Powered by Deep Web Technologies
Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Estimating the Value of Electricity Storage Resources in Electricity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 The...

2

Energy Storage Activities in the United States Electricity Grid. May 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Activities in the United States Electricity Grid Storage Activities in the United States Electricity Grid Electricity Advisory Committee Energy Storage Technologies Subcommittee Members Ralph Masiello, Subcommittee Chair Senior Vice President, Transmission KEMA Honorable Lauren Azar Commissioner Wisconsin Public Utilities Commission Frederick Butler President & Chief Executive Officer Butler Advisory Services Richard Cowart Principal Regulatory Assistance Project and Chair, Electricity Advisory Committee Roger Duncan General Manager (Ret.) Austin Energy Robert Gramlich Senior Vice President, Public Policy American Wind Energy Association Brad Roberts Chairman Electricity Storage Association Honorable Tom Sloan Representative Kansas House of Representatives Wanda Reder Vice President

3

ESS 2012 Peer Review - Compressed Air Energy Storage - Robert Booth, PG&E-BAI  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMPRESSED AIR ENERGY STORAGE IN CALIFORNIA COMPRESSED AIR ENERGY STORAGE IN CALIFORNIA Michael Medeiros, Pacific Gas and Electric Company, San Francisco, CA Robert Booth, Booth & Associates International, San Francisco, CA September 2012 Introduction The purpose of this presentation is to provide an overview of Pacific Gas and Electric Company's (PG&E) initiative in evaluating the technical and economic feasibility of compressed air energy storage (CAES) using porous rock reservoirs in California. PG&E was awarded funding from the U.S. Department of Energy (DOE), the California Energy Commission (CEC), and the California Public Utilities Commission (CPUC) to determine the feasibility of a 300 MW CAES facility utilizing up to 10 hours of storage in a

4

Agenda: Electricity Transmission, Storage and Distribution -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Transmission, Storage and Distribution - West Agenda: Electricity Transmission, Storage and Distribution - West A Public Meeting on the Quadrennial Energy Review,...

5

NV Energy Electricity Storage Valuation  

SciTech Connect

This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

2013-06-30T23:59:59.000Z

6

Estimating the Value of Electricity Storage Resources in Electricity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating the Value of Electricity Storage Resources in Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 The purpose of this report is to assist the U.S. Department of Energy (DOE) in 1) establishing a framework for understanding the role electricity storage resources (storage) can play in wholesale and retail electricity markets, 2) assessing the value of electricity storage in a variety of regions or markets, 3) analyzing current and potential issues that can affect the valuation of storage by investors at the wholesale and retail level, and 4) identifying areas for future research and development for electricity storage technologies and applications. EAC - Estimating the Value of Electricity Storage Resources in Electricity

7

Estimating the Value of Electricity Storage Resources in Electricity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating the Value of Electricity Storage Resources in Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 The purpose of this report is to assist the U.S. Department of Energy (DOE) in 1) establishing a framework for understanding the role electricity storage resources (storage) can play in wholesale and retail electricity markets, 2) assessing the value of electricity storage in a variety of regions or markets, 3) analyzing current and potential issues that can affect the valuation of storage by investors at the wholesale and retail level, and 4) identifying areas for future research and development for electricity storage technologies and applications. EAC - Estimating the Value of Electricity Storage Resources in Electricity

8

Electric thermal storage demonstration program  

SciTech Connect

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

Not Available

1992-02-01T23:59:59.000Z

9

Electric thermal storage demonstration program  

SciTech Connect

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

Not Available

1992-01-01T23:59:59.000Z

10

Electric thermal storage demonstration program  

SciTech Connect

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and on affiliate in Rhode Island, responded to a DOE request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. This report discusses the demonstration of ETS equipment at four member light departments.

Not Available

1992-01-01T23:59:59.000Z

11

Electric thermal storage demonstration program  

SciTech Connect

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and on affiliate in Rhode Island, responded to a DOE request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. This report discusses the demonstration of ETS equipment at four member light departments.

Not Available

1992-02-01T23:59:59.000Z

12

MagLab - Pioneers in Electricity and Magnetism: Robert Millikan  

NLE Websites -- All DOE Office Websites (Extended Search)

Robert Millikan (1868-1953) Robert Millikan Robert Andrews Millikan was a prominent American physicist who made lasting contributions to both pure science and science education. He...

13

Definition: Electricity Storage Technologies | Open Energy Information  

Open Energy Info (EERE)

Dictionary.png Dictionary.png Electricity Storage Technologies Technologies that can store electricity to be used at a later time. These devices require a mechanism to convert alternating current (AC) electricity into another form for storage, and then back to AC electricity. Common forms of electricity storage include batteries, flywheels, and pumped hydro. Electricity storage can provide backup power, peaking power, and ancillary services, and can store excess electricity produced by renewable energy resources when available.[1] Related Terms electricity generation References ↑ https://www.smartgrid.gov/category/technology/electricity_storage_technologies [[C LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitionssmart grid,smart grid,

14

Economic analysis of electric energy storage.  

E-Print Network (OSTI)

??This thesis presents a cost analysis of grid-connected electric energy storage. Various battery energy storage technologies are considered in the analysis. Life-cycle cost analysis is… (more)

Poonpun, Piyasak

2006-01-01T23:59:59.000Z

15

Center for Electrical Energy Storage Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Energy Storage DOE Logo Electrical Energy Storage DOE Logo Focus Areas 3D Interface Architectures Dynamically Responsive Interfaces Control of Interfacial Processes Theory Search Argonne ... Search Argonne Home >Center for Electrical Energy Storage > Home Directorate & Principal Investigators Management Council Executive Committee Research Staff External Advisory Committee News Science Highlights Publications & Presentations CEES-Authored and Co-Authored Cover Stories Peer-Reviewed Publications Presentations Patents Frontiers in Energy Research Awards Jobs at CEES Energy Frontier Research Centers at Argonne Center for Electrical Energy Storage - an Energy Frontier Research Center Above: An artistic rendition showing a metal-fluoride stabilized surface structure at a lithium cobalt oxide

16

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network (OSTI)

density of di?erent electrical energy stor- age systems (carbonate in electrical energy storage applications,”challenges facing electrical energy storage,” MRS Bulletin,

Wang, Hainan

2013-01-01T23:59:59.000Z

17

DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA (July 2013) DOEEPRI 2013 Electricity Storage Handbook in Collaboration with NRECA (July 2013) The Electricity...

18

AB Levitator and Electricity Storage  

E-Print Network (OSTI)

The author researched this new idea - support of flight by any aerial vehicles at significant altitude solely by the magnetic field of the planet. It is shown that current technology allows humans to create a light propulsion (AB engine) which does not depend on air, water or ground terrain. Simultaniosly, this revolutionary thruster is a device for the storage of electricity which is extracted and is replenished (during braking) from/into the storage with 100 percent efficiency. The relative weight ratio of this engine is 0.01 - 0.1 (from thrust). For some types of AB engine (toroidal form) the thrust easily may be changed in any direction without turning of engine. The author computed many projects using different versions of offered AB engine: small device for levitation-flight of a human (including flight from Earth to Outer Space), fly VTOL car (track), big VTOL aircrat, suspended low altitude stationary satellite, powerful Space Shuttle-like booster for travel to the Moon and Mars without spending energ...

Bolonkin, A

2007-01-01T23:59:59.000Z

19

In-Situ Electron Microscopy of Electrical Energy Storage Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

20

In-Situ Electron Microscopy of Electrical Energy Storage Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Electricity storage for short term power system service (Smart...  

Open Energy Info (EERE)

Electricity storage for short term power system service (Smart Grid Project) Jump to: navigation, search Project Name Electricity storage for short term power system service...

22

Bottling Electricity: Storage as a Strategic Tool for Managing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid - EAC Report (December 2008) Bottling Electricity: Storage as a...

23

Battery Chargers | Electrical Power Conversion and Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Battery Chargers | Electrical Power Conversion and Storage Battery Chargers | Electrical Power Conversion and Storage 625 West A Street | Lincoln, NE 68522-1794 | LesterElectrical.com P: 402.477.8988 | F: 402.441.3727, 402.474.1769 (Sales) MEMORANDUM TO: United States Department of Energy (DOE), Via Email, expartecommunications@hq.doe.gov FROM: Spencer Stock, Product Marketing Manager, Lester Electrical DATE: June 18, 2012 RE: Ex Parte Communications, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57 On Monday, June 11, 2012, representatives from Lester Electrical and Ingersoll Rand met with DOE to discuss the Notice of Proposed Rulemaking (NOPR) for Energy Conservation Standards for Battery Chargers and External Power Supplies, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57.

24

A National Grid Energy Storage Strategy - Electricity Advisory Committee -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid Energy Storage Strategy - Electricity Advisory Grid Energy Storage Strategy - Electricity Advisory Committee - December 2013 A National Grid Energy Storage Strategy - Electricity Advisory Committee - December 2013 The Electricity Advisory Committee (EAC) represents a wide cross section of electricity industry stakeholders. This document presents the EAC's vision for a national energy storage strategic plan. It provides an outline for guidance, alignment, coordination, and inspiration for governments, businesses, advocacy groups, academics, and others who share a similar vision for energy storage. The strategy addresses applications of electric storage technologies that optimize the performance of the power grid once electric power has been generated and delivered to the network. It aims to provide a framework of

25

DOE Hydrogen Analysis Repository: Emissions Analysis of Electricity Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Analysis of Electricity Storage with Hydrogen Emissions Analysis of Electricity Storage with Hydrogen Project Summary Full Title: Emissions Analysis of Electricity Storage with Hydrogen Project ID: 269 Principal Investigator: Amgad Elgowainy Brief Description: Argonne National Laboratory examined the potential fuel cycle energy and emissions benefits of integrating hydrogen storage with renewable power generation. ANL also examined the fuel cycle energy use and emissions associated with alternative energy storage systems, including pumped hydro storage (PHS), compressed air energy storage (CAES), and vanadium-redox batteries (VRB). Keywords: Hydrogen; Emissions; Greenhouse gases (GHG); Energy storage; Life cycle analysis Performer Principal Investigator: Amgad Elgowainy Organization: Argonne National Laboratory (ANL)

26

Electric Power Industry Needs for Grid-Scale Storage Applications |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Needs for Grid-Scale Storage Applications Industry Needs for Grid-Scale Storage Applications Electric Power Industry Needs for Grid-Scale Storage Applications Stationary energy storage technologies will address the growing limitations of the electricity infrastructure and meet the increasing demand for renewable energy use. Widespread integration of energy storage devices offers many benefits, including the following: Alleviating momentary electricity interruptions Meeting peak demand Postponing or avoiding upgrades to grid infrastructure Facilitating the integration of high penetrations of renewable energy Providing other ancillary services that can improve the stability and resiliency of the electric grid Electric Power Industry Needs for Grid-Scale Storage Applications More Documents & Publications

27

Electricity Storage and the Hydrogen-Chlorine Fuel Cell.  

E-Print Network (OSTI)

?? Electricity storage is an essential component of the transforming energy marketplace. Its absence at any significant scale requires that electricity producers sit ready to… (more)

Rugolo, Jason Steven

2011-01-01T23:59:59.000Z

28

Third Generation Flywheels for electric storage  

SciTech Connect

Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel — the "Power Ring" — with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing – a radial gap “shear-force levitator” – that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid frequency regulation, where Power Rings could cut costs, reduce fuel consumption, eliminate emissions, and reduce the need for new power plants. Other applications include hybrid diesel-electric locomotives, grid power quality, support for renewable energy, spinning reserve, energy management, and facility deferral. Decreased need for new generation and transmission alone could save the nation $2.5 billion per year. Improved grid reliability could cut economic losses due to poor power quality by tens of billions of dollars per year. A large export market for this technology could also develop. Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

Ricci, Michael, R.; Fiske, O. James

2008-02-29T23:59:59.000Z

29

An International Survey of Electric Storage Tank Water Heater Efficiency and Standards  

E-Print Network (OSTI)

Survey of Electric Storage Tank Water Heater Efficiency andSurvey of Electric Storage Tank Water Heater Efficiency andby electric resistance storage tank water heaters (geysers),

Johnson, Alissa

2013-01-01T23:59:59.000Z

30

NREL: Energy Analysis: Electric System Flexibility and Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric System Flexibility and Storage Electric System Flexibility and Storage Options for Increasing Electric System Flexibility to Accommodate Higher Levels of Variable Renewable Electricity Increased electric system flexibility, needed to enable electricity supply-demand balance with high levels of renewable generation, can come from a portfolio of supply- and demand-side options, including flexible conventional generation, grid storage, curtailment of some renewable generation, new transmission, and more responsive loads. NREL's electric system flexibility studies investigate the role of various electric system flexibility options on large-scale deployment of renewable energy. NREL's electric system flexibility analyses show that: Key factors in improving grid flexibility include (1) increasing the

31

Advanced Materials and Devices for Stationary Electrical Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials and Devices for Stationary Electrical Energy Materials and Devices for Stationary Electrical Energy Storage Applications Advanced Materials and Devices for Stationary Electrical Energy Storage Applications Reliable access to cost-effective electricity is the backbone of the U.S. economy, and electrical energy storage is an integral element in this system. Without significant investments in stationary electrical energy storage, the current electric grid infrastructure will increasingly struggle to provide reliable, affordable electricity, jeopardizing the transformational changes envisioned for a modernized grid. Investment in energy storage is essential for keeping pace with the increasing demands for electricity arising from continued growth in U.S. productivity, shifts in and continued expansion of national cultural imperatives (e.g., the distributed

32

Nonaqueous electrolyte for electrical storage devices  

DOE Patents (OSTI)

Improved nonaqueous electrolytes for application in electrical storage devices such as electrochemical capacitors or batteries are disclosed. The electrolytes of the invention contain salts consisting of alkyl substituted, cyclic delocalized aromatic cations, and their perfluoro derivatives, and certain polyatomic anions having a van der Waals volume less than or equal to 100 .ANG..sup.3, preferably inorganic perfluoride anions and most preferably PF.sub.6.sup.-, the salts being dissolved in organic liquids, and preferably alkyl carbonate solvents, or liquid sulfur dioxide or combinations thereof, at a concentration of greater than 0.5M and preferably greater than 1.0M. Exemplary electrolytes comprise 1-ethyl-3-methylimidazolium hexafluorophosphate dissolved in a cyclic or acylic alkyl carbonate, or methyl formate, or a combination therof. These improved electrolytes have useful characteristics such as higher conductivity, higher concentration, higher energy storage capabilities, and higher power characteristics compared to prior art electrolytes. Stacked capacitor cells using electrolytes of the invention permit high energy, high voltage storage.

McEwen, Alan B. (Melrose, MA); Yair, Ein-Eli (Waltham, MA)

1999-01-01T23:59:59.000Z

33

Managing Wind-based Electricity Generation and Storage  

E-Print Network (OSTI)

Managing Wind-based Electricity Generation and Storage by Yangfang Zhou Submitted to the Tepper, and to meet increasing electricity demand without harming the environment. Two of the most promising solutions for the energy issue are to rely on renewable energy, and to develop efficient electricity storage. Renewable

Sadeh, Norman M.

34

Electrical energy storage systems: A comparative life cycle cost analysis  

Science Journals Connector (OSTI)

Abstract Large-scale deployment of intermittent renewable energy (namely wind energy and solar PV) may entail new challenges in power systems and more volatility in power prices in liberalized electricity markets. Energy storage can diminish this imbalance, relieving the grid congestion, and promoting distributed generation. The economic implications of grid-scale electrical energy storage technologies are however obscure for the experts, power grid operators, regulators, and power producers. A meticulous techno-economic or cost-benefit analysis of electricity storage systems requires consistent, updated cost data and a holistic cost analysis framework. To this end, this study critically examines the existing literature in the analysis of life cycle costs of utility-scale electricity storage systems, providing an updated database for the cost elements (capital costs, operational and maintenance costs, and replacement costs). Moreover, life cycle costs and levelized cost of electricity delivered by electrical energy storage is analyzed, employing Monte Carlo method to consider uncertainties. The examined energy storage technologies include pumped hydropower storage, compressed air energy storage (CAES), flywheel, electrochemical batteries (e.g. lead–acid, NaS, Li-ion, and Ni–Cd), flow batteries (e.g. vanadium-redox), superconducting magnetic energy storage, supercapacitors, and hydrogen energy storage (power to gas technologies). The results illustrate the economy of different storage systems for three main applications: bulk energy storage, T&D support services, and frequency regulation.

Behnam Zakeri; Sanna Syri

2015-01-01T23:59:59.000Z

35

Nanostructures for Electrical Energy Storage (NEES) | U.S. DOE...  

Office of Science (SC) Website

Nanostructures for Electrical Energy Storage (NEES) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events...

36

Energy Storage: The Key to a Reliable, Clean Electricity Supply |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage: The Key to a Reliable, Clean Electricity Supply Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply February 22, 2012 - 4:52pm Addthis Improved energy storage technology offers a number of economic and environmental benefits. Improved energy storage technology offers a number of economic and environmental benefits. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? ARPA-E's GRIDS program is investing in new technologies that make storing energy cheaper and more efficient. Energy storage isn't just for AA batteries any more. Thanks to investments from the Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity

37

Energy Storage: The Key to a Reliable, Clean Electricity Supply |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply February 22, 2012 - 4:52pm Addthis Improved energy storage technology offers a number of economic and environmental benefits. Improved energy storage technology offers a number of economic and environmental benefits. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? ARPA-E's GRIDS program is investing in new technologies that make storing energy cheaper and more efficient. Energy storage isn't just for AA batteries any more. Thanks to investments from the Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity

38

Bottling Electricity: Storage as a Strategic Tool for Managing Variability  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bottling Electricity: Storage as a Strategic Tool for Managing Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid - EAC Report (December 2008) Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid - EAC Report (December 2008) The objectives of this report are to provide the Secretary of Energy with the Electricity Advisory Committee's proposed five-year plan for integrating basic and applied research on energy storage technology applications. This report recommends policies that the U.S. Department of Energy (DOE) should consider as it develops and implements an energy storage technologies program, as authorized by the Energy Independence and Security Act of 2007. Bottling Electricity: Storage as a Strategic Tool for Managing Variability

39

Robert J. Schalkoff Department of Electrical and Computer Engineering  

E-Print Network (OSTI)

Engineering M.E., Rensselaer Polytechnic Institute, 1976, Electric Power Engineering B.S., University Production Research Company, 1976-77: Engineer, Subsea Systems Section. Houston, TX AREAS OF SPECIALIZATION. PAMI-4, No. 1, p. 2-10, January 1982. Schalkoff, R.J., and Labuz, J, "New Results Using an Integrated

Duchowski, Andrew T.

40

Electric utility applications of hydrogen energy storage systems  

SciTech Connect

This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

Swaminathan, S.; Sen, R.K.

1997-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Electric Storage in California's Commercial Buildings  

E-Print Network (OSTI)

Distributed photovoltaic generation and energy storageenergy management in buildings and microgrids with e.g. installed Photovoltaic (energy storage, TS – thermal storage, FB – Flow Battery, AC – Absorption Chiller, ST – solar thermal system, PV – photovoltaic.

Stadler, Michael

2014-01-01T23:59:59.000Z

42

Thermal Energy Storage for Electricity Peakdemand Mitigation: A Solution in  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Energy Storage for Electricity Peakdemand Mitigation: A Solution in Thermal Energy Storage for Electricity Peakdemand Mitigation: A Solution in Developing and Developed World Alike Title Thermal Energy Storage for Electricity Peakdemand Mitigation: A Solution in Developing and Developed World Alike Publication Type Conference Proceedings Refereed Designation Refereed LBNL Report Number LBNL-6308E Year of Publication 2013 Authors DeForest, Nicholas, Gonçalo Mendes, Michael Stadler, Wei Feng, Judy Lai, and Chris Marnay Conference Name ECEEE 2013 Summer Study 3-8 June 2013, Belambra Les Criques, France Date Published 06/2013 Conference Location Belambra Les Criques, France Keywords electricity, energy storage, Energy System Planning & Grid Integration, peakdemand mitigation, thermal Abstract In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity

43

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

and solar thermal collectors; electrical storage, flowis disallowed; 5. a low storage, PV, and solar thermal priceand heat storage; heat exchangers for application of solar

Stadler, Michael

2008-01-01T23:59:59.000Z

44

An electric thermal storage marketing feasibility study  

SciTech Connect

The author presents a study undertaken to determine the market potential of a cooling storage rebate program in the Orange and Rockland service territory. The study was also designed to provide insight into which customer groups are the most likely candidates for cool storage. The information gained from this study is useful for both long term demand side planning and in focusing efforts cost effectively on future cool storage marketing programs.

Onofry, R. (Orange and Rockland Utilities (US))

1987-01-01T23:59:59.000Z

45

Ultracapacitor/Battery Hybrid Energy Storage Systems for Electric Vehicles.  

E-Print Network (OSTI)

??This thesis deals with the design of Hybrid Energy Storage System (HESS) for Light Electric Vehicles (LEV) and EVs. More specifically, a tri-mode high-efficiency non-isolated… (more)

Moshirvaziri, Mazhar

2012-01-01T23:59:59.000Z

46

Designing a Thermal Energy Storage Program for Electric Utilities  

E-Print Network (OSTI)

Electric utilities are looking at thermal energy storage technology as a viable demand side management (DSM) option. In order for this DSM measure to be effective, it must be incorporated into a workable, well-structured utility program. This paper...

Niehus, T. L.

1994-01-01T23:59:59.000Z

47

Effect of Heat and Electricity Storage and Reliability on Microgrid  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of Heat and Electricity Storage and Reliability on Microgrid Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States Title Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States Publication Type Report Year of Publication 2009 Authors Stadler, Michael, Chris Marnay, Afzal S. Siddiqui, Judy Lai, Brian Coffey, and Hirohisa Aki Pagination 106 Date Published 03/2006 Publisher LBNL City Berkeley Keywords consortium for electric reliability technology solutions (certs), energy analysis and environmental impacts department Abstract Berkeley Lab has for several years been developing methods for selection of optimal microgrid systems, especially for commercial building applications, and applying these methods in the Distributed Energy Resources Customer Adoption Model (DER-CAM). This project began with 3 major goals:

48

Review of electrical energy storage system for vehicular applications  

Science Journals Connector (OSTI)

Abstract Recently, automotive original equipment manufacturers have focused their efforts on developing greener propulsion solutions in order to meet the societal demand and ecological need for clean transportation, so the development of new energy vehicle (NEV) has become a consensus among governments and automotive enterprises. Efficient electrical energy storage system (EESS) appears to be very promising for meeting the rapidly increased requirements of vehicular applications. It is necessary to understand performances of electrical energy storage technologies. Therefore, this paper reviews the various electrical energy storage technologies and their latest applications in vehicle, such as battery energy storage (BES), superconducting magnetic energy storage (SMES), flywheel energy storage (FES), ultra-capacitor (UC) energy storage (UCES) and hybrid energy storage (HES). The research priorities and difficulties of each electrical energy storage technology are also presented and compared. Afterwards, the key technologies of EESS design for vehicles are presented. In addition, several conventional \\{EESSs\\} for vehicle applications are also analyzed; the comparison on advantages and disadvantages of various conventional \\{EESSs\\} is highlighted. From the rigorous review, it is observed that almost all current conventional \\{EESSs\\} for vehicles cannot meet a high-efficiency of power flow over the full operation range; optimization of EESS and improved control strategies will become an important research topic. Finally, this paper especially focuses on a type of linear engine, a brand new automotive propulsion system used for NEV; the guiding principle of EESS design for the new type of linear engine is proposed, an overview of a novel hybrid EESS based on hybrid power source and series–parallel switchover of UC with high efficiency under wide power flow range for the type of linear engine is presented, and advanced features of the novel hybrid EESS are highlighted.

Guizhou Ren; Guoqing Ma; Ning Cong

2015-01-01T23:59:59.000Z

49

Tensor electric polarizability of the deuteron in storage-ring experiments  

E-Print Network (OSTI)

The tensor electric polarizability of the deuteron gives important information about spin-dependent nuclear forces. If a resonant horizontal electric field acts on a deuteron beam circulating into a storage ring, the tensor electric polarizability stimulates the buildup of the vertical polarization of the deuteron (the Baryshevsky effect). General formulas describing this effect have been derived. Calculated formulas agree with the earlier obtained results. The problem of the influence of tensor electric polarizability on spin dynamics in such a deuteron electric-dipole-moment experiment in storage rings has been investigated. Doubling the resonant frequency used in this experiment dramatically amplifies the Baryshevsky effect and provides the opportunity to make high-precision measurements of the deuteron's tensor electric polarizability.

Alexander J. Silenko

2007-01-13T23:59:59.000Z

50

Tensor electric polarizability of the deuteron in storage-ring experiments  

SciTech Connect

The tensor electric polarizability of the deuteron gives important information about spin-dependent nuclear forces. If a resonant horizontal electric field acts on a deuteron beam circulating into a storage ring, the tensor electric polarizability stimulates the buildup of the vertical polarization of the deuteron (the Baryshevsky effect). General formulas describing this effect have been derived. Calculated formulas agree with the earlier obtained results. The problem of the influence of tensor electric polarizability on spin dynamics in such a deuteron electric-dipole-moment experiment in storage rings has been investigated. Doubling the resonant frequency used in this experiment dramatically amplifies the Baryshevsky effect and provides the opportunity to make high-precision measurements of the deuteron's tensor electric polarizability.

Silenko, Alexander J. [Institute of Nuclear Problems, Belarusian State University, Minsk 220080 (Belarus)

2007-01-15T23:59:59.000Z

51

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

lead/acid battery, and thermal storage, capabilities, withhour electrical flow battery 8 thermal Not all constraintslifetime ( a) thermal storage 11 flow battery absorption

Stadler, Michael

2008-01-01T23:59:59.000Z

52

Model-Free Learning-Based Online Management of Hybrid Electrical Energy Storage Systems in Electric Vehicles  

E-Print Network (OSTI)

Model-Free Learning-Based Online Management of Hybrid Electrical Energy Storage Systems in Electric@elpl.snu.ac.kr Abstract--To improve the cycle efficiency and peak output power density of energy storage systems in electric vehicles (EVs), supercapacitors have been proposed as auxiliary energy storage elements

Pedram, Massoud

53

Electrical Energy Storage for the Grid: A Battery of Choices  

Science Journals Connector (OSTI)

...and integrate energy storage. The...characteristics of the grid as a supply chain...electric power infrastructure functions largely...a majority of energy is generated...as plug-in hybrids (PHEVs), provided...stability, high-energy density, safety...automotive and grid applications...

Bruce Dunn; Haresh Kamath; Jean-Marie Tarascon

2011-11-18T23:59:59.000Z

54

Robert Kostecki  

NLE Websites -- All DOE Office Websites (Extended Search)

Robert Kostecki Robert Kostecki Robert Kostecki Division Office Electrochemical Technologies Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 90R3027D Berkeley CA 94720 Office Location: 90-3026D (510) 486-6002 R_Kostecki@lbl.gov Robert Kostecki is a Staff Scientist and Deputy Division Director of the Environmental Energy Technologies Division in Lawrence Berkeley National Laboratory. He contributes to LBNL scientific, programmatic and strategic leadership in Energy and Environment areas through expanding existing research programs, assistance with development and maintenance of sponsor and partner relationships, and creating new research initiatives. His research interests focus on fundamental phenomena that determine the function and electrochemical performance of electrochemical energy storage

55

Role of Energy Storage with Renewable Electricity Generation  

SciTech Connect

Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

2010-01-01T23:59:59.000Z

56

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

Energy.gov (U.S. Department of Energy (DOE))

This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

57

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

SciTech Connect

This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

Steward, D.; Saur, G.; Penev, M.; Ramsden, T.

2009-11-01T23:59:59.000Z

58

Design and evaluation of seasonal storage hydrogen peak electricity supply system  

E-Print Network (OSTI)

The seasonal storage hydrogen peak electricity supply system (SSHPESS) is a gigawatt-year hydrogen storage system which stores excess electricity produced as hydrogen during off-peak periods and consumes the stored hydrogen ...

Oloyede, Isaiah Olanrewaju

2011-01-01T23:59:59.000Z

59

Research on simulation of ship electric propulsion system with flywheel energy storage system  

Science Journals Connector (OSTI)

Flywheel energy storage has been widely used to ... electric power quality. This paper designed a flywheel energy storage device to improve ship electric propulsion system power grid quality. The practical mathem...

Chunling Xie; Conghui Zhang; Jen-Yuan James Chang

2011-06-01T23:59:59.000Z

60

Research on simulation of ship electric propulsion system with flywheel energy storage system  

Science Journals Connector (OSTI)

Flywheel energy storage has been widely used to improve the ground electric power quality. This paper designed a flywheel energy storage device to improve ship electric propulsion system power grid quality. The practical mathematical models of flywheel ...

Chunling Xie; Conghui Zhang; Jen-Yuan James Chang

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Designing a residential hybrid electrical energy storage system based on the energy buffering strategy  

Science Journals Connector (OSTI)

Due to severe variation in load demand over time, utility companies generally raise electrical energy price during periods of high load demand. A grid-connected hybrid electrical energy storage (HEES) system can help residential users lower their electric ... Keywords: electric bill savings, energy management, hybrid electrical energy storage system

Di Zhu; Siyu Yue; Yanzhi Wang; Younghyun Kim; Naehyuck Chang; Massoud Pedram

2013-09-01T23:59:59.000Z

62

Neural Network Based Energy Storage System Modeling for Hybrid Electric Vehicles  

SciTech Connect

Demonstrates the application of an artificial neural network (ANN) for modeling the energy storage system of a hybrid electric vehicle.

Bhatikar, S. R.; Mahajan, R. L.; Wipke, K.; Johnson, V.

1999-08-01T23:59:59.000Z

63

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

efficiency requirements - Maximum emission limits Investment constraints: - Payback period is constrained Storage constraints: - Electricity stored is limited by battery

Stadler, Michael

2008-01-01T23:59:59.000Z

64

Energy Storage System Considerations for Grid-Charged Hybrid Electric Vehicles (Presentation)  

SciTech Connect

Provides an overview of a study regarding energy storage system considerations for a plug-in hybrid electric vehicle.

Markel, T.; Simpson, A.

2005-09-01T23:59:59.000Z

65

Electricity storage for short term power system service (Smart Grid  

Open Energy Info (EERE)

storage for short term power system service (Smart Grid storage for short term power system service (Smart Grid Project) Jump to: navigation, search Project Name Electricity storage for short term power system service Country Denmark Coordinates 56.26392°, 9.501785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.26392,"lon":9.501785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

66

The Role of Energy Storage with Renewable Electricity Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

87 87 January 2010 The Role of Energy Storage with Renewable Electricity Generation Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-47187 January 2010 The Role of Energy Storage with Renewable Electricity Generation Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan Prepared under Task No. WER8.5005 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

67

Electric Storage Partners / GeoBATTERY | Open Energy Information  

Open Energy Info (EERE)

Storage Partners / GeoBATTERY Storage Partners / GeoBATTERY Jump to: navigation, search Name Electric Storage Partners / GeoBATTERY Address P.O. Box 3321 Place Austin, Texas Zip 78764 Sector Efficiency Product Manufacturer and developer of utility-scale bulk grid storage systems for the electric utilities Website http://www.geobattery.com/ Coordinates 30.2667°, -97.7428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2667,"lon":-97.7428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

68

Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike  

E-Print Network (OSTI)

N ATIONAL L ABORATORY Thermal Energy Storage for Electricity20, 2012. I. Dincer, On thermal energy storage systems andin research on cold thermal energy storage, International

DeForest, Nicholas

2014-01-01T23:59:59.000Z

69

NV energy electricity storage valuation : a study for the DOE Energy Storage Systems program.  

SciTech Connect

This study examines how grid-level electricity storage may benefit the operations of NV Energy, and assesses whether those benefits are likely to justify the cost of the storage system. To determine the impact of grid-level storage, an hourly production cost model of the Nevada Balancing Authority (%22BA%22) as projected for 2020 was created. Storage was found to add value primarily through the provision of regulating reserve. Certain storage resources were found likely to be cost-effective even without considering their capacity value, as long as their effectiveness in providing regulating reserve was taken into account. Giving fast resources credit for their ability to provide regulating reserve is reasonable, given the adoption of FERC Order 755 (%22Pay-for-performance%22). Using a traditional five-minute test to determine how much a resource can contribute to regulating reserve does not adequately value fast-ramping resources, as the regulating reserve these resources can provide is constrained by their installed capacity. While an approximation was made to consider the additional value provided by a fast-ramping resource, a more precise valuation requires an alternate regulating reserve methodology. Developing and modeling a new regulating reserve methodology for NV Energy was beyond the scope of this study, as was assessing the incremental value of distributed storage.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader [Pacific Northwest National Laboratory, Richland, WA; Jin, Chunlian [Pacific Northwest National Laboratory, Richland, WA

2013-06-01T23:59:59.000Z

70

Energy Storage Activities in the United States Electricity Grid. May 2011 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Activities in the United States Electricity Grid. Energy Storage Activities in the United States Electricity Grid. May 2011 Energy Storage Activities in the United States Electricity Grid. May 2011 Energy storage technologies offer cost-effective flexibility and ancillary services needed by the U.S power grid. As policy reforms and decreasing technology costs facilitate market penetration, energy storage technologies offer increasingly competitive alternative means for utilities to engage these ancillary services. This report prepared by the Electricity Advisory Committee summarizes energy storage technology activities and projects in the U.S. electric power grid as of May 2011. Energy Storage Activities in the United States Electricity Grid. May 2011 More Documents & Publications Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012)

71

Application of 3D electrical resistivity imaging in an underground potash mine Robert A. Eso and Douglas W. Oldenburg, University of British ColumbiaGeophysical Inversion Facility  

E-Print Network (OSTI)

Application of 3D electrical resistivity imaging in an underground potash mine Robert A. Eso it possible to explore for water infiltrated areas in underground salt mines using electrical resistivity the application of 3D electrical resistivity imaging (ERI) in an underground potash mine located in Saskatchewan

Oldenburg, Douglas W.

72

Cost-Effective Design of a Hybrid Electrical Energy Storage System for Electric Vehicles  

E-Print Network (OSTI)

of the battery cycle efficiency and state of health, characteristics of the supercapacitor bank, and dynamics energy storage system comprised of Li-ion batteries only. 1. INTRODUCTION Electric vehicles (EVs) have highly dependent on the intrinsic characteristics of Li-ion batteries. The cycle efficiency degradation

Pedram, Massoud

73

DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPRI 2013 Electricity Storage Handbook in Collaboration with EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA (July 2013) DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA (July 2013) The Electricity Storage Handbook is a how-to guide for utility and rural cooperative engineers, planners, and decision makers to plan and implement energy storage projects. The Handbook also serves as an information resource for investors and venture capitalists, providing the latest developments in technologies and tools to guide their evaluations of energy storage opportunities. It includes a comprehensive database of the cost of current storage systems in a wide variety of electric utility and customer services, along with interconnection schematics. A list of significant past and present energy storage projects is provided for a practical

74

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network (OSTI)

electrochemical capacitor energy storage systems. 1.2 Energyto electrochemical energy storage in TiO 2 (anatase)3D nanoarchitec- tures for energy storage and conversion,”

Wang, Hainan

2013-01-01T23:59:59.000Z

75

Nanowire modified carbon fibers for enhanced electrical energy storage  

Science Journals Connector (OSTI)

The study of electrochemical super-capacitors has become one of the most attractive topics in both academia and industry as energy storage devices because of their high power density long life cycles and high charge/discharge efficiency. Recently there has been increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace automobiles and portable electronics. These multifunctional structural super-capacitors provide structures combining energy storage and load bearing functionalities leading to material systems with reduced volume and/or weight. Due to their superior materials properties carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore it can be an excellent candidate for structural energy storage applications. Hence this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area thus fast ion diffusion rates. Scanning Electron Microscopy and X-Ray Diffraction measurements are used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing is performed using a potentio-galvanostat. The results show that gold sputtered nanowire carbon fiber hybrid provides 65.9% higher energy density than bare carbon fiber cloth as super-capacitor.

Mohammad Arif Ishtiaque Shuvo; Tzu-Liang (Bill) Tseng; Md. Ashiqur Rahaman Khan; Hasanul Karim; Philip Morton; Diego Delfin; Yirong Lin

2013-01-01T23:59:59.000Z

76

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage techno

77

Energy Storage Activities in the United States Electricity Grid. May 2011 |  

NLE Websites -- All DOE Office Websites (Extended Search)

Activities in the United States Electricity Grid. Activities in the United States Electricity Grid. May 2011 Energy Storage Activities in the United States Electricity Grid. May 2011 Energy storage technologies offer cost-effective flexibility and ancillary services needed by the U.S power grid. As policy reforms and decreasing technology costs facilitate market penetration, energy storage technologies offer increasingly competitive alternative means for utilities to engage these ancillary services. This report prepared by the Electricity Advisory Committee summarizes energy storage technology activities and projects in the U.S. electric power grid as of May 2011. Energy Storage Activities in the United States Electricity Grid. May 2011 More Documents & Publications Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012)

78

Enabling Utility-Scale Electrical Energy Storage through Underground Hydrogen-Natural Gas Co-Storage.  

E-Print Network (OSTI)

??Energy storage technology is needed for the storage of surplus baseload generation and the storage of intermittent wind power, because it can increase the flexibility… (more)

Peng, Dan

2013-01-01T23:59:59.000Z

79

Thermal Energy Storage: It's not Just for Electric Cost Savings Anymore  

E-Print Network (OSTI)

Large cool Thermal Energy Storage (TES), typically ice TES or chilled water (CHW) TES, has traditionally been thought of, and used for, managing time-of-day electricity use to reduce the cost associated with electric energy and demand charges...

Andrepont, J. S.

2014-01-01T23:59:59.000Z

80

Modelling challenges for battery materials and electrical energy storage  

Science Journals Connector (OSTI)

Many vital requirements in world-wide energy production, from the electrification of transportation to better utilization of renewable energy production, depend on developing economical, reliable batteries with improved performance characteristics. Batteries reduce the need for gasoline and liquid hydrocarbons in an electrified transportation fleet, but need to be lighter, longer-lived and have higher energy densities, without sacrificing safety. Lighter and higher-capacity batteries make portable electronics more convenient. Less expensive electrical storage accelerates the introduction of renewable energy to electrical grids by buffering intermittent generation from solar or wind. Meeting these needs will probably require dramatic changes in the materials and chemistry used by batteries for electrical energy storage. New simulation capabilities, in both methods and computational resources, promise to fundamentally accelerate and advance the development of improved materials for electric energy storage. To fulfil this promise significant challenges remain, both in accurate simulations at various relevant length scales and in the integration of relevant information across multiple length scales. This focus section of Modelling and Simulation in Materials Science and Engineering surveys the challenges of modelling for energy storage, describes recent successes, identifies remaining challenges, considers various approaches to surmount these challenges and discusses the potential of these methods for future battery development. Zhang et al begin with atoms and electrons, with a review of first-principles studies of the lithiation of silicon electrodes, and then Fan et al examine the development and use of interatomic potentials to the study the mechanical properties of lithiated silicon in larger atomistic simulations. Marrocchelli et al study ionic conduction, an important aspect of lithium-ion battery performance, simulated by molecular dynamics. Emerging high-throughput methods allow rapid screening of promising new candidates for battery materials, illustrated for Li-ion olivine phosphates by Hajiyani et al . This collection includes descriptions of new techniques to model the chemistry at an electrode–electrolyte interface; Gunceler et al demonstrate coupling an electronic description of the electrode chemistry with the fluid electrolyte in a joint density functional theory method. Bridging to longer length scales to probe mechanical properties and transport, Preiss et al present a proof-of-concept phase field approach for a permeation model at an electrochemical interface, An and Jiang examine finite element simulations for transient deformation and transport in electrodes, and Haftabaradaran et al study the application of an analytical model to investigate the critical thickness for fracture in thick film electrodes. The focus section concludes with a study by Chung et al which combines modelling and experiment, examining the validity of the Bruggeman relation for porous electrodes. All of the papers were peer-reviewed following the standard procedure established by the Editorial Board of Modelling and Simulation in Materials Science and Engineering .

Richard P Muller; Peter A Schultz

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Electricity Generation Renewable Electricity Generation and Storage Technologies Volume 2 of 4 Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J.M. Massachusetts Institute of Technology Mai, T. National Renewable Energy Laboratory Arent, D. Joint Institute for Strategic Energy Analysis Porro, G. National Renewable Energy Laboratory Meshek, M. National Renewable Energy Laboratory Sandor, D. National Renewable

82

Dynamic Positioning System as Dynamic Energy Storage on Diesel-Electric Ships  

E-Print Network (OSTI)

1 Dynamic Positioning System as Dynamic Energy Storage on Diesel-Electric Ships Tor A. Johansen in order to implement energy storage in the kinetic and potential energy of the ship motion using the DP in order to relate the dynamic energy storage capacity to the maximum allowed ship position deviation

Johansen, Tor Arne

83

Simulating the Value of Advanced Electricity Storage: Initial Results from a Case Study  

E-Print Network (OSTI)

with the growing challenges of integrating renewable electricity generation. For example, a recent news article by the Pacific Northwest National Laboratory's assessment of energy storage for grid balancing and arbitrage, Inc in bulk energy storage using GCAES, the General Compression Advanced Energy StorageTM technology

Ford, Andrew

84

Room-temperature stationary sodium-ion batteries for large-scale electric energy storage  

E-Print Network (OSTI)

energy and utility applications, such as pump hydro, compressed air, y-wheel and electrochemicalRoom-temperature stationary sodium-ion batteries for large-scale electric energy storage Huilin Pan attention particularly in large- scale electric energy storage applications for renewable energy and smart

Wang, Wei Hua

85

Enhancing Electrical Supply by Pumped Storage in Tidal Lagoons  

E-Print Network (OSTI)

months of 2006. Thanks to Heriot­Watt University Physics Department. Storage and wind Offshore wind farms the Aluminium plant and the water- purification factory only when the wind blows. A third approach is storage

MacKay, David J.C.

86

Electrical Energy Storage for the Grid: A Battery of Choices  

Science Journals Connector (OSTI)

...represent an excellent energy storage technology for the integration of renewable resources. Their...available for grid applications, with...issues facing the integration of energy storage into the...identify their challenges, and provide...

Bruce Dunn; Haresh Kamath; Jean-Marie Tarascon

2011-11-18T23:59:59.000Z

87

Materials Design and Discovery: Catalysis and Electrical Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

and Discovery: Catalysis and Discovery: Catalysis and Electrical Energy Storage Presenter: N ichols A . R omero, A LCF ESP p ost---doc: Anouar B enali, A LCF PI: L arry C urAss, A NL M SD a nd C NM Comments from a reviewer on "Material Design and Discovery" from a proposal § How c ould t his m achine w ith t hese p rograms b e u sed t o d esign a n ew s olar c ell? Or a n ew c ure f or A IDS? O r a n ew h igh---T s uperconductor? T his i s n ot i ntended a s a trivial q uesAon. T he p resent m ethod o f D ISCOVERY r elies o n t he t rained h uman mind ( insight) a nd e xperiment ( serendipity). C omputaAonal s cience s o f ar h as n ot delivered a ny n ew d iscoveries b ecause i t l acks t he p ossibility o f s erendipity. T he greatest s uccess o f c omputaAonal c hemistry h as b een i mproved i nsight i nto t he way m aterial b ehaves

88

U.S. Department of Energy Electricity Advisory Committee Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 19 & 20th, 2011 October 19 & 20th, 2011 Minutes EAC Members in Attendance: Richard Cowart Regulatory Assistance Project CHAIR Rick Bowen Alcoa Honorable Robert Curry New York State Public Service Commission Jose Delgado American Transmission Company (Ret.) Roger Duncan Austin Energy (Ret.) Robert Gramlich American Wind Energy Association Michael Heyeck American Electric Power Joseph Kelliher NextEra Energy, Inc. Edward Krapels Anbaric Holdings Ralph Masiello KEMA Richard Meyer, for Barry Lawson National Rural Electric Cooperative Association David Nevius North American Electric Reliability Corporation Irwin Popowsky Pennsylvania Consumer Advocate Wanda Reder S&C Electric Company Brad Roberts Electricity Storage Association Honorable Tom Sloan

89

Cutting Down Electricity Cost in Internet Data Centers by Using Energy Storage  

E-Print Network (OSTI)

Cutting Down Electricity Cost in Internet Data Centers by Using Energy Storage Yuanxiong Guo, Zongrui Ding, Yuguang Fang, Dapeng Wu Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA Email: {guoyuanxiong@, dingzr@, fang@ece., wu@ece.}ufl.edu Abstract--Electricity

Latchman, Haniph A.

90

SmartCharge: Cutting the Electricity Bill in Smart Homes with Energy Storage  

E-Print Network (OSTI)

SmartCharge: Cutting the Electricity Bill in Smart Homes with Energy Storage Aditya Mishra, David,irwin,shenoy,kurose}@cs.umass.edu Ting Zhu Binghamton University tzhu@binghamton.edu ABSTRACT Market-based electricity pricing provides consumers an op- portunity to lower their electric bill by shifting consump- tion to low price periods

Shenoy, Prashant

91

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network (OSTI)

Ref. [1]) and (b) hybrid diesel/electric rubber-tired gantryhybrid bus and a diesel/electric hybrid gantry crane1]) and (b) hy- brid diesel/electric rubber-tired gantry

Wang, Hainan

2013-01-01T23:59:59.000Z

92

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network (OSTI)

energy storage systems (EES) have been the subject of intense study as they constitute an essential element in the development of sustainable energy

Wang, Hainan

2013-01-01T23:59:59.000Z

93

EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

52: Pacific Gas & Electric, Compressed Air Energy Storage 52: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California Summary DOE prepared an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California. Public Comment Opportunities Draft EA: Comment Period Ended 12/31/13. DOE will consider late submissions to the extent practicable. Comments should be marked "PG&E Compressed Air Energy Storage Draft EA

94

Urban Electric Power Takes Energy Storage from Startup to Grid-Scale |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Urban Electric Power Takes Energy Storage from Startup to Urban Electric Power Takes Energy Storage from Startup to Grid-Scale Urban Electric Power Takes Energy Storage from Startup to Grid-Scale June 25, 2013 - 12:42pm Addthis Learn how the CUNY Energy Institute is creating safe, low cost, rechargeable, long lifecycle batteries that could be used to store renewable energy. | Video courtesy of the Energy Department. Alexa McClanahan Communications Support Contractor to ARPA-E What are the key facts? The CUNY Energy Institute developed a low-cost zinc-anode rechargeable battery that can be used for grid-scale energy storage. Building on this technology, ARPA-E funded the CUNY Energy Institute to develop a long-lasting, fully rechargeable battery that can store renewable energy for future grid-use at any location. In 2012, Urban Electric Power was formed to commercialize the

95

Urban Electric Power Takes Energy Storage from Startup to Grid-Scale |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Urban Electric Power Takes Energy Storage from Startup to Urban Electric Power Takes Energy Storage from Startup to Grid-Scale Urban Electric Power Takes Energy Storage from Startup to Grid-Scale June 25, 2013 - 12:42pm Addthis Learn how the CUNY Energy Institute is creating safe, low cost, rechargeable, long lifecycle batteries that could be used to store renewable energy. | Video courtesy of the Energy Department. Alexa McClanahan Communications Support Contractor to ARPA-E What are the key facts? The CUNY Energy Institute developed a low-cost zinc-anode rechargeable battery that can be used for grid-scale energy storage. Building on this technology, ARPA-E funded the CUNY Energy Institute to develop a long-lasting, fully rechargeable battery that can store renewable energy for future grid-use at any location. In 2012, Urban Electric Power was formed to commercialize the

96

The operating schedule for battery energy storage companies in electricity market  

Science Journals Connector (OSTI)

This paper presents a series of operating schedules for Battery Energy Storage Companies (BESC) to provide peak ... shaving and spinning reserve services in the electricity markets under increasing wind penetrati...

Shengqi Zhang; Yateendra Mishra…

2013-12-01T23:59:59.000Z

97

Electrical Energy Storage for the Grid: A Battery of Choices  

Science Journals Connector (OSTI)

...the use of fossil fuels and related carbon...Compressed air storage is a...features, including pollution-free operation...resulting in higher fuel consumption and...6). Storage solutions based on the...400 Zn/air R&D 5.4 1...

Bruce Dunn; Haresh Kamath; Jean-Marie Tarascon

2011-11-18T23:59:59.000Z

98

The state of energy storage in electric utility systems and its effect on renewable energy resources  

SciTech Connect

This report describes the state of the art of electric energy storage technologies and discusses how adding intermittent renewable energy technologies (IRETs) to a utility network affects the benefits from storage dispatch. Load leveling was the mode of storage dispatch examined in the study. However, the report recommended that other modes be examined in the future for kilowatt and kilowatt-hour optimization of storage. The motivation to install storage with IRET generation can arise from two considerations: reliability and enhancement of the value of energy. Because adding storage increases cost, reliability-related storage is attractive only if the accruing benefits exceed the cost of storage installation. The study revealed that the operation of storage should not be guided by the output of the IRET but rather by system marginal costs. Consequently, in planning studies to quantify benefits, storage should not be considered as an entity belonging to the system and not as a component of IRETS. The study also indicted that because the infusion of IRET energy tends to reduce system marginal cost, the benefits from load leveling (value of energy) would be reduced. However, if a system has storage, particularly if the storage is underutilized, its dispatch can be reoriented to enhance the benefits of IRET integration.

Rau, N.S.

1994-08-01T23:59:59.000Z

99

ESS 2012 Peer Review - Electrical Energy Storage R&D at PNNL - Vincent Sprenkle, PNNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PNNL Electrical Energy Storage (EES) PNNL Electrical Energy Storage (EES) R&D strategy Crosscutting science Advanced diagnostic study, NMR, TEM, etc. Electrochemical study * Mass/charge transport * Electrochemical * Flow, thermal, ... * Basic chemistry * Materials structure * Physical properties * Electrochemical activity * Reaction kinetics * Performance Computer Modeling Technology Transfer EES Technologies Novel redox flow batteries Next gen Na-batteries Low cost, long life Li-ion, New concepts, emerging technologies Grid Analytics * Roles of storage in US grids * Value, locations, targets Cost Analysis * Cost and performance requirements Academic/National Lab/Industrial Collaborations Next Generation Redox Flow Batteries Developed next generation redox flow battery (RFB) that can demonstrate substantial

100

EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

752: Pacific Gas & Electric, Compressed Air Energy Storage 752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California Summary DOE prepared an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California. Public Comment Opportunities Draft EA: Comment Period Ends 12/31/13. DOE will consider late submissions to the extent practicable. A notice of availability will be published in The Record (Stockton) and the

Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Impact of Storage on the Efficiency and Prices in Real-Time Electricity Markets  

E-Print Network (OSTI)

Impact of Storage on the Efficiency and Prices in Real-Time Electricity Markets Nicolas Gast Jean in dynamic real-time electricity markets. We consider that demand and renewable generation are stochastic of a competitive equilibrium when players are price-takers (they do not affect market prices). We further establish

Paris-Sud XI, Université de

102

Energy storage for frequency regulation on the electric grid .  

E-Print Network (OSTI)

??Ancillary services such as frequency regulation are required for reliable operation of the electric grid. Currently, the same traditional thermal generators that supply bulk power… (more)

Leitermann, Olivia

2012-01-01T23:59:59.000Z

103

Evaluation of distributed building thermal energy storage in conjunction with wind and solar electric power generation  

Science Journals Connector (OSTI)

Abstract Energy storage is often seen as necessary for the electric utility systems with large amounts of solar or wind power generation to compensate for the inability to schedule these facilities to match power demand. This study looks at the potential to use building thermal energy storage as a load shifting technology rather than traditional electric energy storage. Analyses are conducted using hourly electric load, temperature, wind speed, and solar radiation data for a 5-state central U.S. region in conjunction with simple computer simulations and economic models to evaluate the economic benefit of distributed building thermal energy storage (TES). The value of the TES is investigated as wind and solar power generation penetration increases. In addition, building side and smart grid enabled utility side storage management strategies are explored and compared. For a relative point of comparison, batteries are simulated and compared to TES. It is found that cooling TES value remains approximately constant as wind penetration increases, but generally decreases with increasing solar penetration. It is also clearly shown that the storage management strategy is vitally important to the economic value of TES; utility side operating methods perform with at least 75% greater value as compared to building side management strategies. In addition, TES compares fairly well against batteries, obtaining nearly 90% of the battery value in the base case; this result is significant considering TES can only impact building thermal loads, whereas batteries can impact any electrical load. Surprisingly, the value of energy storage does not increase substantially with increased wind and solar penetration and in some cases it decreases. This result is true for both TES and batteries and suggests that the tie between load shifting energy storage and renewable electric power generation may not be nearly as strong as typically thought.

Byron W. Jones; Robert Powell

2015-01-01T23:59:59.000Z

104

Energy storage for frequency regulation on the electric grid  

E-Print Network (OSTI)

Ancillary services such as frequency regulation are required for reliable operation of the electric grid. Currently, the same traditional thermal generators that supply bulk power also perform nearly all frequency regulation. ...

Leitermann, Olivia

2012-01-01T23:59:59.000Z

105

INTEGRATING WIND GENERATED ELECTRICITY WITH SPACE HEATING AND STORAGE BATTERIES.  

E-Print Network (OSTI)

??The world faces two major energy-related challenges: reducing greenhouse-gas emissions and improving energy security. Wind-electricity, a clean and environmentally sustainable energy source, appears promising. However,… (more)

Muralidhar, Anirudh

2011-01-01T23:59:59.000Z

106

Estimating the maximum potential revenue for grid connected electricity storage : arbitrage and regulation.  

SciTech Connect

The valuation of an electricity storage device is based on the expected future cash ow generated by the device. Two potential sources of income for an electricity storage system are energy arbitrage and participation in the frequency regulation market. Energy arbitrage refers to purchasing (stor- ing) energy when electricity prices are low, and selling (discharging) energy when electricity prices are high. Frequency regulation is an ancillary service geared towards maintaining system frequency, and is typically procured by the independent system operator in some type of market. This paper outlines the calculations required to estimate the maximum potential revenue from participating in these two activities. First, a mathematical model is presented for the state of charge as a function of the storage device parameters and the quantities of electricity purchased/sold as well as the quantities o ered into the regulation market. Using this mathematical model, we present a linear programming optimization approach to calculating the maximum potential revenue from an elec- tricity storage device. The calculation of the maximum potential revenue is critical in developing an upper bound on the value of storage, as a benchmark for evaluating potential trading strate- gies, and a tool for capital nance risk assessment. Then, we use historical California Independent System Operator (CAISO) data from 2010-2011 to evaluate the maximum potential revenue from the Tehachapi wind energy storage project, an American Recovery and Reinvestment Act of 2009 (ARRA) energy storage demonstration project. We investigate the maximum potential revenue from two di erent scenarios: arbitrage only and arbitrage combined with the regulation market. Our analysis shows that participation in the regulation market produces four times the revenue compared to arbitrage in the CAISO market using 2010 and 2011 data. Then we evaluate several trading strategies to illustrate how they compare to the maximum potential revenue benchmark. We conclude with a sensitivity analysis with respect to key parameters.

Byrne, Raymond Harry; Silva Monroy, Cesar Augusto.

2012-12-01T23:59:59.000Z

107

An International Survey of Electric Storage Tank Water Heater Efficiency and Standards  

SciTech Connect

Water heating is a main consumer of energy in households, especially in temperate and cold climates. In South Africa, where hot water is typically provided by electric resistance storage tank water heaters (geysers), water heating energy consumption exceeds cooking, refrigeration, and lighting to be the most consumptive single electric appliance in the home. A recent analysis for the Department of Trade and Industry (DTI) performed by the authors estimated that standing losses from electric geysers contributed over 1,000 kWh to the annual electricity bill for South African households that used them. In order to reduce this burden, the South African government is currently pursuing a programme of Energy Efficiency Standards and Labelling (EES&L) for electric appliances, including geysers. In addition, Eskom has a history of promoting heat pump water heaters (HPWH) through incentive programs, which can further reduce energy consumption. This paper provides a survey of international electric storage water heater test procedures and efficiency metrics which can serve as a reference for comparison with proposed geyser standards and ratings in South Africa. Additionally it provides a sample of efficiency technologies employed to improve the efficiency of electric storage water heaters, and outlines programs to promote adoption of improved efficiency. Finally, it surveys current programs used to promote HPWH and considers the potential for this technology to address peak demand more effectively than reduction of standby losses alone

Johnson, Alissa; Lutz, James; McNeil, Michael A.; Covary, Theo

2013-11-13T23:59:59.000Z

108

A Storage Ring Experiment to Detect a Proton Electric Dipole Moment  

E-Print Network (OSTI)

A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of $10^{-29}e\\cdot$cm by using polarized "magic" momentum $0.7$~GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the Standard Model at the scale of 3000~TeV.

Anastassopoulos, V; Baartman, R; Bai, M; Baessler, S; Benante, J; Berz, M; Blaskiewicz, M; Bowcock, T; Brown, K; Casey, B; Conte, M; Crnkovic, J; Fanourakis, G; Fedotov, A; Fierlinger, P; Fischer, W; Gaisser, M O; Giomataris, Y; Grosse-Perdekamp, M; Guidoboni, G; Haciomeroglu, S; Hoffstaetter, G; Huang, H; Incagli, M; Ivanov, A; Kawall, D; Khazin, B; Kim, Y I; King, B; Koop, I A; Larsen, R; Lazarus, D M; Lebedev, V; Lee, M J; Lee, S; Lee, Y H; Lehrach, A; Lenisa, P; Sandri, P Levi; Luccio, A U; Lyapin, A; MacKay, W; Maier, R; Makino, K; Malitsky, N; Marciano, W J; Meng, W; Meot, F; Metodiev, E M; Miceli, L; Moricciani, D; Morse, W M; Nagaitsev, S; Nayak, S K; Orlov, Y F; Ozben, C S; Park, S T; Pesce, A; Pile, P; Polychronakos, V; Podobedov, B; Pretz, J; Ptitsyn, V; Ramberg, E; Raparia, D; Rathmann, F; Rescia, S; Roser, T; Sayed, H Kamal; Semertzidis, Y K; Senichev, Y; Sidorin, A; Silenko, A; Simos, N; Stahl, A; Stephenson, E J; Stroeher, H; Syphers, M J; Talman, J; Talman, R M; Tishchenko, V; Touramanis, C; Tsoupas, N; Venanzoni, G; Vetter, K; Vlassis, S; Won, E; Zavattini, G; Zelenski, A; Zioutas, K

2015-01-01T23:59:59.000Z

109

Gas storage and separation by electric field swing adsorption  

DOE Patents (OSTI)

Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

2013-05-28T23:59:59.000Z

110

Charging and Storage Infrastructure Design for Electric Vehicles MARJAN MOMTAZPOUR and PATRICK BUTLER, Virginia Tech  

E-Print Network (OSTI)

part of our societies. Smart grids are one of these modern systems that have attracted many research activities in recent years. Before utilizing the next generation of smart grids, we should have mining, electric vehicles, smart grids, storage, charging stations, synthetic populations. ACM Reference

Ramakrishnan, Naren

111

Seawater pumping as an electricity storage solution for photovoltaic energy systems  

Science Journals Connector (OSTI)

Abstract The stochastic nature of several renewable energy sources has raised the problem of designing and building storage facilities, which can help the electricity grid to sustain larger and larger contribution of renewable energy. Seawater pumped electricity storage is proposed as a good option for PV (Photovoltaic) or solar thermal power plants, located in suitable places close to the coast line. Solar radiation has a natural daily cycle, and storage reservoirs of limited capacity can substantially reduce the load to the electricity grid. Different modes of pump operation (fixed or variable speed) are considered, the preliminary sizing of the PV field and seawater reservoir is performed, and the results are comparatively assessed over a year-long simulated operation. The results show that PV pumped storage, even if not profitable in the present situation of the renewable energy Italian electricity market, is effective in decreasing the load on the transmission grid, and would possibly be attractive in the future, also in the light of developing off-grid applications.

Giampaolo Manfrida; Riccardo Secchi

2014-01-01T23:59:59.000Z

112

Advanced Redox Flow Batteries for Stationary Electrical Energy Storage  

SciTech Connect

This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

2012-03-19T23:59:59.000Z

113

Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.  

SciTech Connect

This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.

Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles; Iannucci, Joseph J., Jr. (,.Distributed Utility Associates, Livermore, CA)

2005-11-01T23:59:59.000Z

114

Electric field detection of coherent synchrotron radiation in a storage ring generated using laser bunch slicing  

SciTech Connect

The electric field of coherent synchrotron radiation (CSR) generated by laser bunch slicing in a storage ring has been detected by an electro-optic sampling method. The gate pulses for sampling are sent through a large-mode-area photonic-crystal fiber. The observed electric field profile of the CSR is in good agreement with the spectrum of the CSR observed using Fourier transform far-infrared spectrometry, indicating good phase stability in the CSR. The longitudinal density profiles of electrons modulated by laser pulses were evaluated from the electric field profile.

Katayama, I. [Interdisciplinary Research Center, Yokohama National University, Yokohama 240-8501 (Japan); Shimosato, H.; Bito, M.; Furusawa, K. [Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan); Adachi, M.; Zen, H.; Kimura, S.; Katoh, M. [UVSOR, Institute of Molecular Science, Okazaki 444-8585 (Japan); School of Physical Sciences, Graduate Universities for Advanced Studies (SOKENDAI), Okazaki 444-8585 (Japan); Shimada, M. [High Energy Accelerator Research Organization, KEK, Tsukuba 305-0801 (Japan); Yamamoto, N.; Hosaka, M. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Ashida, M. [Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan); PRESTO, JST (Japan)

2012-03-12T23:59:59.000Z

115

Economics of electric energy storage for energy arbitrage and regulation in New York  

Science Journals Connector (OSTI)

Unlike markets for storable commodities, electricity markets depend on the real-time balance of supply and demand. Although much of the present-day grid operates effectively without storage, cost-effective ways of storing electrical energy can help make the grid more efficient and reliable. We investigate the economics of two emerging electric energy storage (EES) technologies: sodium sulfur batteries and flywheel energy storage systems in New York state's electricity market. The analysis indicates that there is a strong economic case for EES installations in the New York City region for applications such as energy arbitrage, and that significant opportunities exist throughout New York state for regulation services. Benefits from deferral of system upgrades may be important in the decision to deploy EES. Market barriers currently make it difficult for energy-limited EES such as flywheels to receive revenue for voltage regulation. Charging efficiency is more important to the economics of EES in a competitive electricity market than has generally been recognized.

Rahul Walawalkar; Jay Apt; Rick Mancini

2007-01-01T23:59:59.000Z

116

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Storage A discussion of depleted UF6 cylinder storage activities and associated risks. Management Activities for Cylinders in Storage The long-term management of the existing DUF6 storage cylinders and the continual effort to remediate and maintain the safe condition of the DUF6 storage cylinders will remain a Departmental responsibility for many years into the future. The day to day management of the DUF6 cylinders includes actions designed to cost effectively maintain and improve their storage conditions, such as: General storage cylinder and storage yard maintenance; Performing regular inspections of cylinders; Restacking and respacing the cylinders to improve drainage and to

117

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Risks » Storage Environmental Risks » Storage Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Storage Discussion of the potential environmental impacts from storage of depleted UF6 at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts Analyzed in the PEIS The PEIS included an analysis of the potential environmental impacts from continuing to store depleted UF6 cylinders at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts from Continued Storage of UF6 Cylinders Continued storage of the UF6 cylinders would require extending the use of a

118

U.S. Department of Energy Electricity Advisory Committee Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2012 5, 2012 Minutes EAC Members in Attendance Richard Cowart, Chair Regulatory Assistance Project Irwin Popowsky, Vice-Chair Pennsylvania Consumer Advocate Rick Bowen Alcoa Clark Bruno (Representing Edward Krapels) Anbaric Holdings Lisa Crutchfield National Grid USA José Delgado Robert Gramlich American Wind Energy Association Dian Grueneich Michael Heyeck American Electric Power Joseph Kelliher NextEra Energy, Inc. Barry Lawson National Rural Electric Cooperative Association Ralph Masiello KEMA David Nevius North American Electric Reliability Corporation Wanda Reder S&C Electric Company Brad Roberts Electricity Storage Association The Honorable Tom Sloan Kansas House of Representatives Gordon van Welie Independent System Operator of New

119

U.S. Department of Energy Electricity Advisory Committee Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2012 6, 2012 Minutes EAC Members in Attendance Richard Cowart, Chair Regulatory Assistance Project Irwin Popowsky, Vice-Chair Pennsylvania Consumer Advocate Rick Bowen Alcoa Clark Bruno (Representing Edward Krapels) Anbaric Holdings Lisa Crutchfield National Grid USA José Delgado Robert Gramlich American Wind Energy Association Dian Grueneich Michael Heyeck American Electric Power Joseph Kelliher NextEra Energy, Inc. Barry Lawson National Rural Electric Cooperative Association Ralph Masiello KEMA David Nevius North American Electric Reliability Corporation Wanda Reder S&C Electric Company Brad Roberts Electricity Storage Association The Honorable Tom Sloan Kansas House of Representatives Gordon van Welie Independent System Operator of New

120

American Electric Power (AEP): Mountaineer Carbon Dioxide Capture and Storage Demonstration (WITHDRAWN AT CONCLUSION OF PHASE 1)  

NLE Websites -- All DOE Office Websites (Extended Search)

American Electric Power (AEP): American Electric Power (AEP): Mountaineer Carbon Dioxide Capture and Storage Demonstration (WITHDRAWN AT CONCLUSION OF PHASE 1) Background A need exists to further develop carbon management technologies that capture and store or beneficially reuse carbon dioxide (CO 2 ) that would otherwise be emitted into the atmosphere from coal-based electric power generating facilities. Carbon capture, utilization and storage (CCUS) technologies offer great potential for reducing CO

Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies  

SciTech Connect

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

2012-06-01T23:59:59.000Z

122

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network (OSTI)

efficiency requirements - Maximum emission limits Investment constraints: - Payback period is constrained Storage constraints: - Electricity stored is limited by battery

Stadler, Michael

2009-01-01T23:59:59.000Z

123

Nickel-Metal-Hydride Batterie--High Energy Storage for Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Freedomcar & Vehicle Technologies Program Freedomcar & Vehicle Technologies Program Nickel-Metal-Hydride Batteries - High Energy Storage for Electric Vehicles Background The key to making electric vehicles (EVs) practical is the development of batteries that can provide performance comparable with that of con ventional vehicles at a similar cost. Most EV batteries have limited energy storage capabili ties, permitting only relatively short driving distances before the batteries must be recharged. In 1991, under a coopera tive agreement with The U.S. Department of Energy (DOE), the United States Advanced Battery Consortium (USABC) initiated development of nickel- metal-hydride (NiMH) battery technology and established it as a prime mid-term candidate for use in EVs. DOE funding has been instru

124

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

6719 6719 November 2009 Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage D. Steward, G. Saur, M. Penev, and T. Ramsden National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-560-46719 November 2009 Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage D. Steward, G. Saur, M. Penev, and T. Ramsden Prepared under Task No. H278.3400 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

125

Robert Cheng  

NLE Websites -- All DOE Office Websites (Extended Search)

Robert K. Cheng Robert K. Cheng Robert Cheng Combustion Technologies Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 70-108B Berkeley CA 94720 Office Location: 70-0109B (510) 486-5438 RKCheng@lbl.gov This publications database is an ongoing project, and not all Division publications are represented here yet. Publications 2013 Davis, Dustin W., Peter L. Therkelsen, David Littlejohn, and Robert K. Cheng. "Effects of Hydrogen on the Thermo-Acoustics Coupling Mechanisms of Low-Swirl Injector Flames in a Model Gas Turbine Combustor." Proceedings of the Combustion Institute 34, no. 2 (2013): 3135-3143. Therkelsen, Peter L., Enrique J. Portillo, David Littlejohn, Scott M. Martin, and Robert K. Cheng. "Self-induced unstable behaviors of CH4 and H2/CH4 flames in a model combustor with a low-swirl injector." Combustion

126

Robert Hart  

NLE Websites -- All DOE Office Websites (Extended Search)

Robert Grant Hart Robert Grant Hart Robert Hart Windows and Envelope Materials Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 90R3111 Berkeley CA 94720 Office Location: 90-3092B (510) 486-4244 RGHart@lbl.gov This publications database is an ongoing project, and not all Division publications are represented here yet. Publications 2013 Bergh, Sofie Van Den, Robert Hart, Bjørn Petter Jelle, and Arlid Gustavsen. "Window Spacers and Edge Seals in Insulating Glass Units: A State-of-the-Art Review and Future Perspectives." Energy and Buildings 58 (2013). Download: PDF (2.09 MB) 2012 Arasteh, Dariush K., Robert Hart, Cezary Misiopecki, Arlid Gustavsen, and Bjørn Petter Jelle. "Impacts of Operating Hardware on Window Thermal Performance." In BEST3 Conference. Atlanta, GA,

127

"1. Bath County","Pumped Storage","Virginia Electric & Power Co",3003  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia" Virginia" "1. Bath County","Pumped Storage","Virginia Electric & Power Co",3003 "2. North Anna","Nuclear","Virginia Electric & Power Co",1864 "3. Possum Point","Gas","Virginia Electric & Power Co",1733 "4. Chesterfield","Coal","Virginia Electric & Power Co",1639 "5. Surry","Nuclear","Virginia Electric & Power Co",1638 "6. Yorktown","Coal","Virginia Electric & Power Co",1141 "7. Tenaska Virginia Generating Station","Gas","Tenaska Virginia Partners LP",927 "8. Clover","Coal","Virginia Electric & Power Co",865

128

Chapter 1 - Energy Storage for Mitigating the Variability of Renewable Electricity Sources  

Science Journals Connector (OSTI)

Abstract Wind and solar power generation is growing quickly around the world, mainly to mitigate some of the negative environmental impacts of the electricity sector. However, the variability of these renewable sources of electricity poses technical and economical challenges when integrated on a large scale. Energy storage is being widely regarded as one of the potential solutions to deal with the variations of variable renewable electricity sources (VRES). This chapter presents an review of the state of technology, installations and some challenges of electrical energy storage (EES) systems. It particularly focuses on the applicability, advantages and disadvantages of various EES technologies for large-scale VRES integration. This chapter indicates that each challenge imposed by VRES requires a dierent set of EES characteristics to address the issue, and that there is no single EES technology that consistently outperforms the others in various applications. This chapter also discusses external factors, such as mineral availability and geographic limitations, that may aect the success of the widespread implementation of EES technologies.

Marc Beaudin; Hamidreza Zareipour; Anthony Schellenberg; William Rosehart

2015-01-01T23:59:59.000Z

129

Optimal Sizing of Energy Storage System in Solar Energy Electric Vehicle Using Genetic Algorithm and Neural Network  

Science Journals Connector (OSTI)

Owing to sun’s rays distributing randomly and discontinuously and load fluctuation, energy storage system is very important in Solar Energy Electric Vehicle (SEEV). The combinatorial optimization ... and neural n...

Shiqiong Zhou; Longyun Kang; MiaoMiao Cheng…

2007-01-01T23:59:59.000Z

130

Introduction to progress and promise of superconductivity for energy storage in the electric power sector  

SciTech Connect

Around the world, many groups conduct research, development and demonstration (RD and D) to make storage an economic option for the electric power sector. The progress and prospects for the application of superconductivity, with emphasis on high-temperature superconductivity, to the electric power sector has been the topic of an IEA Implementing Agreement, begun in 1990. The present Task members are Canada, Denmark, Finland, Germany, Israel, Italy, Japan, Korea, the Netherlands, Norway, Sweden, Switzerland, Turkey, the United Kingdom and the US. As a result of the Implementing Agreement, work has been done by the Operating Agent with the full participation of all the member countries. This work has facilitated the exchange of informtion among experts in all countries and has documented relevant assessments. Further, this work has reviewed the status of SMES and is now updating same, as well as investigating the progress on and prospects for flywheels with superconducting bearings. The Operating Agent and Task members find a substantially different set of opportunities for and alternatives to storage than was the case before the 1987 discovery of high-temperature superconductivity. Beside the need to level generation, there is also the need to level the load on transmission lines, increase transmission stability, and increase power quality. These needs could be addressed by high power storage that could be brought in and out of the grid in fractions of a second. Superconducting Magnetic Energy Storage and flywheels with superconducting bearings are devices that deserve continued RD and D because they promise to be the needed storage devices.

Wolsky, A.M.

1998-05-01T23:59:59.000Z

131

30-MJ superconducting magnetic energy storage for electric-transmission stabilization  

SciTech Connect

The Bonneville Power Administration operates the electric power transmission system that connects the Pacific Northwest and southern California. The HVAC interties develop 0.35 Hz oscillations when the lines are heavily loaded. A 30 MJ (8.4 kWh) Superconducting Magnetic Energy Storage (SMES) unit with a 10 MW converter can provide system damping for the oscillation. The unit is scheduled for installation in 1982 and operation in 1982-83. Status of the project is described. The conductor has been fully tested electrically and mechanically and the 5 kA superconducting cable has been produced. The 30 MJ superconducting coil is essentially complete. All major components of the electrical and cryogenic systems except the nonconducting dewar have been completed. The refrigerator and converter are undergoing tests. The system is to be located at the BPA Tacoma Substation and operated by microwave link from Portland, OR.

Turner, R.D.; Rogers, J.D.

1981-01-01T23:59:59.000Z

132

Rob Roberts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rob Roberts Rob Roberts About Us Rob Roberts - Director of Digital Strategy Rob Roberts Rob Roberts is the Director of Digital Strategy for the U.S. Department of Energy. Prior to joining Energy, Rob worked in a number of digital roles throughout government, academia and journalism, including positions in the White House Office of Digital Strategy, USA Today, and the Raleigh News & Observer. He also teaches digital media and video as an adjunct professor at American University. Rob received a Masters degree in Journalism from the University of North Carolina and undergraduate degrees from the University of Utah. Most Recent The Year on Energy.gov: Our Most Popular Posts of 2013 December 31 Beyond Tesla and Edison: Other Luminaries from the Age of Electricity November 25

133

Robert Marlay  

Energy.gov (U.S. Department of Energy (DOE))

Dr. Robert Marlay is a member of the U.S. Government's Senior Executive Service. He is currently Director, Office of International Science and Technology Collaboration. He serves concurrently...

134

Performance analysis of an integrated CHP system with thermal and Electric Energy Storage for residential application  

Science Journals Connector (OSTI)

The aim of this paper is the evaluation of the profitability of micro-CHP systems for residential application. An integrated CHP system composed of a prime mover, an Electric Energy Storage system, a thermal storage system and an auxiliary boiler has been considered. The study has been carried out taking into account a particular electrochemical storage system which requires also thermal energy, during its operation, for a better exploitation of the residual heat discharged by the prime mover. The prime mover could be a conventional Internal Combustion Engine or also an innovative system, such as fuel cell or organic Rankine cycle. An investigation of this integrated CHP system has been carried out, by means of an in-house developed calculation code, performing a thermo-economic analysis. This paper provides useful results, in order to define the optimum sizing of components of the integrated CHP system under investigation; the developed code allows also to evaluate the profitability and the primary energy saving with respect to the separate production of electricity and heat.

M. Bianchi; A. De Pascale; F. Melino

2013-01-01T23:59:59.000Z

135

NAS battery demonstration at American Electric Power:a study for the DOE energy storage program.  

SciTech Connect

The first U.S. demonstration of the NGK sodium/sulfur battery technology was launched in August 2002 when a prototype system was installed at a commercial office building in Gahanna, Ohio. American Electric Power served as the host utility that provided the office space and technical support throughout the project. The system was used to both reduce demand peaks (peak-shaving operation) and to mitigate grid power disturbances (power quality operation) at the demonstration site. This report documents the results of the demonstration, provides an economic analysis of a commercial sodium/sulfur battery energy storage system at a typical site, and describes a side-by-side demonstration of the capabilities of the sodium/sulfur battery system, a lead-acid battery system, and a flywheel-based energy storage system in a power quality application.

Newmiller, Jeff (Endecon Engineering, San Ramon, CA); Norris, Benjamin L. (Norris Energy Consulting Company, Martinez, CA); Peek, Georgianne Huff

2006-03-01T23:59:59.000Z

136

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network (OSTI)

for storing oxygen is cavern storage. A large undergroundstorage; thus it seems that cavern storage is a definitetion of this system. Cavern storage becomes economical only

Dayan, J.

2011-01-01T23:59:59.000Z

137

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network (OSTI)

between alternative solar storage system designs; almost allThe behavior of the storage solar receiver-reactor is baseddaytime (charging) storage process Boeing solar receiver [5J

Dayan, J.

2011-01-01T23:59:59.000Z

138

A Development Path to the Efficient and Cost-Effective Bulk Storage of Electrical Energy  

SciTech Connect

Efficient and cost-effective means for storing electrical energy is becoming an increasing need in our electricity-oriented society. For example, for electric utilities an emerging need is for distributed storage systems, that is, energy storage at substations, at solar or wind-power sites, or for load-leveling at the site of major consumers of their electricity. One of the important consequences of distributed storage for the utilities would be the reduction in transmission losses that would result from having a local source of load-leveling power. For applications such as these there are three criteria that must be satisfied by any new system that is developed to meet such needs. These criteria are: (1) high 'turn-around' efficiency, that is, high efficiency of both storing and recovering the stored energy in electrical form, (2) long service life (tens of years), with low maintenance requirements, and, (3) acceptably low capital cost. An additional requirement for these particular applications is that the system should have low enough standby losses to permit operation on a diurnal cycle, that is, storing the energy during a portion of a given day (say during sunlight hours) followed several hours later by its use during night-time hours. One answer to the spectrum of energy storage needs just outlined is the 'electromechanical battery'. The E-M battery, under development for several years at the Laboratory and elsewhere in the world, has the potential to solve the above energy storage problems in a manner superior to the electro-chemical battery in the important attributes of energy recovery efficiency, cycle lifetime, and amortized capital cost. An electromechanical battery is an energy storage module consisting of a high-speed rotor, fabricated from fiber composite, and having an integrally mounted generator/motor. The rotor operates at high speed, in vacuo, inside of a hermetically sealed enclosure, supported by a 'magnetic bearing', that is, a bearing that uses magnetic forces to support the rotor against gravity. Magnetic bearings are a virtual necessity for the E-M battery in order to achieve long service life, and to minimize frictional losses so that the battery does not lose its charge (run down) too rapidly. These considerations mitigate against the use of conventional mechanical bearings in the E-M battery for most applications. The Laboratory has pioneered the development of a new form of magnetic bearing to meet the special requirements of the E-M battery: the 'ambient-temperature passive magnetic bearing'. Simpler, and potentially much less expensive than the existing 'active' magnetic bearings (ones requiring electronic amplifiers and feedback circuits for their operation) development of the ambient-temperature passive magnetic bearing represents a technological breakthrough. Beyond its use in the E-M battery, the ambient-temperature magnetic bearing could have important applications in replacing conventional lubricated mechanical bearings in electrical machinery. Here the gains would be two-fold: reduced frictional losses, leading to higher motor efficiency, and, of equal importance, the elimination of the need for lubricants and for routine replacement of the bearings owing to mechanical wear. Thus an added benefit from a vigorous pursuit of our electromechanical battery concepts could be its impact on many other areas of industry where rotating machinery in need of improved bearings is involved. If perfected, passive magnetic bearings would seem to represent an almost ideal replacement for the mechanical bearings in many types of industrial electrical machinery. Returning to the issued of energy storage, the E-M battery itself has much to contribute in the area of improving the efficiency of stationary energy storage systems. For example, many electrical utilities utilize 'pumped hydro' energy storage systems as a means of improving the utilization of their 'base-load' power plants. That is, electrical energy is stored during off-peak hours for delivery at times of peak usage. These pumped hydro sys

Post, R F

2009-09-24T23:59:59.000Z

139

ESS 2012 Peer Review - DOE-OE FY12 Electrical Energy Storage Demonstration Projects - Dan Borneo, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-OE FY12 Electrical DOE-OE FY12 Electrical Energy Storage Demonstration Projects The Renaissance Hotel Washington, D.C. September 2012 Presented by Dan Borneo SAND Document 5312608 SAND2012-7453 C Acknowledgements I would like to thank the DOE's Office of Electricity and Dr. Imre Gyuk, Program Manager of the Electrical Energy Storage Program, for their support and funding of the Energy Storage Demonstration Projects. 2 EES Emerging Technology Demonstrations Presentation Outline  Project Overview  Problem Statement  Approach  Current Status  Path Forward - Next Steps  Geographical Representation of Projects  Summary Chart of Projects  Brief Descriptions of Individual Projects  Concluding Remarks 3 EES Demonstrations Project Overview  Problem Statement

140

EXPERIMENTAL TESTS OF COMPETITIVE MARKETS FOR ELECTRIC POWER Simon Ede, Timothy Mount, William Schulze, Robert Thomas, Ray Zimmerman  

E-Print Network (OSTI)

when there are capacity shortfalls, and the following four market structures: 1. Load is responsiveCSMAE06 EXPERIMENTAL TESTS OF COMPETITIVE MARKETS FOR ELECTRIC POWER Simon Ede, Timothy Mount@cornell.edu, rjt1@cornell.edu, rz10@cornell.edu Abstract Testing the performance of electricity markets

Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Electrical Properties of SandClay Mixtures Containing Trichloroethylene and Ethanol Jeffery J. Roberts and Dorthe Wildenschild*  

E-Print Network (OSTI)

and soils and that it is feasible to remotely detect the presence and follow the transport of contaminants and pore fluid. Electrical conduction is also a function of the prevailing fluid saturation. For brine

Wildenschild, Dorthe

142

Control Strategies for Electric Vehicle (EV) Charging Using Renewables and Local Storage  

SciTech Connect

The increase of electric vehicle (EV) and plug-in hybrid-electric vehicle (PHEV) adoption creates a need for more EV supply equipment (EVSE) infrastructure (i.e., EV chargers). The impact of EVSE installations could be significant due to limitations in the electric grid and potential demand charges for residential and commercial customers. The use of renewables (e.g., solar) and local storage (e.g., battery bank) can mitigate loads caused by EVSE on the electric grid. This would eliminate costly upgrades needed by utilities and decrease demand charges for consumers. This paper aims to explore control systems that mitigate the impact of EVSE on the electric grid using solar energy and battery banks. Three control systems are investigated and compared in this study. The first control system discharges the battery bank at a constant rate during specific times of the day based on historical data. The second discharges the battery bank based on the number of EVs charging (linear) and the amount of solar energy being generated. The third discharges the battery bank based on a sigmoid function (non-linear) in response to the number of EVs charging, and also takes into consideration the amount of renewables being generated. The first and second control systems recharge the battery bank at night when demand charges are lowest. The third recharges the battery bank at night and during times of the day when there is an excess of solar. Experiments are conducted using data from a private site that has 25 solar-assisted charging stations at Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN and 4 at a public site in Nashville, TN. Results indicate the third control system having better performance, negating up to 71% of EVSE load, compared with the second control system (up to 61%) and the first control system (up to 58%).

Castello, Charles C [ORNL; LaClair, Tim J [ORNL; Maxey, L Curt [ORNL

2014-01-01T23:59:59.000Z

143

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network (OSTI)

Economical energy storage is essential if solar power plantsthis type of energy storage system into a solar power plant.all of the energy storage required for a solar power plant,

Dayan, J.

2011-01-01T23:59:59.000Z

144

FutureGen Technologies for Carbon Capture and Storage and Hydrogen and Electricity Production  

NLE Websites -- All DOE Office Websites (Extended Search)

FutureGen FutureGen Technologies for Carbon Capture and Storage and Hydrogen and Electricity Production Office of Fossil Energy U. S. Department of Energy Washington, DC June 2, 2003 Lowell Miller, Director, Office of Coal & Power Systems 24-Jun-03 Slide 2 Office of Fossil Energy Presentation Agenda * FE Hydrogen Program * FutureGen * Carbon Sequestration Leadership Forum (CSLF) 24-Jun-03 Slide 3 Office of Fossil Energy Key Drivers * Decreasing domestic supply will lead to increased imports from less stable regions * Conventional petroleum is finite; production will peak and irreversibly decline due to continually increasing demand * Improving environmental quality - Meeting air emission regulations - Greenhouse gas emissions 0 2 4 6 8 10 12 14 16 18 20 1970 1975 1980 1985 1990 1995 2000 2005

145

COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS  

SciTech Connect

As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment, tooling, methods and skilled personnel. The final magnet system measured 14 feet in diameter, 10 feet in height, and weighed about 35 tons. The superconducting magnet and design technology was successfully implemented and demonstrated. The project was not successfully concluded however; as the critical planned final demonstration was not achieved. The utilities could not understand or clarify their future business needs and the regulatory requirements, because of the deregulation policies and practices of the country. Much uncertainty existed which prevented utilities from defining business plans, including asset allocation and cost recovery. Despite the technical successes and achievements, the commercial development could not be implemented and achieved. Thus, the demonstration of this enhancement to the utility’s transmission system and to the reliability of the nation’s electrical grid was not achieved. The factory was ultimately discontinued and the technology, equipment and product were placed in storage.

CHARLES M. WEBER

2008-06-24T23:59:59.000Z

146

Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California  

SciTech Connect

During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I. [Los Alamos Technical Associates, Inc., NM (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

1993-10-01T23:59:59.000Z

147

Mathematical Robert Smith?  

E-Print Network (OSTI)

Mathematical Modelling of Zombies Robert Smith? University of Ottawa Press #12;Robert Smith by Robert Smith? Includes bibliographical references. Issued in print and electronic formats. ISBN 978. I. Smith?, Robert J. (Robert Joseph), 1972­, editor GR581.M38 2014 398.2101'51 C2014-906565-5 C2014

Maini, Philip K.

148

Robert Clare  

NLE Websites -- All DOE Office Websites (Extended Search)

Dec 17, 2003 Dec 17, 2003 CAS Report Robert Clare UC Riverside PMG Meeting Dec 17, 2003 2 DC04 First the bad news: DC04 has slipped by one month. It is now scheduled for March 2004, instead of February. Main cause for the slippage is the lateness of LCG software, mainly POOL. This has delayed the digitization step (simulated hits to "raw data") of the Pre-Challenge Production (PCP). It has also delayed the implementation of persistency of reconstructed objects (eg tracks, calo clusters, muons, electrons). Robert Clare UC Riverside PMG Meeting Dec 17, 2003 3 2.1 -- Architecture Framework Toolkits and Reconstruction Software ➨ Case (75%), Litvin (75%), Tanenbaum (75%), Tuura (75%), Xie (75%) 2.2 -- Visualization and Analysis ➨ Osborne (75%), Muzaffar (75%)

149

Automation of Nested Matrix and Derivative Operations Robert Kalaba  

E-Print Network (OSTI)

Automation of Nested Matrix and Derivative Operations Robert Kalaba Departments of Electrical of expressions involving nested matrix and derivative operations. The need to differentiate such expressions

Tesfatsion, Leigh

150

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network (OSTI)

capture solar radiation and convert it into thermal energy.solar thermal collector (kW) PV (kW) electric storage (kWh) flow battery - energy (solar thermal collector ( kW) PV (kW) electric storage (kWh) flow battery - energy (

Stadler, Michael

2009-01-01T23:59:59.000Z

151

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network (OSTI)

capture solar radiation and convert it into thermal energy.solar thermal collector (kW) PV (kW) electric storage (kWh) flow battery - energy (solar thermal collector (kW) PV (kW) electric storage (kWh) flow battery - energy (

Stadler, Michael

2009-01-01T23:59:59.000Z

152

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network (OSTI)

blending strategy of the electric motor and engine when thesignificantly lower electric motor power (ex. the singlehybrid even though the electric motor had a peak power of

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

153

Integration of Electric Energy Storage into Power Systems with Renewable Energy Resources  

E-Print Network (OSTI)

strategy is proposed to optimally manage the charging and discharging operation of energy storage in order to minimize the energy purchasing cost for a distribution system load aggregator in power markets. Different operation strategies of energy storage...

Xu, Yixing 1985-

2012-10-26T23:59:59.000Z

154

A National Grid Energy Storage Strategy- Electricity Advisory Committee- January 2014  

Energy.gov (U.S. Department of Energy (DOE))

This document presents the EAC's vision for a national energy storage strategic plan. It provides an outline for guidance, alignment, coordination, and inspiration for governments, businesses, advocacy groups, academics, and others who share a similar vision for energy storage.

155

Life-Cycle Cost Analysis Highlights Hydrogen's Potential for Electrical Energy Storage (Fact Sheet)  

SciTech Connect

This fact sheet describes NREL's accomplishments in analyzing life-cycle costs for hydrogen storage in comparison with other energy storage technologies. Work was performed by the Hydrogen Technologies and Systems Center.

Not Available

2010-11-01T23:59:59.000Z

156

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network (OSTI)

of the engine and electric drive system. In the case of apower rating of the electric drive system in the vehicle. Aswas to operate on the electric drive when possible and to

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

157

Robert L  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CITY OF FARMINGTON, NEW MEXICO CITY OF FARMINGTON, NEW MEXICO MEXICO ELECTRIC ADMINISTRATION Maude Grantham-Richards Electric Utility Director 101 N Browning Parkway Farmington, NM 87401 (505) 599-1165 Fax (505) 599-8323 April 3, 2009 Mr. Timothy J. Meeks

158

Evaluation of ground energy storage assisted electric vehicle DC fast charger for demand charge reduction and providing demand response  

Science Journals Connector (OSTI)

Abstract In 2012 there was approximately 2400 electric vehicle DC Fast Charging stations sold globally. According to Pike Research (Jerram and Gartner, 2012), it is anticipated that by 2020 there will be approximately 460,000 of them installed worldwide. A typical public DC fast charger delivers a maximum power output of 50 kW which allows a typical passenger vehicle to be 80% charged in 10–15 min, compared with 6–8 h for a 6.6 kW AC level 2 charging unit. While DC fast chargers offer users the convenience of being able to rapidly charge their vehicle, the unit's high power demand has the potential to put sudden strain on the electricity network, and incur significant demand charges. Depending on the utility rate structure, a DC fast charger can experience annual demand charges of several thousand dollars. Therefore in these cases there is an opportunity to mitigate or even avoid the demand charges incurred by coupling the unit with an appropriately sized energy storage system and coordinating the way in which it integrates. This paper explores the technical and economical suitability of coupling a ground energy storage system with a DC fast charge unit for mitigation or avoidance of demand charges and lessening the impact on the local electricity network. This paper also discusses the concept of having the system participate in demand response programs in order to provide grid support and to further improve the economic suitability of an energy storage system.

Donald McPhail

2014-01-01T23:59:59.000Z

159

SmartCharge: cutting the electricity bill in smart homes with energy storage  

Science Journals Connector (OSTI)

Market-based electricity pricing provides consumers an opportunity to lower their electric bill by shifting consumption to low price periods. In this paper, we explore how to lower electric bills without requiring consumer involvement using an intelligent ... Keywords: battery, electricity, energy, grid

Aditya Mishra; David Irwin; Prashant Shenoy; Jim Kurose; Ting Zhu

2012-05-01T23:59:59.000Z

160

Chiller Start/Stop Optimization for a Campus-wide Chilled Water System with a Thermal Storage Tank Under a Four-Period Electricity Rate Schedule  

E-Print Network (OSTI)

The existence of a 1.4-million-gallon chilled water thermal storage tank greatly increases the operational flexibility of a campuswide chilled water system under a four-part electricity rate structure. While significant operational savings can...

Zhou, J.; Wei, G.; Turner, W. D.; Deng, S.; Claridge, D.; Contreras, O.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network (OSTI)

acid batteries flow battery thermal n/a n/a xiv The Effectscapacity electrical flow battery thermal n/a n/a source:lead/acid battery) and thermal storage, capabilities, with

Stadler, Michael

2009-01-01T23:59:59.000Z

162

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network (OSTI)

capitalcost.htm). EPRI-DOE Handbook of Energy Storage foret al. 1996, 2003, EPRI-DOE Handbook 2003, Goldstein, L. etet al. 2003, EPRI-DOE Handbook 2003 and at the Electricity

Stadler, Michael

2009-01-01T23:59:59.000Z

163

Fabrication of hollow core carbon spheres with hierarchical nanoarchitecture for ultrahigh electrical charge storage  

E-Print Network (OSTI)

and filtration,2 photonic crystals,3 catalyst supports for low temperature fuel cells,4­6 sensors, electrode sorbents,1 hydrogen storage,18 fuel cells,5,19,33 solar cells,13,35,36 and so on. However, traditional materials for electrochemical capacitors,7­9 lithium ion batteries,10­12 solar cells,13,14 hydrogen storage

Pedersen, Tom

164

Evaluation of energy storage technologies for integration with renewable electricity: Quantifying expert opinions  

Science Journals Connector (OSTI)

Solving climate change and the associated need for increasing renewable energy supply make energy storage a critical technological component of the future energy landscape. Research to build more reliable and cost-effective energy storage technologies is now on the rise. As a result, many new technologies and applications are evolving and competing. This paper presents a method to evaluate and select energy storage technologies for investor-owned or public utilities. For this purpose, energy storage applications which could benefit wind power in the Pacific Northwest region of the United States are identified through internal interviews and surveys with experts at the federal wholesale power marketing agency in Portland, Oregon. The study employs a technology evaluation process integrating fuzzy Delphi method, analytic hierarchy process and fuzzy consistent matrix. The result shows that compressed air storage is the most promising technology for sustainable growth of renewable energy in the region.

Tugrul U. Daim; Xin Li; Jisun Kim; Scott Simms

2012-01-01T23:59:59.000Z

165

Sandia National Laboratories: evaluate energy storage opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

energy storage opportunity 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid...

166

Sandia National Laboratories: implement energy storage projects  

NLE Websites -- All DOE Office Websites (Extended Search)

implement energy storage projects 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety,...

167

Simulation and analysis of a solar assisted heat pump system with two different storage types for high levels of PV electricity self-consumption  

Science Journals Connector (OSTI)

Abstract The incentives for PV-systems in Europe is being gradually lowered or ended. This makes a higher level of self-consumption interesting for owners of PV-systems. Sweden has an incentive of 35% of the investment cost for PV-systems. Unfortunately not all consumers can get this incentive. Therefore a high level of self-consumption will be necessary if the PV-systems are to be profitable in Sweden. A reference system with two different energy storage technologies is investigated in this paper. One system with 48 kW h of batteries and one system with a hot water storage tank where the electricity is stored as heat. The research questions in this paper are: Which storage system gives the highest level of PV electricity self-consumption? Are the storage systems profitable with the assumptions made in this paper? What are the levelized costs of electricity (LCOE) for the reference system with different storage system? The system with batteries has a self-consumption of 89% of the annual PV-electricity output and the system with a hot water storage tank has 88%. The system with batteries has a levelized cost of electricity two times higher than the system with a hot water storage tank.

Richard Thygesen; Björn Karlsson

2014-01-01T23:59:59.000Z

168

Energy Storage | Department of Energy  

Energy Savers (EERE)

Energy Storage Energy Storage One of the distinctive characteristics of the electric power sector is that the amount of electricity that can be generated is relatively fixed over...

169

REPORT. Robert Hooke revivified  

Science Journals Connector (OSTI)

22 January 2004 research-article REPORT. Robert Hooke revivified M. Hunter School of History, Classics...Royal Society|Gresham College|Royal Academy Of Engineering| REPORT Robert Hooke revivified Michael Hunter, School of History, Classics...

2004-01-01T23:59:59.000Z

170

On Using Compressed Sensing for Efficient Transmission & Storage of Electric Organ Discharge  

E-Print Network (OSTI)

and low power wireless sensors. Keywords: Compressed sensing, wireless sensor networks, EOD. I with wireless sensors to record the electric organ discharge (EOD) of a mildly electric fish Sternopygus macrurus [1]. The electric field for the EOD of the S. macrurus is created by specialized cells called

Misra, Satyajayant

171

Chemomechanics of ionically conductive ceramics for electrical energy conversion and storage  

E-Print Network (OSTI)

Functional materials for energy conversion and storage exhibit strong coupling between electrochemistry and mechanics. For example, ceramics developed as electrodes for both solid oxide fuel cells and batteries exhibit ...

Swallow, Jessica Gabrielle

172

Flow Cells for Energy Storage Workshop Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Delivery Electricity Delivery & Energy Reliability Organized by: Energy Efficiency & Renewable Energy W i t h h e l p b y : Agenda Day/Time Speaker Subject Wednesday, March 07, 2012 8:45-9:00 Adam Weber, LBNL Welcome and workshop overview 9:00-9:30 Various, EERE, OFCT Background, approach, and reversible fuel cells 9:30-9:55 Michael Perry, UTRC Renaissance in flow cells: opportunities 9:55-10:20 Joe Eto, LBNL Energy storage requirements for the smart grid 10:20-10:35 AM Break 10:35-11:00 Robert Savinell, CWRU Revisiting flow-battery R&D 11:00-11:25 Stephen Clarke, Applied Intellectual Capital Lessons learned and yet to be learned from 20 years in RFB R&D 11:25-11:45 Imre Gyuk, DOE OE Research and deployment of stationary storage at DOE

173

Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Storage Storage Energy storage isn’t just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more. Energy storage isn't just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more.

174

Lower-Energy Energy Storage System (LEESS) Evaluation in a Full-Hybrid Electric Vehicle (HEV) (Presentation)  

SciTech Connect

The cost of hybrid electric vehicles (HEVs) (e.g., Toyota Prius or Ford Fusion Hybrid) remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can improve the vehicle-level cost-benefit relationship, which would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The National Renewable Energy Laboratory (NREL) collaborated with a United States Advanced Battery Consortium (USABC) Workgroup to analyze trade-offs between vehicle fuel economy and reducing the minimum energy requirement for power-assist HEVs. NREL's analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than previous targets, which prompted the United States Advanced Battery Consortium (USABC) to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies, including high-power batteries or ultracapacitors. NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform and in-vehicle evaluation results using a lithium-ion capacitor ESS-an asymmetric electrochemical energy storage device possessing one electrode with battery-type characteristics (lithiated graphite) and one with ultracapacitor-type characteristics (carbon). Further efforts include testing other ultracapacitor technologies in the HEV test platform.

Cosgrove, J.; Gonder, J.; Pesaran, A.

2013-11-01T23:59:59.000Z

175

Novel Latent Heat Storage Devices for Thermal Management of Electric Vehicle Battery Systems  

Science Journals Connector (OSTI)

A major aspect for safe and efficient operation of battery electric vehicles (BEV) is the thermal management of their battery systems. As temperature uniformity and level highly ... performance and the lifetime, ...

Ch. Huber; A. Jossen; R. Kuhn

2014-01-01T23:59:59.000Z

176

Energy Storage Systems  

SciTech Connect

Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

Conover, David R.

2013-12-01T23:59:59.000Z

177

E-Print Network 3.0 - andrzej szczepkowski robert Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Technology Summary: . Kaber, Mo-Yuen Chow, Robert A. St. Amant Departments of Industrial Engineering, Electrical and Computer... for performance. Mazaeva & Bisantz, in...

178

Overview of current development in electrical energy storage technologies and the application potential in power system operation  

Science Journals Connector (OSTI)

Abstract Electrical power generation is changing dramatically across the world because of the need to reduce greenhouse gas emissions and to introduce mixed energy sources. The power network faces great challenges in transmission and distribution to meet demand with unpredictable daily and seasonal variations. Electrical Energy Storage (EES) is recognized as underpinning technologies to have great potential in meeting these challenges, whereby energy is stored in a certain state, according to the technology used, and is converted to electrical energy when needed. However, the wide variety of options and complex characteristic matrices make it difficult to appraise a specific EES technology for a particular application. This paper intends to mitigate this problem by providing a comprehensive and clear picture of the state-of-the-art technologies available, and where they would be suited for integration into a power generation and distribution system. The paper starts with an overview of the operation principles, technical and economic performance features and the current research and development of important EES technologies, sorted into six main categories based on the types of energy stored. Following this, a comprehensive comparison and an application potential analysis of the reviewed technologies are presented.

Xing Luo; Jihong Wang; Mark Dooner; Jonathan Clarke

2015-01-01T23:59:59.000Z

179

Optimized Energy Management for Large Organizations Utilizing an On-Site PHEV fleet, Storage Devices and Renewable Electricity Generation  

SciTech Connect

Abstract This paper focuses on the daily electricity management problem for organizations with a large number of employees working within a relatively small geographic location. The organization manages its electric grid including limited on-site energy generation facilities, energy storage facilities, and plug-in hybrid electric vehicle (PHEV) charging stations installed in the parking lots. A mixed integer linear program (MILP) is modeled and implemented to assist the organization in determining the temporal allocation of available resources that will minimize energy costs. We consider two cost compensation strategies for PHEV owners: (1) cost equivalent battery replacement reimbursement for utilizing vehicle to grid (V2G) services from PHEVs; (2) gasoline equivalent cost for undercharging of PHEV batteries. Our case study, based on the Oak Ridge National Laboratory (ORNL) campus, produced encouraging results and substantiates the importance of controlled PHEV fleet charging as opposed to uncontrolled charging methods. We further established the importance of realizing V2G capabilities provided by PHEVs in terms of significantly reducing energy costs for the organization.

Dashora, Yogesh [University of Texas, Austin; Barnes, J. Wesley [University of Texas, Austin; Pillai, Rekha S [ORNL; Combs, Todd E [ORNL; Hilliard, Michael R [ORNL

2012-01-01T23:59:59.000Z

180

Oppenheimer, J. Robert  

Science Journals Connector (OSTI)

American physicist J. Robert Oppenheimer features in world history as the leader ... of neutron stars (using the eponymous Tolman-Oppenheimer-Volkoff equation of state) and the unstoppable...

Virginia Trimble

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Robert J. Osborn  

Energy.gov (U.S. Department of Energy (DOE))

Robert J. Osborn II, a member of the Senior Executive Service, is currently the Associate Administrator for Information Management and Chief Information Officer for the National Nuclear Security...

182

Study By Spin Tracking of A Storage Ring For Deuteron Electric Dipole Moment  

SciTech Connect

Spin tracking of polarized deuterons for a proposed experiment to measure a possible Electric Dipole Moment (EDM) of the deuteron was done by using the codes UAL and SPINK. In the experiment the direction of spin polarization will be frozen using crossed electric and magnetic fields. Systematics, in particular the effects of non-linearities of the lattice on a beam with finite emittance and energy spread, have been extensively simulated and the effect of sextuple corrections to increase the spin coherence time has been studied.

Lin, F.; Malitsky, N. D.; Luccio, A. U.; Morse, W. M.; Semertzidis, Y. K. [Brookhaven National Laboratory, Upton, NY (United States); Onderwater, C. J. G. [University of Groningen, NL-9747AA Groningen (Netherlands); Orlov, Y. F. [Cornell University, Ithaca, NY (United States)

2009-08-04T23:59:59.000Z

183

Storage of a sensory pattern by anti-Hebbian synaptic plasticity in an electric fish.  

Science Journals Connector (OSTI)

...Purkinje-like cells A B corollary discharge of EOD motor command (EGp) MZ ~~~~~~paralle...layer. Each electric organ discharge (EOD) evokes reafferent responses in ampullary...minimally affected by nearby objects. With each EOD, the electrosensory lobe receives both...

C C Bell; A Caputi; K Grant; J Serrier

1993-01-01T23:59:59.000Z

184

Graph Algorithms Robert Elsasser  

E-Print Network (OSTI)

-regular bipartite graph has a perfect matching. Definition 3: A vertex cover of a graph G = (V, E) is a set Q VGraph Algorithms Robert Els¨asser 10 November 2011 Program of the day: · Matchings in bipartite graphs Robert Els¨asser Universit¨at Paderborn Graph Algorithms WS 11/12 0 #12;5. Matchings in bipartite

Elsässer, Robert

185

Randomized Algorithms Robert Elsasser  

E-Print Network (OSTI)

Randomized Algorithms Robert Els¨asser 15. June 2011 Program of the day: · Random walks on graphs Robert Els¨asser Universit¨at Paderborn Randomized Algorithms SS 11 0 #12;Markov Chains and Random Walks¨asser Universit¨at Paderborn Randomized Algorithms SS 11 1 #12;Markov Chains and Random Walks A Markov chain M

Elsässer, Robert

186

ESS 2012 Peer Review - Experimental Investigation of Silicon Carbide Power Device Reliability - Robert Kaplar, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Experimental Investigation Experimental Investigation of Silicon Carbide Power Device Reliability September 27, 2012 Robert Kaplar, David Hughart, Sandeepan DasGupta, Matthew Marinella, Mark Smith, and Stanley Atcitty The authors gratefully acknowledge the support of Dr. Imre Gyuk of the United States Department of Energy, Office of Electricity Delivery and Energy Reliability, Energy Storage Program * Wide-bandgap semiconductors have material properties that make them theoretically superior to Silicon for power device applications * Lower power loss and reduced cooling requirements would increase the efficiency and reduce the size and complexity of power conversion systems linking energy storage to the grid, thus reducing overall system cost * However, wide-bandgap materials and devices are far less mature

187

Sandia National Laboratories: DOE Energy Storage Systems program  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Systems program 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety,...

188

Sandia National Laboratories: Energy Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure...

189

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

1974. Geothermal Storage of Solar Energy, in "Governors1976. "Geothermal Storage of Solar Energy for Electric PowerUnderground Longterm Storage of Solar Energy - An Overview,"

Authors, Various

2011-01-01T23:59:59.000Z

190

TheTheTheTheThe Robert and Sarah Boote ConferenceRobert and Sarah Boote ConferenceRobert and Sarah Boote ConferenceRobert and Sarah Boote ConferenceRobert and Sarah Boote Conference  

E-Print Network (OSTI)

TheTheTheTheThe Robert and Sarah Boote ConferenceRobert and Sarah Boote ConferenceRobert and Sarah Boote ConferenceRobert and Sarah Boote ConferenceRobert and Sarah Boote Conference ininininin BooteRobert and Sarah BooteRobert and Sarah BooteRobert and Sarah BooteRobert and Sarah Boote

Machery, Edouard

191

Life-cycle energy analyses of electric vehicle storage batteries. Final report  

SciTech Connect

The results of several life-cycle energy analyses of prospective electric vehicle batteries are presented. The batteries analyzed were: Nickel-zinc; Lead-acid; Nickel-iron; Zinc-chlorine; Sodium-sulfur (glass electrolyte); Sodium-sulfur (ceramic electrolyte); Lithium-metal sulfide; and Aluminum-air. A life-cycle energy analysis consists of evaluating the energy use of all phases of the battery's life, including the energy to build it, operate it, and any credits that may result from recycling of the materials in it. The analysis is based on the determination of three major energy components in the battery life cycle: Investment energy, i.e., The energy used to produce raw materials and to manufacture the battery; operational energy i.e., The energy consumed by the battery during its operational life. In the case of an electric vehicle battery, this energy is the energy required (as delivered to the vehicle's charging circuit) to power the vehicle for 100,000 miles; and recycling credit, i.e., The energy that could be saved from the recycling of battery materials into new raw materials. The value of the life-cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. The analysis of the life-cycle energy requirements consists of identifying the materials from which each battery is made, evaluating the energy needed to produce these materials, evaluating the operational energy requirements, and evaluating the amount of materials that could be recycled and the energy that would be saved through recycling. Detailed descriptions of battery component materials, the energy requirements for battery production, and credits for recycling, and the operational energy for an electric vehicle, and the procedures used to determine it are discussed.

Sullivan, D; Morse, T; Patel, P; Patel, S; Bondar, J; Taylor, L

1980-12-01T23:59:59.000Z

192

Revenue Maximization of Electricity Generation for a Wind Turbine Integrated with a Compressed Air Energy Storage System  

E-Print Network (OSTI)

controller is developed for a Compressed Air Energy Storage (CAES) system integrated with a wind turbine storage vessel. The storage vessel contains both liquid and compressed air at the same pressure. Energy significant reduction in generation costs. Among all different types of energy storage approaches, compressed

Li, Perry Y.

193

A design for the interface between a battery storage and charging unit, and a medium voltage DC (MVDC) bus, as part of an integrated propulsion system (IPS) in the all electric ship (AES)  

Science Journals Connector (OSTI)

In this paper we present the design of a rechargeable battery storage device for use in an all-electric ship. The purpose of this device is to provide power of predictable quality to selected equipment. In addition a recharging unit is proposed for recharging ... Keywords: electric ship, energy storage, medium voltage DC (MVDC), pulse load

T. A. Trapp; P. Prempraneerach; C. Chryssostomidis; J. L. Kirtley, Jr.; G. E. Karniadakis

2011-06-01T23:59:59.000Z

194

NREL: Transportation Research - Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Transportation Research Cutaway image of an automobile showing the location of energy storage components (battery and inverter), as well as electric motor, power...

195

Oppenheimer, J. Robert  

Science Journals Connector (OSTI)

American physicist J. Robert Oppenheimer features in world history as the leader of the , which developed the first American atomic (fission) bombs, but his contributions to astronomy concern the structure of...

Virginia Trimble

2007-01-01T23:59:59.000Z

196

Robert C. Marcum  

Energy.gov (U.S. Department of Energy (DOE))

Mr. Robert Marcum is Acting Director of Portfolio Management for the Department of Energy’s Loan Programs Office.  Mr. Marcum is a senior manager with over 20 years of experience in...

197

Dr. Robert Blankenship | Photosynthetic Antenna Research Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Robert Blankenship September 10, 2011 Dr. Robert Blankenship "Solar Energy and Photosynthetic Antenna Research" Published: September 10, 2011 Dr. Robert Blankenship, Lucille P....

198

Graph Algorithms Robert Elsasser  

E-Print Network (OSTI)

. Definition 3: A vertex cover of a graph G = (V, E) is a set Q V , such that each edge of E is incidentGraph Algorithms Robert Els¨asser 17 November 2011 Program of the day: · Matchings in bipartite graphs Robert Els¨asser Universit¨at Paderborn Graph Algorithms WS 11/12 0 #12;5. Matchings in bipartite

Elsässer, Robert

199

Plug-in electric vehicles as dispersed energy storage interactions with a smart office building  

Science Journals Connector (OSTI)

Renewable energy resources (RESs) with plug-in electric vehicles (PEVs) are being gradually accepted by society for their low carbon emission merits. However reverse power from the RES will result in the grid node's voltage rise and cause protection malfunction. As large amount of PEVs plug in the grid their overall charging power tends to be uncertain due to their complex charging behavior. At the same time if the renewable energy is integrated into the same grid the gird will face a great technological challenge. In this paper a smart building energy management system (SBEMS) is proposed to mitigate negative impact of RES and PEVs to power grid and optimize the operation of the building. The proposed SBEMS is also capable with PEVs system integration photovoltaic (PV) power forecasting optimization algorithm implementation and environmental evaluation criteria. Since PV's output is sensitive to the meteorology a 1-day-ahead power forecasting model is needed and presented. The economic system of PEVs is particularly complex because it needs optimization across multiple time steps and is strongly influenced by tariff structures. Furthermore the optimization problem to minimize the total building operational cost including PEVs charging cost is formulated while satisfying the supply and demand balance and complicated operating constraints of every energy supply equipment and devices. The simulation results have shown that the SBEMS can effectively reduce the PEVs charging cost building operation cost and the environment punishment fee. It is also important for the SBEMS to be responsible for the power grid operational indices. So the trade-off between economic consideration and load factor should be made. It is verified that the SBEMS is beneficial to the PEVs owners building operator environment and grid.

Qian Dai; Shanxu Duan; Tao Cai; Changsong Chen

2013-01-01T23:59:59.000Z

200

Cool Storage Performance  

E-Print Network (OSTI)

Utilities have promoted the use of electric heat and thermal storage to increase off peak usage of power. High daytime demand charges and enticing discounts for off peak power have been used as economic incentives to promote thermal storage systems...

Eppelheimer, D. M.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Robert L. Fleischer, P. Buford Price, Robert M. Walker, 1971...  

Office of Science (SC) Website

P: (301) 903-9395 E: lawrence.award@science.doe.gov 1970's Robert L. Fleischer, P. Buford Price, Robert M. Walker, 1971 Print Text Size: A A A FeedbackShare Page Reactors: For...

202

Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ELECTRICITY ADVISORY COMMITTEE MISSION The mission of the Electricity Advisory Committee is to provide advice to the U.S. Department of Energy in implementing the Energy Policy Act of 2005, executing the Energy Independence and Security Act of 2007, and modernizing the nation's electricity delivery infrastructure. ELECTRICITY ADVISORY COMMITTEE GOALS The goals of the Electricity Advisory Committee are to provide advice on: * Electricity policy issues pertaining to the U.S. Department of Energy * Recommendations concerning U.S. Department of Energy electricity programs and initiatives * Issues related to current and future capacity of the electricity delivery system (generation, transmission, and distribution, regionally and nationally)

203

Robert Van Buskirk  

NLE Websites -- All DOE Office Websites (Extended Search)

Robert D Van Buskirk Robert D Van Buskirk Robert Van Buskirk Sustainable Energy Systems Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 90R2002 Berkeley CA 94720 Office Location: 90-2024K (510) 486-6421 RDVanBuskirk@lbl.gov After two years working on engineering studies in support of Native American water rights with Natural Resources Consulting Engineers, he joined the University of Asmara in Eritrea, East Africa as an Assistant Professor of Physics in 1993. During his four years in Eritrea he was one of the founders of the Eritrean national electronic mail system, and moved to the Eritrean Department of Energy in 1995 to help found the research programs in stove efficiency, wind energy resource assessment, and solar energy resource assessment. Then after one year of practical experience working with business and technology

204

Storage of solar energy  

Science Journals Connector (OSTI)

A framework is presented for identifying appropriate systems for storage of electrical, mechanical, chemical, and thermal energy in solar energy supply systems. Classification categories include the nature ... su...

Theodore B. Taylor

1979-09-01T23:59:59.000Z

205

Electric Storage Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

energy can be wasted even when a hot water tap isn't running. This is called standby heat loss. The American Council for an Energy Efficient Economy provides a helpful...

206

Water Heaters (Storage Electric)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards.

207

Nonaqueous Electrical Storage Device  

DOE Patents (OSTI)

An electrochemical capacitor is disclosed that features two, separated, high surface area carbon cloth electrodes sandwiched between two current collectors fabricated of a conductive polymer having a flow temperature greater than 130.degree. C., the perimeter of the electrochemical capacitor being sealed with a high temperature gasket to form a single cell device. The gasket material is a thermoplastic stable at temperatures greater than 100.degree. C., preferably a polyester or a polyurethane, and having a reflow temperature above 130.degree. C. but below the softening temperature of the current collector material. The capacitor packaging has good mechanical integrity over a wide temperature range, contributes little to the device equivalent series resistance (ESR), and is stable at high potentials. In addition, the packaging is designed to be easily manufacturable by assembly line methods. The individual cells can be stacked in parallel or series configuration to reach the desired device voltage and capacitance.

McEwen, Alan B. (Melrose, MA); Evans, David A. (Seekonk, MA); Blakley, Thomas J. (Woburn, MA); Goldman, Jay L. (Mansfield, MA)

1999-10-26T23:59:59.000Z

208

Curriculum Vitae Robert F. Bruner  

E-Print Network (OSTI)

Curriculum Vitae Robert F. Bruner Darden Graduate School of Business Administration University. Active in community organizations. #12;Curriculum Vitae of Robert F. Bruner 2 Academic Appointments 1982. Initiated a major curriculum redesign effort. #12;Curriculum Vitae of Robert F. Bruner 3 Significant

Acton, Scott

209

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network (OSTI)

battery Utility electricity consumption Electricity providedis expressed in electricity consumption of the electricis expressed in electricity consumption of the electric

Stadler, Michael

2009-01-01T23:59:59.000Z

210

Unimolecular Electrical Rectification in Hexadecylquinolinium Tricyanoquinodimethanide  

E-Print Network (OSTI)

Unimolecular Electrical Rectification in Hexadecylquinolinium Tricyanoquinodimethanide Robert M Abstract: Macroscopic and nanoscopic current-voltage measurements reveal asymmetries in the DC electrical to an excited-state conformer which is probably neutral. Unimolecular electrical rectification by monolayers

Metzger, Robert M.

211

CURRICULUM VITAE Robert Wood  

E-Print Network (OSTI)

CURRICULUM VITAE Robert Wood Assistant Professor Atmospheric Sciences, Box 351640, University. Publications [1] Wood, R., I. M. Stromberg, P. R. Jonas and C. S. Mill, 1997: Analysis of an air motion system on a light aircraft for boundary layer research. J. Atmos. Oceanic Technol., 14, 960-968. [2] Wood, R., D. W

Wood, Robert

212

Roberts's “Heat and Thermodynamics”  

Science Journals Connector (OSTI)

... the last edition of the late Dr. J. K. Roberts's "Heat and Thermodynamics" appeared. The new material incorporated in this, the fourth edition, by Dr. ... ', but simply because new problems have afforded such excellent examples of the application of thermodynamics that their study must surely help the reader to a better understanding of the subject ...

G. R. NOAKES

1952-01-12T23:59:59.000Z

213

J. Robert Schrieffer and the BCS Theory of Superconductivity  

NLE Websites -- All DOE Office Websites (Extended Search)

J. Robert Schrieffer and the BCS Theory of Superconductivity J. Robert Schrieffer and the BCS Theory of Superconductivity Resources with Additional Information J. Robert Schrieffer Courtesy of NHMFL Robert Schrieffer received his BS from M.I.T. in 1953 and his Ph.D. from the University of Illinois in 1957. Upon entering the University of Illinois, "he immediately began research with Professor John Bardeen. After working out a problem dealing with electrical conduction on semiconductor surfaces, Schrieffer spent a year in the laboratory, applying the theory to several surface problems. In the third year of graduate studies, he joined Bardeen and [Leon] Cooper in developing the theory of superconductivity, which constituted his doctoral dissertation."1 Bardeen, Cooper and Schrieffer were awarded the 1972 Nobel Prize in Physics "for their jointly developed theory of superconductivity, usually called the BCS-theory".

214

Spin rotation and birefringence effect for a particle in a high energy storage ring and measurement of the real part of the coherent elastic zero-angle scattering amplitude, electric and magnetic polarizabilities  

E-Print Network (OSTI)

In the present paper the equations for the spin evolution of a particle in a storage ring are analyzed considering contributions from the tensor electric and magnetic polarizabilities of the particle. Study of spin rotation and birefringence effect for a particle in a high energy storage ring provides for measurement as the real part of the coherent elastic zero-angle scattering amplitude as well as tensor electric and magnetic polarizabilities. We proposed the method for measurement the real part of the elastic coherent zero-angle scattering amplitude of particles and nuclei in a storage ring by the paramagnetic resonance in the periodical in time nuclear pseudoelectric and pseudomagnetic fields.

V. G. Baryshevsky; A. A. Gurinovich

2005-06-14T23:59:59.000Z

215

electrical, engineering  

E-Print Network (OSTI)

in groundbreaking community solar project PMC-based technology products enter the market Expanding our capacity: new learning educational gaming energy-efficient data storage and computing health informatics haptic education K-12 STEM electrical energy storage thermal energy storage and conversion energy production

Zhang, Junshan

216

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network (OSTI)

D. O. Energy, “Energy Storage-A Key Enabler of the Smartof storage [electric energy storage],” Power and EnergyJ. Řstergaard, “Battery energy storage technology for power

Wang, Zuoqian

2013-01-01T23:59:59.000Z

217

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network (OSTI)

of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

Akbari, H.

2010-01-01T23:59:59.000Z

218

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network (OSTI)

For the ice storage system, during direct cooling, thethe building cooling load. In dynamic systems, ice is formedcooling/demand-limited storage / electric load management / full storage / ice

Akbari, H.

2010-01-01T23:59:59.000Z

219

Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality  

E-Print Network (OSTI)

electric load thermal storage solar thermal storage chargingcombustion solar thermal CHP heat storage charging generateof solar thermal collectors, 1100 kWh of electrical storage,

Marnay, Chris; Firestone, Ryan

2007-01-01T23:59:59.000Z

220

Carbon Capture and Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

SECARB's SECARB's Mississippi SalineTest Site: A Field Project Update Robert C. Trautz (rtrautz@epri.com) Electric Power Research Institute Senior Project Manager DOE Regional Carbon Sequestration Partnership Annual Review Meeting October 6-8, 2008 Pittsburgh, PA 2 1. Introduction 2. Well Drilling & Completion 3. Reservoir Characterization 4. CO 2 Injection Operations 5. Monitoring and Verification Outline 3 Key Organizations and Acknowledgments SOUTHERN STATES ENERGY BOARD Dr. Gerald (Jerry) R. Hill OTHER FIELD PROJECTS AND SUPPORTING ACTIVITIES * Advanced Resources * Alabama Geological Survey/ SCS * Gulf Coast Carbon Center (TXBEG) * EPRI * Virginia Tech University * Mississippi State University * Others Richard Esposito MISSISSIPPI POWER CO. Rick Berry Richard (Dick) Rhudy Robert (Rob) Trautz

Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ELECTRIC  

Office of Legacy Management (LM)

you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

222

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

NLE Websites -- All DOE Office Websites (Extended Search)

1334E-2009 1334E-2009 Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States Michael Stadler, Chris Marnay, Afzal Siddiqui, Judy Lai, Brian Coffey, and Hirohisa Aki Environmental Energy Technologies Division Revised March 2009 http://eetd.lbl.gov/EA/EMP/emp-pubs.html The work described in this paper was funded by the Office of Electricity Delivery and Energy Reliability, Renewable and Distributed Systems Integration Program in the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct

223

Energy Storage & Power Electronics 2008 Peer Review - Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

& Power Electronics 2008 Peer Review - Energy & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations Energy Storage & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations The 2008 Peer Review Meeting for the DOE Energy Storage and Power Electronics Program (ESPE) was held in Washington DC on Sept. 29-30, 2008. Current and completed program projects were presented and reviewed by a group of industry professionals. The 2008 agenda was composed of 28 projects that covered a broad range of new and ongoing, state-of-the-art, energy storage and power electronics technologies, including updates on the collaborations among DOE/ESPE, CEC in California, and NYSERDA in New York. Energy Storage Systems (ESS) presentations are available below. ESPE 2008 Peer Review - EAC Energy Storage Subcommittee - Brad Roberts, S&C

224

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network (OSTI)

storage, thermal storage, solar thermal collectors, PVs, andis disallowed; 5. a low storage, PV, and solar thermal priceW run 4 force low storage / PV and solar thermal results run

Stadler, Michael

2009-01-01T23:59:59.000Z

225

Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules  

E-Print Network (OSTI)

electricity storage, photovoltaic panels, solar thermalof storage technology k theoretical peak solar conversionenergy storage, AC – Absorption Chiller, ST – solar thermal

Cardoso, Goncalo

2014-01-01T23:59:59.000Z

226

Hot Thermal Storage/Selective Energy System Reduces Electric Demand for Space Cooling As Well As Heating in Commercial Application  

E-Print Network (OSTI)

energy and off-peak electric resistance heating. Estimated energy and first cost savings, as compared with an all-electric VAV HVAC system, are: 30 to 50% in ductwork size and cost; 30% in fan energy; 25% in air handling equipment; 20 to 40% in utility...

Meckler, G.

1985-01-01T23:59:59.000Z

227

ECE 438 Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric  

E-Print Network (OSTI)

ECE 438 ­ Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric vehicle configurations. Vehicle mechanics. Energy sources and storage. Range prediction. Motor for HEVs. Electric drive components. Vehicle transmission system. Credits

228

Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems  

E-Print Network (OSTI)

State Assembly Bill 2514 – Energy storage systems,” Energy Storage for the Electricity5. D. Rastler, Electric Energy Storage Technology Options: A

Nottrott, A.; Kleissl, J.; Washom, B.

2013-01-01T23:59:59.000Z

229

WRITTEN TESTIMONY OF DR. ROBERT J. WOOD  

E-Print Network (OSTI)

WRITTEN TESTIMONY OF DR. ROBERT J. WOOD DIRECTOR OF THE COOPERATIVE OXFORD LABORATORY NATIONAL Robert Wood, Director of the Cooperative Oxford Laboratory, a cooperative scientific research laboratory

230

EERE Partner Testimonials - Phil Roberts, California Lithium...  

NLE Websites -- All DOE Office Websites (Extended Search)

Phil Roberts, California Lithium Battery (CalBattery) EERE Partner Testimonials - Phil Roberts, California Lithium Battery (CalBattery) Addthis Text Version The words "Office of...

231

ELECTRIC  

Office of Legacy Management (LM)

ELECTRIC ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A quantity of at lezst 5 grams would probably be sufficient for our purpose, and this was included in our 3@icntion for license to the Atonic Energy Coskqission.. This license has been approved, 2nd rre would Llp!Jreciate informztion as to how to ?r*oceed to obtain thit: m2teria.l.

232

Carmichael Roberts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carmichael Roberts Carmichael Roberts About Us Carmichael Roberts - General Partner, North Bridge Venture Partners Carmichael Roberts Carmichael Roberts is a General Partner at North Bridge Venture Partners where he finances and builds companies that make new products using chemistry, materials science and/or materials engineering. He primarily focuses on early stage ventures, including helping founders launch companies from initial formation. Carmichael lead the North Bridge investment in 1366 technologies, a company in Bedford MA that makes high efficiency solar cells based on innovations in silicon engineering. He serves as the Chairman of 1366 technologies. Carmichael also helps start companies like Foro Energy which uses high powered lasers to access energy resources. Foro was created in Carmichael's offices in Boston. He

233

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

234

Construction of a Demand Side Plant with Thermal Energy Storage  

E-Print Network (OSTI)

storage and its potential impact on the electric utilities and introduces the demand side plant concept....

Michel, M.

1989-01-01T23:59:59.000Z

235

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

selection of on-site power generation with combined heat andTotal Electricity Generation Figure 13. Small MercantileWeekday Total Electricity Generation (No Storage Adoption

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

236

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network (OSTI)

charging kW Utility electricity consumption Electricityis expressed in electricity consumption of the electricis expressed in electricity consumption of the electric

Stadler, Michael

2009-01-01T23:59:59.000Z

237

Electricity Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 5, 2012 June 5, 2012 Electricity Advisory Committee 2012 Membership Roster Richard Cowart Regulatory Assistance Project CHAIR Irwin Popowsky Pennsylvania Consumer Advocate VICE CHAIR William Ball Southern Company Guido Bartels IBM Rick Bowen Alcoa Merwin Brown California Institute for Energy and Environment Ralph Cavanagh Natural Resources Defense Council The Honorable Paul Centolella Public Utilities Commission of Ohio David Crane NRG Energy, Inc. The Honorable Robert Curry New York State Public Service Commission José Delgado American Transmission Company (Ret.) Clark Gellings Electric Power Research Institute Robert Gramlich American Wind Energy Association Dian Grueneich Dian Grueneich Consulting, LLC. Michael Heyeck American Electric Power

238

ESS 2012 Peer Review - Flow-Assisted Zinc Anode Batteries for Grid-Scale Electricity Storage - Sanjoy Banerjee, CUNY Energy Institute  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GRID-CONNECTED SYSTEM! GRID-CONNECTED SYSTEM! !"#$%&'()* !"#$%&'()* The CUNY EI is developing and testing hardware/software systems for peak shaving applications in commercial and industrial buildings 30KWH DEMONSTRATION !"#$%&'()*+&,-./01&2134/5& 6/57+340-4/3&809-+&6/5-+6&:%-0;/& 0/68:'?&@+/0;1&A+3<484/& & '()*+&B(CC&9/&(+4/;0-4/6&B(4%&D+E F )*+& (+&F"G!& G""H&=1:C/3& I&J"K&=7C859(:&@L:(/+:1& I&M"K&@+/0;1&@L:(/+:1& & =755/0:(-C(N/6&91&>09-+&@C/:40(:&O7B/0& %.PQRR340(+;"""GS8/P(+:S:75& FLOW-ASSISTED ZINC ANODE BATTERIES FOR GRID-SCALE ELECTRICITY STORAGE !

239

IRRIGATION & ELECTRICAL DISTRICTS  

NLE Websites -- All DOE Office Websites (Extended Search)

IRRIGATION & ELECTRICAL DISTRICTS IRRIGATION & ELECTRICAL DISTRICTS ASSOCIATION OF ARIZONA R.D. JUSTICE SUITE 140 WILLIAM H. STACY PRESIDENT 340 E. PALM LANE SECRETARY-TREASURER PHOENIX, ARIZONA 85004-4603 ELSTON GRUBAUGH (602) 254-5908 ROBERT S. LYNCH VICE-PRESIDENT Fax (602) 257-9542 COUNSEL AND

240

IRRIGATION & ELECTRICAL DISTRICTS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IRRIGATION & ELECTRICAL DISTRICTS IRRIGATION & ELECTRICAL DISTRICTS ASSOCIATION OF ARIZONA R. GALE PEARCE SUITE 140 ELSTON GRUBAUGH PRESIDENT 340 E. PALM LANE SECRETARY-TREASURER PHOENIX, ARIZONA 85004-4603 R.D. JUSTICE (602) 254-5908 ROBERT S. LYNCH VICE-PRESIDENT Fax (602) 257-9542 ASSISTANT SECRETARY-TREASURER

Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Robert P. Winarski  

NLE Websites -- All DOE Office Websites (Extended Search)

P. Winarski P. Winarski Physicist X-ray Nanoprobe Beamline X-ray Microscopy Group Phone: 630-252-9921 Fax: 630-252-5739 E-Mail: winarski@anl.gov Argonne National Laboratory Center for Nanoscale Materials 9700 S. Cass Avenue Argonne, Illinois 6043 Research summary: I am interested in developing a full-field and tomographic x-ray research program using the unique capabilities associated with the design of the Hard X-ray Nanoprobe Beamline (http://www.cnm.anl.gov/research/xray.html). Awards: R&D 100 Award for the Hard X-ray Nanoprobe (2009). Selected Recent Publications: Martin Holt, Ross Harder, Robert Winarski, Volker Rose, Nanoscale Hard X-Ray Microscopy Methods for Materials Studies, Annual Review of Materials Research, Volume 43(1), (2013).

242

Robert Sandoli | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Robert Sandoli Robert Sandoli About Us Robert Sandoli - Director, International Rob Sandoli is the Director for EERE's International portfolio. He manages EERE bilateral and multilateral partnerships and projects, develops new international collaborations, and coordinates international efforts with other DOE offices, federal agencies, and international organizations. Through international collaboration, the program accelerates progress of EERE's clean energy technology programs and primes markets in strategic partner economies for U.S. clean technology exports. Previously, he served as Senior Advisor to DOE's Under Secretary of Energy, where he provided analysis and advice on budget, management, and policy issues for DOE's $10 billion portfolio of applied energy research,

243

J. Robert Oppenheimer - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

of all scientific experiments and procedures related to the development of the atomic weapon was J. Robert Oppenheimer. He was given the job in 1942 by the project director,...

244

CURRICULUM VITA Robert H. Smiley  

E-Print Network (OSTI)

ASSOCIATIONS Board of Directors, Habitat for Humanity ( 2007 ­ 2011 ), Yolo County Board of Directors, Placer of Visitors Board of Directors, Habitat for Humanity ( 2007 ­ 2011 ), Yolo County Robert Mondavi Institute

Ullrich, Paul

245

NREL: Vehicles and Fuels Research - Hybrid Electric Fleet Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to...

246

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network (OSTI)

ES 2. CA nursing home electricity pattern: July weekday lowJanuary and July weekday electricity and total heat (space +CA school weekday total electricity (inclusive of cooling)

Stadler, Michael

2009-01-01T23:59:59.000Z

247

Advanced Materials and Devices for Stationary Electrical Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials and Devices for Stationary Electrical Energy Storage Applications Advanced Materials and Devices for Stationary Electrical Energy Storage Applications Reliable access to...

248

Recovery Act: State Assistance for Recovery Act Related Electricity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

carbon capture and storage, transmission lines, energy storage, smart grid, demand response equipment, and electric and hybrid-electric vehicles. View a full list of states...

249

QER Public Meeting in Portland, OR: Electricity Transmission...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Portland, OR: Electricity Transmission, Storage and Distribution - West QER Public Meeting in Portland, OR: Electricity Transmission, Storage and Distribution - West Meeting Date...

250

Electricity Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 17, 2010 1 September 17, 2010 1 Electricity Advisory Committee 2010 Membership Roster Richard Cowart Regulatory Assistance Project CHAIR Honorable Lauren Azar Wisconsin Public Utilities Commission VICE CHAIR Guido Bartels IBM Rick Bowen Alcoa Fred Butler Salmon Ventures Ltd. and New Jersey Board of Public Utilities (Ret.) Ralph Cavanagh Natural Resources Defense Council Lisa Crutchfield National Grid USA Honorable Robert Curry New York State Public Service Commission José Delgado American Transmission Company (Ret.) Roger Duncan Austin Energy (Ret.) Robert Gramlich American Wind Energy Association Honorable Dian Grueneich California Public Utilities Commission Michael Heyeck American Electric Power Joseph Kelliher NextEra Energy, Inc.

251

Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module  

DOE Patents (OSTI)

The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage. 19 figs.

Pitel, I.J.

1987-02-03T23:59:59.000Z

252

Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module  

DOE Patents (OSTI)

The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage.

Pitel, Ira J. (Whippany, NJ)

1987-02-03T23:59:59.000Z

253

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network (OSTI)

acid batteries flow battery thermal n/a n/a xiv The Effectslead/acid battery) and thermal storage, capabilities, withlifetime (a) thermal storage 1 flow battery 220$/kWh and

Stadler, Michael

2009-01-01T23:59:59.000Z

254

MUON COLLIDER PROGRESS Robert B. Palmer (BNL, Upton, Long Island, New York)  

E-Print Network (OSTI)

MUON COLLIDER PROGRESS Robert B. Palmer (BNL, Upton, Long Island, New York) Abstract A complete scheme for muon production, cooling, ac- celeration and storage in a collider ring is presented. Pa- rameters for two muon colliders are given. Both start with pion production on a mercury target. A capture

McDonald, Kirk

255

Long-term Water Balance Monitoring of Engineered Covers for Waste Containment Robert C. Reedy1  

E-Print Network (OSTI)

Long-term Water Balance Monitoring of Engineered Covers for Waste Containment Robert C. Reedy1 infiltration into underlying waste. The purpose of this study is to evaluate a variety of monitoring and temperature data, can reliably monitor water storage changes. The non- invasive nature of EM measurements

Scanlon, Bridget R.

256

Carbon Storage Review 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Options in the Illinois Basin - Phase III DE-FC26-05NT42588 Robert J. Finley and the MGSC Project Team Illinois State Geological Survey (University of Illinois) and Schlumberger Carbon Services U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 * The Midwest Geological Sequestration Consortium is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) via the Regional Carbon Sequestration Partnership Program (contract number DE-FC26-05NT42588) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal

257

Marketing Cool Storage Technology  

E-Print Network (OSTI)

storage has been substantiated. bv research conducted by Electric Power Research Institute, and by numerous installations, it has become acknowledged that cool stora~e can provide substantial benefits to utilities and end-users alike. A need was reco...~ned to improve utility load factors, reduce peak electric demands, and other-wise mana~e the demand-side use of electricity. As a result of these many pro~rams, it became apparent that the storage of coolin~, in the form of chilled water, ice, or other phase...

McCannon, L.

258

Robert Wagner - Research Staff - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Robert Wagner Robert Wagner R&D Staff Member (T) 865-946-1239 (F) 865-946-1354 wagnerrm@ornl.gov Professional Highlights Education Ph.D. in Mechanical Engineering, University of Missouri-Rolla, 1999 "Identification and Characterization of Complex Dynamic Structure in Spark Ignition Engines" M.S. in Mechanical Engineering, University of Missouri-Rolla, 1995 "Impact of Fuel Spray Behavior on Combustion Stability in Spark Ignition Engines" B.S. in Mechanical Engineering, University of Missouri-Rolla, 1993 "Cogeneration by Steam Injection to Gas Turbine Engines" Dr. Robert Wagner is the Director of the Fuels Engines and Emissions Research Center, a Distinguished Member of the technical staff, and serves as the technical lead for engine combustion and efficiency research at Oak

259

Robert Lange | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Robert Lange About Us Robert Lange - Deputy Assistant Secretary for Business & Technical Support, Office of Nuclear Energy As Deputy Assistant Secretary for Corporate Business Operations, Robert Lange is responsible for all personnel, budget, and technical oversight activities within the Office of Nuclear Energy. Mr. Lange has over 30 years of experience managing high technology projects, in progressively more senior positions. He has managed component development for advanced power plants, led the development of an advanced nuclear power plant design, and served as DOE Headquarters program manager for major nuclear facilities. He was Director of the SP-100 Space Reactor Program, Director of Advanced Light Water Plant Designs, and Office Director for the Radioisotope

260

Energy Storage | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Energy Storage Energy Storage One of the distinctive characteristics of the electric power sector is that the amount of electricity that can be generated is relatively fixed over short periods of time, although demand for electricity fluctuates throughout the day. Developing technology to store electrical energy so it can be available to meet demand whenever needed would represent a major breakthrough in electricity distribution. Helping to try and meet this goal, electricity storage devices can manage the amount of power required to supply customers at times when need is greatest, which is during peak load. These devices can also help make renewable energy, whose power output cannot be controlled by grid operators, smooth and dispatchable. They can also balance microgrids to achieve a good match between generation

Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Base Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

262

TTTTThe Academic Fhe Academic Fhe Academic Fhe Academic Fhe Academic Family Tamily Tamily Tamily Tamily Treereereereeree Dean Robert George JahnDean Robert George JahnDean Robert George JahnDean Robert George JahnDean Robert George Jahn  

E-Print Network (OSTI)

Tamily Treereereereeree ofofofofof Dean Robert George JahnDean Robert George JahnDean Robert George JahnDean Robert George JahnDean Robert George Jahn Bob JM Corr *65 M.S. ES Wright *65 M.S. GA Rowell *65 M.S. C Grosse 58 M.S. F Albini 61 Ph.D. K Harwell 63 Ph.D. H Wong 61 M.S. US AFRL Chief Scientist. Current Dir

263

Robert Kalb 18 May 2010  

E-Print Network (OSTI)

is commonly found as gas tank antifreeze. The glycerin that is produced must be removed through a process1 Robert Kalb GEOS 206 18 May 2010 Feasibility Study of Biodiesel and Waste Vegetable Oil energy sources particularly on American college campuses. This paper will consider used food oil

Aalberts, Daniel P.

264

Curriculum Vitae Robert F. Hadley  

E-Print Network (OSTI)

Curriculum Vitae Robert F. Hadley Address School of Computing Science Simon Fraser University/410, University of British Columbia. #12;2 PUBLICATIONS Refereed Encyclopaedic Contribution Hadley, R.F. (2002 edition (Michael A. Arbib, ed.), Cambridge, MA: MIT Press. Publications in Refereed Journals Hadley, R

Hadley, Robert F.

265

Energy Storage Valuation Methodology and Supporting Tool  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ben Kaun Ben Kaun Sr. Project Engineer Electricity Advisory Committee: Storage Valuation Panel 6-6-13 Energy Storage Valuation Methodology and Supporting Tool 2 © 2013 Electric Power Research Institute, Inc. All rights reserved. Electric Power Research Institute (EPRI) * Independent, non-profit, collaborative research institute, with full spectrum electric industry coverage * EPRI members represent ~90% of energy delivered in the U.S. * Energy Storage Research Program has over 30 funding utility members 3 © 2013 Electric Power Research Institute, Inc. All rights reserved. Storage Valuation Can be Confusing! Renewable Integration Frequency Regulation Spinning Reserve Resource Adequacy Asset Utilization Voltage Support Reduced GHG? Lower Production Costs

266

Grid Applications for Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications for Energy Storage Applications for Energy Storage Flow Cells for Energy Storage Workshop Washington DC 7-8 March 2012 Joe Eto jheto@lbl.gov (510) 486-7284 Referencing a Recent Sandia Study,* This Talk Will: Describe and illustrate selected grid applications for energy storage Time-of-use energy cost management Demand charge management Load following Area Regulation Renewables energy time shift Renewables capacity firming Compare Sandia's estimates of the economic value of these applications to the Electricity Storage Association's estimates of the capital costs of energy storage technologies *Eyer, J. and G. Corey. Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide. February 2010. SAND2010-0815 A Recent Sandia Study Estimates the Economic

267

Energy Storage | Open Energy Information  

Open Energy Info (EERE)

Storage Storage Jump to: navigation, search TODO: Source information Contents 1 Introduction 2 Benefits 3 Technologies 4 References Introduction Energy storage is a tool that can be used by grid operators to help regulate the electrical grid and help meet demand. In its most basic form, energy storage "stores" excess energy that would otherwise be wasted so that it can be used later when demand is higher. Energy Storage can be used to balance microgrids, perform frequency regulation, and provide more reliable power for high tech industrial facilities.[1] Energy storage will also allow for the expansion of intermittent renewable energy, like wind and solar, to provide electricity around the clock. Some of the major issues concerning energy storage include cost, efficiency, and size.

268

Successfully Marketing Thermal Storage in Commercial Buildings  

E-Print Network (OSTI)

This paper first reviews the key hurdles to thermal energy storage. Next, case studies of three electric utility thermal storage marketing programs are reviewed. The results of these case studies. as well as advice and experiences from other...

McDonald, C.

1988-01-01T23:59:59.000Z

269

Integrated Building Energy Systems Design Considering Storage Technologies  

E-Print Network (OSTI)

among PV, solar thermal, and storage systems can be complex,and solar thermal collectors; electrical storage, flow8, huge PV, solar thermal as well as storage systems will be

Stadler, Michael

2009-01-01T23:59:59.000Z

270

Survey of Western U.S. Electric Utility Resource Plans  

E-Print Network (OSTI)

energy distribution, and storage assumptions Effective resource planning activities can inform long-term electric

Wilkerson, Jordan

2014-01-01T23:59:59.000Z

271

Fiscal Year 1985 Department of Energy Authorization: uranium enrichment, electric energy systems, and storage programs. Volume VI. Hearings before the Subcommittee on Energy Research and Production of the Committee on Science and Technology, US House of Representatives, Ninety-Eighth Congress, Second Session, February 22, 28; March 1984  

SciTech Connect

Volume VI of the hearing record covers three days of testimony on uranium enrichment, electric energy systems, and storage problems. DOE Assistant Secretary for Nuclear Energy Shelby Brewer reviewed the current market crisis which threatens the US capability of continuing as a reliable enrichment supplier, and outlined DOE's response to the problem. Laboratory and non-DOE witnesses from the nuclear industry followed with their assessments of the problem. Witnesses on the third day described research on high-voltage electric fields, how electromagnetic pulses affect the electric grid, and ways to improve the delivery of electric power, as well as efficient, cost-effective energy-storage systems.

Not Available

1984-01-01T23:59:59.000Z

272

Concentrating on Solar Electricity and Fuels  

Science Journals Connector (OSTI)

...power, pose a “storage problem.” They...unavailable. Aside from pumped hydropower, large-scale storage of electricity is...Spain already have a storage capacity for 7 to...industrial processes, for seawater desalination, or...

Martin Roeb; Hans Müller-Steinhagen

2010-08-13T23:59:59.000Z

273

Storage Viability and Optimization Web Service  

E-Print Network (OSTI)

for electrical storage (batteries) and photovoltaics (PVs).technology parameters for the batteries and PV holds tariffsbattery, so called regular batteries, can be selected. The

Stadler, Michael

2010-01-01T23:59:59.000Z

274

Activated aluminum hydride hydrogen storage compositions and...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

275

Energy storage in composite flywheel rotors.  

E-Print Network (OSTI)

??ENGLISH ABSTRACT: As the push continues for increased use of renewables on the electricity grid, the problem of energy storage is becoming more urgent than… (more)

Janse van Rensburg, Petrus J.

2011-01-01T23:59:59.000Z

276

THE ELECTRICAL RESISTIVITY METER IN FISHERY INVESTIGATIONS  

E-Print Network (OSTI)

THE ELECTRICAL RESISTIVITY METER IN FISHERY INVESTIGATIONS I Marine Biological Laboratory! WOODS RESISTIVITY METER IN FISHERY INVESTIGATIONS By Robert E. Lennon Fishery Research Biologist Appalachian Sport) BiblioKiMpliy : p. ]!. 1. Electric meters. 2. Water--Analysis. 3. Electric fishing. I. Title. ( Series

277

Robert Albers, Paul Johnson and Kurt Sickafus  

NLE Websites -- All DOE Office Websites (Extended Search)

2008 Fellows December 4, 2008 Robert Albers, Paul Johnson and Kurt Sickafus recognized for contributions LOS ALAMOS, New Mexico, December 4, 2008-Los Alamos National Laboratory...

278

NREL: Transportation Research - Hybrid Electric Fleet Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to achieve a combination of emissions, fuel economy, and range benefits....

279

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network (OSTI)

et al. 1996, 2003, EPRI-DOE Handbook 2003, Goldstein, L. etet al. 2003, EPRI-DOE Handbook 2003 and at the Electricitycapitalcost.htm). EPRI-DOE Handbook of Energy Storage for

Stadler, Michael

2009-01-01T23:59:59.000Z

280

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

282

Techno-economic analysis of a small size short range EES (electric energy storage) system for a PV (photovoltaic) plant serving a SME (small and medium enterprise) in a given regulatory context  

Science Journals Connector (OSTI)

Abstract Considering the case of small-medium size plants based on PV (photovoltaic), an analysis was developed in order to model, simulate and optimize an electricity storage system to be coupled to a small photovoltaic plant applied to an industry load, to calculate its profitability in a given regulatory context. The case study is the current Italian electricity market. The analysis was done on a small industrial plant in the area of Torino (North-West Italy), with its own photovoltaic plant connected to the public electrical grid. After an analysis of the present situation, the aim of the analysis is to understand the behaviour, from an economic point of view, of the self-consumption of renewable energy in case of a sudden deregulation of the market (switch off of feed in tariffs or RES (renewable energy system) kWh). The study includes a sensitivity analysis of the main technical and economic parameters in order to identify which of them have the greatest influence on economic performance, and therefore which parameters have to be considered with special care by the producers (technical and economic parameters) and the regulatory authorities (regulations) to decide and optimize the adoption of storage systems as a way to sustain the massive introduction of RES in the energy arena.

R. Scozzari; M. Santarelli

2014-01-01T23:59:59.000Z

283

Gas hydrate cool storage system  

DOE Patents (OSTI)

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

284

An Integrated Design Environment for Performance and Dependability Robert H. Klenke  

E-Print Network (OSTI)

is that they are not integrated into the engineering design environment in which the system will ultimately be implementedAn Integrated Design Environment for Performance and Dependability Analysis1 Robert H. Klenke Moshe Meyassed James H. Aylor Barry Johnson Ramesh Rao Anup Ghosh Department of Electrical Engineering University

Klenke, Robert H.

285

Optimal Power Flow Formulation in Market of Retail Wheeling Taiyou Yong, Student Member, IEEE Robert Lasseter, Fellow, IEEE  

E-Print Network (OSTI)

, transmission and distribution in an area. The rate of electricity is regulated. The market is monopoly. Retail. Optimal power flow is an optimizing tool for power system planning, energy management etc. Use Robert Lasseter, Fellow, IEEE Department of Electrical and Computer Engineering, University of Wisconsin

286

A model for short term electric load forecasting  

E-Print Network (OSTI)

A MODEL FOR SHORT TERM ELECTRIC LOAD FORECASTING A Thesis by JOHN ROBERT TIGUE, III Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1975 Major... Subject: Electrical Engineering A MODEL FOR SHORT TERM ELECTRIC LOAD FORECASTING A Thesis by JOHN ROBERT TIGUE& III Approved as to style and content by: (Chairman of Committee) (Head Depart t) (Member) ;(Me r (Member) (Member) May 1975 ABSTRACT...

Tigue, John Robert

1975-01-01T23:59:59.000Z

287

Energy Storage Laboratory (Fact Sheet)  

SciTech Connect

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

Not Available

2011-10-01T23:59:59.000Z

288

DOE Electricity Advisory Committee Meeting Arlington, Virginia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Electricity Advisory Committee Meeting DOE Electricity Advisory Committee Meeting Arlington, Virginia October 29, 2010 Minutes EAC Members in Attendance Richard Cowart, Chair Regulatory Assistance Project The Honorable Lauren Azar, Vice Chair Wisconsin Public Utilities Commission Guido Bartels, IBM Rick Bowen, Alcoa Frederick Butler Salmon Ventures Ltd. Ralph Cavanagh Natural Resources Defense Council Lisa Crutchfield National Grid USA The Honorable Robert Curry New York State Public Service Commission José Delgado Roger Duncan Robert Gramlich American Wind Energy Association Michael Heyeck American Electric Power Joseph Kelliher NextEra Energy, Inc. Edward Krapels Anbaric Holdings Barry Lawson National Rural Electric Cooperative Association

289

STRIEGL, ROBERT G., AND CATHERINE M. MICHMERHUIZEN ...  

Science Journals Connector (OSTI)

change-of-storage and floating chamber measurements. Change of storage is the measured difference in whole-lake storage of dissolved gas between sample

290

Storage Related News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Related News Storage Related News Storage Related News November 1, 2013 November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects On Wednesday, November 13 from 1 - 2 p.m. ET, Clean Energy States Alliance will host a webinar on Duke Energy's battery energy storage systems. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. August 30, 2013 September 16 ESTAP Webinar: Optimizing the Benefits of a PV with Battery Storage System On Monday, September 16 from 1 - 2 p.m. ET, Clean Energy States Alliance will host a webinar on optimizing the benefits of a photovoltaic (PV) storage system with a battery. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery

291

Vehicle Technologies Office: Electrical Machines  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Machines to Electrical Machines to someone by E-mail Share Vehicle Technologies Office: Electrical Machines on Facebook Tweet about Vehicle Technologies Office: Electrical Machines on Twitter Bookmark Vehicle Technologies Office: Electrical Machines on Google Bookmark Vehicle Technologies Office: Electrical Machines on Delicious Rank Vehicle Technologies Office: Electrical Machines on Digg Find More places to share Vehicle Technologies Office: Electrical Machines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Electrical Machines Emphasis in the electrical machines activity is on advanced motor

292

Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance  

E-Print Network (OSTI)

wind- diesel-compressed air energy storage system for remotestudy for the compressed air energy storage technology bydesign of compressed air energy storage electric power

Kim, H.-M.

2012-01-01T23:59:59.000Z

293

Electricity Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

08 Membership Roster 08 Membership Roster Linda Stuntz, Esquire Chair of the Electricity Advisory Committee Stuntz, Davis & Staffier, P.C. Paul J. Allen Constellation Energy Guido Bartels IBM Gerry Cauley SERC Reliability Corporation Ralph Cavanagh Natural Defense Resources Council Jose Delgado American Transmission Company The Honorable Jeanne Fox New Jersey Board of Public Utilities Joseph Garcia National Congress of American Indians Robert Gramlich American Wind Energy Association The Honorable Dian Grueneich California Public Utilities Commission Michael Heyeck American Electric Power Hunter Hunt Sharyland Utilities, LLP Susan Kelly American Public Power Association Yakout Mansour Vice-Chair of the Electricity Advisory Committee California Independent System Operator

294

Electricity Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 20, 2012 December 20, 2012 Electricity Advisory Committee 2012 Membership Roster Richard Cowart Regulatory Assistance Project CHAIR Irwin Popowsky Pennsylvania Consumer Advocate (Ret.) VICE CHAIR William Ball Southern Company Linda Blair ITC Holdings Corporation Rick Bowen Alcoa Merwin Brown California Institute for Energy and Environment Ralph Cavanagh Natural Resources Defense Council Paul Centolella Analysis Group The Honorable Robert Curry New York State Public Service Commission Clark Gellings Electric Power Research Institute Dian Grueneich Dian Grueneich Consulting, LLC. Michael Heyeck American Electric Power Paul Hudson Stratus Energy Group Val Jensen Commonwealth Edison Susan Kelly American Public Power Association Barry Lawson

295

NETL: Carbon Storage - Geologic Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

296

Fuel cells and electrochemical energy storage  

Science Journals Connector (OSTI)

Fuel cells and electrochemical energy storage ... Fuel cells and electrochemical energy storage : types of fuel cells, batteries for electrical energy storage, major batteries presently being investigated, and a summary of present major materials problems in the sodium-sulfur and lithium-alloy metal sulfide battery. ...

Anthony F. Sammells

1983-01-01T23:59:59.000Z

297

Electrochemistry: Metal-free energy storage  

Science Journals Connector (OSTI)

... % of total energy capacity will require electric-energy storage systems to be deployed. For grid-scale applications and remote generation sites, cheap and flexible storage systems are needed, but ... level as a source of potential energy) or expensive (for example, conventional batteries, flywheels and superconductive electromagnetic storage). On page 195 of this issue, Huskinson et al. ...

Grigorii L. Soloveichik

2014-01-08T23:59:59.000Z

298

6.15 - Pumped Storage Hydropower Developments  

Science Journals Connector (OSTI)

Abstract This chapter details how pumped storage hydroelectric projects differ from conventional hydroelectric projects. The concept of electrical energy storage has become a controversial issue in recent years. Many questions are raised in the electricity sector: Why is energy storage needed? What are the alternatives? One of the answers is pumped storage hydropower plants, using mainly pump–turbines. In this chapter, details of some remarkable examples of pumped storage power plants are given: Okinawa Seawater in Japan, Goldisthal in Germany, Tianhuangping in China, and Coo-Trois Ponts in Belgium.

T. Hino; A. Lejeune

2012-01-01T23:59:59.000Z

299

A Method to Determine the Optimal Tank Size for a Chilled Water Storage System Under a Time-of-Use Electricity Rate Structure  

E-Print Network (OSTI)

In the downtown area of Austin, it is planned to build a new naturally stratified chilled water storage tank and share it among four separated chilled water plants. An underground piping system is to be established to connect these four plants...

Zhang, Z.; Turner, W. D.; Chen, Q.; Xu, C.; Deng, S.

2010-01-01T23:59:59.000Z

300

EA-1752: Pacific Gas & Electric Company (PG&E), Compressed Air Energy Storage (CAES) Compression Testing Phase Project, San Joaquin County, California  

Energy.gov (U.S. Department of Energy (DOE))

DOE is preparing this EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California.

Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EA-1751: Smart Grid, New York State Gas & Electric, Compressed Air Energy Storage Demonstration Plant, Near Watkins Glen, Schuyler County, New York  

Energy.gov (U.S. Department of Energy (DOE))

DOE will prepare an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of a compressed air energy storage demonstration plant in Schuyler County, New York.

302

Energy Storage and Distributed Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

diagram of molecular structure, spectrocscopic data, low-swirl flame diagram of molecular structure, spectrocscopic data, low-swirl flame Energy Storage and Distributed Resources Energy Storage and Distributed Resources application/pdf icon esdr-org-chart-03-2013.pdf EETD researchers in the energy storage and distributed resources area conduct R&D and develops technologies that provide the electricity grid with significant storage capability for energy generated from renewable sources; real-time monitoring and response technologies for the "smart grid" to optimize energy use and communication between electricity providers and consumers; and technologies for improved electricity distribution reliability. Their goal is to identify and develop technologies, policies and strategies to enable a shift to renewable energy sources at $1 per watt for a

303

NREL: Learning - Energy Storage Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Basics Energy Storage Basics The demand for electricity is seldom constant over time. Excess generating capacity available during periods of low demand can be used to energize an energy storage device. The stored energy can then be used to provide electricity during periods of high demand, helping to reduce power system loads during these times. Energy storage can improve the efficiency and reliability of the electric utility system by reducing the requirements for spinning reserves to meet peak power demands, making better use of efficient baseload generation, and allowing greater use of renewable energy technologies. A "spinning reserve" is a generator that is spinning and synchronized with the grid, ready for immediate power generation - like a car engine running with the gearbox

304

ess5011 Robert J. Serfling MULTIVARIATE SYMMETRY AND  

E-Print Network (OSTI)

ess5011 Robert J. Serfling MULTIVARIATE SYMMETRY AND ASYMMETRY Robert J. Serfling University by modern group theory. 1 #12;ess5011 Robert J. Serfling Here we focus on the notion of symmetry and s independently distributed as chi-square with m degrees of freedom. 2 #12;ess5011 Robert J. Serfling An important

Serfling, Robert

305

Optimal strategies for operating energy storage in an arbitrage Lisa Flatley  

E-Print Network (OSTI)

Optimal strategies for operating energy storage in an arbitrage market Lisa Flatley Robert S Mac, energy storage, optimal localized algorithm. AMS subject classifications. 49K30, 93C10 1 Introduction [0, T], for an energy store which is trading in an arbitrage market. Our theory allows for leakage

Sengun, Mehmet Haluk

306

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas emissions by 30-45%, depending on the exact mix of technologies. For a general overview of electric drive vehicles, see the DOE's Alternative Fuel Data Center's pages on Hybrid and Plug-in Electric Vehicles and Vehicle Batteries. While a number of electric drive vehicles are available on the market, further improvements in batteries could make them more affordable and convenient to consumers. In addition to light-duty vehicles, some heavy-duty manufacturers are also pursuing hybridization of medium and heavy-duty vehicles to improve fuel economy and reduce idling.

307

Robert Jacob | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Jacob Jacob Computational Climate Scientist Robert Jacob is a computational climate scientist in the Mathematics and Computer Science Division of Argonne National Laboratory and a Fellow in the University of Chicago/Argonne Computation Institute. Jacob is the co-developer of the Model Coupling Toolkit which is used as the foundation coupling technology in the Community Climate System Model. He is also the lead developer of the Fast Ocean Atmosphere Model, a climate model used extensively in studies of paleoclimate and decadal variability. Jacob received his Ph.D. from the University of Wisconsin-Madison in Atmospheric Science in 1997. From 1998 to 2000 he held postdoctoral positions at the University of Wisconsin and at the Department of the Geophysical Sciences at the University of Chicago. He is a member of the

308

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

309

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

310

Application of Hydrogen Storage Technologies for Use in Fueling  

E-Print Network (OSTI)

Application of Hydrogen Storage Technologies for Use in Fueling Fuel Cell Electric Vehicles This report describes the design, commissioning, and operation of a mobile hydrogen delivery and storage of Hydrogen Storage Technologies Prepared for the U.S. Department of Energy Office of Electricity Delivery

311

Energy Storage  

SciTech Connect

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-03T23:59:59.000Z

312

Energy Storage  

ScienceCinema (OSTI)

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-23T23:59:59.000Z

313

Natural Gas Withdrawals from Underground Storage (Annual Supply &  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

314

Injections of Natural Gas into Storage (Annual Supply & Disposition)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

315

Energy Storage Technologies: State of Development for Stationary and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Technologies: State of Development for Stationary Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Testimony of Thomas S. Key, Technical Leader, Renewables and Distributed Generation, Electric Power Research Institute (EPRI) on Energy Storage Technologies: State of Development for Stationary and Vehicular Applications before the House Science and Technology Committee Energy and Environment Subcommittee October 3, 2007 Energy Storage Technologies: State of Development for Stationary and Vehicular Applications More Documents & Publications DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA (July 2013) Grid Energy Storage December 2013 Enhancing the Smart Grid: Integrating Clean Distributed and Renewable

316

NREL: About NREL - Robert Thresher - Research Fellow  

NLE Websites -- All DOE Office Websites (Extended Search)

Robert Thresher - Research Fellow Robert Thresher - Research Fellow Photo of Robert Thresher. Dr. Robert Thresher has more than 40 years of research, development, engineering, and management experience in wind technology, plant engineering, and aerospace systems. As a professor at Oregon State University he worked with DOE to develop early wind technologies. At NREL he has been a principal researcher developing early wind technology and an architect of the wind program at NREL and the creation of the National Wind Technology Center. He has been a strategist and spokesperson for the initiation of a national research program to develop offshore wind, wave, tidal and current energy technology. Dr. Thresher provides unparalleled expertise in research, development and commercialization of wind and ocean

317

Robert J. Thompson | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Robert J. Thompson Robert J. Thompson About Us Robert J. Thompson - EMAB Board Member Robert J. Thompson is Chairman of the Energy Communities Alliance, a national coalition of cities and counties located adjacent to Department of Energy facilities. Mr. Thompson has also served on the Richland City Council since January 1994 and as Mayor from January 2000 to January 2004. He received a B.A. in Political Science from Washington State University and a J.D. from Willamette Law School. He is currently in private practice. Mr. Thompson has been a member of the Washington State Trial Lawyers Association, the Washington Defenders Association, the Western State Trial Lawyers Association, and the National Association of Criminal Defense Attorneys. He is past President of the Benton Franklin County Health

318

NREL: Biomass Research - Robert M. Baldwin  

NLE Websites -- All DOE Office Websites (Extended Search)

Robert M. Baldwin Robert M. Baldwin Photo of Robert M. Baldwin. Robert Baldwin is a Principal Scientist in the National Bioenergy Center at the National Renewable Energy Laboratory (NREL) in Golden, Colorado; he has worked at NREL since 2008. Dr. Baldwin holds the degrees Bachelor of Science and Master of Science in chemical engineering from Iowa State University and the PhD degree in chemical engineering from the Colorado School of Mines (CSM). Prior to joining NREL, Bob spent 30 years as a faculty member at CSM including 10 years as Head of the Chemical Engineering Department and retired as Professor Emeritus in 2005. Bob is a member of the project team that founded the Petroleum Institute (PI) in Abu Dhabi, United Arab Emirates, and served as Program Director in Chemical

319

Robert C. Gibbs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Robert C. Gibbs Robert C. Gibbs About Us Robert C. Gibbs - Chief Human Capital Officer Robert C. Gibbs Bob Gibbs was born and raised in Boston, Massachusetts. A retired naval officer, he holds both a B.A. in business management from the University of Washington, and a J.D. from George Mason University. He is a member of the Maryland and the American Bar Associations. Mr. Gibbs completed the nuclear training pipeline and served at sea onboard the USS DANIEL WEBSTER (BLUE) (SSBN 626), USS HENRY L. STIMSON (GOLD) (SSBN 655), and USS SIMON BOLIVAR (GOLD) (SSBN 641) completing numerous strategic deterrent patrols; and ashore at Nuclear Repair Facilities including the Trident Refit Facility, Bangor, Washington and Naval Reactors Headquarters in Washington DC. His assignments at Naval Reactors, a joint Department of Energy and

320

Robert F. Brese | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Robert F. Brese Robert F. Brese About Us Robert F. Brese - Chief Information Officer Robert F. Brese Mr. Brese is the Chief Information Officer (CIO) for the Department of Energy (DOE). He provides leadership, establishes policy, and maintains oversight of DOE's annual $2 billion investment in information technology (IT), at more than 25 National Laboratories and Production Facilities, to enable urgent missions that span from open science to nuclear security. Mr. Brese is also a leader in the U.S. Government's cybersecurity community and a key contributor to the Administration's efforts in legislation, policy and technology research, development, and deployment. He is a Chair to the CIO Council's Management Best Practices Committee and also serves as an advisor to the Domestic Policy Council's Strong City, Strong

Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Robert A. Kennamer | Savannah River Ecology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Kennamer Curriculum Vitae Faculty & Scientists SREL Home Robert A. Kennamer Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-0387 office (803) 725-3309 fax...

322

Robert Wood, University of Washington many contributors  

E-Print Network (OSTI)

Robert Wood, University of Washington many contributors VOCALS Education and Outreach Snider (Wyoming) · Dave Spencer (NCSU) · Cindy Twohy (OSU) · Rob Wood/Chris Bretherton/Rhea George

Wood, Robert

323

J. Robert Oppenheimer: A Faith Development Portrait  

Science Journals Connector (OSTI)

J. Robert Oppenheimer was among the most important and enigmatic ... security clearance. This essay seeks to chronicle Oppenheimer’s coming of age as a public ... colleagues. Moreover, though not conventionally r...

Curtis W. Hart

2008-03-01T23:59:59.000Z

324

NREL: Energy Analysis - Billy J. Roberts  

NLE Websites -- All DOE Office Websites (Extended Search)

and Visualization Group in the Strategic Energy Analysis Center. Scientist III - GIS On staff since 2007 Phone number: 303-275-3824 E-mail: billy.roberts@nrel.gov Areas of...

325

Quantum Lower Bounds by Polynomials Robert Beals  

E-Print Network (OSTI)

Quantum Lower Bounds by Polynomials Robert Beals University of Arizonaz Harry Buhrman CWI.O. Box 210089, 617 N. Santa Rita Ave, Tucson AZ 85721­0089, USA. E-mail: beals@math.arizona.edu. xCWI, P

de Wolf, Ronald

326

Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules  

E-Print Network (OSTI)

and gas-turbines, fuel cells, heat exchangers, absorption chillers, stationary electricity storage, photovoltaic panels, solar

Cardoso, Goncalo

2014-01-01T23:59:59.000Z

327

Heat storage with CREDA  

SciTech Connect

The principle of operation of ETS or Electric Thermal Storage is discussed in this book. As can be seen by the diagram presented, heating elements buried deep within the core are energized during off-peak periods or periods of lower cost energy. These elements charge the core to a per-determined level, then during the on-peak periods when the cost of electricity is higher or demand is higher, the heat is extracted from the core. The author discusses how this technology has progressed to the ETS equipment of today; this being the finer control of charging rates and extraction of heat from the core.

Beal, T. (Fostoria Industries, Fostoria, OH (US))

1987-01-01T23:59:59.000Z

328

Electricity Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 3, 2011 Page 1 October 3, 2011 Page 1 Electricity Advisory Committee Meeting National Rural Electric Cooperative Association Headquarters 4301 Wilson Boulevard Arlington, VA Agenda October 19, 2011 2:00 - 5:00 pm EDT 1:30 - 2:00 pm Registration 2:00 - 2:15 pm WELCOME and Introductions Richard Cowart, Chair, Electricity Advisory Committee Patricia Hoffman, Assistant Secretary for Electricity Delivery and Energy Reliability, U.S. Department of Energy (DOE) 2:15 - 3:15 pm Presentation on U.S. Department of Energy's Vision of a Future Grid Bill Parks, Senior Advisor, DOE Office Electricity Delivery and Energy Reliability 3:15 - 3:30 pm Break 3:30 - 4:15 pm Response to U.S. Department of Energy's Vision of a Future Grid Honorable Robert Curry, Commissioner, New York State Public Service

329

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

330

NREL: Energy Storage - Laboratory Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Capabilities Laboratory Capabilities Photo of NREL's Energy Storage Laboratory. NREL's Energy Storage Laboratory. Welcome to our Energy Storage Laboratory at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Much of our testing is conducted at this state-of-the-art laboratory, where researchers use cutting-edge modeling and analysis tools to focus on thermal management systems-from the cell level to the battery pack or ultracapacitor stack-for electric, hybrid electric, and fuel cell vehicles (EVs, HEVs, and FCVs). In 2010, we received $2 million in funding from the U.S. Department of Energy under the American Recovery and Reinvestment Act of 2009 (ARRA) to enhance and upgrade the NREL Battery Thermal and Life Test Facility. The Energy Storage Laboratory houses two unique calorimeters, along with

331

Integrated Building Energy Systems Design Considering Storage Technologies  

E-Print Network (OSTI)

lead/acid battery, and thermal storage, capabilities, withn/a n/a electrical flow battery I) thermal I) Flow batteriesor $/kWh) lifetime (a) thermal storage 8 IV) flow battery V)

Stadler, Michael

2009-01-01T23:59:59.000Z

332

An Evaluation of Thermal Storage at Two Industrial Plants  

E-Print Network (OSTI)

Thermal storage offers substantial energy cost savings potential in situations with favorable electrical rates and significant cooling demand. Full storage is usually restricted to facilities occupied only part of the day, but two industrial plants...

Brown, M. L.; Gurta, M. E.

333

Energy Programs | Advanced Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Storage Systems Advanced Storage Systems Tapping Into Fuel Cells and Batteries Page 1 of 2 Imagine being able to drive a forty-mile round-trip commute every day without ever going near a gas pump. As the United States moves towards an energy economy with reduced dependence on foreign oil and fewer carbon emissions, development of alternative fuel sources and transmission of the energy they provide is only part of the equation. An increase in energy generated from intermittent renewable sources and the growing need for mobile energy will require new, efficient means of storing it, and technological advancements will be necessary to support the nation's future energy storage needs. A change toward alternative transportation - hydrogen fuel-cell vehicles, hybrid electric vehicles, plug-in hybrid-electric vehicles and electric

334

pumped storage | OpenEI  

Open Energy Info (EERE)

pumped storage pumped storage Dataset Summary Description These two datasets include energy statistics for the European Union (EU). The statistics are available from the European Commission. The data includes detailed information about: production, net imports, gross inland consumption, and electricity generation for the EU as a whole, as well as the individual member countries, for the period between 1990 and 2007. Source European Commission Date Released Unknown Date Updated Unknown Keywords annual energy consumption biomass coal crude oil Electricity Generation EU gas geothermal Hydro pumped storage PV renewable energy generating capacity wind Data application/vnd.ms-excel icon EU Energy Figures 2010 (Excel file, multiple tabs) (xls, 2 MiB) application/vnd.ms-excel icon EU Electricity Generation from Renewables (xls, 190.5 KiB)

335

Utilization of CO2 as cushion gas for porous media compressed air energy storage  

E-Print Network (OSTI)

design of compressed air energy storage electric powerS and Williams RH, Compressed Air Energy Storage: Theory,Porous media compressed air energy storage (PM-CAES): theory

Oldenburg, C.M.

2014-01-01T23:59:59.000Z

336

Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle Basics Electric Vehicle Basics Electric Vehicle Basics July 30, 2013 - 4:45pm Addthis Text Version Photo of an electric bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery. The electricity powers the vehicle's wheels via an electric motor. EVs have limited energy storage capacity, which must be replenished by plugging into an electrical source. In an electric vehicle, a battery or other energy storage device is used to store the electricity that powers the motor. EV batteries must be replenished by plugging the vehicle to a power source. Some EVs have onboard chargers; others plug into a charger located outside the vehicle. Both types use electricity that comes from the power grid. Although

337

A Method for Extrapolation of Missing Digital Audio Data 3715 (B 1-PM-7) Robert C. Maher  

E-Print Network (OSTI)

sendingrequestand remittanceto theAudioEngineeringSociety,60 East42nd St., New York,New York10165-2520, USA. All r Journalof the Audio EngineeringSociety. AN AUDIO ENGINEERING SOCIETY PREPRINT #12;A Method for Extrapolation of Missing Digital Audio Data Robert C. Maher Department of Electrical Engineering and Center

Maher, Robert C.

338

Potential Electricity Impacts of a 1978 California Drought  

E-Print Network (OSTI)

car batteries, Most economies are more of scale and thus, with for utilities systems Storage in- of electric appropriate energy

Sathaye, J.

2011-01-01T23:59:59.000Z

339

Electricity cost saving comparison due to tariff change and ice thermal storage (ITS) usage based on a hybrid centrifugal-ITS system for buildings: A university district cooling perspective  

Science Journals Connector (OSTI)

Abstract In this paper, the case study of a district cooling system of a university located in a South East Asia region (lat: 01°29?; long: 110°20?E) is presented. In general, the university has high peak ambient temperature of around 32–35 °C coupled with high humidity of about 85% during afternoon period. The total electricity charge for the Universiti Malaysia Sarawak Campus is very high amounting to more than $314,911 per month. In this paper, a few district cooling schemes are investigated to provide “what-if analysis” and in order to minimize the overall electricity charges. Few scenarios designed for the application of centrifugal with and without ice-thermal storage (ITS) systems on the buildings were investigated. It was found that, due to the local tariff status, marginally saving can be achieved in the range of 0.08–3.13% if a new tariff is adopted; and a total of further saving of 1.26–2.43% if ITS is operated. This marginally saving is mainly due to the local tariff conditions and lower local temperature range (?T) which are less favorable as compared with those reported in the literature elsewhere.

Mohammad Omar Abdullah; Lim Pai Yii; Ervina Junaidi; Ghazali Tambi; Mohd Asrul Mustapha

2013-01-01T23:59:59.000Z

340

cryogenic storage  

Science Journals Connector (OSTI)

Storage in which (a) the superconductive property of materials is used to store data and (b) use is made of the phenomenon that superconductivity is destroyed in the presence of a magnetic field, thus enabling...

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hydrogen Storage  

Energy.gov (U.S. Department of Energy (DOE))

On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. The EERE...

342

E-Print Network 3.0 - acid storage batteries Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

electric power applications Summary: expensive. Pneumatic storage technology's main advantages over the lead-acid batteries are (a) unlimited... . . . . . . . . . . . . . . . . ....

343

NSLS Electrical Equipment Inspection  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Equipment Inspection Information Electrical Equipment Inspection Information A note to vendors visiting NSLS A note to users visiting NSLS Proteus Electrical Conformity Remediation Currently Certified Electrical Equipment Inspectors: First Line Contacts Email Extension Poshka, Dennis poshka@bnl.gov 2825 Alternate Contacts Boerner Jr, Albert aboerner@bnl.gov 5990 Buda, Scott buda@bnl.gov 3914 Caruso, Michael caruso@bnl.gov 4100 Chmiel, Robert chmiel@bnl.gov 8141 Church, Randolph church@bnl.gov 2736 Clay, Barret clay@bnl.gov 7284 D'Alsace, Roy dalsace@bnl.gov 3973 Danneil, Christopher cdanneil@bnl.gov 8609 Davila, Peter davila@bnl.gov 7625 De Toll, Peter detoll@bnl.gov 4100 Durfee, Douglas ddurfee@bnl.gov 7625 Fulkerson, Michael fulkerso@bnl.gov 5194 Gallagher, John jgallagher@bnl.gov 5770 Harder, David dharder@bnl.gov 4978

344

Robert Musil's Literary Ethics: The Man without Qualities Reconsidered  

E-Print Network (OSTI)

Nihilism and Emancipation. Ethics, Politics, and Law. NewPatrizia C. The Void of Ethics. Robert Musil and theRobert Musil’s Literary Ethics: The Man without Qualities

Blok, Mette

2014-01-01T23:59:59.000Z

345

Robert Curl, Jr. and the Discovery of Fullerenes  

Office of Scientific and Technical Information (OSTI)

Robert Curl, Jr. Courtesy Tommy LaVergne Rice University The 1996 Nobel Prize in Chemistry was awarded to Robert F. Curl, Jr., Richard E. Smalley and Sir Harold Kroto 'for...

346

Pump and Circumstance: Robert Boyle's Literary Technology Steven Shapin  

E-Print Network (OSTI)

Pump and Circumstance: Robert Boyle's Literary Technology Steven Shapin Social Studies of Science was a technique for creating a public and for constituting authentic knowledge. Pump and Circumstance: Robert

Shapin, Steven

347

The Honorable Robert E. Williams 44 W. Washington Street  

Office of Legacy Management (LM)

SEC ; : ' SEC ; : ' ,-<- I ;;;s The Honorable Robert E. Williams 44 W. Washington Street Shelbyville, Indiana 46176 Dear Mayor Williams: Secretary of Energy Hazel O'Leary has announced a new approach to openness in the Department of Energy (DOE) and its communications with the public. In support of this initiative, we are pleased to forward the enclosed information related to the former General Electric Co. site in your jurisdiction that performed work for DOE or its predecessor agencies. This information is provided for your information, use, and retention. DOE's Formerly Utilized Sites Remedial Action Program is responsible for identification of sites used by DOE's predecessor agencies, determining their current radiological condition and, where it has authority, performing

348

PJM Presentation- The Silver Bullet: Storage! (July 12, 2011)  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Terry Boston, President and CEO pf PJM Interconnection before the Electricity Advisorty Committee, July 12, 2011, on storage for the smart grid.

349

Hydrogen storage and supply system - Energy Innovation Portal  

NLE Websites -- All DOE Office Websites (Extended Search)

and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

350

Cryogenic Capable High Pressure Containers for Compact Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

351

Reinventing Batteries for Grid Storage  

ScienceCinema (OSTI)

The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

Banerjee, Sanjoy

2013-05-29T23:59:59.000Z

352

Compact magnetic energy storage module  

DOE Patents (OSTI)

A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

Prueitt, Melvin L. (Los Alamos, NM)

1994-01-01T23:59:59.000Z

353

Compact magnetic energy storage module  

DOE Patents (OSTI)

A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

Prueitt, M.L.

1994-12-20T23:59:59.000Z

354

Robert A. Stokes B I O G R A P H Y  

E-Print Network (OSTI)

storage unit that enables the Vulture solar powered aircraft to complete multi-year high altitude missions Power partnered with the Boeing Company on a DARPA project to develop a revolutionary SOFC electricity

MacAdam, Keith

355

Tunable Electrical and Thermal Transport in Ice-Templated MultiLayer Graphene Nanocomposites  

E-Print Network (OSTI)

to electrical energy storage,1­3 thermal energy storage,4­13 and composite materials.14­21 Ice applications in thermal and electrical energy storage. Phase change thermal storage seeks to reduce building offsets in energy supply and demand.6 Thermal energy storage is also an appealing way to cool power

Maruyama, Shigeo

356

Energy Storage Safety Strategic Plan Now Available  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Electricity Delivery and Energy Reliability (OE) has worked with industry and other stakeholders to develop the Energy Storage Safety Strategic Plan, a roadmap for grid energy storage safety that highlights safety validation techniques, incident preparedness, safety codes, standards, and regulations. The Plan also makes recommendations for near- and long-term actions.

357

Matt Rogers on AES Energy Storage  

SciTech Connect

The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission network. Matt Rogers is the Senior Advisor to the Secretary for Recovery Act Implementation.

Rogers, Matt

2010-01-01T23:59:59.000Z

358

A Detailed Analysis of the Nonlinear Dynamics of the Electric Step Motor J. Reiss, F. Alin*  

E-Print Network (OSTI)

A Detailed Analysis of the Nonlinear Dynamics of the Electric Step Motor J. Reiss, F. Alin* , M.robert@univ-reims.fr Abstract The electric step motor is an electromechanical device which converts electrical pulses of stationarity in the system. We show that the electric step motor may function as a low-dimensional chaotic

Reiss, Josh

359

Impact of the Robert H. Lurie  

E-Print Network (OSTI)

of Michigan A Commitment to Excellence in Microsystems, Quantum Devices and Nanotechnology An Investment in the Nation's Future Led by a $15M gift from Ann Lurie, the University of Michigan is investing more than $60M Laboratories, C. Robert Kidder Gallery, and Ford Motor Company Laboratory. The LNF represents an expansion from

Eustice, Ryan

360

THE LOWER SOLAR ATMOSPHERE ROBERT J. RUTTEN  

E-Print Network (OSTI)

of solar composition studies. The first column labeled "radial" describes the overall structure of the workTHE LOWER SOLAR ATMOSPHERE ROBERT J. RUTTEN Sterrekundig Instituut, Postbus 80 000, NL­3508 TA, Utrecht, The Netherlands Abstract. This "rapporteur" report discusses the solar photosphere and low

Rutten, Rob

Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ROBERT BROWN DEPUTY MANAGER, OAK RIDGE OFFICE  

E-Print Network (OSTI)

ROBERT BROWN DEPUTY MANAGER, OAK RIDGE OFFICE AUGUST 24, 2010 OVERVIEW OF THE UNITED STATES DEPARTMENT OF ENERGY OAK RIDGE OFFICE #12;( 2 ) KEY OAK RIDGE MISSIONS Oak Ridge Office · Science CONTRACTORS Oak Ridge National Laboratory Oak Ridge Institute for Science and Education Office of Scientific

362

Gamma ray bursts ROBERT S MACKAY  

E-Print Network (OSTI)

Gamma ray bursts ROBERT S MACKAY COLIN ROURKE We propose that a gamma ray burst is a kinematic Gamma ray bursts are intense flashes of electromagnetic radiation of cosmic origin lasting from ten accepted mechanism. We propose that a gamma ray burst is simply a kinematic effect, namely the effect

Rourke, Colin

363

HYDROGEN PRODUCTION THROUGH ELECTROLYSIS Robert J. Friedland  

E-Print Network (OSTI)

HYDROGEN PRODUCTION THROUGH ELECTROLYSIS Robert J. Friedland A. John Speranza Proton Energy Systems of the Department of Energy (DOE). Proton's goal is to drive the cost of PEM electrolysis to levels of $600 per years of the cost reduction efforts for the HOGEN 40 hydrogen generator on this program are in line

364

Mathematics and Science Robert M. May  

E-Print Network (OSTI)

Mathematics and Science Robert M. May Roughly one-third of these one hundred Princeton University Press books (PUP100) fall in the domain of science or mathemat- ics, approximately evenly divided between the two. Some readers, particularly those who disliked both science and mathematics in school, may

Landweber, Laura

365

Realistic Solar Convection Simulations Robert F. Stein  

E-Print Network (OSTI)

Realistic Solar Convection Simulations Robert F. Stein Michigan State University, East Lansing, MIAFG, Juliane Maries Vej 30, Dk­2100 Copenhagen �, Denmark Abstract. We report on realistic simulations of solar and intensity spectra, the p­mode excitation rate, and the depth of the convection zone. We describe how solar

Stein, Robert

366

Woody Biomass Logistics Robert Keefe1  

E-Print Network (OSTI)

14 Woody Biomass Logistics Robert Keefe1 , Nathaniel Anderson2 , John Hogland2 , and Ken Muhlenfeld The economics of using woody biomass as a fuel or feedstock for bioenergy applications is often driven by logistical considerations. Depending on the source of the woody biomass, the acquisition cost of the material

367

Utility, informativity and protocols Robert van Rooy  

E-Print Network (OSTI)

Utility, informativity and protocols Robert van Rooy ILLC/University of Amsterdam R particular natural assumptions the utility of questions and answers reduces to their informativity, and that the ordering relation induced by utility sometimes even reduces to the logical relation of entailment

van Rooij, Robert

368

Aluminum in Superconducting Magnets Robert J. Weggel  

E-Print Network (OSTI)

Aluminum in Superconducting Magnets Robert J. Weggel Magnet Optimization Research Engineering is aluminum, either ultrapure, as quenchstabilization matrix metal, and/or alloyed and coldworked and heat for magnets in which the stresses and strains are modest. The strongest aluminum alloy commercially available

McDonald, Kirk

369

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

370

Electric Resistance Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Resistance Heating Basics Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric furnaces, or electric thermal storage systems. Electric Furnaces With electric furnaces, heated air is delivered throughout the home through supply ducts and returned to the furnace through return ducts. Blowers (large fans) in electric furnaces move air over a group of three to seven

371

Electric Resistance Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Resistance Heating Basics Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric furnaces, or electric thermal storage systems. Electric Furnaces With electric furnaces, heated air is delivered throughout the home through supply ducts and returned to the furnace through return ducts. Blowers (large fans) in electric furnaces move air over a group of three to seven

372

A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles  

SciTech Connect

This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

Onar, Omer C [ORNL] [ORNL

2011-01-01T23:59:59.000Z

373

Optimizing Storages for Transmission System Operation  

Science Journals Connector (OSTI)

Abstract A growing amount of congestions is expected for future operation of electrical transmission grids in Europe. Within this context, storages can be used to assist transmission system operators in daily operation and to avoid costly redispatch measures. In this paper, a research methodology to evaluate impact and interdependencies between market operation of storages and participation in redispatch measures is presented. Furthermore, a methodology for the evaluation of benefits by storages solely administrated by TSO is introduced. The methods are evaluated in a case study for the German electricity system in the year 2020.

Jonas Eickmann; Tim Drees; Jens D. Sprey; Albert Moser

2014-01-01T23:59:59.000Z

374

A partial differential equation system for modelling stochastic storage in physical systems with applications to wind power generation  

Science Journals Connector (OSTI)

......system for energy, whose purpose...the physical storage system as...flow. The tool of last resort...framework for the valuation of electricity storage. Working...supply with energy storage. First Report...2004) Valuation and optimal......

Sydney D. Howell; Peter W. Duck; Andrew Hazel; Paul V. Johnson; Helena Pinto; Goran Strbac; Nathan Proudlove; Mary Black

2011-07-01T23:59:59.000Z

375

U.S. Department of Energy Electricity Advisory Committee Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 12, 2011 July 12, 2011 Meeting Minutes EAC Members in Attendance: Richard Cowart Regulatory Assistance Project CHAIR Rick Bowen Alcoa Frederick Butler Butler Advisory Services Ralph Cavanagh Natural Resources Defense Council Honorable Robert Curry New York State Public Service Commission Lisa Crutchfield National Grid USA Jose Delgado American Transmission Company (Ret.) Roger Duncan Austin Energy (Ret.) Robert Gramlich American Wind Energy Association Dian Grueneich Morrison and Forester LLP Michael Heyeck American Electric Power Joseph Kelliher NextEra Energy, Inc. Edward Krapels Anbaric Holdings Barry Lawson National Rural Electric Cooperative Association Ralph Masiello KEMA David Nevius North American Electric Reliability Corporation

376

U.S. Department of Energy Electricity Advisory Committee Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 10, 2011 March 10, 2011 Meeting Minutes EAC Members in Attendance: Richard Cowart Regulatory Assistance Project CHAIR Honorable Lauren Azar Wisconsin Public Utilities Commission VICE CHAIR Guido Bartels IBM Rick Bowen Alcoa Frederick Butler Butler Advisory Services Honorable Robert Curry New York State Public Service Commission Jose Delgado American Transmission Company (Ret.) Robert Gramlich American Wind Energy Association Dian Grueneich Morrison and Forester LLP Michael Heyeck American Electric Power Joseph Kelliher NextEra Energy, Inc. Edward Krapels Anbaric Holdings David Mohre (Representing EAC Member Barry Lawson) National Rural Electric Cooperative Association Ralph Masiello KEMA David Nevius North American Electric Reliability Corporation

377

The Economic Case for Bulk Energy Storage in Transmission Systems  

E-Print Network (OSTI)

The Economic Case for Bulk Energy Storage in Transmission Systems with High Percentages to Engineer the Future Electric Energy System #12;#12;The Economic Case for Bulk Energy Storage Economic Case for Bulk Energy Storage in Transmission Sys- tems with High Percentages of Renewable

378

Hydrogen storage in aligned carbon nanotubes and David T. Shaw  

E-Print Network (OSTI)

Hydrogen storage in aligned carbon nanotubes Yan Chena) and David T. Shaw Department of Electrical and thermogravimetric analysis show a hydrogen storage capacity of 5­7 wt% was achieved reproducibly at room temperature the samples to 300 °C and removing of the catalyst tips, can increase the hydrogen storage capacity up to 13

Chung, Deborah D.L.

379

Exotic Electricity Options and the Valuation of Electricity Generation and Transmission  

E-Print Network (OSTI)

Exotic Electricity Options and the Valuation of Electricity Generation and Transmission Assets a methodology for valuing electricity deriva- tives by constructing replicating portfolios from electricity-storable nature of electricity, which rules out the traditional spot mar- ket, storage-based method of valuing

380

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daniel R. Borneo, PE Daniel R. Borneo, PE Sandia National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)/CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. 2 Presentation Outline * DOE(SNL)/CEC Collaboration - Background of DOE(SNL)/CEC Collaboration - FY07 Project Review * Zinc Bromine Battery (ZBB) Demonstration * Palmdale Super capacitor Demonstration * Sacramento Municipal Utility District (SMUD) Regional Transit (RT) Super capacitor demonstration * Beacon Flywheel Energy Storage System (FESS) 3 Background of DOE(SNL)/CEC Collaboration * Memorandum of Understanding Between CEC and DOE (SNL). - In Place since 2004

Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Concept Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems Research Program Washington, DC November 2-4, 2010 Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories Full Air Breathing Battery Concept * Concept is to use O 2 and N 2 as the electrodes in a battery * Novel because N 2 is considered inert * Our group routinely reacts N 2 electrochemically

382

Keys to Profitable Texas Sweet Potato Production, Storage and Marketing.  

E-Print Network (OSTI)

8 8 8 8-1274 Texas Agricultural Extension Service. The Texas A&M UniverSity System . Daniel C. Pfannstlel, Director . College Station, Texas ACKNOWLEDGMENT The authors acknowledge the contribution to this publication by Dr. Charles Cole, area... Extension entomologist. KEYS TO PROFITABLE TEXAS SWEET POTATO PRODUCTION, STORAGE AND MARKETING Roland E. Roberts, Thomas D. Longbrake, Sam Cotner, Terry Menges, B. Dean McCraw and Donald R. Paterson* Texas growers and shippers produced more than 1...

Roberts, Roland E.; Longbrake, Thomas D.; Cotner, Sam; Menges, Terry; McCraw, B. Dean; Paterson, Donald R.

1979-01-01T23:59:59.000Z

383

Underground Storage Tank Regulations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations Underground Storage Tank Regulations Underground Storage Tank Regulations < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Underground Storage Tank Regulations is relevant to all energy projects

384

E-Print Network 3.0 - all-electrical molecule-mesoscopic interface...  

NLE Websites -- All DOE Office Websites (Extended Search)

molecule-mesoscopic interface Page: << < 1 2 3 4 5 > >> 1 Robert J. Schoelkopf Curriculum Vitae Summary: , All-electrical, Molecule- Mesoscopic Interface," A. Andre, D. DeMille,...

385

NREL: Vehicles and Fuels Research - Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map NREL's Energy Storage Project is leading the charge on battery thermal management, modeling, and systems solutions to enhance the performance of fuel cell, hybrid electric, and electric vehicles (FCVs, HEVs, and EVs) for a cleaner, more secure transportation future. NREL's experts work closely with the U.S. Department of Energy (DOE), industry, and automotive manufacturers to improve energy storage devices, such as battery modules and ultracapacitors, by enhancing their thermal performance and life-cycle cost. Activities also involve modeling and simulation to evaluate technical targets and energy storage parameters, and investigating combinations of energy storage systems to increase vehicle efficiency. Much of this research is conducted at our state-of-the-art energy storage

386

Argonne Chemical Sciences & Engineering - Electrochemical Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Energy Storage Electrochemical Energy Storage * Basic Research * Applied R&D * Engineering * Battery Testing Electrochemical Energy Storage The Energy Storage Theme The electrochemical Energy Storage (EES) Theme is internationally recognized as a world-class center for lithium battery R&D. It effectively integrates basic research, applied R&D, engineering, and battery testing, as shown in the diagram below. ees chart Its current focus is on developing improved materials and cell chemistries that will enable lithium-ion (Li-Ion) batteries for commercial light-duty vehicle applications, e.g. hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV), and electric vehicle (EV) applications. Basic Research EES recently won a new Office of Science Energy Frontier Research Center (EFRC) denoted the "Center for Electrical Energy Storage: Tailored Interfaces." This new EFRC will focus on the science of stabilizing electrode/electrolyte interfaces in lithium batteries to achieve longer life and enhanced abuse tolerance.

387

Robert Mawhinney Columbia University RBC Collaboration  

NLE Websites -- All DOE Office Websites (Extended Search)

Robert Mawhinney Robert Mawhinney Columbia University RBC Collaboration Lattice QCD from Mira or Probing Quarks at a Sustained Petaflops Early Science Program Investigators Meeting Argonne Leadership Computnig Facility Argonne National Laboratory May 17, 2013 USQCD is a collaboration including almost all of the US physicists working on lattice QCD and is composed of many smaller, generally long-standing, collaborations. USQCD received an ESP allocation on Mira at the ALCF. This allocation has been used by members of the MILC collaboration, the FNAL lattice group, the RBC collaboration and the HotQCD collaboration. 2 Theory of interactions of quarks Interactions mediated by gluons QCD Known Elementary Particles ÂŻ s K + u u ÂŻ d r + ÂŻ d c D meson + u d u p + X - s s s . . . . . . . . . . . m m m m m m 2 19 0 15 4 67 0 20 94 3 1 275

388

Robert L. McGraw | BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Robert L. McGraw Robert L. McGraw Senior Scientist McGraw has a long-standing interest in the homogeneous and heterogeneous nucleation of supercooled vapors, as mechanisms for gas-to-particle conversion. This interest began during his postdoctoral collaboration with Prof. Howard Reiss at UCLA, and continued at Brookhaven both during the early eighties and since returning to BNL in 1993. Since returning, he has been Principal Investigator for NASA programs investigating nucleation and growth processes of atmospheric aerosols and clouds and for development of MATRIX, an aerosol module currently being used in the NASA/GISS climate model. Major achievements under these programs included development of the quadrature method of moments for simulation of atmospheric aerosol processes; completion of the first rigorous kinetics study of binary

389

Fermilab | Directorate | Director Profiles | Robert Kephart  

NLE Websites -- All DOE Office Websites (Extended Search)

Robert Kephart Robert Kephart IARC Director/SRF Program Manager As the Director of the Illinois Accelerator Research Center (IARC) at Fermilab my goal is to bridge the gap between breakthroughs in accelerator science and technology and solutions for society. IARC will allow our university and laboratory partners to leverage Fermilab's extensive accelerator infrastructure and expertise, resulting in new accelerator-based products and businesses in the United States. I proposed and lead a construction project funded by the U.S. Department of Energy and the State of Illinois to build a new complex valued at $70 million to support the IARC mission on the Fermilab campus. I manage the superconducting radio frequency (SRF) technology program, a $30 million-a-year research and development effort that supports a proposed new

390

Fiscal year 1986 Department of Energy Authorization (uranium enrichment and electric energy systems, energy storage and small-scale hydropower programs). Volume VI. Hearings before the Subcommittee on Energy Research and Production of the Committee on Science and Technology, US House of Representatives, Ninety-Ninth Congress, First Session, February 28; March 5, 7, 1985  

SciTech Connect

Volume VI of the hearing record covers three days of testimony on the future of US uranium enrichment and on programs involving electric power and energy storage. There were four areas of concern about uranium enrichment: the choice between atomic vapor laser isotope separation (AVLIS) and the advanced gas centrifuge (AGC) technologies, cost-effective operation of gaseous diffusion plants, plans for a gas centrifuge enrichment plant, and how the DOE will make its decision. The witnesses represented major government contractors, research laboratories, and energy suppliers. The discussion on the third day focused on the impact of reductions in funding for electric energy systems and energy storage and a small budget increase to encourage small hydropower technology transfer to the private sector. Two appendices with additional statements and correspondence follow the testimony of 17 witnesses.

Not Available

1985-01-01T23:59:59.000Z

391

Thermal Storage Applications for Commercial/Industrial Facilities  

E-Print Network (OSTI)

THERMAL STORAGE APPLICATIONS FOR COMMERCIAL/INDUSTRIAL FACILITIES Roger 1. Knipp, PE. Dallas Power & Light Company Dallas, Texas ABSTRACT Texas Utilities Electric Company has been actively encouraging installations of thermal storage... since 1981. Financial incentives and advantageous rates can make thermal storage an attractive cooling concept in Texas Utilities Electric Company service area. Currently, 14 million square feet of commercial building space in Dallas is either...

Knipp, R. L.

392

Energy Storage Technologies: State of Development for Stationary and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Technologies: State of Development for Stationary Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Testimony of Thomas S. Key, Technical Leader, Renewables and Distributed Generation, Electric Power Research Institute (EPRI) on Energy Storage Technologies: State of Development for Stationary and Vehicular Applications before the House Science and Technology Committee Energy and Environment Subcommittee October 3, 2007 Energy Storage Technologies: State of Development for Stationary and Vehicular Applications More Documents & Publications DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA (July 2013) Grid Energy Storage December 2013 Energy Storage Systems 2012 Peer Review Presentations - Day 3, Session 3

393

DOE Hydrogen Analysis Repository: Hydrogen for Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen for Energy Storage Hydrogen for Energy Storage Project Summary Full Title: Cost and GHG Implications of Hydrogen for Energy Storage Project ID: 260 Principal Investigator: Darlene Steward Brief Description: The levelized cost of energy (LCOE) of the most promising and/or mature energy storage technologies was compared with the LCOE of several hydrogen energy storage configurations. In addition, the cost of using the hydrogen energy storage system to produce excess hydrogen was evaluated. The use of hydrogen energy storage in conjunction with an isolated wind power plant-and its effect on electricity curtailment, credit for avoided GHG emissions, and LCOE-was explored. Keywords: Energy storage; Hydrogen; Electricity Performer Principal Investigator: Darlene Steward

394

Test report : Milspray Scorpion energy storage device.  

SciTech Connect

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors have supplied their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and a subset of these systems were selected for performance evaluation at the BCIL. The technologies tested were electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. MILSPRAY Military Technologies has developed an energy storage system that utilizes lead acid batteries to save fuel on a military microgrid. This report contains the testing results and some limited assessment of the Milspray Scorpion Energy Storage Device.

Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

2013-08-01T23:59:59.000Z

395

US DRIVE Electrochemical Energy Storage Technical Team Roadmap  

Energy.gov (U.S. Department of Energy (DOE))

This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

396

Electric Currents Electric Current  

E-Print Network (OSTI)

coefficient of resistivity Electric Power: = = = Also, = . So, = = 2 = 2 Unit of Power(P): Watt (WChapter 18 Electric Currents #12;Electric Current: Flow of electric charge Current is flow of positive charge. In reality it's the electron moves in solids- Electron current. #12;Ohm's Law : Resistance

Yu, Jaehoon

397

Gas storage materials, including hydrogen storage materials  

DOE Patents (OSTI)

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2014-11-25T23:59:59.000Z

398

Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 (Day 2): ARRA Projects 2 (Day 2): ARRA Projects Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2 (Day 2): ARRA Projects The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer review and update meeting in Washington, DC on Sept. 26 - 28, 2012. The 3-day conference included 9 sessions plus two poster sessions. ARRA project presentations from the second poster session on Day 2, chaired by Sandia's Georgianne Huff, are below. ESS 2012 Peer Review - 20 MW Flywheel Frequency Regulation Plant - Jim Arseneaux, Beacon Power ESS 2012 Peer Review - Advanced Implementation of Community ESS for Grid Support - Haukur Asgeirsson, Detroit Edison ESS 2012 Peer Review - Notrees Wind Storage - Jeff Gates, Duke Energy ESS 2012 Peer Review - Compressed Air Energy Storage - Robert Booth,

399

Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 (Day 2): ARRA Projects 2 (Day 2): ARRA Projects Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2 (Day 2): ARRA Projects The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer review and update meeting in Washington, DC on Sept. 26 - 28, 2012. The 3-day conference included 9 sessions plus two poster sessions. ARRA project presentations from the second poster session on Day 2, chaired by Sandia's Georgianne Huff, are below. ESS 2012 Peer Review - 20 MW Flywheel Frequency Regulation Plant - Jim Arseneaux, Beacon Power ESS 2012 Peer Review - Advanced Implementation of Community ESS for Grid Support - Haukur Asgeirsson, Detroit Edison ESS 2012 Peer Review - Notrees Wind Storage - Jeff Gates, Duke Energy ESS 2012 Peer Review - Compressed Air Energy Storage - Robert Booth,

400

ORAU Selects Roberts and Toohey for Environmental Assessment...  

NLE Websites -- All DOE Office Websites (Extended Search)

to work with ORISE, Roberts served as a radiological safety consultant for Navarro Research and Engineering, Inc., providing technical expertise in the areas of radiological...

Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

EERE Partner Testimonials- Robert Gleason, Capstone Turbine Corporation  

Energy.gov (U.S. Department of Energy (DOE))

Robert Gleason, Senior Vice President of Product Development for Capstone Turbine Corporation describes the benefits of a strategic partnership with the U.S. Department of Energy.

402

VBH-0060- In the Matter of Robert Burd  

Energy.gov (U.S. Department of Energy (DOE))

This Decision addresses the complaint filed by Robert Burd (Complainant) against his former employer, Mason and Hangar Corporation (the employer), pursuant to the Department of Energy (DOE)...

403

Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection  

E-Print Network (OSTI)

PV), solar thermal, stationary batteries, thermal storage,thermal storage, AC - absorption cooling, ST-solar thermal,solar thermal collector (kW) PV (kW) stationary electric storage (

Stadler, Michael

2012-01-01T23:59:59.000Z

404

Accomodating Electric Vehicles  

E-Print Network (OSTI)

Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

Aasheim, D.

2011-01-01T23:59:59.000Z

405

Flywheel energy storage using superconducting magnetic bearings  

SciTech Connect

Storage of electrical energy on a utility scale is currently not practicable for most utilities, preventing the full utilization of existing base-load capacity. A potential solution to this problem is Flywheel Energy Storage (FES), made possible by technological developments in high-temperature superconducting materials. Commonwealth Research Corporation (CRC), the research arm of Commonwealth Edison Company, and Argonne National Laboratory are implementing a demonstration project to advance the state of the art in high temperature superconductor (HTS) bearing performance and the overall demonstration of efficient Flywheel Energy Storage. Currently, electricity must be used simultaneously with its generation as electrical energy storage is not available for most utilities. Existing storage methods either are dependent on special geography, are too expensive, or are too inefficient. Without energy storage, electric utilities, such as Commonwealth Edison Company, are forced to cycle base load power plants to meet load swings in hourly customer demand. Demand can change by as much as 30% over a 12-hour period and result in significant costs to utilities as power plant output is adjusted to meet these changes. HTS FES systems can reduce demand-based power plant cycling by storing unused nighttime capacity until it is needed to meet daytime demand.

Abboud, R.G. [Commonwealth Research Corp., Chicago, IL (United States); Uherka, K.; Hull, J.; Mulcahy, T. [Argonne National Lab., IL (United States)

1994-04-01T23:59:59.000Z

406

Synthesis of energy technology medium-term projections Alternative fuels for transport and low carbon electricity  

E-Print Network (OSTI)

carbon electricity generation: A technical note Robert Gross Ausilio Bauen ICEPT October 2005 #12;Alternative fuels for transport and electricity generation: A technical note on costs and cost projections ................................................................................................................. 3 Current and projected medium-term costs of electricity generating technologies....... 4 Biofuels

407

Electric Storage in California's Commercial Buildings  

E-Print Network (OSTI)

sustainable battery technology,” Journal of Power Sources,for Energy and Innovative Technologies, Austria ViennaUniversity of Technology, Austria Instituto Superior

Stadler, Michael

2014-01-01T23:59:59.000Z

408

Sandia National Laboratories: 2013 Electricity Storage Handbook...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Exhibition (EU PVSC) EC Top Publications Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter Experimental Wave Tank Test for Reference Model 3 Floating- Point...

409

Electric Storage in California's Commercial Buildings  

E-Print Network (OSTI)

or combined heat and power (CHP) in commercial buildings anda renewable energy source or CHP system at the commercialPV at (GW) microgrids adopted CHP and (GW) DG at microgrids

Stadler, Michael

2014-01-01T23:59:59.000Z

410

THE STORAGE OF HEAT AND ELECTRICITY  

Science Journals Connector (OSTI)

...Project to be completed in 1963, in Missouri, where water will be pumped from...the form of coal or coke piles, oil-tank farms, repressurized gas fields, or gas-filled underground cavities. Natural gas can even be transported and stored...

Bertrand A. Landry

1961-01-01T23:59:59.000Z

411

THE STORAGE OF HEAT AND ELECTRICITY  

Science Journals Connector (OSTI)

...completed in 1963, in Missouri, where water will be...of coal or coke piles, oil-tank farms, repressurized...chemical reactions requires heavy equip- ment; voltage...mostly from current, and heavy conductors are needed...qualities is mercury. This is heavy and can be toxic, although...

Bertrand A. Landry

1961-01-01T23:59:59.000Z

412

THE STORAGE OF HEAT AND ELECTRICITY  

Science Journals Connector (OSTI)

...repressurized gas fields, or gas-filled underground cavities. Natural gas can even be transported...gravel in connection with solar heating of dwellings...dry ice, and liquefied gases. The durations of time...steam on its way to a turbine. Sensible heat in recuperators...

Bertrand A. Landry

1961-01-01T23:59:59.000Z

413

Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection  

E-Print Network (OSTI)

efficiency requirements - Maximum emission limits Investment constraints: - Payback period is constrained Storage constraints: - Electricity stored is limited by batterybattery minimum state of charge, dimensionless EV battery charging efficiency, dimensionless EV battery discharging efficiency, dimensionless electricity storage

Stadler, Michael

2012-01-01T23:59:59.000Z

414

Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

415

Role of large scale storage in a UK low carbon energy future Philipp Grunewalda  

E-Print Network (OSTI)

round trip efficiency, both compressed air energy storage and hydrogen storage could become potentialRole of large scale storage in a UK low carbon energy future Philipp Gr¨unewalda , Tim Cockerilla Large scale storage offers the prospect of using excess electricity within a low carbon energy system

416

Author's personal copy Opportunities and barriers to pumped-hydro energy storage in the United States  

E-Print Network (OSTI)

available commercially for grid-tied electricity storage, pumped- hydro energy storage (PHES) and compressed air energy storage (CAES). Of the two, PHES is far more widely adopted. In the United StatesAuthor's personal copy Opportunities and barriers to pumped-hydro energy storage in the United

Jackson, Robert B.

417

Simulation and analysis of high-speed modular flywheel energy storage systems using MATLAB/Simulink  

Science Journals Connector (OSTI)

Storage is an extremely important area of research and has several applications, including potential of furthering the integration of renewable in the grid. An efficient and cost-effective electric storage is a transformative technology and benefits ... Keywords: PM motor, flywheel energy storage system, high-speed drives, storage system

Parag Upadhyay; Ned Mohan

2009-07-01T23:59:59.000Z

418

Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage  

SciTech Connect

HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200°C—hundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

None

2012-01-01T23:59:59.000Z

419

Net Withdrawals of Natural Gas from Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

420

Dyke quality assessment by remote sensing Robert Hack  

E-Print Network (OSTI)

FC2015 RSDYK Dyke quality assessment by remote sensing Robert Hack 14-Apr-09 1FC2015-RSDYK - Hack Robert Hack #12;Pilot project: RSDYK2008 Trial to establish whether remote sensing in combination-Apr-09 2FC2015-RSDYK - Hack #12;Test sites in Reeuwijk ­ Zuid Holland (map: Routenet-Routeplan, http

Hack, Robert

Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Robert Wood Professor of Engineering and Applied Sciences at  

E-Print Network (OSTI)

Robert Wood Professor of Engineering and Applied Sciences at Harvard's School of Engineering and Applied Sciences Mechanical Engineering Robert Wood is the Charles River Professor of Engineering member of the Wyss Institute for Biologically Inspired Engineering. Prof. Wood completed his M.S. and Ph

Lin, Xi

422

Cognition and the Computational Power of Connectionist Robert F. Hadley  

E-Print Network (OSTI)

Cognition and the Computational Power of Connectionist Networks Robert F. Hadley School of Computing Science and Cognitive Science Program Simon Fraser University Burnaby, B.C., V5A 1S6 Canada hadley@cs.sfu.ca c flRobert F. Hadley SFU CMPT TR 1999­01 1 #12; Abstract This paper examines certain claims

Zhang, Richard "Hao"

423

CABLE-SUSPENDED HAPTIC INTERFACE Robert L. Williams II  

E-Print Network (OSTI)

1 CABLE-SUSPENDED HAPTIC INTERFACE Robert L. Williams II Department of Mechanical Engineering Ohio@bobcat.ent.ohiou.edu URL: http://www.ent.ohiou.edu/~bobw #12;2 CABLE-SUSPENDED HAPTIC INTERFACE Robert L. Williams II Ohio University Athens, OH 45701 ABSTRACT A cable-suspended haptic interface (CSHI) concept is presented. The goal

Williams II, Robert L.

424

U.S. Department of Energy Electricity Advisory Committee Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2012 1, 2012 Minutes EAC Members in Attendance Richard Cowart, Chair Regulatory Assistance Project Irwin Popowsky, Vice-Chair Pennsylvania Consumer Advocate William Ball Southern Company Rick Bowen Alcoa Merwin Brown Alcoa Clarke Bruno (Representing Edward Krapels) Anbaric Holdings Ralph Cavanagh Natural Resources Defense Council The Honorable Paul Centolella Public Utilities Commission of Ohio David Crane NRG Energy, Inc. The Honorable Robert Curry New York Public Service Commission José Delgado Clark Gellings Electric Power Research Institute (EPRI) Robert Gramlich American Wind Energy Association Michael Heyeck American Electric Power Val Jensen Commonwealth Edison Joseph Kelliher NextEra Energy, Inc. Susan Kelly American Public Power Association

425

U.S. Department of Energy Electricity Advisory Committee Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2012 2, 2012 Minutes EAC Members in Attendance Richard Cowart, Chair Regulatory Assistance Project Irwin Popowsky, Vice-Chair Pennsylvania Consumer Advocate William Ball Southern Company Merwin Brown Alcoa Clarke Bruno (Representing Edward Krapels) Anbaric Holdings Ralph Cavanagh Natural Resources Defense Council The Honorable Paul Centolella Public Utilities Commission of Ohio David Crane NRG Energy, Inc. The Honorable Robert Curry New York Public Service Commission José Delgado Robert Gramlich American Wind Energy Association Michael Heyeck American Electric Power Val Jensen Commonwealth Edison Joseph Kelliher NextEra Energy, Inc. Susan Kelly American Public Power Association Barry Lawson National Rural Electric Cooperative

426

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

and Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Aquifer Storage of Hot Water from Solar Energy Collectors,"with solar energy systems, aquifer energy storage provides a

Tsang, C.-F.

2011-01-01T23:59:59.000Z

427

Carbon Storage in Basalt  

Science Journals Connector (OSTI)

...immobile and thus the storage more secure, though...continental margins have huge storage capacities adjacent...unlimited supplies of seawater. On the continents...present in the target storage formation can be pumped up and used to dissolve...

Sigurdur R. Gislason; Eric H. Oelkers

2014-04-25T23:59:59.000Z

428

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Gravelwith solar energy systems, aquifer energy storage provides aAquifer Storage of Hot Water from Solar Energy Collectors,"

Tsang, C.-F.

2011-01-01T23:59:59.000Z

429

Seasonal thermal energy storage  

SciTech Connect

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

430

Solar Thermal Energy Storage  

Science Journals Connector (OSTI)

Various types of thermal energy storage systems are introduced and their importance and desired characteristics are outlined. Sensible heat storage, which is one of the most commonly used storage systems in pract...

E. Paykoç; S. Kakaç

1987-01-01T23:59:59.000Z

431

Electric Drive Vehicles: A Huge New Distributed Energy Resource  

E-Print Network (OSTI)

with electric power generation and storage capabilities · Three Vehicle Types in Program ­ Full ZEV: true zero) #12;Electric Drive in Vehicles -- All the Ingredients for a Distributed Power System #12;Vehicle and energy storage potential · Electric vehicle charge stations: grid connection points for power

Firestone, Jeremy

432

Superconducting energy storage  

SciTech Connect

This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

Giese, R.F.

1993-10-01T23:59:59.000Z

433

Richard Schrock, Robert Grubbs, and Metathesis Method in Organic Synthesis  

NLE Websites -- All DOE Office Websites (Extended Search)

Richard Schrock, Robert Grubbs, and Richard Schrock, Robert Grubbs, and Metathesis Method in Organic Synthesis Resources with Additional Information Richard R. Schrock of the Massachusetts Institute of Technology and Robert H. Grubbs of the California Institute of Technology were awarded the 2005 Nobel Prize in Chemistry "for the development of the metathesis method in organic synthesis". Richard R. Schrock Richard R. Schrock Copyright L. Barry Hetherington Robert H. Grubbs Robert H. Grubbs Courtesy California Institute of Technology '"[T]heir discoveries ... enable industry to produce plastics and drugs more efficiently and with less hazardous waste ... . For decades, the Department of Energy has been the leading federal supporter of catalytic chemistry, so we are especially pleased to highlight Dr. Schrock's affiliation with the DOE Office of Science, dating back to 1979 and continuing to this day," Secretary [of Energy Samuel W.] Bodman said.

434

Roberts honored with Secretarial Appreciation Award | National Nuclear  

National Nuclear Security Administration (NNSA)

Roberts honored with Secretarial Appreciation Award | National Nuclear Roberts honored with Secretarial Appreciation Award | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Roberts honored with Secretarial Appreciation Award Roberts honored with Secretarial Appreciation Award Posted By Office of Public Affairs Mike Roberts, Kansas City Field Office, was among the Secretarial

435

An Economic Study of Carbon Capture and Storage System Design and Policy  

E-Print Network (OSTI)

Carbon capture and storage (CCS) and a point of electricity generation is a promising option for mitigating greenhouse gas emissions. One issue with respect to CCS is the design of carbon dioxide transport, storage and injection system...

Prasodjo, Darmawan

2012-10-19T23:59:59.000Z

436

Computational Study on Thermal Properties of HVAC System with Building Structure Thermal Storage  

E-Print Network (OSTI)

Building structure thermal storage (BSTS) HVAC systems can store heat during nighttime thermal storage operation (nighttime operation hours) by using off-peak electricity and release it in the daytime air-conditioning operation (daytime operation...

Sato, Y.; Sagara, N.; Ryu, Y.; Maehara, K.; Nagai, T.

2007-01-01T23:59:59.000Z

437

Cool Storage Applications in the Texas LoanSTAR Program: Overview and Preliminary Results  

E-Print Network (OSTI)

Cool Storage Systems (CSS) are becoming a popular demand side management tool for utilities because that helps them avoid costly plant expansions and reduces summer-time peak electricity demand. This paper presents an analysis of cool storage...

Abbas, M.; Haberl, J. S.; Turner, W. D.

1994-01-01T23:59:59.000Z

438

Energy Storage | Global and Regional Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Energy Technologies Department Sustainable Energy Technologies Department Energy Storage Group A change toward alternative transportation - hydrogen fuel-cell vehicles, hybrid electric vehicles, plug-in hybrid-electric vehicles and electric vehicles - is essential for reducing oil dependency. Brookhaven National Laboratory conducts leading-edge research into two of the most promising technologies to move us closer to making such vehicles feasible, affordable and safe: solid-state hydrogen storage and lithium batteries. Brookhaven scientists are conducting basic electrochemical research to significantly improve the efficiency and reliability of fuel cells and batteries. They have launched a concerted effort of basic and applied research for the development of improved energy-storage materials and

439

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

hydro, compressed air, and battery energy storage are allenergy storage sys tem s suc h as pumped hydro and compressed air.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

440

Oxygen Distribution in the Macaque Retina Jameel Ahmed* Rod D. Braun,^ Robert Dunn, Jr. * and Robert A. Linsenmeier*X  

E-Print Network (OSTI)

Oxygen Distribution in the Macaque Retina Jameel Ahmed* Rod D. Braun,^ Robert Dunn, Jr. * and Robert A. Linsenmeier*X Purpose. Oxygen distribution was characterized in the macaque retina, which is more like the human retina than others studied previously. Methods. Profiles of oxygen tension (Po2

Linsenmeier, Robert

Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NREL: Energy Analysis: Electric Sector Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Sector Integration Electric Sector Integration Integrating higher levels of renewable resources into the U.S. electricity system could pose challenges to the operability of the nation's grid. NREL's electric sector integration analysis work investigates the potential impacts of expanding renewable technology deployment on grid operations and infrastructure expansion including: Feasibility of higher levels of renewable electricity generation. Options for increasing electric system flexibility to accommodate higher levels of variable renewable electricity. Impacts of renewable electricity generation on efficiency and emissions of conventional generators. Grid expansion and planning to allow large scale deployment of renewable generation. Graphic showing a high concept diagram of how a modern electricity system can be designed to include storage and incorporate large scale renewable generation. High Renewable Generation Electric System Flexibility and Storage Impacts on Conventional Generators Transmission Infrastructure

442

Batteries and Energy Storage | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

The Joint Center for Energy Storage Research (JCESR) is a major research The Joint Center for Energy Storage Research (JCESR) is a major research partnership that integrates government, academic and industrial researchers from many disciplines to overcome critical scientific and technical barriers and create new breakthrough energy storage technology. Batteries and Energy Storage Argonne's all- encompassing battery research program spans the continuum from basic materials research and diagnostics to scale-up processes and ultimate deployment by industry. At Argonne, our multidisciplinary team of world-renowned researchers are working in overdrive to develop advanced energy storage technologies to aid the growth of the U.S. battery manufacturing industry, transition the U.S. automotive fleet to plug-in hybrid and electric vehicles, and enable

443

Hydrogen storage and integrated fuel cell assembly  

DOE Patents (OSTI)

Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

Gross, Karl J. (Fremont, CA)

2010-08-24T23:59:59.000Z

444

One dimensional Si/Sn -based nanowires and nanotubes for lithium-ion energy storage materials  

E-Print Network (OSTI)

), electric vehicles (EVs)), bulk electricity storage at power stations and load leveling of renewable sources such as power tools, electric vehicles or efficient use of renewable energies. This can be attained by replacing candidates for transportation (hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs

Cui, Yi

445

Georgia Underground Storage Tank Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Act (Georgia) Underground Storage Tank Act (Georgia) Georgia Underground Storage Tank Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks

446

Energy Department Releases Strategic Plan for Energy Storage Safety  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Electricity Delivery and Energy Reliability (OE) has worked with industry and other stakeholders to develop the Energy Storage Safety Strategic Plan, a roadmap for grid energy storage safety that highlights safety validation techniques, incident preparedness, safety codes, standards, and regulations. The Plan, which is now available for downloading, also makes recommendations for near- and long-term actions. The Energy Storage Safety Strategic Plan complements two reports released by OE earlier this year: the Overview of Development and Deployment of Codes, Standards and Regulations Affecting Energy Storage System Safety in the United States and the Inventory of Safety-related Codes and Standards for Energy Storage Systems.

447

Underground Storage Tank Regulations for the Certification of Persons Who  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations for the Certification of Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells

448

Chongqing Wanli Storage Battery Co | Open Energy Information  

Open Energy Info (EERE)

Wanli Storage Battery Co Wanli Storage Battery Co Jump to: navigation, search Name Chongqing Wanli Storage Battery Co. Place Chongqing Municipality, China Sector Solar, Vehicles, Wind energy Product The scope of Wanli's power storage business includes batteries made for electric motorcycles and industrial vehicles, boats, and cars. It also includes batteries to store power from solar or wind power plants. References Chongqing Wanli Storage Battery Co.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Chongqing Wanli Storage Battery Co. is a company located in Chongqing Municipality, China . References ↑ "Chongqing Wanli Storage Battery Co." Retrieved from "http://en.openei.org/w/index.php?title=Chongqing_Wanli_Storage_Battery_Co&oldid=34358

449

Innovative Energy Storage Technologies Enabling More Renewable Power |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Technologies Enabling More Renewable Energy Storage Technologies Enabling More Renewable Power Innovative Energy Storage Technologies Enabling More Renewable Power November 15, 2011 - 3:45pm Addthis The PNM Prosperity Energy Storage Project is the nation’s first combined solar generation and storage facility to be fully integrated into a utility’s power grid. Pictured above are the facility's solar panels, including an aerial view in the upper left. | Image courtesy of PNM The PNM Prosperity Energy Storage Project is the nation's first combined solar generation and storage facility to be fully integrated into a utility's power grid. Pictured above are the facility's solar panels, including an aerial view in the upper left. | Image courtesy of PNM Dr. Imre Gyuk Dr. Imre Gyuk Energy Storage Program Manager, Office of Electricity Delivery and Energy

450

Webinar Presentation - Energy Storage in State RPS - Dec. 19, 2011 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presentation - Energy Storage in State RPS - Dec. 19, 2011 Presentation - Energy Storage in State RPS - Dec. 19, 2011 Webinar Presentation - Energy Storage in State RPS - Dec. 19, 2011 Dr. Imre Gyuk of the Office of Electricity Delivery and Energy Reliability presented "Grid Energy Storage: The Big Picture" as one of four guest speakers for a webinar on energy storage and renewable portfolio standards (RPS). The webinar was hosted by the State-Federal RPS Collaborative and the Clean Energy States Alliance (CESA) to explore the role of energy storage in state RPS, including the integration of an increasingly higher penetration of renewables and energy storage as a generation resource. The webinar presentation slides are available below; the recorded webinar may be downloaded from CESA's website. Webinar Presentation - December 19 RPS and Energy Storage.pdf

451

"1. Robert Moses Niagara","Hydroelectric","New York Power Authority",2353  

U.S. Energy Information Administration (EIA) Indexed Site

York" York" "1. Robert Moses Niagara","Hydroelectric","New York Power Authority",2353 "2. Ravenswood","Gas","TC Ravenswood LLC",2330 "3. Nine Mile Point Nuclear Station","Nuclear","Nine Mile Point Nuclear Sta LLC",1773 "4. Oswego Harbor Power","Petroleum","NRG Oswego Harbor Power Operations Inc",1648 "5. Northport","Gas","National Grid Generation LLC",1569 "6. Astoria Generating Station","Gas","U S Power Generating Company LLC",1315 "7. Roseton Generating Station","Gas","Dynegy Northeast Gen Inc",1212 "8. Blenheim Gilboa","Pumped Storage","New York Power Authority",1160

452

Global potential for wind-generated electricity  

Science Journals Connector (OSTI)

...monthly averages of wind power production...negative. Very large wind power penetration...forms. Plug-in hybrid electric vehicles...excesses in electricity system, while energy-rich...storage. Potential wind-generated electricity...only wind but also solar. The additional...

Xi Lu; Michael B. McElroy; Juha Kiviluoma

2009-01-01T23:59:59.000Z

453

The Honorable Robert Mort&s,  

Office of Legacy Management (LM)

, , Department of Energy. ,. Wzishington, DC 20585 fJEC 01 1394 ," The Honorable Robert Mort&s, 7501 Meyer Road ~' Spring Frove, Illinois '60081 Dear MayorMortens: , Secretary of Energy Hazel O'i@ari has announced a new approach to bpenness in the Departhent,of Energy (DOE) and its communications with the public. _ In support of,this initiative, we are pleased to forward the enclosed~ information related to the former,Xnternational Register site in your jurisdiction that performed work for DOE or its predecessor agencies. This information i's .provided,for your~information, use, and retention. DOE's Formi?rly Utilized Sit&s Remedial Action Program is responsible for. identification of sites used by DOE's predecessor agencies, detehmihing their

454

Robert Kaita | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Kaita Kaita Principal Research Physicist, P.I., LTX Robert (Bob) Kaita is the head of plasma diagnostic operations and acting head of boundary physics operations for the National Spherical Torus Experiment (NSTX). Kaita is also a co-principal investigator of the Lithium Tokamak Experiment (LTX). He is a Fellow of the American Physical Society and a recipient of the Kaul Foundation Prize for Excellence in Plasma Physics Research. He has supervised the research of many students in the PPPL Program in Plasma Physics in the Department of Astrophysical Sciences at Princeton University. Interests Neutral beam and radiofrequency plasma heating Plasma diagnostics Plasma-surface interactions Solid and liquid plasma-facing components Contact Information Phone: 609-243-3275

455

Mr. Robert Tate Assistant Secretary Cyclops Corporation  

Office of Legacy Management (LM)

E-23 E-23 Mr. Robert Tate Assistant Secretary Cyclops Corporation 650 Washington Road Pittsburgh, Pennsylvania 15228 Dear Mr. Tate: As you discussed with Gale Turf of my staff, the Cyclops Corporation, Titusville Plant fn Alfquippa, Pennsylvania, has been authorfzed for remedial action. This action will be conducted under the Department of Energy's Formerly Utilized Sites Remedial Action Program. The Department will consult with the Cyclops Corporation before taking any action. I understand that representatives from the Department of Energy (Larry Clark) and the Department's contractor, Bechtel National, Inc. will be meeting with you in the near future to discuss remedial action at the Titusvflle Plant. As stated in the August 2, 1982, letter to you from the Department, based

456

Mr. Robert Muller, Manager General Chemical Corporation  

Office of Legacy Management (LM)

S 1997 S 1997 Mr. Robert Muller, Manager General Chemical Corporation 6300 Philadelphia Pike Claymont, Delaware 19703 Dear Mr. Muller: As you may know, the Department of Energy (DOE) is evaluating the radiological condition of sites that were utilized by the Manhattan Engineer District and the Atomic Energy Commission (AEC) during the early years of nuclear development to determine whether they need to be cleaned up and whether the Department has authority to perform such action. Mr. D. T. Murphy of Allied Chemical Corporation, Delaware Valley Works in Marcus Hook, was notified on October 2, 1979, that the former Allied site in North Claymont had been identified as one such site, as a result of research and development work and small pilot-scale operations conducted there during

457

Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems  

SciTech Connect

HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNL’s metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800°C). A high-temperature tank in PNNL’s storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNL’s thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

None

2011-12-05T23:59:59.000Z

458

International Battery Presentation- Keeping The Lights On: Smart Storage for a Smart Grid (July 12, 2011)  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Ake Algrem of International Battery before the Electricity Advisorty Committee, July 12, 2011, on storage options for the smart grid.

459

Bubbles Help Break Energy Storage Record for Lithium Air-Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Bubbles Help Break Energy Storage Record for Lithium Air-Batteries Foam-base graphene keeps oxygen flowing in batteries that holds promise for electric vehicles January...

460

FY 2011 Annual Progress Report for Energy Storage R&D  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

REPORT FOR ENERGY STORAGE R&D January 2012 Approved by David Howell, Hybrid Electric Systems Team Lead Vehicle Technologies Program, Energy Efficiency and Renewable Energy Table...

Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

SciTech Connect: Value of Energy Storage for Grid Applications  

Office of Scientific and Technical Information (OSTI)

for Grid Applications This analysis evaluates several operational benefits of electricity storage, including load-leveling, spinning contingency reserves, and regulation...

462

Terahertz radiation and second-harmonic generation from InAs: Bulk versus surface electric-field-induced contributions  

E-Print Network (OSTI)

Terahertz radiation and second-harmonic generation from InAs: Bulk versus surface electric-harmonic generation and terahertz radiation emission indicates that the observed dominant surface electric-field-induced contributions Matthew Reid, Igor V. Cravetchi, and Robert Fedosejevs Department of Electrical and Computer

Reid, Matthew

463

Thermal energy storage  

Science Journals Connector (OSTI)

Various types of thermal stares for solar systems are surveyed which include: long-term water stores for solar systems; ground storage using soil as an interseasonal energy store; ground-water aquifers; pebble or rock bed storage; phase change storage; solar ponds; high temperature storage; and cold stores for solar air conditioning system. The use of mathematical models for analysis of the storage systems is considered

W.E.J. Neal

1981-01-01T23:59:59.000Z

464

Robert M. Bestani | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

sector financings grew from 50 million to over 2.4 billion per annum, financing water, electricity, telephone communications, and transportation projects. Working with 34...

465

Heat pumps and energy storage – The challenges of implementation  

Science Journals Connector (OSTI)

The wider implementation of variable renewable energy sources such as wind across the UK and Ireland will demand interconnection, energy storage and more dynamic energy systems to maintain a stable energy system that makes full use of one of our best renewable energy resources. However large scale energy storage e.g. pumped storage may be economically challenging. Therefore can thermal energy storage deployed domestically fulfil an element of such an energy storage role? Current electricity pricing is based on a ˝ hourly timeframe which will be demonstrated to have some benefits for hot water heating from electrical water heaters in the first instance. However heat pumps linked to energy storage can displace fossil fuel heating systems and therefore the question is whether a renewable tariff based on “excess” wind for example is sufficient to operate heat pumps. An initial analysis of this scenario will be presented and its potential role in challenging aspects of fuel poverty.

Neil J Hewitt

2012-01-01T23:59:59.000Z

466

FY06 DOE Energy Storage Program PEER Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 DOE Energy Storage Program 7 DOE Energy Storage Program PEER Review FY07 DOE Energy Storage Program PEER Review John D. Boyes Sandia National Laboratories Mission Mission Develop advanced electricity storage and PE technologies, in partnership with industry, for modernizing and expanding the electric supply. This will improve the quality, reliability, flexibility and cost effectiveness of the existing system. Help create an energy storage industry Make energy storage ubiquitous ESS Program Makeup ESS Program Makeup ESS Base Program - CEC/DOE Data Acquisition and Project Support - NYSERDA/DOE Data Acquisition and Project Support - BPA ETO based STATCOM Project - ETO Development Project - Boeing Superconducting Flywheel - ACONF Coast Guard Project - Iowa Stored Energy Project - Electrolyte Research

467

Office of Electricity Delivery and Energy Reliability  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Subtopic c. References: Subtopic c. References: 1. Thomas B. Johansson, Henry Kelly, Amulya K.N. Reddy, and Robert H. Williams, "Renewable Energy: Sources for Fuels and Electricity", Island Press, 1993 2. Patrick Takahashi and Andrew Trenka, "Ocean Thermal Energy Conversion", John Wiley & sons, 1996. *All references can be accessed at: http://archive.epri.com/oceanenergy/streamenergy.html#reports OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY 28. NATURAL DISASTER REDUCTION THROUGH TECHNOLOGY The U.S. electric power sector is a critical part of our society. Virtually all aspects of residential, industrial, and commercial activities depend on safe, reliable, and affordable electricity. Electricity is among the most infrastructure-intensive segments of the energy sector - the electricity grid includes a network of 5,000 power

468

June 18 ESTAP Webinar: An Overview of the Energy Storage Handbook |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 18 ESTAP Webinar: An Overview of the Energy Storage Handbook June 18 ESTAP Webinar: An Overview of the Energy Storage Handbook June 18 ESTAP Webinar: An Overview of the Energy Storage Handbook June 14, 2013 - 3:27pm Addthis On Tuesday, June 18 from 2 - 3 p.m. ET, Clean Energy States Alliance will host a webinar introducing the recently updated Electricity Storage Handbook released by Sandia National Laboratories and published by the U.S. Department of Energy. Titled "Highlights of the DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA," the webinar will be introduced by by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. This webinar will highlight the various topical areas of the 2013 edition of the Electricity Storage Handbook. This is a how-to guide for utility

469

Grid Energy Storage December 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid Energy Storage December 2013 Grid Energy Storage December 2013 Grid Energy Storage December 2013 Modernizing the electric grid will help the nation meet the challenge of handling projected energy needs-including addressing climate change by relying on more energy from renewable sources-in the coming decades, while maintaining a robust and resilient electricity delivery system. By some estimates, the United States will need somewhere between 4 and 5 tera kilowatt-hours of electricity annually by 2050. Those planning and implementing grid expansion to meet this increased electric load face growing challenges in balancing economic and commercial viability, resiliency, cyber-security, and impacts to carbon emissions and environmental sustainability. Energy storage systems (ESS) will play a

470

Enhanced Reliability of Photovoltaic Systems with Energy Storage and Controls  

SciTech Connect

This report summarizes efforts to reconfigure loads during outages to allow individual customers the opportunity to enhance the reliability of their electric service through the management of their loads, photovoltaics, and energy storage devices.

Manz, D.; Schelenz, O.; Chandra, R.; Bose, S.; de Rooij, M.; Bebic, J.

2008-02-01T23:59:59.000Z

471

2012 SG Peer Review - Dramatic Residential Demand Reduction in the Desert Southwest - Robert Boehm, Univ. of Nevada, Las Vegas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

S S t G id P 2012 Smart Grid Program Peer Review Meeting "D ti D d R d ti "Dramatic Demand Reduction in the Desert Southwest" Robert F Boehm Robert F. Boehm Center for Energy Research University of Nevada Las Vegas June 8, 2012 "Dramatic Demand Reduction in the Desert Southwest" in the Desert Southwest Objective Decrease the peak electrical demand by 65% over code-built houses in a new development of 185 homes. Life-cycle Funding ($K) FY08 - FY13 (now FY15) Technical Scope 1. Build energy conserving residences. 2. Include PV on the residences. FY08 - FY13 (now FY15) $6948k 3. Develop a demand control system that gives the customer options and that is enhanced by an artificial intelligence supplemental system. Instantaneous December 2008 power pricing information will be available

472

GRIDS: Grid-Scale Rampable Intermittent Dispatchable Storage  

SciTech Connect

GRIDS Project: The 12 projects that comprise ARPA-E’s GRIDS Project, short for “Grid-Scale Rampable Intermittent Dispatchable Storage,” are developing storage technologies that can store renewable energy for use at any location on the grid at an investment cost less than $100 per kilowatt hour. Flexible, large-scale storage would create a stronger and more robust electric grid by enabling renewables to contribute to reliable power generation.

None

2010-09-01T23:59:59.000Z

473

Preliminary requirements for thermal storage subsystems in solar thermal applications  

SciTech Connect

Methodologies for the analysis of value and comparing thermal storage concepts are presented. Value is a measure of worth and is determined by the cost of conventional fuel systems. Value data for thermal storage in large solar thermal electric power applications are presented. Thermal storage concepts must be compared when all are performing the same mission. A method for doing that analysis, called the ranking index, is derived. Necessary data to use the methodology are included.

Copeland, R.J.

1980-04-01T23:59:59.000Z

474

University of Arizona Compressed Air Energy Storage  

SciTech Connect

Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

Simmons, Joseph; Muralidharan, Krishna

2012-12-31T23:59:59.000Z

475

NREL: Energy Storage - Energy Storage Thermal Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Thermal Management Infrared image of rectangular battery cell. Infrared thermal image of a lithium-ion battery cell with poor terminal design. Graph of relative...

476

NREL: Energy Storage - Energy Storage Systems Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Systems Evaluation Photo of man standing between two vehicles and plugging the vehicle on the right into a charging station. NREL system evaluation has confirmed...

477

Robert B. Laughlin and the Fractional Quantum Hall Effect  

NLE Websites -- All DOE Office Websites (Extended Search)

Robert B. Laughlin and the Fractional Quantum Hall Effect Robert B. Laughlin and the Fractional Quantum Hall Effect Resources with Additional Information Robert B. Laughlin Photo Courtesy of LLNL Robert B. Laughlin shared the 1998 Nobel Prize in Physics with Horst L. Störmer and Daniel C. Tsui for 'their discovery of a new form of quantum fluid with fractionally charged excitations'. ' ... [I]n 1982 ... Störmer and Tsui discovered the effect. In 1983, Laughlin, then at the Lawrence Livermore National Laboratory, provided the theoretical explanation of the effect in terms of fractionally charged particles. It was a "confluence of things from engineering that prepared me for understanding the fractional quantum Hall effect and coming up with an explanation," Laughlin said during a television interview at Stanford. ...

478

Motion of Robert G. Burnley, Director the Commonwealth of Virginia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Robert G. Burnley, Director the Commonwealth of Virginia of Robert G. Burnley, Director the Commonwealth of Virginia Department of Environmental Quality to Deny the District of Columbia Public Service Commission's Petition Further Analysis of Environmental Impacts of Requested Relief Motion of Robert G. Burnley, Director the Commonwealth of Virginia Department of Environmental Quality to Deny the District of Columbia Public Service Commission's Petition Further Analysis of Environmental Impacts of Requested Relief Docket No. EO-05-01: Motion of Robert G. Burnley, Director the Commonwealth of Virginia Department of Environmental Quality to Deny the District of Columbia Public Service Commission's Petition on the Grounds that the Commission May Not Lawfully Grant the Requested Relief; or, in the Alternative, to Defer Action Pending Further Analysis of Environmental

479

Haeckel's embryos: fraud not proven Robert J. Richards  

E-Print Network (OSTI)

Haeckel's embryos: fraud not proven Robert J. Richards Published online: 5 November 2008 Ă? Springer, ``Haeckel's Embryos: Fraud Rediscovered,'' Haeckel, was indicted of having intentionally misrepresented Fig. 1 Illustration from Elizabeth Pennisi, ``Haeckel's Embryos: Fraud Rediscovered,'' Science

Richards, Robert J.

480

Chaos in Robert Hooke's inverted cone BY MEDERIC ARGENTINA  

E-Print Network (OSTI)

Chaos in Robert Hooke's inverted cone BY ME´DE´RIC ARGENTINA 1,2 , PIERRE COULLET 1,2 , JEAN of the cone and the angle f indicates its azimuthal position) minus the conservation of energy

Argentina, Mederic

Note: This page contains sample records for the topic "roberts electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Robert W. Wood: The Scientist who Played with Optics  

Science Journals Connector (OSTI)

Robert Williams Wood viewed the natural world as his playground. For him, science was a highly creative endeavor to be approached with curiosity and awe. Wood was also a scientific...

Masters, Barry R

2009-01-01T23:59:59.000Z

482

Microwavable thermal energy storage material  

DOE Patents (OSTI)

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

Salyer, Ival O. (Dayton, OH)

1998-09-08T23:59:59.000Z

483

Microwavable thermal energy storage material  

DOE Patents (OSTI)

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

Salyer, I.O.

1998-09-08T23:59:59.000Z

484

Energy Storage and Solar Power: An Exaggerated Problem  

Science Journals Connector (OSTI)

...capac-ity in an electric grid. The data base for wind correlation...intermittent sources through a grid to circumvent storage is particularly...com-pressed-air systems, flywheels, and su-perconducting magnets...compressed-air systems, flywheels, and superconducting storage...

WILLIAM D. METZ

1978-06-30T23:59:59.000Z

485

CLIMAR-III Participants List Dr Robert J. Allan  

E-Print Network (OSTI)

1 CLIMAR-III Participants List 9 May 2008 Dr Robert J. Allan Met Office Hadley Centre FitzRoy Road, MD 20910 USA tess.brandon@noaa.gov Dr Philip Brohan Met Office Hadley Centre FitzRoy Road, Exeter CANADA Robert.Keeley@dfo-mpo.gc.ca #12;3 Dr John J. Kennedy Met Office Hadley Centre FitzRoy Road, Exeter

486

Electrochemical hydrogen Storage Systems  

SciTech Connect

As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

Dr. Digby Macdonald

2010-08-09T23:59:59.000Z

487

Technologies for Carbon Capture and Storage  

E-Print Network (OSTI)

FutureGen Technologies for Carbon Capture and Storage and Hydrogen and Electricity Production to optimize hydrogen production or carbon capture The prototype plant would be the world's 1st #12;24-Jun-03Gen? · The world's first plant [prototype] to: - Capture and permanently sequester carbon dioxide - Emit virtually

488

Hydrogen storage on activated carbon. Final report  

SciTech Connect

The project studied factors that influence the ability of carbon to store hydrogen and developed techniques to enhance that ability in naturally occurring and factory-produced commercial carbon materials. During testing of enhanced materials, levels of hydrogen storage were achieved that compare well with conventional forms of energy storage, including lead-acid batteries, gasoline, and diesel fuel. Using the best materials, an electric car with a modern fuel cell to convert the hydrogen directly to electricity would have a range of over 1,000 miles. This assumes that the total allowable weight of the fuel cell and carbon/hydrogen storage system is no greater than the present weight of batteries in an existing electric vehicle. By comparison, gasoline cars generally are limited to about a 450-mile range, and battery-electric cars to 40 to 60 miles. The project also developed a new class of carbon materials, based on polymers and other organic compounds, in which the best hydrogen-storing factors discovered earlier were {open_quotes}molecularly engineered{close_quotes} into the new materials. It is believed that these new molecularly engineered materials are likely to exceed the performance of the naturally occurring and manufactured carbons seen earlier with respect to hydrogen storage.

Schwarz, J.A. [Syracuse Univ., NY (United States). Dept. of Chemical Engineering and Materials Science

1994-11-01T23:59:59.000Z

489

The Utility Battery Storage Systems Program Overview  

SciTech Connect

Utility battery energy storage allows a utility or customer to store electrical energy for dispatch at a time when its use is more economical, strategic, or efficient. The UBS program sponsors systems analyses, technology development of subsystems and systems integration, laboratory and field evaluation, and industry outreach. Achievements and planned activities in each area are discussed.

Not Available

1994-11-01T23:59:59.000Z

490

B. Lee Roberts, Fermilab, (g-2) Meeting 12 January 2008 -p. 1/66 Muon (g-2) Past and Future  

E-Print Network (OSTI)

B. Lee Roberts, Fermilab, (g-2) Meeting 12 January 2008 - p. 1/66 Muon (g-2) Past and Future Beam@bu.edu http://physics.bu.edu/roberts.html #12;B. Lee Roberts, Fermilab, (g-2) Meeting 12 January 2008 - p. 2 Roberts, Fermilab, (g-2) Meeting 12 January 2008 - p. 3/66B. L. Roberts, Fermilab , 3 September 2008 - p

Roberts, B. Lee

491

Magnetic Energy Storage System: Superconducting Magnet Energy Storage System with Direct Power Electronics Interface  

SciTech Connect

GRIDS Project: ABB is developing an advanced energy storage system using superconducting magnets that could store significantly more energy than today’s best magnetic storage technologies at a fraction of the cost. This system could provide enough storage capacity to encourage more widespread use of renewable power like wind and solar. Superconducting magnetic energy storage systems have been in development for almost 3 decades; however, past devices were designed to supply power only for short durations—generally less than a few minutes. ABB’s system would deliver the stored energy at very low cost, making it ideal for eventual use in the electricity grid as a costeffective competitor to batteries and other energy storage technologies. The device could potentially cost even less, on a per kilowatt basis, than traditional lead-acid batteries.

None

2010-10-01T23:59:59.000Z

492

Office of the Assistant General Counsel Electricity & Fossil Energy |  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity & Fossil Energy Electricity & Fossil Energy Office of the Assistant General Counsel Electricity & Fossil Energy The Office of the Assistant General Counsel for Electricity and Fossil Energy (GC-76) provides legal support and advice, and policy guidance, to the Department on electricity, fossil energy, energy regulatory and Federal Power Marketing Administration issues. The office is the lead departmental attorney for the Assistant Secretaries for Electricity Delivery and Energy Reliability, and Fossil Energy, and provides legal advice and support on matters pertaining to the generation, transmission and distribution of electricity; natural gas production, transmission, storage, importation and exportation; oil production and storage including the Strategic Petroleum

493

Energy Storage Program Planning Document | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Program Planning Document Energy Storage Program Planning Document Energy Storage Program Planning Document Energy storage systems have the potential to extend and optimize the operating capabilities of the grid, since power can be stored and used at a later time. This allows for flexibility in generation and distribution, improving the economic efficiency and utilization of the entire system while making the grid more reliable and robust. Additionally, alternatives to traditional power generation, including variable wind and solar energy technologies, may require back-up power storage. Thus, modernizing the power grid may require a substantial volume of electrical energy storage (EES). Energy Storage Program Planning Document More Documents & Publications CX-008689: Categorical Exclusion Determination

494

New York's Energy Storage System Gets Recharged | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

York's Energy Storage System Gets Recharged York's Energy Storage System Gets Recharged New York's Energy Storage System Gets Recharged August 2, 2010 - 1:18pm Addthis Matt Rogers, Senior Advisor to Secretary Chu, explain why grid frequency regulation matters Jonathan Silver Jonathan Silver Executive Director of the Loan Programs Office What does this mean for me? AES Storage in New York got a $17.1M conditional loan guarantee to provide a more stable transmission grid. When thinking of clean technologies, energy storage might not be the first thing to come to mind, but with a $17.1 million conditional commitment for a loan guarantee from the Department of Energy AES Energy Storage will develop a battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission

495

November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects November 1, 2013 - 5:00pm Addthis On Wednesday, November 13 from 1 - 2 p.m. ET, Clean Energy States Alliance will host a webinar on Duke Energy's battery energy storage systems. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. The webinar will discuss Duke Energy's six deployed battery systems, which cover a wide range of battery chemistries, sizes, locations on the grid, and applications. The deployments include the Notrees Wind Storage project, which OE supports under the Recovery Act-funded Smart Grid Energy Storage Demonstration Program. The other projects are the Rankin

496

Energy Storage Program Planning Document | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Program Planning Document Energy Storage Program Planning Document Energy Storage Program Planning Document Energy storage systems have the potential to extend and optimize the operating capabilities of the grid, since power can be stored and used at a later time. This allows for flexibility in generation and distribution, improving the economic efficiency and utilization of the entire system while making the grid more reliable and robust. Additionally, alternatives to traditional power generation, including variable wind and solar energy technologies, may require back-up power storage. Thus, modernizing the power grid may require a substantial volume of electrical energy storage (EES). Energy Storage Program Planning Document More Documents & Publications CX-010738: Categorical Exclusion Determination

497

Underground Natural Gas Storage by Storage Type  

NLE Websites -- All DOE Office Websites (Extended Search)

1973-2014 Withdrawals 43,752 63,495 73,368 47,070 52,054 361,393 1973-2014 Salt Cavern Storage Fields Natural Gas in Storage 381,232 399,293 406,677 450,460 510,558 515,041...

498

Sandia National Laboratories: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

New Mexico Renewable Energy Storage Task Force On January 28, 2014, in Energy, Energy Storage, Energy Storage Systems, Infrastructure Security, News, News & Events, Partnership,...

499

Onboard Storage Tank Workshop  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) and Sandia National Laboratories co-hosted the Onboard Storage Tank Workshop on April 29th, 2010. Onboard storage tank experts gathered to share lessons learned...

500

Solar Energy Storage  

Science Journals Connector (OSTI)

The intermittent nature of the solar energy supply makes the provision of adequate energy storage essential for the majority of practical applications. Thermal storage is needed for both low-temperature and high-...

Brian Norton BSc; MSc; PhD; F Inst E; C Eng

1992-01-01T23:59:59.000Z