining this cost target is the level II objective: ''Evaluate the performance of the Fenton Hill Phase II reservoir''. To appreciate the significance of this objective, a brief background is helpful. During the past 14 years the US DOE has invested $123 million to develop the technology required to make Hot Dry Rock geothermal energy commercially useful. The Governments of Japan and the Federal Republic of Germany have contributed an additional $32 million to the US program. The initial objectives of the program were met by the successful development and long-term operation of a heat-extraction loop in hydraulically-fractured hot dry rock. This Phase I reservoir produced pressurized hot water at temperatures and flow rates suitable for many commercial uses such as space heating and food processing. It operated for more than a year with no major problems or detectable environmental effect. With this accomplished and the technical feasibility of HDR energy systems demonstrated, the program undertook the more difficult task of developing a larger, deeper, hotter reservoir, called ''Phase II'', capable of supporting pilot-plant-scale operation of a commercial electricity-generating power plant. As described earlier in ''History of Research'', such a system was created and operated successfully in a preliminary 30-day flow test. However, to justify capital investment in HDR geothermal technology, industry now requires assurance that the reservoir can be operated for a long time without major problems or a significant decrease in the rate and quality of energy production. Industrial advisors to the HDR Program have concluded that, while a longer testing period would certainly be desirable, a successful and well-documented flow test of this high-temperature, Phase II reservoir lasting at least one year should convince industry that HDR geothermal energy merits their investment in its commercial development. This test is called the Long Term Flow Test (LTFT), and its completion will be a major milestone in attaining the Level 1 objective. However, before the LTFT could be initiated, well EE-2 had to be repaired, as also briefly described in the ''History of Research''. During this repair operation, superb progress was made toward satisfying the next most critically important Level II objective: Improve the Performance of HDR Drilling and Completion Technology. During the repair of EE-2, Los Alamos sidetracked by drilling out of the damaged well at 2.96 km (9700 ft), and then completed drilling a new-wellbore (EE-2A) to a total depth of 3.78 km (12,360 ft). As a consequence of this drilling experience, Los Alamos believes that if the original wells were redrilled today their combined cost would be only $8 million rather than the $18.8 million actually spent (a 60% cost saving). Further details, particularly of the completion of the well, can be found in the major section, ACCOMPLISHMENTS, but it can be seen that the second, Level II objective is already nearing attainment.

Dash, Zora V.; Murphy, Hugh D.; Smith, Morton C.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock hdr geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Petrologic considerations for hot dry rock geothermal site selection in the Clear Lake Region, California  

DOE Green Energy (OSTI)

The Clear Lake area is well known for anomalous heat flow, thermal springs, hydrothermal mineral deposits, and Quaternary volcanism. These factors, along with the apparent lack of a large reservoir of geothermal fluid north of Collayomi fault make the Clear Lake area an attractive target for hot dry rock (HDR) geothermal development. Petrologic considerations provide some constraints on site selection for HDR development. Spatial and temporal trends in volcanism in the Coast Ranges indicate that magmatism has migrated to the north with time, paralleling passage of the Mendocino triple junction and propagation of the San Andreas fault. Volcanism in the region may have resulted from upwelling of hot asthenosphere along the southern margin of the subducted segment of the Gorda plate. Spatial and temporal trends of volcanism within the Clear Lake volcanic field are similar to larger-scale trends of Neogene volcanism in the Cost Ranges. Volcanism (especially for silicic compositions) shows a general migration to the north over the {approximately}2 Ma history of the field, with the youngest two silicic centers located at Mt. Konocti and Borax Lake. The Mt. Konocti system (active from {approximately} 0.6 to 0.3 Ma) was large and long-lived, whereas the Borax Lake system is much smaller but younger (0.09 Ma). Remnants of silicic magma bodies under Mt. Konocti may be in the latter stages of cooling, whereas a magma body centered under Borax Lake may be in the early stages of development. The existence of an upper crustal silicic magma body of under Borax Lake has yet to be demonstrated by passive geophysics, however, subsurface temperatures in the area as high (> 200{degrees}C at 2000 m) as those beneath the Mt. Konocti area. Based on petrologic considerations alone, the Mt. Konocti-Borax Lake area appears to be the most logical choice for HDR geothermal development in the region.

Stimac, J.; Goff, F. (Los Alamos National Lab., NM (United States)); Hearn, B.C. Jr. (US Geological Survey, Reston, VA, Branch of Lithospheric Processes (United States))

1992-01-01T23:59:59.000Z

82

Surface water supply for the Clearlake, California Hot Dry Rock Geothermal Project  

DOE Green Energy (OSTI)

It is proposed to construct a demonstration Hot Dry Rock (HDR) geothermal plant in the vicinity of the City of Clearlake. An interim evaluation has been made of the availability of surface water to supply the plant. The evaluation has required consideration of the likely water consumption of such a plant. It has also required consideration of population, land, and water uses in the drainage basins adjacent to Clear Lake, where the HDR demonstration project is likely to be located. Five sources were identified that appear to be able to supply water of suitable quality in adequate quantity for initial filling of the reservoir, and on a continuing basis, as makeup for water losses during operation. Those sources are California Cities Water Company, a municipal supplier to the City of Clearlake; Clear Lake, controlled by Yolo County Flood Control and Water Conservation District; Borax Lake, controlled by a local developer; Southeast Regional Wastewater Treatment Plant, controlled by Lake County; and wells, ponds, and streams on private land. The evaluation involved the water uses, water rights, stream flows, precipitation, evaporation, a water balance, and water quality. In spite of California`s prolonged drought, the interim conclusion is that adequate water is available at a reasonable cost to supply the proposed HDR demonstration project.

Jager, A.R.

1996-03-01T23:59:59.000Z

83

Los Alamos hot dry rock geothermal project  

DOE Green Energy (OSTI)

The greatest potential for geothermal energy is the almost unlimited energy contained in the vast regions of hot, but essentially impermeable, rock within the first six or seven km of the Earth's crust. For the past five years, the Los Alamos Scientific Laboratory has been investigating and developing a practical, economical and environmentally acceptable method of extracting this energy. By early 1978, a 10 MW (thermal) heat extraction experiment will be in operation. In the Los Alamos concept, a man-made geothermal reservoir is formed by drilling into a region of suitably hot rock, and then creating within the rock a very large surface for heat transfer by large-scale hydraulic-fracturing techniques. After a circulation loop is formed by drilling a second hole to intersect the fractured region, the heat contained in this reservoir is brought to the surface by the buoyant closed-loop circulation of water. The water is kept liquid throughout the loop by pressurization, thereby increasing the rate of heat transport up the withdrawal hole compared to that possible with steam.

Brown, D.W.; Pettitt, R.A.

1977-01-01T23:59:59.000Z

84

New project for Hot Wet Rock geothermal reservoir design concept  

SciTech Connect

This paper presents the outlines of a new Hot Wet Rock (HWR) geothermal project. The goal of the project is to develop a design methodology for combined artificial and natural crack geothermal reservoir systems with the objective of enhancing the thermal output of existing geothermal power plants. The proposed concept of HWR and the research tasks of the project are described.

Takahashi, Hideaki; Hashida, Toshiyuki

1992-01-01T23:59:59.000Z

85

Isotopic Analysis- Rock At Coso Geothermal Area (1997) | Open Energy  

Open Energy Info (EERE)

Rock At Coso Geothermal Area (1997) Rock At Coso Geothermal Area (1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Coso Geothermal Area (1997) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Rock Activity Date 1997 Usefulness useful DOE-funding Unknown Exploration Basis Determine a major lithospheric boundary Notes Sr and Nd isotope ratios of Miocene-Recent basalts in eastern California, when screened for crustal contamination, vary dramatically and indicate the presence of a major lithospheric boundary that is not obvious from surface geology. Isotope ratios from the Coso field form a bull's-eye pattern with very low 87Sr/86Sr (0.7033) centered just south of the geothermal area. The

86

Rock Sampling At Coso Geothermal Area (1995) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Rock Sampling At Coso Geothermal Area (1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Coso Geothermal Area (1995) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Rock Sampling Activity Date 1995 Usefulness not indicated DOE-funding Unknown Notes Geologic controls on the geometry of the upwelling plume were investigated using petrographic and analytical analyses of reservoir rock and vein material. References Lutz, S.J.; Moore, J.N. ; Copp, J.F. (1 June 1995) Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Area,

87

Isotopic Analysis- Rock At Coso Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Analysis- Rock At Coso Geothermal Area (1984) Analysis- Rock At Coso Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Coso Geothermal Area (1984) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Rock Activity Date 1984 Usefulness not indicated DOE-funding Unknown Exploration Basis To analyze evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field Notes The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The two earliest rhyolites probably

88

Designs of an HDR reservoir at Clearlake, California  

SciTech Connect

The Clearlake area of California lies within the Geysers/Clearlake geothermal anomaly, a region of some 270 square miles in Sonoma and Lake Counties exhibiting elevated heat flow. The bulk of the electric power generated from geothermal resources in the United States is produced from this geothermal anomaly. However, the quantity of the Hot Dry Rock (HDR) resource within the Geysers/Clearlake geothermal anomaly is vastly larger than that of the hydrothermal resource, and could provide the basis for significant further electric power production. Of most interest from the standpoint of demonstrating the Hot Dry Rock (HDR) resource in this region is the extremely high heat flow that surrounds the City of Clearlake, as attested to by the very high temperatures measured in numerous dry (i.e., hydrothermally nonproductive) holes drilled there over the past 20 years.

Brown, D.W.; Burns, K.L.

1994-08-01T23:59:59.000Z

89

Power produced from hot dry rock geothermal resources: a case study for the Imperial Valley, California  

SciTech Connect

The case study described here concerns an HDR system which provides geothermal fluids for a hypothetical electric plant located in California's Imperial Valley. Primary concern is focused on the implications of differing drilling conditions, as reflected by costs, and differing risk environments for the potential commercialization of an HDR system. Drilling costs for best, medium and worst drilling conditions are taken from a recent study of drilling costs for HDR systems. Differing risk environments are presented by differing rate of return requirements on stocks and interest on bonds which the HDR system is assumed to pay; rate of return/interest combinations considered are 6%/3%, 9%/6%, 12%/9% and 15%/12%. The method used for analyzing the HDR system involves a two-stage process. In stage 1, the maximum amount that the electric plant can pay to an HDR system for geothermal fluids is calculated for alternative busbar prices of electricity received by the electric plant. In stage 2, costs for the HDR system are calculated under differing assumed risk environments and drilling conditions. These two sets of data may then be used to analyze the minimum busbar price of electricity - which defines a maximum fuel bill that could be paid to the HDR system by the electric plant - which could result in the HDR system's full recouperation of all production and drilling costs.

Cummings, R.G.; Morris, G.E.; Arundale, C.J.; Erickson, E.L.

1979-12-01T23:59:59.000Z

90

Hot Dry Rock Geothermal Energy Development Program  

DOE Green Energy (OSTI)

During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

1989-12-01T23:59:59.000Z

91

Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal  

Open Energy Info (EERE)

Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Area, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Area, California Details Activities (1) Areas (1) Regions (0) Abstract: Coso is one of several high-temperature geothermal systems associated with recent volcanic activity in the Basin and Range province. Chemical and fluid inclusion data demonstrate that production is from a narrow, asymmetric plume of thermal water that originates from a deep reservoir to the south and then flows laterally to the north. Geologic controls on the geometry of the upwelling plume were investigated using petrographic and analytical analyses of reservoir rock and vein material.

92

The conversion of biomass to ethanol using geothermal energy derived from hot dry rock to supply both the thermal and electrical power requirements  

SciTech Connect

The potential synergism between a hot dry rock (HDR) geothermal energy source and the power requirements for the conversion of biomass to fuel ethanol is considerable. In addition, combining these two renewable energy resources to produce transportation fuel has very positive environmental implications. One of the distinct advantages of wedding an HDR geothermal power source to a biomass conversion process is flexibility, both in plant location and in operating process is flexibility, both in plant location and in operating conditions. The latter obtains since an HDR system is an injection conditions of flow rate, pressure, temperature, and water chemistry are under the control of the operator. The former obtains since, unlike a naturally occurring geothermal resource, the HDR resource is very widespread, particularly in the western US, and can be developed near transportation and plentiful supplies of biomass. Conceptually, the pressurized geofluid from the HDR reservoir would be produced at a temperature in the range of 200{degrees} to 220{degrees}c. The higher enthalpy portion of the geofluid thermal energy would be used to produce a lower-temperature steam supply in a countercurrent feedwater-heater/boiler. The steam, following a superheating stage fueled by the noncellulosic waste fraction of the biomass, would be expanded through a turbine to produce electrical power. Depending on the lignin fraction of the biomass, there would probably be excess electrical power generated over and above plant requirements (for slurry pumping, stirring, solids separation, etc.) which would be available for sale to the local power grid. In fact, if the hybrid HDR/biomass system were creatively configured, the power plant could be designed to produce daytime peaking power as well as a lower level of baseload power during off-peak hours.

Brown, D.W.

1997-10-01T23:59:59.000Z

93

Microfractures in rocks from two geothermal areas | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Microfractures in rocks from two geothermal areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Microfractures in rocks from two geothermal areas Details Activities (2) Areas (2) Regions (0) Abstract: Core samples from the Dunes, California, and Raft River, Idaho, geothermal areas show diagenesis superimposed on episodic fracturing and fracture sealing. The minerals that fill fractures show significant temporal variations. Sealed fractures can act as barriers to fluid flow. Sealed fractures often mark boundaries between regions of significantly

94

Hot dry rock geothermal heat extraction  

DOE Green Energy (OSTI)

A man-made geothermal reservoir has been created at a depth of 2.7 km in hot, dry granite by hydraulic fracturing. The system was completed by directionally drilling a second well in close proximity with the top of the vertical fracture. In early 1978 heat was extracted from this reservoir for a period of 75 days. During this period thermal power was produced at an average rate of 4 MW(t). Theoretical analysis of th measured drawdown suggests a total fracture heat transfer area of 16,000 m/sup 2/. Viscous impedance to through-flow declined continuously so that at the end of the experiment this impedance was only one-fifth its initial value. Water losses to the surrounding rock formation also decreased continuously, and eventually this loss rate was less than 1% of the circulated flow rate. Geochemical analyses suggest that, with scale up of the heat transfer area and deeper, hotter reservoirs, hot dry rock reservoirs can ultimately produce levels of power on a commercial scale.

Murphy, H.D.

1979-01-01T23:59:59.000Z

95

Quartz dissolution and silica deposition in hot-dry-rock geothermal systems  

DOE Green Energy (OSTI)

The kinetics of quartz dissolution control the produced fluid dissolved silica concentration in geothermal systems in which the downhole residence time is finite. The produced fluid of the Phase I, Run Segment 5 experimental Hot Dry Rock (HDR) geothermal system at Fenton Hill, NM, was undersaturated with respect to quartz in one pass through the reservoir, suggesting that the rate of granite dissolution governed the outlet dissolved silica concentration in this system. The literature data for the rate of quartz dissolution in water from 65 to 625/sup 0/C is correlated using an empirical rate law which is first order in quartz surface area and degree of undersaturation of the fluid. The Arrhenius plot (ln k vs T/sup -1/) is linear over eight orders of magnitude of the rate constant, verifying the validity of the proposed rate expression. Carefully performed quartz dissolution experiments in the present study duplicated the literature data and completed the data base in the temperature range from 150 to 250/sup 0/C. Identical experiments using crushed granite indicate that the rate of quartz dissolution in the presence of granite could be as much as 1 to 2 orders of magnitude faster than the rates observed in the pure quartz experiments. A temperature dependent HDR reservoir model incorporates the quartz dissolution rate law to simulate the dissolved silica behavior during the Fenton Hill Run Segment 5 experiment. For this low-permeability, fracture-dominated reservoir, the assumptions of one-dimensional plug flow through a vertically-inclined rectangular fracture and one-dimensional rock heat conduction perpendicular to the direction of flow are employed. These simplifications lead to an analytical solution for the temperature field in the reservoir.

Robinson, B.A.

1982-07-01T23:59:59.000Z

96

Hot dry rock geothermal energy development program. Annual report, fiscal year 1980  

DOE Green Energy (OSTI)

Investigation and flow testing of the enlarged Phase I heat-extraction system at Fenton Hill continued throughout FY80. Temperature drawdown observed at that time indicated an effective fracture of approximately 40,000 to 60,000 m/sup 2/. In May 1980, hot dry rock (HDR) technology was used to produce electricity in an interface demonstration experiment at Fenton Hill. A 60-kVA binary-cycle electrical generator was installed in the Phase I surface system and heat from about 3 kg/s of geothermal fluid at 132/sup 0/C was used to boil Freon R-114, whose vapor drove a turboalternator. A Phase II system was designed and is now being constructed at Fenton Hill that should approach commercial requirements. Borehole EE-2, the injection well, was completed on May 12, 1980. It was drilled to a vertical depth of about 4500 m, where the rock temperature is approximately 320/sup 0/C. The production well, EE-3 had been drilled to a depth of 3044 m and drilling was continuing. Environmental monitoring of Fenton Hill site continued. Development of equipment, instruments, and materials for technical support at Fenton Hill continued during FY80. Several kinds of models were also developed to understand the behavior of the Phase I system and to develop a predictive capability for future systems. Data from extensive resource investigations were collected, analyzed, and assembled into a geothermal gradient map of the US, and studies were completed on five specific areas as possible locations for HDR Experimental Site 2.

Cremer, G.M. (comp.)

1981-07-01T23:59:59.000Z

97

Environmental studies conducted at the Fenton Hill Hot Dry Rock geothermal development site  

DOE Green Energy (OSTI)

An environmental investigation of Hot Dry Rock (HDR) geothermal development was conducted at Fenton Hill, New Mexico, during 1976-1979. Activities at the Fenton Hill Site included an evaluation of baseline data for biotic and abiotic ecosystem components. Identification of contaminants produced by HDR processes that had the potential for reaching the surrounding environment is also discussed. Three dominant vegetative communities were identified in the vicinity of the site. These included grass-forb, aspen, and mixed conifer communities. The grass-forb area was identified as having the highest number of species encountered, with Phleum pratense and Dactylis glomerata being the dominant grass species. Frequency of occurrence and mean coverage values are also given for other species in the three main vegetative complexes. Live trapping of small mammals was conducted to determine species composition, densities, population, and diversity estimates for this component of the ecosystem. The data indicate that Peromyscus maniculatus was the dominant species across all trapping sites during the study. Comparisons of relative density of small mammals among the various trapping sites show the grass-forb vegetative community to have had the highest overall density. Comparisons of small mammal diversity for the three main vegetative complexes indicate that the aspen habitat had the highest diversity and the grass-forb habitat had the lowest. Analyses of waste waters from the closed circulation loop indicate that several trace contaminants (e.g., arsenic, cadmium, fluoride, boron, and lithium) were present at concentrations greater than those reported for surface waters of the region.

Miera, F.R. Jr.; Langhorst, G.; McEllin, S.; Montoya, C.

1984-05-01T23:59:59.000Z

98

Black Rock III Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Black Rock III Geothermal Project Black Rock III Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Black Rock III Geothermal Project Project Location Information Coordinates The following coordinate was not recognized: 33°19'59" N, 115°50'3 W.The following coordinate was not recognized: 33°19'59" N, 115°50'3 W. Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

99

Hot dry rock energy: Hot dry rock geothermal development program. Progress report. Fiscal year 1993  

DOE Green Energy (OSTI)

Extended flow testing at the Fenton Hill Hot Dry Rock (HDR) test facility concluded in Fiscal Year 1993 with the completion of Phase 2 of the long-term flow test (LTFT) program. As is reported in detail in this report, the second phase of the LTFT, although only 55 days in duration, confirmed in every way the encouraging test results of the 112-day Phase I LTFT carried out in Fiscal Year 1992. Interim flow testing was conducted early in FY 1993 during the period between the two LTFT segments. In addition, two brief tests involving operation of the reservoir on a cyclic schedule were run at the end of the Phase 2 LTFT. These interim and cyclic tests provided an opportunity to conduct evaluations and field demonstrations of several reservoir engineering concepts that can now be applied to significantly increase the productivity of HDR systems. The Fenton Hill HDR test facility was shut down and brought into standby status during the last part of FY 1993. Unfortunately, the world`s largest, deepest, and most productive HDR reservoir has gone essentially unused since that time.

Salazar, J.; Brown, M. [eds.

1995-03-01T23:59:59.000Z

100

Hydrogeochemical evaluation of conventional and hot dry rock geothermal resource potential in the Clear Lake region, California  

DOE Green Energy (OSTI)

Chemistry, stable isotope, and tritium contents of thermal/mineral waters in the Clear Lake region were used to evaluate conventional and hot dry rock (HDR) geothermal potential for electrical generation. Thermal/mineral waters of the Clear Lake region are broadly classified as thermal meteoric and connate types based on chemical and isotopic criteria. Ratios of conservative components such as B/Cl are extremely different among all thermal/mineral waters of the Clear Lake region except for clusters of waters emerging from specific areas such as the Wilbur Springs district and the Agricultural Park area south of Mt. Konocti. In contrast ratios of conservative components in large, homogeneous geothermal reservoirs are constant. Stable isotope values of Clear Lake region waters show a mixing trend between thermal meteoric and connate (generic) end-members. The latter end-member has enriched {delta}D as well as enriched {delta}{sup 18}O, from typical high-temperature geothermal reservoir waters. Tritium data indicate most Clear Lake region waters are mixtures of old and young fluid components. Subsurface equilibration temperature of most thermal/mineral waters of the Clear Lake region is {le}150{degree}C based on chemical geothermometers but it is recognized that Clear Lake region waters are not typical geothermal fluids and that they violate rules of application of many geothermometers. The combined data indicate that no large geothermal reservoir underlies the Clear Lake region and that small localized reservoirs have equilibration temperatures {le}150{degree}C (except for Sulphur Bank mine). HDR technologies are probably the best way to commercially exploit the known high-temperatures existing beneath the Clear Lake region particularly within and near the main Clear Lake volcanic field.

Goff, F.; Adams, A.I.; Trujillo, P.E.; Counce, D.

1993-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock hdr geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Mining earth's heat: development of hot-dry-rock geothermal reservoirs  

DOE Green Energy (OSTI)

The energy-extraction concept of the Hot Dry Rock (HDR) Geothermal Program, as initially developed by the Los Alamos National Laboratory, is to mine this heat by creating a man-made reservoir in low-permeability, hot basement rock. This concept has been successfully proven at Fenton Hill in northern New Mexico by drilling two holes to a depth of approximately 3 km (10,000 ft) and a bottom temperature of 200/sup 0/C (392/sup 0/F), then connecting the boreholes with a large-diametervertical hydraulic fracture. Water is circulated down one borehole, heated by the hot rock, and rises up the second borehole to the surface where the heat is extracted and the cooled water is reinjected into the underground circulation loop. This system has operated for a cumulative 416 days during engineering and reservoir testing. An energy equivalent of 3 to 5 MW(t) was produced without adverse environmental problems. During one test, a generator was installed in the circulation loop and produced 60 kW of electricity. A second-generation system, recently drilled to 4.5 km (15,000 ft) and temperatures of 320/sup 0/C (608/sup 0/F), entails creating multiple, parallel fractures between a pair of inclined boreholes. This system should produce 5 to 10 MW(e) for 20 years. Significant contributions to underground technology have been made through the development of the program.

Pettitt, R.A.; Becker, N.M.

1983-01-01T23:59:59.000Z

102

Unique aspects of drilling and completing hot-dry-rock geothermal wells  

DOE Green Energy (OSTI)

Drilling operations at the Fenton Hill Hot Dry Rock (HDR) Geothermal Test Site have led to numerous developments needed to solve the problems caused by a very harsh downhole environment. A pair of deep wells were drilled to approximately 15,000 ft (4.6 km); formation temperatures were in excess of 600/sup 0/F (300/sup 0/C). The wells were directionally drilled, inclined at 35/sup 0/, one above the other, in a direction orthogonal to the least principal stress field. The well site is near the flank of a young silicic composite volcano in the Jemez Mountains of northern New Mexico. The completion of this pair of wells is unique in reservoir development. The lower well was planned as a cold water injector which will be cooled by the introduced water from the static geothermal gradient to about 80/sup 0/F (25/sup 0/C). The upper well will be heated during production to over 500/sup 0/F (250/sup 0/C). The well pair is designed to perform as a closed loop heat-extraction system connected by hydraulic fractures with a vertical spacing of 1200 ft between the wells. These conditions strongly constrain the drilling technique, casing design, cement formulation, and cementing operations.

Carden, R.S.; Nicholson, R.W.; Pettitt, R.A.; Rowley, J.C.

1983-01-01T23:59:59.000Z

103

Hot dry rock in the United States: Putting a unique technology to practical use  

DOE Green Energy (OSTI)

Hot dry rock (HDR) geothermal energy technology is unique in many aspects. HDR resources are much more widely distributed than hydrothermal resources, the production temperatures of fluids extracted from fully-engineered HDR reservoirs can be selected at will, and other important characteristics of HDR reservoirs can be controlled and even deliberately varied over time. Because HDR reservoirs can be rapidly discharged and recharged, a wide variety of operating scenarios can be envisioned that are not normally feasible for hydrothermal systems. Flow testing over the past few years has shown that HDR systems can be operated in a routine, automated manner that should make them rapidly adaptable to industrial applications. An industry-led HDR project now being formulated will lead to the development and operation of a practical facility to produce and market energy from an HDR resource by the turn of the century.

Duchane, D.V. [Los Alamos National Lab., NM (United States). Earth and Environmental Sciences Div.

1995-01-01T23:59:59.000Z

104

Prospects for the commercial development of hot dry rock geothermal energy in New Mexico  

DOE Green Energy (OSTI)

A vast store of energy is available to the world in the form of hot dry rock (HDR) which exists almost everywhere beneath the surface of the earth. The Los Alamos National Laboratory has developed technology to mine the heat from HDR by using techniques developed in the petroleum industry. In practice, an artificial reservoir is created in the hot rock and water is circulated through the reservoir to extract the thermal energy and bring it to the surface. There are virtually no adverse environmental effects from an HDR plant when the system is operated in a closed-loop mode with the process water continually recirculated. An experimental plant at Fenton Hill, NM is now undergoing long-term testing to demonstrate that energy can be obtained from HDR on a sustained basis with operational procedures which are readily adaptable to industry. Significant HDR resources exist in the state of New Mexico. Resources in the Valles Caldera, Zuni Uplift, and Rio Grande Rift have been evaluated in detail. Studies indicate that it should be possible to economically develop high grade HDR resources with technology available today. As advanced concepts for developing and operating HDR systems are investigated, even more widespread utilization of the technology will be commercially feasible.

Duchane, D.V.; Goff, F.

1992-01-01T23:59:59.000Z

105

Exploration for Hot Dry Rock geothermal resources in the Midcontinent USA. Volume 1. Introduction, geologic overview, and data acquisition and evaluation  

DOE Green Energy (OSTI)

The Midcontinent of North America is commonly characterized as a stable cratonic area which has undergone only slow, broad vertical movements over the past several hundreds of millions of years. This tectonically stable crust is an unfertile area for hot dry rock (HDR) exploration. However, recent geophysical and geological studies provide evidence for modest contemporary tectonic activity in limited areas within the continent and, therefore, the possibility of localized thermal anomalies which may serve as sites for HDR exploration. HDR, as an energy resource in the Midcontinent, is particularly appealing because of the high population density and the demand upon conventional energy sources. Five generalized models of exploration targets for possible Midcontinent HDR sites are identified: (1) radiogenic heat sources, (2) conductivity-enhanced normal geothermal gradients, (3) residual magnetic heat, (4) sub-upper crustal sources, and (5) hydrothermal generated thermal gradients. Three potential sources of HDR, each covering approximately a 2/sup 0/ x 2/sup 0/ area, were identified and subjected to preliminary evaluation. In the Mississippi Embayment test site, lateral thermal conductivity variations and subcrustal heat sources may be involved in producing abnormally high subsurface temperatures. Studies indicate that enhanced temperatures are associated primarily with basement rift features where vertical displacement of aquifers and faults cause the upward migration of hot waters leading to anomalously high local upper crustal temperatures. The Western Nebraska test site is a potential low temperature HDR source also related, at least in part, to groundwater movement. The Southeast Michigan test site was selected for study because of the possible presence of radiogenic plutons overlain by a thickened sedimentary blanket.

Hinze, W.J.; Braile, L.W.; von Frese, R.R.B.; Lidiak, E.G.; Denison, R.E.; Keller, G.R.; Roy, R.F.; Swanberg, C.A.; Aiken, C.L.V.; Morgan, P.

1986-02-01T23:59:59.000Z

106

Session: Hot Dry Rock  

SciTech Connect

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

1992-01-01T23:59:59.000Z

107

Black Rock Point Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Black Rock Point Geothermal Area Black Rock Point Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Black Rock Point Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9553,"lon":-119.1141,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

108

Roosevelt Hot Springs/hot-dry-rock prospect and evaluation of the Acord 1-26 well  

DOE Green Energy (OSTI)

Previous hot, dry rock (HDR) geothermal resource evaluation efforts have identified the Roosevelt Hot Springs KGRA as a prime HDR target. The size of the HDR resource is estimated to be at least eight times larger than the adjacent hydrothermal resource. Further research activities to evaluate this HDR resource have involved review of data from the Acord hot dry well, the seismic structure of the area, fluid geochemistry, and hydrology of a shallow aquifer. These recent results are summarized and the most likely HDR prospect area is identified.

Shannon, S.S. Jr.; Goff, F.; Rowley, J.C.; Pettitt, R.A.; Vuataz, F.D.

1983-01-01T23:59:59.000Z

109

Issues facing the developmt of hot dry rock geothermal resources  

DOE Green Energy (OSTI)

Technical and economic issues related to the commercial feasibility of hot dry rock geothermal energy for producing electricity and heat will be discussed. Topics covered will include resource characteristics, reservoir thermal capacity and lifetime, drilling and surface plant costs, financial risk and anticipated rate of return.

Tester, J.W.

1979-01-01T23:59:59.000Z

110

The hot dry rock geothermal energy program  

DOE Green Energy (OSTI)

The paper presents a simplified description of the Department of Energy's Hot-Dry-Rock program conducted at Fenton Hill, New Mexico. What a hot-dry-rock resource is and what the magnitude of the resource is are also described.

Smith, M.C.

1987-09-01T23:59:59.000Z

111

Proceedings of hot dry rock geothermal workshop  

DOE Green Energy (OSTI)

Abstracts of 38 papers are included on the following subjects: rock mechanics, part 1: hydraulic fracturing; fracture imaging and borehole surveying; fluid flow-pressure analyses; rock mechanics, part 2: hydraulic fracturing and thermal cracking; geochemistry; heat extraction modeling; and economics and energy conversion. (MHR)

Elsner, D.B. (comp.)

1978-09-01T23:59:59.000Z

112

HDR opportunities and challenges beyond the long-term flow test  

DOE Green Energy (OSTI)

The long term flow test (LTFT) of the world's largest, deepest, and hottest hot dry rock (HDR) reservoir currently underway at Fenton Hill, NM, is expected to demonstrate that thermal energy can be mined from hot rock within the earth on a sustainable basis with minimal water consumption. This test will simulate the operations of a commercial facility in some ways, but it will not show that energy from HDR can be produced at a variety of locations with different geological settings. Since the Fenton Hill system was designed as a research facility rather than strictly for production purposes, it will also not demonstrate economic viability, although it may well give indications of system modifications needed for economic HDR operations. A second production site must be constructed, ideally under the direction of the private geothermal community, to begin the process of proving that the vast HDR resources can be accessed on a worldwide scale. Finally, research and development work in areas such as reservoir interrogation, and system modeling must be accelerated to increase the competitiveness and geographical applications of HDR and the geothermal industry in general. This paper addresses the above issues in detail and outlines possible paths to future prosperity for the commercial geothermal industry.

Duchane, D.V.

1992-01-01T23:59:59.000Z

113

HDR opportunities and challenges beyond the long-term flow test  

SciTech Connect

The long term flow test (LTFT) of the world's largest, deepest, and hottest hot dry rock (HDR) reservoir currently underway at Fenton Hill, NM, is expected to demonstrate that thermal energy can be mined from hot rock within the earth on a sustainable basis with minimal water consumption. This test will simulate the operations of a commercial facility in some ways, but it will not show that energy from HDR can be produced at a variety of locations with different geological settings. Since the Fenton Hill system was designed as a research facility rather than strictly for production purposes, it will also not demonstrate economic viability, although it may well give indications of system modifications needed for economic HDR operations. A second production site must be constructed, ideally under the direction of the private geothermal community, to begin the process of proving that the vast HDR resources can be accessed on a worldwide scale. Finally, research and development work in areas such as reservoir interrogation, and system modeling must be accelerated to increase the competitiveness and geographical applications of HDR and the geothermal industry in general. This paper addresses the above issues in detail and outlines possible paths to future prosperity for the commercial geothermal industry.

Duchane, D.V.

1992-01-01T23:59:59.000Z

114

Rock properties in support of geothermal resource development  

DOE Green Energy (OSTI)

Geothermal rock mechanics needs have been defined and subsequently a test system was designed and built for providing appropriate material properties. The development areas identified as requiring rock mechanics were stimulation, reservoir engineering, subsidence prediction, surface exploration and subsurface evaluation, and drilling. The resulting test system provides mechanical, electrical, thermal and physical properties on 2 and 4 inch diameter cores at confining pressures and pore fluid pressures to 200 MPa (30,000 psi) and temperatures to 535/sup 0/C (1000/sup 0/F). The test system development was continued and site specific rock mechanics requirements were identified. (MHR)

Butters, S.W.

1979-01-01T23:59:59.000Z

115

Los Alamos hot dry rock geothermal energy experiment  

DOE Green Energy (OSTI)

Recent heat flow data indicates that about 95,000 sq. mi. in 13 western U.S. states is underlain, at a depth of 5 km (16,400 ft) by hot dry rock at temperatures above 290/sup 0/C (440/sup 0/F.). Therefore a geothermal energy development program was undertaken to develop methods from extracting thermal energy from hot rock in the earth crust by man-made underground circulation systems; demonstrate the commercial feasibility of such systems; and encourage use of this technology. Experiments performed on the Jemez Plateau in New Mexico are described with information on the drilling of boreholes, hydraulic fracturing of hot rocks, well logging, and environmental monitoring to establish base line data and define the potential effects of the project. The technical achievements of the project include boreholes were drilled to 3k (10,000 ft) with bottomhole temperatures of approximately 200/sup 0/C (390/sup 0/F); hydraulic fracturing produced fractured regions with 150 m (500 ft) radii; at least 90 percent of the water injected was recovered; and data was obtained on geologic conditions, seismic effects, and thermal, fracturing, and chemical properties of the downhole rocks. A geothermal power-production system model was formulated for evaluating the total cost of developing power production using a hot-dry-rock geothermal energy source. (LCL)

Pettitt, R.A.

1976-01-01T23:59:59.000Z

116

HDR Opportunities and Challenges Beyond the Long-Term Flow Test  

SciTech Connect

The long term flow test (LTFT) of the worlds largest, deepest, and hottest hot dry rock (HDR) reservoir currently underway at Fenton Hill, NM, is expected to demonstrate that thermal energy can be mined from hot rock within the earth on a sustainable basis with minimal water consumption. This test will simulate the operations of a commercial facility in some ways, but it will not show that energy from HDR can be produced at a variety of locations with different geological settings. Since the Fenton Hill system was designed as a research facility rather than strictly for production purposes, it will also not demonstrate economic viability, although it may well give indications of system modifications needed for economic HDR operations. A second production site must be constructed, ideally under the direction of the private geothermal community, to begin the process of proving that the vast HDR resources can be accessed on a worldwide scale. This facility should be designed and engineered to produce and market energy at competitive prices. At the same time, a wide variety of techniques to advance the state-of-the-art of HDR technology must be pursued to develop this infant technology rapidly to its maximum potential. A number of design and operational techniques have been conceived which may lead to improved economics in HDR systems. After careful technical and economic scrutiny, those showing merit should be vigorously pursued. Finally, research and development work in areas such as reservoir interrogation, and system modeling must be accelerated to increase the competitiveness and geographical applications of HDR and the geothermal industry in general. This paper addresses the above issues in detail and outlines possible paths to future prosperity for the commercial geothermal industry.

Duchane, David

1992-03-24T23:59:59.000Z

117

Recent developments in the hot dry rock geothermal energy program  

DOE Green Energy (OSTI)

In recent years, most of the Hot Dry Rock Programs effort has been focused on the extraction technology development effort at the Fenton Hill test site. The pair of approximately 4000 m wells for the Phase II Engineering System of the Fenton Hill Project have been completed. During the past two years, hydraulic fracture operations have been carried out to develop the geothermal reservoir. Impressive advances have been made in fracture identification techniques and instrumentation. To develop a satisfactory interwellbore flow connection the next step is to redrill the lower section of one of the wells into the fractured region. Chemically reactive tracer techniques are being developed to determine the effective size of the reservoir area. A new estimate has been made of the US hot dry rock resource, based upon the latest geothermal gradiant data. 3 figs.

Franke, P.R.; Nunz, G.J.

1985-01-01T23:59:59.000Z

118

Borehole temperature survey analysis hot dry rock geothermal reservoir  

DOE Green Energy (OSTI)

The Los Alamos Scientific Laboratory (LASL) has been actively investigating the potential for extracting geothermal energy from hot dry rock. A man-made geothermal reservoir has been formed at the Fenton Hill Test Site in northern New Mexico. The 10-MW (thermal) prototype energy extraction circulation loop has been completed and has been continuously operating since January 28 of this year. The performance of the Phase I 1000-h circulation experiment would establish technological assessment of the particular hot dry rock geothermal reservoir. The major parameters of interest include equipment operations, geochemistry, water loss, and reservoir thermal drawdown. Temperature measurements were used extensively as one method to study the man-made geothermal reservoir. The temperature probe is one of the less complex wellbore survey tools that is readily fielded to allow on-line analysis of changing conditions in the hydraulic-fracture system. Several downhole temperature instruments have been designed and fabricated for use in the GT-2/EE-1 wellbores.

Dennis, B.R.; Murphy, H.D.

1978-01-01T23:59:59.000Z

119

Geothermal resource requirements for an energy self-sufficient spaceport  

DOE Green Energy (OSTI)

Geothermal resources in the southwestern United States provide an opportunity for development of isolated spaceports with local energy self-sufficiency. Geothermal resources can provide both thermal energy and electrical energy for the spaceport facility infrastructure and production of hydrogen fuel for the space vehicles. In contrast to hydrothermal resources by which electric power is generated for sale to utilities, hot dry rock (HDR) geothermal resources are more wide-spread and can be more readily developed at desired spaceport locations. This paper reviews a dynamic model used to quantify the HDR resources requirements for a generic spaceport and estimate the necessary reservoir size and heat extraction rate. The paper reviews the distribution of HDR resources in southern California and southern New Mexico, two regions where a first developmental spaceport is likely to be located. Finally, the paper discusses the design of a HDR facility for the generic spaceport and estimates the cost of the locally produced power.

Kruger, P.; Fioravanti, M. [Stanford Univ., CA (United States). Civil Engineering Dept.; Duchane, D.; Vaughan, A. [Los Alamos National Lab., NM (United States). Earth and Environmental Sciences Div.

1997-01-01T23:59:59.000Z

120

Recent Developments in Japan's HDR Program  

DOE Green Energy (OSTI)

Japan is one of the most active volcanic countries in the world, and it is understood to have very abundant geothermal energy. In Japan, where only a limited amount of other natural energy resources are domestically available, geothermal energy is one of the nation's purely indigenous energy sources. Its development therefore, has, been anxiously urged. Geothermal energy is classified generally in several types: vapor dominated type resources, which are mainly used to generate electric power, and low grade hydrothermal fluid and hot dry rock type resources, most of which are not used at present in Japan. NEDO, the New Energy and Industrial Technology Development Organization, promotes the technological development of geothermal energy utilization in order to increase the use of this type of energy, particularly in such technical fields as the development of a power plant that uses hydrothermal fluids. This type of plant will enable the effective use for power generation of not only steam, but also geothermal fluid, so as to permit the use of hot water that flows out in great quantities together with useful geothermal steam. The vast volume of geothermal water with medium to high temperature left intact underground will also be possible to utilize. Research themes promoted by NEDO, the Geothermal Energy Technology Department and the budget for FY 1991 (from April 1991 to March 1992) are: (1) Development of 10MW Class Binary Cycle Power Plant ($2.0M); (2) Development of Down-hole Pump ($3.0M); (3) Development of Technology for increasing Geothermal Energy Recovery ($5.9M); (4) Development of Measurement While Drilling System ($0.4M); and (5) Development of Hot Dry Rock Power Generation Technology ($7.1M). The total amount of 18.4 Million dollars is allocated for FY 1991 ($1 = 130 yen). Figure 1 shows the budgets from FY 1990 to 1992 (requested). The total amount of budgets listed above is grouped into ''Technology R & D'' in Figure 1. Figure 1 also shows the budgets for ''Survey & Promotion'' items conducted by NEDO. This paper reviews the history of HDR development in Japan and summarizes the recent development of NEDO's HDR project. Since FY 1985, NEDO has been conducting research to develop basic technologies for hot dry rock geothermal power generation at Hijiori, Okura Village in Yamagata Prefecture. The main purpose of this research is developing a heat extracting circulation system in hot dry rock of depth and temperature similar to those expected for a commercial scale operation. Within this scope, NEDO developed fundamental technologies for creating an artificial geothermal reservoir, establishing hydraulic communication between wells, logging boreholes, observing acoustic emission (AE) events for fracture mapping, evaluating flow through the reservoir, and estimating geothermal heat recovery. In the hot dry rock geothermal project, especially in Japan, it is important to understand how pre-existing fractures affect hydrofracture development. At present, there are a number of methods that can be employed to understand the fractures, but it is necessary to evaluate which are, most appropriate and accurate. Since FY 1989, we have been performing small-scale fracture characterization experiments on-site in I-itate Village, Fukushima Prefecture, where the granite basement rock outcrops.

Yamaguchi, Tsutomu

1992-03-24T23:59:59.000Z

Note: This page contains sample records for the topic "rock hdr geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Bibliography of the geological and geophysical aspects of hot dry rock geothermal resources  

DOE Green Energy (OSTI)

This is the first issue of an annual compilation of references that are useful to the exploration, understanding and development of the hot dry rock geothermal resource.

Heiken, G.; Sayer, S.

1980-02-01T23:59:59.000Z

122

Hot dry rock: A versatile alternative energy technology  

Science Conference Proceedings (OSTI)

Hot dry rock (HDR) is the most abundant geothermal resource, and is found almost everywhere at depth. The technology to extract energy from HDR for practical use has been under development at the Los Alamos National Laboratory for more than twenty years. During the 1970`s, the possibility of mining the heat from HDR by circulating water through an engineered geothermal reservoir was first demonstrated on a small scale. Between 1980 and 1986 a larger, deeper, and hotter HDR reservoir was constructed. This large reservoir was subsequently mated to a permanent surface plant. A number of flow tests of this large HDR reservoir were conducted between 1991 and 1995. The results of these tests have indicated that it should be practical to operate an HDR heat mining facility to produce power on a sustained basis. An industry-led, government cost-shared project to produce and market energy generated from HDR is currently being put in place. That project should help demonstrate that HDR reservoirs can be operated to provide energy for long periods of time at rates sufficient to be commercially viable. In the longer run, additional applications of HDR technology such as water and waste treatment, and steam generation for oil field flooding may come into widespread use.

Duchane, D.V. [Los Alamos National Lab., NM (United States). Earth and Environmental Sciences Div.

1995-01-01T23:59:59.000Z

123

Cumulative experience of the US Hot Dry Rock Program  

DOE Green Energy (OSTI)

In over 20 years of research on the Hot Dry Rock (HDR) geothermal energy concept at Los Alamos National Laboratory, no obstacle has yet been found that would prevent its development as a major new energy source for the nation. To put the continuing development of the HDR concept in perspective, the most appropriate comparison is with fusion energy, the only other nonrenewable energy resource of the magnitude of HDR geothermal energy. In this context, research on fusion energy is currently so far from the demonstration stage that obstacles to its ultimate commercial development, such as induced radiation or neutron damage to structural materials, cannot yet be addressed from the standpoint of engineered solutions. For the commercialization of the HDR concept, on the other hand, we know what technical problems remain and are presently developing engineered solutions to address each of them. This document presents learned information on: the formation of HDR reservoirs; the structure of the deep precambrian basement; the mechanics of creating an HDR geothermal reservoir; peripheral water loss from deep HDR reservoirs; the determination of the size, orientation, and internal structure of the stimulated HDR region; and results from geochemical analyses and tracer testing.

Brown, D.W.

1993-01-01T23:59:59.000Z

124

Cumulative experience of the US Hot Dry Rock Program  

DOE Green Energy (OSTI)

In over 20 years of research on the Hot Dry Rock (HDR) geothermal energy concept at Los Alamos National Laboratory, no obstacle has yet been found that would prevent its development as a major new energy source for the nation. To put the continuing development of the HDR concept in perspective, the most appropriate comparison is with fusion energy, the only other nonrenewable energy resource of the magnitude of HDR geothermal energy. In this context, research on fusion energy is currently so far from the demonstration stage that obstacles to its ultimate commercial development, such as induced radiation or neutron damage to structural materials, cannot yet be addressed from the standpoint of engineered solutions. For the commercialization of the HDR concept, on the other hand, we know what technical problems remain and are presently developing engineered solutions to address each of them. This document presents learned information on: the formation of HDR reservoirs; the structure of the deep precambrian basement; the mechanics of creating an HDR geothermal reservoir; peripheral water loss from deep HDR reservoirs; the determination of the size, orientation, and internal structure of the stimulated HDR region; and results from geochemical analyses and tracer testing.

Brown, D.W.

1993-04-01T23:59:59.000Z

125

Energy extraction characteristics of hot dry rock geothermal systems  

DOE Green Energy (OSTI)

The LASL Hot Dry Rock Geothermal Energy Project is investigating methods to extract energy at useful temperatures and rates from naturally heated crustal rock in locations where the rock does not spontaneously yield natural steam or hot water at a rate sufficient to support commercial utilization. Several concepts are discussed for application to low and high permeability formations. The method being investigated first is intended for use in formations of low initial permeability. It involves producing a circulation system within the hot rock by hydraulic fracturing to create a large crack connecting two drilled holes, then operating the system as a closed pressurized-water heat-extration loop. With the best input assumptions that present knowledge provides, the fluid-flow and heat-exchange calculations indicate that unpumped (buoyant) circulation through a large hydraulic fracture can maintain a commercially useful rate of heat extraction throughout a usefully long system life. With a power cycle designed for the temperature of the fluid produced, total capital investment and generating costs are estimated to be at least competitive with those of fossil-fuel-fired and nuclear electric plants. This paper discusses the potential of the hot dry rock resource, various heat extraction concepts, prediction of reservoir performance, and economic factors, and summarizes recent progress in the LASL field program.

Tester, J.W.; Smith, M.C.

1977-01-01T23:59:59.000Z

126

Federal hot dry rock geothermal energy development program: an overview  

DOE Green Energy (OSTI)

The formulation and evolution of the Federal Hot Dry Rock Geothermal Energy Development Program at the Los Alamos Scientific Laboratory are traced. Program motivation is derived from the enormous potential of the resource. Accomplishments to date, including the establishment and evaluation of the 5-MW/sub t/ Phase 1 reservoir at Fenton Hill, NM and various instrument and equipment developments, are discussed. Future plans presented include (1) establishment of a 20- to 50-MW/sub t/ Phase 2 reservoir at Fenton Hill that will be used to demonstrate longevity and, eventually, electric power production and (2) the selection of a second site at which a direct thermal application will be demonstrated.

Nunz, G.J.

1979-01-01T23:59:59.000Z

127

Planning and drilling geothermal energy extraction hole EE-2: a precisely oriented and deviated hole in hot granitic rock  

DOE Green Energy (OSTI)

During the preceding work (Phase I) of the Hot Dry Rock (HDR) Geothermal Energy Project at Fenton Hill, two holes were drilled to a depth of nearly 3048 m (10,000 ft) and connected by a vertical hydraulic fracture. In this phase, water was pumped through the underground reservoir for approximately 417 days, producing an energy equivalent of 3 to 5 MW(t). Energy Extraction Hole No. 2 (EE-2) is the first of two deep holes that will be used in the Engineering-Resource Development System (Phase II) of the ongoing HDR Project of the Los Alamos National Laboratory. This phase of the work consists of drilling two parallel boreholes, inclined in their lower, open-hole sections at 35/sup 0/ to the vertical and separated by a vertical distance of 366 m (1200 ft) between the inclined parts of the drill holes. The holes will be connected by a series of vertical, hydraulically produced fractures in the Precambrian granitic rock complex. EE-2 was drilled to a depth of 4660 m (15,289 ft), where the bottom-hole temperature is approximately 320/sup 0/C (608/sup 0/F). Directional drilling techniques were used to control the azimuth and deviation of the hole. Upgrading of the temperature capability of existing hardware, and development of new equipment was necessary to complete the drilling of the hole in the extremely hot, hard, and abrasive granitic formation. The drilling history and the problems with bits, directional tools, tubular goods, cementing, and logging are described. A discussion of the problems and recommendations for overcoming them are also presented.

Helmick, C.; Koczan, S.; Pettitt, R.

1982-04-01T23:59:59.000Z

128

Proceedings of the second NATO-CCMS information meeting on dry hot rock geothermal energy  

DOE Green Energy (OSTI)

A summary is presented of the second and last NATO-CCMS (North Atlantic Treaty Organization--Committee on Challenges of Modern Society) Geothermal Pilot Study Information Meeting on Dry Hot Rock Geothermal Energy. Only summaries of the formal presentations are included. Overviews of the Energy Research and Development Administration (ERDA) and the U.S. Geological Survey (USGS) geothermal projects are included with emphasis on the Los Alamos Scientific Laboratory (LASL) Hot Dry Rock Geothermal Energy Development Project. Reports of developments in nine foreign countries and on geothermal projects in US universities are also presented.

Mortensen, J.J. (comp.)

1977-11-01T23:59:59.000Z

129

Black Rock I Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Rock I Geothermal Project Rock I Geothermal Project Project Location Information Coordinates The following coordinate was not recognized: 33°19'59" N, 115°50'3 W.The following coordinate was not recognized: 33°19'59" N, 115°50'3 W. Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.3705792,"lon":-115.77401,"alt":0,"address":"33\u00b019'59\" N, 115\u00b050'3 W","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Black Rock II Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Black Rock II Geothermal Project Black Rock II Geothermal Project Project Location Information Coordinates The following coordinate was not recognized: 33°19'59" N, 115°50'3 W.The following coordinate was not recognized: 33°19'59" N, 115°50'3 W. Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.3705792,"lon":-115.77401,"alt":0,"address":"33\u00b019'59\" N, 115\u00b050'3 W","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

Fractured Geothermal Growth Induced by Heat Extraction  

SciTech Connect

Field testing of a hydraulically stimulated, hot dry rock (HDR) geothermal system at the Fenton Hill site in northern New Mexico indicated that significant reservoir growth occurred as energy was extracted. Tracer, microseismic, and geochemical measurements provided the primary quantitative evidence for the increases in accessible reservoir volume and fractured rock surface area that were observed during energy extraction operations that caused substantial thermal drawdown in portions of the reservoir. These temporal increases suggest that augmentation of reservoir hear-production capacity in an HDR system may be possible. [DJE 2005

Tester, J.W.; Murphy, H.D.; Grigsby, C.O.; Potter, R.M.; Robinson, B.A.

1989-02-01T23:59:59.000Z

132

Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico |  

Open Energy Info (EERE)

Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Details Activities (2) Areas (1) Regions (0) Abstract: Large, young calderas possess immense geothermal potential due to the size of shallow magma bodies that underlie them. Through the example of the Valles and Toledo calderas, New Mexico, and older, more deeply eroded and exposed calderas, it is possible to reconstruct a general view of geothermal environments associated with such magmatic systems. Although a zone of anomalous heat flow extends well beyond caldera margins, high- to moderate-temperature hydrothermal systems appear to be restricted to zones

133

Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 | Open Energy  

Open Energy Info (EERE)

Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Details Activities (3) Areas (1) Regions (0) Abstract: The Phase I Hot Dry Rock Geothermal Energy reservoirs at the Fenton Hill field site grew continuously during Run Segments 2 through 5 (January 1978 to December 1980). Reservoir growth was caused not only by pressurization and hydraulic fracturing, but also by heat-extraction and thermal-contraction effects. Reservoir heat-transfer area grew from 8000 to 50,000 m2 and reservoir fracture volume grew from 11 to 266 m3. Despite this reservoir growth, the water loss rate increased only 30%, under similar pressure environments. For comparable temperature and pressure

134

Drilling and Completion of the Urach III HDR Test Well  

DOE Green Energy (OSTI)

The hot dry rock (HDR) test well, urach III, was drilled and completed in 1979. The borehole is located in Southwest Germany in the geothermal anomaly of Urach. The purpose of project Urach was to study drilling and completion problems of HDR wells and to provide a test site for a HDR research program. The Urach III borehole was drilled to a total depth of 3,334 meters (10,939 feet), penetrating 1,700 meters (5,578 feet) into the granitic basement. Extensive coring was required to provide samples for geophysical and geochemical studies. Positive displacement downhole motors were used for coring and normal drilling operations. It was found that these motors in combination with the proper bits gave better results than conventional rotary drilling. Loss of circulation was encountered not only in sedimentary rocks but also in the granite. After drilling and completion of the borehole, a number of hydraulic fracturing experiments were performed in the open hole as well as in the cased section of Urach III. A circulation loop was established by using the single-borehole concept. It is not yet clear whether new fractures have actually been generated or preexisting joints and fissures have been reactivated. Evaluation of the results of this first step is almost completed and the planning of Phase II of the Urach project is under way.

Meier, U.; Ernst, P. L.

1981-01-01T23:59:59.000Z

135

Characterization of hot dry rock geothermal energy extraction systems  

DOE Green Energy (OSTI)

The engineering of heat exchange systems by which geothermal heat can be efficiently extracted from hot impermeable rocks is studied. The system currently under investigation at Fenton Hill, New Mexico consists of a network of large fractures created through the hydraulic pressurization of a well penetrating hot basement rocks and subsequently intersected by a second well drilled to form a flow-thru system. Cool water pumped into the fractures through one well, once heated in the reservoir, returns to the surface through the second well, is cooled, and then recirculated. While much is known about the performance parameters of the fracture network from short-term flow tests, little is understood concerning the spatial dimensions and geometrical relationship of individual fractures comprising the network. Ultimately, the success one has in estimating the long-term performance of such a system where commercialization is an issue, and in engineering future systems with optimal performance, depends on the success in characterizing the flow-thru fracture networks. To date only nonconventional application of oil field logging techniques and acoustic emissions studies have been used in the characterization of the fracture network.

Albright, J.N.; Newton, C.A.

1981-01-01T23:59:59.000Z

136

Coincident P and Sh reflections from basement rocks at Coso geothermal  

Open Energy Info (EERE)

Coincident P and Sh reflections from basement rocks at Coso geothermal Coincident P and Sh reflections from basement rocks at Coso geothermal field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Coincident P and Sh reflections from basement rocks at Coso geothermal field Details Activities (2) Areas (1) Regions (0) Abstract: In mid-1989 the authors designed and collected four seismic reflection/refraction profiles that addressed the crustal structure of the Coso geothermal field. The two main east-west and north-south profiles crossed at the southeasternmost base of Sugar Loaf Mountain. Both in-line and cross-line Vibroseis and explosion data were recorded on each of these approximately 12-mi lines. This was accomplished with the simultaneous operation of two 1024-channel sign bit recording systems while four

137

Development of man-made geothermal reservoirs  

DOE Green Energy (OSTI)

Hot-dry-rock (HDR) systems and their resource potential are described. The HDR field program at the Fenton Hill site is discussed. (MHR)

Pettitt, R.A.

1981-01-01T23:59:59.000Z

138

Geothermal Reservoir Dynamics - TOUGHREACT  

DOE Green Energy (OSTI)

This project has been active for several years and has focused on developing, enhancing and applying mathematical modeling capabilities for fractured geothermal systems. The emphasis of our work has recently shifted towards enhanced geothermal systems (EGS) and hot dry rock (HDR), and FY05 is the first year that the DOE-AOP actually lists this project under Enhanced Geothermal Systems. Our overall purpose is to develop new engineering tools and a better understanding of the coupling between fluid flow, heat transfer, chemical reactions, and rock-mechanical deformation, to demonstrate new EGS technology through field applications, and to make technical information and computer programs available for field applications. The objectives of this project are to: (1) Improve fundamental understanding and engineering methods for geothermal systems, primarily focusing on EGS and HDR systems and on critical issues in geothermal systems that are difficult to produce. (2) Improve techniques for characterizing reservoir conditions and processes through new modeling and monitoring techniques based on ''active'' tracers and coupled processes. (3) Improve techniques for targeting injection towards specific engineering objectives, including maintaining and controlling injectivity, controlling non-condensable and corrosive gases, avoiding scale formation, and optimizing energy recovery. Seek opportunities for field testing and applying new technologies, and work with industrial partners and other research organizations.

Pruess, Karsten; Xu, Tianfu; Shan, Chao; Zhang, Yingqi; Wu,Yu-Shu; Sonnenthal, Eric; Spycher, Nicolas; Rutqvist, Jonny; Zhang,Guoxiang; Kennedy, Mack

2005-03-15T23:59:59.000Z

139

Evaluation of the hot-dry-rock geothermal potential of an area near Mountain Home, Idaho  

DOE Green Energy (OSTI)

Evaluation of an area near Mountain Home, Idaho, was performed to assess the hot dry rock (HDR) potential of the prospect. The techniques reported include telluric and gravity profiling, passive seismic, hydrology and water chemistry surveys, and lineament analysis. Gravity and telluric surveys were unsuccessful in locating fractures buried beneath recent volcanics and sediments of the plain because density and conductivity contrasts were insufficient. Gravity modeling indicated areas where granite was not likely to be within drilling depth, and telluric profiling revealed an area in the northwest part of the prospect where higher conductivity suggested the presence of fractures or water or both, thereby making it unsuitable for HDR. Water geochemistry indicated that (hot water) reservoir temperatures do not exceed 100/sup 0/C. An area in the east central part of the prospect was delineated as most favorable for HDR development. Temperature is expected to be 200/sup 0/C at 3-km depth, and granitic rock of the Idaho Batholith should be intersected at 2- to 3-km depth.

Arney, B.H.; Goff, F.

1982-05-01T23:59:59.000Z

140

Hot dry rock geothermal reservoir testing: 1978 to 1980  

DOE Green Energy (OSTI)

Experimental results and re-evaluation of the Phase I Hot Dry Rock Geothermal Energy reservoirs at the Fenton Hill field site are summarized. This report traces reservoir growth as demonstrated during Run Segments 2 through 5 (January 1978 to December 1980). Reservoir growth was caused not only by pressurization and hydraulic fracturing, but also by heat extraction and thermal contraction effects. Reservoir heat-transfer area grew from 8000 to 50,000 m/sup 2/ and reservoir fracture volume grew from 11 to 266 m/sup 3/. Despite this reservoir growth, the water loss rate increased only 30%, under similar pressure environments. For comparable temperature and pressure conditions, the flow impedance (a measure of the resistance to circulation of water through the reservoir) remained essentially unchanged, and if reproduced in the Phase II reservoir under development, could result in self pumping. Geochemical and seismic hazards have been nonexistent in the Phase I reservoirs. The produced water is relatively low in total dissolved solids and shows little tendency for corrosion or scaling. The largest microearthquake associated with heat extraction measures less than -1 on the extrapolated Richter scale.

Dash, Z.V.; Murphy, H.D.; Cremer, G.M. (eds.)

1981-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock hdr geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Stress and fault rock controls on fault zone hydrology, Coso geothermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Stress and fault rock controls on fault zone hydrology, Coso geothermal field, CA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Stress and fault rock controls on fault zone hydrology, Coso geothermal field, CA Details Activities (1) Areas (1) Regions (0) Abstract: In crystalline rock of the Coso Geothermal Field, CA, fractures are the primary source of permeability. At reservoir depths, borehole image, temperature, and mud logs indicate fluid flow is concentrated in extensively fractured damage zones of large faults well-oriented for slip.

142

FY 1996 Summary of Hot Dry Rock Geothermal Power Project  

DOE Green Energy (OSTI)

The report describes progress and status of the HDR project at Hijiori. The year was notable for a flow enhancement test of a system with two production wells in operation. Other items include a geochemical survey, reinterpretation of acoustic emission data from 1988 through 1995, borehole measurements to find intersections with fractures, a geological survey, preparation for modeling fractures, improvements in crack simulation in a reservoir analysis model, and environmental survey work. (DJE 2005)

None

1996-12-31T23:59:59.000Z

143

Modeling brine-rock interactions in an enhanced geothermal system deep fractured reservoir at Soultz-Sous-Forets (France): a joint approach using two geochemical codes: frachem and toughreact  

E-Print Network (OSTI)

rock interactions in enhanced geothermal systems (EGS).31 th Workshop on Geothermal Reservoir Engineering, 301998). Computer modeling for geothermal systems: predicting

Andre, Laurent; Spycher, Nicolas; Xu, Tianfu; Vuataz, Francois-D.; Pruess, Karsten.

2006-01-01T23:59:59.000Z

144

Candidate Sites For Future Hot Dry Rock Development In The United States |  

Open Energy Info (EERE)

Candidate Sites For Future Hot Dry Rock Development In The United States Candidate Sites For Future Hot Dry Rock Development In The United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Candidate Sites For Future Hot Dry Rock Development In The United States Details Activities (8) Areas (4) Regions (0) Abstract: Generalized geologic and other data are tabulated for 24 potential hot dry rock (HDR) sites in the contiguous United States. The data show that HDR resources occur in many geologic and tectonic settings. Potential reservoir rocks at each prospect are described and each system is categorized according to inferred heat sources. The Fenton Hill area in New Mexico is discussed in detail because this region may be considered ideal for HDR development. Three other prospectively valuable localities are

145

Geothermal utilization at Castle Oaks Subdivision, Castle Rock, Colorado  

SciTech Connect

Designs of geothermal systems for using warm water from four aquifers of the Denver Basin are presented. Advantages of using heat pumps with the geothermal resource are discussed. Two design cases-one with separate heat load and heat pump, and the other with the heat pump and heat load located at the well site-are evaluated in terms of pump costs, operating costs, and payback periods. The 20-year delivered energy costs for the two geothermal systems would be slightly less than those for natural gas ($5.64 to $6.42 versus $6.70 per million Btu).

Garing, K.L.; Coury, G.E.; Goering, S.W.

1982-04-01T23:59:59.000Z

146

Developing hot dry rock reservoirs with inflatable open hole packers  

DOE Green Energy (OSTI)

An open hole packer system was designed for high pressure injection operations in high temperature wells at the Fenton Hill, Hot Dry Rock (HDR) Geothermal Site. The packer runs were required to verify that the HDR reservoir fractures had been penetrated during the drilling of well EE-3A. They were also used to stimulate fractures connecting EE-3A to the reservoir and to conduct two massive hydraulic fracture treatments at the bottom of EE-3A. An attempt to use a modified packer design as a temporary well completion system was not successful but with modification the system may prove to be an important HDR completion technique. The eleven packer runs have demonstrated that formation testing, stimulation and HDR reservoir development can now be conducted with an open hole inflatable packer operating over large temperature ranges and high differential pressures.

Dreesen, D.S.; Miller, J.R.; Nicholson, R.W.

1987-01-01T23:59:59.000Z

147

Hot Dry Rock Heat Mining Geothermal Energy Development Program - Annual Report Fiscal Year 1990  

DOE Green Energy (OSTI)

This was a year of significant accomplishment in the Hot Dry Rock (HDR) Program. Most importantly, the design, construction, and installation of the surface plant for the Phase II system neared completion by the end of the year. Basic process design work has been completed, and all major components of the system except the gas/particle separator have been procured. For this component, previous design problems have been resolved, and purchase during the first half of FY91 is anticipated. Installation of the surface plant is well underway. The system will be completed and ready for operation by the end of FY91 under the current funding scenario. The operational schedule to be followed will then depend upon the program funding level. Our goal is to start long-term flow testing as soon as possible. Of equal importance, from the standpoint of the long-term viability of HDR technology, during this year, for the first time, it has been demonstrated in field testing that it should be possible to operate HDR reservoirs with water losses of 1-3%, or even less. Our experience in the deep, hot, Phase II reservoir at Fenton Hill is in sharp contrast to the significant water losses seen by Japanese and British scientists working in shallower, cooler, HDR reservoirs. Calculations and modeling based on field data have shown that water consumption declines with the log of time in a manner related to water storage in the reservoir. This work may be crucial in proving that HDR can be an economically viable means for producing energy, and that it is useful even in areas where water is in short supply. In addition, an engineering model was developed to predict and explain water consumption in HDR reservoirs under pressure, the collection and processing of seismic information was more highly automated, and the detection limits for reactive tracers were lowered to less than 1 part per billion. All of these developments will add greatly to our ability to conduct, analyze, and understand the long-term test (LTFT). Water-rights acquisition activities, site clean-up, and improvements in the 1 million gallon storage pond at Fenton Hill have assured that we will have adequate water to carry out a vigorous testing program in a safe and environmentally-sound manner. The 1 million gallon pond was recontoured, and lined with a sophisticated multi-layer plastic barrier. A large part of the work on the pond was paid for with funds from the Laboratory's Health, Safety and Environment Division. Almost all the expected achievements set forth in the FY90 Annual Operating Plan were substantially accomplished this past year, in spite of a $300,000 shortfall in funding. This funding shortfall did delay some work and result in some projects not being completed, however. They have had to go more slowly than they would like on some aspects of the installation of the surface plant for the LTFT, purchase of non-critical equipment, such as a back-up electric generator for Fenton Hill, has been delayed, and some work has not been brought to an adequate conclusion. The fracture healing work, for example, was completed but not written up. they simply did not have the funds to pay for the effort needed to fully document this work. As the program enters FY91, the completion of the surface plant at Fenton Hill is within sight. The long-awaited LTFT can then begin, and the large investment in science and technology represents by the HDR Program will begin to bear still greater dividends.

Duchane, David

1991-01-01T23:59:59.000Z

148

Electricity from hot dry rock geothermal energy: technical and economic issues  

SciTech Connect

Extraction of energy from hot dry rock would make available a nearly unlimited energy source. Some of the technical problems and possible economic tradeoffs involved in a power generating system are examined and possible solutions proposed. An intertemporal optimization computer model of electricity production from a hot dry rock geothermal source has been constructed. The effects of reservoir degradation, variable fluid flow rate, and drilling operations are examined to deetermine optimal strategies for reservoir management and necessary conditions for economic feasibility.

Tester, J.W.; Morris, G.E.; Cummings, R.G.; Bivins, R.L.

1979-01-01T23:59:59.000Z

149

A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And  

Open Energy Info (EERE)

Strategy For Geothermal Exploration With Emphasis On Gravity And Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Details Activities (4) Areas (2) Regions (0) Abstract: As part of the resource evaluation and exploration program conducted by Los Alamos Scientific Laboratory for the national Hot Dry Rock (HDR) Geothermal Program, a regional magnetotelluric (MT) survey of New Mexico and Arizona is being performed. The MT lines are being located in areas where the results of analysis of residual gravity anomaly maps of Arizona and New Mexico, integrated with other geologic and geophysical studies indicate the greatest potential for HDR resources. The residual

150

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

and with engineered heat exchanger surfaces for the flow systems, i.e. Hot Dry Rock (HDR) or Enhanced Geothermal Neumann boundary condition with prescribed flow at the four corner nodes of the rectangular cell 814 m ? 1490 m ? 814 m and is discretized into 29 ? 36 ? 29 orthogonal cells in x, y, and z direction

Stanford University

151

A History Of Hot Dry Rock Geothermal Energy Systems | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » A History Of Hot Dry Rock Geothermal Energy Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A History Of Hot Dry Rock Geothermal Energy Systems Details Activities (1) Areas (1) Regions (0) Abstract: This is a short history, so far as it can now be assembled, of early speculations and observations concerning the existence and origin of natural heat in the earth's crust; of some of the many methods proposed to extract and use it; and of recent investigations designed to develop and demonstrate such methods. It is probably only the preface to a much longer

152

Development of hot dry rock geothermal resources; technical and economic issues  

DOE Green Energy (OSTI)

Technical and economic issues related to the commercial feasibility of hot dry rock geothermal energy for producing electricity and heat are discussed. Topics covered include resource characteristics, reservoir thermal capacity and lifetime, drilling and surface plant costs, financial risk and anticipated rate of return. The current status of research and deveopment efforts in the US are also summarized.

Tester, J.W.

1980-01-01T23:59:59.000Z

153

Subterrene rock-melting concept applied to the production of deep geothermal wells  

DOE Green Energy (OSTI)

The drilling of wells comprises a large fraction of the costs of geothermal energy-extraction plants, and billions of dollars for wells will be needed before geothermal energy is nationally significant. Technical and cost studies were made of the application of the Subterrene concept, i.e., excavating and penetrating rocks or soils by melting, to deep wells such as may be used for dry-hot-rock or geopressure geothermal energy extraction systems. Technically, it was found that Subterrene requirements are compatible with those of current rotary drilling practices. Certain features of the rock-melting concept such as the glass lining on the borehole wall, and nonrotation, provide opportunities for the development of better well production techniques in hot wells. A typical optimum-cost well would be rotary-drilled in the upper regions and then rock-melted to total depth. Indicated cost-savings are significant: a 33 percent or 4.5 million dollars reduction from rotary drilled well costs are estimated for a 10 km depth well with bottom hole temperatures of 673 K. Even for normal geothermal gradient conditions, the savings for the 10 km depth is estimated as 23 percent or 2 million dollars.

Altseimer, J.H.

1976-01-01T23:59:59.000Z

154

Technical and cost analysis of rock-melting systems for producing geothermal wells. [GEOWELL  

DOE Green Energy (OSTI)

The drilling of wells makes up a large fraction of the costs of geothermal energy-extraction plants, and billions of dollars for wells will be needed before geothermal energy is nationally significant. Technical and economic systems studies are summarized regarding the application of the Subterrene concept, i.e., excavating and penetrating rocks or soils by melting, to the production of deep wells such as may be used for dry hot rock or geopressurized geothermal energy-extraction systems. Technically, it was found that Subterrene features are compatible with those of current rotary drilling practices. In fact, some special features could lead to improved well production techniques. These include the buildup of a glass lining along the borehole wall which provides structural resistance to collapse; close control of hole geometry; the existence of a barrier between the drilling fluids and the formations being penetrated; nonrotation; potentially better bit life; and faster rates of penetration in deep, hard rock. A typical optimum-cost well would be rotary-drilled in the upper regions and then rock-melted to total depth. Indicated cost savings are significant: a 30 percent or 3.9 million dollar (1975 $) reduction from rotary-drilled well costs are estimated for a 10-km depth well with a bottom hole temperature of 673 K. Even for relatively cool normal geothermal gradient conditions, the savings for the 1..pi..-km well are estimated as 23 percent of 2.1 million dollars.

Altseimer, J.H.

1976-11-01T23:59:59.000Z

155

Simulation of fluid-rock interactions in a geothermal basin. Final report. [QUAGMR (quasi-active geothermal reservoir)  

DOE Green Energy (OSTI)

General balance laws and constitutive relations are developed for convective hydrothermal geothermal reservoirs. A fully interacting rock-fluid system is considered; typical rock-fluid interactions involve momentum and energy transfer and the dependence of rock porosity and permeability upon the fluid and rock stresses. The mathematical model also includes multiphase (water/steam) effects. A simple analytical model is employed to study heat transfer into/or from a fluid moving in a porous medium. Numerical results show that for fluid velocities typical of geothermal systems (Reynolds number much less than 10), the fluid and the solid may be assumed to be in local thermal equilibrium. Mathematical formalism of Anderson and Jackson is utilized to derive a continuum species transport equation for flow in porous media; this method allows one to delineate, in a rigorous manner, the convective and diffusive mechanisms in the continuum representation of species transport. An existing computer program (QUAGMR) is applied to study upwelling of hot water from depth along a fault; the numerical results can be used to explain local temperature inversions occasionally observed in bore hole measurements.

Garg, S.K.; Blake, T.R.; Brownell, D.H. Jr.; Nayfeh, A.H.; Pritchett, J.W.

1975-09-01T23:59:59.000Z

156

Experimental verification of the load-following potential of a Hot Dry Rock geothermal reservoir  

Science Conference Proceedings (OSTI)

A recent 6-day flow experiment conducted at the Los Alamos National Laboratory's Fenton Hill Hot Dry Rock (HDR) test site in north-central New Mexico has verified that an HDR reservoir has the capability for a significant, and very rapid, increase in power output upon demand. The objective of this cyclic load-following experiment was to investigate the performance of the reservoir in a nominal high-backpressure (2200 psi) baseload operating condition upon which was superimposed greatly increased power production for a 4-hour period each day. In practice, this enhanced production was accomplished by dropping the production well backpressure from the preexisting level of 2200 psi down to about 500 psi to rapidly drain the fluid stored in the pressure-dilated joints surrounding the production well. During the last cycle of this six-cycle test, the mean production conditions were 146.6 gpm for 4 hours at a temperature of 189C followed by 92.4 gpm for 20 hours at a temperature of 183C. These flow and temperature values indicate a flow enhancement of 59%, and a power enhancement of 65% during the high-production period. The time required to increase the reservoir power output from the baseload to the peaking rate was about 2 minutes.

Brown, Donald

1996-01-24T23:59:59.000Z

157

Simulation of water-rock interaction in the Yellowstone geothermal system using TOUGHREACT  

DOE Green Energy (OSTI)

The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to simulate the chemical and hydrological effects of water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to simulate the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite.

Dobson, Patrick F.; Salah, Sonia; Spycher, Nicolas; Sonnenthal, Eric L.

2003-04-28T23:59:59.000Z

158

Simulation of water-rock interaction in the yellowstone geothermal system using TOUGHREACT  

DOE Green Energy (OSTI)

The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to accurately simulate water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to determine if TOUGHREACT could accurately predict the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite.

Dobson, P.F.; Salah, S.; Spycher, N.; Sonnenthal, E.

2003-04-28T23:59:59.000Z

159

The hot dry rock geothermal potential of the Susanville (CA) area  

DOE Green Energy (OSTI)

A portion of northeastern California that lies within the Basin and Range Province represents a large, untapped geothermal energy resource in the form of hot, but essential impermeable, rock. If a means of developing sufficient permeability in the deep, granitic basement can be demonstrated, the electric power generation potential would be considerable. The objective of this study is to look at the specific geographical region extending from northeast to southeast of the village of Litchfield to the Nevada border as a target area for the first commercial application of Hot Dry Rock reservoir stimulation techniques. The ultimate goal is to provide background information that could lead to the creation of a commercial-scale, engineered geothermal reservoir in granitic basement rock of low permeability.

Brown, D.W.

1996-10-01T23:59:59.000Z

160

The US Hot Dry Rock Geothermal Energy Development Program  

DOE Green Energy (OSTI)

Recent accomplishments of the program are highlighted by a successful limited term flow test of the Phase 2 reservoir at the Fenton Hill site near Los Alamos. This reservoir connection was established by sidetracking one of the deep wells into hydraulically fractured areas, identified by microseismic data after original fracture attempts failed to connect the two wells. Hydraulic communication was improved by supplemental fracturing. Preliminary testing indicated a reservoir with fracture volume and heat production area surpassing the values from the earlier Phase 1 reservoir. Following completion of the downhole reservoir system, preparations were made for a reservoir-energy-extraction test. This Initial Closed Loop Flow Test (ICFT) was needed to obtain operating characteristics for planning a much longer test for thorough reservoir evaluation. The 30-day ICFT succeeded with final production of about 10 MWt at 192/sup 0/C, while injecting 285 gpm at 4600 psi and producing 206 gpm at 500 psi. The water loss rate and flow impedance were high, 27% and 18 psi/gpm respectively, but were declining. Radioactive tracer tests indicated reservoir volume growth during the experiment which was continuously monitored for acoustic or microseismic activity. Following the flow test, experiments were continued for several months during the venting process. Preparations are now underway for the Long Term Flow Test (LTFT). To understand as much as possible about the Phase 2 reservoir and to demonstrate the commercial feasibility of energy from HDR reservoirs, a flow test of approximately one year's duration is deemed necessary. Part of the preparation for the LTFT is the workover and repair of the production well and the installation of a competent overall flow loop and energy exchange system. 7 refs., 5 figs.

Franke, P.R.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock hdr geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Potential for hot-dry-rock geothermal energy in the western United States  

SciTech Connect

ABS>The U. S. Geological Survey has identified 1.5 million acres (2800 square miles) of western lands as having a significant potential for geothermal development.'' The LASL for the past 2 years has been actively investigating the potential for and preblems associated with extracting geothermal energy from the much more numerous regions of the western United States containing hot, but essentially dry, rock at moderate depths. A recent survey reveals that about 7% of the 13-state area comprising the Western Heat Flow Province---about 95,000 square miles--is underlain, at a depth of 5 km (16,400 ft), by hot rock at temperature levels above 290 deg C (>550 deg F). In the Los Alamos concept a man- made geothermal reservoir would be formed by first drilling into suitably hot rock, and then creating a very large surface area for heat transfer using conventional hydraulic fracturing techniques developed by the oil industry. After forming a circulation loop by drilling a second hole into the top of the fractured region, the heat contained would be convected to the surface by the buoyant circulation of water, without the need for pumping. The water in the Earth loop would be maintained as a liquid throughout by pressurization at the surface, both increasing the amount of heat transport up the second (withdrawal) hole, and enhancing the rate of heat removal from the fractured reservoir, when compared to steam. Thermal stresses resulting from the cooling of the hot rock in such a man-made reservoir may gradually enlarge the initial fracture system so that its useful lifetime will be greatly extended beyond the planned 10 to 15 years provided by the original reservoir. If these thermal stress cracks grow preferentially downward and outward into regions of hotter rock, as seems probable, the quality of the geothermal source may actually improve as energy is withdrawn from it. (auth)

Brown, D.W.

1973-07-25T23:59:59.000Z

162

Hot dry rock: A climate change action opportunity for industry  

DOE Green Energy (OSTI)

Geothermal resources in the form of heat found in rock that is hot but is not in contact with sufficient mobile fluid to transport that heat to the surface are a large, as yet virtually unexploited, source of clean energy. The technology to extract useful amounts of energy from this ubiquitous hot dry rock (HDR) geothermal resource has been under development for more than twenty years. During the last two years, flow testing at the Fenton Hill HDR pilot facility in New Mexico has answered many of the questions about the viability of HDR heat mining. While the most important issue of thermal longevity of the artificial geothermal reservoir that is the heart of an HDR energy system was not fully resolved, the test results provided good reasons to be optimistic that such reservoirs can have long lifetimes. No decline was observed in the temperature of the fluid produced during the relatively short test period and tracer testing indicated that the reservoir may be thermally self sustaining. In addition, water consumption during the circulation test was reduced to very low levels, the production of significant excess energy over that required simply to operate the system was verified, and routine energy production with virtually no emissions to the environment, except waste heat, was demonstrated.

Duchane, D.V.

1994-07-01T23:59:59.000Z

163

Geology Of The Fenton Hill, New Mexico, Hot Dry Rock Site | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geology Of The Fenton Hill, New Mexico, Hot Dry Rock Site Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geology Of The Fenton Hill, New Mexico, Hot Dry Rock Site Details Activities (4) Areas (1) Regions (0) Abstract: The Phase I prototype hot dry rock (HDR) geothermal system was developed in Precambrian basement rocks at Fenton Hill, New Mexico. Core and cuttings samples from the four deep wells indicate that the reservoir of this Phase I HDR system lies within a homogeneous biotite granodiorite body of very low permeability. Natural fractures, although present, are

164

UWC geothermal resource exploration  

DOE Green Energy (OSTI)

A program was developed to explore the strength of the geothermal and hot dry rock (HDR) resource at the Montezuma Hot Springs at the United World College (UWC). The purpose of the UWC {number_sign}1 well is to obtain hydrologic, geologic, and temperature information for ongoing geothermal evaluation of the Montezuma Hot Springs area. If sufficient fluids are encountered, the hole will be cased with a 4 1/2 inch production casing and re-permitted as a geothermal low-temperature well. If no fluid is encountered, the well will be abandoned per Oil Conservation Division regulation. The objectives of the exploration are to evaluate the resource potential to provide space heating for the entire campus of the United World College, determine the effect of a well on the Hot Springs outflow, accurately measure the UWC heating loads versus time, evaluate the potential to support local thermal industry development, assess the feasibility of HDR development, and create an educational program from the collection of data derived from the research effort.

NONE

1996-04-01T23:59:59.000Z

165

Hot Dry Rock Geothermal Energy Development Project. Annual report, fiscal year 1977  

DOE Green Energy (OSTI)

The feasibility of extracting geothermal energy from hot dry rock in the earth's crust was investigated. The concept being investigated involves drilling a deep hole, creating an artificial geothermal reservoir at the bottom of the hole by hydraulic fracturing, and then intersecting the fracture with a second borehole. At the beginning of FY77, the downhole system was complete, but the impedance to the flow of fluid was too high to proceed confidently with the planned energy extraction demonstration. Therefore, in FY77 work focused on an intensive investigation of the characteristics of the downhole system and on the development of the necessary tools and techniques for understanding and improving it. Research results are presented under the following section headings: introduction and history; hot dry rock resource assessment and site selection; instrumentation and equipment development; drilling and fracturing; reservoir engineering; energy extraction system; environmental studies; project management and liaison; and, looking back and ahead. (JGB)

Not Available

1978-02-01T23:59:59.000Z

166

Seismic reconnaissance of the Los Alamos Scientific Laboratory's Dry Hot Rock Geothermal Project area  

DOE Green Energy (OSTI)

Active seismic methods using high-explosive sources and nondestructive energy sources were used to determine seismic velocities, signal detectability, and subsurface geologic structure in the vicinity of the Los Alamos Scientific Laboratory's (LASL) Dry Hot Rock Geothermal Project area. Positions of several faults have been determined. A synthetic seismogram has been created that shows good agreement with recorded reflection records taken near exploratory borehole GT-2.

Kintzinger, P.R.; West, F.G.

1976-07-01T23:59:59.000Z

167

LASL hot dry rock geothermal energy development project  

DOE Green Energy (OSTI)

The history of the hot-dry-rock project is traced. Efforts to establish a two-hole and connecting fracture system on the southwest flank of the Valles Caldera in north-central New Mexico are summarized. Problems encountered in drilling and hydraulic fracturing are described. Current results with the loop operation for heat extraction are encouraging, and plans for a second energy extraction hole are underway. (JBG)

Hill, J.H.

1978-01-01T23:59:59.000Z

168

Future of hot dry rock geothermal energy systems  

DOE Green Energy (OSTI)

Where natural groundwater circulation does not exist, the obvious method of extracting heat from the earth's crust is to imitate nature by creating it. A means of doing so by hydraulic fracturing has been demonstrated. Alternatively, explosives or mechanical or chemical methods might be used to open circulation paths. However, where permeabilities are sufficient so that fluid loss is excessive, other approaches are also possible. The magnitude and distribution of hot dry rock and the variety of possible heat-extraction techniques make it appear inevitable that this energy supply will eventually be used on a large scale.

Smith, M.C.

1979-01-01T23:59:59.000Z

169

Economic factors relevant for electric power produced from hot dry rock geothermal resources: a case study for the Fenton Hill, New Mexico, area  

SciTech Connect

The case study described here concerns an HDR system which provides geothermal fluids for a hypothetical electric plant located in the Fenton Hill area in New Mexico's Jemez Mountains. Primary concern is focused on the implications of differing drilling conditions, as reflected by costs, and differing risk environments for the potential commercialization of an HDR system. Drilling costs for best, medium and worst drilling conditions are taken from a recent study of drilling costs for HDR systems. Differing risk environments are represented by differing rate-of-return requirements on stocks and interest on bonds which the HDR system is assumed to pay; rate of return/interest combinations considered are 6%/3%, 9%/6%, 12%/9% and 15%/12%. The method of analysis used here is that of determining the minimum busbar cost for electricity for this case study wherein all costs are expressed in annual equivalent terms. The minimum cost design for the electric generating plant is determined jointly with the minimum cost design for the HDR system. The interdependence between minimum cost designs for the plant and HDR system is given specific attention; the optimum design temperature for the plant is shown here to be lower than one might expect for conventional power plants - in the range 225/sup 0/ to 265/sup 0/C. Major results from the analyses of HDR-produced electricity in the Fenton Hill area are as follows. With real, inflation-free debt/equity rates of 6% and 9%, respectively, the minimum busbar cost is shown to lie in the range 18 to 29 mills/kwh. When real debt/equity rates rise to 12% and 15%, busbar costs rise to 24 to 39 mills/kwh.

Cummings, R.G.; Morris, G.; Arundale, C.J.; Erickson, E.L.

1979-12-01T23:59:59.000Z

170

Rock Mechanics and Enhanced Geothermal Systems: A DOE-sponsored Workshop to Explore Research Needs  

DOE Green Energy (OSTI)

This workshop on rock mechanics and enhanced geothermal systems (EGS) was held in Cambridge, Mass., on June 20-21 2003, before the Soil and Rock America 2003 International Conference at MIT. Its purpose was to bring together experts in the field of rock mechanics and geothermal systems to encourage innovative thinking, explore new ideas, and identify research needs in the areas of rock mechanics and rock engineering applied to enhanced geothermal systems. The agenda is shown in Appendix A. The workshop included experts in the fields of rock mechanics and engineering, geological engineering, geophysics, drilling, the geothermal energy production from industry, universities and government agencies, and laboratories. The list of participants is shown is Appendix B. The first day consisted of formal presentations. These are summarized in Chapter 1 of the report. By the end of the first day, two broad topic areas were defined: reservoir characterization and reservoir performance. Working groups were formed for each topic. They met and reported in plenary on the second day. The working group summaries are described in Chapter 2. The final session of the workshop was devoted to reaching consensus recommendations. These recommendations are given in Chapter 3. That objective was achieved. All the working group recommendations were considered and, in order to arrive at a practical research agenda usable by the workshop sponsors, workshop recommendations were reduced to a total of seven topics. These topics were divided in three priority groups, as follows. First-priority research topics (2): {sm_bullet} Define the pre-existing and time-dependent geometry and physical characteristics of the reservoir and its fracture network. That includes the identification of hydraulically controlling fractures. {sm_bullet} Characterize the physical and chemical processes affecting the reservoir geophysical parameters and influencing the transport properties of fractures. Incorporate those processes in reservoir simulators. Second-priority research topics (4): {sm_bullet} Implement and proof-test enhanced fracture detection geophysical methods, such as 3-D surface seismics, borehole seismics, and imaging using earthquake data. {sm_bullet} Implement and proof-test enhanced stress measurement techniques, such as borehole breakout analysis, tilt-meters, and earthquake focal mechanism analysis. {sm_bullet} Implement and proof-test high-temperature down-hole tools for short-term and long-term diagnostics, such as borehole imaging, geophone arrays, packers, and electrical tools.

Francois Heuze; Peter Smeallie; Derek Elsworth; Joel L. Renner

2003-10-01T23:59:59.000Z

171

Experimentally determined rock-fluid interactions applicable to a natural hot-dry-rock geothermal system  

DOE Green Energy (OSTI)

The field program cnsists of experiments in which hot rock of low permeability is hydraulically fractured between two wellbores. Water is circulated from one well to the other through the fractured hot rock. Our field experiments are designed to test reservoir engineering parameters such as heat-extraction rates, water-loss rates, flow characteristics including impedance and buoyancy, seismic activity, and fluid chemistry. Laboratory experiments were designed to provide information on the mineral-water reactivity encountered during the field program. Two experimental circulation systems tested the rates of dissolution and alteration during dynamic flow. Solubility of rock in agitated systems was studied. Moreover, pure minerals, samples of the granodiorite from the actual reservoir, and Tijeras Canyon granite have been reacted with distilled water and various solutions of NaCl, NaOH, and Na/sub 2/CO/sub 3/. The results of these experimental systems are compared to the observations made in field experiments done within the hot dry rock reservoir at a depth of approximately 3 km where the initial rock temperature was 150 to 200/sup 0/C.

Charles, R.W.; Grigsby, C.O.; Holley, C.E. Jr.; Tester, J.W.; Blatz, L.A.

1981-01-01T23:59:59.000Z

172

The Clearlake Hot Dry Rock geothermal project: Institutional policies, administrative issues, and technical tasks  

DOE Green Energy (OSTI)

The Clearlake Project is a three-party collaboration between the California Energy Commission, City of Clearlake, and Los Alamos National Laboratory. It aims to develop a deep hot, dry geothermal resource under the city. The project is funded by the Commission, and administered by the City. Technical operations are conducted by Laboratory staff and resources seconded from the Hot Dry Rock program. In addition to the normal geothermal exploration problems of predicting geological and geophysical properties of the subsurface, there are uncertainties as to what further material and environmental parameters are relevant, and how they might be measured. In addition to technical factors, policy objectives are an influence in choosing the most appropriate development scenario. 11 refs., 4 figs.

Burns, K.L.

1991-01-01T23:59:59.000Z

173

Fracture Surface Area Effects on Fluid Extraction and the Electrical Resistivity of Geothermal Reservoir Rocks  

DOE Green Energy (OSTI)

Laboratory measurements of the electrical resistivity of fractured analogue geothermal reservoir rocks were performed to investigate the resistivity contrast caused by active boiling and to determine the effects of variable fracture dimensions and surface area on water extraction. Experiments were performed at confining pressures up to 10 h4Pa (100 bars) and temperatures to 170 C. Fractured samples show a larger resistivity change at the onset of boiling than intact samples. Monitoring the resistivity of fractured samples as they equilibrate to imposed pressure and temperature conditions provides an estimate of fluid migration into and out of the matrix. Measurements presented are an important step toward using field electrical methods to quantitatively search for fractures, infer saturation, and track fluid migration in geothermal reservoirs.

Roberts, J J; Detwiler, R L; Ralph, W; Bonner, B

2002-05-09T23:59:59.000Z

174

Water geochemistry and hydrogeology of the shallow aquifer at Roosevelt Hot Springs, southern Utah: A hot dry rock prospect  

DOE Green Energy (OSTI)

On the western edge of the geothermal field, three deep holes have been drilled that are very hot but mostly dry. Two of them (Phillips 9-1 and Acord 1-26 wells) have been studied by Los Alamos National Laboratory for the Hot Dry Rock (HDR) resources evaluation program. A review of data and recommendations have been formulated to evaluate the HDR geothermal potential at Roosevelt. The present report is directed toward the study of the shallow aquifer of the Milford Valley to determine if the local groundwater would be suitable for use as make-up water in an HDR system. This investigation is the result of a cooperative agreement between Los Alamos and Phillips Petroleum Co., formerly the main operator of the Roosevelt Hot Springs Unit. The presence of these hot dry wells and the similar setting of the Roosevelt area to the prototype HDR site at Fenton Hill, New Mexico, make Roosevelt a very good candidate site for creation of another HDR geothermal system. This investigation has two main objectives: to assess the water geochemistry of the valley aquifer, to determine possible problems in future make-up water use, such as scaling or corrosion in the wells and surface piping, and to assess the hydrogeology of the shallow groundwaters above the HDR zone, to characterize the physical properties of the aquifer. These two objectives are linked by the fact that the valley aquifer is naturally contaminated by geothermal fluids leaking out of the hydrothermal reservoir. In an arid region where good-quality fresh water is needed for public water supply and irrigation, nonpotable waters would be ideal for an industrial use such as injection into an HDR energy extraction system. 50 refs., 10 figs., 10 tabs.

Vuataz, F.D.; Goff, F.

1987-12-01T23:59:59.000Z

175

Hot-dry-rock geothermal-energy development program. Annual report, fiscal year 1981  

DOE Green Energy (OSTI)

During fiscal year 1981, activities of the Hot Dry Rock Geothermal Energy Development Program were concentrated in four principal areas: (1) data collection to permit improved estimates of the hot dry rock geothermal energy resource base of various regions of the United States and of the United States as a whole, combined with detailed investigations of several areas that appear particularly promising either for further energy extraction experiments or for future commercial development; (2) successful completion of a 9-month, continuous, closed-loop, recirculating flow test in the enlarged Phase I System at Fenton Hill, New Mexico - a pressurized-water heat-extraction loop developed in low-permeability granitic rock by hydraulic fracturing; (3) successful completion at a depth of 4084 m (13,933 ft) of well EE-3, the production well of a larger, deeper, and hotter, Phase II System at Fenton Hill. Well EE-3 was directionally drilled with control of both azimuth and inclination. Its inclined section is about 380 m (1250 ft) vertically above the injection well, EE-2, which was completed in FY80; and (4) supporting activities included new developments in downhole instrumentation and equipment, geochemical and geophysical studies, rock-mechanics and fluid-mechanics investigations, computer analyses and modeling, and overall system design. Under an International Energy Agency agreement, the New Energy Development Organization, representing the Government of Japan has joined Kernforschungsanlage-Juelich GmbH, representing the Federal Republic of Germany, and the US Department of Energy as an active participant in the Fenton Hill Hot Dry Rock Project.

Smith, M.C.; Ponder, G.M. (comps.)

1981-01-01T23:59:59.000Z

176

Environmental analysis of the Fenton Hill Hot Dry Rock Geothermal Test Site  

DOE Green Energy (OSTI)

Techniques for the extraction of geothermal energy from hot dry rock within the earth's crust were tested at the first experimental system at Fenton Hill and proved successful. Because new concepts were being tried and new uses of the natural resources were being made, environmental effects were a major concern. Therefore, at all phases of development and operation, the area was monitored for physical, biological, and social factors. The results were significant because after several extended operations, there were no adverse environmental effects, and no detrimental social impacts were detected. Although these results are specific for Fenton Hill, they are applicable to future systems at other locations.

Kaufman, E.L.; Siciliano, C.L.B. (comps.)

1979-05-01T23:59:59.000Z

177

Electrical properties of geothermal reservoir rocks as indicators of porosity distribution  

DOE Green Energy (OSTI)

Measurements of the electrical resistivity of metashales from borehole SB-15-D in The Geyers geothermal area at a variety of conditions in the laboratory provide information regarding the distribution of porosity as interpreted from observations of boiling as downstream pore pressure. Electrical resistivity measurements on core,with and without pore pressure control, to confining pressures up to 100 bars and temperatures between 20 and 150 C allow assessment of the separate and combined effects of confining pressure, pore pressure and temperature for rocks from this borehole.

Duba, A.; Roberts, J.; Bonner, B.

1997-03-01T23:59:59.000Z

178

Hot dry rock geothermal energy for U.S. electric utilities. Draft final report  

DOE Green Energy (OSTI)

In order to bring an electric utility component into the study of hot dry rock geothermal energy called for in the Energy Policy Act of 1992 (EPAct), EPRI organized a one-day conference in Philadelphia on January 14,1993. The conference was planned as the first day of a two-day sequence, by coordinating with the U.S. Geological Survey (USGS) and the U.S. Department of Energy (DOE). These two federal agencies were charged under EPAct with the development of a report on the potential for hot dry rock geothermal energy production in the US, especially the eastern US. The USGS was given lead responsibility for a report to be done in association with DOE. The EPRI conference emphasized first the status of technology development and testing in the U.S. and abroad, i.e., in western Europe, Russia and Japan. The conference went on to address the extent of knowledge regarding the resource base in the US, especially in the eastern half of the country, and then to address some practical business aspects of organizing projects or industries that could bring these resources into use, either for thermal applications or for electric power generation.

Not Available

1993-06-01T23:59:59.000Z

179

Modeling Fluid Flow and Electrical Resistivity in Fractured Geothermal Reservoir Rocks  

DOE Green Energy (OSTI)

Phase change of pore fluid (boiling/condensing) in rock cores under conditions representative of geothermal reservoirs results in alterations of the electrical resistivity of the samples. In fractured samples, phase change can result in resistivity changes that are more than an order of magnitude greater than those measured in intact samples. These results suggest that electrical resistivity monitoring may provide a useful tool for monitoring the movement of water and steam within fractured geothermal reservoirs. We measured the electrical resistivity of cores of welded tuff containing fractures of various geometries to investigate the resistivity contrast caused by active boiling and to determine the effects of variable fracture dimensions and surface area on water extraction. We then used the Nonisothermal Unsaturated Flow and Transport model (NUFT) (Nitao, 1998) to simulate the propagation of boiling fronts through the samples. The simulated saturation profiles combined with previously reported measurements of resistivity-saturation curves allow us to estimate the evolution of the sample resistivity as the boiling front propagates into the rock matrix. These simulations provide qualitative agreement with experimental measurements suggesting that our modeling approach may be used to estimate resistivity changes induced by boiling in more complex systems.

Detwiler, R L; Roberts, J J; Ralph, W; Bonner, B P

2003-01-14T23:59:59.000Z

180

Electrical Resistivity as an Indicator of Saturation in Fractured Geothermal Reservoir Rocks: Experimental Data and Modeling  

DOE Green Energy (OSTI)

The electrical resistivity of rock cores under conditions representative of geothermal reservoirs is strongly influenced by the state and phase (liquid/vapor) of the pore fluid. In fractured samples, phase change (vaporization/condensation) can result in resistivity changes that are more than an order of magnitude greater than those measured in intact samples. These results suggest that electrical resistivity monitoring of geothermal reservoirs may provide a useful tool for remotely detecting the movement of water and steam within fractures, the development and evolution of fracture systems and the formation of steam caps. We measured the electrical resistivity of cores of welded tuff containing fractures of various geometries to investigate the resistivity contrast caused by active boiling and to determine the effects of variable fracture dimensions and surface area on water extraction from the matrix. We then used the Nonisothermal Unsaturated Flow and Transport model (NUFT) (Nitao, 1998) to simulate the propagation of boiling fronts through the samples. The simulated saturation profiles combined with previously reported measurements of resistivity-saturation curves allow us to estimate the evolution of the sample resistivity as the boiling front propagates into the rock matrix. These simulations provide qualitative agreement with experimental measurements suggesting that our modeling approach may be used to estimate resistivity changes induced by boiling in more complex systems.

Detwiler, R L; Roberts, J J

2003-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "rock hdr geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hot dry rock: A new energy source for clean power  

DOE Green Energy (OSTI)

Volcanic eruptions provide a vivid illustration of the vast amount of thermal energy stored within the earth, while geysers, hot springs, and related geothermal features demonstrate that this energy can be brought to the surface in a more benign manner over extended time periods. These latter phenomena have, in fact, been utilized as sources of heat since ancient ones. During the second half of this century, the use of natural geothermal fluids to generate electricity has rapidly expanded. Today, in excess of 5,000 megawatts of electric power are produced from geothermal energy sources around the world. The vast majority of geothermal energy is found, not in the form of hot fluids, but rather as hot dry rock (HDR) which exists almost everywhere beneath the surface of the earth. The object of this paper is to review and summarize the current state of development of HDR technology in the United States and around the world, including preliminary results of a long-term test now underway at the HDR heat mine in Fenton Hill, NM.

Duchane, D.V.

1992-01-01T23:59:59.000Z

182

Hot dry rock: What does it take to make it happen  

DOE Green Energy (OSTI)

The ubiquitous heat in hot dry rock (HDR) is an abundant, widely distributed form of geothermal energy. Until recently, development of this energy source has been largely focused on understanding the scientific and engineering principles involved in forming and operating HDR reservoirs. During the past year, however, a pilot facility at Fenton Hill, NM has been run under steady-state conditions simulating the operation of a commercial HDR energy plant. Issues important to commercialization such as sustainability of thermal production, water loss, operating costs, and others have been addressed to the extent possible. The results, while not always definitive, have been encouraging. The stage is now set for the formation of an initiative led by private industry to take HDR technology from its current state of scientific and engineering demonstration to the production and marketing of energy in commercial quantities. Because of the technology risks involved, this can probably only be accomplished through a cost-shared industry/government effort. The potential rewards are great, since HDR represents the best, and perhaps the only, opportunity for geothermal energy to take its rightful place as a major energy source for the 21st century.

Duchane, D.V.

1993-06-01T23:59:59.000Z

183

Hot dry rock: What does it take to make it happen  

DOE Green Energy (OSTI)

The ubiquitous heat in hot dry rock (HDR) is an abundant, widely distributed form of geothermal energy. Until recently, development of this energy source has been largely focused on understanding the scientific and engineering principles involved in forming and operating HDR reservoirs. During the past year, however, a pilot facility at Fenton Hill, NM has been run under steady-state conditions simulating the operation of a commercial HDR energy plant. Issues important to commercialization such as sustainability of thermal production, water loss, operating costs, and others have been addressed to the extent possible. The results, while not always definitive, have been encouraging. The stage is now set for the formation of an initiative led by private industry to take HDR technology from its current state of scientific and engineering demonstration to the production and marketing of energy in commercial quantities. Because of the technology risks involved, this can probably only be accomplished through a cost-shared industry/government effort. The potential rewards are great, since HDR represents the best, and perhaps the only, opportunity for geothermal energy to take its rightful place as a major energy source for the 21st century.

Duchane, D.V.

1993-01-01T23:59:59.000Z

184

Aquarious Mountain Area, Arizona: APossible HDR Prospect  

DOE Green Energy (OSTI)

Exploration for Hot Dry Rock (HDR) requires the ability to delineate areas of thermal enhancement. It is likely that some of these areas will exhibit various sorts of anomalous conditions such as seismic transmission delays, low seismic velocities, high attenuation of seismic waves, high electrical conductivity in the crust, and a relatively shallow depth to Curie point of Magnetization. The Aquarius Mountain area of northwest Arizona exhibits all of these anomalies. The area is also a regional Bouguer gravity low, which may indicate the presence of high silica type rocks that often have high rates of radioactive heat generation. The one deficiency of the area as a HDR prospect is the lack of a thermal insulating blanket.

West, F.G.; Laughlin, A.W.

1979-05-01T23:59:59.000Z

185

Capacitive discharge firing system for providing acoustic sources in the hot dry rock geothermal energy development project  

DOE Green Energy (OSTI)

The development of a capacitive discharge firing unit designed to initiate electrically exploded foil slapper detonators in a subsurface, high-pressure (5000 psi), high-temperature (> 200/sup 0/C) environment is described. The unit is used to conduct acoustic ranging experiments in deep boreholes (approx. = 10,000 ft) in the Los Alamos Scientific Laboratory Geothermal Hot Dry Rock experiment.

Patterson, W.W.; Deam, D.R.; MacDonald, H.J.; Rochester, R.H.

1979-07-01T23:59:59.000Z

186

Next stages in HDR technology development  

DOE Green Energy (OSTI)

Twenty years of research and development have brought HDR heat mining technology from the purely conceptual stage to the establishment of an engineering-scale heat mine at Fenton Hill, NM. In April 1992, a long-term flow test (LTFT) of the HDR reservoir at Fenton Hill was begun. The test was carried out under steady-state conditions on a continuous basis for four months, but a major equipment failure in late July forced a temporary suspension of operations. Even this short test provided valuable information and extremely encouraging results as summarized below: There was no indication of thermal drawdown of the reservoir. There was evidence of increasing access to hot rock with time. Water consumption was in the rangki of 10--12%. Measured pumping costs were $0.003 per kilowatt of energy produced. Temperature logs conducted in the reservoir production zone during and after the flow test confirmed the fact that there was no decline in the average temperature of the fluid being produced from the reservoir. In fact, tracer testing showed that the fluid was taking more indirect pathways and thus contacting a greater amount of hot rock as the test progressed. Water usage quickly dropped to a level of 10--15 gallons per minute, an amount equivalent to about 10--12% of the injected fluid volume. At a conversion rate of 10--15%, these would translate to effective ``fuel costs`` of 2--3{cents} per kilowatt hour of electricity production potential. The completion of the LTFT will set the stage for commercialization of HDR but will not bring HDR technology to maturity. Relatively samples extensions of the current technology may bring significant improvements in efficiency, and these should be rapidly investigated. In the longer run, advanced operational concepts could further improve the efficiency of HDR energy extraction and may even offer the possibility of cogeneration schemes which solve both energy and water problems throughout the world.

Duchane, D.V.

1993-03-01T23:59:59.000Z

187

A study of pumps for the Hot Dry Rock Geothermal Energy extraction experiment (LTFT (Long Term Flow Test))  

DOE Green Energy (OSTI)

A set of specifications for the hot dry rock (HDR) Phase II circulation pumping system is developed from a review of basic fluid pumping mechanics, a technical history of the HDR Phase I and Phase II pumping systems, a presentation of the results from experiment 2067 (the Initial Closed-Loop Flow Test or ICFT), and consideration of available on-site electrical power limitations at the experiment site. For the Phase II energy extraction experiment (the Long Term Flow Test or LTFT) it is necessary to provide a continuous, low maintenance, and highly efficient pumping capability for a period of twelve months at variable flowrates up to 420 gpm and at surface injection pressures up to 5000 psi. The pumping system must successfully withstand attacks by corrosive and embrittling gases, erosive chemicals and suspended solids, and fluid pressure and temperature fluctuations. In light of presently available pumping hardware and electric power supply limitations, it is recommended that positive displacement multiplex plunger pumps, driven by variable speed control electric motors, be used to provide the necessary continuous surface injection pressures and flowrates for LTFT. The decision of whether to purchase the required circulation pumping hardware or to obtain contractor provided pumping services has not been made.

Tatro, C.A.

1986-10-01T23:59:59.000Z

188

Geothermal development in Australia  

DOE Green Energy (OSTI)

In Australia, natural hot springs and hot artesian bores have been developed for recreational and therapeutic purposes. A district heating system at Portland, in the Otway Basin of western Victoria, has provided uninterrupted service for 12 Sears without significant problems, is servicing a building area of 18 990 m{sup 2}, and has prospects of expansion to manufacturing uses. A geothermal well has provided hot water for paper manufacture at Traralgon, in the Gippsland Basin of eastern Victoria. Power production from hot water aquifers was tested at Mulka in South Australia, and is undergoing a four-year production trial at Birdsville in Queensland. An important Hot Dry Rock resource has been confirmed in the Cooper Basin. It has been proposed to build an HDR experimental facility to test power production from deep conductive resources in the Sydney Basin near Muswellbrook.

Burns, K.L. [Los Alamos National Lab., NM (United States); Creelman, R.A. [Creelman (R.A.) and Associates, Sydney, NSW (Australia); Buckingham, N.W. [Glenelg Shire Council, Portland, VIC (Australia); Harrington, H.J. [Australian National Univ., Canberra, ACT (Australia)]|[Sydney Univ., NSW (Australia)

1995-03-01T23:59:59.000Z

189

Hot Dry Rock Overview at Los Alamos  

DOE Green Energy (OSTI)

The Hot Dry Rock (HDR) geothermal energy program is a renewable energy program that can contribute significantly to the nation's balanced and diversified energy mix. Having extracted energy from the first Fenton Hill HDR reservoir for about 400 days, and from the second reservoir for 30 days in a preliminary test, Los Alamos is focusing on the Long Term Flow Test and reservoir studies. Current budget limitations have slowed preparations thus delaying the start date of that test. The test is planned to gather data for more definitive reservoir modeling with energy availability or reservoir lifetime of primary interest. Other salient information will address geochemistry and tracer studies, microseismic response, water requirements and flow impedance which relates directly to pumping power requirements. During this year of ''preparation'' we have made progress in modeling studies, in chemically reactive tracer techniques, in improvements in acoustic or microseismic event analysis.

Berger, Michael; Hendron, Robert H.

1989-03-21T23:59:59.000Z

190

Quantitative model of vapor dominated geothermal reservoirs as heat pipes in fractured porous rock  

DOE Green Energy (OSTI)

We present a numerical model of vapor-dominated reservoirs which is based on the well-known conceptual model of White, Muffler, and Truesdell. Computer simulations show that upon heat recharge at the base, a single phase liquid-dominated geothermal reservoir in fractured rock with low matrix permeability will evolve into a two-phase reservoir with B.P.D. (boiling point-for-depth) pressure and temperature profiles. A rather limited discharge event through cracks in the caprock, involving loss of only a few percent of fluids in place, is sufficient to set the system off to evolve a vapor-dominated state. The attributes of this state are discussed, and some features requiring further clarification are identified. 26 refs., 5 figs.

Pruess, K.

1985-03-01T23:59:59.000Z

191

Simulation and optimization of hot dry rock geothermal energy conversion systems: process conditions and economics  

DOE Green Energy (OSTI)

The Los Alamos Scientific Laboratory is currently engaged in a field program aimed at designing and testing man-made geothermal reservoirs in hot granitic formations of low permeability created by hydraulic fracturing. A very important segment of the program is concerned with defining and optimizing several parameters related to the performance of the reservoir and their impact on the potential commercial feasibility of the hot dry rock technique. These include effective heat transfer area, permeation water loss, depth to the reservoir, geothermal temperature gradient, reservoir temperature, mass flow rate, and geochemistry. In addition, the optimization of the energy end use system (process or district heating, electricity or cogeneration) is directly linked to reservoir performance and associated costs. This problem has been studied using several computer modeling approaches to identify the sensitivity of the cost of power to reservoir and generation plant parameters. Also examined were a variety of important economic elements including rate of return on invested capital, discount or interest rates, taxes, cash flow, energy selling price, plant and reservoir lifetime, drilling and surface plant costs, and royalties.

Tester, J.W.

1978-01-01T23:59:59.000Z

192

Geologic framework and hot dry rock geothermal potential of the Castle Dome area, Yuma County, Arizona  

DOE Green Energy (OSTI)

The Castle Dome Mountains and surrounding ranges constitute a voluminous pile of silicic volcanic rocks within the Basin and Range province of southwestern Arizona. Previously reported as Cretaceous and Quaternary in age, these volcanics all are of late Oligocene to early Miocene age as indicated by five new K-Ar dates. Reconnaissance field studies indicate that the volcanic section locally has undergone large rotations that contrast with the usual structural style of the Basin and Range and resemble the thin-skinned rotational tectonics documented for earlier, mid-Tertiary extensional deformation in ranges to the north and northeast. Significant geothermal potential of the Castle Dome area is suggested by a shallow depth to the Curie isotherm and by the apparent presence of a good electrical conductor at anomalously shallow depth in the crust. Warm wells exist in the area and Shearer (1979) reported a geothermal gradient of about 70/sup 0/C/km in a dry well near the center of the gravity low. Radiogenic heat production in the silicic batholith inferred above constitutes a reasonable candidate for a shallow regional heat source.

Gutmann, J.T.

1981-02-01T23:59:59.000Z

193

Start-up operations at the Fenton Hill HDR Pilot Plant  

DOE Green Energy (OSTI)

With the completion of the surface test facilities at Fenton Hill, the Hot Dry Rock (HDR) Geothermal Energy Program at Los Alamos is moving steadily into the next stage of development. Start-up operations of the surface facilities have begun in preparation for testing the Phase II reservoir and the initial steady-state phase of operations. A test program has been developed that will entail a number of operational strategies to characterize the thermal performance of the reservoir. The surface facilities have been designed to assure high reliability while providing the flexibility and control to support the different operating modes. This paper presents a review of the system design and provides a discussion of the preliminary results of plant operations and equipment performance.

Ponden, R.F.

1991-01-01T23:59:59.000Z

194

Start-Up Operations at the Fenton Hill HDR Pilot Plant  

DOE Green Energy (OSTI)

With the completion of the surface test facilities at Fenton Hill, the Hot Dry Rock (HDR) Geothermal Energy Program at Los Alamos is moving steadily into the next stage of development. Start-up operations of the surface facilities have begun in preparation for testing the Phase II reservoir and the initial steady-state phase of operations. A test program has been developed that will entail a number of operational strategies to characterize the thermal performance of the reservoir. The surface facilities have been designed to assure high reliability while providing the flexibility and control to support the different operating modes. This paper presents a review of the system design and provides a discussion of the preliminary results of plant operations and equipment performance.

Ponden, Raymond F.

1992-03-24T23:59:59.000Z

195

LASL Hot Dry Rock Geothermal Project. Progress report, July 1, 1975--June 30, 1976  

DOE Green Energy (OSTI)

Successful drilling into hard crystalline rock was accomplished to depths of about 3 km. Hydraulic fractures in the crystalline rock with radii as large as 150 m were produced. Values of in situ permeability of the Fenton Hill granite were measured. Directional drilling at depths of up to 3 km was accomplished. At least 90 to 95 percent of water injected into fractured regions was recovered. A connection was established between two deep boreholes through a fractured region of hot granite for the first time. Instruments were developed to operate for several hours under the downhole conditions. The compressional and shear components of seismic signals produced by fracture extension and inflation were detected downholes. Acoustic ranging has generally identified the relative positions of two boreholes at several depths. Self-potential and induced potential techniques have determined vertical fracture lengths at the borehole. Pressure-flow and fluid residence time distribution studies have measured properties of the downhole system. Core sample studies have provided physical and chemical data. Techniques were developed to examine reservoir performance. A geothermal power-production model was formulated. (MHR)

Blair, A.G.; Tester, J.W.; Mortensen, J.J. (comps.)

1976-10-01T23:59:59.000Z

196

Summary of talks third annual hot dry rock geothermal information conference  

DOE Green Energy (OSTI)

Three basic comparisons can be made between weapon system development and energy system development in the US--driving factors, system lifetime, and development time. Weapon system development and response is determined by a perceived threat to national security. Because the threat can change radically in this high technology atmosphere, weapon systems are usually designed for a 5 to 20 year lifetime. Development time from idea to capability is about 20 years on the average. In contrast, energy system development has been influenced by economics--demand, supply, return on investment--until the recent threat created by our dependence on oil. Energy systems are expected to operate 20 to 50 years and even longer. Development time is correspondingly long, i.e., 40 years from idea to large-scale use. The US needs to adopt a ''defense-oriented'' approach to protect its threatened energy security. Geothermal energy from hot dry rock is a new concept. The Hot Dry Rock Program is designed to minimize development time and may become a prime example of how a recognized threat to energy security can be answered by combined government/industry effort.

Gaddy, James

1980-10-29T23:59:59.000Z

197

Temperature histories in geothermal wells: survey of rock thermomechanical properties and drilling, production, and injection case studies  

DOE Green Energy (OSTI)

Thermal and mechanical properties for geothermal formations are tabulated for a range of temperatures and stress conditions. Data was obtained from the technical literature and direct contacts with industry. Thermal properties include heat capacity, conductivity, and diffusivity. Undisturbed geothermal profiles are also presented. Mechanical properties include Youngs modulus and Poisson ratio. GEOTEMP thermal simulations of drilling, production and injection are reported for two geothermal regions, the hot dry rock area near Los Alamos and the East Mesa field in the Imperial Valley. Actual drilling, production, and injection histories are simulated. Results are documented in the form of printed GEOTEMP output and plots of temperatures versus depth, radius, and time. Discussion and interpretation of the results are presented for drilling and well completion design to determine: wellbore temperatures during drilling as a function of depth; bit temperatures over the drilling history; cement temperatures from setting to the end of drilling; and casing and formation temperatures during drilling, production, and injection.

Goodman, M.A.

1981-07-01T23:59:59.000Z

198

The geothermal analog of pumped storage for electrical demand load following  

Science Conference Proceedings (OSTI)

A 6 day cycle Load-Following Experiment, conducted in July 1995 at the Fenton Hill Hot Dry Rock (HDR) test site in New Mexico, has verified that an HDR geothermal reservoir has the capability for a significant, rapid increase in thermal power output upon demand. The objective was to study the behavior of the HDR reservoir in a high-production- backpressure (2200 psi) baseload operating condition when there was superimposed a demand for significantly increased power production for a 4 hour period each day. In practice, this enhanced production, an increase of 65%, was accomplished by a programmed decrease in the production well backpressure over 4 hours, from an initial 2200 psi down to 500 psi. The rapid depressurization of the wellbore during the period of enhanced production resulted in the draining of a portion of the fluid stored in the pressure dilated joints surrounding the production well. These joints were then gradually reinflated during the following 20-hour period of high backpressure baseload operation. In essence, the HDR reservoir was acting as a fluid capacitor, being discharged for 4 hours and then slowly recharged during the subsequent 20 hours of baseload operation. In this mode, there would be no increase in the reservoir size of number of wells (the {ital in situ} capital investment) for a significant amount of peaking power production for a few hours each day. Thus, one of the advantages of geothermal load following over utility options such as pumped storage or compressed air storage is that the HDR power plant would be operated during off-peak hours in a baseline mode, with an augmented return on investment compared to these other peaking systems which would normally not be operated during off-peak periods. The surface power plant and the geofluid reinjection pumps would need to be sized for the peak rate of thermal energy production, adding somewhat to the overall HDR system capital costs when compared to a simple baseload power plant design.

Brown, D.W.

1996-09-01T23:59:59.000Z

199

Summary of hot dry rock geothermal reservoir testing 1978 to 1980  

DOE Green Energy (OSTI)

Experimental results and re-evaluation of the Phase I Hot Dry Rock Geothermal Energy reservoirs at the Fenton Hill field site are summarized. Reservoir growth is traced. Reservoir growth was caused not only by pressurization and hydraulic fracturing, but also by heat extraction and thermal contraction effects. Reservoir heat-transfer area grew from 8000 to 50,000 m/sup 2/ and reservoir fracture volume grew from 11 to 266/sup 3/m. Despite this reservoir growth, the water loss rate increased only 30%, under similar pressure environments. For comparable temperature and pressure conditions, the flow impedance (a measure of the resistance to circulation of water through the reservoir) remained essentially unchanged, and if reproduced in the Phase II reservoir under development, could result in self pumping. Geochemical and seismic hazards have been nonexistent in the Phase I reservoirs. The produced water is relatively low in total dissolved solids and shows little tendency for corrosion or scaling. The largest microearthquake associated with heat extraction measures less than -1 on the extrapolated Richter scale.

Dash, Z.V.; Murphy, H.D. (eds.)

1981-01-01T23:59:59.000Z

200

Field study of tracer and geochemistry behavior during hydraulic fracturing of a hot dry rock geothermal reservoir  

DOE Green Energy (OSTI)

This study presents tracer and geochemistry data from several hydraulic fracturing experiments at the Fenton Hill, NM, HDR geothermal reservoir. Tracers have been injected at various times during these tests: (1) initially, before any flow communication existed between the wells; (2) shortly after a flow connection was established; and (3) after the outlet flow had increased to its steady state value. An idealized flow model consisting of a combination of main fracture flow paths and fluid leakoff into secondary permeability explains the different tracer response curves for these cases, and allows us to predict the fracture volume of the main paths. The geochemistry during these experiments supports our previously developed models postulating the existence of a high concentration indigenous ''pore fluid.'' Also, the quartz and Na-K-Ca geothermometers have been used successfully to identify the temperatures and depths at which fluid traveled while in the reservoir. The quartz geothermometer is somewhat more reliable because at these high temperatures (about 250/sup 0/C) the injected fluid can come to equilibrium with quartz in the reservoir. The Na-K-Ca geothermometer relies on obtaining a sample of the indigenous pore fluid, and thus is somewhat susceptible to problems of dilution with the injection fluid. 14 refs., 6 figs., 1 tab.

Robinson, B.A.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock hdr geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Draft environmental impact report. California Department of Water Resources, Bottle Rock geothermal power plant, Lake County, CA  

SciTech Connect

The California Department of Water Resources (DWR) proposes to construct the Bottle Rock power plant, a 55 MW geothermal power plant, at The Geysers Known Geothermal Resource Area (KGRA). The plant is projected to begin operation in April of 1983, and will be located in Lake County near the Sonoma County line on approximately 7.2 acres of the Francisco leasehold. The steam to operate the power plant, approximately 1,000,000 pounds/h, will be provided by McCulloch Geothermal Corporation. The power plant's appearance and operation will be basically the same as the units in operation or under construction in the KGRA. The power plant and related facilities will consist of a 55 MW turbine generator, a 1.1 mile (1.81 km) long transmission line, a condensing system, cooling tower, electrical switchyard, gas storage facility, cistern, and an atmospheric emission control system. DWR plans to abate hydrogen sulfide (H/sub 2/S) emissions through the use of the Stretford Process which scrubs the H/sub 2/S from the condenser vent gas stream and catalytically oxides the gas to elemental sulfur. If the Stretford Process does not meet emission limitations, a secondary H/sub 2/S abatement system using hydrogen peroxide/iron catalyst is proposed. The Bottle Rock project and other existing and future geothermal projects in the KGRA may result in cumulative impacts to soils, biological resources, water quality, geothermal steam resources, air quality, public health, land use, recreation, cultural resources, and aesthetics.

1979-12-01T23:59:59.000Z

202

Draft environmental impact report. California Department of Water Resources, Bottle Rock geothermal power plant, Lake County, CA  

DOE Green Energy (OSTI)

The California Department of Water Resources (DWR) proposes to construct the Bottle Rock power plant, a 55 MW geothermal power plant, at The Geysers Known Geothermal Resource Area (KGRA). The plant is projected to begin operation in April of 1983, and will be located in Lake County near the Sonoma County line on approximately 7.2 acres of the Francisco leasehold. The steam to operate the power plant, approximately 1,000,000 pounds/h, will be provided by McCulloch Geothermal Corporation. The power plant's appearance and operation will be basically the same as the units in operation or under construction in the KGRA. The power plant and related facilities will consist of a 55 MW turbine generator, a 1.1 mile (1.81 km) long transmission line, a condensing system, cooling tower, electrical switchyard, gas storage facility, cistern, and an atmospheric emission control system. DWR plans to abate hydrogen sulfide (H/sub 2/S) emissions through the use of the Stretford Process which scrubs the H/sub 2/S from the condenser vent gas stream and catalytically oxides the gas to elemental sulfur. If the Stretford Process does not meet emission limitations, a secondary H/sub 2/S abatement system using hydrogen peroxide/iron catalyst is proposed. The Bottle Rock project and other existing and future geothermal projects in the KGRA may result in cumulative impacts to soils, biological resources, water quality, geothermal steam resources, air quality, public health, land use, recreation, cultural resources, and aesthetics.

Not Available

1979-12-01T23:59:59.000Z

203

Induced seismicity associated with enhanced geothermal system  

E-Print Network (OSTI)

Cooper Basin, Australia. Geothermal Resources Council Trans.a hot fractured rock geothermal project. Engineering Geologyseismicity in The Geysers geothermal area, California. J.

Majer, Ernest L.

2006-01-01T23:59:59.000Z

204

Numerical studies of fluid-rock interactions in Enhanced Geothermal Systems (EGS) with CO2 as working fluid  

E-Print Network (OSTI)

Development of Enhanced Geothermal Systems, paper presentedin the Deep Reservoir of the Mt. Amiata Geothermal Field,Italy, Transactions, Geothermal Resources Council, 31, 153-

Xu, Tianfu; Pruess, Karsten; Apps, John

2008-01-01T23:59:59.000Z

205

Hot dry rock energy extraction field test: 75 days of operation of a prototype reservoir at Fenton Hill, Segment 2 of Phase I  

DOE Green Energy (OSTI)

Results from the first extensive field test of a man-made hot dry rock (HDR) geothermal reservoir in low permeability crystalline rock are presented. A reservoir with a small heat transfer area was utilized to study the characteristics of a prototype HDR system over a shortened lifetime. The resulting accelerated thermal drawdown was modeled to yield an effective area of 8000 m/sup 2/. In addition to the thermal effects, this test provided an opportunity to examine equipment operation, water permeation into the formation, geochemical interaction between the circulating fluid and the rock and flow characteristics including impedance and residence time distributions. Continuous monitoring for induced seismic effects showed that no activity to a Richter threshold of -1.0 was detected during the 75-day experiment.

Tester, J.W.; Albright, J.N. (eds.)

1979-04-01T23:59:59.000Z

206

The furnace in the basement: Part 1, The early days of the Hot Dry Rock Geothermal Energy Program, 1970--1973  

DOE Green Energy (OSTI)

This report presents the descriptions of the background information and formation of the Los Alamos Scientific Laboratory Geothermal Energy Group. It discusses the organizational, financial, political, public-relations,geologic, hydrologic, physical, and mechanical problems encountered by the group during the period 1970--1973. It reports the failures as well as the successes of this essential first stage in the development of hot dry rock geothermal energy systems.

Smith, M.C.

1995-09-01T23:59:59.000Z

207

Development of a Plan to Implement Enhanced Geothermal Systems (EGS) in the Animas Valley, New Mexico - Final Report - 07/26/2000 - 02/01/2001  

SciTech Connect

The concept of producing energy from hot dry rock (HDR), originally proposed in 1971 at the Los Alamos National Laboratory, contemplated the generation of electric power by injecting water into artificially created fractures in subsurface rock formations with high heat flow. Recognizing the inherent difficulties associated with HDR, the concept of Enhanced Geothermal Systems was proposed. This embraces the idea that the amount of permeability and fluid in geothermal resources varies across a spectrum, with HDR at one end, and conventional hydrothermal systems at the other. This report provides a concept for development of a ''Combined Technologies Project'' with construction and operation of a 6 MW (net) binary-cycle geothermal power plant that uses both the intermediate-depth hydrothermal system at 1,200 to 3,300 feet and a deeper EGS capable system at 3,000 to 4,000 feet. Two production/injection well pairs will be drilled, one couplet for the hydrothermal system, and one for the E GS system. High-pressure injection may be required to drive fluid through the EGS reservoir from the injection to the production well.

Schochet, Daniel N.; Cunniff, Roy A.

2001-02-01T23:59:59.000Z

208

Development of a Plan to Implement Enhanced Geothermal Systems (EGS) in the Animas Valley, New Mexico - Final Report - 07/26/2000 - 02/01/2001  

DOE Green Energy (OSTI)

The concept of producing energy from hot dry rock (HDR), originally proposed in 1971 at the Los Alamos National Laboratory, contemplated the generation of electric power by injecting water into artificially created fractures in subsurface rock formations with high heat flow. Recognizing the inherent difficulties associated with HDR, the concept of Enhanced Geothermal Systems was proposed. This embraces the idea that the amount of permeability and fluid in geothermal resources varies across a spectrum, with HDR at one end, and conventional hydrothermal systems at the other. This report provides a concept for development of a ''Combined Technologies Project'' with construction and operation of a 6 MW (net) binary-cycle geothermal power plant that uses both the intermediate-depth hydrothermal system at 1,200 to 3,300 feet and a deeper EGS capable system at 3,000 to 4,000 feet. Two production/injection well pairs will be drilled, one couplet for the hydrothermal system, and one for the E GS system. High-pressure injection may be required to drive fluid through the EGS reservoir from the injection to the production well.

Schochet, Daniel N.; Cunniff, Roy A.

2001-02-01T23:59:59.000Z

209

Geothermal resources of the western arm of the Black Rock Desert, northwestern Nevada. Part I. Geology and geophysics  

DOE Green Energy (OSTI)

Studies of the geothermal potential of the western arm of the Black Rock Desert in northwestern Nevada included a compilation of existing geologic data on a detailed map, a temperature survey at 1-meter depth, a thermal-scanner survey, and gravity and seismic surveys to determine basin geometry. The temperature survey showed the effects of heating at shallow depths due to rising geothermal fluids near the known hot spring areas. Lower temperatures were noted in areas of probable near-surface ground-water movement. The thermal-scanner survey verified the known geothermal areas and showed relatively high-temperature areas of standing water and ground-water discharge. The upland areas of the desert were found to be distinctly warmer than the playa area, probably due to the low thermal diffusivity of upland areas caused by low moisture content. Surface geophysical surveys indicated that the maximum thickness of valley-fill deposits in the desert is about 3200 meters. Gravity data further showed that changes in the trend of the desert axis occurred near thermal areas. 53 refs., 8 figs., 3 tabs.

Schaefer, D.H.; Welch, A.H.; Maurer, D.K.

1983-01-01T23:59:59.000Z

210

Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report  

Science Conference Proceedings (OSTI)

The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sediment were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and P-wave seismic data for geothermal applications by inserting into this report a small part of the interpretation we have done with 3C3D data across Wister geothermal field in the Imperial Valley of California. This interpretation shows that P-SV data reveal faults (and by inference, also fractures) that cannot be easily, or confidently, seen with P-P data, and that the combination of P-P and P-SV data allows VP/VS velocity ratios to be estimated across a targeted reservoir interval to show where an interval has more sandstone (the preferred reservoir facies). The conclusion reached from this investigation is that S-wave seismic technology can be invaluable to geothermal operators. Thus we developed a strong interest in understanding the direct-S modes produced by vertical-force sources, particularly vertical vibrators, because if it can be demonstrated that direct-S modes produced by vertical-force sources can be used as effectively as the direct-S modes produced by horizontal-force sources, geothermal operators can acquire direct-S data across many more prospect areas than can be done with horizontal-force sources, which presently are limited to horizontal vibrators. We include some of our preliminary work in evaluating direct-S modes produced by vertical-force sources.

Hardage, Bob A; DeAngelo, Michael V; Ermolaeva, Elena; Hardage, Bob A; Remington, Randy; Sava, Diana; Wagner, Donald; Wei, Shuijion

2013-02-28T23:59:59.000Z

211

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Mean br Capacity Mean br Reservoir br Temp Amedee Geothermal Area Amedee Geothermal Area Walker Lane Transition Zone Geothermal Region Extensional Tectonics Mesozoic granite granodiorite MW K Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Central Nevada Seismic Zone Geothermal Region Extensional Tectonics MW K Blue Mountain Geothermal Area Blue Mountain Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics triassic metasedimentary MW K Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics MW Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone

212

Geochemistry of thermal/mineral waters in the Clear Lake region, California, and implications for hot dry rock geothermal development  

DOE Green Energy (OSTI)

Thermal/mineral waters of the Clear Lake region are broadly classified as thermal meteoric and connote types based on chemical and isotopic criteria. Ratios of conservative components such as B/Cl are extremely different among all thermal/mineral waters of the Clear Lake region except for clusters of waters emerging from specific areas such as the Wilbur Springs district and the Agricultural Park area south of Mt. Konocti. In contrast, ratios of conservative components in large, homogeneous geothermal reservoirs are constant. Stable isotope values of Clear Lake region waters show a mixing trend between thermal meteoric and connote end-members. The latter end-member has enriched [delta]D as well as enriched d[sup l8]O, very different from typical high-temperature geothermal reservoir waters. Tritium data and modeling of ages indicate most Clear Lake region waters are 500 to > 10,000 yr., although mixing of old and young components is implied by the data. The age of end-member connate water is probably > 10,000 yr. Subsurface equilibration temperature of most thermal/mineral waters of the Clear Lake region is [le] 150[degrees]C based on chemical geothermometers but it is recognized that Clear Lake region waters are not typical geothermal fluids and that they violate rules of application of many geothermometers. The combined data indicate that no large geothermal reservoir underlies the Clear Lake region and that small localized reservoirs have equilibration temperatures [le] 150[degrees]C (except for Sulphur Bank Mine). Hot dry rock technologies are the best way to commercially exploit the known high temperatures existing beneath the Clear Lake region, particularly within the main Clear Lake volcanic field.

Goff, F.; Adams, A.I.; Trujillo, P.E.; Counce, D.; Mansfield, J.

1993-02-01T23:59:59.000Z

213

Hot Dry Rock - Summary  

SciTech Connect

Hot Dry Rock adds a new flexibility to the utilization of geothermal energy. Almost always the approach has been to limit that utilization to places where there is a natural source of water associated with a source of heat. Actually, the result was that steam was mined. Clearly there are much larger heat resources available which lack natural water to transport that energy to the surface. Also, as is found in hydrothermal fields being mined for steam, the water supply finally gets used up. There is a strong motive in the existing capital investment to revitalize those resources. Techniques for introducing, recovering and utilizing the water necessary to recover the heat from below the surface of the earth is the subject of this session. Implicit in that utilization is the ability to forecast with reasonable accuracy the busbar cost of that energy to the utility industry. The added element of supplying the water introduces costs which must be recovered while still supplying energy which is competitive. Hot Dry Rock technology can supply energy. That has been proved long since. The basic barrier to its use by the utility industry has been and remains proof to the financial interests that the long term cost is competitive enough to warrant investment in a technology that is new to utility on-grid operations. As the opening speaker for this session states, the test that is underway will ''simulate the operations of a commercial facility in some ways, but it will not show that energy from HDR can be produced at a variety of locations with different geological settings''. Further, the Fenton Hill system is a research facility not designed for commercial production purposes, but it can give indications of how the system must be changed to provide economic HDR operations. And so it is that we must look beyond the long term flow test, at the opportunities and challenges. Proving that the huge HDR resources can be accessed on a worldwide scale must involve the construction of additional sites, preferably to the specifications of the now Federal geothermal community. These facilities will have to be engineered to produce and market energy at competitive prices. At the same time, we must not rest on our technological laurels, though they be many. Design and operational techniques have been conceived which could lead to improved economics and operations for HDR. These must be pursued and where merit is found, vigorously pursued. Accelerated research and development ought to include revolutionary drilling techniques, reservoir interrogation, and system modeling to assure the competitiveness and geographical diversity of applications of HDR. Much of this work will be applicable to the geothermal industry in general. More advanced research ought to include such innovations as the utilization of other operating fluids. Supercritical carbon dioxide and the ammonia/water (Kalina) cycle have been mentioned. But even as the near and more distant outlook is examined, today's work was reported in the HDR session. The start-up operations for the current test series at the Fenton Hill HDR Pilot Plant were described. The surface plant is complete and initial operations have begun. While some minor modifications to the system have been required, nothing of consequence has been found to impede operations. Reliability, together with the flexibility and control required for a research system were shown in the system design, and demonstrated by the preliminary results of the plant operations and equipment performance. Fundamental to the overall success of the HDR energy resource utilization is the ability to optimize the pressure/flow impedance/time relationships as the reservoir is worked. Significant new insights are still being developed out of the data which will substantially affect the operational techniques applied to new systems. However, again, these will have to be proved to be general and not solely specific to the Fenton Hill site. Nevertheless, high efficiency use of the reservoir without unintended reservoir grow

Tennyson, George P. Jr.

1992-03-24T23:59:59.000Z

214

Engineering methods for predicting productivity and longevity of hot-dry-rock geothermal reservoir in the presence of thermal cracks. Technical completion report  

DOE Green Energy (OSTI)

Additional heat extraction from geothermal energy reservioirs depends on the feasibility to extend the main, hydraulic fracture through secondary thermal cracks of the adjacent hot rock. When the main, hydraulic fracture is cooled sufficiently, these secondary thermal cracks are produced normal to the main fracture surface. As such, both the heat transfer surface area and heat energy available to the fluid circulating through the main, hydraulic fracture system increase. Methods for predicting the productivity and longevity of a geothermal reservoir were developed. A question is whether a significant long-term enhancement of the heat extraction process is achieved due to these secondary thermal cracks. In short, the objectives of this investigation are to study how the main, hydraulic fracture can be extended through these secondary thermal cracks of the rock, and to develop methods for predicting the productivity and longevity of a geothermal reservoir.

Hsu, Y.C.; Lu, Y.M.; Ju, F.D.; Dhingra, K.C.; Lu, Y.M.; Ju, F.D.; Dhingra, K.C.

1978-01-01T23:59:59.000Z

215

Enhanced heat extraction from hot-dry-rock geothermal reservoirs due to interacting secondary thermal cracks. Final report  

DOE Green Energy (OSTI)

How the fluid circulating through the main hydraulic fracture and the thermally-induced secondary, growing, interacting cracks affects the time-varying temperature, deformations, stresses, thermal crack geometry, water flow rates through the main and thermal cracks, reservoir coolant outlet temperature, and reservoir thermal power of the cracked geothermal reservoir is investigated. First, a simplified version of the proposed hot-dry-rock reservoir is considered. A closed-form solution of the rock temperature without thermal crack was found and substituted into SAP-IV computer code to calculate the stresses. These stresses being superposed with earth stresses and fluid pressure were used in conjunction with the fracture mechanics criterion to determine the initiation of secondary thermal crack. After the initiation of secondary thermal crack, the rock temperature was then calculated by a two-dimensional heat conduction program AYER. The detailed procedures for carrying out these steps are listed. Solutions developed are applied to studying the time-varying temperature field, thermal stresses and crack geometry produced, and additional heat power generated in the reservoir. Conclusions were discussed and summarized. (MHR)

Hsu, Y.C.

1979-04-01T23:59:59.000Z

216

Seismological investigation of crack formation in hydraulic rock fracturing experiments and in natural geothermal environments. Progress report, September 1, 1978-August 31, 1979  

DOE Green Energy (OSTI)

An interpretation theory based on the fluid-filled crack model of geothermal systems is being developed and tested against a variety of data from various geothermal areas. Progress is reported on the following subjects: (1) analysis and interpretation of seismic data obtained from the bore holes at the LASL Hot Dry Rock geothermal site. (2) Collection, analysis and interpretation of data on deep volcanic tremors at the USGS Hawaii Volcano Observatory. (3) Development of a new method for determining seismic attenuation at frequencies higher than 1HZ, and initiation of a cooperative work with Mexican seismologists on the attenuation measurements at various geothermal areas in Baja, California using the method. (4) Installation of 3-component digital event-recorders at four stations in the Newberry Peak volcano, Oregon. (5) Developing a computer program for calculating seismic motion generated by the vibration of fluid-filled crack in a layered medium.

Aki, K.

1979-09-01T23:59:59.000Z

217

Economics of a 75-MW(e) hot-dry-rock geothermal power station based upon the design of the Phase II reservoir at Fenton Hill  

DOE Green Energy (OSTI)

Based upon EE-2 and EE-3 drilling costs and the proposed Fenton Hill Phase II reservoir conditions the break-even cost of producing electricity is 4.4 cents per kWh at the bus bar. This cost is based upon a 9-well, 12-reservoir hot dry rock (HDR) system producing 75 MW(e) for 10 yr with only 20% drawdown, and an assumed annual finance charge of 17%. Only one-third of the total, potentially available heat was utilized; potential reuse of wells as well as thermal stress cracking and augmentation of heat transfer was ignored. Nearly half the bus bar cost is due to drilling expenses, which prompted a review of past costs for wells GT-2, EE-1, EE-2, and EE-3. Based on comparable depth and completion times it is shown that significant cost improvements have been accomplished in the last seven years. Despite these improvements it was assumed for this study that no further advancements in drilling technology would occur, and that even in commercially mature HDR systems, drilling problems would continue nearly unabated.

Murphy, H.; Drake, R.; Tester, J.; Zyvoloski, G.

1982-02-01T23:59:59.000Z

218

Numerical studies of fluid-rock interactions in EnhancedGeothermal Systems (EGS) with CO2 as working fluid  

SciTech Connect

There is growing interest in the novel concept of operating Enhanced Geothermal Systems (EGS) with CO{sub 2} instead of water as heat transmission fluid. Initial studies have suggested that CO{sub 2} will achieve larger rates of heat extraction, and can offer geologic storage of carbon as an ancillary benefit. Fluid-rock interactions in EGS operated with CO{sub 2} are expected to be vastly different in zones with an aqueous phase present, as compared to the central reservoir zone with anhydrous supercritical CO{sub 2}. Our numerical simulations of chemically reactive transport show a combination of mineral dissolution and precipitation effects in the peripheral zone of the systems. These could impact reservoir growth and longevity, with important ramifications for sustaining energy recovery, for estimating CO{sub 2} loss rates, and for figuring tradeoffs between power generation and geologic storage of CO{sub 2}.

Xu, Tianfu; Pruess, Karsten; Apps, John

2008-01-17T23:59:59.000Z

219

Environmental monitoring for the hot dry rock geothermal energy development project. Annual report, July 1975--June 1976  

DOE Green Energy (OSTI)

The objectives of this environmental monitoring report are to provide a brief conceptual and historical summary of the Hot Dry Rock Geothermal Project, a brief overview of the environmental monitoring responsibilities and activities of the Los Alamos Scientific Laboratory, and descriptions of the studies, problems, and results obtained from the various monitoring programs. Included are descriptions of the work that has been done in three major monitoring areas: (1) water quality, both surface and subsurface; (2) seismicity, with a discussion of the monitoring strategy of regional, local, and close-in detection networks; and (3) climatology. The purpose of these programs is to record baseline data, define potential effects from the project activities, and determine and record any impacts that may occur.

Pettitt, R.A. (comp.)

1976-09-01T23:59:59.000Z

220

Alpine 1/Federal: Temperature gradients, geothermal potential, and geology. Final report, Part 2  

DOE Green Energy (OSTI)

The Alpine 1/Federal drilling project provided valuable new; information on the geology of the region. Except for drilling into Precambrian rocks, the objectives of the project were accomplished. sufficient temperature and heat-flow information were obtained to assess the near-term HDR geothermal potential of the eastern White Mountains region. Therefore, the primary mission of the project was successful. The HDR potential for near-term electrical power production is not economic. Potential for HDR direct-use space heating is marginal at best and should realistically be considered uneconomic. The Alpine 1/Federal hole should be deepened to Precambrian basement to provide definitive subsurface geological information for this region. Deeper drilling will determine Precambrian lithology and assess if older Paleozoic rock units are present. The hole may be deepened with a BQ drill string. Depth to Precambrian is likely to be between 800 and 2,000 feet below the current 4,505 feet total depth. The failure to reach Precambrian basement due to a previously unknown and unmapped major structural offset highlights the need for detailed surface geological mapping in this poorly understood region.

Witcher, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.; Hahman, W.R. [Hahman (W. Richard), Las Cruces, NM (United States); Swanberg, C.A. [Swanberg (Chandler A.), Phoenix, AZ (United States)

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock hdr geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Seismological investigation of crack formation in hydraulic rock fracturing experiments and in natural geothermal environments. Progress report, September 1, 1980-August 31, 1981  

DOE Green Energy (OSTI)

Progress is reported on the following: interpretation of seismic data from hydraulic fracturing experiments at the Fenton Hill Hot Dry Rock Geothermal Site, interpretation of 3-D velocity anomalies in the western US with special attention to geothermal areas, theoretical and observational studies of scattering and attenuation of high-frequency seismic waves, theoretical and observational studies of volcanic tremors in relation to magma transport mechanisms, and deployment and maintenance of 9 event-recorders around Mt. St. Helens. Abstracts of papers submitted for publication are included. (MHR)

Aki, K.

1981-09-01T23:59:59.000Z

222

Geology, drill holes, and geothermal energy potential of the basal Cambrian rock units of the Appalachian Basin of New York State  

DOE Green Energy (OSTI)

The published geologic and geophysical records plus data gathered from deep wells during hydrocarbon exploration were inventoried, discussed and summarized to evaluate hydro-geothermal energy potential in the western counties of New York, south of the 42/sup 0/ latitude. An assessment is provided of local geothermal energy potential based on these data. The assessed potential is a function of the geothermal gradient, the depth of porous Cambrian age sedimentary units and a variety of features thought to be related to deep fracturing and hence enhanced porosity and permeability. The completion history of a selected set of plugged and abandoned deep wells was examined to determine the feasibility and advisability of re-entering these holes for geothermal development. All wells showed extensive cement plugging and uncertain materials introduced for bridging. It was recommended that no attempt be made to re-enter these wells. The hydro-geothermal energy potential in Western New York State is largely comparable to that of other regions possessing porous/permeable units of sedimentary rock at sufficient depth to contain formation waters of useful temperatures (>140/sup 0/F). A comparison of geothermal reservoirs in New York to similar sites now under development in Canada and France has revealed that potential resources in New York State are slightly hotter, though somewhat thicker and less permeable with significantly higher proportions of dissolved constituents.

Pferd, J.W.

1981-06-01T23:59:59.000Z

223

Zuni Mountains, New Mexico as a potential dry hot rock geothermal energy Site  

DOE Green Energy (OSTI)

Many of the criteria for the successful exploitation of energy from dry hot rock are met in the Zuni Mountains, New Mexico. This area falls within a broad region of abnormally high heat flow on the Colorado Plateau. Within this region, a variety of evidence indicates that local ''hot spots'' may be present. These ''hot spots'' are prime targets for dry hot rock exploration. A site-evaluation program utilizing geological, geochemical-geochronological, and geophysical techniques is proposed to delineate the optimal sites for subsequent exploratory drilling.

Laughlin, A.W.; West, F.G.

1975-12-01T23:59:59.000Z

224

Geothermal Handbook  

DOE Green Energy (OSTI)

This handbook is intended to assist the physicist, chemist, engineer, and geologist engaged in discovering and developing geothermal energy resources. This first section contains a glossary of the approximately 500 most frequently occurring geological, physical, and engineering terms, chosen from the geothermal literature. Sections 2 through 8 are fact sheets that discuss such subjects as geothermal gradients, rock classification, and geological time scales. Section 9 contains conversion tables for the physical quantities of interest for energy research in general and for geothermal research in particular.

Leffel, C.S., Jr.; Eisenberg, R.A.

1977-06-01T23:59:59.000Z

225

S-cubed geothermal technology and experience  

DOE Green Energy (OSTI)

Summaries of ten research projects are presented. They include: equations describing various geothermal systems, geohydrological environmental effects of geothermal power production, simulation of linear bench-scale experiments, simulation of fluid-rock interactions in a geothermal basin, geopressured geothermal reservoir simulator, user-oriented geothermal reservoir simulator, geothermal well test analyses, geothermal seismic exploration, high resolution seismic mapping of a geothermal reservoir, experimental evaluation of geothermal well logging cables, and list of publications. (MHR)

Not Available

1976-04-01T23:59:59.000Z

226

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

227

Deep drilling technology for hot crystalline rock  

SciTech Connect

The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

Rowley, J.C.

1984-01-01T23:59:59.000Z

228

Results of fluid-circulation experiments: LASL hot dry rock geothermal project  

DOE Green Energy (OSTI)

The first large-scale field experiment to investigate the extraction of heat from hot dry rock is now in progress on the Jemez Plateau in northern New Mexico. The experimental system consists of two holes about 3 km deep, from each of which hydraulic fractures have been made. The two major fractures appear to be approximately vertical and parallel, and separated by about 9 m of granodiorite through which fluid is transmitted probably along a distributed set of secondary fractures. Experiments to this point have demonstrated that the surface area of each hydraulic fracture is sufficient to accomplish effective heat transfer from the rock, at about 200/sup 0/C, to water circulated through the system; that there is no significant short-circuiting of the water within the fractures; but that the impedance to fluid flow through the rock between the fractures is too high to permit the rate of heat extraction (initially about 10 MWt) desired of the experimental system. An attempt to reduce impedance by leaching with dilute sodium carbonate solution was unsuccessful. Therefore an attempt is now being made to reduce it by re-drilling from near the bottom of one hole in order to produce a simple system geometry in which the two holes are connected directly through a single hydraulic fracture.

Smith, M.C.

1977-01-01T23:59:59.000Z

229

Expectations for a second US Hot Dry Rock Site  

DOE Green Energy (OSTI)

The worlds first hot dry rock (HDR) reservoir was created at Fenton Hill, NM in the late 1970`s. Today, Fenton Hill is the site of the largest, deepest, and hottest HDR reservoir. Over the past two decades, HDR systems have also been developed in a number of other countries. However, HDR reservoirs to date have always been created as part of research and development programs aimed at understanding the fundamentals of HDR technology. The time has come to begin planning the construction of a commercial-scale facility which will show the world that HDR can be a practical source of power. The second domestic HDR facility should demonstrate that commercial production of energy from HDR is feasible at a variety of locations. Day-today operating data should provide the cost figures needed in order to unambiguously design and build future commercial HDR power production plants. Successful construction and operation of the second HDR plant will both supply needed electric power at competitive costs and set the stage for the widespread application of HDR technology both domestically and throughout the world. If preliminary work is begun promptly, it should be possible to develop a fully operational second site by 1997. The Clearlake region of northern California may be an ideal area in which to locate the second HDR site.

Duchane, D.V.

1993-04-01T23:59:59.000Z

230

Expectations for a second US Hot Dry Rock Site  

DOE Green Energy (OSTI)

The worlds first hot dry rock (HDR) reservoir was created at Fenton Hill, NM in the late 1970's. Today, Fenton Hill is the site of the largest, deepest, and hottest HDR reservoir. Over the past two decades, HDR systems have also been developed in a number of other countries. However, HDR reservoirs to date have always been created as part of research and development programs aimed at understanding the fundamentals of HDR technology. The time has come to begin planning the construction of a commercial-scale facility which will show the world that HDR can be a practical source of power. The second domestic HDR facility should demonstrate that commercial production of energy from HDR is feasible at a variety of locations. Day-today operating data should provide the cost figures needed in order to unambiguously design and build future commercial HDR power production plants. Successful construction and operation of the second HDR plant will both supply needed electric power at competitive costs and set the stage for the widespread application of HDR technology both domestically and throughout the world. If preliminary work is begun promptly, it should be possible to develop a fully operational second site by 1997. The Clearlake region of northern California may be an ideal area in which to locate the second HDR site.

Duchane, D.V.

1993-01-01T23:59:59.000Z

231

Geothermal: Sponsored by OSTI -- Laboratory investigation of...  

Office of Scientific and Technical Information (OSTI)

Laboratory investigation of steam adsorption in geothermal reservoir rocks Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic...

232

Rock failure during massive hydraulic stimulation of the Baca location geothermal reservoir  

DOE Green Energy (OSTI)

The analyses of microearthquake signals occurring during hydraulic stimulation provide an estimate of the size and location of the fractures thus produced. Studies of microearthquakes occurring during two large (> 10/sup 3/m/sup 3/) hydraulic stimulations of the hydrothermal reservoir at the Baca Location in the Jemez Mountains of northeastern New Mexico are reported. Both stimulations consisted of water, viscosity enhancer, and proppant. The microearthquake event rate was low but variable throughout most of the treatment. Rock failure as indicated by the distribution of the microearthquakes' foci appeared restricted to a nearly vertical NE striking zone. This orientation is in good agreement with the local earth stresses inferred from geological considerations. The second stimulation which occurred in a neighboring well was similar to the first except for a larger injected volume. The lateral extent of the detected fracture system was 600 m in both stimulations.

Pearson, C.; Keppler, H.; Albright, J.; Potter, R.

1982-01-01T23:59:59.000Z

233

Hot Dry Rock Geothermal Energy Development Program: Annual report, fiscal year 1985  

DOE Green Energy (OSTI)

The primary objective for the Hot Dry Rock Program at the Los Alamos National Laboratory during fiscal year 1985 was to complete the Phase 2 reservoir connection and to begin flow testing the resulting reservoir. The connection was achieved through redrilling one well and additional fracturing operations, and progress was made toward developing a detailed understanding of the fractured region through a variety of reservoir interrogation methods. Other accomplishments during the fiscal year included improvement of the high-temperature, inflatable, open-hole packer used to isolate sections of the uncased wellbore in collaboration with the Baker Corporation and the design and fabrication of a high-temperature borehole acoustic televiewer in a cooperative program with a research institute in West Germany. Progress was also made in techniques for the collection and analysis of microseismic data. Reservoir-engineering activities and geochemical studies, as well as the more routine support activities, continued in FY85. 18 refs., 15 figs.

Brown, D.W.; Franke, P.R.; Smith, M.C.; Wilson, M.G.

1987-01-01T23:59:59.000Z

234

Single-Well Enhanced Geothermal System Front-End Engineering and Design: Optimization of a Renewable Geothermal System for Harvesting Heat from Hot, Dry Rock  

Science Conference Proceedings (OSTI)

In 2009, GTherm and the Thayer School of Engineering at Dartmouth College, under an EPRI Polaris grant, evaluated the potential for a GTherm single-well enhanced geothermal system (SWEGS) and bottom-hole HeatNest to produce enough heat from deep geothermal wells to be an effective alternative for generating electric power. The research focused on the thermodynamic properties of the SWEGS design and the optimal geologic conditions. The results indicated that, given the right conditions, the SWEGS can extr...

2011-08-12T23:59:59.000Z

235

Hot dry rock geothermal energy development program. Annual report, fiscal year 1982  

DOE Green Energy (OSTI)

Emphasis in the Hot Dry Rock Program was on development of methods to produce the hydraulic fractures required to connect the deep, inclined wells of the Phase II system at Fenton Hill. Environmental surveillance, instrument development, laboratory and modeling studies, and other supporting activities were continued. After two unsuccessful attempts to fracture hydraulically through inflatable packers, formation breakdown was produced in an uncased section near the bottom of well EE-2 by pumping water through a cemented-in steel liner. Breakdon occurred at a wellhead pressure of 33.1 MPa and a total of 8539 m/sup 3/ of water was injected. Mapping of source locations of microseismic events indicated opening of an extensive set of planar features dipping about 40/sup 0/W, striking about N20/sup 0/W, and apparently passing beneath the bottom of well EE-3. An attempt was then made to fracture at a higher level where the relative positions of the two wells increased the probability that an inclined fracture would connect them. Repeated failures of drill pipe, tubing, couplings, and packers terminated most pumping experiments prematurely. Important advances were made in thermal protection of downhole instruments, real-time mapping source locations of microseismic signals, modeling of heat and mass transport, and the mechanics of hydraulic fracturing.

Smith, M.C.; Nunz, G.J.; Ponder, G.M. (eds.)

1983-09-01T23:59:59.000Z

236

Hot dry rock geothermal energy development program: Annual report, Fiscal year 1986  

DOE Green Energy (OSTI)

Preparation, execution, and analysis of a 30-day Initial Closed-Loop Flow Test (ICFT) of the Phase II reservoir were the primary objectives of the Hot Dry Rock Program in fiscal year 1986. The ICFT successfully tested the Phase II heat-extraction loop with the injection of 37,000 m/sup 3/ of cold water and production of 23,000 m/sup 3/ of hot water, extracting up to 10 MW/sub t/ when production reached 0.0139 m/sup 3//s at 192/degree/C. By the end of the test, water loss rate has decreased to 26% and a significant portion of the injected water had been recovered, 66% during the test and an additional 20% during subsequent venting. Geochemical, tracer, and seismic analyses suggest reservoir fracture volume was growing throughout the test. A new technique, the ''three-point'' method, was developed to determine locations and orientations of seismically active planes. Fault or joint planes are identified in what superficially appears to be an amorphous microearthquake location set. Five planes were determined when the three-point method was applied to a location data set for the massive hydraulic-fracturing experiment conducted in 1983. 23 refs., 19 figs., 3 tabs.

Dash, Z.V.; Grant, T.; Jones, G.; Murphy, H.D.; Wilson, M.G.

1989-02-01T23:59:59.000Z

237

Monitoring and repairing geothermal casing cement: a case history  

DOE Green Energy (OSTI)

A manmade geothermal reservoir has been created by drilling a deep hole into relatively impermeable hot rocks, creating a large surface area for heat transfer by hydraulic fracturing, then drilling a second hole to intersect the fracture to complete the closed circulation loop. A second generation system, presently being drilled, will entail creating multiple, parallel, vertical fractures between a pair of inclined boreholes. The original completion of injection Hole EE-1, consisting of a conventional high-temperature formulation of Class B portland cement, stabilized with 40% silica sand, did not withstand the cyclic stresses, and rapid deterioration of casing-to-cement and cement-to-formation bonds occurred, which allowed significant flow in the resulting microannulus. The performance history of the casing cement for the existing HDR EE-1 injection well, the subsequent remedial cementing program, the cement bond logs, and the radioactive isotope tracer injections tests, used to monitor the condition of the casing cement is described. (MHR)

Pettitt, R.A.

1980-01-01T23:59:59.000Z

238

Pressure analysis of the hydromechanical fracture behaviour in stimulated tight sedimentary geothermal reservoirs  

E-Print Network (OSTI)

in jointed and layered rocks in geothermal fields.of Volcanology and Geothermal Research 116, 257- 278.fracturing in a sedimentary geothermal reservoir: Results

Wessling, S.

2009-01-01T23:59:59.000Z

239

Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1983  

DOE Green Energy (OSTI)

Emphasis was on hydraulic-fracturing experiments at depths around 3.5 km (11,473 ft) in the two inclined wells of the Phase II system at Fenton Hill, New Mexico; on improved facilities and techniques for mapping the source locations of acoustic signals generated by the fracturing events; on mathematical modeling of the fracture systems produced in these and earlier experiments; and on development of a family of slimline high-temperature downhole instruments that can be used within or through relatively small-diameter pressure tubing. Hydraulic fracturing at a vertical depth of approximately 3500 m (11,500 ft) in well EE-2, the deeper well, produced fractures that, in acoustic maps, appear to occupy a large, roughly ellipsoidal volume whose major axis is directed to the north of the other well, EE-3. Hydraulic fracturing from EE-3 at a similar depth produced another set of fractures that appear to be approximately parallel to and centered about 180 m (600 ft) east of the earlier set. Subsequent fluid injections reduced the distance between the two sets, but no hydraulic connection between them was established. Modeling the silica concentrations of fluid circulated through the earlier Phase I system indicates that this type of permeation also contributes significantly to heat extraction during system operation. The precision and accuracy of locating the sources of acoustic signals detected during hydraulic-fracturing operations have been increased by improvements in equipment, drilling of another deep hole for geophone emplacement, and additional station calibrations. Analysis of the signals has also been improved and broadened. Development of slimline downhole instruments has included a detonator tool, a geophone package, and final design of a high-temperature borehole acoustic televiewer. A crosswell acoustic transceiver has also been developed for investigating rock type and structure between wellbores. 32 refs., 35 figs.

Smith, M.C.; Nunz, G.J.; Wilson, M.G. (comps.)

1985-02-01T23:59:59.000Z

240

Research on the physical properties of geothermal reservoir rock. Quarterly report, March 1978  

DOE Green Energy (OSTI)

A laboratory study of the P-wave velocity and electric resistivity was undertaken on Cenozoic volcanic rocks collected from the Columbia Plateau volcanic basin (C) and the Jemez volcanic field (NM). Electric resistivities of cylindrical samples saturated with 0.1 N NaCl solution were measured using a four electrode system and a 1.0 KHz frequency source. Seismic P-wave velocities were calculated from measured transit time of mechanical pulses generated and received by piezoelectric transducers. The electric resistivity of water saturated samples decreased as temperature increased to the boiling point of water. Above boiling point, resistivity increased rapidly as water changed to vapor. Resistivity is most sensitive to temperature changes between 35/sup 0/C to 65/sup 0/C. Resistivities of samples increased with decrease in saturation. The effect is more pronounced at lower temperatures. No dependence of seismic P-wave velocities on temperature was observed. Both resistivity and P-wave velocity depend on porosity. The increase in porosity results in a decrease in the resistivity formation factor. Assuming a relationship FF = a phi/sup -m/ (Archie's Law), where FF and phi represent the formation factor and porosity respectively, least squares indicate a variation of a between .5 and 2.0. The value of m varied between 1.2 to 1.7. Seismic velocities (v) decrease as porosity increases. Porosity appears to be linearly related to log v. Several samples show anomalous relationship between porosity and resistivity. Most of these samples also show anomalous seismic velocities. The majority of these samples have coarse grains or large pores. The effect of saturation on P-wave velocity is small and can be observed in few samples. In these samples, seismic velocities decrease with increase in saturation at high saturation (100% to 85%), and show a reverse relationship at low saturation. Between 15% and 85% saturation in velocity is constant.

Keller, G.V.; Grose, L.T.; Pickett, G.R.

1978-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "rock hdr geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hot rocks  

Science Conference Proceedings (OSTI)

Four kilometers down below the orange earth of Australias Cooper Basin lies some of the hottest nonvolcanic rock in the worldrock that the geothermal industry had never seriously considered using to make electricity. But next month Geodynamics, an ...

S. Upson

2009-01-01T23:59:59.000Z

242

Seismological investigation of crack formation in hydraulic rock fracturing experiments and in natural geothermal environments. Progress report, September 1, 1979-August 31, 1980  

DOE Green Energy (OSTI)

Progress is reported in the following research areas: a synthesis of seismic experiments at the Fenton Hill Hot-Dry-Rock System; attenuation of high-frequency shear waves in the lithosphere; a new kinematic source model for deep volcanic tremors; ground motion in the near-field of a fluid-driven crack and its interpretation in the study of shallow volcanic tremor; low-velocity bodies under geothermal areas; and operation of event recorders in Mt. St. Helens and Newberry Peak with preliminary results from them. (MHR)

Aki, K.

1980-09-01T23:59:59.000Z

243

Preliminary measurements of the thermal conductivity of rocks from LASL geothermal test holes GT-1 and GT-2  

DOE Green Energy (OSTI)

The conductivities on a number of dry rocks have been measured in an air environment. These experimental values are probably about 10 percent lower than the in situ values. Initial attempts to prepare ''wet'' rock samples (rocks saturated with water) have so far resulted in only ''damp'' rocks. Considerable effort will be required to characterize the crack system in ''solid'' rocks and to predict the probable conductivity values for in situ conditions.

Sibbitt, W.L.

1975-12-01T23:59:59.000Z

244

Review and problem definition of water/rock reactions associated with injection of spent geothermal fluids from a geothermal plant into aquifers  

DOE Green Energy (OSTI)

Among the technical problems faced by the burgeoning geothermal industry is the disposal of spent fluids from power plants. Except in unusual circumstances the normal practice, especially in the USA, is to pump these spent fluids into injection wells to prevent contamination of surface waters, and possibly in some cases, to reduce pressure drawdown in the producing aquifers. This report is a survey of experience in geothermal injection, emphasizing geochemical problems, and a discussion of approaches to their possible mitigation. The extraction of enthalpy from geothermal fluid in power plants may cause solutions to be strongly supersaturated in various dissolved components such as silica, carbonates, sulfates, and sulfides. Injection of such supersaturated solutions into disposal wells has the potential to cause scaling in the well bores and plugging of the aquifers, leading to loss of injectivity. Various aspects of the geochemistry of geothermal brines and their potential for mineral formation are discussed, drawing upon a literature survey. Experience of brine treatment and handling, and the economics of mineral extraction are also addressed in this report. Finally suggestions are made on future needs for possible experimental, field and theoretical studies to avoid or control mineral scaling.

Elders, W.A.

1986-07-01T23:59:59.000Z

245

Acord 1-26 hot, dry well, Roosevelt Hot Springs hot dry rock prospect, Utah  

DOE Green Energy (OSTI)

The Acord 1-26 well is a hot, dry well peripheral to the Roosevelt Hot Springs known geothermal resource area (KGRA) in southwestern Utah. The bottom-hole temperature in this 3854-m-deep well is 230/sup 0/C, and the thermal gradient is 54/sup 0/C/km. The basal 685 m, comprised of biotite monzonite and quartz schist and gneiss, is a likely hot, dry rock (HDR) prospect. The hole was drilled in a structural low within the Milford Valley graben and is separated from the Roosevelt KGRA to the east by the Opal Mound Fault and other basin faults. An interpretation of seismic data approximates the subsurface structure around the well using the lithology in the Acord 1-26 well. The hole was drilled with a minimum of difficulty, and casing was set to 2411 m. From drilling and geophysical logs, it is deduced that the subsurface blocks of crystalline rock in the vicinity of the Acord 1-26 well are tight, dry, shallow, impermeable, and very hot. A hydraulic fracture test of the crystalline rocks below 3170 m is recommended. Various downhole tools and techniques could be tested in promising HDR regimes within the Acord 1-26 well.

Shannon, S.S. Jr.; Pettitt, R.; Rowley, J.; Goff, F.; Mathews, M.; Jacobson, J.J.

1983-08-01T23:59:59.000Z

246

Property:HostRockLithology | Open Energy Information  

Open Energy Info (EERE)

HostRockLithology HostRockLithology Jump to: navigation, search Property Name HostRockLithology Property Type String Description Condensed description of the lithology of the reservoir rock. This is a property of type Page. Subproperties This property has the following 14 subproperties: B Beowawe Hot Springs Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area D Desert Peak Geothermal Area G Geysers Geothermal Area H Heber Geothermal Area L Lightning Dock Geothermal Area R Raft River Geothermal Area Roosevelt Hot Springs Geothermal Area S Salton Sea Geothermal Area Steamboat Springs Geothermal Area S cont. Stillwater Geothermal Area V Valles Caldera - Sulphur Springs Geothermal Area W Wabuska Hot Springs Geothermal Area Pages using the property "HostRockLithology"

247

Geothermal: Sponsored by OSTI -- Seismic Technology Adapted to...  

Office of Scientific and Technical Information (OSTI)

Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report Geothermal Technologies Legacy Collection HelpFAQ...

248

Scientific progress on the Fenton Hill HDR project since 1983  

DOE Green Energy (OSTI)

The modern HDR concept originated at the Los Alamos National Laboratory and was first demonstrated at Fenton Hill, NM. Experience gained during the development of the deeper HDR reservoir at Fenton Hill clearly showed that HDR reservoirs are formed by opening pre-existing, but sealed, multiply connected joint sets. Subsequent flow testing indicated that sustained operation of HDR systems under steady state conditions is feasible. The most significant remaining HDR issues are related to economics and locational flexibility. Additional field test sites are needed to advance the understanding of HDR technology so that the vast potential of this resource can be economically realized around the world.

Brown, D.W.; Duchane, D.V.

1998-02-01T23:59:59.000Z

249

Session: Hard Rock Penetration  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

1992-01-01T23:59:59.000Z

250

Crustal Rock Fracture Mechanics for Design and Control of Artificial Subsurface Cracks in Geothermal Energy Extraction Engineering ({Gamma}-Project)  

DOE Green Energy (OSTI)

Recently a significant role of artificial and/or natural cracks in the geothermal reservoir has been demonstrated in the literatures (Abe, H., et al., 1983, Nielson, D.L. and Hullen, J.B., 1983), where the cracks behave as fluid paths and/or heat exchanging surfaces. Until now, however, there are several problems such as a design procedure of hydraulic fracturing, and a quantitative estimate of fluid and heat transfer for reservoir design. In order to develop a design methodology of geothermal reservoir cracks, a special distinguished research project, named as ''{Lambda}-Project'', started at Tohoku University (5 years project, 1983-1988). In this project a basic fracture mechanics model of geothermal reservoir cracks is being demonstrated and its validation is being discussed both theoretically and experimentally. This paper descibes an outline of ''{Lambda}-Project''.

Abe, Hiroyuki; Takahashi, Hideaki

1983-12-15T23:59:59.000Z

251

Hot dry rock venture risks investigation:  

DOE Green Energy (OSTI)

This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

Not Available

1988-01-01T23:59:59.000Z

252

Property:HostRockAge | Open Energy Information  

Open Energy Info (EERE)

HostRockAge HostRockAge Jump to: navigation, search Property Name HostRockAge Property Type String Description Describes the age of the reservoir rock by epoch, era, or period per available data. This is a property of type Page. Subproperties This property has the following 10 subproperties: B Beowawe Hot Springs Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area D Desert Peak Geothermal Area G Geysers Geothermal Area R Raft River Geothermal Area Roosevelt Hot Springs Geothermal Area S Salton Sea Geothermal Area Steamboat Springs Geothermal Area W Wabuska Hot Springs Geothermal Area Pages using the property "HostRockAge" Showing 11 pages using this property. A Amedee Geothermal Area + Mesozoic + B Blue Mountain Geothermal Area + Triassic + C Coso Geothermal Area + Mesozoic +

253

Numerical Simulation of Injectivity Effects of Mineral Scaling and Clay Swelling in a Fractured Geothermal Reservoir  

DOE Green Energy (OSTI)

A major concern in the development of hot dry rock (HDR) and hot fractured rock (HFR) reservoirs is achieving and maintaining adequate injectivity, while avoiding the development of preferential short-circuiting flow paths such as those caused by thermally-induced stress cracking. Past analyses of HDR and HFR reservoirs have tended to focus primarily on the coupling between hydrology (flow), heat transfer, and rock mechanics. Recent studies suggest that rock-fluid interactions and associated mineral dissolution and precipitation effects could have a major impact on the long-term performance of HFR reservoirs. The present paper uses recent European studies as a starting point to explore chemically-induced effects of fluid circulation in HFR systems. We examine ways in which the chemical composition of reinjected waters can be modified to improve reservoir performance by maintaining or even enhancing injectivity. Chemical manipulations considered here include pH modification and dilution with fresh water. We performed coupled thermo-hydrologic-chemical simulations in which the fractured medium was represented by a one-dimensional MINC model (multiple interacting continua), using the non-isothermal multi-phase reactive geochemical transport code TOUGHREACT. Results indicate that modifying the injection water chemistry can enhance mineral dissolution and reduce clay swelling. Chemical interactions between rocks and fluids will change a HFR reservoir over time, with some changes favorable and others not. A detailed, quantitative understanding of processes and mechanisms can suggest chemical methods for reservoir management, which may be employed to improve the performance of the geothermal system.

Xu, Tianfu; Pruess, Karsten

2004-05-10T23:59:59.000Z

254

Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Geothermal Technologies Geothermal Technologies (Redirected from Geothermal Conversion Technologies) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating in more than one way. Regardless of the energy conversion, geothermal energy requires heat(in the form of rock), water, and flow; and every resources will have different values for each. Some resources have very high temperature rock with high porosity (allowing for flow) but little to know water (see Enhanced Geothermal Systems (EGS). Some resources have plenty of water, great flow, but the temperatures are not very high which are commonly used for direct use. Any combination of those 3 things can be found in nature, and for that reason there are different classifications of geothermal

255

Evidence for the existence of a stable, highly fluidized-pressurized region of deep, jointed crystalline rock from Fenton Hill hot dry rock test data  

DOE Green Energy (OSTI)

It has been demonstrated several times at Los Alamos National Laboratory`s Fenton Hill hot dry rock (HDR) geothermal test site, that large volumes of naturally jointed Precambrian crystalline rock can be stably maintained at pressures considerably above the least principal earth stress in the surrounding rock mass. In particular, for the deeper, larger, and tighter of the two HDR reservoirs tested at this site in the Jemez Mountains of north-central New Mexico, testing was carried out for a cumulative period of 11 months without evidence of fracture extension at the boundaries of the pressure-stimulated region, even though a very high reservoir inlet circulating pressure of 27.3 MPa (3960 psi) above hydrostatic was maintained throughout the testing, considerably in excess of the least principal stress in the surrounding rock mass of about 10 MPa above hydrostatic at a depth of 3500 m. The author reviews and summarizes information concerning the earth stresses at depth and the test data relative to the containment of pressurized fluid, particularly the data showing the declining rate of water loss and the absence of microseismicity--the two principal indicators of a stable, pressurized reservoir region. The author then provides a coherent and concise evaluation of this and other evidence supporting his assertion that one can indeed maintain large volumes of jointed rock at pressures considerably in excess of the least principal earth stress. In addition, a discussion is presented concerning the initial state of stress at depth beneath Fenton Hill and then possible changes to the stress state resulting from the very large volumes of injected high-pressure water and the accompanying shear displacements--and shear dilation--associated with these pressurizations.

Brown, D.W.

1999-06-01T23:59:59.000Z

256

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs utilize a variety of techniques to identify geothermal reservoirs as well

257

Hot Dry Rock at Fenton Hill, USA  

DOE Green Energy (OSTI)

The Hot Dry Rock Geothermal Energy Project began in the early 1970's with the objective of developing a technology to make economically available the large ubiquitous thermal energy of the upper earth crust. The program, operated by the Los Alamos National Laboratory, has been funded by the Department of Energy (and its predecessors) and for a few years with participation by West Germany and Japan. An energy reservoir was accessed by drilling and hydraulically fracturing in the Precambrian basement rock at Fenton Hill, outside the Valles Caldera of north-central New Mexico. Water was circulated through the reservoir (Phase 1, 1978--1980) producing up to 5 MWt at 132/degree/C. A second (Phase 2) reservoir has been established with a deeper pair of holes and an initial flow test completed producing about 10 MWt at 190/degree/C. These accomplishments have been supported and paralleled by developments in drilling, well completion and instrumentation hardware. Acoustic or microseismic fracture mapping and geochemistry studies in addition to hydraulic and thermal data contribute to reservoir analyses. Studies of some of the estimated 430,000 quads of HDR resources in the United States have been made with special attention focused on sites most advantageous for early development. 17 refs., 3 figs., 1 tab.

Hendron, R.H.

1988-01-01T23:59:59.000Z

258

The US Hot Dry Rock project  

DOE Green Energy (OSTI)

The Hot Dry Rock geothermal energy project began in the early 1970's with the objective of developing a technology to make economically available the large ubiquitous thermal energy of the upper earth crust. The program has been funded by the Department of Energy (and its predecessors) and for a few years with participation by West Germany and Japan. An energy reservoir was accessed by drilling and hydraulically fracturing in the precambrian basement rock outside the Valles Caldera of north-central New Mexico. Water was circulated through the reservoir (Phase I, 1978-1980) producing up to 5 MWt at 132/sup 0/C. A second (Phase II) reservoir has been established with a deeper pair of holes and an initial flow test completed producing about 10 MWt at 190/sup 0/C. These accomplishments have been supported and paralleled by developments in drilling, well completion and instrumentation hardware. Acoustic or microseismic fracture mapping and geochemistry studies in addition to hydraulic and thermal data contribute to reservoir analyses. Studies of some of the estimated 430,000 quads of HDR resources in the United States have been made with special attention focused on sites most advantageous for early development.

Hendron, R.H.

1987-01-01T23:59:59.000Z

259

Determination of in-situ stress to predict direction of hydraulically created fractures for development of hot dry rock geothermal reservoir in Japan  

DOE Green Energy (OSTI)

It is very important to know the underground stress state to design and complete a Hot Dry Rock geothermal reservoir because the direction of the hydraulic fractures depends on the earth stress. The hydraulic mini fracturing technique was introduced to determine the in-situ stress state without assuming the borehole axis to be parallel to one of the principal stresses. Small scale hydraulic fracturing tests were conducted to verify this technique at an underground power plant and microseismic activities were monitored for fracture mapping. The direction of the fracture propagation was estimated from the in-situ stress state and compared with the fracture plane mapped by microseismic activities. 2 refs., 7 figs., 1 tab.

Kuriyagawa, Michio; Kobayashi, Hideo; Matsunaga, Isao; Kosugi, Masayuki; Yamaguchi, Tsutomu; Sasaki, Shunji; Hori, Yoshinao

1985-01-01T23:59:59.000Z

260

Hot dry rock heat mining: An alternative energy progress report  

DOE Green Energy (OSTI)

Mining Heat from the hot dry rock (HDR) resource that lies beneath the earth's crust may provide an almost inexhaustible supply of energy for mankind with minimal environmental effects. In the heat mining process, water is pumped down an injection well into a mass of hydraulically fractured hot rock. As the water flows under high pressure through the opened rock joints, it becomes heated by the rock. It is returned to the surface through a production well (or wells) located some distance from the injector where its thermal energy is recovered by a heat exchanger. The same water is then recirculated through the system to extract more thermal energy. In this closed-loop process, nothing but heat is released to the environment during normal operation. The technical feasibility of HDR heat mining already has been proven by field testing. A long-term flow test is scheduled to begin in 1991 at the world's largest HDR heat mine in New Mexico, USA, to demonstrate that energy can be produced from HDR on a continuous basis over an extended time period. Significant HDR programs are also underway in several other countries. The paper describes the HDR resource, the heat mining concept, environmental characteristics, economics, developments at Los Alamos to date, and HDR development outside the US. 15 refs., 5 figs., 2 tabs.

Duchane, D.V.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock hdr geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Stress control of seismicity patterns observed during hydraulic fracturing experiments at the Fenton Hill hot dry rock geothermal energy site, New Mexico  

DOE Green Energy (OSTI)

Seismicity accompanying hydraulic injections into granitic rock is often diffuse rather than falling along a single plane. This diffuse zone of seismicity cannot be attributed to systematic errors in locations of the events. It has often been asserted that seismicity occurs along preexisting joints in the rock that are favorably aligned with the stress field so that slip can occur along them when effective stress is reduced by increasing pore fluid pressure. A new scheme for determining orientations and locations of planes along which the microearthquakes occurred was recently developed. The basic assumption of the method, called the three point method, is that many of the events fall along well defined planes; these planes are often difficult to identify visually in the data because planes of many orientations are present. The method has been applied to four hydraulic fracturing experiments conducted at Fenton Hill as part of a hot dry rock geothermal energy project. While multiple planes are found for each experiment; one plane is common to all experiments. The ratio of shear to normal stress along planes of all orientations is calculated using a best estimate of the current stress state at Fenton Hill. The plane common to all experiments has the highest ratio of shear to normal stress acting along it, so it is the plane most likely to slip. The other planes found by the three point method all have orientations with respect to current principal stresses that are favorable for slip to occur along preexisting planes of weakness. These results are consistent with the assertion that the rock contains pre-existing joints which slip when the effective stress is reduced by the increased pore fluid pressure accompanying the hydraulic injection. Microearthquakes occur along those planes that are favorably aligned with respect to the current stress field.

Fehler, M.C.

1987-04-13T23:59:59.000Z

262

Massive hydraulic fracture of Fenton Hill HDR Well EE-3  

DOE Green Energy (OSTI)

Subsequent to a 5.6 million gallon massive hydraulic fracturing (MHF) experiment in Fenton Hill Hot Dry Rock (HDR) Well EE-2, a 2 million gallon MHF was planned for Well EE-3. Although hydraulic communication between wells EE-2 and EE-3 was not established during the initial MHF, a large reservoir was created around EE-2 which seemed to be in proximity with EE-3. The objective of this 2nd MHF was two-fold, to test the reservoir and seismic characteristics of the EE-3 openhole region from 11,390 to 11,770 ft and to drive fractures into the fractured region created earlier by the EE-2 MHF experiment. This paper discusses well repairs to prepare EE-3 for the MHF, the pumping operations, and injection parameters and briefly summarizes seismic results. 2 refs., 6 figs.

Dash, Z.V.; Dreesen, D.S.; Walter, F.; House, L.

1985-01-01T23:59:59.000Z

263

Geothermal drilling technology update  

DOE Green Energy (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

264

GUIDELINES MANUAL FOR SURFACE MONITORING OF GEOTHERMAL AREAS  

E-Print Network (OSTI)

1976, "Blowout o f a Geothermal Well", California Geology,in Rocks from Two Geothermal Areas'' , -- P1 anetary ScienceMonitoring Ground Movement in Geothermal Areas", Hydraul ic

Til, C. J. Van

2012-01-01T23:59:59.000Z

265

A Phase-Partitioning Model for CO2Brine Mixtures at Elevated Temperatures and Pressures: Application to CO2-Enhanced Geothermal Systems  

E-Print Network (OSTI)

D.W. : A hot dry rock geothermal energy concept utilizingtwenty-?fth workshop on geothermal reservoir engineering,the development of enhanced geothermal systems? In: Paper

Spycher, Nicolas; Pruess, Karsten

2010-01-01T23:59:59.000Z

266

Commission decision on the Department of Water Resources' Application for Certification for the Bottle Rock Geothermal Project  

SciTech Connect

The Application for Certification for the construction of a 55 MW geothermal power plant and related facilities in Lake County was approved subject to terms identified in the Final Decision. The following are covered: findings on compliance with statutory site-certification requirements; final environmental impact report; procedural steps; evidentiary bases; need, environmental resources; public health and safety; plant and site safety and reliability; socioeconomic, land use, and cultural concerns, and transmission tap line. (MHR)

1980-11-01T23:59:59.000Z

267

Commission decision on the Department of Water Resources' Application for Certification for the Bottle Rock Geothermal Project  

DOE Green Energy (OSTI)

The Application for Certification for the construction of a 55 MW geothermal power plant and related facilities in Lake County was approved subject to terms identified in the Final Decision. The following are covered: findings on compliance with statutory site-certification requirements; final environmental impact report; procedural steps; evidentiary bases; need, environmental resources; public health and safety; plant and site safety and reliability; socioeconomic, land use, and cultural concerns, and transmission tap line. (MHR)

Not Available

1980-11-01T23:59:59.000Z

268

Geothermal energy program summary  

DOE Green Energy (OSTI)

This document reviews Geothermal Energy Technology and the steps necessary to place it into service. Specific topics covered are: four types of geothermal resources; putting the resource to work; power generation; FY 1989 accomplishments; hard rock penetration; conversion technology; and geopressured brine research. 16 figs. (FSD)

Not Available

1990-01-01T23:59:59.000Z

269

Geothermal energy  

SciTech Connect

Dry hot rock in the Earth's crust represents the largest and most broadly distributed reservoir of usable energy accessible to man. The engineering equipment and methods required to extract and use this energy appear to exist and are now being investigated actively at LASL. At least for deep systems in relatively impermeable rock, not close to active faults, the extraction of energy frtom dry geothermal resertvoirs should involve no significant environmental hazards. The principal environmental effects of such energy systems will be those associated with the surface facilities that use the geothermal heat; these will be visual, in land use, and in the thermal-pollution potential of low-temperature power plants. The energy extraction system itself should be clean; safe, unobtrusive, and economical. (auth)

Smith, M.C.

1973-01-01T23:59:59.000Z

270

Energy from hot dry rock  

DOE Green Energy (OSTI)

The Hot Dry Rock Geothermal Energy Program is described. The system, operation, results, development program, environmental implications, resource, economics, and future plans are discussed. (MHR)

Hendron, R.H.

1979-01-01T23:59:59.000Z

271

Real-time and post-frac' 3-D analysis of hydraulic fracture treatments in geothermal reservoirs  

SciTech Connect

Economic power production from Hot Dry Rock (HDR) requires the establishment of an efficient circulation system between wellbores in reservoir rock with extremely low matrix permeability. Hydraulic fracturing is employed to establish the necessary circulation system. Hydraulic fracturing has also been performed to increase production from hydrothermal reservoirs by enhancing the communication with the reservoir's natural fracture system. Optimal implementation of these hydraulic fracturing applications, as with any engineering application, requires the use of credible physical models and the reconciliation of the physical models with treatment data gathered in the field. Analysis of the collected data has shown that 2-D models and 'conventional' 3-D models of the hydraulic fracturing process apply very poorly to hydraulic fracturing in geothermal reservoirs. Engineering decisions based on these more 'conventional' fracture modeling techniques lead to serious errors in predicting the performance of hydraulic fracture treatments. These errors can lead to inappropriate fracture treatment design as well as grave errors in well placement for hydrothermal reservoirs or HDR reservoirs. This paper outlines the reasons why conventional modeling approaches fall short, and what types of physical models are needed to credibly estimate created hydraulic fracture geometry. The methodology of analyzing actual measured fracture treatment data and matching the observed net fracturing pressure (in realtime as well as after the treatment) is demonstrated at two separate field sites. Results from an extensive Acoustic Emission (AE) fracture diagnostic survey are also presented for the first case study aS an independent measure of the actual created hydraulic fracture geometry.

Wright, C.A.; Tanigawa, J.J.; Hyodo, Masami; Takasugi, Shinji

1994-01-20T23:59:59.000Z

272

Petrography of late cenozoic sediments, Raft River geothermal field, Idaho  

Open Energy Info (EERE)

of late cenozoic sediments, Raft River geothermal field, Idaho of late cenozoic sediments, Raft River geothermal field, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Petrography of late cenozoic sediments, Raft River geothermal field, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; RAFT RIVER VALLEY; GEOTHERMAL FIELDS; PETROGRAPHY; BIOTITE; CALCITE; CLAYS; LIMESTONE; PYRITE; SANDSTONES; SEDIMENTS; SHALES; VOLCANIC ROCKS; ZEOLITES; ALKALINE EARTH METAL COMPOUNDS; CALCIUM CARBONATES; CALCIUM COMPOUNDS; CARBON COMPOUNDS; CARBONATE ROCKS; CARBONATES; CHALCOGENIDES; IDAHO; IGNEOUS ROCKS; INORGANIC ION EXCHANGERS; ION EXCHANGE MATERIALS; IRON COMPOUNDS; IRON SULFIDES; MICA; MINERALS; NORTH AMERICA; ORES; OXYGEN COMPOUNDS; PACIFIC NORTHWEST REGION; PYRITES; ROCKS; SEDIMENTARY ROCKS; SULFIDES; SULFUR COMPOUNDS;

273

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration Techniques) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

274

Core Analysis At Fenton Hill Hdr Geothermal Area (Laughlin, Et...  

Open Energy Info (EERE)

Activity Date Usefulness useful DOE-funding Unknown Notes A few cores (see Table I), cuttings collected at 1.5- or 3-m intervals, and random samples from a "junk basket" run...

275

Cuttings Analysis At Fenton Hill Hdr Geothermal Area (Laughlin...  

Open Energy Info (EERE)

Activity Date Usefulness useful DOE-funding Unknown Notes A few cores (see Table I), cuttings collected at 1.5- or 3-m intervals, and random samples from a "junk basket" run...

276

Analysis Of Macroscopic Fractures In Granite In The Hdr Geothermal...  

Open Energy Info (EERE)

nearly parallel to the maximum horizontal stress. In this favorable situation, hydraulic injections will tend both to reactivate natural fractures at low pressures, and to...

277

Property:CapRockLithology | Open Energy Information  

Open Energy Info (EERE)

CapRockLithology CapRockLithology Jump to: navigation, search Property Name CapRockLithology Property Type String Description Condensed description of the lithology of the cap rock. Subproperties This property has the following 6 subproperties: B Beowawe Hot Springs Geothermal Area Brady Hot Springs Geothermal Area D Desert Peak Geothermal Area E East Mesa Geothermal Area H Heber Geothermal Area S Salton Sea Geothermal Area Pages using the property "CapRockLithology" Showing 6 pages using this property. A Amedee Geothermal Area + volcanic; lacustrine sediments + B Blue Mountain Geothermal Area + Hydrothermal alteration layer + G Geysers Geothermal Area + Hydrothermal alteration layer + K Kilauea East Rift Geothermal Area + Overlapping a'a' and pahoehoe flows + L Long Valley Caldera Geothermal Area + Metasedimentary Landslide Block; Hydrothermal Alteration Layer +

278

Geothermal Energy Program Overview: Fiscal Year 1991  

DOE Green Energy (OSTI)

In FY 1990-1991, the Geothermal Energy Program made significant strides in hydrothermal, geopressured brine, hot dry rock, and magma research, continuing a 20-year tradition of advances in geothermal technology.

Not Available

1991-12-01T23:59:59.000Z

279

Summary - Hot Dry Rock R&D Strategies and Applications  

DOE Green Energy (OSTI)

In geothermal energy technology, the hydrothermal systems rely on volcanic hot rocks being fortuitously co-located with an adequate supply of natural ground water, usually at some considerable depth within the earth. This represents essentially two accidents in the same place, and the occurrence is relatively rare. Yellowstone Park and the desert valley of southern California are the most noteworthy US. examples. Since the heat is the energy needed, if we could just get the water down to it and back. Well, that's what is being done with the hot dry rock program. A well is drilled down to where there is adequate heat in the rocks. The well is then pressurized until the rock fractures creating what amounts to a reservoir full of hot, shattered rock. Finally, a well is drilled into the reservoir and water is pumped in one well, heated by the rock, and taken out through the other well at useful temperatures and pressures. We are getting ready to run significant long-term flow tests at the Fenton Hill Hot Dry Rock site west of Los Alamos, New Mexico. We expect the operational information to provide the data to forecast the energy life of the wells as a production facility. This kind of resource is much more common than regular geothermal resources. Robert H. Hendron described the Long Term Flow Test and reservoir studies for which the project is preparing. A shortfall of available funding has slowed preparations, delaying the start of that test. The test is planning to gather data for more definitive reservoir modeling with energy availability or reservoir lifetime of primary interest. Other interests include geochemistry and tracer studies, microseismic response, water requirements and flow impedance which relates directly to the pumping power required. Progress has been made in modeling studies, chemically reactive tracer techniques, and in improvements in acoustic or microseismic event analysis. Donald W. Brown discussed reservoir modeling as it relates to production management of the HDR well. For wells which are fracture dominated rather than matrix-permeability controlled, a knowledge of the pressure-dependent permeability of the interconnected system of natural joints (or pre-existing fractures is critical to long-term power production from the wells) through optimized pressure management. It was mentioned that a knowledge of the pressure-dependent joint permeability could aid in designing more appropriate secondary recovery strategies in petroleum reservoirs, or reinjection I procedures of geothermal reservoirs. Dr. Bruce A. Robinson discussed the development of fluid flow and transport models for simulation of HDR geothermal reservoirs. These models are also expected to provide accurate predictions of long-term behavior and help in the development of strategies for reservoir improvement and operation. Two approaches were discussed. The discrete fracture approach is based on a random fracture network subject to prescribed statistical properties of the fracture set. It is used to simulate steady state fluid flow and solute transport. The other approach used the continuum approximation. This type of model is appropriate when the reservoir consists of many interconnected fractures, as is the case at Fenton Hill.

Tennyson, George P..

1989-03-21T23:59:59.000Z

280

Evaluation of the second hot dry rock geothermal energy reservoir: results of Phase I, Run Segment 5  

DOE Green Energy (OSTI)

The results of a long-term (286 day) flow test of the second hot dry rock reservoir at the Fenton Hill field site are presented. This second reservoir was created by fracturing an interval of granitic rock located at a depth of 2.93 km (9620 ft) in the same wellbore pair used in the creation of the first, smaller reservoir. The new fracture system has a vertical extent of at least 320 m (1050 ft), suggesting that the combined heat-transfer area of the old and new fracture systems is much greater than that of the old system. The virgin rock temperature at the bottom of the deeper interval was 197/sup 0/C (386/sup 0/F). Downhole measurements of the water temperature at the reservoir outlet, as well as temperatures inferred from geothermometry, showed that the thermal drawdown of the reservoir was about 8/sup 0/C, and preliminary estimates indicate that the minimum effective heat-transfer area of the new reservoir is 45,000 m/sup 2/ (480,000 ft/sup 2/), which is six times larger than the first reservoir.

Zyvoloski, G.A.; Aamodt, R.L.; Aguilar, R.G.

1981-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock hdr geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

HDR (Heissdampfreaktor) Phase 2 vibrational experiments  

Science Conference Proceedings (OSTI)

As part of the second phase of vibrational/earthquake investigations at the HDR (Heissdampfreaktor) Test Facility in Kahl/Main, FRG, high-level shaker tests (SHAG) were performed during June and July 1986. The purpose of these experiments is to investigate full-scale structural response, soil-structure interaction, and piping and equipment response under strong excitation conditions. While global safety considerations imposed load limitations, the HDR soil/structure system was nevertheless tested to its capacity limits. The performance of up to seven different multiple support pipe hanger configurations (ranging from flexible to stiff systems) was evaluated in the tests. Data obtained in the tests serve to validate analysis methods.

Malcher, L.; Kot, C.A.

1986-10-01T23:59:59.000Z

282

Seismological investigation of crack formation in hydraulic rock fracturing experiments and in natural geothermal environments. Progress report, September 1, 1977--August 31, 1978  

DOE Green Energy (OSTI)

New seismological methods were developed for determining the structure of a geothermal energy source region by the use of data from both active and passive experiments. Technical papers were published on four topics, namely: a field experiment at Kilauea Iki, source models of volcanic tremors, microearthquake source spectra, and a numerical study of elastic wave diffraction by fluid-filled cracks. In addition, papers were submitted for publication on a statistical synthesis of source mechanism of seismic events in Kilauea Iki and the observation of a temporal variation in the attenuation of earthquake coda in central California. The following subjects were worked on: (1) interpretation of seismic data from the LASL Hot Dry Rock system; (2) analyisis of volcanic tremor data from the U.S.G.S. Hawaiian seismic network; (3) frequency dependence and three-dimensional distribution of seismic attenuation in central Japan; (4) experimental study of seismic scattering by a penny-shaped crack; (5) development of a microprocessor system for the treatment of the data from digital event recorders.

Aki, K.

1978-09-01T23:59:59.000Z

283

Development of Exploration Methods for Engineered Geothermal...  

Open Energy Info (EERE)

for Engineered Geothermal Systems (EGS). Awardees (Company Institution) AltaRock Energy, Inc. Awardee Website http:www.altarockenergy.com Partner 1 University of Nevada at...

284

Hot dry rock fracture propagation and reservoir characterization  

DOE Green Energy (OSTI)

North America's largest hydraulic fracturing opeations have been conducted at Fenton hill, New mexico to creae hot dry rock geothermal reservoirs. Microearthquakes induced by these fracturing operations were measured with geophones. The large volume of rock over which the microearthquakes were distributed indicates a mechanism of hydraulic stimulation which is at odds with conventional fracturing theory, which predicts failure along a plane which is perpendicular to the least compressive earth stress. Shear slippage along pre-existing joints in the rock is more easily induced than conventional tensile failure, particularly when the difference between minimum and maximum earth stresses is large and the pre-existing joints are oriented at angles between 30 and 60)degree) to the principal earth stresses, and a low viscosity fluid like water is injected. Shear slippage results in local redistribution of stresses, which allows a branching, or dendritic, stimulation pattern to evolve, in agreement with the patterns of microearthquake locations. Field testing of HDR reservoirs at the Fenton Hill site shows that significant reservoir growth occurred as energy was extracted. Tracer, microseismic, and geochemical measurements provided the primary quantitative evidence for the increases in accessible reservoir volume and fractured rock surface area. These temporal increases indicate that augmentation of reservoir heat production capacity in hot dry rock system occurred. For future reservoir testing, Los Alamos is developing tracer techniques using reactive chemicals to track thermal fronts. Recent studies have focused on the kinetics of hydrolysis of derivatives of bromobenzene, which can be used in reservoirs as hot as 275)degree)C.

Murphy, H.; Fehler, M.; Robinson, B.; Tester, J.; Potter, R.; Birdsell, S.

1988-01-01T23:59:59.000Z

285

Sizing of a hot dry rock reservoir from a hydraulic fracturing experiment  

DOE Green Energy (OSTI)

Hot dry rock (HDR) reservoirs do not lend themselves to the standard methods of reservoir sizing developed in the petroleum industry such as the buildup/drawdown test. In a HDR reservoir the reservoir is created by the injection of fluid. This process of hydraulic fracturing of the reservoir rock usually involves injection of a large volume (5 million gallons) at high rates (40BPM). A methodology is presented for sizing the HDR reservoir created during the hydraulic fracturing process. The reservoir created during a recent fracturing experiment is sized using the techniques presented. This reservoir is then investigated for commercial potential by simulation of long term power production. 5 refs., 7 figs.

Zyvoloski, G.

1985-01-01T23:59:59.000Z

286

DOE geothermal R&D program focused on facilitating long-term, cost-effective private resource development  

SciTech Connect

Analyses conducted in support of the National Energy Strategy projected that as much as 22,000 megawatts of cost-effective, moderate-temperature geothermal energy are available to the U.S. over the long-term, or to the year 2030. Thus, the primary hydrothermal technology research goal of the Department's Geothermal Division is to facilitate the ability of the private sector to exploit competitively this large source of energy up to that capacity level or greater. The primary mechanism for implementing this goal is an R&D core program cost-shared with industry focused on major cost-sensitive technology areas: exploration technology, reservoir engineering and management, and drilling. The NES analyses also indicated that electricity generated with energy derived from hot dry rock could be a geographically dispersed, logical follow-on to hydrothermal electricity in the longer term. In order to demonstrate whether energy at useful temperatures can be extracted over extended periods at competitive energy prices, a long-term flow test of an experimental HDR system will be conducted. This paper describes DOE's current participation in R&D activities leading to the development of ''cutting edge'' technology that will serve the geothermal industry's interest well into the next century.

Mock, John E.

1992-01-01T23:59:59.000Z

287

Analysis of cause and mechanism for injection-induced seismicity at the Geysers Geothermal Field, California  

E-Print Network (OSTI)

rock from the Geysers Geothermal Field, California. Int. J.strain at The Geysers geothermal field. Ph.D. dissertation,Subsidence at The Geysers geothermal field, N. California

Rutqvist, Jonny; Oldenburg, Curtis

2007-01-01T23:59:59.000Z

288

Geothermal Technologies Office: Geothermal Maps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

289

Geotechnical studies of geothermal reservoirs | Open Energy Information  

Open Energy Info (EERE)

Geotechnical studies of geothermal reservoirs Geotechnical studies of geothermal reservoirs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geotechnical studies of geothermal reservoirs Details Activities (7) Areas (7) Regions (0) Abstract: It is proposed to delineate the important factors in the geothermal environment that will affect drilling. The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. The geologic environment and reservoir characteristics of several geothermal areas were studied, and drill bits were obtained from most of the areas. The geothermal areas studied are: (1) Geysers, California, (2) Imperial Valley, California, (3) Roosevelt Hot

290

Candidate sites for future hot-dry-rock development in the United States  

DOE Green Energy (OSTI)

Generalized geologic and other data are tabulated for 24 potential hot dry rock (HDR) sites in the contiguous United States. The data show that HDR resources occur in many geologic and tectonic settings. Potential reservoir rocks at each prospect are described and each system is cateogrized accoridng to inferred heat sources. The Fenton Hill area in New Mexico is discussed in detail because this region may be considered ideal for HDR development. Three other prospectively valuable localities are described: The Geysers-Clear lake region in California, the Roosevelt Hot Springs area in Utah, and the White Mountains region in New Hampshire. These areas are singled out to illustrate the roles of significantly different geology and geophysics, reservoir rocks, and reservoir heat contents in possible HDR developments.

Goff, F.; Decker, E.R.

1982-12-01T23:59:59.000Z

291

Geothermal potential of West-Central New Mexico from geochemical and thermal gradient data  

DOE Green Energy (OSTI)

To study the low temperature and Hot Dry Rock (HDR) geothermal potential of west-central New Mexico, 46 water samples were collected and geothermal gradient measurements were made in 29 wells. Water chemistry data indicate that all the samples collected are meteoric waters. High temperatures of samples taken from wells between Gallup and Tohatchi indicate these wells may derive water from a warm aquifer below the depth of the wells. The chemistries of the samples farther south on the Zuni Indian reservation suggest these waters are not circulating below 600 m of the surface. Geothermometry calculations support the conclusion that the waters sampled are meteoric. The geothermometry also indicates that the deep reservoir between Gallup and Tohatchi may be greater than 60/sup 0/C. Thermal gradient data indicate an area of high gradient on the Zuni Indian Reservation with a measured maximum of 67/sup 0/C/km between 181 m and 284 m. This high probably is not hydrologically controlled. The maximum gradients in the study area are 76/sup 0/C/km and 138/sup 0/C/km, measured just east of Springerville, Arizona. These gradients are undoubtedly controlled by circulating water, possibly heated by a magmatic source at depth and circulating back to the surface.

Levitte, D.; Gambill, D.T.

1980-11-01T23:59:59.000Z

292

The design and construction of a hot dry rock pilot plant  

SciTech Connect

The geothermal energy program at the Los Alamos National Laboratory is directed toward demonstrating the potential of the hot dry rock (HDR) technology as an alternate energy source. Since the inception of the program, scientists and engineers have perfected drilling and fracturing techniques to create underground reservoirs for the purpose of tapping the potential heat energy from the hot rock in the earth. One of the achievements to date has been the creation of a reservoir at the Laboratory's test site at Fenton Hill, New Mexico. This reservoir, located at a depth of 12,000 feet below the surface of the earth, has an estimated fluid capacity of one million gallons within the large volume of fractured rock. To evaluate the thermal power potential of this reservoir, preparations are currently underway to conduct a test which will entail the circulation of fluid through the reservoir by the injection of water at high pressures. A major part of the preparations involves the building of a demonstration pilot plant. The process concept poses a number of unique technical challenges with regard to the design and construction of the equipment and facilities. This paper reviews the system design and operating features of this plant. 3 refs., 4 figs.

Ponden, R.F.

1991-01-01T23:59:59.000Z

293

Geothermal Energy Program overview  

SciTech Connect

The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program.

1991-12-01T23:59:59.000Z

294

Geotechnical studies of geothermal reservoirs  

DOE Green Energy (OSTI)

It is proposed to delineate the important factors in the geothermal environment that will affect drilling. The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. The geologic environment and reservoir characteristics of several geothermal areas were studied, and drill bits were obtained from most of the areas. The geothermal areas studied are: (1) Geysers, California, (2) Imperial Valley, California, (3) Roosevelt Hot Springs, Utah, (4) Bacca Ranch, Valle Grande, New Mexico, (5) Jemez Caldera, New Mexico, (6) Raft River, Idaho, and (7) Marysville, Montona. (MHR)

Pratt, H.R.; Simonson, E.R.

1976-01-01T23:59:59.000Z

295

Fracturing operations in a dry geothermal reservoir  

DOE Green Energy (OSTI)

Fracturing operations at the Fenton Hill, New Mexico, Hot Dry Rock (HDR) Geothermal Test Site initiated unique developments necessary to solve problems caused by an extremely harsh downhole environment. Two deep wells were drilled to approximately 15,000 ft (4.6 km); formation temperatures are in excess of 600/sup 0/F (315/sup 0/C). The wells were drilled during 1979 to 1981, inclined at 35 degrees, one above the other, and directionally drilled in an azimuthal direction orthogonal to the least principal in-situ crustal stress field. Hydraulic fracturing experiments to connect the two wells have used openhole packers, hydraulic jet notching of the borehole wall, cemented-in insolation liners and casing packers. Problems were encountered with hole drag, high fracture gradients, H/sub 2/S in vent back fluids, stress corrosion cracking of tubulars, and the complex nature of three-dimensional fracture growth that requires very large volumes of injected water. Two fractured zones have been formed by hydraulic fracturing and defined by close-in, borehole deployed, microseismic detectors. Initial operations were focused in the injection wellbore near total depth, where water injection treatments totalling 51,000 bbls (8100 m/sup 3/) were accomplished by pumping through a cemented-in 4-1/2 in. liner/PBR assembly. Retrievable casing packers were used to inject 26,000 bbls (4100 m/sup 3/) in the upper section of the open hole. Surface injection pressures (ISIP) varied from 4000 to 5900 psi (27 to 41 MPa) and the fracture gradient ranged from 0.7 to 0.96 psi/ft.

Rowley, J.C.; Pettitt, R.A.; Hendron, R.H.; Sinclair, A.R.; Nicholson, R.W.

1983-01-01T23:59:59.000Z

296

Enhanced Geothermal Systems (EGS) R&D Program, Status Report: Foreign Research on Enhanced Geothermal Systems  

DOE Green Energy (OSTI)

This report reviews enhanced geothermal systems (EGS) research outside the United States. The term ''enhanced geothermal systems'' refers to the use of advanced technology to extract heat energy from underground in areas with higher than average heat flow but where the natural permeability or fluid content is limited. EGS covers the spectrum of geothermal resources from low permeability hydrothermal to hot dry rock.

McLarty, Lynn; Entingh, Daniel

2000-09-29T23:59:59.000Z

297

Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Print PDF Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating in more than one way. Regardless of the energy conversion, geothermal energy requires heat(in the form of rock), water, and flow; and every resources will have different values for each. Some resources have very high temperature rock with high porosity (allowing for flow) but little to know water (see Enhanced Geothermal Systems (EGS). Some resources have plenty of water, great flow, but the temperatures are not very high which are commonly used for direct use. Any combination of those 3 things can be found in nature, and for that reason there are different classifications of geothermal energy. It is possible for a resource to be technically capable of both electricity production and heating purposes, but the basic classifications

298

Geothermal program overview: Fiscal years 1993--1994  

DOE Green Energy (OSTI)

The DOE Geothermal Energy Program is involved in three main areas of research: finding and tapping the resource; power generation; and direct use of geothermal energy. This publication summarizes research accomplishments for FY 1993 and 1994 for the following: geophysical and geochemical technologies; slimhole drilling for exploration; resource assessment; lost circulation control; rock penetration mechanics; instrumentation; Geothermal Drilling Organization; reservoir analysis; brine injection; hot dry rock; The Geysers; Geothermal Technology Organization; heat cycle research; advanced heat rejection; materials development; and advanced brine chemistry.

NONE

1995-11-01T23:59:59.000Z

299

San Emido Geothermal Energy North Project | Open Energy Information  

Open Energy Info (EERE)

San Emido Geothermal Energy North Project San Emido Geothermal Energy North Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: San Emido Geothermal Energy North Project EA at San Emidio Desert Geothermal Area for Geothermal/Power Plant, Geothermal/Well Field, {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant USG Nevada LLC Geothermal Area San Emidio Desert Geothermal Area Project Location Nevada Project Phase Geothermal/Power Plant, Geothermal/Well Field Techniques Production Wells Comments USG Nevada submitted Utilization POU on 7/25/2013 Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office BLM Black Rock

300

Advanced Geothermal Turbodrill  

DOE Green Energy (OSTI)

Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

W. C. Maurer

2000-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock hdr geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advanced geothermal technologies  

DOE Green Energy (OSTI)

Research and development in advanced technologies for geothermal energy production continue to increase the energy production options for the Nation. The high-risk investment over the past few years by the US Department of Energy in geopressured, hot dry rock, and magma energy resources is producing new means to lower production costs and to take advantage of these resources. The Nation has far larger and more regionally extensive geothermal resources than heretofore realized. At the end of a short 30-day closed-loop flow test, the manmade hot dry rock reservoir at Fenton Hill, New Mexico, was producing 10 MW thermal - and still climbing - proving the technical feasibility of this new technology. The scientific feasibility of magma energy extraction has been demonstrated, and new field tests to evaluate this technology are planned. Analysis and field tests confirm the viability of geopressured-geothermal energy and the prospect that many dry-hole or depleted petroleum wells can be turned into producing geopressured-geothermal wells. Technological advances achieved through hot dry rock, magma, geopressured, and other geothermal research are making these resources and conventional hydrothermal resources more competitive. Noteworthy among these technological advances are techniques in computer simulation of geothermal reservoirs, new means for well stimulation, new high-temperature logging tools and packers, new hard-rock penetration techniques, and new methods for mapping fracture flow paths across large underground areas in reservoirs. In addition, many of these same technological advances can be applied by the petroleum industry to help lower production costs in domestic oil and gas fields. 5 refs., 4 figs.

Whetten, J.T.; Murphy, H.D.; Hanold, R.J.; Myers, C.W.; Dunn, J.C.

1988-01-01T23:59:59.000Z

302

Geothermal: About  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - About Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

303

Geothermal: Publications  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Publications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

304

Geothermal Energy  

U.S. Energy Information Administration (EIA)

The word geothermal comes from the Greek words geo (earth) and therme (heat). So, geothermal energy is heat from within the Earth.

305

Category:Relict Geothermal Features | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Relict Geothermal Features Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Category:Relict Geothermal Features Geothermalpower.jpg Looking for the Relict Geothermal Features page? For detailed information on Relict Geothermal Features, click here. Pages in category "Relict Geothermal Features" The following 13 pages are in this category, out of 13 total. A Alunite Argillic-Advanced Argillic Alteration C Carbonate Deposition H Hydrothermal Alteration Hydrothermal Deposition H cont. Hydrothermally Altered Rock Hydrothermally Deposited Rock L Leach Capping

306

Geothermal technology development at Sandia  

DOE Green Energy (OSTI)

Geothermal technology development at Sandia consists of work in two major project areas - Hard Rock Penetration and Magma Energy Extraction. The Hard Rock Penetration Program is directed at reducing drilling costs for geothermal wells. Current activities are focused in three areas: borehole mechanics, rock penetration mechanics, and industry cost-shared research. The Magma Energy Extraction Program is investigating the engineering feasibility of utilizing crustal magma bodies as a source of energy. Work is divided into four major areas: geophysics, geochemistry/materials, drilling, and energy extraction.

Dunn, J.C.

1987-04-01T23:59:59.000Z

307

Basic research needed for the development of geothermal energy  

DOE Green Energy (OSTI)

Basic research needed to facilitate development of geothermal energy is identified. An attempt has been made to make the report representative of the ideas of productive workers in the field. The present state of knowledge of geothermal energy is presented and then specific recommendations for further research, with status and priorities, are listed. Discussion is limited to a small number of applicable concepts, namely: origin of geothermal flux; transport of geothermal energy; geothermal reservoirs; rock-water interactions, and geophysical and geochemical exploration.

Aamodt, R.L.; Riecker, R.E.

1980-10-01T23:59:59.000Z

308

Seismic Technology Adapted to Analyzing and Developing Geothermal...  

Open Energy Info (EERE)

Last modified on July 22, 2011. Project Title Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Project Type ...

309

Geological and geophysical analysis of Coso Geothermal Exploration...  

Open Energy Info (EERE)

Only weak hydrothermal alteration was noted in these rocks. Drillhole surveys and drilling rate data indicate that the geothermal system is structurally controlled and that the...

310

Geothermal well log interpretation midterm report  

DOE Green Energy (OSTI)

Reservoir types are defined according to fluid phase and temperature, lithology, geologic province, pore geometry, and salinity and fluid chemistry. Improvements are needed in lithology and porosity definition, fracture detection, and thermal evaluation for more accurate interpretation. Further efforts are directed toward improving diagnostic techniques for relating rock characteristics and log response, developing petrophysical models for geothermal systems, and developing thermal evaluation techniques. The Geothermal Well Log Interpretation study and report has concentrated only on hydrothermal geothermal reservoirs. Other geothermal reservoirs (hot dry rock, geopressured, etc.) are not considered.

Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

1979-02-01T23:59:59.000Z

311

Strategic plan for the geothermal energy program  

SciTech Connect

Geothermal energy (natural heat in the Earth`s crust) represents a truly enormous amount of energy. The heat content of domestic geothermal resources is estimated to be 70,000,000 quads, equivalent to a 750,000-year supply of energy for the entire Nation at current rates of consumption. World geothermal resources (exclusive of resources under the oceans) may be as much as 20 times larger than those of the US. While industry has focused on hydrothermal resources (those containing hot water and/or steam), the long-term future of geothermal energy lies in developing technology to enable use of the full range of geothermal resources. In the foreseeable future, heat may be extracted directly from very hot rocks or from molten rocks, if suitable technology can be developed. The US Department of Energy`s Office of Geothermal Technologies (OGT) endorses a vision of the future in which geothermal energy will be the preferred alternative to polluting energy sources. The mission of the Program is to work in partnership with US industry to establish geothermal energy as a sustainable, environmentally sound, economically competitive contributor to the US and world energy supply. In executing its mission and achieving its long-term vision for geothermal energy, the Program has identified five strategic goals: electric power generation; direct use applications and geothermal heat pumps; international geothermal development; science and technology; and future geothermal resources. This report discusses the objectives of these five goals.

1998-06-01T23:59:59.000Z

312

California/Geothermal | Open Energy Information  

Open Energy Info (EERE)

California/Geothermal California/Geothermal < California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF California Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in California Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Alum Geothermal Project Ram Power Silver Peak, Nevada 64 MW64,000 kW 64,000,000 W 64,000,000,000 mW 0.064 GW 6.4e-5 TW Phase II - Resource Exploration and Confirmation Alum Geothermal Area Walker-Lane Transition Zone Geothermal Region Bald Mountain Geothermal Project Oski Energy LLC Susanville, California 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW Phase II - Resource Exploration and Confirmation Black Rock I Geothermal Project CalEnergy Generation Phase III - Permitting and Initial Development North Shore Mono Lake Geothermal Area Walker-Lane Transition Zone Geothermal Region

313

Geothermal Turbine  

SciTech Connect

The first geothermal power generation in the world was started at Larderello, Italy in 1904. Then, New Zealand succeeded in the geothermal power generating country. These developments were then followed by the United States, Mexico, Japan and the Soviet Union, and at present, about 25 countries are utilizing geothermal power, or investigating geothermal resources.

1979-05-01T23:59:59.000Z

314

Some approaches to rock mass hydrofracture theory  

Science Conference Proceedings (OSTI)

A new engineering method has been developed at the Leningrad Mining Institute for defining hot dry rock hydrofracturing parameters. It reflects the structural features of a real jointed rock mass, its gravity-tectonic components of the stress tensor and volume character of deformations, taking into account the inertial effects of hydrodynamics in the non-Darcy zone of radial fluid flow near the injection well, and conversion of the heat energy extracted from hot rock by circulating water partly into filtration-flow additional pressure. Results of calculations are compared to field experiments at Fenton Hill, NM, and are used for the first HDR circulation systems in the USSR.

Dyadkin, Yuri, D.

1991-01-01T23:59:59.000Z

315

Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment  

DOE Green Energy (OSTI)

This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum production systems, stripping towers for mineral production processes, nuclear waste storage, CO2 sequestration strategies, global warming). Although funding decreases cut short completion of several research activities, we made significant progress on these abbreviated projects.

Nancy Moller Weare

2006-07-25T23:59:59.000Z

316

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith &...  

Open Energy Info (EERE)

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-...

317

Geothermal programs at Lawrence Livermore National Laboratory  

DOE Green Energy (OSTI)

Lawrence Livermore National Laboratory has a number of geothermal programs supported through two offices in the Department of Energy: the Office of Renewable Technologies, Geothermal Technologies Division, and the Office of Basic Energy Sciences, Division of Engineering, Mathematics and Geosciences. Within these programs, we are carrying out research in injection monitoring, optical instrumentation for geothermal wells, seismic imaging methods, geophysical and drilling investigations of young volcanic systems in California, and fundamental studies of the rock and mineral properties.

Kasameyer, P.W.; Younker, L.W.

1987-07-10T23:59:59.000Z

318

Stanford geothermal program. Final report, July 1990--June 1996  

DOE Green Energy (OSTI)

This report discusses the following: (1) improving models of vapor-dominated geothermal fields: the effects of adsorption; (2) adsorption characteristics of rocks from vapor-dominated geothermal reservoir at the Geysers, CA; (3) optimizing reinjection strategy at Palinpinon, Philippines based on chloride data; (4) optimization of water injection into vapor-dominated geothermal reservoirs; and (5) steam-water relative permeability.

NONE

1998-03-01T23:59:59.000Z

319

Rock Sampling | Open Energy Information  

Open Energy Info (EERE)

Rock Sampling Rock Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Sampling Details Activities (13) Areas (13) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Rock samples are used to define lithology. Field and lab analyses can be used to measure the chemical and isotopic constituents of rock samples. Stratigraphic/Structural: Provides information about the time and environment which formed a particular geologic unit. Microscopic rock textures can be used to estimate the history of stress and strain, and/or faulting. Hydrological: Isotope geochemistry can reveal fluid circulation of a geothermal system.

320

Geological and geophysical studies of a geothermal area in the southern  

Open Energy Info (EERE)

Geological and geophysical studies of a geothermal area in the southern Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: areal geology; Cassia County Idaho; Cenozoic; clastic rocks; clasts; composition; conglomerate; economic geology; electrical methods; evolution; exploration; faults; folds; geophysical methods; geophysical surveys; geothermal energy; gravity methods; Idaho; igneous rocks; lithostratigraphy; magnetic methods; pyroclastics; Raft River Valley; resources; sedimentary rocks; seismic methods; stratigraphy; structural geology; structure; surveys; tectonics; United States; volcanic rocks

Note: This page contains sample records for the topic "rock hdr geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) | Open  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) Exploration Activity Details Location Roosevelt Hot Springs Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical

322

Property:Geothermal/Partner6Website | Open Energy Information  

Open Energy Info (EERE)

Partner6Website Partner6Website Jump to: navigation, search Property Name Geothermal/Partner6Website Property Type URL Description Partner 6 Website (URL) Pages using the property "Geothermal/Partner6Website" Showing 4 pages using this property. C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://www.sensortran.com/ + I Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Geothermal Project + http://www.pitt.edu/ + S Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Geothermal Project + http://www.sercel.com/ + T The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration Geothermal Project + http://www.icdp-online.org/contenido/icdp/front_content.php +

323

Energy Basics: Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Technologies Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from the Earth. Geothermal...

324

Geothermal Reservoir Dynamics - TOUGHREACT  

E-Print Network (OSTI)

Swelling in a Fractured Geothermal Reservoir, presented atTHC) Modeling Based on Geothermal Field Data, Geothermics,and Silica Scaling in Geothermal Production-Injection Wells

2005-01-01T23:59:59.000Z

325

Assessing geothermal energy potential in upstate New York. Final report  

DOE Green Energy (OSTI)

The potential of geothermal energy for future electric power generation in New York State is evaluated using estimates of temperatures of geothermal reservoir rocks. Bottom hole temperatures from over 2000 oil and gas wells in the region were integrated into subsurface maps of the temperatures for specific geothermal reservoirs. The Theresa/Potsdam formation provides the best potential for extraction of high volumes of geothermal fluids. The evaluation of the Theresa/Potsdam geothermal reservoir in upstate New York suggests that an area 30 miles east of Elmira, New York has the highest temperatures in the reservoir rock. The Theresa/Potsdam reservoir rock should have temperatures about 136 {degrees}C and may have as much as 450 feet of porosity in excess of 8%. Estimates of the volumes of geothermal fluids that can be extracted are provided and environmental considerations for production from a geothermal well is discussed.

Hodge, D.S. [SUNY, Buffalo, NY (United States)

1996-08-01T23:59:59.000Z

326

Geothermal Energy  

DOE Green Energy (OSTI)

Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.

1996-02-01T23:59:59.000Z

327

Geothermal guidebook  

DOE Green Energy (OSTI)

The guidebook contains an overview, a description of the geothermal resource, statutes and regulations, and legislative policy concerns. (MHR)

Not Available

1981-06-01T23:59:59.000Z

328

Geothermal energy  

DOE Green Energy (OSTI)

The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

White, D.E.

1965-01-01T23:59:59.000Z

329

Cuttings Analysis At Marysville Mountain Geothermal Area (1976) | Open  

Open Energy Info (EERE)

Geothermal Area (1976) Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Marysville Mountain Geothermal Area (1976) Exploration Activity Details Location Marysville Mountain Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Retrieved from "http://en.openei.org/w/index.php?title=Cuttings_Analysis_At_Marysville_Mountain_Geothermal_Area_(1976)&oldid=473911"

330

Cuttings Analysis At Bacca Ranch Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

Bacca Ranch Geothermal Area (1976) Bacca Ranch Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Bacca Ranch Geothermal Area (1976) Exploration Activity Details Location Bacca Ranch Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Retrieved from "http://en.openei.org/w/index.php?title=Cuttings_Analysis_At_Bacca_Ranch_Geothermal_Area_(1976)&oldid=473907"

331

Cuttings Analysis At Jemez Mountain Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area (1976) Jemez Mountain Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Jemez Mountain Geothermal Area (1976) Exploration Activity Details Location Jemez Mountain Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Retrieved from "http://en.openei.org/w/index.php?title=Cuttings_Analysis_At_Jemez_Mountain_Geothermal_Area_(1976)&oldid=473910

332

Idaho Geothermal Commercialization Program. Idaho geothermal handbook  

DOE Green Energy (OSTI)

The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

Hammer, G.D.; Esposito, L.; Montgomery, M.

1980-03-01T23:59:59.000Z

333

Application Of Electrical Resistivity And Gravimetry In Deep Geothermal  

Open Energy Info (EERE)

Resistivity And Gravimetry In Deep Geothermal Resistivity And Gravimetry In Deep Geothermal Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Application Of Electrical Resistivity And Gravimetry In Deep Geothermal Exploration Details Activities (0) Areas (0) Regions (0) Abstract: The electrical resistivity method has been proven applicable to geothermal exploration because of the direct relationship between fluid and rock temperatures on the one hand electrical conductivity on the other. The problem of exploitation of a surface technique, such as resistivity, to the determination of geothermal gradients or 'hot spots' is complicated by the other geological parameters which affect resistivity: porosity, fluid salinity, cementation factor and clay content. However, by rational

334

Core Analysis At Dunes Geothermal Area (1976) | Open Energy Information  

Open Energy Info (EERE)

Dunes Geothermal Area (1976) Dunes Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Dunes Geothermal Area (1976) Exploration Activity Details Location Dunes Geothermal Area Exploration Technique Core Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Fracture analysis to determine if sealing or open fractures exist Notes Core samples show diagenesis superimposed on episodic fracturing and fracture sealing. The minerals that fill fractures show significant temporal variations. Fracture sealing and low fracture porosity imply that only the most recently formed fractures are open to fluids. References Michael L. Batzle; Gene Simmons (1 January 1976) Microfractures in rocks from two geothermal areas

335

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy...

336

Geothermal: Sponsored by OSTI -- Applications of Geothermally...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels Geothermal Technologies...

337

Hot-dry-rock energy: review of environmental aspects  

DOE Green Energy (OSTI)

The potential environmental and socioeconomic impacts of the production of energy contained in hot dry rock (HDR) is surveyed here. In general, careful siting and timing and routine control measures should be adequate to prevent significant environmental harm; sites of particular ecological or visual and recreational value, however, may require more extensive (and more expensive) precautions such as using multiwell pads to reduce land disturbance and dry or wet and dry cooling towers to reduce or eliminate the consumptive use of water. The most important uncertainty among the environmental concerns is the seismic response of HDR formations to short-duration fluid injections at pressures above fracture thresholds; continued monitoring at HDR development sites is necessary. The direct socioeconomic impacts of HDR development should be relatively minor, owing to its capital-intensive nature. Of greater potential importance are the indirect jobs resulting from such development, which could cause significant demographic (and thus fiscal and social) impacts in sparsely populated regions. However, such indirect growth is not expected to begin until a large, stable HDR industry is established in a region, and thus its impacts are expected to be permanent rather than transient.

O'Banion, K.

1981-10-13T23:59:59.000Z

338

Enhanced Geothermal Systems  

DOE Green Energy (OSTI)

Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation/dissolution, as well as the variation in fracture aperture and pressure. Also, a three-dimensional model of injection/extraction has been developed to consider the impact poro- and thermoelastic stresses on fracture slip and injection pressure. These investigations shed light on the processes involved in the observed phenomenon of injection pressure variation (e.g., in Coso), and allow the assessment of the potential of thermal and chemical stimulation strategies.

Ahmad Ghassemi

2009-10-01T23:59:59.000Z

339

Microearthquakes induced during hydraulic fracturing at the Fenton Hill HDR site: the 1982 experiments  

DOE Green Energy (OSTI)

The on-site real-time processing of microearthquake signals that occur during massive hydraulic fracturing provides a notion of the location and growth of the fracture system being created. This enables quick decisions to be made in regard to the ongoing operations. The analytical results and impact of the hypocenter mapping during the 1982 fracturing experiments in the Fenton Hill Phase II Hot Dry Rock geothermal reservoir are reported.

Keppler, H.; Pearson, C.F.; Potter, R.M.; Albright, J.N.

1983-01-01T23:59:59.000Z

340

Geothermal Energy Contract List: Fiscal Year 1990  

DOE Green Energy (OSTI)

The Geothermal Division of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The Geothermal Energy R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. The program is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. The Geothermal Energy Contract List, Fiscal Year 1990 is a tabulation of geothermal R D contracts that were begun, ongoing, or completed during FY 1990 (October 1, 1989 through September 30, 1990). The R D activities are performed by national laboratories or industrial, academic, and nonprofit research institutions. The contract list is organized in accordance with the Geothermal Division R D work breakdown structure. The structure hierarchy consists of Resource Category (hydrothermal, geopressured-geothermal, hot dry rock, and magma energy), Project (hard rock penetration, reservoir technology, etc.), and Task (lost circulation control, rock penetration mechanics, etc.). For each contract, the contractor, the FY 1990 funding, and a brief description of the milestones planned for FY 1991 are provided.

Not Available

1991-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock hdr geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Preliminary investigation of two areas in New York State in terms of possible potential for hot dry rock geothermal energy. [Adirondack Mountains and Catskill Mountains  

DOE Green Energy (OSTI)

Two areas in New York State were studied in terms of possible long range potential for geothermal energy: the Adirondack Mountains which are undergoing contemporary doming, and an anomalous circular feature centered on Panther Mountain in the Catskill Mountains. The Adirondack Mountains constitute an anomalously large, domical uplift on the Appalachian foreland. The domical configuration of the area undergoing uplift, combined with subsidence at the northeastern perimeter of the dome, argues for a geothermal rather than glacioisostatic origin. A contemporary hot spot near the crust-mantle boundary is proposed as the mechanism of doming, based on analogy with uplifts of similar dimensions elsewhere in the world, some of which have associated Tertiary volcanics. The lack of thermal springs in the area, or high heat flow in drill holes up to 370 m deep, indicates that the front of the inferred thermal pulse must be at some depth greater than 1 km. From isopach maps by Rickard (1969, 1973), it is clear that the present Adirondack dome did not come into existence until sometime after Late Devonian time. Strata younger than this are not present to provide further time stratigraphic refinement of this lower limit. However, the consequent radial drainage pattern in the Adirondacks suggests that the dome is a relatively young tectonic feature. Using arguments based on fixed hot spots in central Africa, and the movement of North American plate, Kevin Burke (Appendix I) suggests that the uplift may be less than 4 m.y. old.The other area of interest, the Panther Mountain circular feature in the Catskill Mountains, was studied using photogeology, gravity and magnetic profiling, gravity modeling, conventional field methods, and local shallow seismic refraction profiling.

Isachsen, Y.W.

1978-09-27T23:59:59.000Z

342

Isotopic Analysis- Rock | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Rock Isotopic Analysis- Rock Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotopic Analysis- Rock Details Activities (13) Areas (11) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Water rock interaction Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Isotopic Analysis- Rock: Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.

343

Northern Rockies Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Northern Rockies Geothermal Region Northern Rockies Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Northern Rockies Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Map: {{{Name}}} Province is situated in northern Idaho and western Montana and includes folded mountains, fault-bounded uplifts, and volcanics formed during middle Cretaceous to late Eocene mountain period. The region is structtually cojmplex with faulting and folding asociated with eastward thrust faulting. Western Montana and northwestern Wyoming contain large areas of Tertiary volcanic rocks, including smaller localized Quaternary silicic volcanic rocks. Replace Citation[1] References ↑ "Replace Citation" Geothermal Region Data State(s) Idaho, Montana Area 97,538 km²97,538,000,000 m²

344

Geothermal Literature Review At Coso Geothermal Area (1987) | Open Energy  

Open Energy Info (EERE)

7) 7) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1987 Usefulness not indicated DOE-funding Unknown Exploration Basis Compare multiple theories of the structural control of the geothermal system Notes The geothermal system appears to be associated with at least one dominant north-south-trending feature which extends several miles through the east-central portion of the Coso volcanic field. The identified producing fractures occur in zones which range from 10 - 100s of feet in extent, separated by regions of essentially unfractured rock of similar composition. Wells in the Devil's Kitchen area have encountered fluids in excess of 4500F and flow rates of 1 million lb/hr at depths less than 4000

345

Geothermal br Resource br Area Geothermal br Resource br Area...  

Open Energy Info (EERE)

Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane...

346

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

347

Geothermal Technologies Office: Geothermal Electricity Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

348

Geothermal Technologies Office: Enhanced Geothermal Systems Technologi...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

349

Geothermal Technologies Office: Enhanced Geothermal Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

350

Isotopic Analysis Fluid At Coso Geothermal Area (1997) | Open Energy  

Open Energy Info (EERE)

Fluid At Coso Geothermal Area (1997) Fluid At Coso Geothermal Area (1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Coso Geothermal Area (1997) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1997 Usefulness not indicated DOE-funding Unknown Exploration Basis Identify the source of chlorine Notes The 36Cl/Cl values for several geothermal water samples and reservoir host rock samples have been measured. The results suggest that the thermal waters could be connate waters derived from sedimentary formations, presumably underlying and adjacent top the granitic rocks, which have recently migrated into the host rocks. Alternatively, most of the chlorine but not the water, may have recently input into the system from magmatic

351

1995 verification flow testing of the HDR reservoir at Fenton Hill, New Mexico  

Science Conference Proceedings (OSTI)

Recent flow testing of the Fenton Hill HDR reservoir has demonstrated that engineered geothermal systems can be shut-in for extended periods of d= with apparently no adverse effects. However, when this particular reservoir at Venton Hill was shut-in for 2 years in a pressurized condition, natural convection within the open-jointed reservoir region appears to have leveled out the preexisting temperature gradient so that the gradient has now approached a condition more typical of liquid-dominated hydrothermal reservoirs which air invariably almost isothermal due to natural convection. As a result of the sudden flow impedance reduction that led to an almost 50% increase in Production flow new the end of the Second Phase of the LTFR in May 1993, we were uncertain as to the state of the reservoir after being shut-in for 2 years. The flow performance observed during the current testing was found to be intermediate between that at-the end of the Second Phase of the LTFT and that following, the subsequent sudden flow increase, implying that whatever caused the sudden reduction in impedance in the first place is probably somehow associated with the cooldown of the reservoir near the injection interval, since temperature recovery at the surfaces of the surrounding open joints is the most obvious phenomenon expected to occur over time within the reservoir.

Brown, D.

1995-01-01T23:59:59.000Z

352

Geothermal development plan: Yuma County  

DOE Green Energy (OSTI)

The Yuma County Area Development Plan evaluated the county-wide market potential for utilizing geothermal energy. The study identified four potential geothermal resource areas with temperatures less than 90/sup 0/C (194/sup 0/F), and in addition, two areas are inferred to contain geothermal resources with intermediate (90/sup 0/C to 150/sup 0/C, 194/sup 0/F to 300/sup 0/F) temperature potential. The resource areas are isolated, although one resource area is located near Yuma, Arizona. One resource site is inferred to contain a hot dry rock resource. Anticipated population growth in the county is expected to be 2 percent per year over the next 40 years. The primary employment sector is agriculture, though some light industry is located in the county. Water supplies are found to be adequate to support future growth without advese affect on agriculture. Six firms were found in Yuma County which may be able to utilize geothermal energy for process heat needs. In addition, several agricultural processors were found, concentrated in citrus processing and livestock raising. Geothermal energy utilization projections suggest that by the year 2000, geothermal energy may economically provide the energy equivalent of 53,000 barrels of oil per year to the industrial sector if developed privately. Geothermal utilization projections increase to 132,000 barrels of oil per year by 2000 if a municipal utility developed the resource.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

353

Geothermal energy  

SciTech Connect

The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

White, D.E.

1965-01-01T23:59:59.000Z

354

Geothermal Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resource Basics Resource Basics Geothermal Resource Basics August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are located in the west, where the geothermal resource base is concentrated. Current drilling technology limits the development of geothermal resources to relatively shallow water- or steam-filled reservoirs, most of which are found in the western part of the United States. But researchers are developing new technologies for capturing the heat in deeper, "dry" rocks, which would support drilling almost anywhere. Geothermal Resources Map This map shows the distribution of geothermal resources across the United States. If you have trouble accessing this information because of a

355

Geothermal Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Geothermal Energy: A Glance Back and a Leap Forward http://energy.gov/eere/articles/geothermal-energy-glance-back-and-leap-forward geothermal-energy-glance-back-and-leap-forward" class="title-link"> Geothermal Energy: A Glance Back and a Leap Forward

356

Geothermal News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System http://energy.gov/articles/nevada-deploys-first-us-commercial-grid-connected-enhanced-geothermal-system geothermal-system" class="title-link">Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System

357

Experiment-Based Model for the Chemical Interactions between Geothermal  

Open Energy Info (EERE)

Experiment-Based Model for the Chemical Interactions between Geothermal Experiment-Based Model for the Chemical Interactions between Geothermal Rocks, Supercritical Carbon Dioxide and Water Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Experiment-Based Model for the Chemical Interactions between Geothermal Rocks, Supercritical Carbon Dioxide and Water Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Project Description The geochemical model will be developed on a foundation of both theory and measurements of chemical and physical interactions between minerals, rocks, scCO2 and water. An experimentally validated reservoir modeling capability is critically important for the evaluation of the scCO2-EGS concept, the adoption of which could significantly enhance energy production in the USA.

358

Overview of the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market - The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market  

DOE Green Energy (OSTI)

This overview at the Geothermal Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Technology Advancements to Support Growth in Geothermal Power Sales in a Dynamic Utility Market'' by John E. Mock; ''Geothermal Energy Market in Southern California: Past, Present and Future'' by Vikram Budraja; ''Taking the High Ground: Geothermal's Place in the Revolving Energy Market'' by Richard Jaros; ''Recent Developments in Japan's Hot Dry Rock Program'' by Tsutomu Yamaguchi; and ''Options in the Eleventh Year for Interim Standard Offer Number Four Contracts'' by Thomas C. Hinrichs.

Mock, John E.; Budraja, Vikram; Jaros, Richard; Yamaguchi, Tsutomu; Hinrichs, Thomas C.

1992-01-01T23:59:59.000Z

359

Seismological investigation of crack formation in hydraulic rock fracturing experiments and in natural geothermal environments. Progress report, September 1, 1975--August 31, 1976  

DOE Green Energy (OSTI)

A variety of new seismological methods is being developed for determining the structure of a geothermal energy source region. In one approach, seismic signals generated in the source region are utilized by interpreting them in terms of the parameters of a seismic source model. For example, using a fluid-filled tensile crack driven by excess pressure in fluid as a model of volcanic tremor, formulas are derived which relate seismic observations with model parameters, and applied the formulas successfully to an actual eruption in Kilauea, giving a new insight to the magma transport in a volcano. Theoretical work is continued on the diffraction of seismic waves by a crack and it was demonstrated that the size and location of a crack can be well determined by particle motion near the crack at various frequencies. The method was applied to Kilauea Iki and the location of the magma lens was found to be in agreement with that estimated by another method. An extensive field experiment in Kilauea Iki was carried out with the cooperation of USGS and SANDIA, and interesting properties of the magma reservoir were revealed by a multiple use of active, passive, conventional, and unconventional seismic methods. The self-contained, digital event recorder has been developed and successfully tested.

Aki, K.

1976-09-01T23:59:59.000Z

360

Vibrational experiments at the HDR (Heissdampfreaktor) German/US cooperation  

Science Conference Proceedings (OSTI)

As part of an overall effort on the validation of seismic calculational methods, the US NRC/RES is collaborating with the Kernforschungszentrum Karlsruhe, FRG, in the vibrational/earthquake experiments conducted at the HDR (Heissdampfreaktor) Test Facility in Kahl/Main, FRG. In the most recent experiments (SHAG), high level excitations were produced in the HDR by means of an eccentric-mass coastdown shaker capable of developing 1000 tons of force. The purpose of the experiments was to investigate full-scale structural response, soil-structure interaction, and piping and equipment response. Data obtained in the tests serve to evaluate analysis methods. In the SHAG experiments, loadings of the HDR soil-structure system approached incipient failure levels as evidenced by high peak accelerations and displacements, local damage, nonlinear behavior, soil subsidence, and wall strains which exceeded estimated limit values. Also, the performance of different pipe hanger configurations for the VKL piping system was compared in these tests under high excitation levels. The support configurations ranged from very rigid systems (strut/snubbers) to very flexible configurations (spring and constant force supports). Pretest and post-test analyses for the building/soil and piping response were performed and are being validated with the test data.

Kot, C.A.; Malcher, L.; Costello, J.F.

1987-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "rock hdr geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Pueblo of Jemez Geothermal Feasibility Study Fianl Report  

DOE Green Energy (OSTI)

This project assessed the feasibility of developing geothermal energy on the Pueblo of Jemez, with particular attention to the Red Rocks area. Geologic mapping of the Red Rocks area was done at a scale of 1:6000 and geophysical surveys identified a potential drilling target at a depth of 420 feet. The most feasible business identified to use geothermal energy on the reservation was a greenhouse growing culinary and medicinal herbs. Space heating and a spa were identified as two other likely uses of geothermal energy at Jemez Pueblo. Further geophysical surveys are needed to identify the depth to the Madera Limestone, the most likely host for a major geothermal reservoir.

S.A. Kelley; N. Rogers; S. Sandberg; J. Witcher; J. Whittier

2005-03-31T23:59:59.000Z

362

Geothermal Progress Monitor 12  

DOE Green Energy (OSTI)

Some of the more interesting articles in this GPM are: DOE supporting research on problems at The Geysers; Long-term flow test of Hot Dry Rock system (at Fenton Hill, NM) to begin in Fiscal Year 1992; Significant milestones reached in prediction of behavior of injected fluids; Geopressured power generation experiment yields good results. A number of industry-oriented events and successes are reported, and in that regard it is noteworthy that this report comes near the end of the most active decade of geothermal power development in the U.S. There is a table of all operating U.S. geothermal power projects. The bibliography of research reports at the end of this GPM is useful. (DJE 2005)

None

1990-12-01T23:59:59.000Z

363

Geothermal Energy  

DOE Green Energy (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

1995-01-01T23:59:59.000Z

364

Geothermal: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links News DOE Geothermal Technologies Program News Geothermal Technologies Legacy Collection September 30, 2008 Update: "Hot Docs" added to the Geothermal Technologies Legacy Collection. A recent enhancement to the geothermal legacy site is the addition of "Hot Docs". These are documents that have been repeatedly searched for and downloaded more than any other documents in the database during the previous month and each preceding month. "Hot Docs" are highlighted for researchers and stakeholders who may find it valuable to learn what others in their field are most interested in. This enhancement could serve, for

365

Rock Lab Analysis | Open Energy Information  

Open Energy Info (EERE)

Rock Lab Analysis Rock Lab Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Lab Analysis Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Lab Analysis Techniques Information Provided by Technique Lithology: Core and cuttings analysis is done to define lithology. Water rock interaction. Can determine detailed information about rock composition and morphology. Density of different lithologic units. Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Core analysis can locate faults or fracture networks. Oriented core can give additional important information on anisotropy. Historic structure and deformation of land.

366

Cuttings Analysis At Imperial Valley Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Cuttings Analysis At Imperial Valley Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Imperial Valley Geothermal Area (1976) Exploration Activity Details Location Imperial Valley Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters

367

Modeling subsidence due to geothermal fluid production  

DOE Green Energy (OSTI)

Currently, liquid dominated geothermal systems hold the maximum promise for exploiting geothermal energy in the United States. The principal characteristic of such systems is that most of the heat is transferred by flowing water, which also controls subsurface fluid pressures and stress changes. The reduction in pore pressures brought about by geothermal fluid extraction is potentially capable of causing appreciable deformation of the reservoir rocks leading to displacements at the land surface. In order to foresee the pattern and magnitude of potential ground displacements in and around producing liquid dominated geothermal fields, a numerical model has been developed. Conceptually, the simulator combines conductive and convective heat transfer in a general three dimensional heterogeneous porous medium with a one-dimensional deformation of the reservoir rocks. The capabilities of the model and its potential applicability to field cases are illustrated with examples considering the effects of temperature and pressure dependent properties, material heterogeneities and previous stress history.

Lippmann, M.J.; Narasimhan, T.N.; Witherspoon, P.A.

1977-10-01T23:59:59.000Z

368

A Sr-Isotopic Comparison Between Thermal Waters, Rocks, And Hydrotherm...  

Open Energy Info (EERE)

Sr-Isotopic Comparison Between Thermal Waters, Rocks, And Hydrothermal Calcites, Long Valley Caldera, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

369

Rock Density At Silver Peak Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Density At Silver Peak Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Density At Silver Peak Area (DOE GTP) Exploration...

370

Audio-Magnetotellurics At Coso Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Area (1977) Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Audio-Magnetotellurics Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis To investigate electrical properties of rocks associated with thermal phenomena of the Devil's Kitchen-Coso Hot Springs area Notes Audio-magnetotelluric geophysical surveys determined that the secondary low in the geothermal area, best defined by the 7.5-Hz AMT map and dc soundings, is caused by a shallow conductive zone (5--30 ohm m) interpreted to be hydrothermally altered Sierra Nevada basement rocks containing saline water of a hot water geothermal system. This zone of lowest apparent resistivities over the basement rocks lies within a closed contour of a

371

Energy Basics: Geothermal Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

372

Energy Basics: Geothermal Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

373

Geothermal Energy Resources (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

Louisiana developed policies regarding geothermal stating that the state should pursue the rapid and orderly development of geothermal resources.

374

Thermochronometry At Coso Geothermal Area (2003) | Open Energy Information  

Open Energy Info (EERE)

Thermochronometry At Coso Geothermal Area (2003) Thermochronometry At Coso Geothermal Area (2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Coso Geothermal Area (2003) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Thermochronometry Activity Date 2003 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the age of the geothermal system and the granitic host rock using the 40Ar/39Ar thermal history Notes A downhole 40Ar/39Ar thermochronology study of granitic host-rock K-feldspar is presently being undertaken at the New Mexico Geochronology Research Laboratory. The technique couples the measurement of argon loss from K-feldspar and knowledge of the diffusion parameters of transport in K-feldspar to estimate the longevity of the system at present day

375

Cuttings Analysis At Geysers Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

1976) 1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Geysers Geothermal Area (1976) Exploration Activity Details Location Geysers Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Retrieved from "http://en.openei.org/w/index.php?title=Cuttings_Analysis_At_Geysers_Geothermal_Area_(1976)&oldid=473908

376

Raft River Geothermal Exploratory Hole No. 3  

DOE Green Energy (OSTI)

Raft River Geothermal Exploratory Hole No. 3 (RRGE-3) is an exploratory hole with three directional legs, drilled to depths ranging from approximately 5,500 to 6,000 feet into intruded quartz monzonite basement rock of the Raft River valley of southeastern Idaho. The goal of the Raft River Geothermal R and D program is to determine the feasibility of developing and utilizing medium temperature (300/sup 0/F) geothermal resources for power generation and nonelectrical applications. This well was drilled to provide data to further investigate and evaluate the geothermal reservoir, as well as to optimize the location of possible future resource and/or injection wells and to develop methods to reduce the cost of geothermal wells. The drilling and completion of RRGE-3 is described and the daily drilling reports, drill bit records, descriptions of the casing, cementing, logging and coring programs, and the containment techniques employed on RRGE-3 are included.

Shoopman, H.H. (comp.)

1977-06-01T23:59:59.000Z

377

Stanford Geothermal Program  

DOE Green Energy (OSTI)

Reliable measurement of steam-water relative permeability functions is of great importance for geothermal reservoir performance simulation. Despite their importance, these functions are poorly known due to the lack of fundamental understanding of steam-water flows, and the difficulty of making direct measurements. The Stanford Geothermal Program has used an X-ray CT (Computer Tomography) scanner to obtain accurate saturation profiles by direct measurement. During the last five years, the authors have carried out experiments with nitrogen-water flow and with steam-water flow, and examined the effects of heat transfer and phase change by comparing these sets of results. In porous rocks, it was found that the steam-water relative permeabilities follow Corey type relationships similar to those in nitrogen-water flow, but that the irreducible gas phase saturation is smaller for steam than for nitrogen. The irreducible saturations represent substantial fractions of the recoverable energy in place yet are hard to determine in the field. Understanding the typical magnitude of irreducible saturations will lead to a much clearer forecast of geothermal field performance. In fracture flow, indirect measurements suggested that the relative permeabilities follow a linear (or ''X-curve'') behavior - but there is still considerable uncertainty in the knowledge of this behavior.

R. Horn

1999-06-30T23:59:59.000Z

378

Near-Term Developments in Geothermal Drilling  

DOE Green Energy (OSTI)

The DOE Hard Rock Penetration program is developing technology to reduce the costs of drilling geothermal wells. Current projects include: R & D in lost circulation control, high temperature instrumentation, underground imaging with a borehole radar insulated drill pipe development for high temperature formations, and new technology for data transmission through drill pipe that can potentially greatly improve data rates for measurement while drilling systems. In addition to this work, projects of the Geothermal Drilling Organization are managed. During 1988, GDO projects include developments in five areas: high temperature acoustic televiewer, pneumatic turbine, urethane foam for lost circulation control, geothermal drill pipe protectors, an improved rotary head seals.

Dunn, James C.

1989-03-21T23:59:59.000Z

379

Well completion and operations for MHF of Fenton Hill HDR Well EE-2  

DOE Green Energy (OSTI)

Previous attempts to connect Fenton Hill Hot Dry Rock Geothermal Site Wells EE-2 and EE-3 by pumping 150 thousand to 1.3 million gallons of water had not achieved a detectable hydraulic fracture connection. Therefore, preparations were made to conduct, in December 1983, a 4 to 6 million gallon, 50 BPM water injection in EE-2. The objective was to enlarge the previously created reservoir in EE-2 using massive hydraulic facturing (MHF). The planning, preparations, operations and results of the MHF are presented here. 4 refs., 7 figs.

Dreesen, D.S.; Nicholson, R.W.

1985-01-01T23:59:59.000Z

380

Seismic Velocity And Attenuation Structure Of The Geysers Geothermal...  

Open Energy Info (EERE)

electricity from geothermal energy. A key resource management issue at this field is the distribution of fluid in the matrix of the reservoir rock. In this paper, we interpret...

Note: This page contains sample records for the topic "rock hdr geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Geothermal: Sponsored by OSTI -- A numerical model ofhydro-thermo...  

NLE Websites -- All DOE Office Websites (Extended Search)

A numerical model of hydro-thermo-mechanical coupling in a fractured rock mass Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic...

382

Geothermal: Sponsored by OSTI -- Fairbanks Geothermal Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fairbanks Geothermal Energy Project Final Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

383

Decision Analysis for Enhanced Geothermal Systems Geothermal...  

Open Energy Info (EERE)

Recovery Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Project Type Topic 2 Geothermal Analysis Project Description The result of the proposed...

384

Geothermal: Sponsored by OSTI -- Alaska geothermal bibliography  

Office of Scientific and Technical Information (OSTI)

Alaska geothermal bibliography Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

385

Geothermal: Sponsored by OSTI -- Fourteenth workshop geothermal...  

Office of Scientific and Technical Information (OSTI)

Fourteenth workshop geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

386

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

387

Geothermal: Sponsored by OSTI -- Engineered Geothermal Systems...  

Office of Scientific and Technical Information (OSTI)

Engineered Geothermal Systems Energy Return On Energy Investment Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

388

Neutron imaging for geothermal energy systems  

Science Conference Proceedings (OSTI)

Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or engineered within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

Bingham, Philip R [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Polsky, Yarom [ORNL

2013-01-01T23:59:59.000Z

389

Overview: Hard Rock Penetration  

DOE Green Energy (OSTI)

The Hard Rock Penetration program is developing technology to reduce the costs of drilling and completing geothermal wells. Current projects include: lost circulation control, rock penetration mechanics, instrumentation, and industry/DOE cost shared projects of the Geothermal Drilling organization. Last year, a number of accomplishments were achieved in each of these areas. A new flow meter being developed to accurately measure drilling fluid outflow was tested extensively during Long Valley drilling. Results show that this meter is rugged, reliable, and can provide useful measurements of small differences in fluid inflow and outflow rates. By providing early indications of fluid gain or loss, improved control of blow-out and lost circulation problems during geothermal drilling can be expected. In the area of downhole tools for lost circulation control, the concept of a downhole injector for injecting a two-component, fast-setting cementitious mud was developed. DOE filed a patent application for this concept during FY 91. The design criteria for a high-temperature potassium, uranium, thorium logging tool featuring a downhole data storage computer were established, and a request for proposals was submitted to tool development companies. The fundamental theory of acoustic telemetry in drill strings was significantly advanced through field experimentation and analysis. A new understanding of energy loss mechanisms was developed.

Dunn, J.C.

1992-08-01T23:59:59.000Z

390

Overview - Hard Rock Penetration  

DOE Green Energy (OSTI)

The Hard Rock Penetration program is developing technology to reduce the costs of drilling and completing geothermal wells. Current projects include: lost circulation control, rock penetration mechanics, instrumentation, and industry/DOE cost shared projects of the Geothermal Drilling Organization. Last year, a number of accomplishments were achieved in each of these areas. A new flow meter being developed to accurately measure drilling fluid outflow was tested extensively during Long Valley drilling. Results show that this meter is rugged, reliable, and can provide useful measurements of small differences in fluid inflow and outflow rates. By providing early indications of fluid gain or loss, improved control of blow-out and lost circulation problems during geothermal drilling can be expected. In the area of downhole tools for lost circulation control, the concept of a downhole injector for injecting a two-component, fast-setting cementitious mud was developed. DOE filed a patent application for this concept during FY 91. The design criteria for a high-temperature potassium, uranium, thorium logging tool featuring a downhole data storage computer were established, and a request for proposals was submitted to tool development companies. The fundamental theory of acoustic telemetry in drill strings was significantly advanced through field experimentation and analysis. A new understanding of energy loss mechanisms was developed.

Dunn, James C.

1992-03-24T23:59:59.000Z

391

Overview: Hard Rock Penetration  

DOE Green Energy (OSTI)

The Hard Rock Penetration program is developing technology to reduce the costs of drilling and completing geothermal wells. Current projects include: lost circulation control, rock penetration mechanics, instrumentation, and industry/DOE cost shared projects of the Geothermal Drilling organization. Last year, a number of accomplishments were achieved in each of these areas. A new flow meter being developed to accurately measure drilling fluid outflow was tested extensively during Long Valley drilling. Results show that this meter is rugged, reliable, and can provide useful measurements of small differences in fluid inflow and outflow rates. By providing early indications of fluid gain or loss, improved control of blow-out and lost circulation problems during geothermal drilling can be expected. In the area of downhole tools for lost circulation control, the concept of a downhole injector for injecting a two-component, fast-setting cementitious mud was developed. DOE filed a patent application for this concept during FY 91. The design criteria for a high-temperature potassium, uranium, thorium logging tool featuring a downhole data storage computer were established, and a request for proposals was submitted to tool development companies. The fundamental theory of acoustic telemetry in drill strings was significantly advanced through field experimentation and analysis. A new understanding of energy loss mechanisms was developed.

Dunn, J.C.

1992-01-01T23:59:59.000Z

392

Geothermal resource assessment of Waunita Hot Springs, Colorado  

DOE Green Energy (OSTI)

This assessment includes the project report; the geothermal prospect reconnaissance evaluation and recommendations; interpretation of water sample analyses; a hydrogeochemical comparison of the Waunita Hot Springs, Hortense, Castle Rock, and Anderson Hot Springs; geothermal resistivity resource evaluation survey, the geophysical environment; temperature, heat flow maps, and temperature gradient holes; and soil mercury investigations.

Zacharakis, T.G. (ed.)

1981-01-01T23:59:59.000Z

393

Overview of geothermal energy in the United States  

DOE Green Energy (OSTI)

The history of geothermal development is reviewed briefly. The resource is divided into three major categories for discussion: hydrothermal resources, hot igneous rock resources, and conduction-dominated resources. Geothermal power generation and direct applications in the U.S. are discussed. (MHR)

Schultz, R.J.; DiBello, E.G.

1979-05-01T23:59:59.000Z

394

Geothermal Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Technologies Geothermal Technologies August 14, 2013 - 1:45pm Addthis Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean,...

395

Borehole survey instrumentation development for geothermal applications  

DOE Green Energy (OSTI)

The creation and subsequent study of hot dry rock geothermal reservoirs requires sophisticated tools and instruments that can function for relatively long periods of time in the hostile downhole environment. Detection of fracture dimensions and orientation of the geothermal reservoir is critical for the successful completion of the hot dry rock energy extraction system. The development of downhole instrumentation capable of characterizing the hydraulic-fracture systems must emphasize reliability of measuring devices and electro-mechanical components to function properly at borehole temperature exceeding 275/sup 0/C and pressures of 69 MPa (10,000 psi).

Dennis, B.R.

1980-01-01T23:59:59.000Z

396

Seismic investigations of the HDR Safety Program. Summary report  

Science Conference Proceedings (OSTI)

The primary objective of the seismic investigations, performed at the HDR facility in Kahl/Main, FRG was to validate calculational methods for the seismic evaluation of nuclear-reactor systems, using experimental data from an actual nuclear plant. Using eccentric mass shaker excitation the HDR soil/structure system was tested to incipient failure, exhibiting highly nonlinear response and demonstrating that structures not seismically designed can sustain loads equivalent to a design basin earthquake (DBE). Load transmission from the structure to piping/equipment indicated significant response amplifications and shifts to higher frequencies, while the response of tanks/vessels depended mainly on their support conditions. The evaluation of various piping support configurations demonstrated that proper system design (for a given spectrum) rather than number of supports or system stiffness is important to limiting pipe greens. Piping at loads exceeding the DBE eightfold still had significant margins and failure is improbable inspite of multiple support failures. The mean value for pipe damping, even under extreme loads, was found to be about 4%. Comparison of linear and nonlinear computational results with piping response measurements showed that predictions have a wide scatter and do not necessarily yield conservative responses underpredicting, in particular, peak support forces. For the soil/structure system the quality of the predictions did not depend so much on the complexity of the modeling, but rather on whether the model captured the salient features and nonlinearities of the system.

Malcher, L.; Schrammel, D. [Kernforschungszentrum Karlsruhe GmbH (Germany); Steinhilber, H. [Fraunhofer-Institut fuer Betriebsfestigkeit (LBF), Darmstadt (Germany); Kot, C.A. [Argonne National Lab., IL (United States)

1994-08-01T23:59:59.000Z

397

Mapping Fractures In The Medicine Lake Geothermal System | Open Energy  

Open Energy Info (EERE)

Fractures In The Medicine Lake Geothermal System Fractures In The Medicine Lake Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mapping Fractures In The Medicine Lake Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: A major challenge to energy production in the region has been locating high-permability fracture zones in the largely impermeable volcanic host rock. An understanding of the fracture networks will be a key to harnessing geothermal resources in the Cascades Author(s): Steven Clausen, Michal Nemcok, Joseph Moore, Jeffrey Hulen, John Bartley Published: GRC, 2006 Document Number: Unavailable DOI: Unavailable Core Analysis At Medicine Lake Area (Clausen Et Al, 2006) Medicine Lake Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Mapping_Fractures_In_The_Medicine_Lake_Geothermal_System&oldid=388927

398

Structural interpretation of Coso Geothermal field, Inyo County, California  

Open Energy Info (EERE)

Coso Geothermal field, Inyo County, California Coso Geothermal field, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Structural interpretation of Coso Geothermal field, Inyo County, California Details Activities (2) Areas (1) Regions (0) Abstract: The Coso Geothermal field, located east of the Sierra Nevada at the northern edge of the high Mojave Desert in southern California, is an excellent example of a structurally controlled geothermal resource. The geothermal system appears to be associated with at least one dominant north-south-trending feature which extends several miles through the east-central portion of the Coso volcanic field. Wells drilled along this feature have encountered production from distinct fractures in crystalline basement rocks. The identified producing fractures occur in zones which

399

Property:Geothermal/OtherPrincipalInvestigator | Open Energy Information  

Open Energy Info (EERE)

OtherPrincipalInvestigator OtherPrincipalInvestigator Jump to: navigation, search Property Name Geothermal/OtherPrincipalInvestigator Property Type String Description Other Principal Investigators Subproperties This property has the following 2 subproperties: A A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project D Development of Chemical Model to Predict the Interactions between Supercritical CO2 and Fluid, Rocks in EGS Reservoirs Geothermal Project Pages using the property "Geothermal/OtherPrincipalInvestigator" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + John Louie, University of Nevada and Lisa Shevenell, University of Nevada +

400

Acoustic Logs At Coso Geothermal Area (1977) | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area (1977) Coso Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Acoustic Logs At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Acoustic Logs Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes Acoustic logs indicate fractured rock and potentially permeable zones. References Galbraith, R. M. (1 May 1978) Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California Goranson, C.; Schroeder, R. (1 June 1978) Static downhole characteristics of well CGEH-1 at Coso Hot Springs, China Lake, California Retrieved from "http://en.openei.org/w/index.php?title=Acoustic_Logs_At_Coso_Geothermal_Area_(1977)&oldid=510216"

Note: This page contains sample records for the topic "rock hdr geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Gamma Log At Coso Geothermal Area (1977) | Open Energy Information  

Open Energy Info (EERE)

Gamma Log At Coso Geothermal Area (1977) Gamma Log At Coso Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gamma Log At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Gamma Log Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes extensive geophysical logging surveys were conducted: natural gamma and neutron porosity logs indicate gross rock type References Galbraith, R. M. (1 May 1978) Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California Goranson, C.; Schroeder, R. (1 June 1978) Static downhole characteristics of well CGEH-1 at Coso Hot Springs, China Lake, California Retrieved from "http://en.openei.org/w/index.php?title=Gamma_Log_At_Coso_Geothermal_Area_(1977)&oldid=510780"

402

Digital Mapping Of Structurally Controlled Geothermal Features With Gps  

Open Energy Info (EERE)

Digital Mapping Of Structurally Controlled Geothermal Features With Gps Digital Mapping Of Structurally Controlled Geothermal Features With Gps Units And Pocket Computers Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Digital Mapping Of Structurally Controlled Geothermal Features With Gps Units And Pocket Computers Details Activities (1) Areas (1) Regions (0) Abstract: Hand-held global positioning system (GPS) units and pocket personal computers (PCs) were used to map surface geothermal features at the Bradys Hot Springs and Salt Wells geothermal systems, Churchill County, Nevada, in less time and with greater accuracy than would have been possible with conventional mapping methods. Geothermal features that were mapped include fumaroles, mud pots, warm ground, sinter, and a variety of silicified rocks. In both areas, the digital mapping was able to resolve

403

An estimate of the cost of electricity production from hot-dry rock  

DOE Green Energy (OSTI)

This paper gives an estimate of the cost to produce electricity from hot-dry rock (HDR). Employment of the energy in HDR for the production of electricity requires drilling multiple wells from the surface to the hot rock, connecting the wells through hydraulic fracturing, and then circulating water through the fracture system to extract heat from the rock. The basic HDR system modeled in this paper consists of an injection well, two production wells, the fracture system (or HDR reservoir), and a binary power plant. Water is pumped into the reservoir through the injection well where it is heated and then recovered through the production wells. Upon recovery, the hot water is pumped through a heat exchanger transferring heat to the binary, or working, fluid in the power plant. The power plant is a net 5.1-MW[sub e] binary plant employing dry cooling. Make-up water is supplied by a local well. In this paper, the cost of producing electricity with the basic system is estimated as the sum of the costs of the individual parts. The effects on cost of variations to certain assumptions, as well as the sensitivity of costs to different aspects of the basic system, are also investigated.

Pierce, K.G. (Sandia National Labs., Albuquerque, NM (United States)); Livesay, B.J. (Livesay Consultants, Inc., Encinitas, CA (United States))

1993-01-01T23:59:59.000Z

404

Geothermal well completions: an overview of existing methods in four types of developments  

DOE Green Energy (OSTI)

Existing practices and capabilities for completing producing and injection wells for geothermal application in each of four categories of geothermal environments are discussed. Included are steam wells in hard, fractured rocks (The Geysers, California), hot water wells in sedimentary formations (Imperial Valley, California), hot, dry impermeable rocks with circulating water systems (Valles Caldera, New Mexico), and geopressured, geothermal water wells with associated hydrocarbon production on the U.S. Gulf Coast.

Snyder, R.E.

1978-01-01T23:59:59.000Z

405

Session: Geopressured-Geothermal  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

1992-01-01T23:59:59.000Z

406

Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Grigsby...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History View New Pages Recent Changes All Special Pages...

407

Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Goff &...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History View New Pages Recent Changes All Special Pages...

408

Exploration methods for hot dry rock. Report of the panel held June 22, 1976  

DOE Green Energy (OSTI)

The geological and geophysical characteristics of hot dry rock (HDR) necessary for an effective exploration program were discussed. The type of HDR project discussed, that being developed by the Los Alamos Scientific Laboratory (LASL), would utilize hydraulic fracturing to develop a large surface area in rock of low permeability, 10/sup -6/ darcys, and at temperatures greater than 200/sup 0/C. A better definition of the thermal regime in the crust and mantle at reconnaissance (hundreds to tens of kilometers) and exploration (tens of kilometers to 1 km) scales is needed. Geophysical methods capable of deep investigation would be used with the near-surface geologic information to extrapolate conditions at the depth of interest. Detection of HDR per se may be difficult because the contrast in physical properties of HDR and other rock is not always unambiguous, but boundaries between rock environments can be delineated. When patterns and coincidence of various types of geophysical anomalies and geologic maps are used, the probability of the detection of HDR is greatly increased, especially when a consistent picture is described. Various geophysical methods are required to detect these anomalies: (a) electromagnetic techniques can map deep electrically conductive structures, which to some extent can be used to infer isotherms. (b) Bouguer gravity maps corrected for regional topography are found to correlate with large silicic intrusive bodies, which are often associated with high heat flow. (c) isotherms and open crack systems at depth can be inferred from seismic wave attenuations, dispersions, and delay times. (d) heat flow measurements are useful as a primary tool and as a check on the results of other methods. Abstracts for individual presentations by the twelve panel members are included. 111 references.

West, F.G.; Shankland, T.J. (comps.)

1977-03-01T23:59:59.000Z

409

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

410

NREL: Geothermal Technologies - Financing Geothermal Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Search More Search Options Site Map Guidebook to Geothermal Power Finance Thumbnail of the Guidebook to Geothermal Power Finance NREL's Guidebook to Geothermal Power Finance provides an overview of the strategies used to raise capital for geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). Learn more about the Guidebook to Geothermal Power Finance. NREL's Financing Geothermal Power Projects website, funded by the U.S. Department of Energy's Geothermal Technologies Program, provides information for geothermal power project developers and investors interested in financing utility-scale geothermal power projects. Read an overview of how financing works for geothermal power projects, including

411

Los Alamos hot-dry-rock project: recent results  

DOE Green Energy (OSTI)

A new deeper reservoir is presently being investigated at the Laboratory's Fenton Hill Hot Dry Rock (HDR) site. The region surrounding the lower of two inclined boreholes, directionally-drilled to about 4 km in hot crystalline rock, has been pressurized in a sequence of injection tests. Based primarily on the measurements made by two close-in microseismic detectors, two similar volumetric reservoir regions have been developed by massive hydraulic fracturing, but with no significant hydraulic communication with the upper borehole as yet.

Brown, D.W.

1982-01-01T23:59:59.000Z

412

Kakkonda Geothermal Power Plant  

SciTech Connect

A brief general description is given of a geothermal resource. Geothermal exploration in the Takinoue area is reviewed. Geothermal drilling procedures are described. The history of the development at the Takinoue area (the Kakkonda Geothermal Power Plant), and the geothermal fluid characteristics are discussed. The technical specifications of the Kakkonda facility are shown. Photographs and drawings of the facility are included. (MHR)

DiPippo, R.

1979-01-01T23:59:59.000Z

413

Property:GeothermalRegion | Open Energy Information  

Open Energy Info (EERE)

Property Name GeothermalRegion Property Name GeothermalRegion Property Type Page Pages using the property "GeothermalRegion" Showing 25 pages using this property. (previous 25) (next 25) A Abraham Hot Springs Geothermal Area + Northern Basin and Range Geothermal Region + Adak Geothermal Area + Alaska Geothermal Region + Aidlin Geothermal Facility + Holocene Magmatic Geothermal Region + Akun Strait Geothermal Area + Alaska Geothermal Region + Akutan Fumaroles Geothermal Area + Alaska Geothermal Region + Akutan Geothermal Project + Alaska Geothermal Region + Alum Geothermal Area + Walker-Lane Transition Zone Geothermal Region + Alum Geothermal Project + Walker-Lane Transition Zone Geothermal Region + Alvord Hot Springs Geothermal Area + Northwest Basin and Range Geothermal Region +

414

Conceptual Model At Raft River Geothermal Area (1988) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Conceptual Model At Raft River Geothermal Area (1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Raft River Geothermal Area (1988) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1988 Usefulness not indicated DOE-funding Unknown Exploration Basis Use geophysical logs to determine the reservoir transmissivity Notes Seven fracture orientation sets are recognized in the sedimentary and metamorphic rock units. Although the conventional geophysical logs showed

415

Geothermal pilot study final report: creating an international geothermal energy community  

DOE Green Energy (OSTI)

The Geothermal Pilot Study under the auspices of the Committee on the Challenges of Modern Society (CCMS) was established in 1973 to apply an action-oriented approach to international geothermal research and development, taking advantage of the established channels of governmental communication provided by the North Atlantic Treaty Organization (NATO). The Pilot Study was composed of five substudies. They included: computer-based information systems; direct application of geothermal energy; reservoir assessment; small geothermal power plants; and hot dry rock concepts. The most significant overall result of the CCMS Geothermal Pilot Study, which is now complete, is the establishment of an identifiable community of geothermal experts in a dozen or more countries active in development programs. Specific accomplishments include the creation of an international computer file of technical information on geothermal wells and fields, the development of studies and reports on direct applications, geothermal fluid injection and small power plants, and the operation of the visiting scientist program. In the United States, the computer file has aready proven useful in the development of reservoir models and of chemical geothermometers. The state-of-the-art report on direct uses of geothermal energy is proving to be a valuable resource document for laypersons and experts in an area of increasing interest to many countries. Geothermal fluid injection studies in El Salvador, New Zealand, and the United States have been assisted by the Reservoir Assessment Substudy and have led to long-range reservoir engineering studies in Mexico. At least seven small geothermal power plants are in use or have been planned for construction around the world since the Small Power Plant Substudy was instituted--at least partial credit for this increased application can be assigned to the CCMS Geothermal Pilot Study. (JGB)

Bresee, J.C.; Yen, W.W.S.; Metzler, J.E. (eds.)

1978-06-01T23:59:59.000Z

416

Geothermal turbine  

SciTech Connect

A turbine for the generation of energy from geothermal sources including a reaction water turbine of the radial outflow type and a similar turbine for supersonic expansion of steam or gases. The rotor structure may incorporate an integral separator for removing the liquid and/or solids from the steam and gas before the mixture reaches the turbines.

Sohre, J.S.

1982-06-22T23:59:59.000Z

417

Fault Mapping At Raft River Geothermal Area (1993) | Open Energy  

Open Energy Info (EERE)

Fault Mapping At Raft River Geothermal Area (1993) Fault Mapping At Raft River Geothermal Area (1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fault Mapping At Raft River Geothermal Area (1993) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Fault Mapping Activity Date 1993 Usefulness useful DOE-funding Unknown Exploration Basis Geologic mapping, strain and kinematic analysis Notes The mountains expose a detachment fault that separates a hanging wall of Paleozoic rocks from Proterozoic and Archean rocks of the footwall. Beneath the detachment lies a 100 to 300m-thick top-to-the-east extensional shear zone. Geologic mapping, strain and kinematic analysis, and 40Ar/39Ar thermochronology suggest that the shear zone and detachment fault had an

418

Hot dry rock geothermal reservoir engineering  

DOE Green Energy (OSTI)

Two wells, GT-2 and EE-1, were originally drilled to a depth of 9600 ft (2.93 km) and 10,000 ft (3.05 km), respectively, and, after some difficulties, including redrilling of the bottom portion of GT-2, a good fracture connection was made between EE-1 and GT-2B, as the modified GT-2 was called. The circulation system was studied extensively for the purpose of establishing a number of fracture properties. Techniques were developed to determine orientation, geometry, heat exchange area, volume, flow impedance and impedance distribution. A much larger fracture system was then created from a depth of 9620 ft (2.93 km) in EE-1. The techniques used and results obtained in the study of the new and old fracture systems are discussed. (MHR)

Aamodt, R.L.

1980-01-01T23:59:59.000Z

419

Fourteenth workshop geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

1989-01-01T23:59:59.000Z