Powered by Deep Web Technologies
Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Pearl River Valley Electric Power Association - Residential Energy  

Broader source: Energy.gov (indexed) [DOE]

Pearl River Valley Electric Power Association - Residential Energy Pearl River Valley Electric Power Association - Residential Energy Efficiency Rebate Program Pearl River Valley Electric Power Association - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount New Homes Heat Pump: $150 - $500 Geothermal Heat Pump: $500 Electric Water Heater: $150 Existing Homes Heat Pump: $200 Gas to Electric Water Heater Conversion: $150 Provider Pearl River Valley Electric Power Association Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the

2

White River Valley Electric Cooperative - Energy Efficiency Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

White River Valley Electric Cooperative - Energy Efficiency Rebate White River Valley Electric Cooperative - Energy Efficiency Rebate Program White River Valley Electric Cooperative - Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Geothermal Heat Pump: 10 tons for Residential, 50 tons for Commercial Dual Fuel Heat Pump: 10 tons for Residential, 50 tons for Commercial Air Source Heat Pump: 10 tons Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Residential Sector Only: Refrigerator: $75 Electric Water Heater: $50 Room AC: $50 Both Commercial and Residential: Ground Source Heat Pump (New Installation): $750/ton Ground Source Heat Pump (Replacement) : $150/ton

3

Red River Valley REA- Heat Pump Loan Program  

Broader source: Energy.gov [DOE]

The Red River Valley Rural Electric Association (RRVREA) offers a loan program to its members for air-source and geothermal heat pumps. Loans are available for geothermal heat pumps at a 5% fixed...

4

Light Company Vigilante Electric Cooperative, Inc. Raft River...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inland Power & Light Company Vigilante Electric Cooperative, Inc. Raft River Rural Electric Cooperative, Inc. Northern Lights, Inc. Lower Valley Energy, Inc. Clearwater Power...

5

Valley Electric Association- Net Metering  

Broader source: Energy.gov [DOE]

The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

6

"1. Coal Creek","Coal","Great River Energy",1133 "2. Antelope Valley","Coal","Basin Electric Power Coop",900  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" Dakota" "1. Coal Creek","Coal","Great River Energy",1133 "2. Antelope Valley","Coal","Basin Electric Power Coop",900 "3. Milton R Young","Coal","Minnkota Power Coop, Inc",697 "4. Leland Olds","Coal","Basin Electric Power Coop",670 "5. Garrison","Hydroelectric","USCE-Missouri River District",508 "6. Coyote","Coal","Otter Tail Power Co",427 "7. Stanton","Coal","Great River Energy",202 "8. Tatanka Wind Power LLC","Other Renewables","Acciona Wind Energy USA LLC",180 "9. Langdon Wind LLC","Other Renewables","FPL Energy Langdon Wind LLC",159

7

NETL: Ambient Monitoring - Upper Ohio River Valley Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Upper Ohio River Valley Project Upper Ohio River Valley Project In cooperation with key stakeholders including EPA, local and state environmental agencies, industry, and academia, the U.S. Department of Energy (DOE) has established the Upper Ohio River Valley Project (UORVP), a network for monitoring and characterizing PM2.5 in the Upper Ohio River Valley. This region was chosen because it has a high density of coal-fired electric utilities, heavy industries (e.g. coke and steel making), light industry, and transportation emission sources. It is also ideally situated to serve as a platform for the study of interstate pollution transport issues. This region, with its unique topography (hills and river valleys) as well as a good mix of urban and rural areas, has a high population of elderly who are susceptible to health impacts of fine particulate as well as other related environmental issues (e.g., acid rain, Hg deposition, ozone). A world-class medical research/university system is also located in the region, which will facilitate the subsequent use of the air quality data in studies of PM2.5 health effects.

8

Verdigris Valley Electric Cooperative - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Verdigris Valley Electric Cooperative - Residential Energy Verdigris Valley Electric Cooperative - Residential Energy Efficiency Rebate Program Verdigris Valley Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Oklahoma Program Type Utility Rebate Program Rebate Amount Room Air Conditioner: $50 Electric Water Heaters: $50 - $199 Geothermal Heat Pumps (new): $300/ton Geothermal Heat Pumps (replacement): $150/ton Air-source/Dual Fuel Heat Pumps: $150/ton Provider Verdigris Valley Electric Cooperative Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are

9

Minnesota Valley Electric Cooperative -Residential Energy Resource  

Broader source: Energy.gov (indexed) [DOE]

Minnesota Valley Electric Cooperative -Residential Energy Resource Minnesota Valley Electric Cooperative -Residential Energy Resource Conservation Loan Program Minnesota Valley Electric Cooperative -Residential Energy Resource Conservation Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Manufacturing Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Minnesota Program Type Utility Loan Program Rebate Amount Heat Pump Installation: up to $5,000 Electric Water Heater and Installation: up to $5,000 Electric Heating Equipment: up to $5,000 Heat Pump Installation: up to $5,000 Weatherization: up to $1,500 Provider Minnesota Valley Electric Cooperative

10

Numerical simulations of bedrock valley evolution by meandering rivers  

E-Print Network [OSTI]

of valley evolution pathways and the long-term stability of valley morphology under constant forcingNumerical simulations of bedrock valley evolution by meandering rivers with variable bank material Institute of Technology, Pasadena, California, USA Abstract Bedrock river valleys are fundamental components

11

Minnesota Valley Electric Cooperative - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Minnesota Valley Electric Cooperative - Residential Energy Minnesota Valley Electric Cooperative - Residential Energy Efficiency Rebate Program Minnesota Valley Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Heat Pumps Maximum Rebate Ground-Source Heat Pump: 5 ton maximum Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Clothes Washer: $25 Freezer/Refrigerator: $25 Dishwasher: $25 Air-Source Heat Pump: $500 Ground-Source Heat Pump: $200 per ton Electric Resistant Heating Products: $10 per kW Mini-Split Heat Pumps: $75 Central A/C or Heat Pump Tune-Up: $25 Provider Minnesota Valley Electric Cooperative Minnesota Valley Electric Cooperative (MVEC) offers financial incentives to

12

Moreno Valley Electric Utility - Solar Electric Incentive Program |  

Broader source: Energy.gov (indexed) [DOE]

Moreno Valley Electric Utility - Solar Electric Incentive Program Moreno Valley Electric Utility - Solar Electric Incentive Program Moreno Valley Electric Utility - Solar Electric Incentive Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential systems 30 kW or less: $14,000 or 50% of cost, whichever is less Small commercial systems 30 kW or less: $50,000 or 50% of cost, whichever is less Program Info State California Program Type Utility Rebate Program Rebate Amount Systems 30 kW or less: $2.00 per W-AC Systems larger than 30 kW: $0.06 per kWh for 5 years Provider Moreno Valley Electric Utility Moreno Valley Electric Utility provides rebates to its electric customers for the purchase of photovoltaic (PV) systems. System must be on the same premises as the customer to qualify. Systems 30 kilowatts (kW) or less can

13

Guadalupe Valley Electric Cooperative - Renewable Energy Rebates |  

Broader source: Energy.gov (indexed) [DOE]

Guadalupe Valley Electric Cooperative - Renewable Energy Rebates Guadalupe Valley Electric Cooperative - Renewable Energy Rebates Guadalupe Valley Electric Cooperative - Renewable Energy Rebates < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Wind Maximum Rebate PV: $8,000 Solar Water Heaters: $1,000 Solar Water Wells: $750 Wind-electric: $6,000 Program Info State Texas Program Type Utility Rebate Program Rebate Amount PV: $2.00/watt Solar Water Heaters: $1,000/unit Solar Water Wells: $750/unit Wind-electric: $1.00/watt Provider Guadalupe Valley Electric Cooperative '''''The $1.5 million budget cap for PV rebates in 2013 has been met. No additional applications for PV rebates will be accepted. '''''

14

Beyond Density: Measuring Neighborhood Form in New England's Upper Connecticut River Valley  

E-Print Network [OSTI]

in New England’s Upper Connecticut River Valley by Peterin New England’s Upper Connecticut River Valley by Peterof New England’s Upper Connecticut River Valley encompassing

Owens, Peter Marshall

2005-01-01T23:59:59.000Z

15

Ohio River Valley Water Sanitation Commission (Multiple States)  

Broader source: Energy.gov [DOE]

The Ohio River Valley Water Sanitation Commission (ORSANCO), was established on June 30, 1948 to control and abate pollution in the Ohio River Basin. ORSANCO is an interstate commission...

16

Schlumberger soundings in the Upper Raft River and Raft River Valleys,  

Open Energy Info (EERE)

soundings in the Upper Raft River and Raft River Valleys, soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Schlumberger soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Details Activities (1) Areas (1) Regions (0) Abstract: In 1975, the U.S. Geological Survey made seventy Schlumberger resistivity soundings in the Upper Raft River Valley and in parts of the Raft River Valley. These soundings complement the seventy-nine soundings made previously in the Raft River Valley (Zohdy and others, 1975) and bring the total number of soundings to 149. This work was done as part of a hydrogeologic study of the area. The location, number, and azimuth of all 149 Schlumberger sounding stations are presented. The location of the new

17

The investigation of anomalous magnetization in the Raft River valley,  

Open Energy Info (EERE)

investigation of anomalous magnetization in the Raft River valley, investigation of anomalous magnetization in the Raft River valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: The investigation of anomalous magnetization in the Raft River valley, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Cassia County Idaho; clastic sediments; economic geology; exploration; geophysical methods; geophysical surveys; geothermal energy; gravel; ground methods; Idaho; isothermal remanent magnetization; magnetic anomalies; magnetic methods; magnetic properties; magnetic susceptibility; magnetization; paleomagnetism; Raft River basin; remanent magnetization; sediments; surveys; United States Author(s): Anderson, L.A.; Mabey, D.R. Published: Abstracts - Society of Exploration Geophysicists International

18

Raft River Rural Electric Coop. Vigilante Electric Coop. Northern  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Raft River Rural Electric Coop. Vigilante Electric Coop. Northern Lights Bonners Ferry East End Mutual Heyburn Burley United Electric Albion Raft River Rural Electric Coop. Declo...

19

Sequachee Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Sequachee Valley Electric Coop Sequachee Valley Electric Coop Jump to: navigation, search Name Sequachee Valley Electric Coop Place Tennessee Utility Id 16930 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial GSA1 Commercial Green Power Switch Residential Industrial GSA1 Industrial Light- 100w High Pressure Sodium Lighting Light- 250w High Pressure Sodium Lighting Light- 250w Metal Halide Lighting Light- 400w Metal Halide Lighting Residential Residential Average Rates Residential: $0.0962/kWh Commercial: $0.1020/kWh

20

Ohio Valley Electric Corp | Open Energy Information  

Open Energy Info (EERE)

Ohio Valley Electric Corp Ohio Valley Electric Corp Place Ohio Utility Id 14015 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0450/kWh The following table contains monthly sales and revenue data for Ohio Valley Electric Corp (Ohio). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Penoyer Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Penoyer Valley Electric Coop Penoyer Valley Electric Coop Jump to: navigation, search Name Penoyer Valley Electric Coop Place Nevada Utility Id 40497 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Agriculture Rate Commercial Lincoln County Residential Residential Residential Rate Residential Residential Rate- Lower Colorado Residence Residential Average Rates Residential: $0.0787/kWh Commercial: $0.0722/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

22

Powell Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Powell Valley Electric Coop Powell Valley Electric Coop Jump to: navigation, search Name Powell Valley Electric Coop Place Tennessee Utility Id 15293 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Industrial 1001 - 5000 KW Industrial General Power Industrial 51 - 1000 KW Industrial General Power Commercial 1001 - 5000 KW Commercial General Power Commercial 51 - 1000 KW Commercial General Power Commercial Less than 50 KW Commercial General Power Industrial Less than 50 KW Industrial

23

Pearl River Valley El Pwr Assn | Open Energy Information  

Open Energy Info (EERE)

El Pwr Assn El Pwr Assn Jump to: navigation, search Name Pearl River Valley El Pwr Assn Place Mississippi Utility Id 14563 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 1 GS General Service 10 LGS-6 Large General Service 2 GS-DG General Service Distributed Generation 20 LP-6 Large Power 21 LP-AE-2 Large Power All Electric 22 LP-PM-6 Large Power Primary Meter 23 LP-PM-AE-2 Large Power Primary Metering All Electric 3 GS-TWH General Service Tankless Water Heater 3 TGS-1 Temporary General Service

24

New River Geothermal Research Project, Imperial Valley, California...  

Open Energy Info (EERE)

Share 9,339,420.00 Total Project Cost 14,339,420.00 Principal Investigator(s) Stuart Johnson Location of Project Imperial Valley, CA About the Area The shallow New River thermal...

25

Chippewa Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Chippewa Valley Electric Coop Chippewa Valley Electric Coop Place Wisconsin Utility Id 3498 Utility Location Yes Ownership C NERC Location MRO ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CONTROLLED CENTRAL AC CREDIT - RATE CODE AC Commercial DISTRIBUTED GENERATION RATE DG Commercial DUSK/DAWN LIGHTING RATE CODE L Lighting INDUSTRIAL TIME OF DAY RATE CODE I Industrial LARGE SINGLE PHASE/MEDIUM-LARGE THREE PHASE RATE CODE X Industrial MEDIUM SINGLE PHASE/SMALL THREE PHASE - RATE CODE W Commercial OFF-PEAK ELECTRIC SPACE HEATING RATE CODE H Commercial

26

Minnesota Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Minnesota Valley Electric Coop Minnesota Valley Electric Coop Place Minnesota Utility Id 12651 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule A- Single Phase Service Schedule B- 3 phase service 25 kW and greater Commercial Schedule B- 3 phase service less than 25 kW Schedule DH: Dual Heat Service Schedule EH: Electric Heat Service Schedule I: Single-Phase Irrigation Service Schedule I: Three-Phase Irrigation Service Schedule SL: 150 Watt HPS Lighting Schedule SL: 175 Watt MV Lighting Schedule SL: 400 Watt MV Lighting

27

Magic Valley Electric Cooperative - ENERGY STAR Builders Program (Texas) |  

Broader source: Energy.gov (indexed) [DOE]

Magic Valley Electric Cooperative - ENERGY STAR Builders Program Magic Valley Electric Cooperative - ENERGY STAR Builders Program (Texas) Magic Valley Electric Cooperative - ENERGY STAR Builders Program (Texas) < Back Eligibility Construction Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Appliances & Electronics Water Heating Program Info State Texas Program Type Utility Rebate Program Rebate Amount ENERGY STAR Home: $150-$600 ENERGY STAR Home with Version 3.0 Checklist: $200 Marathon Water Heater Installation: $150 ENERGY STAR Heat Pump Water Heater: $250 Provider Magic Valley Electric Cooperative Magic Valley Electric Cooperative's (MVEC) ENERGY STAR Builders Program offers a variety of incentives to builders of energy efficiency homes

28

Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable  

Broader source: Energy.gov (indexed) [DOE]

Cumberland Valley Electric Cooperative - Energy Efficiency and Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable Energy Program Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable Energy Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Insulation: $400 Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Air Source Heat Pump: $100 Insulation: $20 for every 1000 BTU offset Geothermal Heat Pump: $100 Provider Cumberland Valley Electric Cumberland Valley Electric offers a number of programs to promote energy conservation. This program offers rebates for air source heat pumps,

29

Valley and electric photocurrents in 2D silicon and graphene  

SciTech Connect (OSTI)

We show that the optical excitation of multi-valley systems leads to valley currents which depend on the light polarization. The net electric current, determined by the vector sum of single-valley contributions, vanishes for some peculiar distributions of carriers in the valley and momentum spaces forming a pure valley current. We report on the study of this phenomenon, both experimental and theoretical, for graphene and 2D electron channels on the silicon surface.

Tarasenko, S. A.; Ivchenko, E. L. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Olbrich, P.; Ganichev, S. D. [Terahertz Center, University of Regensburg, 93040 Regensburg (Germany)

2013-12-04T23:59:59.000Z

30

Edmonton skyline along North Saskatchewan River valley Canada's `Little Brother' Metropolis Grows Up  

E-Print Network [OSTI]

Edmonton Edmonton skyline along North Saskatchewan River valley Canada's `Little Brother urban vibe, explore life across the North Saskatchewan River. Old Strathcona, Edmon- ton's Brooklyn

Machel, Hans

31

The Hudson River Valley Greenway Act of 1991 Revised as of November 1997  

E-Print Network [OSTI]

The Hudson River Valley Greenway Act of 1991 Revised as of November 1997 Hudson River Valley Greenway Communities Council Greenway Conservancy for the Hudson River Valley, Inc. Capitol Building hrgreenway@aol.com Copyright (C) 1997 by West Group. Obtained from Westlaw and reprinted with permission

Limburg, Karin E.

32

Guadalupe Valley Electric Cooperative- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Guadalupe Valley Electric Cooperative (GVC) offers a variety of incentives to help residential customers save energy. Rebates are available for energy efficient new homes and improvements to...

33

New River Geothermal Research Project, Imperial Valley, California  

Open Energy Info (EERE)

Research Project, Imperial Valley, California Research Project, Imperial Valley, California Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title New River Geothermal Research Project, Imperial Valley, California Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Current models for the tectonic evolution of the Salton Trough provide a refined geologic model to be tested within the New River system and subsequently applied to additional rift dominated settings. Specific concepts to be included in model development include: rifting as expressed by the Brawley Seismic zone setting, northwest extensional migration, detachment faulting and a zone of tectonic subsidence as defining permeability zones; and evaluation and signature identification of diabase dike systems. Lateral continuous permeable sand units will be demonstrated through integration of existing well records with results of drilling new wells in the area.

34

Kelly Services 1600 Valley River Drive, Suite 170  

E-Print Network [OSTI]

Kelly Services® 1600 Valley River Drive, Suite 170 Eugene, OR 97401 Phone: 541.687.9558 Fax: 541 put them on our payroll Experience 1946 ­ Present Kelly Services, Troy, MI We are a global, single to achieve results. We transform workforce challenges into opportunities. 1957 ­ Present Kelly Services

Oregon, University of

35

Valley Electric Association - Solar Water Heating Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Valley Electric Association - Solar Water Heating Program Valley Electric Association - Solar Water Heating Program Valley Electric Association - Solar Water Heating Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Nevada Program Type Utility Loan Program Provider Valley Electric Association Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA partnered with Great Basin College to train and certify installers, creating jobs in the community, and also with Rheem Manufacturing and a local licensed contractor to install the units. A site visit is performed to determine the best installation and system design for each member. Members have the option of

36

Bear Valley Electric Service | Open Energy Information  

Open Energy Info (EERE)

Service Service Jump to: navigation, search Name Bear Valley Electric Service Place California Utility Id 17612 Utility Location Yes Ownership I NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A-1 General Service, less than 20 kW A-1 General Service, less than 20 kW - Direct Access Commercial A-2 General Service, 20 to 50 kW A-2 General Service, 20 to 50 kW - Direct Access A-3 General Service, more than 50 kW Commercial

37

Valley Electric Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

California California Utility Id 19840 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1340/kWh Commercial: $0.2500/kWh Industrial: $0.0958/kWh The following table contains monthly sales and revenue data for Valley Electric Assn, Inc (California). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 1.385 11.496 12 0.106 0.462 2 2.846 34.986 30 4.337 46.944 44

38

Twin Valley Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Valley Electric Coop Inc Valley Electric Coop Inc Jump to: navigation, search Name Twin Valley Electric Coop Inc Place Kansas Utility Id 18962 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric and/or Air Source Heat Pump Commercial Commercial Large Commercial Commercial Small Commercial Farm and Residential Residential Average Rates Residential: $0.1240/kWh Commercial: $0.1510/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Twin_Valley_Electric_Coop_Inc&oldid=411888"

39

Sioux Valley Southwestern Electric Cooperative, Inc. Smart Grid Project |  

Open Energy Info (EERE)

Sioux Valley Southwestern Electric Cooperative, Inc. Smart Grid Project Sioux Valley Southwestern Electric Cooperative, Inc. Smart Grid Project Jump to: navigation, search Project Lead Sioux Valley Southwestern Electric Cooperative, Inc. Country United States Headquarters Location Colman, South Dakota Additional Benefit Places Minnesota Recovery Act Funding $4,016,368.00 Total Project Value $8,032,736.00 Coverage Area Coverage Map: Sioux Valley Southwestern Electric Cooperative, Inc. Smart Grid Project Coordinates 43.9824719°, -96.8144973° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

40

Golden Valley Electric Association - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Golden Valley Electric Association - Residential Energy Efficiency Rebate Program for Builders Golden Valley Electric Association - Residential Energy Efficiency Rebate Program for Builders < Back Eligibility Construction Savings Category Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Alaska Program Type Utility Rebate Program Rebate Amount Fluorescent Lamps: $10-$20 CFL Fixtures: $3 LED Lamp: $10 Photocell/Motion Detector: $10 High Intensity Discharge Fixture: $20 Insulating Blanket for Water Heater: $10 Water Heater Timer: $30 Timer Controlling Exterior Vehicle Plug-In Outlet: $20 Switch Controlling Exterior Vehicle Plug-In Outlet: $10 Provider Golden Valley Electric Association Golden Valley Electric Association's (GVEA) Builder $ense program targets

Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Subsurface Electrical Measurements at Dixie Valley, Nevada, Using  

Open Energy Info (EERE)

Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Abstract Extended logging and surface-to-borehole electromagnetic induction measurements were performed at the Dixie Valley Geothermal Field as part of an ongoing effort to employ electromagnetic induction logging to geothermal reservoir characterization. The principal goal of this effort is to discern subsurface features useful in geothermal production, such as larger scale mapping of geothermal reservoirs and smaller scale mapping of producing

42

Silicon Valley Power - Solar Electric Buy Down Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Solar Electric Buy Down Program Solar Electric Buy Down Program Silicon Valley Power - Solar Electric Buy Down Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $20,000 Program Info State California Program Type Utility Rebate Program Rebate Amount Incentives step down over time as installed capacity goals are met. Check program web site for current incentive level. '''Rebate levels as of 9/20/12:''' Residential: $2.00/watt AC Commercial (up to 100 kW): $1.10/watt AC Commercial (>100 kW to 1 MW): $0.15/kWh for 5 years Provider Silicon Valley Power Silicon Valley Power (SVP) offers incentives for the installation of new grid-connected solar electric (photovoltaic, or PV) systems. Incentive levels will step down over the life of the program as certain installed

43

Golden Valley Electric Association - Sustainable Natural Alternative Power  

Broader source: Energy.gov (indexed) [DOE]

Sustainable Natural Sustainable Natural Alternative Power (SNAP) Program Golden Valley Electric Association - Sustainable Natural Alternative Power (SNAP) Program < Back Eligibility Agricultural Commercial Industrial Institutional Nonprofit Residential Schools Savings Category Bioenergy Buying & Making Electricity Solar Home Weatherization Water Wind Maximum Rebate 1.50/kWh Program Info State Alaska Program Type Performance-Based Incentive Rebate Amount Varies; determined by kWh produced and contributions from supporting members. Provider Golden Valley Electric Golden Valley Electric Association's (GVEA) SNAP program encourages members to install renewable energy generators and connect them to the utility's electrical distribution system by offering an incentive payment based on the system's production on a dollar per kilowatt-hour ($/kWh) basis. The

44

Minnesota Valley Electric Cooperative - Commercial and Industrial Energy  

Broader source: Energy.gov (indexed) [DOE]

Minnesota Valley Electric Cooperative - Commercial and Industrial Minnesota Valley Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program Minnesota Valley Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Other Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate For lighting, motors, and ASDs, there is a maximum of 50% of the project cost, or $5,000 Agriculture Ventilation: 50% of cost or $100,000 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting: Varies according to fixture type Rooftop/Split System A/C: $18/ton, plus bonus of $5/ton for each 0.1 above

45

Golden Valley Electric Association - Commercial Lighting Retrofit Rebate  

Broader source: Energy.gov (indexed) [DOE]

Commercial Lighting Retrofit Commercial Lighting Retrofit Rebate Program Golden Valley Electric Association - Commercial Lighting Retrofit Rebate Program < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate $20,000 per project Program Info State Alaska Program Type Utility Rebate Program Rebate Amount Up to $1,000/kW or 50% of the project cost Provider Golden Valley Electric Association BusBusiness $ense is a Golden Valley Electric Association (GVEA) program designed to increase the efficiency with which energy is used on GVEA's system. It provides rebates of up to $20,000 to existing facilities receiving the commercial rate who reduce their lighting loads through energy efficient lighting retrofit projects. Facilities on GVEA's

46

Kaw Valley Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Kaw Valley Electric Coop Inc Kaw Valley Electric Coop Inc Jump to: navigation, search Name Kaw Valley Electric Coop Inc Place Kansas Utility Id 10019 Utility Location Yes Ownership C NERC Location SPP Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Domestic Service - Large (12) Residential General Domestic Service - Peak Mgmt (20) Commercial General Domestic Service - Standard (10) Residential General Service Small - Single Phase (30) Commercial General Service Small - Three Phase (32) Commercial Irrigation Service (40) Commercial Irrigation Service - Load Control (45) Commercial

47

Magic Valley Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Valley Electric Coop Inc Valley Electric Coop Inc Jump to: navigation, search Name Magic Valley Electric Coop Inc Place Texas Utility Id 11501 Utility Location Yes Ownership C NERC Location TRE NERC ERCOT Yes ISO Ercot Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Area 100 W HPS Lighting Commercial Area 150 W HPS Lighting Commercial Area 175 W MV Lighting Commercial Area 250 W HPS Lighting Commercial Area 400 W HPS Lighting Commercial Area 400 W MV Lighting Commercial Flood 1000 W HPS Lighting Commercial Flood 1000 W MH Lighting Commercial Flood 250 W HPS Lighting

48

Yellowstone Valley Electric Cooperative - Residential/Commercial Efficiency  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Yellowstone Valley Electric Cooperative - Residential/Commercial Efficiency Rebate Program Yellowstone Valley Electric Cooperative - Residential/Commercial Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heat Pumps Water Heating Maximum Rebate Add-On Heat Pump: $800 Geothermal Heat Pump: $1,000 (residential); $5,000 (commercial) Program Info State Montana Program Type Utility Rebate Program Rebate Amount Add-On Heat Pump: $200 per ton Geothermal Heat Pump: $200/ton (residential); $150/ton (commercial) Water Heater: $100 - $150 Energy Star Dishwasher: $25 Energy Star Refrigerator: $25 Energy Star Clothes Washer: $50 Provider

49

Red River Valley Rrl Elec Assn | Open Energy Information  

Open Energy Info (EERE)

Rrl Elec Assn Rrl Elec Assn Jump to: navigation, search Name Red River Valley Rrl Elec Assn Place Oklahoma Utility Id 15746 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Experimental Residential TOU Residential General Purpose Single Phase Commercial General Purpose Three Phase Commercial Irrigation - Water pumping Commercial Large Power 1 Industrial Large Power 2 Industrial Low-Use General Purpose Residential Optional General Purpose TOU Industrial Outdoor Lighting 1000w Metal Halide - Metered Lighting

50

Red River Valley Coop Pwr Assn | Open Energy Information  

Open Energy Info (EERE)

Assn Assn Jump to: navigation, search Name Red River Valley Coop Pwr Assn Place Minnesota Utility Id 26939 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Decorative Post Light Lighting General - Three Phase Industrial Post Light Lighting Residential - Off-Peak Residential Residential - Single Phase Residential Security Parking Light Lighting Yard Light Lighting Average Rates Residential: $0.0892/kWh Commercial: $0.0883/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

51

White River Valley El Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name White River Valley El Coop Inc Place Missouri Utility Id 20574 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Multi-Phase Commercial Commercial Single-Phase Commercial Large Power Service Industrial Residential Residential Residential Security Lighting Lighting Average Rates Residential: $0.1110/kWh Commercial: $0.0951/kWh Industrial: $0.0799/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

52

Soils developed from alluvial and proluvial deposits in the Gröndalselva River valley in West Spitsbergen  

Science Journals Connector (OSTI)

The genetic characterization of soils developed from alluvial and proluvial deposits in the Gröndalselva River valley (West Spitsbergen) is presented. These soils are ... texture of the soils in the Gröndalselva ...

V. N. Pereverzev; T. I. Litvinova

2012-05-01T23:59:59.000Z

53

Development of the Lower Mono River Valley, West Africa: A Case Study  

Science Journals Connector (OSTI)

The potential of developing the agricultural sector in the lower Mono River valley in Togo and Benin was studied at prefeasibility level in 1983 and 1984. The measures proposed to overcome the frequent floodin...

P. N. Lewis

1986-01-01T23:59:59.000Z

54

Local diffusion networks act as pathways?to sustainable agriculture in the Sacramento River Valley  

E-Print Network [OSTI]

576 p. Sabatier PA, Focht W, Lubell M, et al. (eds. ). 2005.and cultural change. M. Lubell is Associate Professor,River Valley by Mark Lubell and Allan Fulton Greater

Lubell, Mark; Fulton, Allan

2007-01-01T23:59:59.000Z

55

Three Rivers Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Rivers Electric Coop Rivers Electric Coop Jump to: navigation, search Name Three Rivers Electric Coop Place Missouri Utility Id 16751 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting HPS 100 W Lighting Outdoor Lighting HPS 100 W w/Metal Pole Lighting Residential Residential Average Rates Residential: $0.0926/kWh Commercial: $0.0791/kWh Industrial: $0.0688/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Three_Rivers_Electric_Coop&oldid=411667"

56

Yampa Valley Electric Assn Inc | Open Energy Information  

Open Energy Info (EERE)

Yampa Valley Electric Assn Inc Yampa Valley Electric Assn Inc Place Colorado Utility Id 21081 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL SERVICE Commercial IRRIGATION SERVICE Commercial LARGE POWER SERVICE Commercial OUTDOOR SECURITY LIGHTING SERVICE: 175 Watt Mercury Vapor Lamp Lighting OUTDOOR SECURITY LIGHTING SERVICE: 250 Watt Mercury Vapor Lamp Lighting OUTDOOR SECURITY LIGHTING SERVICE: 400 Watt Mercury Vapor Lamp Lighting RESIDENTIAL SERVICE Residential Average Rates Residential: $0.0960/kWh

57

Coosa Valley Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Coosa Valley Electric Coop Inc Coosa Valley Electric Coop Inc Place Alabama Utility Id 4327 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial (0016) Large Commercial (0017) Commercial Large Commercial (0018) Commercial Large Commercial V2 Commercial Medium Commercial Rates Commercial Residential Residential Restricted Primary Metering Rate Commercial Small Commercial Commercial Small Power and Light Commercial Sports Lighting Lighting Average Rates Residential: $0.1300/kWh Commercial: $0.1330/kWh

58

Valley Rural Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Valley Rural Electric Coop Inc Valley Rural Electric Coop Inc Place Pennsylvania Utility Id 40222 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lights 100w HPS Lighting Area Lights 100w Mercury Vapor Lighting Area Lights 150w HPS Lighting Area Lights 175w Mercury Vapor Lighting Area Lights 250w HPS Lighting Area Lights 250w Mercury Vapor Lighting Area Lights 400w HPS Lighting Area Lights 400w Mercury Vapor Lighting Residential Residential Average Rates Residential: $0.1080/kWh Commercial: $0.1020/kWh

59

Pea River Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Pea River Electric Coop Pea River Electric Coop Jump to: navigation, search Name Pea River Electric Coop Place Alabama Utility Id 14602 Utility Location Yes Ownership C NERC Location SERC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Security Light: 100 watt high pressure sodium Lighting Security Light: 1000 watt metal halide Lighting Security Light: 250 watt high pressure sodium (flood) Lighting Security Light: 250 watt high pressure sodium (street) Lighting Security Light: 400 watt high pressure sodium Lighting Average Rates Residential: $0.1150/kWh Commercial: $0.1200/kWh

60

Singing River Electric Power Association - Comfort Advantage Home Program |  

Broader source: Energy.gov (indexed) [DOE]

Singing River Electric Power Association - Comfort Advantage Home Singing River Electric Power Association - Comfort Advantage Home Program Singing River Electric Power Association - Comfort Advantage Home Program < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Heat Pumps Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount Contact Singing River Electric Power Association Provider Singing River Electric Power Association Singing River Electric Power Association provides rebates on energy efficiency measures in new homes and heat pumps that meet [http://www.comfortadvantage.com/Comfort%20Advantage%20brochure.pdf Comfort Advantage] weatherization standards. To qualify for this rebate the home

Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Electric Vehicle Charging in Smart Grid: Optimality and Valley-filling Algorithms  

E-Print Network [OSTI]

different settings. Index Terms--Optimal power flow, electric vehicle charging, valley-filling, onlineForReview Only 1 Electric Vehicle Charging in Smart Grid: Optimality and Valley-filling Algorithms, IEEE. Abstract--Electric vehicles (EVs) offer an attractive long-term solution to reduce the dependence

Tan, Chee Wei

62

Waterbird and Food Resource Responses to Winter Drawdown in the east Tennessee River Valley  

E-Print Network [OSTI]

Tennessee Douglas Reservoir * ** * Study Sites Near Confluence of the... French Broad River Nolichucky River Electricity Generation Cool Nuclear Reactors Predictable Hydrology Historically, reservoir downdowns began Rankin Bottoms WMA East Tennessee Douglas Reservoir * ** * Study Sites Near Confluence of the... French

Gray, Matthew

63

Salt River Electric - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Salt River Electric - Residential Energy Efficiency Rebate Program Salt River Electric - Residential Energy Efficiency Rebate Program Salt River Electric - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Other Ventilation Heat Pumps Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Varies by technology Provider Salt River Electric Cooperative Salt River Electric serves as the rural electric provider in Kentucky's Bullitt, Nelson, Spencer, and Washington counties. Residential customers are eligible for a variety of cash incentives for energy efficiency. The Touchstone Energy Home Program provides a rebate of up to $250 to customers

64

Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise  

E-Print Network [OSTI]

Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise Rik is related with the low shelf gradient and a strong acceleration of the East Asian sea-level rise from 34 depositional systems change into estuaries and eventually drown when sea-level rise overtakes the sediment

Wetzel, Andreas

65

Relationship between the boreal spring Hadley circulation and the summer precipitation in the Yangtze River valley  

E-Print Network [OSTI]

Relationship between the boreal spring Hadley circulation and the summer precipitation; accepted 22 May 2006; published 26 August 2006. [1] The connection between the boreal spring Hadley Hadley circulation and the summer precipitation in the Yangtze River valley, J. Geophys. Res., 111, D

66

Geology of the central part of the James River Valley, Mason County, Texas  

E-Print Network [OSTI]

(19/1) descr1bed certain features of the weathering found on the Precambrian gran1te of ths Llano region. PRTSI00RAPRT 0LINATE The central pert of the James River valley is located 1n a sem1-arid region of Texas, The annual precipitation...

Dannemiller, George David

2012-06-07T23:59:59.000Z

67

Hood River Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Hood River Electric Coop Hood River Electric Coop Place Oregon Utility Id 8830 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Irrigation Commercial Outdoor Lighting 100 watt HPS Light Lighting Outdoor Lighting 200 watt HPS Light Lighting Residential Residential Residential B Residential Residential Three Phase Residential Average Rates Residential: $0.0656/kWh Commercial: $0.0641/kWh Industrial: $0.0522/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

68

Salt River Project electric vehicle program  

SciTech Connect (OSTI)

Electric vehicles (EV) promise to be a driving force in the future of America. The quest for cleaner air and efforts to trim the nation's appetite for foreign oil are among the reasons why. America's EV future is rapidly approaching, with major automakers targeting EV mass production and sales before the end of the decade. This article describes the Salt River Project (SRP), a leader among electric utilities involved in EV research and development (R and D). R and D efforts are underway to plan and prepare for a significant number of EVs in SRP's service territory and to understand the associated recharging requirements for EVs.

Morrow, K.P.

1994-11-01T23:59:59.000Z

69

The Niobrara River Valley, a postglacial migration corridor and refugium of forest plants and animals in the grasslands of central North America  

Science Journals Connector (OSTI)

The Niobrara River Valley of northern Nebraska contains numerous bryophyte, vascular ... forests far to the east, north, and west than to other forests in the grasslands that surround the Valley. Some species are...

Robert B. Kaul; Gail E. Kantak; Steven P. Churchill

70

Cuivre River Electric - Residential Energy Efficiency Rebate Programs |  

Broader source: Energy.gov (indexed) [DOE]

Cuivre River Electric - Residential Energy Efficiency Rebate Cuivre River Electric - Residential Energy Efficiency Rebate Programs Cuivre River Electric - Residential Energy Efficiency Rebate Programs < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Geothermal Heat Pumps: Maximum of 10 tons for residential systems and 50 tons for commercial systems Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Water Heater: $50 Geothermal Heat Pumps: $750/ton Dual Fuel Air-source Heat Pumps: $150/ton Provider Cuivre River Electric Cuivre River Electric Cooperative, through the Take Control and Save program, offers rebates for cooperative members who purchase efficient geothermal and dual fuel heat pumps, and electric water heaters. Water

71

EIS-0506: Crooked River Valley Rehabilitation Project, Idaho County, Idaho  

Broader source: Energy.gov [DOE]

The U.S. Forest Service, with DOE’s Bonneville Power Administration (BPA) as a cooperating agency, is preparing an EIS that evaluates the potential environmental impacts of a proposal to improve fish habitat by restoring stream and floodplain functions, restoring instream fish habitat complexity, and improving water quality along approximately 2 miles of the Crooked River. BPA’s proposed action is to fund the project. Additional information is available at http://www.fs.fed.us/nepa/fs-usda-pop.php/?project=40648.

72

Black River Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Coop Coop Jump to: navigation, search Name Black River Electric Coop Place Missouri Utility Id 1775 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting MV 175 W Lighting Outdoor Lighting MV 250 W Lighting Outdoor Lighting MV 400 W Lighting Outdoor Lighting SLV 400 W Direct Lighting Outdoor Lighting SLV 400 W Flood Lighting Outdoor Lighting SVL 100 W Lighting Residential Residential Single Phase General Service Commercial Standard Single-Phase Commercial/Industrial Service Industrial

73

Peace River Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Peace River Electric Coop, Inc Peace River Electric Coop, Inc Jump to: navigation, search Name Peace River Electric Coop, Inc Place Florida Utility Id 14606 Utility Location Yes Ownership C NERC Location FRCC NERC FRCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Average Rates Residential: $0.1360/kWh Commercial: $0.1190/kWh Industrial: $0.2130/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Peace_River_Electric_Coop,_Inc&oldid=411342

74

Spoon River Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Spoon River Electric Coop, Inc Spoon River Electric Coop, Inc Jump to: navigation, search Name Spoon River Electric Coop, Inc Place Illinois Utility Id 17838 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential 1 (Single Phase) Residential Average Rates Residential: $0.1400/kWh Commercial: $0.1450/kWh Industrial: $0.0890/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Spoon_River_Electric_Coop,_Inc&oldid=411597"

75

Late quaternary geomorphology and geoarchaeology of a segment of the Central Mimbres River Valley, Grant County, New Mexico  

E-Print Network [OSTI]

Two terraces, a modem floodplain, and alluvial fans were identified along a segment of the central Mimbres River Valley in Grant County, New Mexico. The oldest terrace, T2, is composed of one major depositional unit (1) and is capped by a...

Fitch, Michael Anthony

2012-06-07T23:59:59.000Z

76

Jump River Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

River Electric Coop Inc River Electric Coop Inc Jump to: navigation, search Name Jump River Electric Coop Inc Place Wisconsin Utility Id 9922 Utility Location Yes Ownership C NERC Location MRO Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Dual Fuel Heat Commercial Dusk to Dawn Lighting- Unmetered Member Owned Lighting Dusk to Dawn Lighting- Unmetered Rental Lighting Electric Thermal Storage Heat Commercial Large Power Peak Alert- Single Phase Commercial Large Power Peak Alert- Three Phase Commercial Single Phase Residential Three Phase Small Commercial Three-Season Heat Commercial

77

West River Electric Assn Inc | Open Energy Information  

Open Energy Info (EERE)

River Electric Assn Inc River Electric Assn Inc Place South Dakota Utility Id 20401 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Heat - Residential Direct Wired Residential Electric Heat - Residential Submetered Residential Electric Heat- Commercial Direct Wired Commercial Electric Heat- Commercial Submetered Heat Credit Commercial Large Commercial > 250 kVA Commercial Large Commercial 51-250 kW Commercial Range Wells and Rural Load Ceters Commercial

78

Tongue River Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Tongue River Electric Coop Inc Tongue River Electric Coop Inc Jump to: navigation, search Name Tongue River Electric Coop Inc Place Montana Utility Id 19022 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service - Three Phase Commercial Irrigation Service Industrial Large Power Service Commercial Single Phase Service Residential Stock Water Pumping Service Industrial Street and Security Lighting - 175 watt HPS Lighting Street and Security Lighting - 250 Watt MV or 150 Watt HPS Lighting

79

Salmon River Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

River Electric Coop Inc River Electric Coop Inc Jump to: navigation, search Name Salmon River Electric Coop Inc Place Idaho Utility Id 16565 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Dusk to Dawn Lighting (Street Light) Service (200-400W) Lighting Dusk to Dawn Lighting (Street Light) Service (Less than 200 Watt) Lighting Irrigation -Large 30 KW or greater Commercial Irrigation -Large 30 KW or greater Short Term Commercial Irrigation -Small Less than 30 KW Commercial

80

Marias River Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Marias River Electric Coop Inc Marias River Electric Coop Inc Jump to: navigation, search Name Marias River Electric Coop Inc Place Montana Utility Id 11643 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Industrial Irrigation Industrial Large Power Industrial Non-Domestic (Seasonal) Commercial Residential - Farm Residential Street and Security Light - 100 Watt HPS Lighting Street and Security Light - 150 Watt HPS Lighting Street and Security Light - 250 Watt HPS Lighting Average Rates

Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Cuivre River Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Cuivre River Electric Coop Inc Cuivre River Electric Coop Inc Jump to: navigation, search Name Cuivre River Electric Coop Inc Place Missouri Utility Id 4675 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Multi-Phase Over 75 kW Commercial Multi-Phase Over 75 kW w/ 60% Load Factor Commercial Commercial Multi-Phase Under 75 kW Commercial Commercial Single-Phase Commercial General Outdoor Lighting w/ Dedicated Transformer Lighting General Outdoor Lighting w/ Existing Transformer Lighting

82

Lost River Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

River Electric Coop Inc River Electric Coop Inc Jump to: navigation, search Name Lost River Electric Coop Inc Place Idaho Utility Id 11211 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Controlled Outdoor Lighting Lighting Commercial Space Heating Service Commercial Commercial Stock Pump Service Commercial Commercial, School, Church and Public Buildings Commercial Farm Stock Pump Service Commercial Farm and Home Controlled Outdoor Lighting Lighting Farm and Home Service Commercial

83

Broad River Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

River Electric Coop, Inc River Electric Coop, Inc Jump to: navigation, search Name Broad River Electric Coop, Inc Place South Carolina Utility Id 2212 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes ISO Other Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Net Metering Residential Single Phase Residential Net Metering Residential Three Phase Residential Pre-Paid Residential Service Single-Phase Residential Pre-Paid Residential Service Three-Phase Residential Rate Code 14, 4Lots Per Light Single-Phase Lighting

84

A macroscopic technological perspective on lithic production from the Early to Late Pleistocene in the Hanshui River Valley, central China  

Science Journals Connector (OSTI)

Abstract The nature and variability of Chinese Paleolithic culture remain unclear because the method of studying lithic industries has been essentially typological, and few regions have been intensively researched. A technological and techno-functional methodology provides a new perspective for exploring the cognitive modes of hominids and interpreting the intra and inter-regional homogeneity and variability of Paleolithic cultures. Over the last few decades, numerous Paleolithic sites with stone artifacts were excavated in the Hanshui River Valley. Based on a new methodology and recent discoveries, this paper reviews the Paleolithic sites of the Hanshui River Valley and studies representative industries to investigate regional lithic production and human behaviors. In terms of operative schemes, débitage and façonnage coexisted at nearly all sites and showed continuity and stability throughout the Pleistocene. For débitage, the Type C was present in nearly all sites. For façonnage, operative scheme 1 (unifacially-knapped on matrix of simple bevel) was predominant. The operative schemes of both débitage and façonnage were extremely similar in that great emphasis was placed on the selection of natural technical characters rather than on intentional preparation. For inter-regional variability, the percentage of bifaces was much lower (Valley and those of the West. Regarding intra-regional variability, the technological and techno-functional method provides a new perspective for interpreting the variability of hominids' techno-cognitive modes during lithic production. More extensive dating analysis would enable the construction of a more detailed chronological sequence of the Hanshui River Valley.

Yinghua Li; Xuefeng Sun; Erika Bodin

2014-01-01T23:59:59.000Z

85

Sustainable Aspects of Electricity Consumption in Klang Valley  

Science Journals Connector (OSTI)

Abstract Recently, energy crisis is considered a global issue and the demand for an urgent solution seems inevitable. Residential buildings consume nearly one third of Total National Energy Consumption. Studies show that a significant part of energy use can be avoided through occupants’ awareness about energy consumption. In order to discover and understand energy use of Malaysian residents, this paper has identified the residential electricity use behavior and its determinants by an empirical study. The results showed that out of the six introduced \\{IVs\\} of the regression model to predict the electricity consumption behavior only three predictors can significantly contribute to the model.

Nehzat Jalalkamali; Mohamed Yusoff Abbas

2014-01-01T23:59:59.000Z

86

A Feasibility Study of Sustainable Distributed Generation Technologies to Improve the electrical System on the Duck Valley Reservation  

SciTech Connect (OSTI)

A range of sustainable energy options were assessed for feasibility in addressing chronic electric grid reliability problems at Duck Valley IR. Wind power and building energy efficiency were determined to have the most merit, with the Duck Valley Tribes now well positioned to pursue large scale wind power development for on- and off-reservation sales.

Herman Atkins, Shoshone-Paiute; Mark Hannifan, New West Technologies

2005-06-30T23:59:59.000Z

87

West Valley-derived radionuclides in the Niagara river area of Lake Ontario  

Science Journals Connector (OSTI)

The presence of West Valley-derived radionuclides in the densely-populated Niagara...137Cs profile in a 210Pb-dated Lake Ontario sediment core is consistent with the pattern of West Valley discharges to the local...

S. R. Joshi

1988-01-01T23:59:59.000Z

88

Little River Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

River Electric Coop Inc River Electric Coop Inc Place South Carolina Utility Id 11019 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Service-Commercial Commercial Large Power Service Industrial Outdoor Lighting Flood Light 1000 W Lighting Outdoor Lighting Flood Light 250 W Lighting Outdoor Lighting Flood Light 400 W Lighting Outdoor Lighting HPS 100 W Lighting Outdoor Lighting MV 175 W Lighting Residential Residential Residential Energy Conservation Residential Average Rates

89

Salt River Electric Coop Corp | Open Energy Information  

Open Energy Info (EERE)

Salt River Electric Coop Corp Salt River Electric Coop Corp Place Kentucky Utility Id 16587 Utility Location Yes Ownership C NERC Location RFC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 (Decorative Underground) HPS 48 kWh Outdoor Lighting Lighting 100 Watt HPS 48 kWh Outdoor Lighting Lighting 175 Watt MV 75 kWh Outdoor Lighting Lighting 175 Wattage (Underground) MV 75 kWh (without pole) Lighting 250 Watt HPS 104 kWh Outdoor Lighting Lighting 400 Watt HPS 165 kWh Outdoor Lighting Lighting Cogeneration and small power production power purchase rate schedule less

90

White River Electric Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

River Electric Assn, Inc River Electric Assn, Inc Place Colorado Utility Id 20576 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule I-1- Irrigation Commercial Schedule LC- Large Commercial Commercial Schedule LP Trans 5-10 MW Industrial Schedule LP-P- Large Power Primary Industrial Schedule LP-S- Large Power Secondary Industrial Schedule LP-T Industrial Power L-6 >30 MW Industrial Schedule LP-T-L5- 10-30 MW Industrial Schedule R- General Service Residential Schedule SC- Small Commercial Commercial

91

Black River Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop, Inc Electric Coop, Inc Place South Carolina Utility Id 1763 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Power Industrial Residential Residential Small Commercial Commercial Average Rates Residential: $0.1040/kWh Commercial: $0.1090/kWh Industrial: $0.0750/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Black_River_Electric_Coop,_Inc&oldid=409055" Categories: EIA Utility Companies and Aliases

92

Pre-and post-Missoula flood geomorphology of the Pre-Holocene ancestral Columbia River Valley in the Portland forearc basin, Oregon and Washington, USA  

Science Journals Connector (OSTI)

Geomorphic landscape development in the pre-Holocene ancestral Columbia River Valley (1–5 km width) in the Portland forearc basin (~ 50 km length) is established from depositional sequences, which pre-date and post-date the glacial Lake Missoula floods. The sequences are observed from selected borehole logs (150 in number) and intact terrace soil profiles (56 in number) in backhoe trenches. Four sequences are widespread, including (1) a vertically aggraded Pleistocene alluvial plain, (2) a steep sided valley that is incised (125–150 m) into the Pleistocene gravel plain, (3) Missoula flood terraces (19–13 ka) abandoned on the sides of the ancestral valley, and (4) Holocene flooding surfaces (11–8 ka) buried at 70–30 m depth in the axial Columbia River Valley. Weathering rims and cementation are used for relative dating of incised Pleistocene gravel units. Soil development on the abandoned Missoula flood terraces is directly related to terrace deposit lithology, including thin Bw horizons in gravel, irregular podzols in sand, and multiple Bw horizons in thicker loess-capping layers. Radiocarbon dating of sand and mud alluvium in the submerged axial valley ties Holocene flooding surfaces to a local sea level curve and establishes Holocene sedimentation rates of 1.5 cm year? 1 during 11–9 ka and 0.3 cm year? 1 during 9–0 ka. The sequences of Pleistocene gravel aggradation, river valley incision, cataclysmic Missoula flooding, and Holocene submergence yield complex geomorphic landscapes in the ancestral lower Columbia River Valley.

Curt D. Peterson; Rick Minor; Gary L. Peterson; Edward B. Gates

2011-01-01T23:59:59.000Z

93

Sun River Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Coop, Inc Coop, Inc Jump to: navigation, search Name Sun River Electric Coop, Inc Place Montana Utility Id 18401 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Budget Irrigation - Single Phase Industrial Budget Irrigation - Three Phase Industrial Electronically Read Irrigation- Single Phase Commercial Electronically Read Irrigation- Three Phase Commercial General Service - Large Commercial Commercial General Service - Small Commercial Commercial General Service - Transmission Industrial

94

A History of Irrigation in the Arkansas River Valley in Western Kansas, 1880-1910  

E-Print Network [OSTI]

. C. Introduction of the gasoline engine. D. Pumping Plant boom in the Arkansas Valley, 190^-1910. VI. The Politics of Irrigation 92 A. Irrigation as a public issue. B. Organization of Kansas irrigation interests. C. The demands of the Arkansas... properties of the tertiary mantle, there is very little run-off from the lands adjacent to the Arkansas and consequently no tributaries enter the Arkansas within the High 2Lakin Herald, September 27, 1881} Bruce F. Latta, Geology and Ground...

Sorensen, Conner

1968-01-01T23:59:59.000Z

95

Late Glacial and early Holocene environment in the middle Lahn river valley (Hessen, central-west Germany) and the local impact of early Mesolithic people—pollen and macrofossil evidence  

Science Journals Connector (OSTI)

The Late Glacial to early Holocene river valley landscape of the middle Lahntal in Hessen, central-west Germany, is reconstructed by means of pollen...14C dating combined with pollen, macrofossil and geomorpholog...

Johanna A. A. Bos; Ralf Urz

2003-06-01T23:59:59.000Z

96

West Valley Plutonium and Americium-241 in Lake Ontario sediments off the mouth of Niagara River  

Science Journals Connector (OSTI)

Recently deposited fine-grained sediments in Lake Ontario off the mouth of Niagara River contain highly toxic238Pu,239,240pu, and241Pu (241Am) from global fallout as well as from low level releases of these radio...

S. R. Joshi

1988-11-01T23:59:59.000Z

97

White River Falls Fish Passage Project, Tygh Valley, Oregon : Final Technical Report, Volume I..  

SciTech Connect (OSTI)

Studies were conducted to describe current habitat conditions in the White River basin above White River Falls and to evaluate the potential to produce anadromous fish. An inventory of spawning and rearing habitats, irrigation diversions, and enhancement opportunities for anadromous fish in the White River drainage was conducted. Survival of juvenile fish at White River Falls was estimated by releasing juvenile chinook and steelhead above the falls during high and low flow periods and recapturing them below the falls in 1983 and 1984. Four alternatives to provide upstream passage for adult salmon and steelhead were developed to a predesign level. The cost of adult passage and the estimated run size of anadromous fish were used to determine the benefit/cost ratio of the preferred alternative. Possible effects of the introduction of anadromous fish on resident fish and on nearby Oak Springs Hatchery were evaluated. This included an inventory of resident species, a genetic study of native rainbow, and the identification of fish diseases in the basin. 28 figs., 23 tabs.

Oregon. Dept. of Fish and Wildlife; Mount Hood National Forest (Or.)

1985-06-01T23:59:59.000Z

98

Quantifying Activated Floodplains on a Lowland Regulated River: Its Application to Floodplain Restoration in the Sacramento Valley  

E-Print Network [OSTI]

by Philip B. Williams, Elizabeth Andrews, Jeff J. Opperman,Valley Philip B. Williams 1 , Elizabeth Andrews 1 , Jeff J.

Williams, Philip B.; Andrews, Elizabeth; Opperman, Jeff J.; Bozkurt, Setenay; Moyle, Peter B.

2009-01-01T23:59:59.000Z

99

Geothermal resource analysis in the Big Wood River Valley, Blaine County, Idaho  

SciTech Connect (OSTI)

A geochemical investigation of both thermal and nonthermal springs in the Wood River area was conducted to determine possible flowpaths, ages of the waters, and environmental implications. Seven thermal springs and five cold springs were sampled for major cations and anions along with arsenic, lithium, boron, deuterium and oxygen-18. Eight rocks, representative of outcrops at or near the thermal occurrences were sampled and analyzed for major and trace elements. The Wood River area hydrothermal springs are dilute Na-HCO{sub 3}-SiO{sub 2} type waters. Calculated reservoir temperatures do not exceed 100{degree}C, except for Magic Hot Springs Landing well (108{degree}C with Mg correction). The isotope data suggest that the thermal water is not derived from present-day precipitation, but from precipitation when the climate was much colder and wetter. Intrusive igneous rocks of the Idaho batholith have reacted with the hydrothermal fluids at depth. The co-location of the thermal springs and mining districts suggests that the structures acting as conduits for the present-day hydrothermal fluids were also active during the emplacement of the ore bodies.

Street, L.V.

1990-10-01T23:59:59.000Z

100

Resistivity studies of the Imperial Valley geothermal area, California |  

Open Energy Info (EERE)

Resistivity studies of the Imperial Valley geothermal area, California Resistivity studies of the Imperial Valley geothermal area, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Resistivity studies of the Imperial Valley geothermal area, California Abstract Electrical resistivity has been employed for mapping thehnperial Valley of California as part of a multi-disciplinaryapproach to assess its geothermal potential. Vertical and lateralresistivity changes were determined from Schlumherger deptilsoundings with effective probing depths up to 8000 ft.Chie/ conclusions were: (1) Known geothermal anomaliesappear as residual resistivity lows superimposed on the regionalgradient which decreases northwest.ward from the southeastcorner of the Imperial Valley, near the Colorado River, tovalues about two orders of magnitude lower at the Salton

Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Imperial Valley IMPERIAL VALLEY  

E-Print Network [OSTI]

2013­2014 Bulletin Imperial Valley Campus #12;BULLETIN THE IMPERIAL VALLEY CAMPUS 2013-2014 SAN of the Imperial Valley Campus of San Diego State University. Its publication coincides with the campus' 54 years of providing higher education to the students of Imperial Valley. During this time we have evolved from

Gallo, Linda C.

102

Interdecadal Connection Between Artic Temperature and Summer Precipitation Over the Yangtze River Valley in the CMIP5 Historical Simulations  

SciTech Connect (OSTI)

This study assesses the ability of the Phase 5 Coupled Model Intercomparison Project (CMIP5) simulations in capturing the interdecadal precipitation enhancement over the Yangtze River valley (YRV) and investigates the contributions of Arctic warming to the interdecadal variability of the East Asian summer monsoon rainfall. Six CMIP5 historical simulations including models from Canada (CCCma), China (BCC), Germany (MPI-M), Japan (MRI), United Kingdom (MOHC), and United States (NCAR) are used. The NCEP/NCAR reanalysis and observed precipitation are also used for comparison. Among the six CMIP5 simulations, only CCCma can approximately simulate the enhancement of interdecadal summer precipitation over the YRV in 1990-2005 relative to 1960-1975, and the relationships between the summer precipitation with surface temperature (Ts), the 850hPa winds, and 500hPa height field (H500), and between Ts and H500 using regression, correlation, and SVD analyses. It is found that CCCma can reasonably simulate the interdecadal surface warming over the boreal mid-to high latitudes and the Arctic in winter, spring and summer. The summer Baikal blocking appears to be the bridge that links the winter and spring surface warming over the mid-to high latitude and Arctic with the enhancement of summer precipitation over the YRV. Models that missed some or all of these relationships found in CCCma and the reanalysis failed to simulate the interdecadal enhancement of precipitation over the YRV. This points to the importance of high latitude and Arctic processes on interdecadal variability of the East Asian summer monsoon and the challenge for global climate models to correctly simulate the linkages.

Li, Yuefeng; Leung, Lai-Yung R.; Xiao, Ziniu; Wei, Min; Li, Qingquan

2013-10-01T23:59:59.000Z

103

DOE/EIS-0183 Record of Decision for the Electrical Interconnection of the Kittitas Valley Wind Project (09/04/09)  

Broader source: Energy.gov (indexed) [DOE]

Kittitas Valley Wind Project Kittitas Valley Wind Project September 2009 B o n n e v i l l e P o w e r A d m i n i s t r a t i o n 1 INTRODUCTION The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of up to 108 megawatts (MW) of power to be generated by the proposed Kittitas Valley Wind Project (Wind Project) into the Federal Columbia River Transmission System (FCRTS). Sagebrush Power Partners, LLC (Sagebrush) has received authorization from the Washington Energy Facility Site Evaluation Council (EFSEC) to construct and operate the proposed Wind Project in Kittitas County, Washington, and has requested interconnection to the FCRTS on BPA's Columbia-Covington 230-kV transmission line in the vicinity of Ellensburg, Washington. BPA will construct a new substation to accommodate this additional power into the

104

Schlumberger soundings in the Upper Raft River and Raft River...  

Open Energy Info (EERE)

Schlumberger soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Abstract In 1975, the U.S. Geological Survey made seventy Schlumberger resistivity...

105

EIS-0011: New Melones 230-kV Electrical Transmission Line, Central Valley Project, California  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's Western Area Power Administration prepared this statement to evaluate the environmental impacts of proposed development of an electrical transmission system for the New Melones Power Plant.

106

Quantifying Activated Floodplains on a Lowland Regulated River: Its Application to Floodplain Restoration in the Sacramento Valley  

E-Print Network [OSTI]

L. 2001a. California's Yolo Bypass: evidence that floodSacramento River and the Yolo Bypass using stream gaugechanges. (3) Within the Yolo Bypass, controlled releases

Williams, Philip B.; Andrews, Elizabeth; Opperman, Jeff J.; Bozkurt, Setenay; Moyle, Peter B.

2009-01-01T23:59:59.000Z

107

OPTIMIZING GEO-CELLULAR RESERVOIR MODELING IN A BRAIDED RIVER INCISED VALLEY FILL: POSTLE FIELD, TEXAS COUNTY, OKLAHOMA  

E-Print Network [OSTI]

and simulation are a necessary part of any enhanced oil recovery program. Today there have been many advances fill sandstones. EOR practices, in the form water flood and CO2 miscible flooding in the field have led to the need for reservoir modeling and simulation in order to increase recovery. Incised valley fills

108

Evaluation of the Emission, Transport, and Deposition of Mercury, Arsenic, and Fine Particulate Matter From Coal-Based Power Plants in the Ohio River Valley  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kevin crist Kevin crist Principal Investigator Ohio University Research and Technology Center Athens, OH 45701 740-593-4751 cristk@ohiou.edu Environmental and Water Resources Evaluation of thE Emission, transport, and dEposition of mErcury, arsEnic, and finE particulatE mattEr from coal-BasEd powEr plants in thE ohio rivEr vallEy rEgion Background The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has established an aggressive research initiative to address the technical and scientific issues surrounding the impact of coal-based power systems on ambient levels of fine particulate matter (PM 2.5 ), nitrogen oxides (NO X ), mercury/air toxics, and acid gases. Regulatory drivers such as the 1990 Clean Air Act Amendments, the 1997 revised National Ambient Air Quality Standards, and the 2005 Clean Air

109

What explains the increased utilization of Powder River Basin coal in electric power generation?  

SciTech Connect (OSTI)

This article examines possible explanations for increased utilization of Powder River Basin (PRB) coal in electric power generation that occurred over the last two decades. Did more stringent environmental policy motivate electric power plants to switch to less polluting fuels? Or, did greater use of PRB coal occur because relative price changes altered input markets in favor of this fuel. A key finding is that factors other than environmental policy such as the decline in railroad freight rates together with elastic demand by power plants were major contributors to the increased utilization of this fuel.

Gerking, S.; Hamilton, S.F. [University of Central Florida, Orlando, FL (United States)

2008-11-15T23:59:59.000Z

110

Rift valley  

Science Journals Connector (OSTI)

Valleys of subsidence with long steep parallel walls,” as originally defined...J. W. Gregory (1894). rift valleys are evidently the geomorphic equivalents of or...Rift Valley Structure..., Vol. V). Quennell be...

Rhodes W. Fairbridge

1968-01-01T23:59:59.000Z

111

Why Nocturnal Long-Duration Rainfall Presents an Eastward-Delayed Diurnal Phase of Rainfall down the Yangtze River Valley  

Science Journals Connector (OSTI)

Hourly observational records and 6-hourly reanalysis data were used to investigate the influences of large-scale forcings on the diurnal variation of summer rainfall along the Yangtze River (YR). The results show that long-duration (more than six ...

Haoming Chen; Rucong Yu; Jian Li; Weihua Yuan; Tianjun Zhou

2010-02-01T23:59:59.000Z

112

EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION  

SciTech Connect (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2005-04-02T23:59:59.000Z

113

EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION  

SciTech Connect (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley Region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley Region.

Kevin Crist

2003-10-02T23:59:59.000Z

114

Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region  

SciTech Connect (OSTI)

As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2006-04-02T23:59:59.000Z

115

EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION  

SciTech Connect (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2004-10-02T23:59:59.000Z

116

Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region  

SciTech Connect (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2005-10-02T23:59:59.000Z

117

EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION  

SciTech Connect (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc. (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal-fired power plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley Region, operated independently of this project. These sites may include (1) the DOE National Energy Technology Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2004-04-02T23:59:59.000Z

118

Fluid flow in the resurgent dome of Long Valley Caldera: implications from thermal data and deep electrical sounding  

Science Journals Connector (OSTI)

Temperatures of 100°C are measured at 3 km depth in a well located on the resurgent dome in the center of Long Valley Caldera, California, despite an assumed >800°C magma chamber at 6–8 km depth. Local downflow of cold meteoric water as a process for cooling the resurgent dome is ruled out by a Peclét-number analysis of temperature logs. These analyses reveal zones with fluid circulation at the upper and lower boundaries of the Bishop Tuff, and an upflow zone in the metasedimentary rocks. Vertical Darcy velocities range from 10 to 70 cm a?1. A 21-km-long geoelectrical profile across the caldera provides resistivity values to the order of 100 to >103 ?m down to a depth of 6 km, as well as variations of self-potential. Interpretation of the electrical data with respect to hydrothermal fluid movement confirms that there is no downflow beneath the resurgent dome. To explain the unexpectedly low temperatures in the resurgent dome, we challenge the common view that the caldera as a whole is a regime of high temperatures and the resurgent dome is a local cold anomaly. Instead, we suggest that the caldera was cooled to normal thermal conditions by vigorous hydrothermal activity in the past, and that a present-day hot water flow system is responsible for local hot anomalies, such as Hot Creek and the area of the Casa Diablo geothermal power plant. The source of hot water has been associated with recent shallow intrusions into the West Moat. The focus of planning for future power plants should be to locate this present-day flow system instead of relying on heat from the old magma chamber.

Daniel F.C Pribnow; Claudia Schütze; Suzanne J Hurter; Christina Flechsig; John H Sass

2003-01-01T23:59:59.000Z

119

Union Valley  

Broader source: Energy.gov [DOE]

This document explains the cleanup activities and any use limitations for the land surrounding Union Valley.

120

Imperial Valley Campus IMPERIAL VALLEY  

E-Print Network [OSTI]

Bulletin Imperial Valley Campus 2012­2013 #12;#12;BULLETIN THE IMPERIAL VALLEY CAMPUS 2012-2013 SAN 2012-2013 It is with great pleasure that we present the 2012- 2013 Bulletin of the Imperial Valley higher education to the students of Imperial Valley. During this time we have evolved from an institution

Gallo, Linda C.

Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Valley evolution  

Science Journals Connector (OSTI)

The long profile of a stream is not identical with that of its valley since the former depends on the loops ... . The stream in its controls all the valley-forming processes although a direct influence is ... f...

Otto Fränzle

1968-01-01T23:59:59.000Z

122

Alpine Valley  

Science Journals Connector (OSTI)

The Alpine Valley (Vallis Alpes) is a great fault ... Alps Mountains. It is about 80 miles long and up to 7 miles wide. It ... runs down most of the center of the valley. Be sure that you show this exceptional...

Don Spain

2009-01-01T23:59:59.000Z

123

COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5)DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY  

SciTech Connect (OSTI)

Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), with a goal of characterizing the ambient fine particulate in this region, including examination of urban/rural variations, correlations between PM{sub 2.5} and gaseous pollutants, and influences of artifacts on PM{sub 2.5} measurements in this region. Two urban and two rural monitoring sites were included in the UORVP. The four sites selected were all part of existing local and/or state air quality programs. One urban site was located in the Lawrenceville section of Pittsburgh, Pennsylvania at an air quality monitoring station operated by the Allegheny County Health Department. A second urban site was collocated at a West Virginia Division of Environmental Protection (WVDEP) monitoring station at the airport in Morgantown, West Virginia. One rural site was collocated with the Pennsylvania Department of Environmental Protection (PADEP) at a former NARSTO-Northeast site near Holbrook, Greene County, Pennsylvania. The other rural site was collocated at a site operated by the Ohio Environmental Protection Agency (OHEPA) and managed by the Ohio State Forestry Division in Gifford State Forest near Athens, Ohio. Analysis of data collected to date show that: (1) the median mass and composition of PM{sub 2.5} are similar for both Lawrenceville and Holbrook, suggesting that the sites are impacted more by the regional than by local effects; (2) there was no significant differences in the particulate trending and levels observed at both sites within seasons; (3) sulfate levels predominate at both sites, and (4) PM{sub 2.5} and PM{sub 10} mass concentration levels are consistently higher in summer than in winter, with intermediate levels being observed in the fall and spring. Data analysis focusing on relating the aerometric measurements to local and regional scale emissions of sources of primary and secondary fine particles using receptor-based air quality models will follow.

Robinson P. Khosah; John P. Shimshock

2003-04-30T23:59:59.000Z

124

Hoopa Valley Small Scale Hydroelectric Feasibility Project  

SciTech Connect (OSTI)

This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

Curtis Miller

2009-03-22T23:59:59.000Z

125

The History of the Great Northwest European Rivers During the Past Three Million Years [and Discussion  

Science Journals Connector (OSTI)

...material accumulated in the river valleys as gravel and sand deposits...The deeply incised modern valley system has developed largely...Somme River streams Thames River valleys Weser River Western Europe 1987...Res. Cambridge United Kingdom West R. G. editor Bowen D. Q...

1988-01-01T23:59:59.000Z

126

Case Study - Sioux Valley Energy  

Broader source: Energy.gov (indexed) [DOE]

Sioux Valley Energy Sioux Valley Energy SVE's smart meters report consumption levels every 30 minutes, which enables SVE to bill customers for critical peak events that occur on particular days and during particular time periods. This detailed billing cannot be done with conventional meters. Critical Peak Pricing Lowers Peak Demands and Electric Bills in South Dakota and Minnesota Sioux Valley Energy (SVE) is an electric cooperative serving approximately 21,000 customers in seven counties in South Dakota and Minnesota. SVE's Smart Grid Investment Grant (SGIG) Advanced Metering Infrastructure Project is a customer-focused initiative to assist customers with better managing their electricity consumption and associated costs, and to help SVE realize operational efficiencies and

127

Exploring the Raft River geothermal area, Idaho, with the dc resistivity  

Open Energy Info (EERE)

Exploring the Raft River geothermal area, Idaho, with the dc resistivity Exploring the Raft River geothermal area, Idaho, with the dc resistivity method (Abstract) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Exploring the Raft River geothermal area, Idaho, with the dc resistivity method (Abstract) Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY; GEOTHERMAL WELLS; KGRA; TEMPERATURE MEASUREMENT; ELECTRICAL PROPERTIES; EXPLORATION; GEOPHYSICAL SURVEYS; NORTH AMERICA; PACIFIC NORTHWEST REGION; PHYSICAL PROPERTIES; USA; WELLS Author(s): Zohdy, A.A.R.; Jackson, D.B.; Bisdorf, R.J. Published: Geophysics, 10/12/1975 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article

128

South Valley Compliance Agreement Summary  

Broader source: Energy.gov (indexed) [DOE]

South Valley South Valley Agreement Name South Valley Superfund Site Interagency Agreement State New Mexico Agreement Type Compliance Agreement Legal Driver(s) CERCLA Scope Summary Interagency Agreement with the U.S. Air Force for payment of costs associated with the remediation of two operable units (the facility and San Jose 6) at the South Valley Superfund Site. Parties DOE; U.S. Air Force Date 9/26/1990 SCOPE * Set forth the actions required of the USAF and DOE to fulfill their respective responsibilities pursuant to the Settlement Agreement between DOE, USAF, and General Electric Company (8/29/1990). * Establish mechanism by which DOE will transfer, to a fund managed by the USAF, its share of the costs set forth in the Settlement Agreement. * Set forth each party's responsibilities and respective share of costs.

129

Wabash Valley Power Association- Residential Energy Efficiency Program (Illinois)  

Broader source: Energy.gov [DOE]

Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and...

130

New Evidence On The Hydrothermal System In Long Valley Caldera...  

Open Energy Info (EERE)

Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Jump to: navigation,...

131

Tariff-based analysis of commercial building electricity prices  

E-Print Network [OSTI]

Coop Inc Beauregard Electric Coop Inc Entergy ArkansasInc Entergy Louisiana Inc Magic Valley Electric Coop Inc

Coughlin, Katie M.; Bolduc, Chris A.; Rosenquist, Greg J.; Van Buskirk, Robert D.; McMahon, James E.

2008-01-01T23:59:59.000Z

132

Review of Electrical System Configuration Management and Design Change Control at the Savannah River Site, Waste Solidification Building Project, July 2011  

Broader source: Energy.gov (indexed) [DOE]

Independent Review of Independent Review of Electrical System Configuration Management and Design Change Control at the Savannah River Site, Waste Solidification Building Project July 2011 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ......................................................................................................................................1 2.0 Scope .........................................................................................................................................1 3.0 Background ...............................................................................................................................2

133

Review of Electrical System Configuration Management and Design Change Control at the Savannah River Site, Waste Solidification Building Project, July 2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Independent Review of Independent Review of Electrical System Configuration Management and Design Change Control at the Savannah River Site, Waste Solidification Building Project July 2011 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ......................................................................................................................................1 2.0 Scope .........................................................................................................................................1 3.0 Background ...............................................................................................................................2

134

Ridge and valley topography  

Science Journals Connector (OSTI)

“Viewed empirically, the ridge and valley province is a lowland (an assemblage of valley floors) surmounted by long, narrow, even-topped mountain ridges. Either ... the lowlands are disconnected or absent. The valley

Rhodes W. Fairbridge

1968-01-01T23:59:59.000Z

135

Simulation analysis of the unconfined aquifer, Raft River Geothermal...  

Open Energy Info (EERE)

the southern Raft River Valley that includes the known Geothermal Resource Area near Bridge, Idaho, was modelled numerically to evaluate the hydrodynamics of the unconfined...

136

The Electric Power Research Institute  

Science Journals Connector (OSTI)

...program for the elec-tric power industry. EPRI selects and...systems-Tennessee Valley Authority and the Bonneville Power Administration. About 150 non-member utilities...Tennessee Valley Au-thority and Bonneville Power Adminis-tration, no...

Chauncey Starr

1983-03-11T23:59:59.000Z

137

West Valley Demonstration Project  

Broader source: Energy.gov [DOE]

West Valley Demonstration Project compliance agreements, along with summaries of the agreements, can be viewed here.

138

Imperial Valley Campus Bulletin  

E-Print Network [OSTI]

Imperial Valley Campus Bulletin 2011­2012 #12;#12;BULLETIN THE IMPERIAL VALLEY CAMPUS 2011-2012 SAN 2011-2012 It is with great pleasure that we present the 2011- 2012 Bulletin of the Imperial Valley higher education to the students of Imperial Valley. During this time we have evolved from an institution

Gallo, Linda C.

139

West Valley  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Facility Nuclear Facility Coalition on West Valley Nuclear Wastes PO Box 603 Springville NY 14141 WV-DigItUp@roadrunner.com Joanne Hameister CFMT (Concentrator Feed Make-up Tank) Packaged 13'x14'x19' 177.5 tons MFHT (Melter Feed Hold Tank) Packaged 13'x14'x16' 152.5 tons WIR Shipments pending to LLW facility MELTER 10'x10'x10' Packaged: 14'x13'x13' 159 tons 4,570 Curies Waste Categories High-Level Waste Based on source * Nuclear Fuel * Reprocessing * TRU Low-Level Waste Not Low Risk Complex classification based on * Nuclide inventory * Half-life(s) * Quantity * Decay products Background Radiation 1978 - average was 100 mRem per person 2011 - BRC* estimate 620 mRem per person Naturally occurring radioactive elements Additions accumulate - from fall-out,

140

West Valley  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Facility Nuclear Facility Coalition on West Valley Nuclear Wastes PO Box 603 Springville NY 14141 WV-DigItUp@roadrunner.com Joanne Hameister CFMT (Concentrator Feed Make-up Tank) Packaged 13'x14'x19' 177.5 tons MFHT (Melter Feed Hold Tank) Packaged 13'x14'x16' 152.5 tons WIR Shipments pending to LLW facility MELTER 10'x10'x10' Packaged: 14'x13'x13' 159 tons 4,570 Curies Waste Categories High-Level Waste Based on source * Nuclear Fuel * Reprocessing * TRU Low-Level Waste Not Low Risk Complex classification based on * Nuclide inventory * Half-life(s) * Quantity * Decay products Background Radiation 1978 - average was 100 mRem per person 2011 - BRC* estimate 620 mRem per person Naturally occurring radioactive elements Additions accumulate - from fall-out,

Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Quantum pumping of valley current in strain engineered graphene  

SciTech Connect (OSTI)

We studied the generation of valley dependent current by adiabatic quantum pumping in monolayer graphene in the presence of electric potential barriers, ferromagnetic field and strain. The pumped currents in the two valleys have same magnitudes and opposite directions; thus, a pure valley current is generated. The oscillation of the pumped pure valley current is determined by the Fabry-Perot resonances formed in the structure. In our calculation, the pumped pure valley current can be as high as 50?nA, which is measurable using present technologies. The proposed device is useful for the development of graphene valleytronic devices.

Wang, Jing [Department of Physics, University of Science and Technology of China, Hefei (China) [Department of Physics, University of Science and Technology of China, Hefei (China); Department of Physics and Materials Science and Centre for Functional Photonics, City University of Hong Kong, Hong Kong and City University of Hong Kong Shenzhen Research Institute, Shenzhen (China); Chan, K. S., E-mail: apkschan@cityu.edu.hk, E-mail: zjlin@ustc.edu.cn [Department of Physics and Materials Science and Centre for Functional Photonics, City University of Hong Kong, Hong Kong and City University of Hong Kong Shenzhen Research Institute, Shenzhen (China); Lin, Zijing, E-mail: apkschan@cityu.edu.hk, E-mail: zjlin@ustc.edu.cn [Department of Physics, University of Science and Technology of China, Hefei (China)] [Department of Physics, University of Science and Technology of China, Hefei (China)

2014-01-06T23:59:59.000Z

142

GEO Imperial Valley activities  

SciTech Connect (OSTI)

Geothermal Resources International, Inc. (GEO) in San Mateo, California, and PacifiCorp Credit, a subsidiary of PacifiCorp in Portland, Oregon, announced that since July 1987, the company has raised about $21 million to fund the initial development of GEO's East Mesa project. GEO will use a portion of the funds to meet its commitment to share in the cost of a $50 million, 230-kilovolt transmission line. The line will carry electricity generated from geothermal power plants in the Imperial Valley to a Southern California Edison substation in Riverside County, California. In September 1987, two GEO geothermal wells at East Mesa were completed, and GEO was drilling its third and fourth wells in the field. Test data results from these wells will be analyzed to decide whether GEO will construct a dual-flash or binary power plant. GEO has the geothermal rights on about 300,000 acres in five western states. In addition to its operations and development projects in The Geysers and the Imperial Valley, the company is continuing exploration projects on the flanks of the Newberry Crater in Central Oregon and in Hokkaido, Japan. GEO also has an international geotechnical service group in the United Kingdom, GeoScience Ltd., which provides geotechnical services to clients around the world and to the company's geothermal operations.

Not Available

1987-07-01T23:59:59.000Z

143

Mohave Electric Cooperative- Heat Pump Rebate Program  

Broader source: Energy.gov [DOE]

Mohave Electric Cooperative is a non-profit that serves the communities of Bullhead City, Fort Mohave, Mohave Valley, Wikieup, Hackberry and Peach Springs. Mohave Electric Cooperative offers...

144

New Imperial Valley power line  

SciTech Connect (OSTI)

The Imperial Irrigation District placed its new 104-mile, 230kV transmission line in service in the Imperial Valley on September 14, 1988. The power line, with a rated capacity of 600 megawatts, transmits electricity generated at geothermal power plants. The transmission line was financed by 14 geothermal companies, whose participation was based on the amount of line-capacity they expect to use.

Not Available

1988-12-01T23:59:59.000Z

145

Valley Forge Corporate Center  

Broader source: Energy.gov (indexed) [DOE]

55 Jefferson Ave. 55 Jefferson Ave. Valley Forge Corporate Center Norristown, PA 19403-2497 Pauline Foley Assistant General Counsel 610.666.8248 | Fax - 610.666.8211 foleyp@pjm.com October 30, 2013 Via Electronic Mail: juliea.smith@hq.doe.gov Christopher.lawrence@hq.doe.gov Julie A. Smith Office of Electricity Delivery and Energy Reliability Mail Code: OE-20 U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585 Re: Department of Energy - Improving Performance of Federal Permitting and Review of Infrastructure Projects. Request for Information ("RFI") 78 Fed. Reg. 53436 (August 29, 2013) Dear Ms. Smith: Please accept the following comments submitted on behalf of PJM Interconnection, L.L.C. ("PJM") in response to the RFI issued in the above captioned matter. This letter responds

146

Valley Network (Venus)  

Science Journals Connector (OSTI)

Labyrinthic valley network (Fig. 1...). This is the most common type observed on Venus. Valleys are several km wide and 100 s km long. They are found within or near tectonically...1992, 1993, 2001...). Their morp...

Goro Komatsu

2014-06-01T23:59:59.000Z

147

Melton Valley Watershed  

Broader source: Energy.gov [DOE]

This document explains the cleanup activities and any use limitations for the land surrounding the Melton Valley Watershed.

148

Bear Creek Valley Watershed  

Broader source: Energy.gov [DOE]

This document explains the cleanup activities and any use limitations for the land surrounding the Bear Creek Valley Watershed.

149

Bethel Valley Watershed  

Broader source: Energy.gov [DOE]

This document explains the cleanup activities and any use limitations for the land surrounding the Bethel Valley Watershed.

150

ARM - Field Campaign - Ganges Valley Aerosol Experiment (GVAX)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govCampaignsGanges Valley Aerosol Experiment (GVAX) govCampaignsGanges Valley Aerosol Experiment (GVAX) Campaign Links Science Plan AMF India Deployment Website Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Ganges Valley Aerosol Experiment (GVAX) 2011.06.13 - 2012.03.31 Website : http://www.arm.gov/sites/amf/pgh/ Lead Scientist : V. Rao Kotamarthi Description The Ganges valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoon. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers could be immense. Recent satellite-based measurements have indicated that

151

A river runs through it: impact of acid mine drainage on the geochemistry of West Little Sugar Creek pre- and post-reclamation at the Green Valley coal mine, Indiana, USA  

Science Journals Connector (OSTI)

...Acid mine drainage (AMD) associated with coal waste material at the abandoned Green Valley mine in Indiana discharges into West Little Sugar Creek, a nearby steam....4, Fe3+, Al, Fe2+, Ca, Mg, Na, Cl, Mn, K, S...

S. Brake; K. Connors; S. Romberger

2001-10-01T23:59:59.000Z

152

Solar Goes Big: Launching the California Valley Solar Ranch | Department of  

Broader source: Energy.gov (indexed) [DOE]

Goes Big: Launching the California Valley Solar Ranch Goes Big: Launching the California Valley Solar Ranch Solar Goes Big: Launching the California Valley Solar Ranch October 31, 2013 - 4:14pm Addthis The California Valley Solar Ranch produces clean, renewable electricity at the scale of traditional power plants. | Photo courtesy of SunPower. The California Valley Solar Ranch produces clean, renewable electricity at the scale of traditional power plants. | Photo courtesy of SunPower. Aerial shot of the California Valley Solar Ranch in San Luis Obispo County, California. | Photo courtesy of SunPower. Aerial shot of the California Valley Solar Ranch in San Luis Obispo County, California. | Photo courtesy of SunPower. According to NRG Energy, the California Solar Valley Ranch project has created thousands of jobs and put an estimated $315 million into the local economy. | Photo courtesy of SunPower.

153

Poudre Valley REA - Photovoltaic Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Poudre Valley REA - Photovoltaic Rebate Program Poudre Valley REA - Photovoltaic Rebate Program Poudre Valley REA - Photovoltaic Rebate Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $4,500 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount $1.50 per watt Provider Poudre Valley REA Poudre Valley REC is providing rebates to their residential customers who install photovoltaic (PV) systems on their homes. This rebate program was timed to coincide with the Colorado Governor's Energy Office's (GEO) state-wide rebate program, and Poudre Valley REC customers are permitted to receive both rebates. Before receiving a rebate, applicants must have an energy audit of their home that includes a blower door test. The audit must

154

ELECTRIC  

Office of Legacy Management (LM)

you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

155

Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Act  

Broader source: Energy.gov (indexed) [DOE]

Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Act (Minnesota) Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Act (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting

156

Seismic facies analysis of entrenched valley fill: a case study in Galveston Bay area, Texas  

SciTech Connect (OSTI)

The entrenched Trinity River valley beneath Galveston Bay was studied using high-resolution seismic data. The shape of the incised valley was determined on mini-sparker lines, which were obtained from the US Geological Survey in Corpus Christi, Texas. Uniboom lines, shot in 1987 aboard the Rice University research vessel R/V Matagorda, provided detailed records of the sediments filling the valley.

Smyth, W.C.; Anderson, J.B.; Thomas, M.A.

1988-09-01T23:59:59.000Z

157

The Naming, Identification, and Protection of Place in the Loess Hills of the Middle Missouri Valley  

E-Print Network [OSTI]

Definitions of the extent of the Loess Hills of the Missouri River valley have become smaller over the last century. The reduced extent of the Hills, as represented in both promotional and scientific literature, no longer accurately reflects...

McDermott, David Thomas

2009-11-09T23:59:59.000Z

158

The sprawl of the wild : a new infrastructural landscape in Silicon Valley  

E-Print Network [OSTI]

California faces an immediate and dire water shortage. The San Joaquin River Delta water supply system - which provides Silicon Valley with most of its fresh water - periodically draws down water delivery due to drought ...

Flynn, Kathleen M. (Kathleen Michele)

2008-01-01T23:59:59.000Z

159

E-Print Network 3.0 - ancient buried valleys Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

marvel at the Step Pyramid of Zozer. Admire the iconic Pyramids... endless Valley of the Kings and Queens before embarking on a cruise of the Nile River. Continue... 's tomb and...

160

OFFICE OF THE DIVISION ENGINEER CORPS OF ENGINEERS, MISSISSIPPI VALLEY DIVISION  

E-Print Network [OSTI]

OFFICE OF THE DIVISION ENGINEER CORPS OF ENGINEERS, MISSISSIPPI VALLEY DIVISION P.O. BOX 80, 1400 39181-0080, who is also the Division Engineer, Department of the Army, Mississippi Valley Division River at Cairo, Illinois and Baton Rouge, Louisiana, is approximately 726 miles long. Navigation

US Army Corps of Engineers

Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Death Valley TronaWestend  

E-Print Network [OSTI]

Goldfield Lida Tempiute Gold Point Beatty Amargosa Valley Mercury Indian Springs PiocheCaselton Prince Nevada Test Site East Mormon Mountain Gold Point Delamar Valley Amargosa Valley Millers Dry Lake Dry Lake

Laughlin, Robert B.

162

Sea level control on facies architecture of incised valley-fill sequences: case study of Sabine and Trinity valleys, Texas Continental Shelf  

SciTech Connect (OSTI)

The rate of sea level rise likely has varied during the late Wisconsinan-Holocene transgression. The authors are investigating the sea level history of the northwest Gulf of Mexico by examining the sequence stratigraphy of incised valleys on the Texas continental shelf. Glaciologists argue that mass wasting of marine ice sheets can cause rapid and episodic relative sea level (RSL) rises on the order of 5 m/100 years. Such an event would produce a large (/approx/25 km) landward translation of the shoreline on low-gradient shelves like that of north Texas. RSL rise events are expected to be manifested as discontinuities in valley-fill sedimentation and as changes in valley shape. Nearly 1000 km of high-resolution seismic profiles collected in an area extending from Sabine Pass to Galveston and to 60 km offshore were integrated with engineering borings, vibracores, and piston cores; these data allow mapping of incised valleys and valley-fill facies associated with the ancestral Sabine and Trinity rivers. An RSL rise event is characterized by a change from slow rate of rise to rapid and back to slow. The period of rapid rise produces a major flooding surface; bayhead delta development is suppressed, and lower estuarine or marine deposits lie directly on fluvial deposits. Because accommodation increases as rapidly as RSL rises, valley-fill deposition is limited to the original, deeply incised valley. In map view, the valley appears relatively straight and narrow. The valley just offshore Galveston Island represents this situation. During a period of slow rise, bayhead deltas prograde and downlap onto estuarine deposits. In this case, sediments may completely fill the original incised valley, and the river supplying this valley may meander beyond previous valley edges. In map view, such a valley will be broad and irregular in shape, much like modern Galveston Bay.

Thomas, M.A.; Anderson, J.B.; Smyth, W.

1989-03-01T23:59:59.000Z

163

BulletinoftheSeismologicalSocietyofAmerica,Vol.73,No.4,pp. 1161-117l,August1983 GROUND FAILURE ALONG THE NEW RIVER CAUSED BY THE  

E-Print Network [OSTI]

ALONG THE NEW RIVER CAUSED BY THE OCTOBER 1979 IMPERIAL VALLEY EARTHQUAKE SEQUENCE BY THOMAS H. HEATON the south bank of the New River north of Brawley, California, following the 15 October 1979 Imperial Valley aftershock of the Imperial Valley earth- quake), a cause and effect relationship cannot be demonstrated

Greer, Julia R.

164

West Valley Demonstration Project  

Broader source: Energy.gov [DOE]

The West Valley Demonstration Project came into being through the West Valley Demonstration Project Act of 1980. The Act requires that the DOE is responsible for solidifying the high-level waste, disposing of waste created by the solidification, and decommissioning the facilities used in the process.

165

Pennsylvania Scenic Rivers Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pennsylvania Scenic Rivers Program Pennsylvania Scenic Rivers Program Pennsylvania Scenic Rivers Program < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Transportation Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Pennsylvania Program Type Environmental Regulations Siting and Permitting Provider Pennsylvania Department of Conservation and Natural Resources Rivers included in the Scenic Rivers System will be classified, designated and administered as Wild, Scenic, Pastoral, Recreational and Modified Recreational Rivers (Sections 4; (a) (1) of the Pennsylvania Scenic Rivers Act). Low dams are permitted on Modified Recreational Rivers, but are not

166

ELECTRIC  

Office of Legacy Management (LM)

ELECTRIC ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A quantity of at lezst 5 grams would probably be sufficient for our purpose, and this was included in our 3@icntion for license to the Atonic Energy Coskqission.. This license has been approved, 2nd rre would Llp!Jreciate informztion as to how to ?r*oceed to obtain thit: m2teria.l.

167

Tri-Generation Success Story: World's First Tri-Gen Energy Station—Fountain Valley  

Broader source: Energy.gov [DOE]

This Fuel Cell Technologies Office fact sheet describes the Fountain Valley energy station. Supported in part by a $2.2 million grant from the Energy Department, the Fountain Valley energy station is the world’s first tri-generation hydrogen energy and electrical power station to provide transportation fuel to the public and electric power to an industrial facility.

168

Imperial Valley College Portland State University Imperial Valley College  

E-Print Network [OSTI]

Imperial Valley College Portland State University Imperial Valley College Transfer Worksheet If you) at Imperial Valley College (IVC), you can rest assured that those credits will also transfer to Portland State. Degree Requirements (BA, BS) #12;Imperial Valley College Portland State University 2. DEGREE REQUIREMENTS

Caughman, John

169

Small-scale hydroelectric power demonstration project: Broad River Electric Cooperative, Inc. , Cherokee Falls, South Carolina: Final operations and maintenance report  

SciTech Connect (OSTI)

The purpose of this report is to give a final accounting of the costs and benefits derived from the first two years of operation of the Cherokee Falls, Broad River Hydroelectric Demonstration Project which was built at Cherokee Falls, South Carolina. Prior to construction, Broad River Electric Cooperative, Inc. (BREC) executed a Cooperative Agreement with the US Department of Energy (DOE) Number FC07-80ID12125 which provided $1,052,664 toward the construction of the facility. This agreement requires that BREC document for DOE a summary of the complete operating statistics, operating and maintenance cost, and revenues from power sales for a two-year operating period. A complete reporting covering the design, technical, construction, legal, institutional, environmental and other related aspects of the total project was furnished to DOE previously for publication as the ''Final Technical and Construction Cost Report''. For this reason these elements will not be addressed in detail in this report. In order to make this account a more meaningful discussion of the initial two-year and four month production period, it is necessary to detail several unique events concerning the project which set Cherokee Falls apart from other projects developed under similar Cooperative Agreements with DOE. Accordingly, this report will discuss certain major problems experienced with the design, operation and maintenance, energy production, as well as the operation and maintenance cost and value of the power produced for the first 28 months of operation. 3 figs.

Not Available

1988-08-01T23:59:59.000Z

170

Wabash Valley Power Association - Residential Energy Efficiency Program  

Broader source: Energy.gov (indexed) [DOE]

Wabash Valley Power Association - Residential Energy Efficiency Wabash Valley Power Association - Residential Energy Efficiency Program (Indiana) Wabash Valley Power Association - Residential Energy Efficiency Program (Indiana) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 1/1/2012 Expiration Date 12/31/2012 State Indiana Program Type Utility Rebate Program Rebate Amount Heat Pump Water Heater: $400/unit Air-source Heat Pumps: $250-$1,500/unit Geothermal Heat Pumps: $1,500/unit Dual Fuel Heat Pump Rebate: $1,500 Appliance Recycling: $35 Provider Wabash Valley Power Association Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and Illinois. View the WVPA

171

Independent Oversight Review, Savannah River Site - July 2011...  

Broader source: Energy.gov (indexed) [DOE]

Independent Oversight Review, Savannah River Site - July 2011 July 2011 Review of Electrical System Configuration Management and Design Change Control at the Savannah River...

172

Tapping the Power of Alaska's Rivers | Department of Energy  

Office of Environmental Management (EM)

a practical River In-Stream Energy Conversion (RISEC)-a device that can produce electricity from free-flowing rivers not suited to conventional hydroelectric generation, and...

173

Green Valley Galaxies  

E-Print Network [OSTI]

The "green valley" is a wide region separating the blue and the red peaks in the ultraviolet-optical color magnitude diagram, first revealed using GALEX UV photometry. The term was coined by Christopher Martin in 2005. Green valley highlights the discriminating power of UV to very low relative levels of ongoing star formation, to which the optical colors, including u-r, are insensitive. It corresponds to massive galaxies below the star-forming "main" sequence, and therefore represents a critical tool for the study of the quenching of star formation and its possible resurgence in otherwise quiescent galaxies. This article reviews the results pertaining to morphology, structure, environment, dust content and gas properties of green valley galaxies in the local universe. Their relationship to AGN is also discussed. Attention is given to biases emerging from defining the "green valley" using optical colors. We review various evolutionary scenarios and we present evidence for a new, quasi-static view of the green ...

Salim, Samir

2015-01-01T23:59:59.000Z

174

Copper Valley Elec Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

Copper Valley Elec Assn, Inc Copper Valley Elec Assn, Inc Place Alaska Utility Id 4329 Utility Location Yes Ownership C NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Copper River Basin large commercial Commercial Copper River Basin small commercial Commercial Copper River Basin Residential Residential Valdez Residential Residential Valdez large commercial Commercial Valdez small commercial Commercial Average Rates Residential: $0.2520/kWh Commercial: $0.2150/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

175

Enforcement Documents - West Valley Demonstration Project | Department...  

Broader source: Energy.gov (indexed) [DOE]

West Valley Demonstration Project Enforcement Documents - West Valley Demonstration Project December 7, 1999 Preliminary Notice of Violation, West Valley Nuclear Services -...

176

Oversight Reports - West Valley Demonstration Project | Department...  

Broader source: Energy.gov (indexed) [DOE]

West Valley Demonstration Project Oversight Reports - West Valley Demonstration Project August 24, 2012 Independent Activity Report, West Valley Demonstration Project - July 2012...

177

Imperial Valley Geothermal Area | Department of Energy  

Energy Savers [EERE]

Imperial Valley Geothermal Area Imperial Valley Geothermal Area The Imperial Valley Geothermal project consists of 10 generating plants in the Salton Sea Known Geothermal Resource...

178

Grand valley irrigation return flow case study  

SciTech Connect (OSTI)

Irrigation water supply is furnished annually to about 71,500 acres of land in the Grand Valley of western Colorado. Return flows from that irrigation contribute about 780,000 tpy of salt to the Colorado River, causing an increase of 77 mg/l in the salinity concentration at Imperial Dam. A case study of water quality in this region is focused on: water quality data for irrigation and return flows/ identification of regulations that affect irrigation and return flows/ and a proposed program for controlling salinity levels. (1 map, 9 references, 8 tables)

Keys, J.W.

1981-06-01T23:59:59.000Z

179

The Great Sons of Thang stong rgyal po: the Bu chen of the Pin valley, Spiti1  

E-Print Network [OSTI]

The Great Sons of Thang stong rgyal po: the Bu chen of the Pin valley, Spiti1 Pascale Dollfus GEOGRAPHICAL AND CULTURAL SETTING Standing to the south-west, Pin is one of four units constituting Spiti2 Range and shares its eastern frontiers with Tibet (Map 1). It includes the whole valley of the Pin river

Paris-Sud XI, Université de

180

White River Falls Fish Passage Project, Tygh Valley, Oregon : Final Technical Report, Volume III, Appendix B, Fisheries Report; Appendix C, Engineering Alternative Evaluation; Appendix D, Benefit/Cost Analysis.  

SciTech Connect (OSTI)

Studies were conducted to describe current habitat conditions in the White River basin above White River Falls and to evaluate the potential to produce anadromous fish. An inventory of spawning and rearing habitats, irrigation diversions, and enhancement opportunities for anadromous fish in the White River drainage was conducted. Survival of juvenile fish at White River Falls was estimated by releasing juvenile chinook and steelhead above the falls during high and low flow periods and recapturing them below the falls in 1983 and 1984. Four alternatives to provide upstream passage for adult salmon and steelhead were developd to a predesign level. The cost of adult passage and the estimated run size of anadromous fish were used to determine the benefit/cost of the preferred alternative. Possible effects of the introduction of anadromous fish on resident fish and on nearby Oak Springs Hatchery were evaluated. This included an inventory of resident species, a genetic study of native rainbow, and the identification of fish diseases in the basin. This volume contains appendices of habitat survey data, potential production, resident fish population data, upstream passage designs, and benefit/cost calculations. (ACR)

Oregon. Dept. of Fish and Wildlife; Mount Hood National Forest (Or.)

1985-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area  

Open Energy Info (EERE)

Area Area (1974-1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area (1974-1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique DC Resistivity Survey (Schlumberger Array) Activity Date 1974 - 1975 Usefulness not indicated DOE-funding Unknown Exploration Basis Hydrogeologic study of the area Notes In 1975, the U.S. Geological Survey made 70 Schlumberger resistivity soundings in the Upper Raft River Valley and in parts of the Raft River Valley. These soundings complement the 79 soundings made previously in the Raft River Valley and bring the total number of soundings to 149. This work was done as part of a hydrogeologic study of the area. The location,

182

River Thames River Thames  

E-Print Network [OSTI]

West Kent House Penge East Lower Sydenham Forest Hill Honor Oak Park Crofton Park Nunhead New CrossC BD A River Thames River Thames Waterloo & City Southwark Northwood Northwood Hills North Harrow Harrow- on-the-Hill Northwick Park Harrow & Wealdstone Headstone Lane Pinner Kenton Stanmore Canons Park

Delmotte, Nausicaa

183

River Thames River Thames  

E-Print Network [OSTI]

River Thames River Thames Du Cane Road Wood Lane Wood Lane North Pole Road Barlby Road Highlever Street Acton Market Place Acton Horn Lane Wood Lane Du Cane Road Wood Lane South Africa Road White City for BBC Television Centre Wood Lane Ariel Way Wood Lane Shepherd's Bush Green Shepherd's Bush Green

184

Geophysical Method At Raft River Geothermal Area (1975) | Open Energy  

Open Energy Info (EERE)

Method At Raft River Geothermal Area (1975) Method At Raft River Geothermal Area (1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geophysical Method At Raft River Geothermal Area (1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Geophysical Techniques Activity Date 1975 Usefulness not indicated DOE-funding Unknown Notes Geologic and geophysics studies were completed at the Raft River valley. References Williams, P.L.; Mabey, D.R.; Pierce, K.L.; Zohdy, A.A.R.; Ackermann, H.; Hoover, D.B. (1 May 1975) Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Geophysical_Method_At_Raft_River_Geothermal_Area_(1975)&oldid=59434

185

Small-scale hydroelectric power demonstration project: Broad River Electric Cooperative, Inc. , Cherokee Falls Hydroelectric Project: Final technical and construction cost report  

SciTech Connect (OSTI)

The purpose of this report is to fulfill part of the requirement of the US Department of Energy (DOE) Cooperative Agreement Number FC07-80ID12125 of the Small Scale Hydropower Program and is submitted on behalf of the Broad River Electric Cooperative, Inc. of Gaffney, South Carolina. The project was initially studied in 1978 with construction commencing in January, 1984. The primary work elements of the project consisted of the renovation of an existing dam and a new powerhouse. The dam was rehabilitated and flashboards were installed along the top of the structure. The powerhouse was supplied with a single open pit turbine and a new substation was constructed. The project generated power in December of 1985 but has been plagued with numerous problems compounded by a flood in March, 1987 causing extensive damages. The flood of March, 1987 resulted in filing of litigative action by the developers against their project managers and engineers which has yet to reach settlement and will possibly culminate in court sometime during the fall of 1988.

Not Available

1988-06-01T23:59:59.000Z

186

Tri-Generation Success Story: World's First Tri-Gen Energy Station - Fountain Valley  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tri-Generation Success Tri-Generation Success Story World's First Tri-Gen Energy Station- Fountain Valley The Fountain Valley energy station, supported in part by a $2.2 million grant from the Energy Department, is the world's first tri-generation hydrogen energy and electrical power station to provide transportation fuel to the public and electric power to an industrial facility. Located at the Orange County Sanitation District's wastewater treatment plant in Fountain Valley, California, the unit is a combined heat, hydrogen, and power (CHHP) system that co-produces hydrogen in addition to electricity and heat, making it a tri-generation system. The hydrogen produced by the system

187

The floodplain large-wood cycle hypothesis: A mechanism for the physical and biotic structuring of temperate forested alluvial valleys in the North Pacific  

E-Print Network [OSTI]

species Biogeomorphology River restoration A `floodplain large-wood cycle' is hypothesized as a mechanism for generating landforms and influencing river dynamics in ways that structure and maintain riparian and aquatic ecosystems of forested alluvial river valleys of the Pacific coastal temperate rainforest of North America

Montgomery, David R.

188

Canadian River Compact (Texas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Canadian River Compact (Texas) Canadian River Compact (Texas) Canadian River Compact (Texas) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Texas Program Type Siting and Permitting Provider Canadian River Compact Commission The Canadian River Commission administers the Canadian River Compact which includes the states of New Mexico, Oklahoma, and Texas. Signed in 1950 by

189

West Valley Demonstration Project High-Level Waste Management  

Broader source: Energy.gov (indexed) [DOE]

DRAFT_19507_1 DRAFT_19507_1 High-Level Waste Management Bryan Bower, DOE Director - WVDP DOE High-Level Waste Corporate Board Meeting Savannah River Site April 1, 2008 West Valley Demonstration Project West Valley Demonstration Project DRAFT_19507_2 West Valley High-Level Waste To solidify the radioactive material from approximately 600,000 gallons of high-level radioactive waste into a durable, high-quality glass, both a pretreatment system to remove salts and sulfates from the waste and a vitrification system/process were designed. To solidify the radioactive material from approximately 600,000 gallons of high-level radioactive waste into a durable, high-quality glass, both a pretreatment system to remove salts and sulfates from the waste and a vitrification system/process were designed.

190

Caney River | Open Energy Information  

Open Energy Info (EERE)

River River Jump to: navigation, search Name Caney River Facility Caney River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Enel Green Power North America Inc. Developer Tradewind Energy LLC Energy Purchaser Tennessee Valley Authority Location Elk County KS Coordinates 37.448424°, -96.425027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.448424,"lon":-96.425027,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

191

Sinuosity of Alluvial Rivers on the Great Plains  

Science Journals Connector (OSTI)

...of a meandering river to a straight course is fur- nished by the Cimarron River in Southwestern Kansas. Prior to 1914 the Cimmaron in Kansas flowedin a narrow, deep, meandering channel, but during and following a major flood in 1914, the valley was gutted...

192

Geochemistry Of Waters In The Valley Of Ten Thousand Smokes Region, Alaska  

Open Energy Info (EERE)

Waters In The Valley Of Ten Thousand Smokes Region, Alaska Waters In The Valley Of Ten Thousand Smokes Region, Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geochemistry Of Waters In The Valley Of Ten Thousand Smokes Region, Alaska Details Activities (3) Areas (1) Regions (0) Abstract: Meteoric waters from cold springs and streams outside of the 1912 eruptive deposits filling the Valley of Ten Thousand Smokes (VTTS) and in the upper parts of the two major rivers draining the 1912 deposits have similar chemical trends. Thermal springs issue in the mid-valley area along a 300-m lateral section of ash-flow tuff, and range in temperature from 21 to 29.8°C in early summer and from 15 to 17°C in mid-summer. Concentrations of major and minor chemical constituents in the thermal waters are nearly identical regardless of temperature. Waters in the

193

Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) |  

Open Energy Info (EERE)

Fluid At Long Valley Caldera Geothermal Area (1977) Fluid At Long Valley Caldera Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Isotopic Analysis-Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

194

Workplace Charging Challenge Partner: Salt River Project  

Broader source: Energy.gov [DOE]

The mission of Salt River Project's (SRP) Electric Vehicle Initiative is to encourage greater use of clean energy transportation. Under this program, SRP's headquarters received two Level 2...

195

For the Federal Columbia River Power System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

its products and services . BPA markets wholesale electrical power from 31 federal hydro projects in the Columbia River Basin, one nonfederal nuclear plant and several small...

196

Central Electric Coop. Oregon Trail Electric Coop. Douglas Electric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grove Tillamook PUD Columbia River PUD West Oregon Electric Coop. Clatskanie PUD Umpqua Indian Utility Coop. McNar y Foster Cougar John Day Lost Creek Bonneville Hills Creek...

197

Cherokee Electric Cooperative- Residential Energy Efficiency Loan Programs  

Broader source: Energy.gov [DOE]

Cherokee Electric Coop offers loans to residential customers for making energy efficiency improvements. In association with the Tennessee Valley Authority (TVA), the Energy Right program offers...

198

Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications...  

Open Energy Info (EERE)

The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

199

MONUMENT VALLEY, ARIZONA  

Office of Legacy Management (LM)

VALLEY, ARIZONA VALLEY, ARIZONA Sampled August 1997 DATA PACKAGE CONTENTS This data package includes the following information: Item No. Descriotion of Contents 1. Site Sampling Lead Summary 2. Data Package Assessment, which includes the following: a. Field procedures verification checklist b. Confirmation that chain-of-custody was maintained. c. Confirmation that holding time requirements were met. d. Evaluation of the adequacy of the QC sample results. Data Assessment Summary, which describes problems identified in the data validation process and summarizes the validator's findings. Suspected Anomalies Reports generated by the UMTRA database system. This report compares the new data $et with historical data and designates "suspected anomalies" based on the many criteria listed as footnotes on each page. In

200

monument valley.cdr  

Office of Legacy Management (LM)

The Monument Valley processing site is located on the The Monument Valley processing site is located on the Navajo Nation in northeastern Arizona, about 15 miles south of Mexican Hat, Utah. A uranium-ore-processing mill operated at the site from 1955 to 1968 on property leased from the Navajo Nation. The mill closed in 1968, and control of the site reverted to the Navajo Nation. Most of the mill buildings were removed shortly thereafter. The milling process produced radioactive mill tailings, a predominantly sandy material. From 1955 until 1964, ore at the site was processed by mechanical milling using an upgrader, which crushed the ore and separated it by grain size. The finer-grained material, which was higher in uranium content, was shipped to other mills for chemical processing. Coarser-grained material was stored on site.

Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

City of Sunset Valley - Solar Water Heating Rebate Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

City of Sunset Valley - Solar Water Heating Rebate Program City of Sunset Valley - Solar Water Heating Rebate Program City of Sunset Valley - Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $2,000 Program Info Funding Source General Funds State Texas Program Type Local Rebate Program Rebate Amount 30% of installed cost Provider City of Sunset Valley The City of Sunset Valley offers rebates to local homeowners who install solar water heating systems on their properties. The local rebate acts as an add-on to the solar water heating rebates that are offered by Austin Energy to its electric customers. The Sunset Valley rebate is set at 30% of the installed system cost, up to a maximum rebate of $2,000 per homeowner, supplementing the

202

More Than 350 Now at Work Building CA Valley Solar Plant | Department of  

Broader source: Energy.gov (indexed) [DOE]

More Than 350 Now at Work Building CA Valley Solar Plant More Than 350 Now at Work Building CA Valley Solar Plant More Than 350 Now at Work Building CA Valley Solar Plant February 27, 2012 - 12:13pm Addthis The California Valley Solar Ranch facility is creating clean energy jobs in San Luis Obispo County, California. Sonia Taylor Loan Programs Office What are the key facts? About 350 skilled workers are busy constructing the 250-megawatt California Valley Solar Ranch. The facility is expected to avoid over 425,000 metric tons of carbon dioxide annually. Once operational, the new solar facility is expected to provide enough clean electricity to power 64,000 homes. Last fall, the Energy Department finalized a $1.2 billion loan guarantee in support of the California Valley Solar Ranch (CVSR) -- a new solar facility in San Luis Obispo County, California.

203

Dixie Valley Binary Cycle Production Data 2013 YTD  

SciTech Connect (OSTI)

Proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013-September 2013

Lee, Vitaly

2013-10-18T23:59:59.000Z

204

LVOC - Livermore Valley Open Campus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LVOC - Livermore Valley Open Campus LVOC - Livermore Valley Open Campus ↓ Case Studies | ↓ About LVOC Get to market faster Making the impossible possible Lawrence Livermore and Sandia National Laboratories are home to some of the world's most unique state-of-the art facilities and resources. For decades, we have been using our combined capabilities, including a workforce of over 7000 employees to solve complex problems for the nation. Visit the science and technology epicenter - the Livermore Valley Open Campus - just east of San Francisco in the Tri-Valley's innovation ecosystem to find out what problems we can solve for you. LVOC Flyer We Keep Industry on the Cutting Edge of Innovative Technology About the Livermore Valley Open Campus LVOC Rendering Open for Business: The Livermore Valley Open Campus is located at the

205

Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC- WEA-2010-05  

Broader source: Energy.gov [DOE]

Issued to Savannah River Nuclear Solutions, LLC related to a Nitric Acid Spill Event and an Electrical Arc Flash Injury Event at the Savannah River Site

206

Estimated Value of Service Reliability for Electric Utility Customers in the United States  

E-Print Network [OSTI]

Administration, Duke Energy, Mid America Power, Pacific Gas and Electric Company, Puget Sound Energy, Salt River

207

Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant  

SciTech Connect (OSTI)

The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

1981-11-17T23:59:59.000Z

208

Savannah River National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Savannah River National Laboratory Savannah River National Laboratory srnl.doe.gov SRNL is a DOE National Laboratory operated by Savannah River Nuclear Solutions. At a glance Additive Manufacturing (3D Printing): Selectively Printed Conductive Pathways Researchers at the Savannah River National Laboratory (SRNL) have developed a rapid prototype conductive material that can be used for electrical shielding or circuit fabrication. Background Several rapid prototype technologies currently exist. A few of the technologies produce metallic parts, but the majority produce nonconductive parts made from various grades of plastic. In all of these technologies however, only conductive material or nonconductive material can be used within one part created. There is no known option for 3D printing conductive material for

209

Independent Activity Report, West Valley Demonstration Project...  

Broader source: Energy.gov (indexed) [DOE]

November 2011 Independent Activity Report, West Valley Demonstration Project - November 2011 November 2011 West Valley Demonstration Project Orientation Visit HIAR-WVDP-2011-11-07...

210

Thanksgiving Goodwill: West Valley Demonstration Project Food...  

Broader source: Energy.gov (indexed) [DOE]

Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive...

211

Independent Activity Report, West Valley Demonstration Project...  

Broader source: Energy.gov (indexed) [DOE]

July 2012 Independent Activity Report, West Valley Demonstration Project - July 2012 July 2012 Operational Awareness Oversight of the West Valley Demonstration Project HIAR...

212

Aire Valley Environmental | Open Energy Information  

Open Energy Info (EERE)

search Name: Aire Valley Environmental Place: United Kingdom Product: Leeds-based waste-to-energy project developer. References: Aire Valley Environmental1 This article...

213

Solar homes for the valley  

SciTech Connect (OSTI)

TVA has designed 11 passive solar homes in the public interest to encourage the development of solar housing in the Tennessee Valley region. The program, Solar Homes For The Valley, involves the design, construction, and testing of the 11 designs in each of four microclimatic areas within the region, (total of 44 homes).

Born, B.; Brewer, D.

1980-01-01T23:59:59.000Z

214

Telluric Survey At Raft River Geothermal Area (1978) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1978) Raft River Geothermal Area (1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Telluric Survey At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Telluric Survey Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration Basis Infer the structure and the general lithology underlying the valley Notes The relative ellipse area contour map compiled from the telluric current survey generally conforms to the gravity map except for lower values in the area of the geothermal system. References Mabey, D.R.; Hoover, D.B.; O'Donnell, J.E.; Wilson, C.W. (1 December 1978) Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho

215

Poudre Valley REA - Commercial Lighting Rebate Program (Colorado) |  

Broader source: Energy.gov (indexed) [DOE]

Commercial Lighting Rebate Program (Colorado) Commercial Lighting Rebate Program (Colorado) Poudre Valley REA - Commercial Lighting Rebate Program (Colorado) < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Commercial Lighting Retrofit: 50% of equipment cost, $20,000 LED Street Lighting/Induction Street Lighting: $20,000 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount LED Refrigerated Case Lighting (Top Lighting): $60 per ln ft LED Refrigerated Case Lighting (Case Lighting): $60 per door LED Street Lighting: $44 - $475 per fixture Induction Street Lighting: $33 - $355 per fixture Commercial Lighting Retrofit: $250 per kW saved Provider Poudre Valley REA Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy

216

City of Valley City, North Dakota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Valley City, North Dakota (Utility Company) Valley City, North Dakota (Utility Company) Jump to: navigation, search Name City of Valley City Place North Dakota Utility Id 19687 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial service rate - Single Phase Commercial Commercial service rate - Three Phase Commercial Commercial service rate(second meter if electric Heat) Commercial Industrial service rate Industrial Large power service rate Industrial Outdoor area lighting service - 100 Watt H.P.S Lighting

217

Nishnabotna Valley R E C | Open Energy Information  

Open Energy Info (EERE)

Nishnabotna Valley R E C Nishnabotna Valley R E C Jump to: navigation, search Name Nishnabotna Valley R E C Place Iowa Utility Id 13675 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Controlled Off-Peak Dual Fuel Residential Controlled Off-Peak Interruptible Heat Residential Multi Phase Large >130kV Commercial Multi Phase Small <130kV Commercial Multi-Purpose Single Phase Uncontrolled Electric Heat Residential Average Rates Residential: $0.1100/kWh

218

Economic Essays on Water Resources Management of the Texas Lower Rio Grande Valley  

E-Print Network [OSTI]

's functionality are due to minimal return flows to the Rio Grande (River) occurring throughout the Valley, and the monitoring and enforcement efforts of the Rio Grande Watermaster Program. The final essay is a presentation of a hydroeconomic model to study...

Leidner, Andrew

2012-07-16T23:59:59.000Z

219

Identifying eroding and depositional reaches of valley by analysis of suspended sediment transport  

E-Print Network [OSTI]

Identifying eroding and depositional reaches of valley by analysis of suspended sediment transport in suspended sediment transport and storage along the Sacramento River were assessed by evaluating the suspended sediment budget for the main channel accounting for all tributaries and diversions. Time series

Singer, Michael

220

California Valley Solar Ranch Biological Assessment  

Broader source: Energy.gov [DOE]

Biological Assessment for the California Valley Solar Ranch Project San Luis Obispo County, California

Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

monument valley.cdr  

Office of Legacy Management (LM)

The The Monument Valley Processing Site is located on the Navajo Nation in northeastern Arizona, about 15 miles south of Mexican Hat, Utah. A uranium-ore processing mill operated at the site from 1955 to 1968 on property leased from the Navajo Nation. The mill closed in 1968, and control of the site reverted to the Navajo Nation. Most of the mill buildings were removed shortly thereafter. The milling process produced radioactive mill tailings, a predominantly sandy material. From 1955 until 1964, ore at the site was processed by mechanical milling using an upgrader, which crushed the ore and separated it by grain size. The finer-grained material, which was higher in uranium content, was shipped to other mills for chemical processing. Coarser-grained material was stored on site. These source materials and other site-related contamination were removed during surface remediation at the

222

Modeling-Computer Simulations At Long Valley Caldera Area (Pribnow, Et Al.,  

Open Energy Info (EERE)

2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes Several fluid-flow models presented regarding the Long Valley Caldera. At shallow depths in the caldera References Daniel F. C. Pribnow, Claudia Schutze, Suzanne J. Hurter, Christina Flechsig, John H. Sass (2003) Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Long_Valley_Caldera_Area_(Pribnow,_Et_Al.,_2003)&oldid=389388

223

Static Temperature Survey At Long Valley Caldera Area (Sorey, Et Al., 1991)  

Open Energy Info (EERE)

Long Valley Caldera Area (Sorey, Et Al., 1991) Long Valley Caldera Area (Sorey, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Discusses temperature and lithologic data from a dozen or so wells drilled, both by industry and the scientific community. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A. Nordquist (1991) New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits

224

Hydrosedimentary records and Holocene environmental dynamics in the Yamé Valley (Mali, Sudano-Sahelian West Africa)  

Science Journals Connector (OSTI)

Research conducted in the Yamé Valley (Dogon Country, Mali) provides valuable information about the river systems and their Holocene evolution in Sudano-Sahelian West Africa. Past research in the region has relied primarily on marine and lacustrine records. The new results confirm correlation between palaeoclimatic fluctuations recorded in both the river system and in tropical African lakes. They offer a new continental milestone for understanding of the environmental repercussions of Holocene monsoon oscillations. These studies demonstrate the value of river systems as a palaeoenvironmental record and the role of palaeoclimatic and anthropogenic factors in the Holocene dynamics of Sudano-Sahelian hydrosystems.

Yann Le Drézen; Laurent Lespez; Michel Rasse; Aline Garnier; Sylvie Coutard; Eric Huysecom; Aziz Ballouche

2010-01-01T23:59:59.000Z

225

Spring Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Name Spring Valley Facility Spring Valley Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Pattern Energy Developer Pattern Energy Energy Purchaser NV Energy Location Ely NV Coordinates 39.10555447°, -114.4940186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.10555447,"lon":-114.4940186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

Magic Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Name Magic Valley Facility Magic Valley Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.ON Climate & Renewables North America Developer E.ON Climate & Renewables North America Location Raymondville TX Coordinates 26.46534829°, -97.6725769° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.46534829,"lon":-97.6725769,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

Swauk Valley | Open Energy Information  

Open Energy Info (EERE)

Swauk Valley Swauk Valley Jump to: navigation, search Name Swauk Valley Facility Swauk Valley Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner McKinstry Developer McKinstry Location Ellensburg WA Coordinates 47.14163°, -120.754376° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.14163,"lon":-120.754376,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

228

Retrofitting the Tennessee Valley Authority  

E-Print Network [OSTI]

As the flagship of the New Deal, the Tennessee Valley Authority (TVA) was a triumph of regional and environmental design that has since fallen on hard times. When writer James Agee toured the region in 1935, he described ...

Zeiber, Kristen (Kristen Ann)

2013-01-01T23:59:59.000Z

229

AMF Deployment, Ganges Valley, India  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Valley region were shown to affect cloud formation and monsoon activity over the Indian Ocean. Growth in industries such as cement factories, steel mills, and the coal-fired...

230

Ecology of Owens Valley vole  

E-Print Network [OSTI]

Little current data exist concerning the status and ecology of Owens Valley vole (OVV; Microtus californicus vallicola), despite its California Department of Fish and Game listing as a Species of Special Concern. No formal studies have been...

Nelson, Fletcher Chris

2005-08-29T23:59:59.000Z

231

Petrography of late cenozoic sediments, Raft River geothermal field, Idaho  

Open Energy Info (EERE)

of late cenozoic sediments, Raft River geothermal field, Idaho of late cenozoic sediments, Raft River geothermal field, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Petrography of late cenozoic sediments, Raft River geothermal field, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; RAFT RIVER VALLEY; GEOTHERMAL FIELDS; PETROGRAPHY; BIOTITE; CALCITE; CLAYS; LIMESTONE; PYRITE; SANDSTONES; SEDIMENTS; SHALES; VOLCANIC ROCKS; ZEOLITES; ALKALINE EARTH METAL COMPOUNDS; CALCIUM CARBONATES; CALCIUM COMPOUNDS; CARBON COMPOUNDS; CARBONATE ROCKS; CARBONATES; CHALCOGENIDES; IDAHO; IGNEOUS ROCKS; INORGANIC ION EXCHANGERS; ION EXCHANGE MATERIALS; IRON COMPOUNDS; IRON SULFIDES; MICA; MINERALS; NORTH AMERICA; ORES; OXYGEN COMPOUNDS; PACIFIC NORTHWEST REGION; PYRITES; ROCKS; SEDIMENTARY ROCKS; SULFIDES; SULFUR COMPOUNDS;

232

Borehole geophysics evaluation of the Raft River geothermal reservoir,  

Open Energy Info (EERE)

reservoir, reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; GEOPHYSICAL SURVEYS; RAFT RIVER VALLEY; GEOTHERMAL EXPLORATION; BOREHOLES; EVALUATION; HOT-WATER SYSTEMS; IDAHO; MATHEMATICAL MODELS; WELL LOGGING; CAVITIES; EXPLORATION; GEOTHERMAL SYSTEMS; HYDROTHERMAL SYSTEMS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace, T.L. Published: Geophysics, 2/1/1977 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Geophysical Method At Raft River Geothermal Area (1977) Raft River Geothermal Area

233

Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From  

Open Energy Info (EERE)

Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Details Activities (5) Areas (1) Regions (0) Abstract: Temperatures of 100°C are measured at 3 km depth in a well located on the resurgent dome in the center of Long Valley Caldera, California, despite an assumed >800°C magma chamber at 6-8 km depth. Local downflow of cold meteoric water as a process for cooling the resurgent dome is ruled out by a Peclet-number analysis of temperature logs. These analyses reveal zones with fluid circulation at the upper and lower

234

New Evidence On The Hydrothermal System In Long Valley Caldera, California,  

Open Energy Info (EERE)

New Evidence On The Hydrothermal System In Long Valley Caldera, California, New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Abstract Data collected since 1985 from test drilling, fluid sampling, and geologic and geophysical investigations provide a clearer definition of the hydrothermal system in Long Valley caldera than was previously available. This information confirms the existence of high-temperature (> 200°C) reservoirs within the volcanic fill in parts of the west moat. These

235

Morphology and downslope sediment displacement in a deep-sea valley, the Valencia Valley (Northwestern Mediterranean)  

Science Journals Connector (OSTI)

The Valencia Valley is a Quaternary, 200 km long deep-sea valley in the Valencia Trough, Western Mediterranean Sea ... A swathmapping survey approximately mid-way along the valley length, where the floor has an a...

Suzanne O'Connell; Belen Alonso; Kim A. Kastens; Andrés Maldonado…

1985-01-01T23:59:59.000Z

236

Boulder Valley School District (Colorado) Power Purchase Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School...

237

West Valley Demonstration Project Low-Level Waste Shipment |...  

Office of Environmental Management (EM)

West Valley Demonstration Project Low-Level Waste Shipment West Valley Demonstration Project Low-Level Waste Shipment West Valley Demonstration Project Low-Level Waste Shipment...

238

"1. Browns Ferry","Nuclear","Tennessee Valley Authority",3309  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama" Alabama" "1. Browns Ferry","Nuclear","Tennessee Valley Authority",3309 "2. James H Miller Jr","Coal","Alabama Power Co",2675 "3. Barry","Coal","Alabama Power Co",2575 "4. E C Gaston","Coal","Alabama Power Co",1878 "5. H Allen Franklin Combined Cycle","Gas","Southern Power Co",1815 "6. Joseph M Farley","Nuclear","Alabama Power Co",1734 "7. Widows Creek","Coal","Tennessee Valley Authority",1604 "8. Colbert","Coal","Tennessee Valley Authority",1574 "9. E B Harris Electric Generating Plant","Gas","Southern Power Co",1269

239

Deep drilling data Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

drilling data Raft River geothermal area, Idaho drilling data Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep drilling data Raft River geothermal area, Idaho Details Activities (2) Areas (1) Regions (0) Abstract: Stratigraphy and geophysical logs of three petroleum test boreholes in the Raft River Valley are presented. The geophysical logs include: temperature, resistivity, spontaneous potential, gamma, caliper, and acoustic logs. Author(s): Oriel, S. S.; Williams, P. L.; Covington, H. R.; Keys, W. S.; Shaver, K. C. Published: DOE Information Bridge, 1/1/1978 Document Number: Unavailable DOI: 10.2172/6272996 Source: View Original Report Exploratory Well At Raft River Geothermal Area (1975) Exploratory Well At Raft River Geothermal Area (1976) Raft River Geothermal Area

240

Geophysical Method At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Geophysical Method At Raft River Geothermal Area (1977) Geophysical Method At Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geophysical Method At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Geophysical Techniques Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes Borehole geophysics were completed at the Raft River valley, Idaho. References Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace, T.L. (1 February 1977) Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Geophysical_Method_At_Raft_River_Geothermal_Area_(1977)&oldid=594349" Category: Exploration Activities

Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Optimal Decentralized Protocols for Electric Vehicle Charging  

E-Print Network [OSTI]

1 Optimal Decentralized Protocols for Electric Vehicle Charging Lingwen Gan Ufuk Topcu Steven Low Abstract--We propose decentralized algorithms for optimally scheduling electric vehicle (EV) charging. The algorithms exploit the elasticity and controllability of electric vehicle loads in order to fill the valleys

Low, Steven H.

242

RECIPIENT:SURPRISE VALLEY ELECTRIFICATION CORP STATE: OR PROJECT  

Broader source: Energy.gov (indexed) [DOE]

RECIPIENT:SURPRISE VALLEY ELECTRIFICATION CORP STATE: OR RECIPIENT:SURPRISE VALLEY ELECTRIFICATION CORP STATE: OR PROJECT TITLE: RECOVERY ACT: RURAL ELECTRIC COOPERATIVE GEOTHERMAL DEVELOPMENT ELECTRIC AND AGRICULTURE Funding Opportunity Announcement Number DE-FOA-0000109 Procurement Instrument Number DE-EE0003006 NEPA Control Number ern Number GFO-0003006-004 G03006 Based on my review of the information concerning the pro posed action, as NEPA Compliance Ofticer (autborized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

243

Sioux Valley SW Elec Coop | Open Energy Information  

Open Energy Info (EERE)

SW Elec Coop SW Elec Coop Jump to: navigation, search Name Sioux Valley SW Elec Coop Place Colman, South Dakota Utility Id 17267 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sioux Valley Southwestern Electric Cooperative, Inc. Smart Grid Project was awarded $4,016,368 Recovery Act Funding with a total project value of $8,032,736. Utility Rate Schedules Grid-background.png commercial electric heat rate Commercial commercial general service - single phase Commercial commercial general service - three phase Commercial

244

Interstate Commission on the Potomac River Basin (Multiple States) |  

Broader source: Energy.gov (indexed) [DOE]

Interstate Commission on the Potomac River Basin (Multiple States) Interstate Commission on the Potomac River Basin (Multiple States) Interstate Commission on the Potomac River Basin (Multiple States) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State District of Columbia Program Type Environmental Regulations Siting and Permitting Provider Interstate Commission on the Potomac River Basin The Interstate Commission on the Potomac River Basin's (ICPRB) mission is to enhance, protect, and conserve the water and associated land resources of the Potomac River and its tributaries through regional and interstate

245

Boulder Valley School District (Colorado) Power Purchase Agreement Case Study  

Broader source: Energy.gov [DOE]

Boulder Valley School District completed a power purchase agreement to install 1.4 MW of solar PV that are expected to reduce electricity bills in 14 schools by about 10% over the 20 year life of the agreement. Case study is excerpted from Financing Energy Upgrades for K-12 School Districts: A Guide to Tapping into Funding for Energy Efficiency and Renewable Energy Improvements. Author: Merrian Borgeson and Mark Zimring

246

Aeromagnetic Survey At Raft River Geothermal Area (1978) | Open Energy  

Open Energy Info (EERE)

Area (1978) Area (1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Aeromagnetic Survey Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration Basis To infer the structure and the general lithology underlying the valley Notes The aeromagnetic data indicate the extent of the major Cenozoic volcanic units. References Mabey, D.R.; Hoover, D.B.; O'Donnell, J.E.; Wilson, C.W. (1 December 1978) Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Aeromagnetic_Survey_At_Raft_River_Geothermal_Area_(1978)&oldid=473817"

247

Landscape disequilibrium on 100010,000 year scales Marsyandi River, Nepal, central Himalaya  

E-Print Network [OSTI]

Landscape disequilibrium on 1000­10,000 year scales Marsyandi River, Nepal, central Himalaya Beth, Hanover, NH 03755, USA c Himalayan Experience, PO Box 5674, Kathmandu, Nepal Received 1 October 2002 River in the central Nepal Himalaya has oscillated between bedrock incision and valley alluviation

Heimsath, Arjun M.

248

Shenandoah Valley Elec Coop | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Shenandoah Valley Elec Coop Place Virginia Utility Id 17066 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100% RENEWABLE ENERGY ATTRIBUTES ELECTRIC SERVICE- RIDER R Residential INTERIM RATE INCREASE RIDER OD-09 SALES AND USE TAX SURCHARGE-Q SCHEDULE A-10 (UNBUNDLED) RESIDENTIAL SERVICE Residential SCHEDULE ALQ PRIVATE OUTDOOR AREA LIGHTING SERVICE Mercury 100 Watt - Customer-Owned Lighting SCHEDULE ALQ PRIVATE OUTDOOR AREA LIGHTING SERVICE Mercury 175 Watt -

249

Independent Oversight Review, Savannah River Site - June 2012...  

Broader source: Energy.gov (indexed) [DOE]

Independent Oversight Review, Savannah River Site - June 2012 June 2012 Review of Electrical System Configuration Management, Safety Instrumented System Commercial Grade...

250

Exploring the Raft River geothermal area, Idaho, with the dc...  

Open Energy Info (EERE)

geothermal area, Idaho, with the dc resistivity method (Abstract) Abstract GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER...

251

Elk River Municipal Utilities- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

[http://www.elkriverutilities.com/index.php Elk River Municipal Utilities] provides rebates to their residential electric customers who purchase and install Energy Star rated appliances and HVAC...

252

River sediments  

Science Journals Connector (OSTI)

...of the Sudd swamps of South Sudan and so increase discharge downstream...accelerated mass spectrometry; TIMS, thermal ionization mass spectrometry...Gezira alluvial fan in central Sudan and along the main Nile valley in Sudan and Egypt. Main Nile probably...

2012-01-01T23:59:59.000Z

253

EIS-0506: Crooked River Valley Rehabilitation Project, Idaho...  

Energy Savers [EERE]

an EIS that evaluates the potential environmental impacts of a proposal to improve fish habitat by restoring stream and floodplain functions, restoring instream fish habitat...

254

Moors Valley Play Trail Moors Valley Country Park is a very popular attraction  

E-Print Network [OSTI]

visitors to Moors Valley Country Park use the play trail. · Sport England's South West Regional PlanMoors Valley Play Trail objectives Moors Valley Country Park is a very popular attraction welcoming more than 750,000 visitors a year. Ranked in the top 20 national attractions Moors Valley is deemed

255

IMPERIAL VALLEY SAN DIEGO STATE UNIVERSITY  

E-Print Network [OSTI]

BULLETIN THE IMPERIAL VALLEY CAMPUS 2004-2005 SAN DIEGO STATE UNIVERSITY 720 HEBER AVENUE present the 2004-2005 Bulletin of the Imperial Valley Campus of San Diego State University. Its in the educational opportunities offered at the Imperial Valley Campus of San Diego State University and look forward

Gallo, Linda C.

256

IMPERIAL VALLEY SAN DIEGO STATE UNIVERSITY  

E-Print Network [OSTI]

BULLETIN THE IMPERIAL VALLEY CAMPUS 2006-2007 SAN DIEGO STATE UNIVERSITY 720 HEBER AVENUE pleasure that we present the 2006-2007 Bulletin of the Imperial Valley Campus of San Diego State University of Imperial Valley. During this time we have evolved from an institution created to grant elementary teaching

Gallo, Linda C.

257

IMPERIAL VALLEY SAN DIEGO STATE UNIVERSITY  

E-Print Network [OSTI]

BULLETIN THE IMPERIAL VALLEY CAMPUS 2005-2006 SAN DIEGO STATE UNIVERSITY 720 HEBER AVENUE pleasure that we present the 2005-2006 Bulletin of the Imperial Valley Campus of San Diego State University of Imperial Valley. During this time we have evolved from an institution created to grant elementary teach ing

Gallo, Linda C.

258

IMPERIAL VALLEY SAN DIEGO STATE UNIVERSITY  

E-Print Network [OSTI]

BULLETIN THE IMPERIAL VALLEY CAMPUS 2007-2008 SAN DIEGO STATE UNIVERSITY 720 HEBER AVENUE pleasure that we present the 2007-2008 Bulletin of the Imperial Valley Campus of San Diego State University of Imperial Valley. During this time we have evolved from an institution created to grant elementary teaching

Gallo, Linda C.

259

IMPERIAL VALLEY SAN DIEGO STATE UNIVERSITY  

E-Print Network [OSTI]

BULLETIN THE IMPERIAL VALLEY CAMPUS 2008-2009 SAN DIEGO STATE UNIVERSITY 720 HEBER AVENUE pleasure that we present the 2008-2009 Bulletin of the Imperial Valley Campus of San Diego State University of Imperial Valley. During this time we have evolved from an institution created to grant elementary teaching

Gallo, Linda C.

260

Imperial Valley Campus San Diego State University  

E-Print Network [OSTI]

2014--2015 IVC 2014--2015 Bulletin Imperial Valley Campus San Diego State University #12;BULLETIN THE IMPERIAL VALLEY CAMPUS 2014-2015 SAN DIEGO STATE UNIVERSITY 720 HEBER AVENUE CALEXICO, CALIFORNIA 92231 760 clarification. #12;2 SDSU Imperial Valley Campus Bulletin 2014-2015 Message from the Dean It is with great

Gallo, Linda C.

Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

IMPERIAL VALLEY SAN DIEGO STATE UNIVERSITY  

E-Print Network [OSTI]

BULLETIN THE IMPERIAL VALLEY CAMPUS 2009-2010 SAN DIEGO STATE UNIVERSITY 720 HEBER AVENUE pleasure that we present the 2009-2010 Bulletin of the Imperial Valley Campus of San Diego State University of Imperial Valley. During this time we have evolved from an institution created to grant elementary teaching

Gallo, Linda C.

262

Award Recipient Poudre Valley Health System  

E-Print Network [OSTI]

2008 Award Recipient Poudre Valley Health System Poudre Valley Health System (PVHS) is a locally, oncology, and orthopedic care. Founded in 1925 as the Poudre Valley Hospital (PVH) in Fort Collins, Colo." · Afterfirstestablishingrelationshipswithphysicians,PVHS expanded its partner base to include entities such as home health agencies, a long-term care

Magee, Joseph W.

263

Snake River Plain Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Snake River Plain Geothermal Region Snake River Plain Geothermal Region (Redirected from Snake River Plain) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Snake River Plain Geothermal Region Details Areas (8) Power Plants (1) Projects (2) Techniques (11) Map: {{{Name}}} "The Snake River Plain is a large arcuate structural trough that characterizes the topography of southern Idaho that can be divided into three sections: western, central, and eastern. The western Snake River Plain is a large tectonic graben or rift valley filled with several km of lacustrine (lake) sediments; the sediments are underlain by rhyolite and basalt, and overlain by basalt. The western plain began to form around 11-12 Ma with the eruption of rhyolite lavas and ignimbrites. The western plain is not parallel to North American Plate motion, and lies at a high

264

Owens Valley Radio ObsevatoryOwens Valley Radio Obsevatory David Woody  

E-Print Network [OSTI]

Owens Valley Radio ObsevatoryOwens Valley Radio Obsevatory David Woody Owens Valley Radio · [Need pictures of the telescopes] 1/24/2008 2Woody #12;The Owens ValleyThe Owens Valley 1/24/2008 3Woody in the future · 40 m ­ 1960s ­ 1-20 GHz ­ Long history single dish and VLBI · VLBA antenna, 25 m dia · Misc. ­ 5

Weinreb, Sander

265

Lumbee River EMC- Residential Weatherization Loan Program  

Broader source: Energy.gov [DOE]

Lumbee River Electric Membership Corporation (LREMC) offers low interest loans to help its residential members increase the energy efficiency of their homes. Loans up to $10,000 are available for...

266

Valley pair qubits in double quantum dots of gapped graphene  

E-Print Network [OSTI]

The rise of graphene opens a new door to qubit implementation, as discussed in the recent proposal of valley pair qubits in double quantum dots of gapped graphene (Wu et al., arXiv: 1104.0443 [cond-mat.mes-hall]). The work here presents the comprehensive theory underlying the proposal. It discusses the interaction of electrons with external magnetic and electric fields in such structures. Specifically, it examines a strong, unique mechanism, i.e., the analogue of the 1st-order relativistic effect in gapped graphene. This mechanism is state mixing free and allows, together with the electrically tunable exchange coupling, a fast, all-electric manipulation of qubits via electric gates, in the time scale of ns. The work also looks into the issue of fault tolerance in a typical case, yielding at 10oK a long qubit coherence time (~O(ms)).

G. Y. Wu; N. -Y. Lue; L. Chang

2011-07-03T23:59:59.000Z

267

Direct-Current Resistivity At Long Valley Caldera Area (Pribnow, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity At Long Valley Caldera Area (Pribnow, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes DC electrical sounding measurements provide a 2-D image of the resistivity distribution beneath Long Valley Caldera. Conductive zones and SP anomalies correlate with the location of known faults in agreement with previous

268

Geothermometry At Long Valley Caldera Area (Sorey, Et Al., 1991) | Open  

Open Energy Info (EERE)

Long Valley Caldera Area (Sorey, Et Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Geothermometry Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Silica-geothermometer temperature estimates for the Casa Diablo and RDO-8 well samples ( 196-202 degrees C) are lower than the corresponding cation-geothermometer temperature estimates, indicating loss of silica with declining reservoir temperature or dilution with low-silica waters. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A. Nordquist (1991) New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And

269

Core Analysis At Long Valley Caldera Area (Sorey, Et Al., 1991) | Open  

Open Energy Info (EERE)

1991) 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Core Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Several newer wells were cored, and the core analyses seemed to prove useful in most cases. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A. Nordquist (1991) New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Long_Valley_Caldera_Area_(Sorey,_Et_Al.,_1991)&oldid=386930

270

Direct-Current Resistivity Survey At Long Valley Caldera Area (Pribnow, Et  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity Survey At Long Valley Caldera Area (Pribnow, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes DC electrical sounding measurements provide a 2-D image of the resistivity distribution beneath Long Valley Caldera. Conductive zones and SP anomalies

271

Valley County Secondary Data Analysis  

E-Print Network [OSTI]

Infarction prevalence (Heart Attack) 5.5% 4.1% 6.0% All Sites Cancer 472.3 455.5 543.2 1 Community Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. Diabetes 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Valley County Secondary Data Analysis July 23, 2012 2

Maxwell, Bruce D.

272

Santa Clara Valley Transportation Authority  

Broader source: Energy.gov [DOE]

Santa Clara Valley Transportation Authority (VTA) is based in San Jose, California, and provides service in and around Santa Clara county. VTA provides bus and light rail service in Santa Clara County, as well as congestion mitigation, highway improvement projects, and countywide transportation planning. VTA's 423 buses serve an annual ridership of more than 39 million and cover approximately 326 square miles.

273

Independent Oversight Review, West Valley Demonstration Project  

Broader source: Energy.gov (indexed) [DOE]

Independent Oversight Review, West Valley Demonstration Project Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 September 2000 Transportation Emergency Management Review of the West Valley Demonstration Project (WVDP) and National Transportation Program (NTP)/Transportation Compliance Evaluation/Assistance Program (TCEAP) The U.S. Department of Energy (DOE) Office of Emergency Management Oversight, within the Secretary of Energy's Office of Independent Oversight and Performance Assurance, conducted a transportation emergency management review of the West Valley Demonstration Project (WVDP) and National Transportation Program (NTP)/Transportation Compliance Evaluation/Assistance Program (TCEAP) in September 2000.

274

Reconnaissance geothermal exploration at Raft River, Idaho from thermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; INFRARED SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; TEMPERATURE DISTRIBUTION; EXPLORATION; GEOPHYSICAL SURVEYS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Watson, K. Published: Geophysics, 4/1/1976

275

River Falls Municipal Utilities - Renewable Energy Finance Program |  

Broader source: Energy.gov (indexed) [DOE]

River Falls Municipal Utilities - Renewable Energy Finance Program River Falls Municipal Utilities - Renewable Energy Finance Program River Falls Municipal Utilities - Renewable Energy Finance Program < Back Eligibility Residential Savings Category Other Buying & Making Electricity Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info State Wisconsin Program Type PACE Financing Provider River Falls Municipal Utilities River Falls Municipal Utilities (RFMU) offers loans of $2,500 - $50,000 to its residential customers for the installation of photovoltaic (PV), solar thermal, geothermal, wind electric systems. The program will also support the installation of energy efficiency measures in connection with a qualifying renewable energy project, provided that the renewable energy

276

Rappahannock River Basin Commission (Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rappahannock River Basin Commission (Virginia) Rappahannock River Basin Commission (Virginia) Rappahannock River Basin Commission (Virginia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Siting and Permitting Provider Rappahannock River Basin Commission The Rappahannock River Basin Commission is an independent local entity

277

BPA/Lower Valley Transmission Project Final Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

1 1 Summary Summary * The Purpose and Need for Action * Alternatives * Affected Environment * Impacts This summary gives the major points of the Final Environmental Impact Statement (EIS) prepared for the BPA/Lower Valley Transmission Project by Bonneville Power Administration (BPA). BPA is the lead federal agency on this project and supervises the preparation of the EIS. The U.S. Forest Service is a cooperating agency and assists BPA in EIS preparation. The Targhee and Bridger-Teton National Forests are crossed by BPA's existing transmission line and some of the alternatives. S.1 Purpose and Need For Action S.1.1 BPA Lower Valley Power and Light, Inc. (LVPL) buys electricity from BPA and then supplies it to the residences, farms and businesses of the Jackson and Afton, Wyoming areas. Since the late 1980s,

278

Our River  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

River River Nature Bulletin No. 22 July 7, 1945 Forest Preserve District of Cook County Clayton F. Smith, President Roberts Mann, Superintendent of Conservation OUR RIVER The people of Cook County are missing a bet. They are not using their DesPlaines River. The other day we took a boat trip down that river from Lake County to Lawndale Avenue in Summit. It being a week day, we saw few people other than an occasional fisherman or pairs of strolling boys. Except for a bridge now and then, there were no signs or sounds of civilization. Chicago might have been a thousand miles away. We rested. There was isolation. There was peace. Once in a while a heron flew ahead of us; or a squirrel scampered up a tree; once we saw a family of young muskrats playing around the entrance to their den in the bank; twice we saw and heard a wood duck; again and again big fish plowed ripples surging ahead of us. It was shady and cool and still beneath the arching trees. We thought of the centuries this river had traveled. We were babes nuzzling again at the breast of Mother Nature.

279

Wabash River Heritage Corridor (Indiana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wabash River Heritage Corridor (Indiana) Wabash River Heritage Corridor (Indiana) Wabash River Heritage Corridor (Indiana) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Start Date 1991 State Indiana Program Type Siting and Permitting Provider Wabash River Heritage Corridor Commission The Wabash River Heritage Corridor, consisting of the Wabash River, the Little River, and the portage between the Little River and the Maumee

280

Duck Valley Habitat Enhancement and Protection, 2001-2002 Progress Report.  

SciTech Connect (OSTI)

The Duck Valley Indian Reservation's Habitat Enhancement project is an ongoing project designed to enhance and protect critical riparian areas, natural springs, the Owhyee River and its tributaries, and native fish spawning areas on the Reservation. The project commenced in 1997 and addresses the Northwest Power Planning Council's measures 10.8C.2, 10.8C.3, and 10.8C.5 of the 1994 Columbia River Basin Fish and Wildlife Program. The performance period covers dates from April 2001 through August 2002.

Allen, Mattie H.; Sellman, Jake (Shoshone-Paiute Nation, Duck Valley Indian Reservation, Owyhee, NV)

2003-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Columbia River System Inside Story  

SciTech Connect (OSTI)

The Columbia River is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Pacific Northwest—from fostering world-famous Pacific salmon to supplying clean natural fuel for 50 to 65 percent of the region’s electrical generation. Since early in the 20th century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system.

none,

2001-04-01T23:59:59.000Z

282

2012 RESEARCH REPORT SAGINAW VALLEY  

E-Print Network [OSTI]

electricity, phone, wireless internet, irrigation and municipal water were established. Future infrastructure

283

2013 RESEARCH REPORT SAGINAW VALLEY  

E-Print Network [OSTI]

and machinery storage have been built, infrastructure improvements including electricity, phone, wireless

284

Mechanically and optically controlled graphene valley filter  

SciTech Connect (OSTI)

We theoretically investigate the valley-dependent electronic transport through a graphene monolayer modulated simultaneously by a uniform uniaxial strain and linearly polarized light. Within the Floquet formalism, we calculate the transmission probabilities and conductances of the two valleys. It is found that valley polarization can appear only if the two modulations coexist. Under a proper stretching of the sample, the ratio of the light intensity and the light frequency squared is important. If this quantity is small, the electron transport is mainly contributed by the valley-symmetric central band and the conductance is valley unpolarized; but when this quantity is large, the valley-asymmetric sidebands also take part in the transport and the valley polarization of the conductance appears. Furthermore, the degree of the polarization can be tuned by the strain strength, light intensity, and light frequency. It is proposed that the detection of the valley polarization can be realized utilizing the valley beam splitting. Thus, a graphene monolayer can be used as a mechanically and optically controlled valley filter.

Qi, Fenghua; Jin, Guojun, E-mail: gjin@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

2014-05-07T23:59:59.000Z

285

Monument Valley Phytoremediation Pilot Study:  

Office of Legacy Management (LM)

1.8 1.8 U.S. Department of Energy UMTRA Ground Water Project Monument Valley Ground Water Remediation Work Plan: Native Plant Farming and Phytoremediation Pilot Study August 1998 Prepared for U.S. Department of Energy Albuquerque Operations Office Grand Junction Office Prepared by MACTEC Environmental Restoration Services, LLC Grand Junction, Colorado Project Number UGW-511-0015-10-000 Document Number U0029501 Work Performed under DOE Contract No. DE-AC13-96GJ87335 Note: Some of the section page numbers in the Table of Contents may not correspond to the page on which the section appears when viewing them in Adobe Acrobat. Document Number U0029501 Contents DOE/Grand Junction Office Monument Valley Ground Water Remediation Work Plan August 1998 Page v Contents Page Acronyms .

286

River Steamboats  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

River Steamboats River Steamboats Nature Bulletin No. 628-A February 12, 1977 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation RIVER STEAMBOATS The westward migration of the pioneer settlers and the rapid growth of agriculture, commerce and industry in the Middle West is in large part the story of water transportation on our inland waterways. The two main water routes were the chain of Great Lakes on the north and the Ohio River on the south. Sailing vessels carrying hundreds of tons were able to navigate on the Great Lakes almost as freely as on the ocean. Also, on the Ohio and Mississippi rivers heavy loads could be floated downstream from Pittsburgh to New Orleans -- almost 2000 miles. But boats had to be hauled back upstream by manpower -- grueling labor, stretching over weeks or months to move a few tons a few hundred miles. The coming of the steamboat a century and a half ago changed all this.

287

Kankakee Valley Rural E M C | Open Energy Information  

Open Energy Info (EERE)

M C M C Jump to: navigation, search Name Kankakee Valley Rural E M C Place Indiana Utility Id 9999 Utility Location Yes Ownership C NERC Location ECAR NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Envirowatt Residential Electric Service(Manually Read Meter) Residential General Service Non-Demand(Using Manually read meter)) Residential General Service Non-Demand(Using Manually read meter)) Commercial RATE SCHEDULE A: RESIDENTIAL ELECTRIC SERVICE RATE SCHEDULE Residential Rate Schedule A1: Envirowatt Residential Electric Service Rate Schedule

288

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM,  

Open Energy Info (EERE)

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Details Activities (3) Areas (1) Regions (0) Abstract: The Raft River geothermal system is located in southern Idaho, near the Utah-Idaho state boarder in the Raft River Valley. The field, which is owned and operated by U.S. Geothermal, has been selected as an EGS demonstration site by the U. S. Department of Energy. This paper summarizes ongoing geologic and petrologic investigations being conducted in support of this project. The reservoir is developed in fractured Proterozoic schist and quartzite, and Archean quartz monzonite cut by younger diabase

289

Hydrochemistry of selected parameters at the Raft River KGRA, Cassia  

Open Energy Info (EERE)

Hydrochemistry of selected parameters at the Raft River KGRA, Cassia Hydrochemistry of selected parameters at the Raft River KGRA, Cassia County, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Hydrochemistry of selected parameters at the Raft River KGRA, Cassia County, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Low to moderate temperature (< 150 0C) geothermal fluids are being developed in the southern Raft River Valley of Idaho. Five deep geothermal wells ranging in depth from 4911 feet to 6543 feet (1490 to 1980 meters) and two intermediate depth (3858 feet or 1170 meters) injection wells have been drilled within the Raft River KGRA. Several shallower (1423-500 feet or 430-150 meters) wells have also been constructed to monitor the environmental effects of geothermal development of the

290

Simulation analysis of the unconfined aquifer, Raft River Geothermal Area,  

Open Energy Info (EERE)

Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Details Activities (1) Areas (1) Regions (0) Abstract: This study covers about 1000 mi2 (2600 km2) of the southern Raft River drainage basin in south-central Idaho and northwest Utah. The main area of interest, approximately 200 mi2 (520 km2) of semiarid agricultural and rangeland in the southern Raft River Valley that includes the known Geothermal Resource Area near Bridge, Idaho, was modelled numerically to evaluate the hydrodynamics of the unconfined aquifer. Computed and estimated transmissivity values range from 1200 feet squared per day (110

291

Field Mapping At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1980) Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Field Mapping Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Delineate the subsurface geology Notes The Raft River Valley occupies an upper Cenozoic structural basin filled with nearly 1600 m of fluvial silt, sand, and gravel. Rapid facies and thickness changes, steep initial dips (30 0C), and alteration make correlation of basin-fill depositional units very difficult. The Raft River geothermal system is a hot water convective system relying on deep circulation of meteoric water in a region of high geothermal gradients and open fractures near the base of the Tertiary basin fill. References Covington, H. R. (1 September 1980) Subsurface geology of the

292

The Columbia River System : the Inside Story.  

SciTech Connect (OSTI)

The Columbia Ricer is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Northwest-from providing the world-famous Pacific salmon to supplying the clean natural fuel for over 75 percent of the region's electrical generation. Since early in the century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system. And through cooperative efforts, the floods that periodically threaten developments near the river can be controlled. This publication presents a detailed explanation of the planning and operation of the multiple-use dams and reservoirs of the Columbia River system. It describes the river system, those who operate and use it, the agreements and policies that guide system operation, and annual planning for multiple-use operation.

United States. Bonneville Power Administration.

1991-09-01T23:59:59.000Z

293

Lehigh Valley Chapter, ASM International ASM Materials Camp -Lehigh Valley for High School Students  

E-Print Network [OSTI]

Lehigh Valley Chapter, ASM International ASM Materials Camp - Lehigh Valley for High School careers. The week-long day camp is conducted by graduate students at Lehigh University, overseen

Gilchrist, James F.

294

Categorical Exclusion Determinations: West Valley Demonstration Project |  

Broader source: Energy.gov (indexed) [DOE]

Valley Demonstration Valley Demonstration Project Categorical Exclusion Determinations: West Valley Demonstration Project Categorical Exclusion Determinations issued by West Valley Demonstration Project. DOCUMENTS AVAILABLE FOR DOWNLOAD July 11, 2013 CX-010718: Categorical Exclusion Determination Replacement Ventilation System for the Main Plant Process Building CX(s) Applied: B6.3 Date: 07/11/2013 Location(s): New York Offices(s): West Valley Demonstration Project December 20, 2012 CX-009527: Categorical Exclusion Determination WVDP-2012-02 Routine Maintenance CX(s) Applied: B1.3 Date: 12/20/2012 Location(s): New York Offices(s): West Valley Demonstration Project August 2, 2012 CX-009528: Categorical Exclusion Determination WVDP-2012-01 WVDP Reservoir Interconnecting Canal Maintenance Activities

295

Tippecanoe Valley School Corp | Open Energy Information  

Open Energy Info (EERE)

Valley School Corp Valley School Corp Jump to: navigation, search Name Tippecanoe Valley School Corp Facility Tippecanoe Valley School Corp Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Tippecanoe Valley School Corp Developer Performance Services Energy Purchaser Tippecanoe Valley School Corp Location Akron IN Coordinates 41.11098144°, -86.04468584° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.11098144,"lon":-86.04468584,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

296

Dixie Valley Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Facility Dixie Valley Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dixie Valley Geothermal Facility General Information Name Dixie Valley Geothermal Facility Facility Dixie Valley Sector Geothermal energy Location Information Location Dixie Valley, Nevada Coordinates 39.966973991529°, -117.85519123077° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.966973991529,"lon":-117.85519123077,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

Upper Scioto Valley School | Open Energy Information  

Open Energy Info (EERE)

Valley School Valley School Jump to: navigation, search Name Upper Scioto Valley School Facility Upper Scioto Valley School Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Upper Scioto Valley Schools Energy Purchaser Upper Scioto Valley Schools Location McGuffey OH Coordinates 40.691542°, -83.786353° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.691542,"lon":-83.786353,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

298

Clean Cities: Rogue Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Rogue Valley Clean Cities Coalition Rogue Valley Clean Cities Coalition The Rogue Valley Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Rogue Valley Clean Cities coalition Contact Information Mike Quilty 541-621-4853 mikeq@roguevalleycleancities.org Coalition Website Clean Cities Coordinator Mike Quilty Mike Quilty served on the Rogue Valley Clean Cities Coalition (RVCCC) Board for three years prior to becoming RVCCC's Fleet Outreach Coordinator in late 2010. He was appointed RVCCC's Coordinator in March of 2013. Quilty is active in Oregon transportation policy issues. He is currently Chair of the Rogue Valley Metropolitan Planning Organization Policy Committee (2005 to Present), and is a member of the: Oregon Rail Leadership

299

Graphene quantum dots for valley-based quantum computing: A feasibility study  

E-Print Network [OSTI]

At the center of quantum computing1 realization is the physical implementation of qubits - two-state quantum information units. The rise of graphene2 has opened a new door to the implementation. Because graphene electrons simulate two-dimensional relativistic particles with two degenerate and independent energy valleys,3 a novel degree of freedom (d.o.f.), namely, the valley state of an electron, emerges as a new information carrier.4 Here, we expand the Loss-DiVincenzo quantum dot (QD) approach in electron spin qubits,5,6 and investigate the feasibility of double QD (DQD) structures in gapful graphene as "valley qubits", with the logic 0 / 1 states represented by the "valley" singlet / triplet pair. This generalization is characterized by 1) valley relaxation time ~ O(ms), and 2) electric qubit manipulation on the time scale ~ ns, based on the 1st-order "relativistic effect" unique in graphene. A potential for valley-based quantum computing is present.

G. Y. Wu; N. -Y. Lue; L. Chang

2011-04-04T23:59:59.000Z

300

Independent Oversight Review, Savannah River Site - July 2011 | Department  

Broader source: Energy.gov (indexed) [DOE]

July 2011 July 2011 Independent Oversight Review, Savannah River Site - July 2011 July 2011 Review of Electrical System Configuration Management and Design Change Control at the Savannah River Site, Waste Solidification Building Project The Office of Safety and Emergency Management Evaluations, within the Office of Health, Safety and Security (HSS), conducted an independent review of selected engineering processes for the Waste Solidification Building (WSB) safety significant electrical system at the Savannah River Site (SRS). The purpose of this review was to assess the adequacy of the contractor's electrical system configuration management and design change control during construction and initial system turnover activities. Interviews and reviewed WSB Project Electrical System DCFs, an SDDR, and

Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Glacier mass balances (19932001), Taylor Valley, McMurdo Dry Valleys, Antarctica  

E-Print Network [OSTI]

of measurement error and the resulting uncertainty in the mass-balance calculations. STUDY SITE Taylor Valley

Fountain, Andrew G.

302

ELECTRICAL DISTRICT No.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ELECTRICAL ELECTRICAL DISTRICT No. 4 PINAL COUNTY POST OFFICE BOX 605- ELOY, ARIZONA 85131 Telephone: (520) 468-7338 BOARD OF DIRECTORS: DISTRICT MANAGER: MARK HAMILTON, CHAIRMAN RON McEACHERN CHARLES BUSH ThOMAS W. SCM JAMES F. SHEDD WILLIAM WARREN VIA ELECTRONIC MAIL TO: DSWFPP~2wapa.gov July 19, 2010 Mr. Darrick Moe Desert Southwest Regional Manager Western Area Power Authority P.O. Box 6457 Phoenix, AZ 85005-6457 Re: SPPR Proposed ED5 to Palo Verde Transmission Project Electrical District Number Four of Pinal County ("ED4") and Electrical District Number Five of Pinal County ("ED5") are members of the Southwest Public Power Resource ("SPPR") Group and support the ED5 to Palo Verde Project Statement of Interest ("SOT") submitted by the SPPR Group. ED4 is also a participant in the Southeast Valley C'SEV") Project and has offered to

303

Innovation and Social Capital in Silicon Valley  

E-Print Network [OSTI]

Innovation and Social Capital in Silicon Valley * BRIEpath from social capital to innovation has been identified.social capital has for economic development and innovation.

Kenney, Martin; Patton, Donald

2003-01-01T23:59:59.000Z

304

Hydrologic Monitoring Summary Long Valley Caldera, California...  

Open Energy Info (EERE)

Caldera, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Hydrologic Monitoring Summary Long Valley Caldera, California Abstract Abstract...

305

Tennessee Valley Shorebird Assessment Project SHOREBIRD CONSERVATION AND MONITORING  

E-Print Network [OSTI]

Assessment Project SHORT-BILLED DOWITCHER WADES IN DEEPER WATER, NOTE LONG BILL DUNLIN #12;5 Tennessee Valley1 Tennessee Valley Shorebird Assessment Project SHOREBIRD CONSERVATION AND MONITORING Tennessee Valley Shorebird Assessment Project RESOURCES US SHOREBIRD CONSERVATOIN PLAN http

Gray, Matthew

306

Assessment of the suitability of agricultural waste water for geothermal power plant cooling in the Imperial Valley. I. Water quality  

SciTech Connect (OSTI)

Evaluation of the quality of agricultural waste water is the first step in assessing the sitability of agricultural waste water for geothermal power plant cooling. In this study samples of agricultural waste water from the New and Alamo rivers located in the Imperial Valley of California are analyzed. Determinations of standard water quality parameters, solids content, and inorganic compositions of the solids are made. The results are compared with data on samples of irrigation water and steam condensate also obtained from sites in the Imperial Valley. The data are evaluated in relation to cooling tower operation, waste generation, and waste disposal.

Morris, W.F.; Rigdon, L.P.

1981-09-01T23:59:59.000Z

307

Enforcement Letter, West Valley Nuclear Services- March 30, 1998  

Broader source: Energy.gov [DOE]

Issued to West Valley Nuclear Services related to Hazard Analysis, Design Review, Work Control Implementation, and a Contamination Event at the West Valley Demonstration Project

308

Kinarot Jordan Valley Technological Incubator | Open Energy Informatio...  

Open Energy Info (EERE)

Kinarot Jordan Valley Technological Incubator Jump to: navigation, search Name: Kinarot - Jordan Valley Technological Incubator Place: Israel Sector: Services Product: General...

309

2012 Annual Planning Summary for West Valley Demonstration Project...  

Broader source: Energy.gov (indexed) [DOE]

West Valley Demonstration Project 2012 Annual Planning Summary for West Valley Demonstration Project The ongoing and projected Environmental Assessments and Environmental Impact...

310

FTCP Site Specific Information - West Valley Demonstration Project...  

Broader source: Energy.gov (indexed) [DOE]

West Valley Demonstration Project FTCP Site Specific Information - West Valley Demonstration Project Annual Workforce Analysis and Staffing Plan Report Calendar Year 2012...

311

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...  

Open Energy Info (EERE)

Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area...

312

Pressure Temperature Log At Fish Lake Valley Area (DOE GTP) ...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Fish Lake Valley Area (DOE GTP)...

313

Geothermometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (DOE GTP) Exploration...

314

Thermochronometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Fish Lake Valley Area (DOE GTP) Exploration...

315

Santa Clara Valley Transportation Authority and San Mateo County...  

Broader source: Energy.gov (indexed) [DOE]

Santa Clara Valley Transportation Authority and San Mateo County Transit District Santa Clara Valley Transportation Authority and San Mateo County Transit District Fuel Cell...

316

Geographic Information System At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

Geographic Information System At Dixie Valley Geothermal Area (Iovenitti, Et Al., 2012) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique...

317

Injectivity Test At Long Valley Caldera Geothermal Area (Morin...  

Open Energy Info (EERE)

Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley...

318

DOE - Office of Legacy Management -- West Valley Demonstration...  

Office of Legacy Management (LM)

Valley Demonstration Project - NY 23 FUSRAP Considered Sites Site: West Valley Demonstration Project (NY.23) Designated Name: Alternate Name: Location: Evaluation Year: Site...

319

EV Community Readiness projects: Delaware Valley Regional Planning...  

Broader source: Energy.gov (indexed) [DOE]

Delaware Valley Regional Planning Commission (PA); Metropolitan Energy Information Center, Inc. (KS, MO) EV Community Readiness projects: Delaware Valley Regional Planning...

320

DOE - Office of Legacy Management -- Tennessee Valley Authority...  

Office of Legacy Management (LM)

Tennessee Valley Authority - AL 01 FUSRAP Considered Sites Site: TENNESSEE VALLEY AUTHORITY (AL.01 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated...

Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Santa Clara Valley Transportation Authority and San Mateo County...  

Office of Environmental Management (EM)

Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results Santa Clara Valley Transportation Authority and San...

322

Exploratory Well At Long Valley Caldera Geothermal Area (Smith...  

Open Energy Info (EERE)

Home Exploration Activity: Exploratory Well At Long Valley Caldera Geothermal Area (Smith & Rex, 1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area...

323

Field Mapping At Dixie Valley Geothermal Area (Smith, Et Al....  

Open Energy Info (EERE)

Field Mapping At Dixie Valley Geothermal Area (Smith, Et Al., 2001) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique Field Mapping Activity...

324

DRINKING WATER TESTING CLINICS Northern Shenandoah Valley  

E-Print Network [OSTI]

DRINKING WATER TESTING CLINICS Northern Shenandoah Valley JUNE 2013 Does your water come) 828-1120. #12; DRINKING WATER TESTING CLINICS Northern Shenandoah Valley JUNE 2013 County FollowUp Meeting Tuesday, August 6th , 78:30 p.m. Room 101 Page: VCEPage County, 215 West Main

Liskiewicz, Maciej

325

The Valley Foundation School of Nursing  

E-Print Network [OSTI]

The Valley Foundation School of Nursing One Washington Square San José, CA 95192-0057 Voice: 408, Long Beach, Los Angeles, Maritime Academy Monterey Bay, Northridge, Pomona Sacramento, San Bernardino 2012-2013 is a busy one at The Valley Foundation School of Nursing! Our new curriculum will be fully

Su, Xiao

326

ALLISON DVORAK CENTRAL VALLEY GROUNDWATER BANK OPERATIONS  

E-Print Network [OSTI]

i ALLISON DVORAK CENTRAL VALLEY GROUNDWATER BANK OPERATIONS: HYDROLOGY, GROUNDWATER OPERATING RULE affect California's SWP (State Water Project) and CVP (Central Valley Project) water supply deliveries-operation of groundwater storage, both north and south of the Delta, can increase long-term average project deliveries

Lund, Jay R.

327

West Valley Accomplishments: Year in Review  

Broader source: Energy.gov [DOE]

WEST VALLEY, N.Y. – EM and its contractor at the West Valley Demonstration Project (WVDP) made significant progress in decommissioning the former nuclear fuel reprocessing center this year, with a focus on preparing for high-level waste (HLW) relocation, deactivation and demolition of site facilities and shipment of waste for off-site disposal.

328

Ohio River Greenway Development Commission (Indiana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ohio River Greenway Development Commission (Indiana) Ohio River Greenway Development Commission (Indiana) Ohio River Greenway Development Commission (Indiana) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Environmental Regulations Siting and Permitting Provider Ohio River Greenway Commission

329

River Basins Advisory Commissions (South Carolina) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

River Basins Advisory Commissions (South Carolina) River Basins Advisory Commissions (South Carolina) River Basins Advisory Commissions (South Carolina) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Environmental Regulations Provider Catawba Wateree River Basin Advisory Commission

330

Delaware River Basin Commission (Multiple States) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Delaware River Basin Commission (Multiple States) Delaware River Basin Commission (Multiple States) Delaware River Basin Commission (Multiple States) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Systems Integrator Savings Category Water Buying & Making Electricity Home Weatherization Program Info Start Date 1961 State Delaware Program Type Environmental Regulations Siting and Permitting Provider Project Review Section The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states (Pennsylvania, New York, New

331

Clean Cities: Treasure Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Treasure Valley Clean Cities Coalition Treasure Valley Clean Cities Coalition The Treasure Valley Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Treasure Valley Clean Cities coalition Contact Information Beth Baird 208-384-3984 bbaird@cityofboise.org Coalition Website Clean Cities Coordinator Beth Baird Photo of Beth Baird Beth Baird was involved in the development of the Treasure Valley Clean Cities coalition (TVCCC) and has been the coalition's coordinator since its designation in 2006. Baird has been employed at the city of Boise Public Works Department for 14 years. During that time, she developed the air quality program for the city of Boise. Most recently, she has taken on responsibilities for the Climate

332

Pumpernickel Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Pumpernickel Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

333

NPP Tropical Forest: Magdalena Valley, Colombia  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Magdalena Valley, Colombia, 1970-1971 Magdalena Valley, Colombia, 1970-1971 Data Citation Cite this data set as follows: Folster, H. 1999. NPP Tropical Forest: Magdalena Valley, Colombia, 1970-1971. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. Description Biomass, litterfall, and nutrient content of above-ground vegetation and soil were determined for a tropical seasonal evergreen forest at Magdalena Valley, Colombia, during an 18-month period in 1970 and 1971. The study was sponsored by the German Research Foundation. Of primary interest were biomass and nutrient dynamics of a forest stand that had developed atop a perched water table on a typical valley terrace. Perched water tables give rise to pseudogley soils with low pH, prolonged

334

Bolton Valley Resort | Open Energy Information  

Open Energy Info (EERE)

Bolton Valley Resort Bolton Valley Resort Jump to: navigation, search Name Bolton Valley Resort Facility Bolton Valley Resort Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Location Bolton Valley VT Coordinates 44.4144038°, -72.83469647° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4144038,"lon":-72.83469647,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

335

Clean Cities: Antelope Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Antelope Valley Clean Cities Coalition Antelope Valley Clean Cities Coalition The Antelope Valley Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Antelope Valley Clean Cities coalition Contact Information Curtis Martin 661-492-5916 visioncc@verizon.net Coalition Website Clean Cities Coordinator Curtis Martin Photo of Curtis Martin Curtis Martin has been the coordinator for the Antelope Valley Clean Cities coalition since 2008. In addition to his Clean Cities functions, he is also the alternative fuels manager for Robertson's Palmdale Honda in Palmdale, California. As the alternative fuels manager, he is responsible for the sales and marketing of the Civic GX to retail and fleet customers. Martin has been involved in alternative fuels for the past 12 years and has

336

Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site,  

Open Energy Info (EERE)

Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Author Gabriel L. Plank Published Journal Geothermal Resources Council Transactions, 1995 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Citation Gabriel L. Plank. 1995. Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada. Geothermal Resources Council Transactions. 19: (!) . Retrieved from "http://en.openei.org/w/index.php?title=Structure,_Stratigraphy,_and_Tectonics_of_the_Dixie_Valley_Geothermal_Site,_Dixie_Valley,_Nevada&oldid=682622"

337

Integrating High Levels of Renewables into the Lanai Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wind turbine * Run-of-river hydropower * Biomass power * Generator: diesel, gasoline, biogas, alternative and custom fuels, co- fired * Electric utility grid * Microturbine * Fuel...

338

Letter from Pepco Holdings Regarding the Reliability of Electric...  

Broader source: Energy.gov (indexed) [DOE]

Potomac Electric Power Company Comments on Department of Energy's Emergency Order To Resume Limited Operation at Mirant's Potomac River Generating Station and Proposed Mirant...

339

Electric Currents Electric Current  

E-Print Network [OSTI]

coefficient of resistivity Electric Power: = = = Also, = . So, = = 2 = 2 Unit of Power(P): Watt (WChapter 18 Electric Currents #12;Electric Current: Flow of electric charge Current is flow of positive charge. In reality it's the electron moves in solids- Electron current. #12;Ohm's Law : Resistance

Yu, Jaehoon

340

Lumbee River EMC - Residential and Commercial Energy Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Lumbee River EMC - Residential and Commercial Energy Efficiency Lumbee River EMC - Residential and Commercial Energy Efficiency Program Lumbee River EMC - Residential and Commercial Energy Efficiency Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Programmable Thermostat: $15 Central AC: $25 - $50 Heat Pump: $60 - $195 Geothermal Heat Pump: $350 Water Heaters: $45 - $75 Heat Pump Water Heater: $425 Refrigerator/Freezer Recycling: $50 - $75 Provider Lumbee River Electric Membership Corporation Lumbee River EMC (LREMC) offers rebates to its residential customers who purchase and install qualified energy efficient products or services.

Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

O:\ELECTRIC\ORDERS\ea-239 ord.PDF  

Broader source: Energy.gov (indexed) [DOE]

Aroostook Valley Electric Company Aroostook Valley Electric Company Order No. EA-239 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C. §824a(e)). On April 27, 2001, the Office of Fossil Energy (FE) of the Department of Energy (DOE) received an application from Aroostook Valley Electric Company (AVEC) to transmit electric energy from the United States to Canada. AVEC, a Maine corporation, owns and operates a 31-MW wood- burning generation facility located in Fort Fairfield, Maine ("the Plant"). The Plant originally was owned by Fairfield Energy Venture (Fairfield). On October 8, 1985, DOE issued an order (ERA Docket PP-83EA) authorizing Fairfield and

342

Valley Electric Assn, Inc (Nevada) | Open Energy Information  

Open Energy Info (EERE)

9840 9840 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1]Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service - Large Commercial Greater than 250kW Industrial General Service-Less than 50kW Residential General Service-Small Commercial-50-249 kW Commercial General Service-Small Commercial-50-249 kW(Primary Metering) Commercial Irrigation Service Commercial Outdoor Lighting Service-100 W HPS Lighting Outdoor Lighting Service-175 W MV Lighting

343

Murfreesboro Electric Department - Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Murfreesboro Electric Department - Energy Efficiency Rebate Program Murfreesboro Electric Department - Energy Efficiency Rebate Program Murfreesboro Electric Department - Energy Efficiency Rebate Program < Back Eligibility Construction Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Single-Family Homes: $1,500 Multi-Family Homes: Up to $100 per unit Water Heater: $25 - $100 Provider Murfreesboro Electric Department Murfreesboro Electric Department, in collaboration with the Tennessee Valley Authority, offers incentives to home builders and homeowners for the

344

Cookeville Electric Department - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Cookeville Electric Department - Residential Energy Efficiency Cookeville Electric Department - Residential Energy Efficiency Rebate Program Cookeville Electric Department - Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Utility Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Energy Audit Suggested Measures: $500 Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Heat Pump: $150 Water Heater: $100 Energy Audit Suggested Measures: 50% of cost Provider Cookeville Electric Department Cookeville Electric Department, in collaboration with the Tennessee Valley Authority, offers an incentive for residential customers to install energy efficient equipment through the ''energy right'' rebate program. Rebates

345

Gibson Electric Membership Corporation - Energy Efficiency Rebates |  

Broader source: Energy.gov (indexed) [DOE]

Gibson Electric Membership Corporation - Energy Efficiency Rebates Gibson Electric Membership Corporation - Energy Efficiency Rebates Gibson Electric Membership Corporation - Energy Efficiency Rebates < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Energy Right New Home: $300 - $400 Water Heater: $100 - $250 Provider Gibson Electric Membership Corporation Gibson Electric Membership Corporation, in collaboration with the Tennessee Valley Authority, promotes energy efficient building design through its [http://www.energyright.com/ ''energy right''] New Homes Program. Rebates

346

Interpretation of electromagnetic soundings in the Raft River geothermal  

Open Energy Info (EERE)

Interpretation of electromagnetic soundings in the Raft River geothermal Interpretation of electromagnetic soundings in the Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Interpretation of electromagnetic soundings in the Raft River geothermal area, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: An electromagnetic (EM) controlled source survey was conducted in the Raft River Valley, near Malta, Idaho. The purpose of the survey was: to field test U.S. Geological Survey extra-low-frequency (ELF) equipment using a grounded wire source and receiver loop configuration (which is designed to measure the vertical magnetic field (Hz) at the loop center for various frequencies); to present an example of the EM sounding data and interpretations using a previously developed inversion program; and (3) to

347

Snake River Plain Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Region Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Snake River Plain Geothermal Region Details Areas (8) Power Plants (1) Projects (2) Techniques (11) Map: {{{Name}}} "The Snake River Plain is a large arcuate structural trough that characterizes the topography of southern Idaho that can be divided into three sections: western, central, and eastern. The western Snake River Plain is a large tectonic graben or rift valley filled with several km of lacustrine (lake) sediments; the sediments are underlain by rhyolite and basalt, and overlain by basalt. The western plain began to form around 11-12 Ma with the eruption of rhyolite lavas and ignimbrites. The western plain is not parallel to North American Plate motion, and lies at a high angle to the central and eastern Snake River Plains. Its morphology is

348

Ganges Valley Aerosol Experiment: Science and Operations Plan  

SciTech Connect (OSTI)

The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9–12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6–12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile emissions; and dust. The extended AMF deployment will enable measurements under different regimes of the climate and aerosol abundance—in the wet monsoon period with low aerosol loading; in the dry, hot summer with aerosols dispersed throughout the atmospheric column; and in the cool, dry winter with aerosols confined mostly to the boundary later and mid-troposphere. Each regime, in addition, has its own distinct radiative and atmospheric dynamic drivers. The aircraft operational phase will assist in characterizing the aerosols at times when they have been observed to be at the highest concentrations. A number of agencies in India will collaborate with the proposed field study and provide support in terms of planning, aircraft measurements, and surface sites. The high concentration of aerosols in the upper Ganges Valley, together with hypotheses involving several possible mechanisms with direct impacts on the hydrologic cycle of the region, gives us a unique opportunity to generate data sets that will be useful both in understanding the processes at work and in providing answers regarding the effects of aerosols on climate in a region where the perturbation is the highest.

Kotamarthi, VR

2010-06-21T23:59:59.000Z

349

Red River Compact (Texas)  

Broader source: Energy.gov [DOE]

The Red River Compact Commission administers the Red River Compact to ensure that Texas receives its equitable share of quality water from the Red River and its tributaries as apportioned by the...

350

Edmund G. Brown, Jr. IMPERIAL VALLEY AND TEHACHAPI  

E-Print Network [OSTI]

Edmund G. Brown, Jr. Governor IMPERIAL VALLEY AND TEHACHAPI IMPLEMENTATION GROUPS of the Transmission to Access Renewable Resources in the Imperial Valley C­V. 1 Imperial Valley Study Group List, Heavy Power Flow Data C­V. 2 Imperial Valley Study Group, Appendix B, Transmission Planning

351

West Valley Demonstration Project Site Environmental Report Calendar Year 2000  

SciTech Connect (OSTI)

The annual site environmental monitoring report for the West Valley Demonstration Project nuclear waste management facility.

NONE

2001-08-31T23:59:59.000Z

352

Enterprise Assessments Review, West Valley Demonstration Project – December 2014  

Broader source: Energy.gov [DOE]

Review of the West Valley Demonstration Project Emergency Management Program Technical Basis and Emergency Preparedness

353

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Lualualei Valley Geothermal Area (Redirected from Lualualei Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

354

Scenic Rivers Act (Virginia)  

Broader source: Energy.gov [DOE]

Virginia Scenic Rivers Program’s intent is to identify, designate and help protect rivers and streams that possess outstanding scenic, recreational, historic and natural characteristics of...

355

Platte River Cooperative Agreement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Platte River Cooperative Agreement Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Platte River Cooperative Agreement PEIS, NE, WY,...

356

River Basin Commissions (Indiana)  

Broader source: Energy.gov [DOE]

This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

357

Maine Rivers Policy (Maine)  

Broader source: Energy.gov [DOE]

The Maine Rivers Policy accompanies the Maine Waterway Development and Conservation Act and provides additional protection for some river and stream segments, which are designated as “outstanding...

358

Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC -  

Broader source: Energy.gov (indexed) [DOE]

Preliminary Notice of Violation, Savannah River Nuclear Solutions, Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC - WEA-2010-05 Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC - WEA-2010-05 October 7, 2010 Preliminary Notice of Violation issued to Savannah River Nuclear Solutions, LLC related to a Nitric Acid Spill Event and an Electrical Arc Flash Injury Event at the Savannah River Site This letter refers to the Office of Health, Safety and Security's Office of Enforcement investigation into the facts and circumstances surrounding the nitric acid spill event that occurred in F Area on August 18, 2009, and the electrical arc flash injury that occurred in the D Area powerhouse on September 23, 2009, at the Savannah River Site. Based on an evaluation of the evidence in this matter, the U.S. Department of Energy (DOE) has

359

Sabine River Compact (Multiple States) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sabine River Compact (Multiple States) Sabine River Compact (Multiple States) Sabine River Compact (Multiple States) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Texas Program Type Siting and Permitting Provider Sabine River Compact Commission The Sabine River Compact Commission administers the Sabine River Compact to ensure that Texas receives its equitable share of quality water from the

360

Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California  

E-Print Network [OSTI]

spawning areas in the Hanford Reach, Columbia river.spawning habitat use in the Hanford Reach, Columbia River.salmon stranding on the Hanford Reach of the Columbia River.

Williams, John G.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Peachtree Valley and Valley Town mission : a baptist recategorization of a Cherokee landscape.  

E-Print Network [OSTI]

??Peachtree Valley in Clay county, North Carolina has a long history of diversity in plant, animal, and human habitation. The Cherokee, who have inhabited the… (more)

Owen, James Anthony

2012-01-01T23:59:59.000Z

362

Big Rivers Electric Corp | Open Energy Information  

Open Energy Info (EERE)

NERC SERC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

363

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Geothermal Area Gabbs Valley Geothermal Area (Redirected from Gabbs Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

364

Lighthouse Solar Diablo Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Logo: Lighthouse Solar Diablo Valley Name Lighthouse Solar Diablo Valley Address 2420 Sand Creek Road - C1308 Place Brentwood, CA Zip 94513 Sector Solar Phone number (925) 420-5121 Website http://www.lighthousesolar.com Coordinates 37.9434593°, -121.738203° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9434593,"lon":-121.738203,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

Dakota Valley Wind Project | Open Energy Information  

Open Energy Info (EERE)

Dakota Valley Wind Project Dakota Valley Wind Project Jump to: navigation, search Name Dakota Valley Wind Project Facility Dakota Valley Sector Wind energy Facility Type Community Wind Location SD Coordinates 42.548355°, -96.524841° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.548355,"lon":-96.524841,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

Unalakleet Valley Elec Coop | Open Energy Information  

Open Energy Info (EERE)

Unalakleet Valley Elec Coop Unalakleet Valley Elec Coop Jump to: navigation, search Name Unalakleet Valley Elec Coop Place Alaska Utility Id 40548 Utility Location Yes Ownership C NERC Location AK NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial and Small Power Service Commercial Residential Service Residential Average Rates Residential: $0.3920/kWh Commercial: $0.3680/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Unalakleet_Valley_Elec_Coop&oldid=41190

367

Harquahala Valley Pwr District | Open Energy Information  

Open Energy Info (EERE)

Harquahala Valley Pwr District Harquahala Valley Pwr District Jump to: navigation, search Name Harquahala Valley Pwr District Place Arizona Utility Id 8139 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Gin Commercial Irrigation Pumping Commercial Non-Irrigation Agriculture Commercial Average Rates Industrial: $0.0565/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Harquahala_Valley_Pwr_District&oldid=410799

368

Sheep Valley Ranch | Open Energy Information  

Open Energy Info (EERE)

Sheep Valley Ranch Sheep Valley Ranch Jump to: navigation, search Name Sheep Valley Ranch Facility Sheep Valley Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Two Dot Wind LLC Location Wheatland MT Coordinates 46.45°, -110.07° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.45,"lon":-110.07,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

369

Lighthouse Solar Indian Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Logo: Lighthouse Solar Indian Valley Name Lighthouse Solar Indian Valley Address 5062 McLean Station Road Place Green Lane, PA Zip 18054 Sector Solar Phone number (215) 541-5464 Website http://www.lighthousesolar.com Coordinates 40.350689°, -75.475961° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.350689,"lon":-75.475961,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

SAVE THE DATE!!! The Silicon Valley  

E-Print Network [OSTI]

SAVE THE DATE!!! The Silicon Valley 3rd Annual Social Innovation Leadership Forum 2014 (SILF 2014 towards a better tomorrow... Register for the event today! The Social Innovation Leadership Forum (SILF

Su, Xiao

371

VALMET-A valley air pollution model  

SciTech Connect (OSTI)

Following a thorough analysis of meteorological data obtained from deep valleys of western Colorado, a modular air-pollution model has been developed to simulate the transport and diffusion of pollutants released from an elevated point source in a well-defined mountain valley during the nighttime and morning transition periods. This initial version of the model, named VALMET, operates on a valley cross section at an arbitrary distance down-valley from a continuous point source. The model has been constructed to include parameterizations of the major physical processes that act to disperse pollution during these time periods. The model has not been fully evaluated. Further testing, evaluations, and development of the model are needed. Priorities for further development and testing are provided.

Whiteman, C.D.; Allwine, K.J.

1983-09-01T23:59:59.000Z

372

Lighthouse Solar Central Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Logo: Lighthouse Solar Central Valley Name Lighthouse Solar Central Valley Address 2135 McCall Ave. Place Selma, CA Zip 93662 Sector Solar Phone number (559) 260-0796 Website http://www.lighthousesolar.com Coordinates 36.564699°, -119.611283° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.564699,"lon":-119.611283,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

373

Total field aeromagnetic map of the Raft River known Geothermal Resource  

Open Energy Info (EERE)

field aeromagnetic map of the Raft River known Geothermal Resource field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Total field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; MAGNETIC SURVEYS; MAPS; RAFT RIVER VALLEY; AERIAL SURVEYING; GEOTHERMAL RESOURCES; IDAHO; KGRA; FEDERAL REGION X; GEOPHYSICAL SURVEYS; NORTH AMERICA; RESOURCES; SURVEYS; USA Author(s): Geological Survey, Denver, CO (USA) Published: DOE Information Bridge, 1/1/1981 Document Number: Unavailable DOI: 10.2172/5456508 Source: View Original Report Aeromagnetic Survey At Raft River Geothermal Area (1981) Raft River Geothermal Area

374

NREL: Learning - Geothermal Electricity Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Production Electricity Production Photo of a geothermal power plant. This geothermal power plant generates electricity for the Imperial Valley in California. Geothermal power plants use steam produced from reservoirs of hot water found a few miles or more below the Earth's surface to produce electricity. The steam rotates a turbine that activates a generator, which produces electricity. There are three types of geothermal power plants: dry steam, flash steam, and binary cycle. Dry Steam Dry steam power plants draw from underground resources of steam. The steam is piped directly from underground wells to the power plant where it is directed into a turbine/generator unit. There are only two known underground resources of steam in the United States: The Geysers in northern California and Yellowstone National Park in Wyoming, where there's

375

Hypocenter for the 1979 Imperial Valley earthquake  

SciTech Connect (OSTI)

Using P- and S-wave arrival times with the laterally varying P-wave velocity structure derived from analysis of a refraction survey of the Imperial Valley, a hypocenter is ascertained for the October 15, 1979, Imperial Valley earthquake: Latitude 32/sup 0/39.50' N, Longitude 115/sup 0/19.80' W, Depth 8.0 km, Time 23:16:54.40 GMT.

Archuleta, R.J.

1982-06-01T23:59:59.000Z

376

Re: Potomac River Generating Station Department of Energy, Case No. EO-05-01: Potomac Electric Power Company (PEPCO) Concerning Planned Outages of the 230 kV circuits  

Broader source: Energy.gov [DOE]

Docket EO-05-01: Pursuant to the United States Department of Energy ("DOE") Order No. 202-05-3, issued December 20, 2005 ("DOE Potomac River Order") Pepco hereby files this revised notice of the...

377

Salmon River Habitat Enhancement, 1984 Annual Report.  

SciTech Connect (OSTI)

This report has four volumes: a Tribal project annual report (Part 1) and three reports (Parts 2, 3, and 4) prepared for the Tribes by their engineering subcontractor. The Tribal project annual report contains reports for four subprojects within Project 83-359. Subproject I involved habitat and fish inventories in Bear Valley Creek, Valley County, Idaho that will be used to evaluate responses to ongoing habitat enhancement. Subproject II is the coordination/planning activities of the Project Leader in relation to other BPA-funded habitat enhancement projects that have or will occur within the traditional Treaty (Fort Bridger Treaty of 1868) fishing areas of the Shoshone-Bannock Tribes, Fort Hall Reservation, Idaho. Subproject III involved habitat and fish inventories (pretreatment) and habitat problem identification on the Yankee Fork of the Salmon River (including Jordan Creek). Subproject IV during 1985 involved habitat problem identification in the East Fork of the Salmon River and habitat and fish inventories (pretreatment) in Herd Creek, a tributary to the East Fork.

Konopacky, Richard C.

1986-04-01T23:59:59.000Z

378

Aquaculture in the Imperial Valley -- A geothermal success story  

SciTech Connect (OSTI)

The Salton Sea and Imperial Valley area of southern California has long been recognized as a hot spot of geothermal development. In the geothermal industry, this area has for some time been synonymous with electric power generation projects. Starting with the first plant in East Mesa in 1979, geothermal power has increased over the years to the present 400+ MW of installed capacity in the three primary areas of Salton Sea, Heber and East Mesa. Although most in the industry are aware of the millions of kilowatt-hours annually produced in this desert oasis of development, they remain surprisingly uninformed about the Valley`s other geothermal industry -- aquaculture. At present, there are approximately 15 fish farming (or aquaculture) operations clustered, for the most part, around the Salton Sea. All of these farms use geothermal fluids to control the temperature of the fish culture facilities so as to produce larger fish in a shorter period of time and to permit winter production which would otherwise not be possible. In aggregate, these farms produce on the order of 10,000,000 lbs of fish per year most of which is sold into the California market. Principle species are catfish, striped bass and tilapia. For the past several years, tilapia has been the fastest growing part of the aquaculture industry. In 1996, the total US consumption of tilapia was 62,000 lbs. Of this, only 16,000,000 lbs (26%) was domestically produced and the balance imported. The primary market for the fish on the West Coast is among the Asian-American populations in the major cities. Fish are shipped and sold liver at the retail level.

Rafferty, K. [Geo-Heat Center, Klamath Falls, OR (United States)

1999-03-01T23:59:59.000Z

379

Preliminary Notice of Violation, Savannah River Nuclear Solutions...  

Office of Environmental Management (EM)

August 18, 2009, and an electrical arc flash event with that occurred in the D Area powerhouse on September 23, 2009, at the Savannah River Site. Preliminary Notice of Violation,...

380

South River EMC- Solar Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

South River Electric Membership Corporation (EMC) is providing rebates to encourage their customers to install solar water heating systems. To be eligible for the rebate solar collectors must have...

Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

E-Print Network 3.0 - aburra valley quo Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Valley Searles Valley TronaWestend Ridgecrest Searles... Goldfield Lida Tempiute Gold Point Beatty Amargosa Valley Mercury Indian Springs PiocheCaselton Prince... Chloride...

382

Project #31: Connecticut River  

Science Journals Connector (OSTI)

GEOMORPHIC SETTING: At the project location, the Connecticut River has an annual average discharge of...

Wendi Goldsmith; Donald Gray; John McCullah

2014-01-01T23:59:59.000Z

383

FOOD AND FEEDING HABITS OF JUVENILE ATLANTIC TOMCOD, MICROGADUS TOMCOD, FROM HAVERSTRAW BAY, HUDSON RIVER  

E-Print Network [OSTI]

-water quality analysis: Hudson River. National Comm. on Water Quality. NTIS PB-251099. Manuscript accepted June biological monitoring program for a fossil fuel steam electric generating station located at Hudson River mile- point 37.5. The study area (Figure 1) encompassed Hudson River milepoints 37.5-41.5, as measured

384

Controls on morphological variability and role of stream power distribution pattern, Yamuna River, western India  

Science Journals Connector (OSTI)

Abstract Understanding the controls on the morphological variability of river systems constitutes one of the fundamental questions in geomorphic investigation. Channel morphology is an important indicator of river processes and is of significance for mapping the hydrology-ecologic connectivity in a river system and for predicting the future trajectory of river health in response to external forcings. This paper documents the spatial morphological variability and its natural and anthropogenic controls for the Yamuna River, a major tributary of the Ganga River, India. The Yamuna River runs through a major urban centre i.e. Delhi National Capital Region. The Yamuna River was divided into eight geomorphically distinct reaches on the basis of the assemblages of geomorphic units and the association of landscape, valley and floodplain settings. The morphological variability was analysed through stream power distribution and sediment load data at various stations. Stream power distribution of the Yamuna River basin is characterised by a non-linear pattern that was used to distinguish (a) high energy ‘natural’ upstream reaches, (b) ‘anthropogenically altered’, low energy middle stream reaches, and (c) ‘rejuvenated’ downstream reaches again with higher stream power. The relationship between stream power and channel morphology in these reaches was integrated with sediment load data to define the maximum flow efficiency (MFE) as the threshold for geomorphic transition. This analysis supports the continuity of river processes and the significance of a holistic, basin-scale approach rather than isolated local scale analysis in river studies.

Nupur Bawa; Vikrant Jain; Shashank Shekhar; Niraj Kumar; Vikas Jyani

2014-01-01T23:59:59.000Z

385

Geothermal resource assessment of the Animas Valley, Colorado. Resource Series 17  

SciTech Connect (OSTI)

The Colorado Geological Survey, has been engaged in assessing the nature and extent of Colorado's geothermal resources. The program has included geologic and hydrogeologic reconnaissance, and geophysical and geochemical surveys. In the Animas Valley, in southwestern Colorado, two groups of thermal springs exist: Pinkerton Springs to the north, and Tripp-Trimble-Stratten Springs about 5 miles (8.1 Km) south of Pinkerton. The geothermal resources of the Animas Valley were studied. Due to terrain problems in the narrow valley, a soil mercury survey was conducted only at Tripp-Trimble Stratten, while an electrical D.C. resistivity survey was limited to the vicinity of Pinkerton. Although higher mercury values tended to be near a previously mapped fault, the small extent of the survey ruled out conclusive results. Consistent low resistivity zones interpreted from the geophysical data were mapped as faults near Pinkerton, and compared well with aerial photo work and spring locations. This new information was added to reconnaissance geology and hydrogeology to provide several clues regarding the geothermal potential of the valley. Hydrothermal minerals found in faults in the study area are very similar to ore mined in a very young mountain range, nearby. Groundwater would not need to circulate very deeply along faults to attain the estimated subsurface temperatures present in the valley. The water chemistry of each area is unique. Although previously incompletely manned, faulting in the area is extensive. The geothermal resources in the Animas Valley are fault controlled. Pinkerton and Tripp-Trimble-Stratten are probably not directly connected systems, but may have the same source at distance. Recharge to the geothermal system comes from the needle and La Plata Mountains, and the latter may also be a heat source. Movement of the thermal water is probably primarily horizontal, via the Leadville Limestone aquifer.

McCarthy, K.P.; Zacharakis, T.G.; Ringrose, C.D.

1982-01-01T23:59:59.000Z

386

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

May 21, 2013 May 21, 2013 CX-010489: Categorical Exclusion Determination Salt Batch 7 Qualification CX(s) Applied: B3.6 Date: 05/21/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office May 14, 2013 CX-010497: Categorical Exclusion Determination Electrical Operations to Perform Yard Maintenance in Electrical Substations CX(s) Applied: B1.3 Date: 05/14/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office May 14, 2013 CX-010496: Categorical Exclusion Determination Corrosion Tests on Carbon Steel Exposed to Oxalic Acid and a Sludge Simulant CX(s) Applied: B3.6 Date: 05/14/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office May 14, 2013 CX-010495: Categorical Exclusion Determination Advanced Fuel Cycle Initiative (AFCI) Am/Cm Separations

387

Elk River Wind Farm | Open Energy Information  

Open Energy Info (EERE)

River Wind Farm River Wind Farm Jump to: navigation, search Name Elk River Wind Farm Facility Elk River Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner PPM Energy Inc Developer PPM Energy Inc Energy Purchaser Empire District Electric Co. Location Butler County KS Coordinates 37.586575°, -96.547093° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.586575,"lon":-96.547093,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

388

North Sky River | Open Energy Information  

Open Energy Info (EERE)

Sky River Sky River Jump to: navigation, search Name North Sky River Facility North Sky River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Pacific Gas & Electric Location Tehachapi CA Coordinates 35.335578°, -118.186347° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.335578,"lon":-118.186347,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy reve  

SciTech Connect (OSTI)

Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy revenue, while meeting other legal water requirements. Reservoir optimization schemes used in practice do not seek flow regimes that maximize aquatic ecosystem health. Here, we review optimization studies that considered environmental goals in one of three approaches. The first approach seeks flow regimes that maximize hydropower generation, while satisfying legal requirements, including environmental (or minimum) flows. Solutions from this approach are often used in practice to operate hydropower projects. In the second approach, flow releases from a dam are timed to meet water quality constraints on dissolved oxygen (DO), temperature and nutrients. In the third approach, flow releases are timed to improve the health of fish populations. We conclude by suggesting three steps for bringing multi-objective reservoir operation closer to the goal of ecological sustainability: (1) conduct research to identify which features of flow variation are essential for river health and to quantify these relationships, (2) develop valuation methods to assess the total value of river health and (3) develop optimal control softwares that combine water balance modelling with models that predict ecosystem responses to flow.

Jager, Yetta [ORNL; Smith, Brennan T [ORNL

2008-02-01T23:59:59.000Z

390

Spring Valley Pub Utils Comm | Open Energy Information  

Open Energy Info (EERE)

Comm Comm Jump to: navigation, search Name Spring Valley Pub Utils Comm Place Minnesota Utility Id 17824 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial Large Commercial (Demand) Commercial Primary Metering Demand Industrial Residential Residential Residential- All Electric Residential Small Commercial (Demand) Commercial Average Rates Residential: $0.1190/kWh Commercial: $0.0964/kWh

391

Elk Valley Rancheria Energy Efficiency and Alternatives Analysis  

SciTech Connect (OSTI)

Elk Valley Rancheria; Tribe; renewable energy; energy options analysis. The Elk Valley Rancheria, California ('Tribe') is a federally recognized Indian tribe located in Del Norte County, California, in the northwestern corner of California. The Tribe, its members and Tribal enterprises are challenged by increasing energy costs and undeveloped local energy resources. The Tribe currently lacks an energy program. The Tribal government lacked sufficient information to make informed decisions about potential renewable energy resources, energy alternatives and other energy management issues. To meet this challenge efficiently, the Tribe contracted with Frank Zaino and Associates, Inc. to help become more energy self-sufficient, by reducing their energy costs and promoting energy alternatives that stimulate economic development. Frank Zaino & Associates, Inc. provided a high level economic screening analysis based on anticipated electric and natural gas rates. This was in an effort to determine which alternative energy system will performed at a higher level so the Tribe could reduce their energy model by 30% from alternative fuel sources. The feasibility study will identify suitable energy alternatives and conservation methods that will benefit the Tribe and tribal community through important reductions in cost. The lessons learned from these conservation efforts will yield knowledge that will serve a wider goal of executing energy efficiency measures and practices in Tribal residences and business facilities. Pacific Power is the provider of electrical power to the four properties under review at $ 0.08 per Kilowatt-hour (KWH). This is a very low energy cost compared to alternative energy sources. The Tribe used baseline audits to assess current and historic energy usage at four Rancheria owned facilities. Past electric and gas billing statements were retained for review for the four buildings that will be audited. A comparative assessment of the various energy usages will determine the demand, forecast future need and identify the differences in energy costs, narrowing the focus of the work and defining its scope. The Tribe's peak demand periods will help determine the scope of need for alternative energy sources. The Tribe's Energy Efficiency and Alternatives Analysis report included several system investigations which include fuel cells, wind turbines, solar panels, hydro electric, ground source heat pumps, bio mass, cogeneration & energy conservation and implementation for the existing properties. The energy analysis included site visits to collect and analyze historical energy usage and cost. The analysis also included the study of the building systems for the Elk Valley Casino, Elk Valley Rancheria administration complex, United Indian Health Service/Small Community Center complex and the Tribal Gaming Commission Offices. The analysis involved identifying modifications, performing an engineering economic analysis, preparation of a rank ordered list of modifications and preparation of a report to provide recommendations and actions for the Tribe to implement.

Ed Wait, Elk Valley Rancheria; Frank Ziano & Associates, Inc.

2011-11-30T23:59:59.000Z

392

Wekiva River and Wekiva Parkway Protection Acts (Florida) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Wekiva River and Wekiva Parkway Protection Acts (Florida) Wekiva River and Wekiva Parkway Protection Acts (Florida) Wekiva River and Wekiva Parkway Protection Acts (Florida) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Environmental Regulations Siting and Permitting Provider

393

Natural, Scenic, and Recreational River System (Indiana) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Natural, Scenic, and Recreational River System (Indiana) Natural, Scenic, and Recreational River System (Indiana) Natural, Scenic, and Recreational River System (Indiana) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Environmental Regulations Provider Indiana Department of Natural Resources

394

South Carolina Scenic Rivers Act (South Carolina) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Carolina Scenic Rivers Act (South Carolina) Carolina Scenic Rivers Act (South Carolina) South Carolina Scenic Rivers Act (South Carolina) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Environmental Regulations Provider South Carolina Department of Natural Resources

395

Massachusetts Rivers Protection Act (Massachusetts) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rivers Protection Act (Massachusetts) Rivers Protection Act (Massachusetts) Massachusetts Rivers Protection Act (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Massachusetts Program Type Environmental Regulations Provider Department of Environmental Protection The law creates a 200-foot riverfront area that extends on both sides of

396

Niobrara Scenic River Act (Nebraska) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Niobrara Scenic River Act (Nebraska) Niobrara Scenic River Act (Nebraska) Niobrara Scenic River Act (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Nebraska Program Type Siting and Permitting Provider Niobrara Council This act establishes the Niobrara Council, to assist in all aspects of the

397

Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Texas-Louisiana- Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin Appalachian Basin Wind River Basin Eastern Shelf NW Shelf Abo Sussex-Shannon Muddy J Mesaverde- Lance-Lewis Medina/Clinton-Tuscarora Bradford-Venango-Elk Berea-Murrysville Piceance Basin Bossier Williston Basin Ft Worth Basin Davis Bighorn Basin Judith River- Eagle Permian Basin Anadarko Basin Denver Basin San Juan Basin North-Central Montana Area Uinta Basin Austin Chalk Codell-Niobrara Penn-Perm Carbonate Niobrara Chalk Dakota Morrow Mesaverde Thirty- One Cleveland Ozona Canyon Wasatch- Mesaverde Red Fork Mesaverde Granite Wash Stuart City-Edwards Bowdoin- Greenhorn Travis Peak Olmos Cotton Valley Vicksburg Wilcox Lobo Pictured Cliffs Cretaceous Cretaceous-Lower Tertiary Mancos- Dakota Gilmer Lime Major Tight Gas Plays, Lower 48 States

398

River Falls Municipal Utilities - Distributed Solar Tariff | Department of  

Broader source: Energy.gov (indexed) [DOE]

River Falls Municipal Utilities - Distributed Solar Tariff River Falls Municipal Utilities - Distributed Solar Tariff River Falls Municipal Utilities - Distributed Solar Tariff < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info State Wisconsin Program Type Performance-Based Incentive Rebate Amount $0.30/kWh Provider River Falls Municipal Utilities River Falls Municipal Utilities (RFMU), a member of WPPI Energy, offers a special energy purchase rate to its customers that generate electricity using solar photovoltaic (PV) systems. The special rate, $0.30/kilowatt-hour (kWh), is available to all the RFMU customers on a first-come, first-served basis for systems up to 4 kilowatts (kW). The RFMU

399

Yellowstone River Compact (North Dakota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Yellowstone River Compact (North Dakota) Yellowstone River Compact (North Dakota) Yellowstone River Compact (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Water Buying & Making Electricity Program Info State North Dakota Program Type Siting and Permitting The Yellowstone River Compact, agreed to by the States of Montana, North Dakota, and Wyoming, provides for an equitable division and apportionment of the waters of the Yellowstone River, as well as for the conservation,

400

Little Missouri State Scenic River Act (North Dakota) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Little Missouri State Scenic River Act (North Dakota) Little Missouri State Scenic River Act (North Dakota) Little Missouri State Scenic River Act (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Water Buying & Making Electricity Program Info State North Dakota Program Type Siting and Permitting This legislation aims to preserve the Little Missouri River in its present, free-flowing natural condition. The Little Missouri River Commission is

Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Jersey Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jersey Valley Geothermal Area Jersey Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jersey Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: near Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

402

Valley View Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Valley View Wind Farm Facility Valley View Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Juhl Wind Developer Valley View Transmission Energy Purchaser Xcel Energy Location Outside Chandler MN Coordinates 43.905808°, -96.020508° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.905808,"lon":-96.020508,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

Clayton Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Clayton Valley Geothermal Project Clayton Valley Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Clayton Valley Geothermal Project Project Location Information Coordinates 37.755°, -117.63472222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.755,"lon":-117.63472222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

404

Golden Valley Wind Park | Open Energy Information  

Open Energy Info (EERE)

Golden Valley Wind Park Golden Valley Wind Park Facility Golden Valley Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power Location Cassia County ID Coordinates 42.379924°, -113.876892° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.379924,"lon":-113.876892,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

405

Tennessee Valley Authority (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Tennessee Valley Authority Tennessee Valley Authority Place Kentucky Utility Id 18642 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0455/kWh The following table contains monthly sales and revenue data for Tennessee Valley Authority (Kentucky). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 68,976 1,670,768 22 68,976 1,670,768 22

406

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lualualei Valley Geothermal Area Lualualei Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

407

Blue Valley Energy | Open Energy Information  

Open Energy Info (EERE)

Blue Valley Energy Blue Valley Energy Name Blue Valley Energy Address 3075 75th Street Place Boulder, Colorado Zip 80301 Sector Efficiency Product Geothermal heating and cooling systems Website http://www.bluevalleyenergy.co Coordinates 40.030298°, -105.179643° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.030298,"lon":-105.179643,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

408

Great Valley Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Valley Ethanol LLC Valley Ethanol LLC Jump to: navigation, search Name Great Valley Ethanol LLC Place Bakersfield, California Product Developing a 63m gallon ethanol plant in Hanford, CA Coordinates 44.78267°, -72.801369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.78267,"lon":-72.801369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

409

Smoky Valley Wind Project | Open Energy Information  

Open Energy Info (EERE)

Smoky Valley Wind Project Smoky Valley Wind Project Facility Smoky Valley Sector Wind energy Facility Type Community Wind Location KS Coordinates 38.578766°, -97.683563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.578766,"lon":-97.683563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

All Valley Solar | Open Energy Information  

Open Energy Info (EERE)

All Valley Solar All Valley Solar Name All Valley Solar Address 6851 Cahuenga Park Trail Place Los Angeles, California Year founded 1986 Phone number (661) 257-7780 Coordinates 34.1235069°, -118.345082° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1235069,"lon":-118.345082,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

411

Sierra Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Sierra Valley Geothermal Area Sierra Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Sierra Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.71166667,"lon":-120.3216667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

Whitewater Valley Rural EMC | Open Energy Information  

Open Energy Info (EERE)

Valley Rural EMC Valley Rural EMC Jump to: navigation, search Name Whitewater Valley Rural EMC Place Indiana Utility Id 20216 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule GS - General Service Multi Phase Commercial Schedule GS - General Service Single Phase Commercial Schedule GS TOU - General Service Time-of-Use Commercial Schedule IP - Industrial Power Service Industrial Schedule LP - Large Power Service Multi Phase Industrial Schedule LP - Large Power Service Single Phase Industrial

413

West Valley Demonstration Project Waste Management Final Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

WEST VALLEY DEMONSTRATION PROJECT WEST VALLEY DEMONSTRATION PROJECT WASTE MANAGEMENT ENVIRONMENTAL IMPACT STATEMENT FINAL SUMMARY December 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY DOE/EIS - 0337F For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE WEST VALLEY AREA OFFICE 10282 Rock Springs Road WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Final West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National

414

File:LongValley Strat.pdf | Open Energy Information  

Open Energy Info (EERE)

LongValley Strat.pdf Jump to: navigation, search File File history File usage Metadata File:LongValley Strat.pdf Size of this preview: 800 515 pixels. Full resolution (830 ...

415

A Home for Everyone San Joaquin Valley Housing  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 C. Kings County . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 D. Madera related to growth and development and lead to improved outcomes for California's cities and counties Joaquin Valley . . . . . . . . . . . . . . . . . . . . . 53 APPENDICES: DATA TABLES FOR VALLEY COUNTIES A

Tipple, Brett

416

IMPACTS OF LANDSLIDE DAMS ON MOUNTAIN VALLEY MORPHOLOGY  

Science Journals Connector (OSTI)

Landslide dams can influence mountain-valley morphology significantly in the vicinity of the ... and their impoundments, and thus influence the long-term effects of these natural features on mountain-valley morph...

R.L. SCHUSTER

2006-01-01T23:59:59.000Z

417

Core Holes At Long Valley Caldera Geothermal Area (Lachenbruch...  

Open Energy Info (EERE)

Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

418

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

419

2014 Annual Planning Summary for the West Valley Demonstration Project  

Broader source: Energy.gov [DOE]

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the West Valley Demonstration Project.

420

Micro-Earthquake At Long Valley Caldera Geothermal Area (Foulger...  

Open Energy Info (EERE)

Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Additional References Retrieved from "http:en.openei.orgw...

Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity Details...

422

Soybean Production in the Rio Grande Valley  

E-Print Network [OSTI]

chlorosis or being high in chlorides, then it would be wise to #27;nd a variety that is less sensitive to iron chlorosis or to high chloride levels. In the Rio Grande Valley, soybean yields have been acceptable as long as supplemental water (irrigation... Grande Valley compensate for variation in plant populations. At low populations, soybean plants usually are bushy and set pods on long lateral branches near the ground. As populations increase, pods are set closer to the plant?s main stem and higher...

Fromme, D. D.; Isakeit, T.; Falconer, L.

423

Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

424

Potomac River Project Outage Schedule Clarification | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

River Project Outage Schedule Clarification River Project Outage Schedule Clarification Potomac River Project Outage Schedule Clarification Docket No. EO-05-01. Order No. 202-07-02: Based on the most current information we have for both circuits, the new outage dates are listed below: Outage Duration Feeder Out April 30, 2007 - June 1, 2007 Circuit 1 June 2, 2007 - July 1, 2007 Circuit 2 Potomac River Project Outage Schedule Clarification More Documents & Publications Re: Potomac River Generating Station Department of Energy, Case No. EO-05-01: Potomac Electric Power Company (PEPCO) evised plan for transmission outages for the 230 kV circuits PEPCO Comments on Special Environmental Analysis For Actions Taken Under U.S. Department of Energy Emergency Orders Regarding Operation of the Potomac River Generating Station in Alexandria, Virginia

425

Potomac River Project Outage Schedule Clarification | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Potomac River Project Outage Schedule Clarification Potomac River Project Outage Schedule Clarification Potomac River Project Outage Schedule Clarification Docket No. EO-05-01. Order No. 202-07-02: Based on the most current information we have for both circuits, the new outage dates are listed below: Outage Duration Feeder Out April 30, 2007 - June 1, 2007 Circuit 1 June 2, 2007 - July 1, 2007 Circuit 2 Potomac River Project Outage Schedule Clarification More Documents & Publications Re: Potomac River Generating Station Department of Energy, Case No. EO-05-01: Potomac Electric Power Company (PEPCO) evised plan for transmission outages for the 230 kV circuits Notification of Planned 230kV Outage at Potomac River Generating Station PEPCO Comments on Special Environmental Analysis For Actions Taken Under U.S. Department of Energy Emergency Orders Regarding Operation of the

426

MHK Technologies/Microturbine River In Stream | Open Energy Information  

Open Energy Info (EERE)

Microturbine River In Stream Microturbine River In Stream < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Microturbine River In Stream.png Technology Profile Primary Organization Whitestone Power Communications Project(s) where this technology is utilized *MHK Projects/Microturbine River In Stream Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description HDPE blades are the only moving parts in the water.This gives the turbine high resistance to silty or salty water. Blades designed to survive impact of 1500 lb object. HDPE provides flexibility and strength. Blades penetrate water 24 inches allowing for deep and shallow operation. Mounting design allows for variable depth operation for varying river conditions.All submerged prime-mover parts constructed from HDPE. No underwater gearboxes, generators or electrical cables. Velocity of blades 50% of velocity of river current.

427

Scenic Rivers Energy Coop | Open Energy Information  

Open Energy Info (EERE)

Scenic Rivers Energy Coop Scenic Rivers Energy Coop Place Wisconsin Utility Id 16740 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Power Commercial Commercial Power with Water Heater Load Control Commercial Controlled Electric Loads- Controlled Electric Residential Controlled Electric Loads- Off-Peak Storage Residential Large Power Industrial Large Power with Water Heater Load Control Industrial Multiple Site Single Phase Rate Residential Peak Alert Commercial Residential and Small Commercial Service Residential

428

Pecos River Ecosystem Monitoring Project  

E-Print Network [OSTI]

2003 growing seasons, showing higher river flow during the 2001 irrigation season compared to 2002 or 2003. 3 4 5 6 7 8 9 10 11 Water Level (ft.) B4r 2001 B4r 2002 B4r 2003 JuneMayApril July August September October November 159... it to dS/m. The number is then multiplied by 640 making the number equivalent to ppm. A control using reagent-water was also performed here. Additionally, electrical conductivity measurements were made at two sites near Mentone, Texas...

McDonald, A.; Hart, C.

2004-01-01T23:59:59.000Z

429

West Valley College Portland State University Transfer Worksheet  

E-Print Network [OSTI]

West Valley College Portland State University Transfer Worksheet If you are taking classes that are part of the Intersegmental General Education Transfer Curriculum (IGETC) at West Valley College (WVC) #12;West Valley College Portland State University 2. DEGREE REQUIREMENTS The majority of majors at PSU

Caughman, John

430

Aedes Mosquito Saliva Modulates Rift Valley Fever Virus Pathogenicity  

E-Print Network [OSTI]

's capacity to effectively transfer arboviruses such as the Cache Valley and West Nile viruses. The roleAedes Mosquito Saliva Modulates Rift Valley Fever Virus Pathogenicity Alain Le Coupanec1 , Divya contro^le, Centre IRD de Montpellier, Montpellier, France Abstract Background: Rift Valley fever (RVF

Boyer, Edmond

431

Opening Remarks for the Fort Valley Centennial Celebration  

E-Print Network [OSTI]

West region. Given the rich historic con- text of Fort Valley, and the long-term studies and dataOpening Remarks for the Fort Valley Centennial Celebration G. Sam Foster, Station Director, U the past century at Fort Valley Experimental Forest. With the help of our partners and collaborators, Rocky

432

Putting the "Death" in Death Valley Paul Withers  

E-Print Network [OSTI]

of the rough map, continued due west to discover Death Valley... They were composed of three groups: thirtyPutting the "Death" in Death Valley Paul Withers In 1849, gold was discovered at Sutter's Mill of human suffering in a place they named Death Valley. [From here on, historical sources have a tendency

Withers, Paul

433

A Buried Valley System in the Strait of Dover  

Science Journals Connector (OSTI)

...Redding A series of buried valleys situated south of the submerged...recognized as infilled tunnel-valleys excavated subglacially during...the English Channel from the west. Before the Saalian a Chalk...associated with the tunnel-valleys and scouring out the present...

1975-01-01T23:59:59.000Z

434

REVIEW Open Access Towards a better understanding of Rift Valley  

E-Print Network [OSTI]

REVIEW Open Access Towards a better understanding of Rift Valley fever epidemiology in the south-west , Matthieu Roger1 and Betty Zumbo7 Abstract Rift Valley fever virus (Phlebovirus, Bunyaviridae be contaminated by close contact with infectious tissues or through mosquito infectious bites. Rift Valley fever

Paris-Sud XI, Université de

435

The California State University Imperial Valley Campus Bulletin  

E-Print Network [OSTI]

2010­2011 The California State University Imperial Valley Campus Bulletin #12;BULLETIN THE IMPERIAL VALLEY CAMPUS 2010-2011 SAN DIEGO STATE UNIVERSITY 720 HEBER AVENUE CALEXICO, CALIFORNIA 92231 the 2010 2011 Bulletin of the Imperial Valley Campus of San Diego State University. Its publication

Gallo, Linda C.

436

Edmund G. Brown, Jr. IMPERIAL VALLEY AND TEHACHAPI  

E-Print Network [OSTI]

Edmund G. Brown, Jr. Governor IMPERIAL VALLEY AND TEHACHAPI IMPLEMENTATION GROUPS/Agricultural/Water EndUse Energy Efficiency · Renewable Energy Technologies · Transportation Imperial Valley and Tehachapi Implementation Groups is the final report for the Imperial Valley and Tehachapi Implementation

437

San Joaquin Valley Unified Air Pollution Control District  

E-Print Network [OSTI]

#12;San Joaquin Valley Unified Air Pollution Control District Best Available Control Technology.4.2 #12;San Joaquin Valley Air Pollution Control Distri RECEIVED ~ 2 ED ECEIVED www.valleyalr.org SJVAPCD-2370·(661)326-6900"FAX(661)326-6985 #12;San Joaquin Valley Unified Air Pollution Control District TITLE V MODIFICATION

438

Pecos River Compact (Texas)  

Broader source: Energy.gov [DOE]

This legislation authorizes the state's entrance into the Pecos River Compact, a joint agreement between the states of New Mexico and Texas. The compact is administered by the Pecos River Compact...

439

2 Spatial variations in slip rate along the Death Valley-Fish Lake Valley 3 fault system determined from LiDAR topographic data and  

E-Print Network [OSTI]

deformation is accommodated on 22 structures east of Fish Lake Valley, or that rates of seismic 23 strain2 Spatial variations in slip rate along the Death Valley-Fish Lake Valley 3 fault system determined; accepted 11 July 2007; published XX Month 2007. 9 [1] The Death Valley-Fish Lake Valley fault zone (DV- 10

Black, Robert X.

440

Spatial and Temporal Constancy of Seismic Strain Release Along the Death Valley-Fish Lake Valley Fault and Pacific-North America Plate Boundary Strain Distribution  

E-Print Network [OSTI]

Spatial and Temporal Constancy of Seismic Strain Release Along the Death Valley-Fish Lake Valley, Berkeley, CA 94720 and CEREGE, 13545 Aix en Provence, France The Death Valley-Fish Lake Valley fault (DV/yr at the northern end of the DV-FLVF in Fish Lake Valley. This decrease in slip rate is at odds with observations

Black, Robert X.

Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Spatial variations in slip rate along the Death Valley-Fish Lake Valley fault system determined from LiDAR topographic data and  

E-Print Network [OSTI]

east of Fish Lake Valley, or that rates of seismic strain accumulation and release have not remainedSpatial variations in slip rate along the Death Valley-Fish Lake Valley fault system determined; accepted 11 July 2007; published 19 September 2007. [1] The Death Valley-Fish Lake Valley fault zone (DV

Frankel, Kurt L.

442

Turbulent Rivers Bjorn Birnir  

E-Print Network [OSTI]

) function gives rise to Hack's law [16]; stating that the length of the main river, in mature river basins, scales with the area of the basin l Ah, h = 0.568 being Hack's exponent. 1 Introduction The flow]. One of the best known scaling laws of river basins is Hack's law [16] that states that the area

Birnir, Björn

443

Mesoscale Influences on Nocturnal Valley Drainage Winds in Western Colorado Valleys  

Science Journals Connector (OSTI)

The mesoalpha-scale upper-level sounding network data collected during the 1984 ASCOT meteorological and tracer experiments provided a unique opportunity to analyze the nocturnal drainage wind in four different valleys in western Colorado, and to ...

Montie M. Orgill; John D. Kincheloe; Robert A. Sutherland

1992-02-01T23:59:59.000Z

444

Dixie Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Area Dixie Valley Geothermal Area (Redirected from Dixie Valley Geothermal Field Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (25) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.967665,"lon":-117.855074,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

445

Grass Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Grass Valley Geothermal Area Grass Valley Geothermal Area (Redirected from Grass Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Grass Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.60333333,"lon":-117.645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

446

Golden Valley County Secondary Data Analysis  

E-Print Network [OSTI]

Infarction prevalence (Heart Attack) 4.3% 4.1% 6.0% All Sites Cancer 510.8 455.5 543.2 1 Community County1 Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. Unintentional Injuries** 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Golden Valley County Secondary Data

Maxwell, Bruce D.

447

Glasgow and Clyde Valley Integrated Habitat Networks  

E-Print Network [OSTI]

of expert stakeholder workshops. The model outputs are GIS maps that can be used to assess habitats and how & Clyde Valley Green Network Partnership 7th November 2008 All maps reproduced from Ordnance Survey using digital data on a geographic information system (GIS) to identify IHNs in the GCV area

448

Magnetotellurics At Dixie Valley Geothermal Field Area (Laney, 2005) | Open  

Open Energy Info (EERE)

2005) 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault

449

West Valley Demonstration Project Phase I Decommissioning - Facility  

Broader source: Energy.gov (indexed) [DOE]

Project Phase I Decommissioning - Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement The Department of Energy, West Valley Demonstration Project (DOE-WVDP) and CH2M Hill B&W West Valley (CHBWV) are committed to continuous improvement and will utilize principles of the DOE Environmental Management (DOE-EM) Partnering Policy to create and foster a team environment to successfully complete the West Valley Demonstration Project (WVDP) Phase I Decommissioning - Faciltiy Disposition. West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement More Documents & Publications CX-009527: Categorical Exclusion Determination

450

Lower Valley Energy - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Lower Valley Energy - Residential Energy Efficiency Rebate Program Lower Valley Energy - Residential Energy Efficiency Rebate Program Lower Valley Energy - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Water Heating Windows, Doors, & Skylights Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Energy Audit: Discounted Cost Weatherization Measures: Varies Marathon Water Heater: $25 Water Heater: $15 - $25 Clothes Washer: $25 - $50 Refrigerator: $15 Refrigerator Recycling: $75 Energy Star Manufactured Home: $1,000 Geothermal Heat Pumps: Up to $2,100 Provider Lower Valley Energy Lower Valley Energy offers numerous rebates for residential customers who

451

Site Programs & Cooperative Agreements: West Valley Demonstration Project |  

Broader source: Energy.gov (indexed) [DOE]

West Valley Demonstration West Valley Demonstration Project Site Programs & Cooperative Agreements: West Valley Demonstration Project West Valley Demonstration Project The Seneca Nation of Indians has interests and concerns regarding the West Valley Demonstration Project Site. Like at Hanford, DOE environmental cleanup activities have the potential to impact natural and cultural resources and to interfere with American Indian religious practices. Through a cooperative agreement, tribal staff is engaged on a frequent basis with DOE and its contractors. The principle activities engaged by tribes include reviewing and commenting on plans and documents, participating in meetings at the request of DOE, monitoring cultural resource sites, participating in site surveys, and identifying issues that

452

West Valley Demonstration Project Waste Management Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

SUMMARY April 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE WEST VALLEY AREA OFFICE P.O. BOX 191 WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Draft West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National Environmental Policy Act, contact: Daniel W. Sullivan Document Manager DOE West Valley Area Office

453

Valley Center Municipal Water District | Open Energy Information  

Open Energy Info (EERE)

Municipal Water District Municipal Water District Jump to: navigation, search Name Valley Center Municipal Water District Place Valley Center, California Zip 92082 Product VCMWD is the second largest water provider in San Diego County behind the City of San Diego. References Valley Center Municipal Water District[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Valley Center Municipal Water District is a company located in Valley Center, California . References ↑ "Valley Center Municipal Water District" Retrieved from "http://en.openei.org/w/index.php?title=Valley_Center_Municipal_Water_District&oldid=352717" Categories: Clean Energy Organizations Companies Organizations

454

Missouri Valley Renewable Energy MOVRE | Open Energy Information  

Open Energy Info (EERE)

Valley Renewable Energy MOVRE Valley Renewable Energy MOVRE Jump to: navigation, search Name Missouri Valley Renewable Energy (MOVRE) Place Saint Louis, Missouri Zip 63105 Sector Efficiency, Hydro, Renewable Energy, Solar, Wind energy Product An energy efficiency solutions company focused on renewable DP for farms, including wind, solar and hydro power. The company was absorbed by Farmergy Inc. in January 2007. References Missouri Valley Renewable Energy (MOVRE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Missouri Valley Renewable Energy (MOVRE) is a company located in Saint Louis, Missouri . References ↑ "Missouri Valley Renewable Energy (MOVRE)" Retrieved from "http://en.openei.org/w/index.php?title=Missouri_Valley_Renewable_Energy_MOVRE&oldid=348873"

455

West Valley Demonstration Project Waste Management Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

April 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE-WEST VALLEY AREA OFFICE P.O. BOX 191 WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Draft West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National Environmental Policy Act, contact: Daniel W. Sullivan Document Manager DOE-West Valley Area Office

456

Electricity Reliability  

E-Print Network [OSTI]

Electricity Delivery and Energy Reliability High Temperature Superconductivity (HTS) Visualization in the future because they have virtually no resistance to electric current, offering the possibility of new electric power equipment with more energy efficiency and higher capacity than today's systems

457

Electrical insulation  

Science Journals Connector (OSTI)

n....Material with very low conductivity, which surrounds active electrical devices. Common electrical insulation chemicals are fluorine-containing polymers.

2007-01-01T23:59:59.000Z

458

Electrical Insulation  

Science Journals Connector (OSTI)

n...Material with very low conductivity which surrounds active electrical devices. Common electrical insulation chemicals are fluorine-containing polymers (Dissado LA...

Jan W. Gooch

2011-01-01T23:59:59.000Z

459

Star Lakes and Rivers (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Star Lakes and Rivers (Minnesota) Star Lakes and Rivers (Minnesota) Star Lakes and Rivers (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting An association organized for the purpose of addressing issues on a specific lake or river, a lake improvement district, or a lake conservation district

460

Missouri River Preservation and Land Use Authority (Iowa) | Department of  

Broader source: Energy.gov (indexed) [DOE]

River Preservation and Land Use Authority (Iowa) River Preservation and Land Use Authority (Iowa) Missouri River Preservation and Land Use Authority (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources The State Interagency Missouri River Authority engages in comprehensive

Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Wild, Scenic, and Recreational Rivers (South Dakota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wild, Scenic, and Recreational Rivers (South Dakota) Wild, Scenic, and Recreational Rivers (South Dakota) Wild, Scenic, and Recreational Rivers (South Dakota) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Institutional Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Environmental Regulations Provider South Dakota Department of Environment and Natural Resources The South Dakota Department of Environment and Natural Resources is responsible for maintaining a state water plan, intended to implement state policies for water management. A portion of the plan is reserved for rivers

462

Whirlwind Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Whirlwind Valley Geothermal Project Whirlwind Valley Geothermal Project Project Location Information Coordinates 39.4375°, -113.87583333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.4375,"lon":-113.87583333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

463

Tennessee Valley Authority (Mississippi) | Open Energy Information  

Open Energy Info (EERE)

Mississippi) Mississippi) Jump to: navigation, search Name Tennessee Valley Authority Place Mississippi Utility Id 18642 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0448/kWh The following table contains monthly sales and revenue data for Tennessee Valley Authority (Mississippi). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 14,903 268,562 8 14,903 268,562 8

464

High Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

High Valley Geothermal Project High Valley Geothermal Project Project Location Information Coordinates 38.863611111111°, -122.80138888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.863611111111,"lon":-122.80138888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

465

Tennessee Valley Authority (Alabama) | Open Energy Information  

Open Energy Info (EERE)

Authority (Alabama) Authority (Alabama) Jump to: navigation, search Name Tennessee Valley Authority Place Alabama Utility Id 18642 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0487/kWh The following table contains monthly sales and revenue data for Tennessee Valley Authority (Alabama). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 19,875 343,154 24 19,875 343,154 24

466

Dixie Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Project Dixie Valley Geothermal Project Project Location Information Coordinates 39.7223036°, -118.0616895° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7223036,"lon":-118.0616895,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

467

North Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

North Valley Geothermal Project North Valley Geothermal Project Project Location Information Coordinates 39.830833333333°, -119° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.830833333333,"lon":-119,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

468

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Gabbs Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

469

GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA  

E-Print Network [OSTI]

A F F T EAST MESA, IMPERIAL VALLEY, CALIFORNIA J. H. Howard,reconnaissance of the Imperial Valley, California. USGSthe East Mesa area, Imperial Valley, California. TRW/

2009-01-01T23:59:59.000Z

470

GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA  

E-Print Network [OSTI]

of geothermal resources in the Imperial Valley ofO N GEOTHERMAL RESOURCE INVESTIGATIONS IMPERIAL VALLEY. C Ageothermal reservoir underlying the East Mesa area, Imperial Valley,

2009-01-01T23:59:59.000Z

471

Savannah River Site - Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reports Reports Savannah River Site Review Reports 2013 Independent Oversight Review of the Savannah River Field Office Tritium Facilities Radiological Controls Activity-Level Implementation, November 2013 Independent Oversight Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development, August 2013 Independent Oversight Review of the Employee Concerns Program at the Savannah River Operations Office, July 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project, January 2013 Review of the Savannah River Site, Waste Solidification Building, Construction Quality of Mechanical Systems Installation and Selected Aspects of Fire Protection System Design, January 2013 Activity Reports 2013 Savannah River Site Waste Solidification Building Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design, May 2013

472

Elk Valley coal implements smartcell flotation technology  

SciTech Connect (OSTI)

In anticipation of future raw coal containing higher fines content, Elk Valley Coal Corp.'s Greenhills Operations upgraded their fines circuit to include Wemco SmartCells in March 2007. Positive results were immediately achieved increasing the average flotation tailings ash by 16%. With this increase in yield the SmartCells project paid for itself in less than eight months. 2 figs., 1 tab., 1 photo.

Stirling, J.C. [Elk Valley Coal Corporation, Elkford, BC (Canada)

2008-06-15T23:59:59.000Z

473

Office of River Protection (ORP) and Washingotn River Protection Solutions,  

Broader source: Energy.gov (indexed) [DOE]

Office of River Protection (ORP) and Washingotn River Protection Office of River Protection (ORP) and Washingotn River Protection Solutions, LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project Office of River Protection (ORP) and Washingotn River Protection Solutions, LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project The Mission of the Office of River Protection is to safely retrieve and treat Hanford's tank waste and close the Tank Farms to protect the Columbia River. Office of River Protection (ORP) and Washingotn River Protection Solutions, LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project More Documents & Publications 2011 Annual Workforce Analysis and Staffing Plan Report - Office of River Protection Consent Order, Washington River Protection Solutions, LLC - NCO-2011-01

474

Dixie Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Area Dixie Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (25) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.967665,"lon":-117.855074,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

475

Grass Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Grass Valley Geothermal Area Grass Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Grass Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.60333333,"lon":-117.645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

476

Little Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Little Valley Geothermal Area (Redirected from Little Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Little Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.89166667,"lon":-117.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

477

Little Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Little Valley Geothermal Area Little Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Little Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.89166667,"lon":-117.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

478

Exploratory Well At Raft River Geothermal Area (1975) | Open Energy  

Open Energy Info (EERE)

5) 5) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1975 Usefulness not indicated DOE-funding Unknown Exploration Basis First exploratory well Notes Raft River Geothermal Exploratory Hole No. 1 (RRGE-1) is drilled. References Reynolds Electrical and Engineering Co., Inc., Las Vegas, Nev. (USA) (1 October 1975) Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report Kunze, J.F. (1 May 1977) Geothermal R and D project report, October 1, 1976--March 31, 1977 Oriel, S. S.; Williams, P. L.; Covington, H. R.; Keys, W. S.; Shaver, K. C. (1 January 1978) Deep drilling data Raft River geothermal

479

Lakes and Rivers Improvement Act (Ontario, Canada) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lakes and Rivers Improvement Act (Ontario, Canada) Lakes and Rivers Improvement Act (Ontario, Canada) Lakes and Rivers Improvement Act (Ontario, Canada) < Back Eligibility Construction Developer Investor-Owned Utility Municipal/Public Utility Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Ontario Program Type Environmental Regulations Safety and Operational Guidelines Siting and Permitting Provider Ontario Ministry of Natural Resources The Lakes and Rivers Improvement Act proscribes the management, protection, preservation and use of the waters of the lakes and rivers of Ontario and the land under them. The Act also details regulations for the protection of persons and property by ensuring that dams are suitably located, constructed, operated and maintained and are of an appropriate nature. The

480

Department of Industrial Engineering Spring 2012 Improving Medical Equipment Tracking at Muncy Valley Hospital  

E-Print Network [OSTI]

at Muncy Valley Hospital Overview Muncy Valley Hospital's Skilled Nursing Unit did not have any way in Muncy Valley Hospital's Skilled Nursing Unit. Approach Visited Muncy Valley Hospital Skilled Nursing Outcomes Muncy Valley Hospital Skilled Nursing Unit now has a way to track its medical equipment Less

Demirel, Melik C.

Note: This page contains sample records for the topic "river valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Presentday interseismic surface deformation along the Longitudinal Valley, eastern Taiwan, from a PSInSAR analysis  

E-Print Network [OSTI]

is exposed subaerially in the Longitudinal Valley (LV) (Figure 1b). This 150 km long NNE trending valleyPresentday interseismic surface deformation along the Longitudinal Valley, eastern Taiwan, from Valley (LV). The Longitudinal Valley Fault (LVF) is the main seismically active fault zone in this region

Demouchy, Sylvie

482

Columbia River Treaty  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

an understanding of the implications for post-2024 Treaty planning and Columbia River operations. The joint effort by the Entities to conduct initial post-2024 modeling and...

483

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of lab building SREL Home Faculty and Scientists Research Technical Reports Assessment of Radionuclide Monitoring in the CSRA Savannah River NERP Research Opportunities Field Sites...

484

Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal  

Open Energy Info (EERE)

evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Results of the production and interference tests conducted on the geothermal wells RRGE 1 and RRGE 2 in Raft River Valley, Idaho during September--November, 1975 are presented. In all, three tests were conducted, two of them being short-duration production tests and one, a long duration interference test. In addition to providing estimates on the permeability and storage parameters of the geothermal reservoir, the tests also indicated the possible existence of barrier boundaries. The data

485

Geophysical logging case history of the Raft River geothermal system, Idaho  

Open Energy Info (EERE)

Geophysical logging case history of the Raft River geothermal system, Idaho Geophysical logging case history of the Raft River geothermal system, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geophysical logging case history of the Raft River geothermal system, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Drilling to evaluate the geothermal resource in the Raft River Valley began in 1974 and resulted in the discovery of a geothermal reservoir at a depth of approximately 1523 m (500 ft). Several organizations and companies have been involved in the geophysical logging program. There is no comprehensive report on the geophysical logging, nor has there been a complete interpretation. The objectives of this study are to make an integrated interpretation of the available data and compile a case history. Emphasis has been on developing a simple interpretation

486

Modeling-Computer Simulations At Raft River Geothermal Area (1979) | Open  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To evaluate the hydrodynamics of the unconfined aquifer. Notes This study covers about 1000 mi2 (2600 km2) of the southern Raft River drainage basin in south-central Idaho and northwest Utah. The main area of interest, approximately 200 mi2 (520 km2) of semiarid agricultural and rangeland in the southern Raft River Valley that includes the known Geothermal Resource Area near Bridge, Idaho, was modelled numerically. Computed and estimated transmissivity values range from 1200 ft2 per day

487

Subsurface geology of the Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

geology of the Raft River geothermal area, Idaho geology of the Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Subsurface geology of the Raft River geothermal area, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River Valley occupies an upper Cenozoic structural basin filled with nearly 1600 m of fluvial silt, sand, and gravel. Rapid facies and thickness changes, steep initial dips (30 0C), and alteration make correlation of basin-fill depositional units very difficult. Hydrothermal alteration products in the form of clays and zeolites, and deposition of secondary calcite and silica increase with depth. The abundance of near-vertical open fractures also increases with depth, allowing greater movement of hydrothermal fluids near the base of the Cenozoic basin fill.

488

Crustal Structure and tectonics of the Imperial Valley Region California |  

Open Energy Info (EERE)

Crustal Structure and tectonics of the Imperial Valley Region California Crustal Structure and tectonics of the Imperial Valley Region California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Crustal Structure and tectonics of the Imperial Valley Region California Abstract N/A Authors Gary S. Fruis and William M. Kohler Published Journal U. S. GEOLOGICAL SURVEY, 1984 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Crustal Structure and tectonics of the Imperial Valley Region California Citation Gary S. Fruis,William M. Kohler. 1984. Crustal Structure and tectonics of the Imperial Valley Region California. U. S. GEOLOGICAL SURVEY. N/A(N/A):285-297. Retrieved from "http://en.openei.org/w/index.php?title=Crustal_Structure_and_tectonics_of_the_Imperial_Valley_Region_California&oldid=682730"

489

West Valley Demolition Marks Important Accomplishment for EM | Department  

Broader source: Energy.gov (indexed) [DOE]

West Valley Demolition Marks Important Accomplishment for EM West Valley Demolition Marks Important Accomplishment for EM West Valley Demolition Marks Important Accomplishment for EM June 13, 2013 - 12:00pm Addthis Workers demolish the West Valley Demonstration Project's largest and most complex ancillary facility. Workers demolish the West Valley Demonstration Project's largest and most complex ancillary facility. Demolition work is shown in February 2013. Demolition work is shown in February 2013. Demolition continues in April 2013 with removal of internal components and concrete cell walls. Demolition continues in April 2013 with removal of internal components and concrete cell walls. Debris is removed following demolition. Debris is removed following demolition. Workers demolish the West Valley Demonstration Project's largest and most complex ancillary facility.

490

Enforcement Letter, West Valley Nuclear Services - March 30, 1998 |  

Broader source: Energy.gov (indexed) [DOE]

West Valley Nuclear Services - March 30, 1998 West Valley Nuclear Services - March 30, 1998 Enforcement Letter, West Valley Nuclear Services - March 30, 1998 March 30, 1998 Issued to West Valley Nuclear Services related to Hazard Analysis, Design Review, Work Control Implementation, and a Contamination Event at the West Valley Demonstration Project This letter refers to the Department of Energy's (DOE) evaluation of West Valley Nuclear Services Company's (WVNS) report of a potential noncompliance with the requirements of 10 CFR 830.120 (Quality Assurance) and 10 CFR 835 (Occupational Radiation Protection). This potential noncompliance, which involved inadequate hazards analysis, design review, and implementation of work controls during decontamination activities for a high-level waste tank mobilization pump, was identified by WVNS on

491

Independent Activity Report, West Valley Demonstration Project - July 2012  

Broader source: Energy.gov (indexed) [DOE]

West Valley Demonstration Project - West Valley Demonstration Project - July 2012 Independent Activity Report, West Valley Demonstration Project - July 2012 July 2012 Operational Awareness Oversight of the West Valley Demonstration Project [HIAR WVDP-2012-07-30] The purpose of this Office of Health, Safety and Security (HSS) activity was for the HS-45 Site Lead to meet with Department of Energy (DOE) site personnel, tour the facilities, and obtain a status report on the upcoming activities at the West Valley Demonstration Project (WVDP). In the fall of 2011, a new contractor, CH2M Hill-B&W West Valley (CHBWV), was selected to perform site operations for Phase 1 decommissioning and facility disposition, including the Main Plant Process Building, the Low-Level Waste Treatment Facility, and other facilities.

492

Clean Cities: Coachella Valley Region Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Coachella Valley Region Clean Cities Coalition Coachella Valley Region Clean Cities Coalition The Coachella Valley Region Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Coachella Valley Region Clean Cities coalition Contact Information Richard Cromwell III 760-329-6462 rcromwell@cromwellandassociates.com Georgia Seivright 760-340-1575 georgias@c3vr.org Coalition Website Clean Cities Coordinators Coord Richard Cromwell III Coord Coord Georgia Seivright Coord Photo of Richard Cromwell III Clean fuels consultant Richard Cromwell III is a founding member of the Coachella Valley Region Clean Cities coalition. When the Coachella Valley Region coalition was founded, on Earth Day in 1996, Cromwell was the general manager and CEO of SunLine Transit Agency, the lead agency for the

493

Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) |  

Open Energy Info (EERE)

Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas and Isotopes Geochemistry, Kennedy, van Soest and Shevenell. During FY04, we concentrated on two primary projects. The first was a detailed study of helium isotope systematics throughout Dixie Valley and the inter-relationship between the Dixie Valley geothermal reservoir and local hydrology. The second is the construction of a helium isotope "map" of the

494

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal  

Open Energy Info (EERE)

Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Details Activities (3) Areas (1) Regions (0) Abstract: Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble gas abundances and isotopic compositions. The helium isotopic compositions of fluids produced from the Dixie Valley geothermal field range from 0.70 to 0.76 Ra, are among the highest values in the valley, and indicate that similar to 7.5% of the total helium is derived from the mantle. A lack of recent volcanics or other potential sources requires flow of mantle-derived helium up along the

495

Independent Activity Report, West Valley Demonstration Project - November  

Broader source: Energy.gov (indexed) [DOE]

Activity Report, West Valley Demonstration Project - Activity Report, West Valley Demonstration Project - November 2011 Independent Activity Report, West Valley Demonstration Project - November 2011 November 2011 West Valley Demonstration Project Orientation Visit [HIAR-WVDP-2011-11-07] The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit to the DOE West Valley Demonstration Project (WVDP) Office and the nuclear facility at West Valley, NY, on November 7, 2011. The purpose of the visit was to discuss the nuclear safety oversight strategy, describe the site lead program, increase HSS personnel's operational awareness of the site's activities, and identify specific activities that HSS can perform to carry out its independent oversight

496

West Valley Demonstration Project 10282 Rock Springs Road  

Broader source: Energy.gov (indexed) [DOE]

West Valley Demonstration Project West Valley Demonstration Project 10282 Rock Springs Road West Valley, NY 141 71 -9799 Mr. Daniel W. Coyne President & General Manager CH2M HILL B&W West Valley, LLC West Valley Demonstration Project 10282 Rock Springs Road West Valley, NY 141 71 -9799 ATTENTION: J. D. Rendall, Regulatory Strategy, AC-EA SUBJECT: Environmental Checklist WVDP-20 12-0 1, " WVDP Reservoir Interconnecting Canal Maintenance Activities" REFERENCE: Letter WD:2012:0409 (357953), D. W. Coyne to R. W. Reffner, "CONTRACT NO. DE-EM000 1529, Section 5-3, Item 105, NEPA Documentation (Transmittal of Environmental Checklist WVDP-20 12-0 1, WVDP Reservoir Interconnecting Canal Maintenance Activities), Revision 1 ," dated July 24, 20 12 Dear Mr. Coyne:

497

Magnetotellurics At Grass Valley Area (Morrison, Et Al., 1979) | Open  

Open Energy Info (EERE)

Grass Valley Area (Morrison, Et Al., 1979) Grass Valley Area (Morrison, Et Al., 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Grass Valley Area (Morrison, Et Al., 1979) Exploration Activity Details Location Grass Valley Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes The attempt to carry out a detailed interpretation of a magnetotelluric survey has demonstrated some fundamental problems that must be addressed in future surveys and in future research. (see paper conclusions) References H. Frank Morrison, K i Ha Lee, Gary Oppliger, Abhi jit De (1979) Magnetotelluric Studies In Grass Valley, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Magnetotellurics_At_Grass_Valley_Area_(Morrison,_Et_Al.,_1979)&oldid=387832"

498

Columbia River PUD - Residential Energy Efficiency Rebate Programs |  

Broader source: Energy.gov (indexed) [DOE]

Columbia River PUD - Residential Energy Efficiency Rebate Programs Columbia River PUD - Residential Energy Efficiency Rebate Programs Columbia River PUD - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Ventilation Manufacturing Heat Pumps Water Heating Windows, Doors, & Skylights Maximum Rebate Weatherization Measures: rebate amounts cannot exceed 50% of the total project cost Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Electric Clothes Washers: $50 Gas, Oil or Propane Clothes Washers: $20 Refrigerators/Freezers: $15 Duct Sealing: $400 Ductless Heat Pumps: $1,000 Air-source Heat Pumps: $700 - $1,100

499

Inland out: Midwestern river coal transloaders deal with increased pressures  

SciTech Connect (OSTI)

As greater amounts of US western coal is burned by many eastern and south-eastern power plants located along the Ohio River and its tributaries, Midwestern coal transload facilities are playing an ever growing role in the nation's coal transportation system by moving traffic off clogged rail lines onto barges on inland rivers. The article describes operations by three mid-western ports - American Electric Power's (AEP) Cook Terminal in Metropolis, IL; Kinder-Morgan's Cora Terminal in Cora, IL; and Kinder-Morgan's Grand Rivers Terminal near Paducah, KY. Together these terminals transferred more than 30 m tons onto barges in 2006. 5 figs.

Buchsbaum, L.

2007-06-15T23:59:59.000Z

500

El Paso Electric EPE | Open Energy Information  

Open Energy Info (EERE)

EPE EPE Jump to: navigation, search Name El Paso Electric (EPE) Place El Paso, Texas Zip 79960 Product Utility serving the Rio Grande Valley in western Texas and southern New Mexico. References El Paso Electric (EPE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. El Paso Electric (EPE) is a company located in El Paso, Texas . References ↑ "El Paso Electric (EPE)" Retrieved from "http://en.openei.org/w/index.php?title=El_Paso_Electric_EPE&oldid=344593" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data