National Library of Energy BETA

Sample records for river stone george

  1. George Rupert

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    George Rupert Title: Facility Manager Office Tel. : (225) 578-9344

  2. George W

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Anellotech a biochemical company focused on commercializing, catalytic fast pyrolysis, a Technology developed in his research group. George has twice testified at...

  3. George Malosh

    Broader source: Energy.gov [DOE]

    George Malosh has served as the Deputy Director for Field Operations in the Office of Science at the U.S. Department of Energy (DOE) since May 2006. In this capacity, Mr. Malosh serves as the line...

  4. George Crabtree, Director | JCESR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    George Crabtree, Director On March 24, 2015 In leadership George Crabtree George Crabtree, an Argonne National Laboratory Distinguished Fellow, is the Director of the Joint...

  5. George Waldmann | Department of Energy

    Energy Savers [EERE]

    George Waldmann George Waldmann Phone 202-586-9904 E-mail george.waldmann@hq.doe.gov Last Name Waldmann First Name George

  6. Waldmann, George | Department of Energy

    Energy Savers [EERE]

    Waldmann, George Waldmann, George Phone 202-586-9904 Room 4F-033 E-mail george.waldmann@hq.doe.gov Last Name Waldmann First Name George Title Director Employment Solutions

  7. George Washington Carver Recognition Day

    Broader source: Energy.gov [DOE]

    In commemoration of George Washington Carver’s life and work, Congress declared January 5 as George Washington Carver Recognition Day.

  8. George Andrew Olah - Patents

    Office of Scientific and Technical Information (OSTI)

    Patents - George Andrew Olah Olah Page * Resources with Additional Information US 4,394,247 LIQUEFACTION OF COALS USING RECYCLABLE SUPERACID CATALYST - Olah, George A.; July 19, 1983 This invention discloses a process for the liquefaction of coals and other predominantly hydrocarbonaceous materials by treating the same with a superacidic catalyst system consisting of anhydrous hydrogen fluoride and boron trifluoride in the presence of super-atmospheric hydrogen. US 4,433,192 CONDENSATION OF

  9. George F. Smoot III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    George F. Smoot III About the Lab Our Vision Lab Leadership History Nobelists Visit ⇒ Navigate Section About the Lab Our Vision Lab Leadership History Nobelists Visit smoot 2006 Nobel Prize for Physics * October 3, 2006 Press Conference (Video) * Bibliography of Dr. Smoot's Works * October 3, 2006 Press Conference (Video) The October 3, 2006 press conference at Berkeley Lab introducing its newest Nobel Prize winner, George Smoot, to a throng of visiting media is available for viewing online.

  10. George Fenske | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo of George Fenske George Fenske Section Leader - Tribology and Thermal-Mechanical Research George Fenske has more than 20 years of experience as a principal investigator on research projects related to tribology of hard coatings, surface modification by ion implantation and thin-film deposition processes, and nuclear reactor safety. He has led a program to develop hard coatings for tribological applications and is the author of more than 100 publications on surface modification, friction,

  11. Skipping Stone | Open Energy Information

    Open Energy Info (EERE)

    Skipping Stone Jump to: navigation, search Name: Skipping Stone Place: West Peabody, Massachusetts Zip: 1960 Product: Skipping Stone's mission is to serve the emerging and ever...

  12. The Honorable George Livingston

    Office of Legacy Management (LM)

    W. Alexander Williams (301-427-1719) of my staff. Enclosures (fld5iT& James W. Wagoner II Director Off-SiteSavannah River Division Office of Eastern Area Programs Office of ...

  13. 01-NIF Dedication: George Miller

    ScienceCinema (OSTI)

    George Miller

    2010-09-01

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Lab Director George Miller.

  14. Signature of George Miller Signature of George Miller Signature of Alice Williams

    National Nuclear Security Administration (NNSA)

    George Miller Signature of George Miller Signature of Alice Williams Signature of Alice Williams Signature of Homer Williamson Signature of Homer Williamson Signature of Homer Williamson

  15. PROJECT PROFILE: George Washington University

    Broader source: Energy.gov [DOE]

    The GW Solar Institute at the George Washington University is developing multimedia solar energy training materials that can be used to train a spectrum of diverse audiences. The resulting solar knowledge library serves as an invaluable resource for other STEP awardees who are directly engaging and training communities as diverse as real estate agents, financiers, and state regulators and policymakers.

  16. Williams Stone Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Stone Wind Turbine Jump to: navigation, search Name Williams Stone Wind Turbine Facility Williams Stone Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status...

  17. George A. Olah, Carbocation and Hydrocarbon Chemistry

    Office of Scientific and Technical Information (OSTI)

    George A. Olah, Carbocation and Hydrocarbon Chemistry Resources with Additional Information * Patents George A. Olah Courtesy Rand Larson, Morningstar Productions George Olah received the 1994 Nobel Prize in Chemistry "for his contribution to carbocation chemistry" and his 'role in the chemistry of hydrocarbons. In particular, he developed superacids ... that are much stronger than ordinary acids, are non-nucleophilic, and are fluid at low temperatures. In such media ... carbocations

  18. Georges Charpak, Particle Detectors, and Multiwire Chambers

    Office of Scientific and Technical Information (OSTI)

    Georges Charpak, Particle Detectors, and Multiwire Chambers Resources with Additional Information * Patents Georges Charpak Courtesy of CERN Nobel laureate Georges Charpak [was] a pioneer in the art and science of particle detection ... . [He] developed a host of particle detectors used throughout experimental particle physics. In 1968, he invented and developed the first multiwire proportional chamber, for which he won the [Physics] Nobel Prize in 1992 ... . The multiwire chamber differed from

  19. George W. Collard | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    George W. Collard About Us George W. Collard - Deputy Inspector General for Audits and Inspections George W. Collard was appointed as the Deputy Inspector General for Audits and Inspections in January 2016. He is responsible for the direction of all audits, inspections and special reviews of all Department of Energy and the National Nuclear Security Administration programs and activities. Mr. Collard previously had been the Assistant Inspector General for Performance Audits. Prior to joining the

  20. George Rojas | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    George Rojas Consultant/Software Engineer Argonne National Laboratory 9700 S. Cass Avenue Bldg. 240 - Rm. 3122 Argonne, IL 60439 630-252-5569 rojas

  1. The George Washington University | Open Energy Information

    Open Energy Info (EERE)

    Washington University Jump to: navigation, search Name: The George Washington University Place: Washington, District of Columbia Zip: 20052 Website: www.gwu.edu Coordinates:...

  2. George Howe Ltd | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: DH1 2RE Product: George Howe Ltd provides internal and external wall insulation and supplies products to the social housing and housing construction markets....

  3. City of St. George- Net Metering

    Broader source: Energy.gov [DOE]

    The City of St. George Energy Services Department (SGESD) offers a net metering program to its customers, and updated program guidelines and fees in September 2015.* 

  4. Data Package for Secondary Waste Form Down-Selection—Cast Stone

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Westsik, Joseph H.

    2011-09-05

    Available literature on Cast Stone and Saltstone was reviewed with an emphasis on determining how Cast Stone and related grout waste forms performed in relationship to various criteria that will be used to decide whether a specific type of waste form meets acceptance criteria for disposal in the Integrated Disposal Facility (IDF) at Hanford. After the critical review of the Cast Stone/Saltstone literature, we conclude that Cast Stone is a good candidate waste form for further consideration. Cast stone meets the target IDF acceptance criteria for compressive strength, no free liquids, TCLP leachate are below the UTS permissible concentrations and leach rates for Na and Tc-99 are suiteably low. The cost of starting ingredients and equipment necessary to generate Cast Stone waste forms with secondary waste streams are low and the Cast Stone dry blend formulation can be tailored to accommodate variations in liquid waste stream compositions. The database for Cast Stone short-term performance is quite extensive compared to the other three candidate waste solidification processes. The solidification of liquid wastes in Cast Stone is a mature process in comparison to the other three candidates. Successful production of Cast Stone or Saltstone has been demonstrated from lab-scale monoliths with volumes of cm3 through m3 sized blocks to 210-liter sized drums all the way to the large pours into vaults at Savannah River. To date over 9 million gallons of low activity liquid waste has been solidified and disposed in concrete vaults at Savannah River.

  5. Prince George County, Virginia: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Number 4 Climate Zone Subtype A. Places in Prince George County, Virginia Fort Lee, Virginia Retrieved from "http:en.openei.orgwindex.php?titlePrinceGeorgeCounty,...

  6. George Hoyt Whipple and the Impact of Liver on Anemia

    Office of Scientific and Technical Information (OSTI)

    George Whipple Resources with Additional Information Additional information about George H. Whipple and the impact of liver on anemia is available in electronic documents and on...

  7. Patents -- Georges Charpak (1981-1988)

    Office of Scientific and Technical Information (OSTI)

    US 4,553,089 DEVICES DESIGNED TO MEASURE LOCALLY THE ELECTRIC CHARGES CARRIED BY DIELECTRICS -- Charpak, Georges; Lewiner, Jacques; November 12, 1985 In order to measure the values ...

  8. Cosmology on the Beach - George Smoot

    ScienceCinema (OSTI)

    George Smoot

    2010-01-08

    The lecture was delivered as part of the "Cosmology at the Beach" winter school organized by Berkeley Lab's George Smoot in Los Cabos, Mexico from Jan. 12-16, 2009.

  9. Wind Resource Assessment of St. George, Alaska

    Energy Savers [EERE]

    Anchorage, AK 99503 Phone: 907-269-3000 Fax: 907-269-3044 www.aidea.orgwind.htm Wind Resource Assessment for ST GEORGE, ALASKA Site 2401 Date last modified: 11222005 Prepared ...

  10. George H Neilson | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    George H Neilson Head, Advanced Projects Department George "Hutch" Neilson manages PPPL's stellarator programs and advanced design activities. He is program manager and national point-of-contact for U.S. collaborations with the Wendelstein 7-X stellarator experiment in Germany. Advanced design activities overseen by Neilson include technical studies for next-generation experimental fusion facilities, including the U.S. system studies program and collaborations with South Korea and

  11. Extended Leach Testing of Simulated LAW Cast Stone Monoliths

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Westsik, Joseph H.; Williams, Benjamin D.; Jung, H. B.; Wang, Guohui

    2015-07-09

    This report describes the results from long-term laboratory leach tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams. Specific objectives of the Cast Stone long-term leach tests described in this report focused on four activities: 1. Extending the leaching times for selected ongoing EPA-1315 tests on monoliths made with LAW simulants beyond the conventional 63-day time period up to 609 days reported herein (with some tests continuing that will be documented later) in an effort to evaluate long-term leaching properties of Cast Stone to support future performance assessment activities. 2. Starting new EPA-1315 leach tests on archived Cast Stone monoliths made with four LAW simulants using two leachants (deionized water [DIW] and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water [VZP]). 3. Evaluating the impacts of varying the iodide loading (starting iodide concentrations) in one LAW simulant (7.8 M Na Hanford Tank Waste Operations Simulator (HTWOS) Average) by manufacturing new Cast Stone monoliths and repeating the EPA-1315 leach tests using DIW and the VZP leachants. 4. Evaluating the impacts of using a non-pertechnetate form of Tc that is present in some Hanford tanks. In this activity one LAW simulant (7.8 M Na HTWOS Average) was spiked with a Tc(I)-tricarbonyl gluconate species and then solidified into Cast Stone monoliths. Cured monoliths were leached using the EPA-1315 leach protocol with DIW and VZP. The leach results for the Tc-Gluconate Cast Stone monoliths were compared to Cast Stone monoliths pertechnetate.

  12. Documenting stone age cleverness by tool development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documenting stone age cleverness by tool development Documenting stone age cleverness by tool development Ancient stone tools show the pace of remarkable technological enhancements over time. March 7, 2013 Ancient stone tools showing the pace of remarkable technological enhancements over time (1.75 to 0.85 million years ago). Credit, Los Alamos National Laboratory. Ancient stone tools showing the pace of remarkable technological enhancements over time (1.75 to 0.85 million years ago). Credit,

  13. 2,"Big Bend Dam","Hydroelectric","USCE-Missouri River District...

    U.S. Energy Information Administration (EIA) Indexed Site

    River District",714 2,"Big Bend Dam","Hydroelectric","USCE-Missouri River District",520 3,"Big Stone","Coal","Otter Tail Power Co",475.6 4,"Fort Randall","Hydroelectric","USCE-Mis...

  14. Secondary Waste Simulant Development for Cast Stone Formulation Testing

    SciTech Connect (OSTI)

    Russell, Renee L.; Westsik, Joseph H.; Rinehart, Donald E.; Swanberg, David J.; Mahoney, J.

    2015-04-01

    Washington River Protection Solutions, LLC (WRPS) funded Pacific Northwest National Laboratory (PNNL) to conduct a waste form testing program to implement aspects of the Secondary Liquid Waste Treatment Cast Stone Technology Development Plan (Ashley 2012) and the Hanford Site Secondary Waste Roadmap (PNNL 2009) related to the development and qualification of Cast Stone as a potential waste form for the solidification of aqueous wastes from the Hanford Site after the aqueous wastes are treated at the Effluent Treatment Facility (ETF). The current baseline is that the resultant Cast Stone (or grout) solid waste forms would be disposed at the Integrated Disposal Facility (IDF). Data and results of this testing program will be used in the upcoming performance assessment of the IDF and in the design and operation of a solidification treatment unit planned to be added to the ETF. The purpose of the work described in this report is to 1) develop simulants for the waste streams that are currently being fed and future WTP secondary waste streams also to be fed into the ETF and 2) prepare simulants to use for preparation of grout or Cast Stone solid waste forms for testing.

  15. George Crabtree - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    George A. Olah, Carbocation and Hydrocarbon Chemistry Resources with Additional Information * Patents George A. Olah Courtesy Rand Larson, Morningstar Productions George Olah received the 1994 Nobel Prize in Chemistry "for his contribution to carbocation chemistry" and his 'role in the chemistry of hydrocarbons. In particular, he developed superacids ... that are much stronger than ordinary acids, are non-nucleophilic, and are fluid at low temperatures. In such media ... carbocations

  16. Prince George's County- Solar and Geothermal Residential Property Tax Credit

    Broader source: Energy.gov [DOE]

    In 2008 Prince George's County enacted legislation offering a property tax credit on residential structures equipped with solar and geothermal systems. As originally devised, the credit could only...

  17. St. George, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    St. George, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0164709, -69.1989341 Show Map Loading map... "minzoom":false,"mappingserv...

  18. Systems Reiter, George 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY...

    Office of Scientific and Technical Information (OSTI)

    Compton Scattering as a Probe of Hydrogen Bonded (and other) Systems Reiter, George 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 77 NANOSCIENCE AND...

  19. Multiplex automated genome engineering Church, George M; Wang...

    Office of Scientific and Technical Information (OSTI)

    Multiplex automated genome engineering Church, George M; Wang, Harris H; Isaacs, Farren J The present invention relates to automated methods of introducing multiple nucleic acid...

  20. George Hadjipanayis, Chairman, Department of Physics and Astronomy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Physics and Astronomy, University of Delaware, Moving Beyond Neodymium-Iron Permanent Magnets for EV Motors George Hadjipanayis, Chairman, Department of Physics and ...

  1. Polarized Light in Nature George W. Kattawar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polarized Light in Nature George W. Kattawar Department of Physics and Institute for Quantum Science and Engineering Texas A&M University Research Colleagues: Meng Gao, Ping Yang,and Yu You Electromagnetic waves were first postulated by James Clerk Maxwell in 1862 and subsequently confirmed by Heinrich Hertz in 1887. In 1864, Maxwell wrote "A dynamical theory of the electromagnetic field", where he first proposed that light was in fact undulations in the same medium that is the

  2. LANL Medal recipient George Cowan, 90, presents memoirs at talk...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and philanthropist George Cowan will talk about his new book, Manhattan Project to the Santa Fe Institute. February 17, 2010 Los Alamos National Laboratory sits on top of a...

  3. King George County, Virginia: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. King George County is a county in Virginia. Its FIPS County Code is 099. It is classified as...

  4. George Washington University: School of Business Career Fair Fall 2015

    Broader source: Energy.gov [DOE]

    Location: George Washington University Foggy Bottom campus, School of Business, Duques Hall, 2201 G Street, NW, Washington, DC 20052POC: Recruitment@doe.govWebsite: http://business.gwu.edu...

  5. George Smoot, Blackbody, and Anisotropy of the Cosmic Microwave Background

    Office of Scientific and Technical Information (OSTI)

    Radiation George Smoot, Blackbody, and Anisotropy of the Cosmic Microwave Background Radiation Resources with Additional Information * Videos 'George Smoot, ... has been awarded the 2006 Nobel Prize for physics. He shares the award with John C. Mather of NASA Goddard Space Flight Center. The citation reads "for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation." '1 Smoot previously won the Ernest Orlando Lawrence Award. 'Smoot has

  6. Characterization of Technetium Speciation in Cast Stone

    SciTech Connect (OSTI)

    Um, Wooyong; Jung, Hun Bok; Wang, Guohui; Westsik, Joseph H.; Peterson, Reid A.

    2013-11-11

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) EM-31 Support Program (EMSP) subtask, Production and Long-Term Performance of Low Temperature Waste Forms to provide additional information on technetium (Tc) speciation characterization in the Cast Stone waste form. To support the use of Cast Stone as an alternative to vitrification for solidifying low-activity waste (LAW) and as the current baseline waste form for secondary waste streams at the Hanford Site, additional understanding of Tc speciation in Cast Stone is needed to predict the long-term Tc leachability from Cast Stone and to meet the regulatory disposal-facility performance requirements for the Integrated Disposal Facility (IDF). Characterizations of the Tc speciation within the Cast Stone after leaching under various conditions provide insights into how the Tc is retained and released. The data generated by the laboratory tests described in this report provide both empirical and more scientific information to increase our understanding of Tc speciation in Cast Stone and its release mechanism under relevant leaching processes for the purpose of filling data gaps and to support the long-term risk and performance assessments of Cast Stone in the IDF at the Hanford Site.

  7. GreyStone Power- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    GreyStone Power, an electricity cooperative in Georgia, offers a rebate for solar photovoltaic (PV) systems to members. The one-time rebate is offered for PV installations that are interconnected...

  8. NREL Meeting to Discuss Camp George West Land Exchange

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meeting to Discuss Camp George West Land Exchange For more information contact: Kerry Masson (303) 275-4083 e:mail: kerry_masson@nrel.gov Golden, Colo., Sept. 1, 1998 — The U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) will host a meeting Sept. 16 to inform the community surrounding NREL about a land exchange involving DOE, Jefferson County and the state of Colorado. The property to be exchanged involves the Camp George West site which borders NREL's main

  9. Science Showcase: George F. Smoot and Roger D. Kornberg | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy, Office of Scientific and Technical Information Science Showcase: George F. Smoot and Roger D. Kornberg Feature Archive George Smoot George F. Smoot won the 2006 Nobel Prize in Physics. George F. Smoot and Roger D. Kornberg have joined the growing list of Nobel Laureates associated with DOE. Smoot won the 2006 Nobel Prize in Physics for his work in blackbody and anisotropy of the cosmic microwave background radiation. Smoot is an astrophysicist at DOE's Lawrence Berkeley National Lab

  10. UF6 overfilling prevention at Eurodif production Georges Besse plant

    SciTech Connect (OSTI)

    Reneaud, J.M.

    1991-12-31

    Risk of overfilling exists on different equipments of Georges BESSE Plant: cylinders, desublimers and intermediate tanks. The preventive measures are composed of technical devices: desublimers weighing, load monitoring alarms, automatic controls ... and procedures, training, safety organization. In thirteen years of operation, some incidents have occurred but none of them has caused any personal injuries. They are related and discussed. The main factors involved in the Sequoyah fuel facility accident on 1/4/1986 have been analyzed and taken into account.

  11. Dr. George Ansell, President Colorado School of Mines Research Institute

    Office of Legacy Management (LM)

    Dr. George Ansell, President Colorado School of Mines Research Institute Golden, Colorado 80403 Dear Dr. Ansell: As you may know, the Department of Energy (DOE) is evaluating the radiological condition of sites that were utilized under the Manhattan Engineer District (MED) and the Atomic Energy Comnission (AEC) during the early years of nuclear development to determine whether they need remedial action. Mr. J. Krause of the Colorado School of Mines Research Institute was notified by letter (Mott

  12. George Neil Named to Lead JLab's Free-Electron Laser Program | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    George Hoyt Whipple and the Impact of Liver on Anemia Resources with Additional Information * Named After Him George Hoyt Whipple ... was an American physician, pathologist, biomedical researcher, and medical school educator and administrator. Whipple shared the Nobel Prize in Physiology or Medicine in 1934 ... "for their discoveries concerning liver therapy in cases of anemia". George Hoyt Whipple Courtesy of University of Rochester Medical Center Whipple's main research was concerned

  13. 2010 DOE National Science Bowl® Photos - George Walton High...

    Office of Science (SC) Website

    George Walton High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  14. GreenStone Technologies LLC | Open Energy Information

    Open Energy Info (EERE)

    Name: GreenStone Technologies LLC Place: Wisconsin Zip: 53719 Product: Developing a copper indium hallium selenide (CIGS) thin-film PV technology, also performs custom contract...

  15. Stone County, Missouri: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Point, Missouri Kimberling City, Missouri McCord Bend, Missouri Reeds Spring, Missouri Shell Knob, Missouri Retrieved from "http:en.openei.orgwindex.php?titleStoneCounty,Mi...

  16. Stone Ridge, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    place in Ulster County, New York.1 Registered Energy Companies in Stone Ridge, New York Prism Solar Technologies Inc References US Census Bureau 2005 Place to 2006...

  17. GreyStone Power Corporation | Open Energy Information

    Open Energy Info (EERE)

    Corporation Place: Georgia Phone Number: 770.942.6576 Website: www.greystonepower.com Twitter: @GreyStonePower Facebook: https:www.facebook.comgreystonepower?rdr...

  18. Stone & McCarthy Research Associates | Open Energy Information

    Open Energy Info (EERE)

    en.openei.orgwindex.php?titleStone%26McCarthyResearchAssociates&oldid767330" Categories: Organizations Research Institutions Stubs Articles with outstanding TODO tasks...

  19. Stone Mountain, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Stone Mountain, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8081608, -84.170196 Show Map Loading map... "minzoom":false,"mappin...

  20. Map showing landslide susceptibility in Prince Georges County, Maryland

    SciTech Connect (OSTI)

    Pomeroy, J.S.

    1989-01-01

    Prince Georges County was identified during a statewide investigation of landslide susceptibility (MF-2048) as the county with the most serious slope-stability problems. This map uses a ranking system ranging from 1 (nil to very low susceptibility) to 4 (moderate to severe susceptibility). Geologic factors and precipitation are major elements in the initiation of landslides in the county. The Potomac Group and the Marlboro Clay are the most slideprone units. This map should enable users to make a rapid, generalized evaluation of the potential for mass movement. Planners, engineers, soil scientists, geologist, university faculty, and elected officials should find it useful in the assessment of slope hazards for county-wide analyses.

  1. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect (OSTI)

    Fox, K. M.; Roberts, K. A.; Edwards, T. B.

    2013-09-17

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leach indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the limited range of the factors in the test matrix hindered the identification of individual component effects. Future work should involve broader factor ranges to identify the roles played by each of the components in the mix via thermal analyses, analytical microscopy, and characterization of phase formation.

  2. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect (OSTI)

    Fox, K. M.; Roberts, K. A.; Edwards, T. B.

    2014-02-28

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leachability indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the limited range of the factors in the test matrix hindered the identification of individual component effects. Future work should involve broader factor ranges to identify the roles played by each of the components in the mix via thermal analyses, analytical microscopy, and characterization of phase formation.

  3. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect (OSTI)

    Fox, K. M.; Edwards, T. A.; Roberts, K. B.

    2013-10-02

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leach indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the limited range of the factors in the test matrix hindered the identification of individual component effects. Future work should involve broader factor ranges to identify the roles played by each of the components in the mix via thermal analyses, analytical microscopy, and characterization of phase formation.

  4. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Screening Tests

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Piepel, Gregory F.; Lindberg, Michael J.; Heasler, Patrick G.; Mercier, Theresa M.; Russell, Renee L.; Cozzi, Alex; Daniel, William E.; Eibling, Russell E.; Hansen, E. K.; Reigel, Marissa M.; Swanberg, David J.

    2013-09-30

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in the HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second LAW immobilization facility will be needed for the expected volume of LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the IDF. The PA is needed to satisfy both Washington State IDF Permit and DOE Order requirements. Cast Stone has been selected for solidification of radioactive wastes including WTP aqueous secondary wastes treated at the Effluent Treatment Facility (ETF) at Hanford. A similar waste form called Saltstone is used at the Savannah River Site (SRS) to solidify its LAW tank wastes.

  5. Injury experience in stone mining, 1992

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of stone mining in the United States for 1992. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  6. Injury experience in stone mining, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of stone mining in the United States for 1987. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. 3 figs., 46 tabs.

  7. Injury experience in stone mining, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of stone mining in the united States for 1990. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  8. Injury experience in stone mining, 1986

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of stone mining in the United States for 1986. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. 3 figs., 46 tabs.

  9. Injury experience in stone mining, 1989

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail occupational injury and illness experience of stone mining in the United States for 1989. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. 3 figs., 46 tabs.

  10. The Honorable'George Kubin City Hall Dear Mayor Kubin:

    Office of Legacy Management (LM)

    W; Alexander Williams ' (301-427-1719) of my staff,. I '. Sincerely. n-l James W. Wagoner II r' Director ' .' Off-SiteSavannah River Program Division Office of Eastern Area ...

  11. George T. Basabilvazo Named Assistant Manager for Development and Research at Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    George T. Basabilvazo Named Assistant Manager For Development and Research at Carlsbad Field Office CARLSBAD, N.M., October 4, 2000 - George T. Basabilvazo has been named Assistant Manager for Development and Research at the U.S. Department of Energy's (DOE) Carlsbad Field Office. "I am delighted to have George in this position," said Dr. Inés Triay, Manager of the Carlsbad Field Office. "He has the experience to ensure that we move forward in developing new technologies to

  12. Hanford's Simulated Low Activity Waste Cast Stone Processing

    SciTech Connect (OSTI)

    Kim, Young

    2013-08-20

    Cast Stone is undergoing evaluation as the supplemental treatment technology for Hanfords (Washington) high activity waste (HAW) and low activity waste (LAW). This report will only cover the LAW Cast Stone. The programs used for this simulated Cast Stone were gradient density change, compressive strength, and salt waste form phase identification. Gradient density changes show a favorable outcome by showing uniformity even though it was hypothesized differently. Compressive strength exceeded the minimum strength required by Hanford and greater compressive strength increase seen between the uses of different salt solution The salt waste form phase is still an ongoing process as this time and could not be concluded.

  13. To: President George W. Bush United States of America To: President...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    President George W. Bush United States of America To: President V.V. Putin Russian Federation Transmittal of the Report of the United States and Russian Federation Joint Working ...

  14. Joint Statement from Los Alamos Director Michael Anastasio, Lawrence Livermore Director George

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tri-Lab Directors' statement on the nuclear posture review April 9, 2010 Joint Statement from Los Alamos Director Michael Anastasio, Lawrence Livermore Director George Miller, and Sandia Director Tom Hunter Los Alamos, New Mexico, April 9, 2010-The directors of the three Department of Energy, National Nuclear Security Administration Laboratories-Dr. George Miller from Lawrence Livermore National Laboratory, Dr. Michael Anastasio from Los Alamos National Laboratory, and Dr. Tom Hunter from Sandia

  15. City of Big Stone City, South Dakota (Utility Company) | Open...

    Open Energy Info (EERE)

    City, South Dakota (Utility Company) Jump to: navigation, search Name: City of Big Stone City Place: South Dakota Phone Number: (605) 862-8121 Website: www.bigstonecitysd.govoffice...

  16. GreyStone Power- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    GreyStone Power, an electricity cooperative serving 103,000 customers in Georgia, introduced a solar water heating rebate in March 2009. This $500 rebate is available to customers regardless of...

  17. EIS-0377: Big Stone II Power Plant and Transmission Project

    Broader source: Energy.gov [DOE]

    A systems study was carried out to identify the most appropriate locations to interconnect the proposed Big Stone II power plant to the regional utility grid. The study also identified transmission...

  18. Letter Report: LAW Simulant Development for Cast Stone Screening Test

    SciTech Connect (OSTI)

    Russell, Renee L.; Westsik, Joseph H.; Swanberg, David J.; Eibling, Russell E.; Cozzi, Alex; Lindberg, Michael J.; Josephson, Gary B.; Rinehart, Donald E.

    2013-03-27

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in the HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second facility will be needed for the expected volume of additional LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with waste acceptance criteria for the IDF disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long term performance of the waste form in the IDF disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the IDF. A testing program was developed in fiscal year (FY) 2012 describing in some detail the work needed to develop and qualify Cast Stone as a waste form for the solidification of Hanford LAW (Westsik et al. 2012). Included within Westsik et al. (2012) is a section on the near-term needs to address Tri-Party Agreement Milestone M-062-40ZZ. The objectives of the testing program to be conducted in FY 2013 and FY 2014 are to: • Determine an acceptable formulation for the LAW Cast Stone waste form. • Evaluate sources of dry materials for preparing the LAW Cast Stone. • Demonstrate the robustness of the Cast Stone waste form for a range of LAW compositions. • Demonstrate the robustness of the formulation for variability in the Cast Stone process. • Provide Cast Stone contaminant release data for PA and risk assessment evaluations. The first step in determining an acceptable formulation for the LAW Cast Stone waste form is to conduct screening tests to examine expected ranges in pretreated LAW composition, waste stream concentrations, dry-materials sources, and mix ratios of waste feed to dry blend. A statistically designed test matrix will be used to evaluate the effects of these key parameters on the properties of the Cast Stone as it is initially prepared and after curing. The second phase of testing will focus on selection of a baseline Cast Stone formulation for LAW and demonstrating that Cast Stone can meet expected waste form requirements for disposal in the IDF. It is expected that this testing will use the results of the screening tests to define a smaller suite of tests to refine the composition of the baseline Cast Stone formulation (e.g. waste concentration, water to dry mix ratio, waste loading).

  19. Cast Stone Oxidation Front Evaluation: Preliminary Results For Samples Exposed To Moist Air

    SciTech Connect (OSTI)

    Langton, C. A.; Almond, P. M.

    2013-11-26

    The rate of oxidation is important to the long-term performance of reducing salt waste forms because the solubility of some contaminants, e.g., technetium, is a function of oxidation state. TcO{sub 4}{sup −} in the salt solution is reduced to Tc(IV) and has been shown to react with ingredients in the waste form to precipitate low solubility sulfide and/or oxide phases. Upon exposure to oxygen, the compounds containing Tc(IV) oxidize to the pertechnetate ion, Tc(VII)O{sub 4}{sup −}, which is very soluble. Consequently the rate of technetium oxidation front advancement into a monolith and the technetium leaching profile as a function of depth from an exposed surface are important to waste form performance and ground water concentration predictions. An approach for measuring contaminant oxidation rate (effective contaminant specific oxidation rate) based on leaching of select contaminants of concern is described in this report. In addition, the relationship between reduction capacity and contaminant oxidation is addressed. Chromate (Cr(VI) was used as a non-radioactive surrogate for pertechnetate, Tc(VII), in Cast Stone samples prepared with 5 M Simulant. Cast Stone spiked with pertechnetate was also prepared and tested. Depth discrete subsamples spiked with Cr were cut from Cast Stone exposed to Savannah River Site (SRS) outdoor ambient temperature fluctuations and moist air. Depth discrete subsamples spiked with Tc-99 were cut from Cast Stone exposed to laboratory ambient temperature fluctuations and moist air. Similar conditions are expected to be encountered in the Cast Stone curing container. The leachability of Cr and Tc-99 and the reduction capacities, measured by the Angus-Glasser method, were determined for each subsample as a function of depth from the exposed surface. The results obtained to date were focused on continued method development and are preliminary and apply to the sample composition and curing / exposure conditions described in this report. The Cr oxidation front (depth to which soluble Cr was detected) for the Cast Stone sample exposed for 68 days to ambient outdoor temperatures and humid air (total age of sample was 131 days) was determined to be about 35 mm below the top sample surface exposed. The Tc oxidation front, depth at which Tc was insoluble, was not determined. Interpretation of the results indicates that the oxidation front is at least 38 mm below the exposed surface. The sample used for this measurement was exposed to ambient laboratory conditions and humid air for 50 days. The total age of the sample was 98 days. Technetium appears to be more easily oxidized than Cr in the Cast Stone matrix. The oxidized forms of Tc and Cr are soluble and therefore leachable. Longer exposure times are required for both the Cr and Tc spiked samples to better interpret the rate of oxidation. Tc spiked subsamples need to be taken further from the exposed surface to better define and interpret the leachable Tc profile. Finally Tc(VII) reduction to Tc(IV) appears to occur relatively fast. Results demonstrated that about 95 percent of the Tc(VII) was reduced to Tc(IV) during the setting and very early stage setting for a Cast Stone sample cured 10 days. Additional testing at longer curing times is required to determine whether additional time is required to reduce 100 % of the Tc(VII) in Cast Stone or whether the Tc loading exceeded the ability of the waste form to reduce 100 % of the Tc(VII). Additional testing is required for samples cured for longer times. Depth discrete subsampling in a nitrogen glove box is also required to determine whether the 5 percent Tc extracted from the subsamples was the result of the sampling process which took place in air. Reduction capacity measurements (per the Angus-Glasser method) performed on depth discrete samples could not be correlated with the amount of chromium or technetium leached from the depth discrete subsamples or with the oxidation front inferred from soluble chromium and technetium (i.e., effective Cr and Tc oxidation fronts). Residual reduction capacity in the oxidized region of the test samples indicates that the remaining reduction capacity is not effective in re-reducing Cr(VI) or Tc(VII) in the presence of oxygen. Depth discrete sampling and leaching is a useful for evaluating Cast Stone and other chemically reducing waste forms containing ground granulated blast furnace slag (GGBFS) or other reduction / sequestration reagents to control redox sensitive contaminant chemistry and leachability in the near surface disposal environment. Based on results presented in this report, reduction capacity measured by the Angus-Glasser Ce(IV) method is not an appropriate or meaningful parameter for determining or predicting Tc and Cr oxidation / retentions, speciation, or solubilities in cementitious materials such as Cast Stone. A model for predicting Tc(IV) oxidation to soluble Tc(VII) should consider the waste form porosity (pathway for oxygen ingress), oxygen source, and the contaminant specific oxidation rates and oxidation fronts. Depth discrete sampling of materials exposed to realistic conditions in combination with short term leaching of crushed samples has potential for advancing the understanding of factors influencing performance. This information can be used to support conceptual model development.

  20. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  1. George A. Cowan, 1965 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    George A. Cowan, 1965 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1960's George A. Cowan, 1965 Print Text Size: A A A FeedbackShare Page Weapons: For notable

  2. George A. Cowan, 1990 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    George A. Cowan, 1990 The Enrico Fermi Award Fermi Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's 1950's Ceremony The Life of Enrico Fermi Contact Information The Enrico Fermi Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1990's George A. Cowan, 1990 Print Text Size: A A A FeedbackShare Page Citation For accomplishments in the development of

  3. George B. Zimmerman, 1983 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    George B. Zimmerman, 1983 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1980's George B. Zimmerman, 1983 Print Text Size: A A A FeedbackShare Page National Security: In

  4. George F. Chapline, Jr., 1982 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    George F. Chapline, Jr., 1982 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1980's George F. Chapline, Jr., 1982 Print Text Size: A A A FeedbackShare Page National

  5. George F. Smoot, 1994 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    George F. Smoot, 1994 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1990's George F. Smoot, 1994 Print Text Size: A A A FeedbackShare Page Physics: For his leadership

  6. George Vendryes, 1984 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    George Vendryes, 1984 The Enrico Fermi Award Fermi Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's 1950's Ceremony The Life of Enrico Fermi Contact Information The Enrico Fermi Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1980's George Vendryes, 1984 Print Text Size: A A A FeedbackShare Page Citation For his outstanding contributions in research on

  7. Technetium and Iodine Getters to Improve Cast Stone Performance

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Neeway, James J.; Lawter, Amanda R.; Levitskaia, Tatiana G.; Serne, R. Jeffrey; Westsik, Joseph H.; Snyder, Michelle MV

    2015-02-19

    To determine the effectiveness of the various getter materials prior to their solidification in Cast Stone, a series of batch sorption experiments was performed at Pacific Northwest National Laboratory. To quantify the effectiveness of the removal of Tc(VII) and I(I) from solution by getters, the distribution coefficient, Kd (mL/g), was calculated. Testing involved placing getter material in contact with spiked waste solutions at a 1:100 solid-to-solution ratio for periods up to 45 days with periodic solution sampling. One Tc getter was also tested at a 1:10 solid-to-solution ratio. Two different solution media, 18.2 MΩ deionized water (DI H2O) and a 7.8 M Na LAW simulant, were used in the batch sorption tests. Each test was conducted at room temperature in an anoxic chamber containing N2 with a small amount of H2 (0.7%) to maintain anoxic conditions. Each getter-solution combination was run in duplicate. Three Tc- and I-doping concentrations were used separately in aliquots of both the 18.2 MΩ DI H2O and a 7.8 M Na LAW waste simulant. The 1× concentration was developed based on Hanford Tank Waste Operations Simulator (HTWOS) model runs to support the River Protection Project System Plan Revision 6. The other two concentrations were 5× and 10× of the HTWOS values. The Tc and I tests were run separately (i.e., the solutions did not contain both solutes). Sampling of the solid-solution mixtures occurred nominally after 0.2, 1, 3, 6, 9, 12, 15 days and ~35 to 45 days. Seven getter materials were tested for Tc and five materials were tested for I. The seven Tc getters were blast furnace slag 1 (BFS1) (northwest source), BFS2 (southeast source), Sn(II)-treated apatite, Sn(II) chloride, nano tin phosphate, KMS (a potassium-metal-sulfide), and tin hydroxapatite. The five iodine getters were layered bismuth hydroxide (LBH), argentite mineral, synthetic argentite, silver-treated carbon, and silver-treated zeolite. The Tc Kd values measured from experiments conducted using the 7.8 M Na LAW simulant (the simulant selected to represent LAW) for the first 15 days for four Tc getters (BFS1, BFS2, Sn(II)-treated apatite, and Sn(II) chloride) show no, to a very small, capacity to remove Tc from the LAW simulant. For the Tc-getter experiments in the 7.8 M LAW simulant, the majority of the effluent samples show very small drops in Tc concentrations for the 35-day compared to the 15-day samplings. However, the Tc concentration in the simulant blanks also dropped slightly during this period, so the effect of the getter contacting LAW simulant at 35 days compared to 15 days is minimal; except that the BFS1 1:10 test shows a slow but steady decrease in Tc concentration in the LAW simulant supernatant from the beginning to the 35 day contact at which point about 20% of the original Tc has been removed from solution. Lastly, the KMS getter gives the highest Kd value for Tc at 35 days where Kd values have increased to 104 mL/g. When considering the different I getters reacting with the 7.8 M LAW simulant, two getters are much more effective than the others: Ag zeolite and Syn Arg. The other getters have calculated iodide distribution coefficients that show very limited effectiveness in the caustic conditions created by the LAW simulant. These are preliminary results that will need more detailed analyses including both pre- and post-batch sorption getter solid-phase characterization using state-of-the-art instrumentation such as synchrotron X ray absorption spectroscopy, which can delineate the oxidation state of the Tc and likely iodine species as well as some of the getters key major components, sulfur and iron in the BFS, and tin and sulfur in the tin-bearing and sulfur-bearing getters. This report also describes future experimental studies to be performed to better elucidate the mechanisms controlling the Tc and I sequestration processes in the various getters and leach tests of getter-bearing Cast Stone monoliths.

  8. Technetium and Iodine Getters to Improve Cast Stone Performance

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Neeway, James J.; Lawter, Amanda R.; Levitskaia, Tatiana G.; Serne, R. Jeffrey; Westsik, Joseph H.; Snyder, Michelle MV

    2014-07-01

    To determine the effectiveness of the various getter materials prior to their solidification in Cast Stone, a series of batch sorption experiments was performed at Pacific Northwest National Laboratory. To quantify the effectiveness of the removal of Tc(VII) and I(I) from solution by getters, the distribution coefficient, Kd (mL/g), was calculated. Testing involved placing getter material in contact with spiked waste solutions at a 1:100 solid-to-solution ratio for periods up to 45 days with periodic solution sampling. One Tc getter was also tested at a 1:10 solid-to-solution ratio. Two different solution media, 18.2 MΩ deionized water (DI H2O) and a 7.8 M Na LAW simulant, were used in the batch sorption tests. Each test was conducted at room temperature in an anoxic chamber containing N2 with a small amount of H2 (0.7%) to maintain anoxic conditions. Each getter-solution combination was run in duplicate. Three Tc- and I-doping concentrations were used separately in aliquots of both the 18.2 MΩ DI H2O and a 7.8 M Na LAW waste simulant. The 1× concentration was developed based on Hanford Tank Waste Operations Simulator (HTWOS) model runs to support the River Protection Project System Plan Revision 6. The other two concentrations were 5× and 10× of the HTWOS values. The Tc and I tests were run separately (i.e., the solutions did not contain both solutes). Sampling of the solid-solution mixtures occurred nominally after 0.2, 1, 3, 6, 9, 12, 15 days and ~35 to 45 days. Seven getter materials were tested for Tc and five materials were tested for I. The seven Tc getters were blast furnace slag 1 (BFS1) (northwest source), BFS2 (southeast source), Sn(II)-treated apatite, Sn(II) chloride, nano tin phosphate, KMS (a potassium-metal-sulfide), and tin hydroxapatite. The five iodine getters were layered bismuth hydroxide (LBH), argentite mineral, synthetic argentite, silver-treated carbon, and silver-treated zeolite. The Tc Kd values measured from experiments conducted using the 7.8 M Na LAW simulant (the simulant selected to represent LAW) for the first 15 days for four Tc getters (BFS1, BFS2, Sn(II)-treated apatite, and Sn(II) chloride) show no, to a very small, capacity to remove Tc from the LAW simulant. For the Tc-getter experiments in the 7.8 M LAW simulant, the majority of the effluent samples show very small drops in Tc concentrations for the 35-day compared to the 15-day samplings. However, the Tc concentration in the simulant blanks also dropped slightly during this period, so the effect of the getter contacting LAW simulant at 35 days compared to 15 days is minimal; except that the BFS1 1:10 test shows a slow but steady decrease in Tc concentration in the LAW simulant supernatant from the beginning to the 35 day contact at which point about 20% of the original Tc has been removed from solution. Lastly, the KMS getter gives the highest Kd value for Tc at 35 days where Kd values have increased to 104 mL/g. When considering the different I getters reacting with the 7.8 M LAW simulant, two getters are much more effective than the others: Ag zeolite and Syn Arg. The other getters have calculated iodide distribution coefficients that show very limited effectiveness in the caustic conditions created by the LAW simulant. These are preliminary results that will need more detailed analyses including both pre- and post-batch sorption getter solid-phase characterization using state-of-the-art instrumentation such as synchrotron X ray absorption spectroscopy, which can delineate the oxidation state of the Tc and likely iodine species as well as some of the getters key major components, sulfur and iron in the BFS, and tin and sulfur in the tin-bearing and sulfur-bearing getters. This report also describes future experimental studies to be performed to better elucidate the mechanisms controlling the Tc and I sequestration processes in the various getters and leach tests of getter-bearing Cast Stone monoliths.

  9. SAVANNAH RIVER SITE COLD WAR HISTORIC PROPERTY DOCUMENTATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WAR HISTORIC PROPERTY DOCUMENTATION 700/A AREA Aiken County, South Carolina 6150 East Ponce de Leon Avenue Stone Mountain, Georgia 30083 700/A AREA SITE ADMINISTRATION, SAFETY, SECURITY, AND SUPPORT NEW SOUTH ASSOCIATES ii ABSTRACT This documentation was prepared in accordance with a Memorandum of Agreement (MOA) signed by the Department of Energy-Savannah River (DOE-SR) and the South Carolina Historic Preservation Office (SHPO) dated February 17, 2004, as well as the Consolidated MOA of August

  10. Q&A with Nobelist George Smoot - 2009 BCCP Cosmology Workshop

    ScienceCinema (OSTI)

    George Smoot

    2010-09-01

    July 2009: What happens when dark matter and anti-dark mattter collide? If you were in a gravity free environment, what would happen to time? At the annual Cosmology Workshop at Lawrence Berkeley Lab, Nobelist George Smoot answers these questions and more from high school students and teachers. Dr. Smoot was co-awarded the 2006 Nobel Prize in Physics for the discovery of the blackbody form and anisotropy of the cosmic microwave background radiation.

  11. George F. Chapline EGG-M-88285 Lawrence Livermore National Laboratory

    Office of Scientific and Technical Information (OSTI)

    FISSION FRAGMENT ROCKETS -- A POTENTIAL BREAKTHROUGH * * " ^ " * * ' - George F. Chapline EGG-M-88285 Lawrence Livermore National Laboratory Livermore, California 94550 D E S S 016953 Paul W. Dickson and Bruce G. Schnitzler Idaho National Engineering Laboratory Idaho Falls, Idaho 83415 ABSTRACT A new reactor concept which has the potential of enabling extremely energetic and ambitious space propulsion missions is described. Fission fragments are directly utilized as the propellant by

  12. Microsoft Word - Nathan George Alt Clad Annals of NE rev2 PTS.docx

    Office of Scientific and Technical Information (OSTI)

    Tolerant Cladding Concepts in Pressurized Water Reactors Nathan Michael George1, Kurt Terrani2, Jeff Powers3, Andrew Worrall3, Ivan Maldonado1 department of Nuclear Engineering, University of Tennessee Knoxville, Knoxville, TN 37996-2300 2Fusion and Materials for Nuclear Systems Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 3Reactor and Nuclear Systems Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 Number of Pages: 23 Number of Tables: 10 Number of Figures: 10

  13. George F. Smoot, Giovanni De Amici, Scott D. Friedman, Chris Witebsky

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low Frequency Measurement of t h e Spectrum of the Cosmic Background Radiation George F. Smoot, Giovanni De Amici, Scott D. Friedman, Chris Witebsky Space Sciences Laboratory & Lawrence Berkeley Laboratory University of California, Berkeley, California 94720 Nazzareno Mandolesi Istituto TESRE-CNR, Bologna, Italy R. Bruce Partridge Haverford College, Haverford, PA 19041 Giorgio Sironi Istituto di Fisica Cosmica-CNR, Milano, Italy Luigi Danese, Gianfranco De Zotti Osservatorio Astronomico,

  14. Assessment of the Cast Stone Low-Temperature Waste Form Technology Coupled with Technetium Removal - 14379

    SciTech Connect (OSTI)

    Brown, Christopher F.; Rapko, Brian M.; Serne, R. Jeffrey; Westsik, Joseph H.; Cozzi, Alex; Fox, Kevin M.; Mccabe, Daniel J.; Nash, C. A.; Wilmarth, William R.

    2014-03-03

    The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) were chartered to implement a science and technology program addressing low-temperature waste forms for immobilization of DOE aqueous waste streams, including technetium removal as an implementing technology. As a first step, the laboratories examined the technical risks and uncertainties associated with the Cast Stone waste immobilization and technetium removal projects at Hanford. Science and technology gaps were identified for work associated with 1) conducting performance assessments and risk assessments of waste form and disposal system performance, and 2) technetium chemistry in tank wastes and separation of technetium from waste processing streams. Technical approaches to address the science and technology gaps were identified and an initial sequencing priority was suggested. A subset of research was initiated in 2013 to begin addressing the most significant science and technology gaps. The purpose of this paper is to report progress made towards closing these gaps and provide notable highlights of results achieved to date.

  15. CAST STONE TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    SciTech Connect (OSTI)

    MINWALL HJ

    2011-04-08

    Cast stone technology is being evaluated for potential application in the treatment and immobilization of Hanford low-activity waste. The purpose of this document is to provide background information on cast stone technology. The information provided in the report is mainly based on a pre-conceptual design completed in 2003.

  16. George Wang

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wang - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  17. Engineering scale demonstration of a prospective Cast Stone process

    SciTech Connect (OSTI)

    Cozzi, A.; Fowley, M.; Hansen, E.; Fox, K.; Miller, D.; Williams, M.

    2014-09-30

    This report documents an engineering-scale demonstration with non-radioactive simulants that was performed at SRNL using the Scaled Continuous Processing Facility (SCPF) to fill an 8.5 ft container with simulated Cast Stone grout. The Cast Stone formulation was chosen from the previous screening tests. Legacy salt solution from previous Hanford salt waste testing was adjusted to correspond to the average composition generated from the Hanford Tank Waste Operation Simulator (HTWOS). The dry blend materials, ordinary portland cement (OPC), Class F fly ash, and ground granulated blast furnace slag (GGBFS or BFS), were obtained from Lafarge North America in Pasco, WA. Over three days, the SCPF was used to fill a 1600 gallon container, staged outside the facility, with simulated Cast Stone grout. The container, staged outside the building approximately 60 ft from the SCPF, was instrumented with x-, y-, and z-axis thermocouples to monitor curing temperature. The container was also fitted with two formed core sampling vials. For the operation, the targeted grout production rate was 1.5 gpm. This required a salt solution flow rate of approximately 1 gpm and a premix feed rate of approximately 580 lb/h. During the final day of operation, the dry feed rate was increased to evaluate the ability of the system to handle increased throughput. Although non-steady state operational periods created free surface liquids, no bleed water was observed either before or after operations. The final surface slope at a fill height of 39.5 inches was 1-1.5 inches across the 8.5 foot diameter container, highest at the final fill point and lowest diametrically opposed to the fill point. During processing, grout was collected in cylindrical containers from both the mixer discharge and the discharge into the container. These samples were stored in a humid environment either in a closed box proximal to the container or inside the laboratory. Additional samples collected at these sampling points were analyzed for rheological properties and density. Both the rheological properties (plastic viscosity and yield strength) and density were consistent with previous and later SCPF runs.

  18. Injury experience in stone mining, 1991. Information report

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of stone mining in the united States for 1991. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  19. #WomenInSTEM: Stepping Stones From One Career to Another | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Stepping Stones From One Career to Another #WomenInSTEM: Stepping Stones From One Career to Another November 24, 2014 - 10:30am Addthis Watch our latest #WomenInSTEM profile of Cheryl Martin, Acting Director of the Advanced Research Projects Agency for Energy (ARPA-E). | Video by Matty Greene. Matty Greene Matty Greene Former Videographer Allison Lantero Allison Lantero Digital Content Specialist, Office of Public Affairs Meet Cheryl Martin, Acting Director of the Advanced Research

  20. HANFORD CONTAINERIZED CAST STONE FACILITY TASK 1 PROCESS TESTING & DEVELOPMENT FINAL TEST REPORT

    SciTech Connect (OSTI)

    LOCKREM, L L

    2005-07-13

    Laboratory testing and technical evaluation activities on Containerized Cast Stone (CCS) were conducted under the Scope of Work (SOW) contained in CH2M HILL Hanford Group, Inc. (CHG) Contract No. 18548 (CHG 2003a). This report presents the results of testing and demonstration activities discussed in SOW Section 3.1, Task I--''Process Development Testing'', and described in greater detail in the ''Containerized Grout--Phase I Testing and Demonstration Plan'' (CHG, 2003b). CHG (2003b) divided the CCS testing and evaluation activities into six categories, as follows: (1) A short set of tests with simulant to select a preferred dry reagent formulation (DRF), determine allowable liquid addition levels, and confirm the Part 2 test matrix. (2) Waste form performance testing on cast stone made from the preferred DRF and a backup DRF, as selected in Part I, and using low activity waste (LAW) simulant. (3) Waste form performance testing on cast stone made from the preferred DRF using radioactive LAW. (4) Waste form validation testing on a selected nominal cast stone formulation using the preferred DRF and LAW simulant. (5) Engineering evaluations of explosive/toxic gas evolution, including hydrogen, from the cast stone product. (6) Technetium ''getter'' testing with cast stone made with LAW simulant and with radioactive LAW. In addition, nitrate leaching observations were drawn from nitrate leachability data obtained in the course of the Parts 2 and 3 waste form performance testing. The nitrate leachability index results are presented along with other data from the applicable activity categories.

  1. Waste Acceptance Testing of Secondary Waste Forms: Cast Stone, Ceramicrete and DuraLith

    SciTech Connect (OSTI)

    Mattigod, Shas V.; Westsik, Joseph H.; Chung, Chul-Woo; Lindberg, Michael J.; Parker, Kent E.

    2011-08-12

    To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions has initiated secondary-waste-form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is conducting tests on four candidate waste forms to evaluate their ability to meet potential waste acceptance criteria for immobilized secondary wastes that would be placed in the IDF. All three waste forms demonstrated compressive strengths above the minimum 3.45 MPa (500 psi) set as a target for cement-based waste forms. Further, none of the waste forms showed any significant degradation in compressive strength after undergoing thermal cycling (30 cycles in a 10 day period) between -40 C and 60 C or water immersion for 90 days. The three leach test methods are intended to measure the diffusion rates of contaminants from the waste forms. Results are reported in terms of diffusion coefficients and a leachability index (LI) calculated based on the diffusion coefficients. A smaller diffusion coefficient and a larger LI are desired. The NRC, in its Waste Form Technical Position (NRC 1991), provides recommendations and guidance regarding methods to demonstrate waste stability for land disposal of radioactive waste. Included is a recommendation to conduct leach tests using the ANS 16.1 method. The resulting leachability index (LI) should be greater than 6.0. For Hanford secondary wastes, the LI > 6.0 criterion applies to sodium leached from the waste form. For technetium and iodine, higher targets of LI > 9 for Tc and LI > 11 for iodine have been set based on early waste-disposal risk and performance assessment analyses. The results of these three leach tests conducted for a total time between 11days (ASTM C1308) to 90 days (ANS 16.1) showed: (1) Technetium diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that all the waste forms had leachability indices better than the target LI > 9 for technetium; (2) Rhenium diffusivity: Cast Stone 2M specimens, when tested using EPA 1315 protocol, had leachability indices better than the target LI > 9 for technetium based on rhenium as a surrogate for technetium. All other waste forms tested by ANSI/ANS 16.1, ASTM C1308, and EPA 1315 test methods had leachability indices that were below the target LI > 9 for Tc based on rhenium release. These studies indicated that use of Re(VII) as a surrogate for 99Tc(VII) in low temperature secondary waste forms containing reductants will provide overestimated diffusivity values for 99Tc. Therefore, it is not appropriate to use Re as a surrogate 99Tc in future low temperature waste form studies. (3) Iodine diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that the three waste forms had leachability indices that were below the target LI > 11 for iodine. Therefore, it may be necessary to use a more effective sequestering material than silver zeolite used in two of the waste forms (Ceramicrete and DuraLith); (4) Sodium diffusivity: All the waste form specimens tested by the three leach methods (ANSI/ANS 16.1, ASTM C1308, and EPA 1315) exceeded the target LI value of 6; (5) All three leach methods (ANS 16.1, ASTM C1308 and EPA 1315) provided similar 99Tc diffusivity values for both short-time transient diffusivity effects as well as long-term ({approx}90 days) steady diffusivity from each of the three tested waste forms (Cast Stone 2M, Ceramicrete and DuraLith). Therefore, any one of the three methods can be used to determine the contaminant diffusivities from a selected waste form.

  2. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment of Radionuclide Monitoring in the CSRA Savannah River NERP Research ... Upcoming Seminars The Savannah River Ecology Laboratory is a research unit of the ...

  3. Technical Approach for Determining Key Parameters Needed for Modeling the Performance of Cast Stone for the Integrated Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Yabusaki, Steven B.; Serne, R. Jeffrey; Rockhold, Mark L.; Wang, Guohui; Westsik, Joseph H.

    2015-03-30

    Washington River Protection Solutions (WRPS) and its contractors at Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) are conducting a development program to develop / refine the cementitious waste form for the wastes treated at the ETF and to provide the data needed to support the IDF PA. This technical approach document is intended to provide guidance to the cementitious waste form development program with respect to the waste form characterization and testing information needed to support the IDF PA. At the time of the preparation of this technical approach document, the IDF PA effort is just getting started and the approach to analyze the performance of the cementitious waste form has not been determined. Therefore, this document looks at a number of different approaches for evaluating the waste form performance and describes the testing needed to provide data for each approach. Though the approach addresses a cementitious secondary aqueous waste form, it is applicable to other waste forms such as Cast Stone for supplemental immobilization of Hanford LAW. The performance of Cast Stone as a physical and chemical barrier to the release of contaminants of concern (COCs) from solidification of Hanford liquid low activity waste (LAW) and secondary wastes processed through the Effluent Treatment Facility (ETF) is of critical importance to the Hanford Integrated Disposal Facility (IDF) total system performance assessment (TSPA). The effectiveness of cementitious waste forms as a barrier to COC release is expected to evolve with time. PA modeling must therefore anticipate and address processes, properties, and conditions that alter the physical and chemical controls on COC transport in the cementitious waste forms over time. Most organizations responsible for disposal facility operation and their regulators support an iterative hierarchical safety/performance assessment approach with a general philosophy that modeling provides the critical link between the short-term understanding from laboratory and field tests, and the prediction of repository performance over repository time frames and scales. One common recommendation is that experiments be designed to permit the appropriate scaling in the models. There is a large contrast in the physical and chemical properties between the Cast Stone waste package and the IDF backfill and surrounding sediments. Cast Stone exhibits low permeability, high tortuosity, low carbonate, high pH, and low Eh whereas the backfill and native sediments have high permeability, low tortuosity, high carbonate, circumneutral pH, and high Eh. These contrasts have important implications for flow, transport, and reactions across the Cast Stone – backfill interface. Over time with transport across the interface and subsequent reactions, the sharp geochemical contrast will blur and there will be a range of spatially-distributed conditions. In general, COC mobility and transport will be sensitive to these geochemical variations, which also include physical changes in porosity and permeability from mineral reactions. Therefore, PA modeling must address processes, properties, and conditions that alter the physical and chemical controls on COC transport in the cementitious waste forms over time. Section 2 of this document reviews past Hanford PAs and SRS Saltstone PAs, which to date have mostly relied on the lumped parameter COC release conceptual models for TSPA predictions, and provides some details on the chosen values for the lumped parameters. Section 3 provides more details on the hierarchical modeling strategy and processes and mechanisms that control COC release. Section 4 summarizes and lists the key parameters for which numerical values are needed to perform PAs. Section 5 provides brief summaries of the methods used to measure the needed parameters and references to get more details.

  4. Feasibility study of prompt gamma neutron activation for NDT measurement of moisture in stone and brick

    SciTech Connect (OSTI)

    Livingston, R. A.; Al-Sheikhly, M.; Grissom, C.; Aloiz, E.; Paul, R.

    2014-02-18

    The conservation of stone and brick architecture or sculpture often involves damage caused by moisture. The feasibility of a NDT method based on prompt gamma neutron activation (PGNA) for measuring the element hydrogen as an indication of water is being evaluated. This includes systematic characterization of the lithology and physical properties of seven building stones and one brick type used in the buildings of the Smithsonian Institution in Washington, D.C. To determine the required dynamic range of the NDT method, moisture-related properties were measured by standard methods. Cold neutron PGNA was also used to determine chemically bound water (CBW) content. The CBW does not damage porous masonry, but creates an H background that defines the minimum level of detection of damaging moisture. The CBW was on the order of 0.5% for all the stones. This rules out the measurement of hygric processes in all of the stones and hydric processed for the stones with fine scale pore-size distributions The upper bound of moisture content, set by porosity through water immersion, was on the order of 5%. The dynamic range is about 1020. The H count rates were roughly 13 cps. Taking into account differences in neutron energies and fluxes and sample volume between cold PGNA and a portable PGNA instrument, it appears that it is feasible to apply PGNA in the field.

  5. Secondary Waste Form Development and OptimizationCast Stone

    SciTech Connect (OSTI)

    Sundaram, S. K.; Parker, Kent E.; Valenta, Michelle M.; Pitman, Stan G.; Chun, Jaehun; Chung, Chul-Woo; Kimura, Marcia L.; Burns, Carolyn A.; Um, Wooyong; Westsik, Joseph H.

    2011-07-14

    Washington River Protection Services is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF is a Resource Conservation and Recovery Act-permitted, multi-waste, treatment and storage unit and can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid wastes generated during operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The STU to ETF will provide the additional capacity needed for ETF to process the increased volume of secondary wastes expected to be produced by WTP.

  6. Savannah River Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Savannah River Field Office

  7. Evaluation of Technetium Getters to Improve the Performance of Cast Stone

    SciTech Connect (OSTI)

    Neeway, James J.; Qafoku, Nikolla P.; Serne, R. Jeffrey; Lawter, Amanda R.; Stephenson, John R.; Lukens, Wayne W.; Westsik, Joseph H.

    2015-11-01

    Cast Stone has been selected as the preferred waste form for solidification of aqueous secondary liquid effluents from the Hanford Tank Waste Treatment and Immobilization Plant (WTP) process condensates and low-activity waste (LAW) melter off-gas caustic scrubber effluents. Cast Stone is also being evaluated as a supplemental immobilization technology to provide the necessary LAW treatment capacity to complete the Hanford tank waste cleanup mission in a timely and cost effective manner. One of the major radionuclides that Cast Stone has the potential to immobilize is technetium (Tc). The mechanism for immobilization is through the reduction of the highly mobile Tc(VII) species to the less mobile Tc(IV) species by the blast furnace slag (BFS) used in the Cast Stone formulation. Technetium immobilization through this method would be beneficial because Tc is one of the most difficult contaminants to address at the U.S. Department of Energy (DOE) Hanford Site due to its complex chemical behavior in tank waste, limited incorporation in mid- to high-temperature immobilization processes (vitrification, steam reformation, etc.), and high mobility in subsurface environments. In fact, the Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC&WM EIS) identifies technetium-99 (99Tc) as one of the radioactive tank waste components contributing the most to the environmental impact associated with the cleanup of the Hanford Site. The TC&WM EIS, along with an earlier supplemental waste-form risk assessment, used a diffusion-limited release model to estimate the release of different contaminants from the WTP process waste forms. In both of these predictive modeling exercises, where effective diffusivities based on grout performance data available at the time, groundwater at the 100-m down-gradient well exceeded the allowable maximum permissible concentrations for 99Tc. (900 pCi/L). Recent relatively short-term (63 day) leach tests conducted on both LAW and secondary waste Cast Stone monoliths indicated that 99Tc diffusivities were at or near diffusivities where the groundwater at the 100-m down-gradient well would exceed the allowable maximum permissible 99Tc concentrations. There is, therefore, a need and an opportunity to improve the retention of Tc in the Cast Stone waste form. One method to improve the performance of the Cast Stone waste form is through the addition of “getters” that selectively sequester Tc inside Cast Stone.

  8. Regional geology of Georges Bank basin - OCS Sale 42 drilling results

    SciTech Connect (OSTI)

    High, L.R. Jr.

    1985-02-01

    Industry bid aggressively in OCS Sale 42, spending $816 million. Eight wildcats were drilled in 1981-82 to test 5 major plays. All wells were dry; no potential reservoir or source rocks were found. The tectonic-stratigraphic framework of the Georges Bank basin is that of an Atlantic-type plate margin. Two major unconformities divide the section into prerift, synrift, and postrift sequences. The prerift sequence consists of Paleozoic metasediments in basement fault blocks. Synrift sediments consist of Newark Group equivalents: the Argo Salt and the Iroquoi Formation. The postrift sequence consists of Mohican red beds overlain by progradational wedges, with the carbonate Abenaki Formation at the base. The objective in 4 of the 8 wildcats was the Iroquois Formation. Mobil 312-1 and Shell 357-1 were drilled into a seismic anomaly interpreted to be a reef. This structure was found to be a complex carbonate mound. Exxon 975-1 was drilled on a seismic amplitude anomaly variously interpreted to be the result of salt, coal, or porous carbonates. This anomaly proved to be caused by a salt bed. The objective in Shell 410-1R was carbonate banks over a basement horst block. No significant zones of porosity were found. The remaining 4 wildcats were drilled on Abenaki prospects. Mobil 273-1, Tenneco 187-1d, and Conoco 145-1 were drilled for possible carbonate banks over a salt structure. Only thin oolitic grainstone intervals were found. Exxon 133-1 was based on a seismic anomaly interpreted to be a patch reef. This feature was found to be a volcanic cone.

  9. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in 1997 and replaced with two other areas, both located in the Savannah River swamp. ... on the natural levy that parallels the Savannah River. Area: 1 2 3 4 5 6 7 8 9 10 11 ...

  10. River Corridor Achievements

    Broader source: Energy.gov [DOE]

    Washington Closure Hanford and previous contractors have completed much of the cleanup work in the River Corridor, shown here.

  11. CAST STONE TECHNOLOGY FOR TREATMENT & DISPOSAL OF IODINE RICH CAUSTIC WASTE DEMONSTRATION FINAL REPORT

    SciTech Connect (OSTI)

    LOCKREM, L.L.

    2005-07-14

    CH2M HILL is working to develop, design, and construct low-activity waste (LAW) treatment and imcholization systems to supplement the LAW capacity provided by the Waste Treatment and Immobilization Plant. CH2M HILL is investigating use of cast stone technology for treatment and immobilization of caustic solutions containing high concentrations of radioactive Iodine-129.

  12. Big George to Carter Mountain 115-kV transmission line project, Park and Hot Springs Counties, Wyoming. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Western Area Power Administration (Western) is proposing to rebuild, operate, and maintain a 115-kilovolt (kV) transmission line between the Big George and Carter Mountain Substations in northwest Wyoming (Park and Hot Springs Counties). This environmental assessment (EA) was prepared in compliance with the National Environmental Policy Act (NEPA) and the regulations of the Council on Environmental Quality (CEQ) and the Department of Energy (DOE). The existing Big George to Carter Mountain 69-kV transmission line was constructed in 1941 by the US Department of Interior, Bureau of Reclamation, with 1/0 copper conductor on wood-pole H-frame structures without an overhead ground wire. The line should be replaced because of the deteriorated condition of the wood-pole H-frame structures. Because the line lacks an overhead ground wire, it is subject to numerous outages caused by lightning. The line will be 54 years old in 1995, which is the target date for line replacement. The normal service life of a wood-pole line is 45 years. Under the No Action Alternative, no new transmission lines would be built in the project area. The existing 69-kV transmission line would continue to operate with routine maintenance, with no provisions made for replacement.

  13. Lower Colorado River Authority | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Lower Colorado River Authority's communications requirements

  14. Office of River Protection - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of River Protection Office of River Protection Office of River Protection Office of River Protection Email Email Page | Print Print Page |Text Increase Font Size Decrease...

  15. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Augmented Formulation Matrix Tests

    SciTech Connect (OSTI)

    Cozzi, A.; Crawford, C.; Fox, K.; Hansen, E.; Roberts, K.

    2015-07-20

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in Washington State. The HLW will be vitrified in the HLW facility for ultimate disposal at an offsite federal repository. A portion (~35%) of the LAW will be vitrified in the LAW vitrification facility for disposal onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize all of the wastes destined for those facilities. However, a second facility will be needed for the expected volume of LAW requiring immobilization. Cast Stone, a cementitious waste form, is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. A testing program was developed in fiscal year (FY) 2012 describing in detail the work needed to develop and qualify Cast Stone as a waste form for the solidification of Hanford LAW. A statistically designed test matrix was used to evaluate the effects of key parameters on the properties of the Cast Stone as it is initially prepared and after curing. For the processing properties, the water-to-dry-blend mix ratio was the most significant parameter in affecting the range of values observed for each property. The single shell tank (SST) Blend simulant also showed differences in measured properties compared to the other three simulants tested. A review of the testing matrix and results indicated that an additional set of tests would be beneficial to improve the understanding of the impacts noted in the Screening Matrix tests. A set of Cast Stone formulations were devised to augment the original screening test matrix and focus on the range of the test conditions. Fly ash and blast furnace slag were limited to either northwest or southeast and the salt solutions were narrowed to the Average and the SST Blend at the 7.8M Na concentration. To fill in the matrix, a mix ratio of 0.5 was added. In addition, two admixtures, Xypex Admix C-500 and Rheomac SF100 (silica fume), were added as an additional dry material binder in select compositions. As in the Screening Matrix, both fresh and cured properties were evaluated for the formulations. In this study, properties that were influenced by the W/DM ratio in the Screening Matrix; flow diameter, plastic viscosity, density, and compressive strength, showed consistent behavior with respect to W/DM. The leach index for highly soluble components, sodium and nitrate, were not influenced by changes in formulation or the admixtures. The leach index for both iodine and Tc-99 show an influence from the addition of the admixture, Xypex Admix C-500. Additional testing should be performed to further evaluate the influence of Xypex Admix C-500 on the leach index over a range of admixture concentrations, Cast Stone formulations, and curing and storage conditions.

  16. Savannah River National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savannah River National Laboratory srnl.doe.gov SRNL is a DOE National Laboratory operated by Savannah River Nuclear Solutions. At a glance 'Tin whiskers' suppression method Researchers at the Savannah River National Laboratory (SRNL) have identified a treatment method that slows or prevents the formation of whiskers in lead-free solder. Tin whiskers spontaneously grow from thin films of tin, often found in microelectronic devices in the form of solders and platings. Background This problem was

  17. River and Plateau Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy River Turbine Provides Clean Energy to Remote Alaskan Village River Turbine Provides Clean Energy to Remote Alaskan Village August 18, 2015 - 10:36am Addthis River Turbine Provides Clean Energy to Remote Alaskan Village Alison LaBonte Marine and Hydrokinetic Technology Manager To date, Ocean Renewable Power Company (ORPC) is the only company to have built, operated and delivered power to a utility grid from a hydrokinetic tidal project, and to a local microgrid from a hydrokinetic

  18. Injury experience in nonmetallic mineral mining (except stone and coal), 1984

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This report reviews in detail the occupational injury and illness experience of nonmetallic mineral mining (except stone and coal) in the United States for 1984. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report.

  19. Great River (1973)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume One Film Collection Volume Two 75th Anniversary Hydropower in the Northwest Woody Guthrie Videos Strategic Direction Branding & Logos Power of the River History Book...

  20. River of Power (1987)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume One Film Collection Volume Two 75th Anniversary Hydropower in the Northwest Woody Guthrie Videos Strategic Direction Branding & Logos Power of the River History Book...

  1. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of bottomland hardwoodfloodplain forest communities of a southern river swamp system. ... or urban waste discharge, or power plant cooling effluents. Area: 1 2 3 4 5 6 7 ...

  2. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    location of the Savannah River Ecology Laboratory, is one of the original ten SREL habitat reserves and was selected to complement the old-field habitatplant succession studies ...

  3. Missouri River Energy Services | Open Energy Information

    Open Energy Info (EERE)

    St. James Sauk Centre Staples Wadena Westbrook Worthington SOUTH DAKOTA Beresford Big Stone City Brookings Burke Faith Flandreau Fort Pierre Pickstown Pierre Vermillion...

  4. Panel Discussion: Career Paths in Energy & Sustainability: Perspectives from Successful Women Professionals Held at George Washington University on Friday, February 20

    Broader source: Energy.gov [DOE]

    On February 20, the Leaders in Energy Research, Communications, Policies, and Analysis and the National Capitol Chapter of the Association of Energy Engineers will co-host the Energy & Sustainability Extravaganza at The George Washington University from 11:30 a.m.–7 p.m.

  5. about Savannah River National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The EDM capability at the Savannah River National Laboratory (SRNL) is unique to the Savannah River Site. It allows for very fine, precise cutting of metal without destroying ...

  6. Office of River Protection (ORP) and Washingotn River Protection Solutions,

    Energy Savers [EERE]

    LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project | Department of Energy River Protection (ORP) and Washingotn River Protection Solutions, LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project Office of River Protection (ORP) and Washingotn River Protection Solutions, LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project The Mission of the Office of River Protection is to safely retrieve and treat Hanford's tank waste and close the Tank

  7. Secondary Waste Form Screening Test ResultsCast Stone and Alkali Alumino-Silicate Geopolymer

    SciTech Connect (OSTI)

    Pierce, Eric M.; Cantrell, Kirk J.; Westsik, Joseph H.; Parker, Kent E.; Um, Wooyong; Valenta, Michelle M.; Serne, R. Jeffrey

    2010-06-28

    PNNL is conducting screening tests on the candidate waste forms to provide a basis for comparison and to resolve the formulation and data needs identified in the literature review. This report documents the screening test results on the Cast Stone cementitious waste form and the Geopolymer waste form. Test results suggest that both the Cast Stone and Geopolymer appear to be viable waste forms for the solidification of the secondary liquid wastes to be treated in the ETF. The diffusivity for technetium from the Cast Stone monoliths was in the range of 1.2 10-11 to 2.3 10-13 cm2/s during the 63 days of testing. The diffusivity for technetium from the Geopolymer was in the range of 1.7 10-10 to 3.8 10-12 cm2/s through the 63 days of the test. These values compare with a target of 1 10-9 cm2/s or less. The Geopolymer continues to show some fabrication issues with the diffusivities ranging from 1.7 10-10 to 3.8 10-12 cm2/s for the better-performing batch to from 1.2 10-9 to 1.8 10-11 cm2/s for the poorer-performing batch. In the future more comprehensive and longer term performance testing will be conducted, to further evaluate whether or not these waste forms will meet the regulation and performance criteria needed to cost-effectively dispose of secondary wastes.

  8. River and Harbors Act

    Broader source: Energy.gov [DOE]

    Section 10 of the Rivers and Harbors Act of 1899 (33 U.S.C. 403) prohibits the unauthorized obstruction or alteration of any navigable water of the United States.

  9. Savannah river site

    National Nuclear Security Administration (NNSA)

    at the Savannah River Site (SRS) to supply and process tritium, a radioactive form of hydrogen that is a vital component of nuclear weapons. SRS loads tritium and non-tritium...

  10. Sioux River Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    River Ethanol LLC Jump to: navigation, search Name: Sioux River Ethanol LLC Place: Hudson, South Dakota Zip: 57034 Product: Farmer owned ethanol producer, Sioux River Ethanol is...

  11. Savannah River Site | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Savannah River Site FY 2015 FY 2015 Performance Evaluation Plan, Savannah River Nuclear Solitions, LLC FY 2014 FY 2014 Performance Evaluation Report, Savannah River Nuclear ...

  12. Raft River Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Raft River Geothermal Facility General Information Name Raft River Geothermal Facility Facility Raft River...

  13. Sky River Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    River Wind Farm Jump to: navigation, search Name Sky River Wind Farm Facility Sky River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  14. Wing River Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Wing River Wind Farm Facility Wing River Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wing River...

  15. Flambeau River Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Flambeau River Biofuels Jump to: navigation, search Name: Flambeau River Biofuels Place: Park Falls, Wisconsin Sector: Biomass Product: A subsidiary of Flambeau River Papers LLC...

  16. Savannah River Site Waste Disposition Project

    Office of Environmental Management (EM)

    Terrel J. Spears Assistant Manager Waste Disposition Project DOE Savannah River Operations Office Savannah River Site Savannah River Site Waste Disposition Project Waste ...

  17. Savannah River | Department of Energy

    Energy Savers [EERE]

    River Savannah River Following are compliance agreements for the Savannah River Site. Also included are short summaries of the agreements. PDF icon Natural Resources Defense Council Consent Decree, May 26, 1988 PDF icon Natural Resources Defense Council Consent Decree, May 26, 1988 Summary PDF icon Savannah River Site Consent Order 99-155-W, October 11, 1999 PDF icon Savannah River Site Consent Order 99-155-W, October 11, 1999 Summary PDF icon Savannah River Site Consent Order 85-70-SW, November

  18. Schlumberger soundings in the Upper Raft River and Raft River...

    Open Energy Info (EERE)

    soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Schlumberger soundings in the...

  19. Lower Colorado River Authority | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Lower Colorado River Authority on Smart Grid communications requirements

  20. Reese River Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    River Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Reese River Geothermal Project Project Location Information...

  1. Project Management Institute Highlights Savannah River Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Management Institute Highlights Savannah River Nuclear Solutions in Publication Project Management Institute Highlights Savannah River Nuclear Solutions in Publication ...

  2. Ecotoxicology | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savannah River NERP Research Opportunities Field Sites Data Research Facilities Low Dose Irradiation Facility Tritium Irrigation Facility Microsatellite Development Education ...

  3. Effects of Stone-Wales and vacancy defects in atomic-scale friction on defective graphite

    SciTech Connect (OSTI)

    Sun, Xiao-Yu; Wu, RunNi; Xia, Re; Chu, Xi-Hua; Xu, Yuan-Jie

    2014-05-05

    Graphite is an excellent solid lubricant for surface coating, but its performance is significantly weakened by the vacancy or Stone-Wales (SW) defect. This study uses molecular dynamics simulations to explore the frictional behavior of a diamond tip sliding over a graphite which contains a single defect or stacked defects. Our results suggest that the friction on defective graphite shows a strong dependence on defect location and type. The 5-7-7-5 structure of SW defect results in an effectively negative slope of friction. For defective graphite containing a defect in the surface, adding a single vacancy in the interior layer will decrease the friction coefficients, while setting a SW defect in the interior layer may increase the friction coefficients. Our obtained results may provide useful information for understanding the atomic-scale friction properties of defective graphite.

  4. Rosetta stone method for detecting protein function and protein-protein interactions from genome sequences

    DOE Patents [OSTI]

    Eisenberg, David; Marcotte, Edward M.; Pellegrini, Matteo; Thompson, Michael J.; Yeates, Todd O.

    2002-10-15

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  5. Injury experience in nonmetallic mineral mining (Except stone and coal), 1990

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of nonmetallic mineral mining (except stone and coal) in the United States for 1990. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  6. Injury experience in nonmetallic mineral mining (except stone and coal), 1991

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of nonmetallic mineral mining (except stone and coal) in the United States for 1991. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  7. Injury experience in nonmetallic mineral mining (except stone and coal), 1992

    SciTech Connect (OSTI)

    Reich, R.B; Hugler, E.C.

    1994-05-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of nonmetallic mineral mining (except stone and coal) in the United States for 1992. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  8. Injury experience in nonmetallic mineral mining (except stone and coal), 1989

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of nonmetallic mineral mining (except stone and coal) in the United States for 1989. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. 3 figs., 46 tabs.

  9. #WomenInSTEM: Stepping Stones From One Career to Another

    ScienceCinema (OSTI)

    Martin, Cheryl

    2014-11-24

    Meet Cheryl Martin, Acting Director of the Advanced Research Projects Agency for Energy (ARPA-E) and the latest profile in the Energy Department's #WomenInSTEM video series. Cheryl looks at transformational projects to explore the uncharted territories of energy technology to generate options for entirely new paths to create, store and use energy. There are many challenges to overcome in the energy field, and it's important to have a diverse set of voices in STEM careers to meet these demands. Cheryl recommends that young women include all the skills they have - those gained at formal jobs as well as through volunteering or nonprofit organizations - when they take their next career step. These skills form the stepping stones that lead from one career to the next. And with a solid grounding in STEM, the opportunities are endless.

  10. Savannah River Site Robotics

    SciTech Connect (OSTI)

    2010-01-01

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  11. Savannah River Site Robotics

    ScienceCinema (OSTI)

    None

    2012-06-14

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  12. Setting and stiffening of cementitious components in Cast Stone waste form for disposal of secondary wastes from the Hanford waste treatment and immobilization plant

    SciTech Connect (OSTI)

    Chung, Chul-Woo; Chun, Jaehun, E-mail: jaehun.chun@pnnl.gov; Um, Wooyong; Sundaram, S.K.; Westsik, Joseph H.

    2013-04-01

    Cast Stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from the Hanford Waste Treatment and Immobilization Plant. However, no study has been performed to understand the flow and stiffening behavior, which is essential to ensure proper workability and is important to safety in a nuclear waste field-scale application. X-ray diffraction, rheology, and ultrasonic wave reflection methods were used to understand the specific phase formation and stiffening of Cast Stone. Our results showed a good correlation between rheological properties of the fresh mixture and phase formation in Cast Stone. Secondary gypsum formation was observed with low concentration simulants, and the formation of gypsum was suppressed in high concentration simulants. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. Highlights: A combination of XRD, UWR, and rheology gives a better understanding of Cast Stone. Stiffening of Cast Stone was strongly dependent on the concentration of simulant. A drastic change in stiffening of Cast Stone was found at 1.56 M Na concentration.

  13. Setting and Stiffening of Cementitious Components in Cast Stone Waste Form for Disposal of Secondary Wastes from the Hanford waste treatment and immobilization plant

    SciTech Connect (OSTI)

    Chung, Chul-Woo; Chun, Jaehun; Um, Wooyong; Sundaram, S. K.; Westsik, Joseph H.

    2013-04-01

    Cast stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from Hanford vitrification plant. While the strength and radioactive technetium leaching of different waste form candidates have been reported, no study has been performed to understand the flow and stiffening behavior of Cast Stone, which is essential to ensure the proper workability, especially considering necessary safety as a nuclear waste form in a field scale application. The rheological and ultrasonic wave reflection (UWR) measurements were used to understand the setting and stiffening Cast Stone batches. X-ray diffraction (XRD) was used to find the correlation between specific phase formation and the stiffening of the paste. Our results showed good correlation between rheological properties of the fresh Cast Stone mixture and phase formation during hydration of Cast Stone. Secondary gypsum formation originating from blast furnace slag was observed in Cast Stone made with low concentration simulants. The formation of gypsum was suppressed in high concentration simulants. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration.

  14. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, D.

    2013-03-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

  15. Voluntary Protection Program Onsite Review, Savannah River Nuclear...

    Office of Environmental Management (EM)

    River Nuclear Solutions, Llc Savannah River Site - October 2014 Voluntary Protection Program Onsite Review, Savannah River Nuclear Solutions, Llc Savannah River Site - October 2014 ...

  16. EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    81: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River Counties, Oregon EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River ...

  17. Look to the River Columbia River Opens New Opportunities for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume One Film Collection Volume Two 75th Anniversary Hydropower in the Northwest Woody Guthrie Videos Strategic Direction Branding & Logos Power of the River History Book...

  18. FutureGen: Stepping-Stone to Sustainable Fossil-Fuel Power Generation

    SciTech Connect (OSTI)

    Zitney, S.E.

    2006-11-01

    This presentation will highlight the U.S. Department of Energy's FutureGen Initiative. The nearly $1 billion government-industry project is a stepping-stone toward future coal-fired power plants that will produce hydrogen and electricity with zero-emissions, including carbon dioxide. The 275-megawatt FutureGen plant will initiate operations around 2012 and employ advanced coal gasification technology integrated with combined cycle electricity generation, hydrogen production, and carbon capture and sequestration. The initiative is a response to a presidential directive to develop a hydrogen economy by drawing upon the best scientific research to address the issue of global climate change. The FutureGen plant will be based on cutting-edge power generation technology as well as advanced carbon capture and sequestration systems. The centerpiece of the project will be coal gasification technology that can eliminate common air pollutants such as sulfur dioxide and nitrogen oxides and convert them to useable by-products. Gasification will convert coal into a highly enriched hydrogen gas, which can be burned much more cleanly than directly burning the coal itself. Alternatively, the hydrogen can be used in a fuel cell to produce ultra-clean electricity, or fed to a refinery to help upgrade petroleum products. Carbon sequestration will also be a key feature that will set the Futuregen plant apart from other electric power plant projects. The initial goal will be to capture 90 percent of the plant's carbon dioxide, but capture of nearly 100 percent may be possible with advanced technologies. Once captured, the carbon dioxide will be injected as a compressed fluid deep underground, perhaps into saline reservoirs. It could even be injected into oil or gas reservoirs, or into unmineable coal seams, to enhance petroleum or coalbed methane recovery. The ultimate goal for the FutureGen plant is to show how new technology can eliminate environmental concerns over the future use of coal--the most abundant fossil fuel in the United States with supplies projected to last 250 years. FutureGen's co-production of power and hydrogen will also serve as a stepping-stone to an environmentally sustainable energy future.

  19. about Savannah River National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Transfer Systems and Reservoir Development Gas Transfer Systems and Reservoir Development The Savannah River Site (SRS) is rich in history for its involvement in the nation's nuclear defense program. For over 50 years, SRS and the Savannah River National Laboratory (SRNL) have developed the expertise necessary to be the premier laboratory for tritium processing and its relation to new reservoir design. SRNL is the bridge between the weapon Design Agencies and the Savannah River Tritium

  20. Smith River Rancheria- 2006 Project

    Broader source: Energy.gov [DOE]

    Smith River Rancheria has a strong commitment to becoming energy self-sufficient, reduce their energy costs, and stimulate economic development in the community.

  1. RiverHeath Appleton, WI

    Office of Energy Efficiency and Renewable Energy (EERE)

    The goal of the project is to produce a closed loop neighborhood-wide geothermal exchange system using the river as the source of heat exchange.

  2. Employment | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Openings are posted on the UGA Human Resources website. To search for employment opportunities at SREL, select Department 267 (Savannah River Ecology Laboratory). UGA HR...

  3. OFFICE OF RIVER PROTECTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-6-60 Richland, Washington 99352 SEP 3 0 2013 13 -CPM-0262 Mr. Charles A. Simpson, Contracts Manager Washington River Protection Solutions LLC 2440 Stevens Center Place Richland, Washington 99354 Mr. Simpson: CONTRACT NO. DE-AC27-08RVI4800 - TRANSMITTAL OF CONTRACT MODIFICATION 231 The purpose of this letter is to transmit the fully-executed Contract Modification 23 1. This modification revises the contract price for the base contract period and updates Section J, Attachment J.4, Performance

  4. River and Plateau Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2011) Page 1 Area RAP Committee Area of Interest Issue Manager(s) (*denotes lead) Other interested committee members Focus/Product For FY2012 Framing Questions/Issues (Articulated by Issue Managers) Cross- cutting River Corridor 100 & 300 Areas * 100 B/C Area * 100 K Area * 100 N Area * 100 D & H Areas * 100 F Area * 300 Area Shelley Cimon Dale Engstrom* Liz Mattson Jean Vanni Gerry Pollet Bob Suyama Wade Riggsbee 6 RODs RI/FS and Proposed Plans to be issued between now &

  5. River and Plateau Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2/15 River and Plateau Committee Priorities for advice on FY17 budget Not in priority order, numbering refers to last year's related advice points, per DOE response  (#1) The Board strongly urges DOE-Headquarters (HQ) to request full funding from Congress to meet all legal requirements of the ongoing cleanup work in FY 2016 and 2017 in addition to the following specific requests.  (#5) The Board advises DOE-RL to restore funding for removal and treatment of thousands of stored containers

  6. North Sky River | Open Energy Information

    Open Energy Info (EERE)

    Sky River Jump to: navigation, search Name North Sky River Facility North Sky River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra...

  7. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, D.

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  8. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, David

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  9. Wild and Scenic Rivers | Open Energy Information

    Open Energy Info (EERE)

    Scenic Rivers Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWildandScenicRivers&oldid612228" Feedback Contact needs updating Image...

  10. Green River Biodiesel Incorporated | Open Energy Information

    Open Energy Info (EERE)

    River Biodiesel Incorporated Jump to: navigation, search Name: Green River Biodiesel Incorporated Place: Houston, Texas Zip: 77056 Product: Biodiesel project developer and...

  11. Independent Activity Report, Savannah River Remediation - July...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Independent Activity Report, Savannah River Remediation - July 2010 July 2010 Savannah River Operations Office Integrated Safety Management System Phase II Verification Review of ...

  12. Independent Oversight Inspection, Savannah River Site Office...

    Energy Savers [EERE]

    Office - December 2009 Independent Oversight Inspection, Savannah River Site Office - December 2009 December 2009 Inspection of Nuclear Safety at the Savannah River Site Office and ...

  13. Savannah River Remediation (SRR) Expanded Staff Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savannah River Remediation Delivering the Mission Dave Olson President and Project Manager ... Liquid Waste Operations contractor Savannah River Remediation LLC * Began work in ...

  14. Beasley Lab | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    These studies are being conducted in habitats on the Savannah River Site where the ... activities on the Savannah River Site can expose wildlife that use contaminated areas. ...

  15. Savannah River Analytical Laboratories Achieve International...

    National Nuclear Security Administration (NNSA)

    Savannah River Analytical Laboratories Achieve International Standard Accreditation Tuesday, September 8, 2015 - 12:55pm Savannah River National Laboratory's FH Analytical ...

  16. Educational Materials | Savannah River Ecology Laboratory Environmenta...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Snapshots The Savannah River Site National Environmental Research Park The History of Radioecology Research at the Savannah River Ecology Laboratory Gray Foxes of the ...

  17. Savannah river site | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savannah river site NNSA team members make a living in nuclear security, make a difference ... Last HEU Removed from Switzerland under NNSA Collaboration Savannah River Analytical ...

  18. Independent Oversight Inspection, Savannah River Site - January...

    Energy Savers [EERE]

    Independent Oversight Inspection, Savannah River Site - January 2010 January 2010 Inspection of Emergency Management at the Savannah River Site This report provides the results of ...

  19. Flambeau River Biofuels Demonstration-Scale Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wisconsin (NewPage Corporation in Wisconsin Rapids and Flambeau River Papers, LLC in Park Falls). NewPage and Flambeau River have demonstrated successful collaboration on...

  20. Grand River Dam Authority | Open Energy Information

    Open Energy Info (EERE)

    River Dam Authority Place: Oklahoma Phone Number: 918-256-5545 Website: www.grda.com Twitter: @okgrda Facebook: https:www.facebook.compagesGrand-River-Dam-Authority...

  1. Beijing Haohua Rivers International Water Engineering Consulting...

    Open Energy Info (EERE)

    Haohua Rivers International Water Engineering Consulting Co Ltd Jump to: navigation, search Name: Beijing Haohua Rivers International Water Engineering Consulting Co.Ltd. Place:...

  2. River Hydrokinetic Resource Atlas | Open Energy Information

    Open Energy Info (EERE)

    dress":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Language: English River Hydrokinetic Resource Atlas Screenshot References: EPRI1 River Atlas2 The...

  3. Independent Oversight Activity Report, Savannah River Site -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - February 2014 Independent Oversight Activity Report, Savannah River Site - February 2014 February 2014 Operational Awareness Visit of the Savannah River Site...

  4. Withlacoochee River Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    Withlacoochee River Elec Coop Jump to: navigation, search Name: Withlacoochee River Elec Coop Place: Florida Phone Number: 352-567-5133 Website: www.wrec.net Twitter: https:...

  5. Categorical Exclusion Determinations: Savannah River Operations...

    Office of Environmental Management (EM)

    Savannah River Operations Office Categorical Exclusion Determinations: Savannah River ... Install Concrete Block Bins for Additional Rock Storage at MOX Batch Plant CX(s) Applied: ...

  6. Savannah River Remediation, College Create Job Opportunities...

    Office of Environmental Management (EM)

    Remediation, College Create Job Opportunities for Graduates Savannah River Remediation, ... "With ongoing missions at the Savannah River Site and construction at Plant Vogtle and ...

  7. Kings River Conservation Dist | Open Energy Information

    Open Energy Info (EERE)

    Kings River Conservation Dist Jump to: navigation, search Name: Kings River Conservation Dist Place: California Phone Number: 559-237-5567 Website: www.krcd.org Facebook: https:...

  8. Voluntary Protection Program Onsite Review, Washington River...

    Energy Savers [EERE]

    Washington River Protection Solutions, LLC, Hanford - Feb 2014 Voluntary Protection Program Onsite Review, Washington River Protection Solutions, LLC, Hanford - Feb 2014 February...

  9. Enforcement Letter, Westinghouse Savannah River Company- April 19, 2004

    Broader source: Energy.gov [DOE]

    Issued to Westinghouse Savannah River Company related to Employee Reprisal at the Savannah River Site

  10. Enforcement Letter, Westinghouse Savannah River Company- November 14, 2003

    Broader source: Energy.gov [DOE]

    Issued to Westinghouse Savannah River Company related to Criticality Safety Violations at the Savannah River Site

  11. CO2-driven Enhanced Oil Recovery as a Stepping Stone to What?

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2010-07-14

    This paper draws heavily on the authors’ previously published research to explore the extent to which near term carbon dioxide-driven enhanced oil recovery (CO2-EOR) can be “a stepping stone to a long term sequestration program of a scale to be material in climate change risk mitigation.” The paper examines the historical evolution of CO2-EOR in the United States and concludes that estimates of the cost of CO2-EOR production or the extent of CO2 pipeline networks based upon this energy security-driven promotion of CO2-EOR do not provide a robust platform for spurring the commercial deployment of carbon dioxide capture and storage technologies (CCS) as a means of reducing greenhouse gas emissions. The paper notes that the evolving regulatory framework for CCS makes a clear distinction between CO2-EOR and CCS and the authors examine arguments in the technical literature about the ability for CO2-EOR to generate offsetting revenue to accelerate the commercial deployment of CCS systems in the electric power and industrial sectors of the economy. The authors conclude that the past 35 years of CO2-EOR in the U.S. have been important for boosting domestic oil production and delivering proven system components for future CCS systems. However, though there is no reason to suggest that CO2-EOR will cease to deliver these benefits, there is also little to suggest that CO2-EOR is a necessary or significantly beneficial step towards the commercial deployment of CCS as a means of addressing climate change.

  12. Concept Paper Savannah River Nuclear Solutions, LLC Savannah River Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paper Savannah River Nuclear Solutions, LLC Savannah River Site Aiken, SC 29808 Michael S. Navetta, PE Manager- Energy Park Initiative (803) 952-8806 michael.navetta@srs.gov U.S. EnergyFreedomCenter PREDECISIONAL DRAFT Today We Can Start To Unshackle America Decades of debate for ending America's dependence on foreign fossil fuels, climate change and environmentally positive energy has produced a myriad of technologies that independently offer a partial solution. Applying existing technologies

  13. P. D. Nonn, A. P. Blair, K. J. McCollam, J. S. Sarff, and D. R. Stone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Powered oscillator using ignitron switches P. D. Nonn, A. P. Blair, K. J. McCollam, J. S. Sarff, and D. R. Stone Citation: Rev. Sci. Instrum. 82, 064701 (2011); doi: 10.1063/1.3589266 View online: http://dx.doi.org/10.1063/1.3589266 View Table of Contents: http://rsi.aip.org/resource/1/RSINAK/v82/i6 Published by the American Institute of Physics. Additional information on Rev. Sci. Instrum. Journal Homepage: http://rsi.aip.org Journal Information: http://rsi.aip.org/about/about_the_journal Top

  14. about Savannah River National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In an effort to ensure the safety of the nation's nuclear weapons stockpile, the Savannah ... Operated by Savannah River Nuclear Solutions for the U.S. Department of Energy near Aiken, ...

  15. Raft River Idaho Magnetotelluric Data

    SciTech Connect (OSTI)

    Gregory Nash

    2015-05-13

    Raw magnetotelluric (MT) data covering the geothermal system at Raft River, Idaho. The data was acquired by Quantec Geoscience. This is a zipped file containing .edi raw MT data files.

  16. Savannah River Site | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savannah River Site Savannah River Site Savannah River Site | June 2011 Aerial View Savannah River Site | June 2011 Aerial View Savannah River Site (SRS) has mission responsibilities in nuclear weapons stockpile stewardship by ensuring the safe and reliable management of tritium resources; by contributing to the stockpile surveillance program; and by assisting in the development of alternatives for large-scale pit disassembly/conversion capability. SRS also manages excess nuclear materials and

  17. Savannah River Site | Department of Energy

    Office of Environmental Management (EM)

    Savannah River Site Savannah River Site Savannah River Site | June 2011 Aerial View Savannah River Site | June 2011 Aerial View Savannah River Site (SRS) has mission responsibilities in nuclear weapons stockpile stewardship by ensuring the safe and reliable management of tritium resources; by contributing to the stockpile surveillance program; and by assisting in the development of alternatives for large-scale pit disassembly/conversion capability. SRS also manages excess nuclear materials and

  18. Dayao County Yupao River BasDayao County Yupao River Basin Hydro...

    Open Energy Info (EERE)

    Dayao County Yupao River BasDayao County Yupao River Basin Hydro electricity Development Co Ltd in Jump to: navigation, search Name: Dayao County Yupao River BasDayao County Yupao...

  19. PP-366 Twin Rivers Paper Company, Inc. | Department of Energy

    Office of Environmental Management (EM)

    6 Twin Rivers Paper Company, Inc. PP-366 Twin Rivers Paper Company, Inc. Presidential Permit authorizing Twin Rivers Paper Company, Inc. to construct, operate, and maintain ...

  20. BLM Humboldt River Field Office | Open Energy Information

    Open Energy Info (EERE)

    River Field Office Jump to: navigation, search Name: BLM Humboldt River Field Office Abbreviation: Humboldt River Address: 5100 E. Winnemucca Blvd. Place: Winnemucca, Nevada Zip:...

  1. EA-273 Rainy River Energy Corporation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rainy River Energy Corporation EA-273 Rainy River Energy Corporation Order authorizing Rainy River Energy Corporation to export electric energy to Canada. PDF icon EA-273 Rainy ...

  2. PIA - Savannah River Operations Office File and Print Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    File and Print Services PIA - Savannah River Operations Office File and Print Services PIA - Savannah River Operations Office File and Print Services PDF icon PIA - Savannah River ...

  3. PIA - DOE Savannah River Operations Office PRISM System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savannah River Operations Office PRISM System PIA - DOE Savannah River Operations Office PRISM System PIA - DOE Savannah River Operations Office PRISM System PDF icon PIA - DOE ...

  4. Voluntary Protection Program Onsite Review, Savannah River Remediation...

    Office of Environmental Management (EM)

    River Remediation, Llc, Liquid Waste Contract, Savannah River Site - November 2014 Voluntary Protection Program Onsite Review, Savannah River Remediation, Llc, Liquid Waste ...

  5. Savannah River Site - L-Area Southern Groundwater | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    L-Area Southern Groundwater Savannah River Site - L-Area Southern Groundwater January 1, ... InstallationName, State: Savannah River Site, SC Responsible DOE Office: Savannah River ...

  6. Independent Activity Report, Savannah River Site - March 2013...

    Office of Environmental Management (EM)

    Savannah River Site - March 2013 Independent Activity Report, Savannah River Site - March 2013 March 2013 Oversight Scheduling an Operational Awareness at the Savannah River Site ...

  7. Savannah River Site - R-Area Groundwater Operable Unit | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R-Area Groundwater Operable Unit Savannah River Site - R-Area Groundwater Operable Unit ... InstallationName, State: Savannah River Site, SC Responsible DOE Office: Savannah River ...

  8. Snake River Plain Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Survey At Snake River Plain Region (DOE GTP) Micro-Earthquake At Snake River Plain Geothermal Region (1976) Reflection Survey At Snake River Plain Region (DOE GTP)...

  9. Independent Oversight Activity Report, Office of River Protection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of River Protection - May 2013 Independent Oversight Activity Report, Office of River Protection - May 2013 May 2013 Operational Awareness Visit at the Office of River...

  10. Savannah River National Laboratory (SRNL) | Open Energy Information

    Open Energy Info (EERE)

    (Redirected from Savannah River National Laboratory) Jump to: navigation, search Logo: Savannah River National Laboratory Name: Savannah River National Laboratory Place: Aiken,...

  11. Green River, Utah, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Green River, Utah, Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site near Green River, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. Location of the Green River, Utah, Disposal Site Site Description and History The Green River disposal site is about 0.5 mile east of the Green River and 1.5 miles southeast of the city of Green River, Utah. The site consists of an

  12. THE SNAKE RIVER PLAIN AQUIFER THE SNAKE RIVER PLAIN AQUIFER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aquifer THE INL & THE SNAKE RIVER PLAIN AQUIFER THE SNAKE RIVER PLAIN AQUIFER underneath the Idaho National Laboratory is one of the most productive groundwater resources in the U.S. Each year about 2 million acre-feet of water is drawn from the aquifer. Approximately 95 percent of the water withdrawn from the aquifer is used for irrigation, 3 per- cent for domestic water, and 2 percent for industrial purposes. The aquifer is the primary water source for more than 280,000 people in

  13. Concept Paper Savannah River Nuclear Solutions, LLC Savannah River Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paper Savannah River Nuclear Solutions, LLC Savannah River Site Aiken, SC 29808 Michael S. Navetta, PE Manager- Energy Park Initiative (803) 952-8806 michael.navetta@srs.gov DRAFT Small Modular Reactor Demonstration Complex "One of the most promising areas is small modular reactors (SMRs). If we can develop this technology in the U.S. and build these reactors with American workers, we will have a key competitive edge. Our choice is clear: Develop these technologies today or import them

  14. Flambeau_River_Biofuels.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FlambeauRiverBiofuels.pdf FlambeauRiverBiofuels.pdf FlambeauRiverBiofuels.pdf PDF icon FlambeauRiverBiofuels.pdf More Documents & Publications Pacific Ethanol, Inc Flambeau ...

  15. Grays River Watershed Geomorphic Analysis

    SciTech Connect (OSTI)

    Geist, David R.

    2005-04-30

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: 􀂃 The effects of historical and current land use practices on erosion and sedimentation within the channel network 􀂃 The ways in which these effects have influenced the sediment budget of the upper watershed 􀂃 The resulting responses in the main stem Grays River upstream of State Highway 4 􀂃 The past and future implications for salmon habi

  16. Platte River Power Authority | Open Energy Information

    Open Energy Info (EERE)

    search Name: Platte River Power Authority Place: Colorado Website: www.prpa.org Facebook: https:www.facebook.comPlatteRiverPower Outage Hotline: 1-888-748-5113 References:...

  17. Savannah River Site | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Savannah River Site NNSA operates facilities at the Savannah River Site (SRS) to supply and process tritium, a radioactive form of hydrogen that is a vital component of nuclear ...

  18. Beasley Lab | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AND DISEASE DYNAMICS OF WILD PIGS ON THE SAVANNAH RIVER SITE SREL Collaborators: Jim ... At the Savannah River Site alone between 30 and 40 pigs are struck by vehicles each year, ...

  19. Research | Savannah River National Environmental Park

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Over the years research on the Savannah River NERP has provided many insights into human ... research on the SRS and the establishment of the Savannah River Ecology Laboratory (SREL). ...

  20. Savannah River Site - TNX | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savannah River Site - TNX January 1, 2013 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report InstallationName, State: Savannah River Site, SC ...

  1. Overview | Savannah River National Environmental Park

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Park Overview The Savannah River Site is an 803-km2 Department of Energy (DOE) facility ... of South Carolina, near Aiken, SC. The site is bordered on one side by the Savannah River. ...

  2. New Savannah River Site Deputy Manager Named

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – DOE’s Savannah River Operations Office selected Terrel “Terry” J. Spears as the deputy manager of the Savannah River Site (SRS) this month.

  3. Preliminary Notice of Violation, Westinghouse Savannah River...

    Broader source: Energy.gov (indexed) [DOE]

    River Company - EA-97-11 Preliminary Notice of Violation, Westinghouse Savannah River Company - EA 98-09 Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-1999-06...

  4. An Inside Look at River Corridor

    Broader source: Energy.gov [DOE]

    In the seventh chapter of The Handford Story, the Energy Department takes a look at the River Corridor -- a 50-mile stretch of the Columbia River that flows through the Hanford site in southeast...

  5. Red River Biodiesel Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: Red River Biodiesel, Ltd. Place: Houston, Texas Zip: 77006 Product: Red River operates a biodiesel plant in Houstion, Texas with a capacity of...

  6. Conceptual Model At Raft River Geothermal Area (1988) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Raft River Geothermal Area (1988) Exploration Activity Details Location Raft River...

  7. Conceptual Model At Raft River Geothermal Area (1977) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River...

  8. Field Mapping At Raft River Geothermal Area (1977) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River...

  9. Geophysical Method At Raft River Geothermal Area (1975) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geophysical Method At Raft River Geothermal Area (1975) Exploration Activity Details Location Raft River...

  10. Field Mapping At Raft River Geothermal Area (1980) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River...

  11. Microearthquake surveys of Snake River plain and Northwest Basin...

    Open Energy Info (EERE)

    microearthquakes; Nevada; North America; passive systems; Pershing County Nevada; Raft River; reservoir rocks; seismic methods; seismicity; seismology; Snake River plain;...

  12. Core Analysis At Raft River Geothermal Area (1981) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Raft River Geothermal Area (1981) Exploration Activity Details Location Raft River...

  13. Field Mapping At Raft River Geothermal Area (1990) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Raft River Geothermal Area (1990) Exploration Activity Details Location Raft River...

  14. Conceptual Model At Raft River Geothermal Area (1987) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Raft River Geothermal Area (1987) Exploration Activity Details Location Raft River...

  15. Conceptual Model At Raft River Geothermal Area (1990) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Raft River Geothermal Area (1990) Exploration Activity Details Location Raft River...

  16. Conceptual Model At Raft River Geothermal Area (1983) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River...

  17. Aeromagnetic Survey At Raft River Geothermal Area (1981) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Raft River Geothermal Area (1981) Exploration Activity Details Location Raft River...

  18. Core Analysis At Raft River Geothermal Area (1976) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Raft River Geothermal Area (1976) Exploration Activity Details Location Raft River...

  19. Geophysical Method At Raft River Geothermal Area (1977) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geophysical Method At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River...

  20. Exploratory Well At Raft River Geothermal Area (1977) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River...

  1. Exploratory Well At Raft River Geothermal Area (1975) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1975) Exploration Activity Details Location Raft River...

  2. Tracer Testing At Raft River Geothermal Area (1983) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River...

  3. Aeromagnetic Survey At Raft River Geothermal Area (1978) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River...

  4. Enforcement Letter, Savannah River Ecology Laboratory- June 7, 2000

    Broader source: Energy.gov [DOE]

    Issued to Savannah River Ecology Laboratory related to Radioactive Material Control Deficiencies at the Savannah River Site

  5. Effects of boron-nitride substrates on Stone-Wales defect formation in graphene: An ab initio molecular dynamics study

    SciTech Connect (OSTI)

    Jin, K.; Xiao, H. Y. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Zhang, Y. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Weber, W. J., E-mail: wjweber@utk.edu [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-05-19

    Ab initio molecular dynamics simulations are performed to investigate the effects of a boron nitride (BN) substrate on Stone-Wales (SW) defect formation and recovery in graphene. It is found that SW defects can be created by an off-plane recoil atom that interacts with the BN substrate. A mechanism with complete bond breakage for formation of SW defects in suspended graphene is also revealed for recoils at large displacement angles. In addition, further irradiation can result in recovery of the SW defects through a bond rotation mechanism in both graphene and graphene/BN, and the substrate has little effect on the recovery process. This study indicates that the BN substrate enhances the irradiation resistance of graphene.

  6. Washington River Protection Solutions - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contracting Washington River Protection Solutions Contracting ORP Contracts and Procurements RL Contracts and Procurements CH2M HILL Plateau Remediation Company Mission Support Alliance Washington Closure Hanford HPM Corporation (HPMC) Wastren Advantage, Inc. Bechtel National, Inc. Washington River Protection Solutions Washington River Protection Solutions Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Washington River Protection Solutions, LLC logo The operation

  7. Office of River Protection - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of River Protection Office of River Protection About ORP ORP Projects & Facilities Newsroom Contracts & Procurements Contact ORP Office of River Protection Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Registration for 2016 Hanford Cleanup Tours PHOENIX Tanks - Live Now UNITED STATES DEPARTMENT OF ENERGY Office of River Protection The U.S. Department of Energy's (DOE) Hanford Site in southeast Washington State is home to 56 million gallons of

  8. Columbia River Component Data Evaluation Summary Report

    SciTech Connect (OSTI)

    C.S. Cearlock

    2006-08-02

    The purpose of the Columbia River Component Data Compilation and Evaluation task was to compile, review, and evaluate existing information for constituents that may have been released to the Columbia River due to Hanford Site operations. Through this effort an extensive compilation of information pertaining to Hanford Site-related contaminants released to the Columbia River has been completed for almost 965 km of the river.

  9. Publications | Savannah River National Environmental Park

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savannah River NERP Program Publications The Snakes of the Savannah River Plant with Information about Snakebite Prevention and Treatment. J. Whitfield Gibbons. 1977. SRO-NERP-1. 26 p. [Download PDF] The Reptiles and Amphibians of the Savannah River Plant. J. Whitfield Gibbons and Karen K. Patterson. 1978. SRO-NERP-2. 24p. [Download PDF] The Freshwater Bivalve Mollusca (Unionidae, Sphaeriidae, Corbiculidae) of the Savannah River Plant, South Carolina. Joseph C. Britton and Samuel L. H. Fuller.

  10. Bayer Material Science (TRL 1 2 3 System)- River Devices to Recover Energy with Advanced Materials(River DREAM)

    Broader source: Energy.gov [DOE]

    Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM)

  11. Savannah River Site: Plutonium Preparation Project (PuPP) at Savannah River

    Energy Savers [EERE]

    Savannah River Site Savannah River Site Savannah River Site | June 2011 Aerial View Savannah River Site | June 2011 Aerial View Savannah River Site (SRS) has mission responsibilities in nuclear weapons stockpile stewardship by ensuring the safe and reliable management of tritium resources; by contributing to the stockpile surveillance program; and by assisting in the development of alternatives for large-scale pit disassembly/conversion capability. SRS also manages excess nuclear materials and

  12. Smith River Rancheria- 2005 Project

    Broader source: Energy.gov [DOE]

    The Smith River Rancheria located just south of the Oregon border, on the coast, knows that developing a power-generation facility is a crucial part of its multifaceted plan for both economic development and reduction of energy costs. The activities associated with this grant will include the basic steps necessary to determine whether a generation facility will, in fact, benefit the tribe.

  13. HANFORD SITE RIVER CORRIDOR CLEANUP

    SciTech Connect (OSTI)

    BAZZELL, K.D.

    2006-02-01

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.

  14. Savannah River Plant/Savannah River Laboratory radiation exposure report

    SciTech Connect (OSTI)

    Rogers, C.D.; Hyman, S.D.; Keisler, L.L. and Co., Aiken, SC . Savannah River Plant); Reeder, D.F.; Jolly, L.; Spoerner, M.T.; Schramm, G.R. and Co., Aiken, SC . Savannah River Lab.)

    1989-01-01

    The protection of worker health and safety is of paramount concern at the Savannah River Site. Since the site is one of the largest nuclear sites in the nation, radiation safety is a key element in the protection program. This report is a compendium of the results in 1988 of the programs at the Savannah River Plant and the Savannah River Laboratory to protect the radiological health of employees. By any measure, the radiation protection performance at this site in 1988 was the best since the beginning of operations. This accomplishment was made possible by the commitment and support at all levels of the organizations to reduce radiation exposures to ALARA (As Low As Reasonably Achievable). The report provides detailed information about the radiation doses received by departments and work groups within these organizations. It also includes exposure data for recent years to allow Plant and Laboratory units to track the effectiveness of their ALARA efforts. Many of the successful practices and methods that reduced radiation exposure are described. A new goal for personnel contamination cases has been established for 1989. Only through continual and innovative efforts to minimize exposures can the goals be met. The radiation protection goals for 1989 and previous years are included in the report. 27 figs., 58 tabs.

  15. Mesozoic stratigraphy and paleoenvironments of the Exxon 975-1 well, Georges Bank Basin, U. S. North Atlantic outer continental shelf

    SciTech Connect (OSTI)

    Poppe, L.J.; Poag, C.W. . Quissett Labs.)

    1993-03-01

    The Exxon 975--1 well, located in the southeastern part of the Georges Bank Basin, was drilled to a total depth of 4,452 m relative to the Kelly Bushing. The oldest sediments penetrated by the well are Middle Jurassic (Bajocian-Early Bathonian), but unambiguous seismic correlations with the COST G--1 and G--2 wells show that about 6,860 m of Mesozoic and Cenozoic sedimentary rocks rest on the Paleozoic basement at the 975--1 wellsite. The Jurassic/Cretaceous boundary in the well is placed at 1,673 m; the Cretaceous/Tertiary boundary occurs at 384 m. Limestone is predominant below 3,966 m (Iroquois Formation), and at the intervals 3,810--3,246 m and 1,897--1,654 m (lower and upper tongues of the Abenaki Formation). Siliciclastics of the Mohican, undivided Mic Mac-Mohawk, Missisauga, Logan Canyon, and Dawson Canyon Formations dominate the remainder of the Mesozoic section. The Exxon 975--1 well penetrated updip, more terrestrial lithofacies than the COST G--2, Conoco 145--1, and Mobil 312--1 wells. Salt, anhydrite, dolomite, and the micritic textures of the carbonates in the Iroquois Formation of the Exxon 975--1 well suggest hypersaline restricted marine and supratidal depositional environments. The predominantly nonmarine deltaic siliciclastics of the Mohican, Misaine Shale, and Mic Mac-Mohawk units are thicker in the Exxon 975--1 well, whereas marine carbonates of the Scatarie and Bacarro Limestones are usually thinner than at the downdip (seaward) wellsites. Similarly, the Early Cretaceous Missisauga and Logan Canyon Formations represent lower delta plain (alluvial and swamp) and delta front (beach, bar, and lagoon) facies at the Exxon 975--1 wellsite, whereas correlative downdip facies represent shallow marine to delta front deposition.

  16. Savannah River Laboratory Decontamination Program

    SciTech Connect (OSTI)

    Rankin, W.N.

    1991-01-01

    Savannah River Laboratory (SRL) has had a Decontamination and Decommissioning (D D) Technology program since 1981. The objective of this program is to provide state-of-the-art technology for use in D D operations that will enable our customers to minimize waste generated and personal exposure, increase productivity and safety, and to minimize the potential for release and uptake of radioactive material. The program identifies and evaluates existing technology, develops new technology, and provides technical assistance to implement its use onsite. This program has impacted not only the Savannah River Site (SRS), but the entire Department of Energy (DOE) complex. To document and communicate the technology generated by this program, 28 papers have been presented at National and International meetings in the United States and Foreign Countries.

  17. Savannah River Laboratory Decontamination Program

    SciTech Connect (OSTI)

    Rankin, W.N.

    1991-12-31

    Savannah River Laboratory (SRL) has had a Decontamination and Decommissioning (D&D) Technology program since 1981. The objective of this program is to provide state-of-the-art technology for use in D&D operations that will enable our customers to minimize waste generated and personal exposure, increase productivity and safety, and to minimize the potential for release and uptake of radioactive material. The program identifies and evaluates existing technology, develops new technology, and provides technical assistance to implement its use onsite. This program has impacted not only the Savannah River Site (SRS), but the entire Department of Energy (DOE) complex. To document and communicate the technology generated by this program, 28 papers have been presented at National and International meetings in the United States and Foreign Countries.

  18. Raft River geoscience case study

    SciTech Connect (OSTI)

    Dolenc, M.R.; Hull, L.C.; Mizell, S.A.; Russell, B.F.; Skiba, P.A.; Strawn, J.A.; Tullis, J.A.

    1981-11-01

    The Raft River Geothermal Site has been evaluated over the past eight years by the United States Geological Survey and the Idaho National Engineering Laboratory as a moderate-temperature geothermal resource. The geoscience data gathered in the drilling and testing of seven geothermal wells suggest that the Raft River thermal reservoir is: (a) produced from fractures found at the contact metamorphic zone, apparently the base of detached normal faulting from the Bridge and Horse Well Fault zones of the Jim Sage Mountains; (b) anisotropic, with the major axis of hydraulic conductivity coincident to the Bridge Fault Zone; (c) hydraulically connected to the shallow thermal fluid of the Crook and BLM wells based upon both geochemistry and pressure response; (d) controlled by a mixture of diluted meteoric water recharging from the northwest and a saline sodium chloride water entering from the southwest. Although the hydrogeologic environment of the Raft River geothermal area is very complex and unique, it is typical of many Basin and Range systems.

  19. The Columbia River System : the Inside Story.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1991-09-01

    The Columbia Ricer is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Northwest-from providing the world-famous Pacific salmon to supplying the clean natural fuel for over 75 percent of the region's electrical generation. Since early in the century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system. And through cooperative efforts, the floods that periodically threaten developments near the river can be controlled. This publication presents a detailed explanation of the planning and operation of the multiple-use dams and reservoirs of the Columbia River system. It describes the river system, those who operate and use it, the agreements and policies that guide system operation, and annual planning for multiple-use operation.

  20. U. S. Department of Energy Savannah River Operations Office - Tenant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizations Organizations Tenant Organizations Federal Offices National Nuclear Security Administration External Link Office of Environmental Management External Link U. S. Forest Service - Savannah River External Link Contractor Organizations Savannah River Nuclear Solutions External Link Savannah River National Laboratory External Link Savannah River Remediation External Link Centerra University of Georgia - Savannah River Ecology Laboratory External Link Shaw AREVA MOX Services External

  1. Deep drilling data, Raft River geothermal area, Idaho-Raft River...

    Open Energy Info (EERE)

    data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling...

  2. Performance analysis of boron nitride embedded armchair graphene nanoribbon metaloxidesemiconductor field effect transistor with Stone Wales defects

    SciTech Connect (OSTI)

    Chanana, Anuja; Sengupta, Amretashis; Mahapatra, Santanu

    2014-01-21

    We study the performance of a hybrid Graphene-Boron Nitride armchair nanoribbon (a-GNR-BN) n-MOSFET at its ballistic transport limit. We consider three geometric configurations 3p, 3p + 1, and 3p + 2 of a-GNR-BN with BN atoms embedded on either side (2, 4, and 6 BN) on the GNR. Material properties like band gap, effective mass, and density of states of these H-passivated structures are evaluated using the Density Functional Theory. Using these material parameters, self-consistent Poisson-Schrodinger simulations are carried out under the Non Equilibrium Green's Function formalism to calculate the ballistic n-MOSFET device characteristics. For a hybrid nanoribbon of width ?5?nm, the simulated ON current is found to be in the range of 265??A280??A with an ON/OFF ratio 7.1 10{sup 6}7.4 10{sup 6} for a V{sub DD}?=?0.68?V corresponding to 10?nm technology node. We further study the impact of randomly distributed Stone Wales (SW) defects in these hybrid structures and only 2.5% degradation of ON current is observed for SW defect density of 3.18%.

  3. Savannah River Site Vegetation Map | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Set-Aside Program SREL HOME Savannah River Site Vegetation Map swatch 1. Industrial swatch 2. Open water swatch 3. Bare soil / bare surface swatch 4. Sparse herbaceous vegetation swatch 5. Grasses and forbs swatch 6. Shrubs, grasses, and forbs swatch 7. Disturbed and revegetated in 1997 swatch 8. Marsh / aquatic macrophytes swatch 9. Young, open-canopy loblolly pine swatch 10. Open-canopy loblolly pine swatch 11. Young, dense-canopy loblolly pine swatch 12. Dense-canopy loblolly pine swatch 13.

  4. Savannah River BioEnergy Integration Center Savannah River BioEnergy Integration Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BioEnergy Integration Center Savannah River BioEnergy Integration Center Savannah River Savannah River Nuclear Solutions, LLC, Mission Development January 14, 2010 - Rev 3 DRAFT - Business Sensitive Savannah River BioEnergy Integration Center Contents 2 Mission Need for BioEnergy Integration Center 3 Overview of the BioEnergy Integration Center 4 Expected Outcomes and Benefits 5 Implementation Approach and Timeline 6 Financial Considerations DRAFT - BUSINESS SENSITIVE Henry Ford really had a

  5. Beijing Changjiang River International Holding | Open Energy...

    Open Energy Info (EERE)

    100761 Sector: Services Product: Beijing Changjiang River International Holding is a Chinese emissions broker and services company. Coordinates: 39.90601, 116.387909 Show Map...

  6. PIA - Savannah River Nuclear Solutions Electronic Safeguards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting registration web site PIA - HSPD-12 Physical and Logical Access System PIA - Savannah River Nuclear Solution SRNS Electronic Document Workflow RECORDS System (EDWS

  7. River Corridor Closure Project Partnering Performance Agreement...

    Office of Environmental Management (EM)

    - March 2009 Voluntary Protection Program Onsite Review, River Corridor Closure Project - June 2012 Indoctrinating Subcontractors into the DOE Safety Culture and Expectations...

  8. Big River Resources LLC | Open Energy Information

    Open Energy Info (EERE)

    Resources LLC Jump to: navigation, search Name: Big River Resources LLC Place: West Burlington, Iowa Zip: 52655 Product: Dry-mill bioethanol producer with a cooperative structure....

  9. The Columbia River System Inside Story

    SciTech Connect (OSTI)

    2001-04-01

    The Columbia River is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Pacific Northwest—from fostering world-famous Pacific salmon to supplying clean natural fuel for 50 to 65 percent of the region’s electrical generation. Since early in the 20th century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system.

  10. Big Rivers Electric Corp | Open Energy Information

    Open Energy Info (EERE)

    (270) 827-2561 Website: www.bigrivers.com Facebook: https:www.facebook.compagesBig-Rivers-Electric-Corporation142180855818082?rf154289971250771 Outage Hotline: (270)...

  11. Enforcement Letter, Westinghouse Savannah River Company - November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Company related to repeated criticality safety violations in 2002 and 2003 at the H-Canyon facility at DOE's Savannah River Site. PDF icon Enforcement Letter, Westinghouse...

  12. River Valley Technology Center | Open Energy Information

    Open Energy Info (EERE)

    Valley Technology Center Jump to: navigation, search Name: River Valley Technology Center Place: United States Sector: Services Product: General Financial & Legal Services (...

  13. Two Rivers Water & Light | Open Energy Information

    Open Energy Info (EERE)

    Water & Light Jump to: navigation, search Name: Two Rivers Water & Light Place: Wisconsin Phone Number: (920) 793-5550 Website: trwaterandlight.com Facebook: https:...

  14. In the News | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Touch an Animal Day (WJBF, 22 Aug. 2015) UGA collaboration ... rabies (UGA Columns, 24 Feb. 2015) Savannah River ... Chronicle, 25 Dec. 2013) Ecology lab studies birds ...

  15. Lower Colorado River Authority | Open Energy Information

    Open Energy Info (EERE)

    Name: Lower Colorado River Authority Place: Texas Website: www.lcra.orgPagesdefault.asp Twitter: @lcra Facebook: https:www.facebook.comlowercoloradoriverauthority Outage...

  16. Savannah River Laboratory monthly report, November 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  17. Savannah River Laboratory monthly report, November 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  18. Savannah River Laboratory monthly report, September 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  19. Savannah River Laboratory monthly report, September 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  20. Savannah River Laboratory monthly report, July 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  1. Savannah River Laboratory monthly report, July 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  2. Savannah River Laboratory monthly report, August 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  3. Savannah River Laboratory monthly report, August 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  4. Preliminary Notice of Violation, Westinghouse Savannah River...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Achievable (ALARA) deficiencies that contributed to unplanned worker uptakes and the spread of contamination at DOE's Savannah River Site. PDF icon Preliminary Notice of...

  5. Independent Oversight Review, Savannah River Operations Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and subcontractor employees at the Savannah River Site (SRS). This targeted review was performed at SRS from June 3 to 5, 2013. This report discusses the background, ...

  6. Power of the River History Book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power-of-the-River-BPA-History-Book Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

  7. Lumbee River EMC- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Lumbee River EMC (LREMC) offers rebates to its residential customers who purchase and install qualified energy efficient products or services. Rebates are available for:

  8. Savannah River Laboratory monthly report, October 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separations operations; environmental concerns; and waste management. (FI)

  9. Savannah River Laboratory monthly report, October 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separations operations; environmental concerns; and waste management. (FI)

  10. New Columbia River Estuary purchases benefit salmon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the mouth of the Columbia River to permanently protect riverside habitat for Northwest fish and wildlife, including threatened and endangered salmon and steelhead. The...

  11. Brochure: Federal Columbia River Power System (FCRPS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    these agencies maximize the use of the Columbia River by generating power, protecting fish and wildlife, controlling floods, providing irrigation and navigation, and sustaining...

  12. Roger Seitz Savannah River National Laboratory

    Office of Environmental Management (EM)

    Practical Considerations for Development and Selection of Scenarios Roger Seitz Savannah River ... Dust, Radon Drinking Water Fish Plant Foods Meat Milk Radioactively Contaminated ...

  13. Savannah River National Laboratory (SRNL) Environmental Sciences...

    Office of Environmental Management (EM)

    National Laboratory (SRNL) Environmental Sciences and Biotechnology Support of Waste Isolation Pilot Plant (WIPP) Savannah River National Laboratory (SRNL) Environmental Sciences ...

  14. Home | Savannah River Ecology Laboratory Environmental Outreach...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diverse ecological research conducted by scientists at the Savannah River Ecology Laboratory. ... and pine snakes wild hog skull edible plant samples View Touch an Animal Day 2015 ...

  15. Preliminary Notice of Violation, Westinghouse Savannah River...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enforcement (OE) investigation of the facts and circumstances concerning the unnecessary radiation exposure of three Westinghouse Savannah River Company (WSRC) personnel and the...

  16. Gila River Indian Community- 2012 Project

    Broader source: Energy.gov [DOE]

    The Gila River Indian Community (GRIC) will conduct feasibility studies of potential renewable energy projects on its lands in south central Arizona.

  17. Savannah River Needs Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This Needs Assessment for former Savannah River Site construction workers was developed for the purpose of collecting existing information relevant to exposure and health outcomes ...

  18. Brazos River Authority | Open Energy Information

    Open Energy Info (EERE)

    Place: Texas Phone Number: 1-888-922-6272 Website: www.brazos.org Facebook: https:www.facebook.compagesBrazos-River-Authority126719790675809?frefts Outage Hotline:...

  19. Cuivre River Electric- Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Cuivre River Electric Cooperative, through the Take Control & Save program, offers rebates for cooperative members who purchase efficient geothermal and dual fuel heat pumps, and electric water...

  20. ENVIRONMENTAL SCIENCES; SAVANNAH RIVER PLANT; ENVIRONMENTAL EFFECTS...

    Office of Scientific and Technical Information (OSTI)

    5 audit of SRP radioactive waste Ashley, C. 05 NUCLEAR FUELS; 54 ENVIRONMENTAL SCIENCES; SAVANNAH RIVER PLANT; ENVIRONMENTAL EFFECTS; RADIOACTIVE EFFLUENTS; EMISSION; HIGH-LEVEL...

  1. LANL Medal recipient George Cowan,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mission » LANL History LANL History LANL History Since its inception in 1943 as part of the Manhattan Project, Los Alamos National Laboratory's (LANL) primary mission has been nuclear weapons research and development. In executing this mission, LANL released hazardous and radioactive materials to the environment through outfalls, stack releases, and material disposal areas. Additionally, mixed low-level waste and transuranic waste was generated and staged in preparation for off-site

  2. Hood River Passive House, Hood River, Oregon (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50%" (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  3. Smith River Rancheria- 2003 Project

    Broader source: Energy.gov [DOE]

    Implement a planning effort that addresses current and future energy needs and results in a long-term sustainable plan for energy self-sufficiency on the Rancheria. The Smith River Rancheria, located in northern Del Norte County, California about four miles south of the Oregon border on the Pacific Ocean, composes 184.4 acres. This effort is intended to promote energy self-sufficiency and assist in meeting the tribe's goal to preserve and protect the aboriginal territory of the Tolowa People.

  4. Louisiana Nuclear Profile - River Bend

    U.S. Energy Information Administration (EIA) Indexed Site

    River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,974,"8,363",98.0,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,974,"8,363",98.0 "Data for 2010" "BWR = Boiling

  5. Florida Nuclear Profile - Crystal River

    U.S. Energy Information Administration (EIA) Indexed Site

    Crystal River1" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 3,860,0,"--","PWR","application/vnd.ms-excel","application/vnd.ms-excel" ,860,0,"--" "Data for 2010" "1 Unit was offline in 2010 for repairs." "-- Not applicable.

  6. EA-273-A Rainy River Energy Corporation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -A Rainy River Energy Corporation EA-273-A Rainy River Energy Corporation Order authorizing Rainy River Energy Corporation to export electric energy to Canada. PDF icon EA-273-A ...

  7. EA-1692: Red River Environmental Products, LLC Activated Carbon

    Energy Savers [EERE]

    Manufacturing Facility, Red River Parish, LA | Department of Energy 2: Red River Environmental Products, LLC Activated Carbon Manufacturing Facility, Red River Parish, LA EA-1692: Red River Environmental Products, LLC Activated Carbon Manufacturing Facility, Red River Parish, LA June 1, 2010 EA-1692: Final Environmental Assessment Construction and Start-Up of an Activated Carbon Manufacturing Facility in Red River Parish, Louisiana June 11, 2010 EA-1692: Finding of No Significant Impact Red

  8. Comments of the Lower Colorado River Authority | Department of Energy

    Energy Savers [EERE]

    Lower Colorado River Authority Comments of the Lower Colorado River Authority Comments of the Lower Colorado River Authority on Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy PDF icon Comments of the Lower Colorado River Authority More Documents & Publications Lower Colorado River Authority Lower Colorado River Authority NBP RFI: Communications Requirements- Comments of Meeker Cooperative Light

  9. Wild and Scenic Rivers Act (1968)

    Broader source: Energy.gov [DOE]

    The National Wild and Scenic Rivers System was created by Congress in 1968 (Public Law 90-542; 16 U.S.C. 1271 et seq.) to preserve certain rivers with outstanding natural, cultural, and recreational values in a free-flowing condition for the enjoyment of present and future generations.

  10. Savannah River Site Environmental Report for 1998

    SciTech Connect (OSTI)

    Arnett, M.

    1999-06-09

    The mission at the Savannah River Site (SRS) is focused primarily on support of the national defense, nonproliferation, and environmental cleanup. SRS-through its prime operating contractor, Westinghouse Savannah River Company-continues to maintain a comprehensive environmental monitoring program.

  11. PIA - Savannah River Nuclear Solution SRNS Electronic Document...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SRNS Electronic Document Workflow RECORDS System (EDWS) PIA - Savannah River Nuclear Solution SRNS Electronic Document Workflow RECORDS System (EDWS) PIA - Savannah River Nuclear ...

  12. PIA - Savannah River Nuclear Solution SRNS ProRad Environment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (HRMS) PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System (PCS) PIA - Savannah River Nuclear Solution SRNS Electronic Document Workflow RECORDS System (EDWS

  13. PP-41 Mirias River Electric Cooperative, Inc. | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Mirias River Electric Cooperative, Inc. to constuct, operate, and maintain electric transmission facilities at the U.S.- Canada Border. PDF icon PP-41 Mirias River Electric ...

  14. ITP LEADER Case Study: Flambeau River Papers Makes a Comeback...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LEADER Case Study: Flambeau River Papers Makes a Comeback With a Revised Energy Strategy ITP LEADER Case Study: Flambeau River Papers Makes a Comeback With a Revised Energy ...

  15. Vermont Watershed Management Rivers Program Website | Open Energy...

    Open Energy Info (EERE)

    Vermont Watershed Management Rivers Program Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Vermont Watershed Management Rivers Program Website...

  16. American Society of Mechanical Engineers/Savannah River National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary American Society of Mechanical EngineersSavannah River National Laboratory (ASME... More Documents & Publications American Society of Mechanical EngineersSavannah River ...

  17. American Society of Mechanical Engineers/Savannah River National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda American Society of Mechanical EngineersSavannah River National Laboratory (ASME... More Documents & Publications American Society of Mechanical EngineersSavannah River ...

  18. American Society of Mechanical Engineers/Savannah River National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting Attendee List American Society of Mechanical EngineersSavannah River National ... More Documents & Publications American Society of Mechanical EngineersSavannah River ...

  19. Savannah River Site Contractor Resumes Full Operations Following...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savannah River Site Contractor Resumes Full Operations Following Pause April 27, 2016 - 12:25pm Addthis AIKEN, S.C. - Savannah River Site management and operations contractor ...

  20. Lichuan City Yujiang River Valley Hydro Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Lichuan City Yujiang River Valley Hydro Co Ltd Jump to: navigation, search Name: Lichuan City Yujiang River Valley Hydro Co., Ltd. Place: Hubei Province, China Zip: 445400 Sector:...

  1. Savannah River Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Savannah River Field Office Savannah River Field Office FY15 Year End Report Semi...

  2. White River Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Assn, Inc Jump to: navigation, search Name: White River Electric Assn, Inc Place: Colorado Website: www.white-river-electric-assoc Twitter: @WREAColorado Facebook: https:...

  3. 2012 Annual Planning Summary for Savannah River Operations Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savannah River Operations Office 2012 Annual Planning Summary for Savannah River Operations Office The ongoing and projected Environmental Assessments and Environmental Impact ...

  4. Ventilation System to Improve Savannah River Site's Liquid Waste...

    Office of Environmental Management (EM)

    Ventilation System to Improve Savannah River Site's Liquid Waste Operations Ventilation System to Improve Savannah River Site's Liquid Waste Operations August 28, 2014 - 12:00pm ...

  5. PIA - Savannah River Operations Office Lotus Domino/Notes System...

    Broader source: Energy.gov (indexed) [DOE]

    Lotus DominoNotes System PDF icon PIA - Savannah River Operations Office Lotus DominoNotes System More Documents & Publications PIA - DOE Savannah River Operations Office PRISM ...

  6. FY 2012 Savannah River Nuclear Solutions, LLC, PER Summary |...

    National Nuclear Security Administration (NNSA)

    12 Savannah River Nuclear Solutions, LLC, PER Summary SUMMARY OF FY 2012 SAVANNAH RIVER NUCLEAR SOLUTIONS, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % ...

  7. FY 2010 Savannah River Nuclear Solutions, LLC, PER Summary |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Savannah River Nuclear Solutions, LLC, PER Summary SUMMARY OF FY 2010 SAVANNAH RIVER NUCLEAR SOLUTIONS, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % ...

  8. PIA - Savannah River Site Management and Operating Contractor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Management and Operating Contractor (HRMS) PIA - Savannah River Site Management and Operating Contractor (HRMS) PIA - Savannah River Site Management and Operating Contractor ...

  9. Small Column Ion Exchange at Savannah River Site Technology Readiness...

    Broader source: Energy.gov (indexed) [DOE]

    Small Column Ion Exchange at Savannah River Site Technology Readiness Assessment Report More Documents & Publications Small Column Ion Exchange Technology at Savannah River Site ...

  10. John C. Barnes of Savannah River Operations named 2012 Facility...

    Energy Savers [EERE]

    John C. Barnes of Savannah River Operations named 2012 Facility Representative of the Year John C. Barnes of Savannah River Operations named 2012 Facility Representative of the ...

  11. PIA - Savannah River Nuclear Solutions Badge Request and Site...

    Energy Savers [EERE]

    Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear Solutions Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear Solutions Badge ...

  12. Savannah River Site Cleanup By the Numbers | Department of Energy

    Office of Environmental Management (EM)

    Site Cleanup By the Numbers Savannah River Site Cleanup By the Numbers Savannah River Site Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites ...

  13. FY 2008 Washington Savannah River Company, LLC, PER Summary ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Washington Savannah River Company, LLC, PER Summary SUMMARY OF FY 2008 WASHINGTON SAVANNAH RIVER COMPANY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % ...

  14. Passive Groundwater Cleanup Measures Save Savannah River Site...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Passive Groundwater Cleanup Measures Save Savannah River Site Millions of Dollars Passive Groundwater Cleanup Measures Save Savannah River Site Millions of Dollars November 25, ...

  15. Centerra Earns High Performance Rating for Savannah River Site...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Centerra Earns High Performance Rating for Savannah River Site Security Operations Centerra Earns High Performance Rating for Savannah River Site Security Operations January 27, ...

  16. U. S. Department of Energy Savannah River Operations Office ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Business Forum Technology Demos & opportunities The Department of Energy Office of Environmental Management, Savannah River Site and the Savannah River National Laboratory ...

  17. Savannah River National Laboratory by the Numbers August 2015

    Office of Environmental Management (EM)

    In 1951, the Savannah River Laboratory was created to support these efforts. In 2004 the laboratory was designated a National Laboratory, renamed Savannah River National Laboratory ...

  18. FY 2006 Washington Savannah River Company, LLC, PER Summary ...

    National Nuclear Security Administration (NNSA)

    6 Washington Savannah River Company, LLC, PER Summary SUMMARY OF FY 2006 WASHINGTON SAVANNAH RIVER COMPANY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % ...

  19. Enterprise Assessments Review, Savannah River Site 2014 Site...

    Energy Savers [EERE]

    Savannah River Site 2014 Site-Level Exercise - January 2015 Enterprise Assessments Review, Savannah River Site 2014 Site-Level Exercise - January 2015 January 2015 Review of the ...

  20. Disposal Practices at the Savannah River Site | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Practices at the Savannah River Site Disposal Practices at the Savannah River Site Full Document and Summary Versions are available for download PDF icon Disposal Practices at the ...

  1. Dennis Yates Of Savannah River Operations Named 2013 Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dennis Yates Of Savannah River Operations Named 2013 Facility Representative Of The Year Dennis Yates Of Savannah River Operations Named 2013 Facility Representative Of The Year ...

  2. Independent Oversight Follow-up Review, Savannah River National...

    Energy Savers [EERE]

    Savannah River National Laboratory - January 2012 Independent Oversight Follow-up Review, Savannah River National Laboratory - January 2012 January 2012 Follow-up Review of ...

  3. DOE - Office of Legacy Management -- Savannah River Swamp - SC...

    Office of Legacy Management (LM)

    Savannah River Swamp - SC 01 FUSRAP Considered Sites Site: Savannah River Swamp (SC.01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site ...

  4. Construction Workers Achieve Safety Milestone at Savannah River...

    Office of Environmental Management (EM)

    Construction Workers Achieve Safety Milestone at Savannah River Site Construction Workers Achieve Safety Milestone at Savannah River Site April 29, 2014 - 4:23pm Addthis Savannah ...

  5. Microsoft PowerPoint - Allison - Savannah River Presentation

    Office of Environmental Management (EM)

    September 30, 2009 September 30, 2009 JEFFREY M. ALLISON, MANAGER JEFFREY M. ALLISON, MANAGER Savannah River Operations Office Savannah River Operations Office The State of ...

  6. Savannah River Site Federal Facility Agreement, January 15, 1993...

    Office of Environmental Management (EM)

    Site Agreement Name Savannah River Site Federal Facility Agreement Under Section 120 of ... with past and present activities at the Savannah River Site are thoroughly investigated ...

  7. DEPARTMENT OF ENERGY CITES SAVANNAH RIVER NUCLEAR SOLUTIONS,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SAVANNAH RIVER NUCLEAR SOLUTIONS, LLC FOR WORKER SAFETY AND HEALTH VIOLATIONS November 9, ... Notice of Violation (PNOV) to Savannah River Nuclear Solutions, LLC (SRNS) for ...

  8. DOE Order 435.1 Performance Assessment Savannah River Site |...

    Energy Savers [EERE]

    Order 435.1 Performance Assessment Savannah River Site DOE Order 435.1 Performance Assessment Savannah River Site Performance Assessments (PA) are analyses conducted for low level ...

  9. Employee of Savannah River Site Contractor Recognized as Exemplary...

    Office of Environmental Management (EM)

    Employee of Savannah River Site Contractor Recognized as Exemplary in Safety and Health Employee of Savannah River Site Contractor Recognized as Exemplary in Safety and Health ...

  10. Ground Magnetics At Raft River Geothermal Area (1979) | Open...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Raft River Geothermal Area (1979)...

  11. Numerical Modeling At Raft River Geothermal Area (1983) | Open...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Raft River Geothermal Area (1983)...

  12. Micro-Earthquake At Raft River Geothermal Area (1979) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River...

  13. Fluid Inclusion Analysis At Raft River Geothermal Area (2011...

    Open Energy Info (EERE)

    Raft River Geothermal Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Raft River Geothermal Area (2011)...

  14. Cuttings Analysis At Raft River Geothermal Area (1976) | Open...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Raft River Geothermal Area (1976)...

  15. Update on the Raft River Geothermal Reservoir | Open Energy Informatio...

    Open Energy Info (EERE)

    the Raft River Geothermal Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Update on the Raft River Geothermal Reservoir...

  16. Groundwater Sampling At Raft River Geothermal Area (1974-1982...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Groundwater Sampling At Raft River Geothermal Area (1974-1982) Exploration Activity Details Location Raft River...

  17. Micro-Earthquake At Raft River Geothermal Area (2011) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Raft River Geothermal Area (2011) Exploration Activity Details Location Raft River...

  18. Electromagnetic Soundings At Raft River Geothermal Area (1977...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Raft River Geothermal Area (1977)...

  19. Thermochronometry At Raft River Geothermal Area (1993) | Open...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Raft River Geothermal Area (1993)...

  20. Isotopic Analysis-Fluid At Raft River Geothermal Area (1982)...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River...

  1. Telluric Survey At Raft River Geothermal Area (1978) | Open Energy...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Telluric Survey At Raft River Geothermal Area (1978)...

  2. Ground Gravity Survey At Raft River Geothermal Area (1978) |...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River...

  3. Direct-Current Resistivity Survey At Raft River Geothermal Area...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Raft River Geothermal Area...

  4. DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1974-1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: DC Resistivity Survey (Schlumberger Array) At Raft River...

  5. Development Wells At Raft River Geothermal Area (2004) | Open...

    Open Energy Info (EERE)

    Development Wells At Raft River Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Raft River Geothermal...

  6. Self Potential Measurements At Raft River Geothermal Area (1983...

    Open Energy Info (EERE)

    Measurements At Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential Measurements At Raft River...

  7. Audio-Magnetotellurics At Raft River Geothermal Area (1978) ...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Audio-Magnetotellurics At Raft River Geothermal Area (1978)...

  8. Earth Tidal Analysis At Raft River Geothermal Area (1984) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Raft River Geothermal Area (1984) Exploration Activity Details Location Raft River...

  9. Petrography Analysis At Raft River Geothermal Area (1980) | Open...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1980) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Petrography Analysis At Raft River Geothermal Area (1980)...

  10. Core Analysis At Raft River Geothermal Area (1979) | Open Energy...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Raft River Geothermal Area (1979) Exploration...

  11. Geology and alteration of the Raft River geothermal system, Idaho...

    Open Energy Info (EERE)

    Raft River geothermal system, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Geology and alteration of the Raft River geothermal...

  12. Airborne Electromagnetic Survey At Raft River Geothermal Area...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Airborne Electromagnetic Survey At Raft River Geothermal Area...

  13. Compound and Elemental Analysis At Raft River Geothermal Area...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Raft River Geothermal Area...

  14. Isotopic Analysis-Fluid At Raft River Geothermal Area (1977)...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River...

  15. Earth Tidal Analysis At Raft River Geothermal Area (1982) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River...

  16. Earth Tidal Analysis At Raft River Geothermal Area (1980) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River...

  17. Chemical Logging At Raft River Geothermal Area (1979) | Open...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Chemical Logging At Raft River Geothermal Area (1979)...

  18. Acoustic Logs At Raft River Geothermal Area (1979) | Open Energy...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Acoustic Logs At Raft River Geothermal Area (1979) Exploration...

  19. Fault Mapping At Raft River Geothermal Area (1993) | Open Energy...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fault Mapping At Raft River Geothermal Area (1993) Exploration...

  20. Exhibit D: Mirant Potomac River Schedule of Operations: January...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations: January and February 2006 Exhibit D: Mirant Potomac River Schedule of Operations: January and February 2006 Docket No. EO-05-01. Exhibit D: Mirant Potomac River ...

  1. Tianlin Baile River Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Baile River Hydropower Co Ltd Jump to: navigation, search Name: Tianlin Baile River Hydropower Co., Ltd. Place: Baise, Guangxi Autonomous Region, China Zip: 533300 Sector: Hydro...

  2. Independent Oversight Review, Savannah River Site Salt Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 2013 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - August 2013 August 2013 Review of the Savannah River Site Salt Waste Processing...

  3. Yingjiang County Binglang River Hydroelectric Power Co Ltd |...

    Open Energy Info (EERE)

    Yingjiang County Binglang River Hydroelectric Power Co Ltd Jump to: navigation, search Name: Yingjiang County Binglang River Hydroelectric Power Co., Ltd. Place: Dehong Dai-Jingpo...

  4. Enforcement Letter, Westinghouse Savannah River Company- June 4, 1996

    Broader source: Energy.gov [DOE]

    Issued to Westinghouse Savannah River Company related to Potential Violations of the Quality Assurance and Occupational Radiation Protection Rules at the Savannah River Site

  5. PIA - Savannah River Operations Office Executive Commitment Action...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations Office Executive Commitment Action Tracking System PIA - Savannah River Operations Office Executive Commitment Action Tracking System PIA - Savannah River Operations ...

  6. Ground Gravity Survey At Snake River Plain Region (DOE GTP) ...

    Open Energy Info (EERE)

    Ground Gravity Survey At Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Snake River...

  7. 2013 Annual Planning Summary for the Office of River Protection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    River Protection and Richland Operations Office 2013 Annual Planning Summary for the Office of River Protection and Richland Operations Office The ongoing and projected ...

  8. Jichuan Taiyang River Hydro Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Jichuan Taiyang River Hydro Power Development Co Ltd Jump to: navigation, search Name: Jichuan Taiyang River Hydro Power Development Co., Ltd. Place: Sichuan Province, China Zip:...

  9. Yunnan Daoyao County Duodi River Hydro Power Development Co Ltd...

    Open Energy Info (EERE)

    Daoyao County Duodi River Hydro Power Development Co Ltd Jump to: navigation, search Name: Yunnan Daoyao County Duodi River Hydro Power Development Co., Ltd. Place: Yunnan...

  10. Gansu Diantou Tao River Hydro Power Development Co Ltd | Open...

    Open Energy Info (EERE)

    River Hydro Power Development Co Ltd Jump to: navigation, search Name: Gansu Diantou Tao River Hydro Power Development Co. Ltd. Place: Lanzhou, Gansu Province, China Zip: 730030...

  11. Huanghe Hydropower Development Co Ltd Yellow River Group | Open...

    Open Energy Info (EERE)

    Huanghe Hydropower Development Co Ltd Yellow River Group Jump to: navigation, search Name: Huanghe Hydropower Development Co Ltd (Yellow River Group) Place: Xining, Qinghai...

  12. Geothermometry At New River Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At New River Area (DOE GTP) Exploration Activity Details...

  13. Refraction Survey At Snake River Plain Region (DOE GTP) | Open...

    Open Energy Info (EERE)

    Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Snake River Plain Region (DOE GTP)...

  14. Magnetotellurics At New River Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At New River Area (DOE GTP) Exploration Activity...

  15. COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL...

    Office of Scientific and Technical Information (OSTI)

    TESTS AT THE RAFT RIVER GEOTHERMAL SITE Citation Details In-Document Search Title: COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL SITE Three conservative ...

  16. Micro-Earthquake At Snake River Plain Geothermal Region (1976...

    Open Energy Info (EERE)

    Micro-Earthquake At Snake River Plain Geothermal Region (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Snake River...

  17. FY 2006 Washington Savannah River Company, LLC, PER Summary ...

    National Nuclear Security Administration (NNSA)

    FY 2006 Washington Savannah River Company, LLC, PER Summary SUMMARY OF FY 2006 WASHINGTON SAVANNAH RIVER COMPANY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned ...

  18. FY 2007 Washington Savannah River Company, LLC, PER Summary ...

    National Nuclear Security Administration (NNSA)

    FY 2007 Washington Savannah River Company, LLC, PER Summary SUMMARY OF FY 2007 WASHINGTON SAVANNAH RIVER COMPANY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned ...

  19. FY 2009 Savannah River Nuclear Solutions, LLC, PER Summary |...

    National Nuclear Security Administration (NNSA)

    FY 2009 Savannah River Nuclear Solutions, LLC, PER Summary SUMMARY OF FY 2009 SAVANNAH RIVER NUCLEAR SOLUTIONS, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % ...

  20. FY 2011 Savannah River Nuclear Solutions, LLC, PER Summary |...

    National Nuclear Security Administration (NNSA)

    FY 2011 Savannah River Nuclear Solutions, LLC, PER Summary SUMMARY OF FY 2011 SAVANNAH RIVER NUCLEAR SOLUTIONS, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % ...

  1. FY 2010 Savannah River Nuclear Solutions, LLC, PER Summary |...

    National Nuclear Security Administration (NNSA)

    FY 2010 Savannah River Nuclear Solutions, LLC, PER Summary SUMMARY OF FY 2010 SAVANNAH RIVER NUCLEAR SOLUTIONS, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % ...

  2. FY 2008 Washington Savannah River Company, LLC, PER Summary ...

    National Nuclear Security Administration (NNSA)

    FY 2008 Washington Savannah River Company, LLC, PER Summary SUMMARY OF FY 2008 WASHINGTON SAVANNAH RIVER COMPANY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned ...

  3. EA-1973: Kootenai River Restoration at Bonners Ferry, Boundary...

    Energy Savers [EERE]

    73: Kootenai River Restoration at Bonners Ferry, Boundary County, Idaho EA-1973: Kootenai River Restoration at Bonners Ferry, Boundary County, Idaho Summary Bonneville Power...

  4. Interagency Wild and Scenic Rivers Coordinating Council's WSRA...

    Open Energy Info (EERE)

    to use the flowcharts created by the Interagency Wild and Scenic Rivers Coordinating Council. Author The Interagency Wild and Scenic Rivers Coordinating Council Published The...

  5. Reed River Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Reed River Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reed River Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  6. PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IBARS Srs Site Apps. Accreditation Boundary PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation Boundary PIA - Savannah River Nuclear Solution IBARS Srs Site ...

  7. Red River Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Red River Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Red River Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  8. Red River Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Red River Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Red River Hot...

  9. Office of River Protection's (ORP) Path to Reinvigorating Technology...

    Office of Environmental Management (EM)

    Office of River Protection's (ORP) Path to Reinvigorating Technology Development Presentation from the 2015 DOE National Cleanup Workshop by Kevin Smith, Manager, Office of River ...

  10. Columbia River PUD- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Columbia River PUD offers a variety of rebates to commercial and industrial customers who make energy saving improvements to facilities. Visit Columbia River PUD's website for specific program...

  11. Yingjiang Nanpian River Electricity Exploring Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Nanpian River Electricity Exploring Co Ltd Jump to: navigation, search Name: Yingjiang Nanpian River Electricity Exploring Co., Ltd. Place: Dehong Dai-Jingpo Autonomous Prefecture,...

  12. Independent Activity Report, Office of River Protection Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of River Protection Waste Treatment Plant and Tank Farms - February 2013 Independent Activity Report, Office of River Protection Waste Treatment Plant and Tank Farms - February...

  13. Tongue River Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Tongue River Electric Coop Inc Jump to: navigation, search Name: Tongue River Electric Coop Inc Place: Montana Phone Number: 406-784-2341 Website: tongueriverelectric.com...

  14. Trona Injection Tests: Mirant Potomac River Station, Unit 1,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Potomac River Generating Station in Alexandria, Virginia Update 2 to: A Dispersion Modeling Analysis of Downwash from Mirant's Potomac River Power Plant, Modeling Unit ...

  15. Kings River Conservation District (KRCD) Solar Farm Solar Power...

    Open Energy Info (EERE)

    River Conservation District (KRCD) Solar Farm Solar Power Plant Jump to: navigation, search Name Kings River Conservation District (KRCD) Solar Farm Solar Power Plant Facility...

  16. Enforcement Letter, Westinghouse Savannah River Company- April 15, 1997

    Broader source: Energy.gov [DOE]

    Issued to Westinghouse Savannah River Company related to Potential Violations of Quality Assurance and Work Process Requirements at the Savannah River Site

  17. Hunan Rivers Bioengineering Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Rivers Bioengineering Co Ltd Jump to: navigation, search Name: Hunan Rivers Bioengineering Co Ltd Place: Yiyang, Hunan Province, China Zip: 413000 Product: The company uses waste...

  18. PIA - Savannah River Nuclear Solutions Training Records and Informatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River ...

  19. Lessons Learned and Best Practices in Savannah River Site Saltstone...

    Office of Environmental Management (EM)

    Lessons Learned and Best Practices in Savannah River Site Saltstone and Tank Farm Performance Assessments Lessons Learned and Best Practices in Savannah River Site Saltstone and...

  20. Injectivity Test At Raft River Geothermal Area (1979) | Open...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River...

  1. Flow Test At Raft River Geothermal Area (1979) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River...

  2. Flow Test At Raft River Geothermal Area (2008) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2008) Exploration Activity Details Location Raft River...

  3. Flow Test At Raft River Geothermal Area (2004) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2004) Exploration Activity Details Location Raft River...

  4. Flow Test At Raft River Geothermal Area (2006) | Open Energy...

    Open Energy Info (EERE)

    Flow Test At Raft River Geothermal Area (2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2006)...

  5. Elk River Business Incubator Program | Open Energy Information

    Open Energy Info (EERE)

    Business Incubator Program Jump to: navigation, search Name: Elk River Business Incubator Program Place: Minnesota Zip: 55330 Product: Program run by Elk River Energy City....

  6. Gengma County Tiechang River Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Gengma County Tiechang River Power Plant Jump to: navigation, search Name: Gengma County Tiechang River Power Plant Place: Lincang City, Yunnan Province, China Zip: 666100 Sector:...

  7. Zijin County East River Fengguang Likou Power Plant Development...

    Open Energy Info (EERE)

    Zijin County East River Fengguang Likou Power Plant Development Co Ltd Jump to: navigation, search Name: Zijin County East River Fengguang Likou Power Plant Development Co.Ltd...

  8. Savannah River National Laboratory (SRNL) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Logo: Savannah River National Laboratory Name: Savannah River National Laboratory Place: Aiken, South Carolina Zip: 29808 Website: srnl.doe.gov...

  9. Lesson Learned by Savannah River Site Activity-level Work Planning and Control

    Broader source: Energy.gov [DOE]

    Slide Presentation by Bonnie Barnes, Savannah River Remediation. Work Planning and Control at Savannah River Remediation.

  10. Office of River Protection's (ORP) Path to Reinvigorating Technology Development

    Broader source: Energy.gov [DOE]

    Presentation from the 2015 DOE National Cleanup Workshop by Kevin Smith, Manager, Office of River Protection.

  11. Flambeau River Biofuels Demonstration-Scale Biorefinery | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Flambeau River Biofuels Demonstration-Scale Biorefinery Flambeau River Biofuels Demonstration-Scale Biorefinery The Flambeau River biorefinery will be added to an existing pulp and paper mill to create green diesel. PDF icon ibr_demonstration_flambeau.pdf More Documents & Publications NewPage Demonstration-Scale Biorefinery Flambeau_River_Biofuels.pdf Pacific Ethanol, Inc

  12. Savannah River Site Environmental Report for 1997-Data

    SciTech Connect (OSTI)

    Arnett, M.W.; Mamatey, A.R.

    1998-08-01

    This document presents data from Savannah River Site routine environmental monitoring and surveillance programs.

  13. Enforcement Letter, Westinghouse Savannah River Company- July 21, 1998

    Broader source: Energy.gov [DOE]

    Issued to Westinghouse Savannah River Company related to Notification of Incomplete Corrective Action

  14. PIA - Savannah River Remediation Accreditation Boundary (SRR AB) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Remediation Accreditation Boundary (SRR AB) PIA - Savannah River Remediation Accreditation Boundary (SRR AB) PIA - Savannah River Remediation Accreditation Boundary (SRR AB) PDF icon PIA - Savannah River Remediation Accreditation Boundary (SRR AB) More Documents & Publications PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation Boundary PIA - WEB Physical Security Major Application Occupational Medical Surveillance System (OMSS) PIA, Idaho

  15. Independent Oversight Review, Savannah River Site- September 2012

    Broader source: Energy.gov [DOE]

    Review of the Savannah River Site, Salt Waste Processing Facility, Construction Quality of Piping & Pipe Supports

  16. Independent Oversight Inspection, Savannah River Site- December 2009

    Office of Energy Efficiency and Renewable Energy (EERE)

    Inspection of Reinforced Concrete Construction at the Savannah River Site Mixed Oxide Fuel Fabrication Facility

  17. Independent Oversight Inspection, Savannah River Site, Summary Report- February 2004

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Management and Emergency Management at the Savannah River Site

  18. Savannah River Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Home / fieldoffices Savannah River Field Office Learn More Mixed Oxide (MOX) Fuel Fabrication Facility

  19. EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River Counties, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration (BPA) is preparing an EA to assess potential environmental impacts of a proposal to rebuild its 24-mile long, 115 kilovolt Bonneville-Hood River transmission line. The existing line runs between the Bonneville Powerhouse at Bonneville Dam in Multnomah County, Oregon, and BPA's existing Hood River Substation in Hood River County, Oregon. The project would include replacing structures and conductor wires, improving access roads, and constructing new access roads or trails where needed.

  20. Clinch River MRS Task Force Recommendations

    Broader source: Energy.gov [DOE]

    The Clinch River HRS Task Force was appointed in July 1985 by the Roane County Executive and the Oak Ridge City Council to evaluate the Monitored Retrievable Storage (MRS) facility proposed by the...

  1. South River EMC- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    South River EMC offers a variety of rebates encouragings its members to invest in energy efficient appliances, equipment, and home upgrades. Incentives are available for a variety of energy...

  2. EIS-0241: Hood River Fisheries Program

    Broader source: Energy.gov [DOE]

    This EIS evaluates a BPA proposal to protect and improve anadromous salmonid populations in the Hood River Basin. These actions are proposed in an attempt to mitigate the losses of fish and...

  3. Preliminary Notice of Violation, Westinghouse Savannah River...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intake between August 4, 1996, and February 10, 1997, by a Crane Operator at the Savannah River Site F-Canyon Preliminary Notice of Violation, EG&G Incorporated - EA-97-10...

  4. Preliminary Notice of Violation, Westinghouse Savannah River...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - EA 98-09 Type B Accident Investigation Board Report of the Plutonium Intake between August 4, 1996, and February 10, 1997, by a Crane Operator at the Savannah River Site F-Canyon...

  5. Savannah River Site environmental data for 1995

    SciTech Connect (OSTI)

    Arnett, M.W.

    1995-12-31

    This document presents data from Savannah River Site routine environmental monitoring and surveillance programs. An attempt also has been made to include all available data from environmental research programs.

  6. Conference Center | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The University of Georgia - Savannah River Ecology Laboratory Conference Center is a 5,000-square-foot multi-purpose facility located on the U.S. Department of Energy's Savannah ...

  7. Upcoming Seminars | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upcoming Seminars Seminars are held at the Savannah River Ecology Laboratory, Bldg. 737-A, in the Cypress Room. Snacks are provided 15 minutes prior to the beginning of each ...

  8. Raft River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    and later the US Department of Energy (DOE) which was formed by joining the Federal Energy Administration and ERDA in 1977.3 The Raft River site was identified as an area...

  9. Robert A. Kennamer | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Curriculum Vitae Faculty & Scientists SREL Home Robert A. Kennamer Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-0387 office (803) 725-3309 fax...

  10. Peter Stangel | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Senior Vice President, U.S. Endowment for Forestry and Communities co Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (404)-915-2763 (803) 725-8158...

  11. Gary Mills | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mills Curriculum Vitae Faculty & Scientists SREL Home Gary Mills Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-5368 office (803) 725-3309 fax...

  12. BPA research aids Columbia River white sturgeon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research aids Columbia River white sturgeon 8142015 12:00 AM Tweet Page Content BPA fish biologist Scott Bettin (left) and Brad Cady of the Washington Dept. of Fish and...

  13. Lumbee River EMC- Residential Weatherization Loan Program

    Broader source: Energy.gov [DOE]

    Lumbee River Electric Membership Corporation (LREMC) offers low interest loans to help residential members increase the energy efficiency of homes. Loans up to $17,000 are available for the...

  14. Savannah River Site Environmental Report for 1997

    SciTech Connect (OSTI)

    Arnett, M.W.; Mamatey, A.R.

    1998-08-01

    The mission at the Savannah River Site has changed from the production of nuclear weapons materials for national defense to the management of waste, restoration of the environment, and the development of industry in and around the site.

  15. RIVER PROTECTION PROJECT SYSTEM PLAN

    SciTech Connect (OSTI)

    CERTA PJ

    2008-07-10

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste management and treatment facilities, (8) Developing and implementing technical solutions to mitigate the impact from substantial1y increased estimates of Na added during the pretreatment of the tank waste solids, This involves a combination of: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, or (4) accepting an increase in mission duration, ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks, Key elements of the implementation of this strategy are included within the scope of the Tank Operations Contract, currently in procurement Since 2003, the ORP has conducted over 30 design oversight assessments of the Waste Treatment and Immobilization Plant (WTP). The estimated cost at completion has increased and the schedule for construction and commissioning of the WTP has extended, The DOE, Office of Environmental Management (EM), sanctioned a comprehensive review of the WTP flowsheet, focusing on throughput. In 2005, the TFC completed interim stabilization of the SSTs and as of March 2007, has completed the retrieval of seven selected SSTs. Demonstration of supplemental treatment technologies continues. The ongoing tank waste retrieval experience, progress with supplemental treatment technologies, and changes in WTP schedule led to the FY 2007 TFC baseline submittal in November 2006. The TFC baseline submittal was developed before the WTP schedule was fully understood and approved by ORP, and therefore reflects an earlier start date for the WTP facilities. This System Plan is aligned with the current WTP schedule with hot commissioning beginning in 2018 and full operations beginning in 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of

  16. SAVANNAH RIVER SITE COLD WAR HISTORIC PROPERTY DOCUMENTATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WAR HISTORIC PROPERTY DOCUMENTATION NARRATIVE AND PHOTOGRAPHY CMX AND TNX SAVANNAH RIVER'S PILOT PLANTS Aiken County, South Carolina SAVANNAH RIVER SITE COLD WAR HISTORIC PROPERTY DOCUMENTATION CMX AND TNX CMX AND TNX SA SA V V ANNAH RIVER'S ANNAH RIVER'S PILOT PLANTS PILOT PLANTS Aiken County, South Carolina NARRATIVE AND PHOTOGRAPHY ii ABSTRACT This documentation was prepared in accordance with a Memorandum of Agreement (MOA) signed by the Department of Energy-Savannah River (DOE-SR) and the

  17. Exhibit D: Mirant Potomac River Schedule of Operations: January and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 2006 | Department of Energy Operations: January and February 2006 Exhibit D: Mirant Potomac River Schedule of Operations: January and February 2006 Docket No. EO-05-01. Exhibit D: Mirant Potomac River Schedule of Operations, January and February 2006 PDF icon Exhibit D: Mirant Potomac River Schedule of Operations More Documents & Publications Exhibit D: Mirant Potomac River Schedule of Unit Operations: January - March 2006 Exhibit D: Mirant Potomac River Schedule of Unit

  18. Exhibit D: Mirant Potomac River Schedule of Unit Operations: January -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 2006 | Department of Energy January - March 2006 Exhibit D: Mirant Potomac River Schedule of Unit Operations: January - March 2006 Docket No. EO-05-01: Exhibit D: Mirant Potomac River Schedule of Unit Operations related to Supplement Number 4 of the Operating Plan of Mirant Potomac River, LLC PDF icon Exhibit D: Mirant Potomac River Schedule of Unit Operations More Documents & Publications Exhibit D: Mirant Potomac River Schedule of Unit Operations: Supplement 3, January and

  19. Voluntary Protection Program Onsite Review, Savannah River Remediation,

    Energy Savers [EERE]

    Llc, Liquid Waste Contract, Savannah River Site - November 2014 | Department of Energy Savannah River Remediation, Llc, Liquid Waste Contract, Savannah River Site - November 2014 Voluntary Protection Program Onsite Review, Savannah River Remediation, Llc, Liquid Waste Contract, Savannah River Site - November 2014 November 2014 Recertification of SRR as a Star Participant in the Department of Energy Voluntary Protection Program. This report summarizes the results from the evaluation of

  20. PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System (PCS)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Procurement Cycle System (PCS) PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System (PCS) PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System (PCS) PDF icon PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System (PCS) More Documents & Publications PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health and Safety

  1. PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boundary | Department of Energy IBARS Srs Site Apps. Accreditation Boundary PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation Boundary PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation Boundary PDF icon PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation Boundary More Documents & Publications PIA - Savannah River Nuclear Solutions Badge Request and Site Personnel Roster Systems PIA - Savannah River Remediation

  2. PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System (HRMS) | Department of Energy (SRNS) Human Resource Management System (HRMS) PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) PDF icon PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) More Documents & Publications PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System (PCS) PIA - Savannah River Site

  3. QER - Comment of Powder River Energy Corporation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powder River Energy Corporation QER - Comment of Powder River Energy Corporation From: Mike Easley [mikee@precorp.coop] Sent: Wednesday, August 20, 2014 11:59 PM To: QERcomments Subject: Comment on the QER Public Meeting in Cheyenne, WY: Infrastructure Siting Attachment: Michael Easley CEO Powder River Energy Corporation - Statement.pdf Statement of Michael E Easley Panel 1-Electric Infrastructure Siting Best Regards, Mike Michael Easley CEO Powder River Energy Corporation Powder River Energy,

  4. River Data Package for the 2004 Composite Analysis

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Guensch, Gregory R.; Patton, Gregory W.

    2004-08-01

    Beginning in fiscal year 2003, the DOE Richland Operations Office initiated activities, including the development of data packages, to support the 2004 Composite Analysis. The river data package provides calculations of flow and transport in the Columbia River system. This document presents the data assembled to run the river module components for the section of the Columbia River from Vernita Bridge to the confluence with the Yakima River.

  5. Environmental Bulletin The Savannah River Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bulletin The Savannah River Site On January 25, 2016, the Department of Energy (DOE) issued a Notice of Availability (NOA) of its draft Environmental Assessment (EA) (DOE/EA-1977) evaluating the potential environmental impacts from a proposed action to receive, store, process and disposition spent nuclear fuel (SNF) from the Federal Republic of Germany at DOE's Savannah River Site (SRS) (Draft Spent Nuclear Fuel from Germany EA). In that previous Notice, DOE invited public comments on the Draft

  6. Savannah River Analytical Laboratories Achieve International Standard

    National Nuclear Security Administration (NNSA)

    Accreditation | National Nuclear Security Administration Blog Savannah River Analytical Laboratories Achieve International Standard Accreditation Tuesday, September 8, 2015 - 12:55pm Savannah River National Laboratory's F/H Analytical Laboratories have achieved ISO/IEC 17025 accreditation, which represents an independent validation of two analytical methods against a set of world-class specifications. The accreditation was formally awarded by the American Association for Laboratory

  7. Rebecca Sharitz | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sharitz Research Teaching Selected Publications Faculty & Scientists SREL Home UGA Plant Biology Rebecca Sharitz Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-5679 office (803) 725-3309 fax sharitz(at)srel.uga.edu The research in my laboratory is directed chiefly toward ecological processes in wetlands, including factors affecting the structure and function of river floodplain and swamp forest ecosystems and of isolated depression wetlands (Carolina bays),

  8. Columbia River Component Data Gap Analysis

    SciTech Connect (OSTI)

    L. C. Hulstrom

    2007-10-23

    This Data Gap Analysis report documents the results of a study conducted by Washington Closure Hanford (WCH) to compile and reivew the currently available surface water and sediment data for the Columbia River near and downstream of the Hanford Site. This Data Gap Analysis study was conducted to review the adequacy of the existing surface water and sediment data set from the Columbia River, with specific reference to the use of the data in future site characterization and screening level risk assessments.

  9. Indian River Hydroelectric Project Grant

    SciTech Connect (OSTI)

    Rebecca Garrett

    2005-04-29

    This Final Technical Report provides a concise retrospective and summary of all facets of the Sheldon Jackson College electrical Infrastructure Renovation portion of the Indian River Hydroelectric Project Grant of the City and Borough of Sitka, Alaska. The Project Overview describes the origins of the project, the original conditions that provided the impetus for the grant funding, how the grant amendment was developed, the conceptual design development, and the actual parameters of the final project as it went out to bid. The Project Overview also describes the ''before and after'' conditions of the project. The Objectives division of this Final Technical Report describes the amendment-funded goals of the project. It also describes the milestones of project development and implementation, as well as, the rationale behind the milestone array. The Description of Activities Performed division of this report provides an in-depth chronological analysis of progressive project implementation. Photographs will provide further illustration of particular functional aspects of the renovation project within project parameters. The Conclusions and Recommendations division of this report provides a comprehensive retrospective analysis of the project.

  10. Columbia River monitoring: Distribution of tritium in Columbia River water at the Richland Pumphouse

    SciTech Connect (OSTI)

    Dirkes, R.L.

    1993-02-01

    The Surface Environmental Surveillance Project (SESP) is conducted by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE). This report presents the results of a special study conducted as part of the SESP to supplement the routine Columbia River monitoring program and provide information relative to the dispersion and distribution of Hanford origin contaminants entering the river through the seepage of ground water along the Hanford Site. Sampling was conducted along cross sections to determine the distribution of tritium within the Columbia River at Richland, Washington. The investigation was also designed to evaluate the relationship between the average tritium concentrations in the river water at this location and in water collected from the routine SESP river monitoring system located at the city of Richland drinking water intake (Richland Pumphouse). This study was conducted during the summers of 1987 and 1988. Water samples were collected along cross sections located at or near the Richland Pumphouse monitoring station.

  11. RIVER PROTECTION PROJECT SYSTEM PLAN

    SciTech Connect (OSTI)

    CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

    2009-09-15

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. (6) Deploying interim storage capacity for the immobilized high-level waste (IHLW) pending determination of the final disposal pathway. (7) Closing the SST and DST tank farms, ancillary facilities, and all associated waste management and treatment facilities. (8) Optimizing the overall mission by resolution of technical and programmatic uncertainties, configuring the tank farms to provide a steady, well-balanced feed to the WTP, and performing trade-offs of the required amount and type of supplemental treatment and of the amount of HLW glass versus LAW glass. ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks. Key elements needed to implement the strategy described above are included within the scope of the Tank Operations Contract (TOC). Interim stabilization of the SSTs was completed in March 2004. As of April 2009, retrieval of seven SSTs has been completed and retrieval of four additional SSTs has been completed to the limits of technology. Demonstration of supplemental LAW treatment technologies has stopped temporarily pending revision of mission need requirements. Award of a new contract for tank operations (TOC), the ongoing tank waste retrieval experience, HLW disposal issues, and uncertainties in waste feed delivery and waste treatment led to the revision of the Performance Measurement Baseline (PM B), which is currently under review prior to approval. 6 This System Plan is aligned with the current WTP schedule, with hot commissioning beginning in 2018, and full operations beginning in late 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of these decisions will be to provide a second LAW vitrification facility. No final implementation decisions regarding supplemental technology can be made until the Tank Closure and Waste Management Environmental Impact Statement is completed and a Record of Decision is issued by DOE. Technical solutions are being developed to mitigate the impact from substantially increased estimates of sodium to be added during pretreatment of the tank waste solids. This may involve one or more of the following options: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, (4) increasing the incorporation of aluminum in the HLW glass to reduce caustic leaching requirements, or (5) implementing other technical solutions. For planning purposes, the PMB assumes that option (5) above, in the form of an ARF, will be successful in reducing the sodium required to be added during pretreatment of the tank waste.

  12. Coho Salmon Master Plan, Clearwater River Basin.

    SciTech Connect (OSTI)

    Nez Perce Tribe; FishPro

    2004-10-01

    The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these uncertainties, the Nez Perce Tribe proposes to utilize a phased approach for coho reintroductions. This Master Plan seeks authorization and funding to move forward to Step 2 in the Northwest Power and Conservation Council 3-Step review process to further evaluate Phase I of the coho reintroduction program, which would focus on the establishment of a localized coho salmon stock capable of enduring the migration to the Clearwater River subbasin. To achieve this goal, the Nez Perce Tribe proposes to utilize space at existing Clearwater River subbasin hatchery facilities in concert with the construction of two low-tech acclimation facilities, to capitalize on the higher survival observed for acclimated versus direct stream released coho. In addition, Phase I would document the natural productivity of localized coho salmon released in two targeted tributaries within the Clearwater River subbasin. If Phase I is successful at establishing a localized coho salmon stock in an abundance capable of filling existing hatchery space, the rates of natural productivity are promising, and the interspecific interactions between coho and sympatric resident and anadromous salmonids are deemed acceptable, then Phase II would be triggered. Phase II of the coho reintroduction plan would focus on establishing natural production in a number of Clearwater River subbasin tributaries. To accomplish this goal, Phase II would utilize existing Clearwater River subbasin hatchery facilities, and expand facilities at the Nez Perce Tribal Hatchery Site 1705 facility to rear approximately 687,700 smolts annually for use in a rotating supplementation schedule. In short, this document identifies a proposed alternative (Phase I), complete with estimates of capital, operations and maintenance, monitoring and evaluation, and permitting that is anticipated to raise average smolt replacement rates from 0.73 (current) to 1.14 using primarily existing facilities, with a limited capital investment for low-tech acclimation facilities. This increase in survival is expected to provide the opportunity for the establishm

  13. New River Geothermal Exploration (Ram Power Inc.)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Miller, Clay

    The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

  14. New River Geothermal Exploration (Ram Power Inc.)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Miller, Clay

    2013-11-15

    The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

  15. Savannah River Site (SRS) environmental overview

    SciTech Connect (OSTI)

    O'Rear, M.G. ); Steele, J.L.; Kitchen, B.G. )

    1990-01-01

    The environmental surveillance activities at and in the vicinity of the Savannah River Site (SRS) (formerly the Savannah River Plant (SRP)) comprise one of the most comprehensive and extensive environmental monitoring programs in the United States. This overview contains monitoring data from routine and nonroutine radiological and nonradiological environmental surveillance activities, summaries of environmental protection programs in progress, a summary of National Environmental Policy Act (NEPA) activities, and a listing of environmental permits (Appendix A) issued by regulatory agencies. This overview provides information about the impact of SRS operations on the public and the environment. The SRS occupies a large area of approximately 300 square miles along the Savannah River, principally in Aiken and Barnwell counties of South Carolina. SRS's primary function is the production of tritium, plutonium, and other special nuclear materials for national defense, for other governmental uses, and for some civilian purposes. From August 1950 to March 31, 1989, SRS was operated for the Department of Energy (DOE) by E. I. du Pont de Nemours Co. On April 1, 1989 the Westinghouse Savannah River Company assumed responsibility as the prime contractor for the Savannah River Site.

  16. Historical river flow rates for dose calculations

    SciTech Connect (OSTI)

    Carlton, W.H.

    1991-06-10

    Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS`s, EID`S, SAR`S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants.

  17. River Protection Project (RPP) Level 0 Logic

    SciTech Connect (OSTI)

    SEEMAN, S.E.

    2000-01-20

    The following modifications were made to the River Protection Project Level-0 logic in going from Rev. I to Rev. 2. The first change was the change to the heading at the top of the drawing: ''TWRS Program Logic'' to ''River Protection Project Mission Logic''. Note that purely format changes (e.g., fonts, location of boxes, date format, addition of numbers to ''ghost'' boxes) are not discussed. However, the major format change was to show DOE-BNFL Inc. Interface Control Documents (ICDs) on the logic.

  18. Sun River Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    River Electric Coop, Inc Jump to: navigation, search Name: Sun River Electric Coop, Inc Place: Montana Phone Number: 1-406-467-2526 Website: www.sunriverelectric.coop Outage...

  19. Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity

    Broader source: Energy.gov [DOE]

    College intern Spencer Isom recently began her second summer with Savannah River Remediation (SRR), and her fourth year at Savannah River Site (SRS), where she continues a 31-year family legacy on site.

  20. City of Park River, North Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Park River, North Dakota (Utility Company) Jump to: navigation, search Name: City of Park River Place: North Dakota Phone Number: 701.284.6150 Website: www.parkrivernd.govoffice2.c...

  1. Preliminary Notice of Violation, Savannah River Nuclear Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fall from a Scaffold in the K-Area Complex at the Savannah River Site On November 9, ... an elevated work platform in the K-Area Complex at the Savannah River Site on July 1, ...

  2. BLM Four Rivers Field Office | Open Energy Information

    Open Energy Info (EERE)

    Four Rivers Field Office Jump to: navigation, search Name: BLM Four Rivers Field Office Address: 3948 Development Ave. Place: Boise, ID Zip: 83705 Phone Number: 208-384-3300...

  3. EA-366 TWIN RIVERS PAPER CO INC. | Department of Energy

    Energy Savers [EERE]

    Twin Rivers Paper Co to export electric energy to Canada. PDF icon EA-366 Twin Rivers CN.pdf More Documents & Publications Application to Export Electric Energy OE Docket No....

  4. SAVANNAH RIVER TECHNOLOGY CENTER MONTHLY REPORT AUGUST 1992

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1999-06-21

    'This monthly report summarizes Programs and Accomplishments of the Savannah River Technology Center in support of activities at the Savannah River Site. The following categories are addressed: Reactor, Tritium, Separations, Environmental, Waste Management, General, and Items of Interest.'

  5. Type B Accident Investigation Board Report of the Savannah River...

    Energy Savers [EERE]

    Savannah River Site Hand Injury at the Salt Waste Processing Facility on October 6, 2009 Type B Accident Investigation Board Report of the Savannah River Site Hand Injury at the ...

  6. Preliminary Notice of Violation, Savannah River Nuclear Solutions...

    Broader source: Energy.gov (indexed) [DOE]

    Preliminary Notice of Violation issued to Savannah River Nuclear Solutions, LLC related to a Nitric Acid Spill Event and an Electrical Arc Flash Injury Event at the Savannah River ...

  7. Preliminary Notice of Violation,Savannah River Nuclear Solutions...

    Broader source: Energy.gov (indexed) [DOE]

    July 22, 2011 Issued to Savannah River Nuclear Solutions, LLC related to a Puncture Wound Injury resulting in a Radiological Uptake at the Savannah River Site On July 22, 2011, the ...

  8. Type B Accident Investigation of the Savannah River Site Arc...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Savannah River Site Arc Flash Burn Injury on September 23, 2009, in the D Area Powerhouse Type B Accident Investigation of the Savannah River Site Arc Flash Burn Injury on ...

  9. Madelyn Creedon visits Savannah River Site | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savannah River Site Thursday, March 12, 2015 - 4:48pm NNSA Blog This week, NNSA Principal Deputy Administrator Madelyn Creedon was at the Savannah River Site. She visited the ...

  10. Learn More About EM's Savannah River Site Technology at Small...

    Broader source: Energy.gov (indexed) [DOE]

    Learn More About EM's Savannah River Site Technology at Small Business Forum This Month To ... Small Business Forum is Set for May 19-20, 2016 Learn More About EM's Savannah River Site ...

  11. Deep drilling data Raft River geothermal area, Idaho | Open Energy...

    Open Energy Info (EERE)

    data Raft River geothermal area, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling data Raft River geothermal area, Idaho Abstract...

  12. Subsurface geology of the Raft River geothermal area, Idaho ...

    Open Energy Info (EERE)

    geology of the Raft River geothermal area, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Subsurface geology of the Raft River...

  13. Exhibit D: Mirant Potomac River Schedule of Unit Operations:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January - March 2006 Exhibit D: Mirant Potomac River Schedule of Unit Operations: January - March 2006 Docket No. EO-05-01: Exhibit D: Mirant Potomac River Schedule of Unit ...

  14. Exhibit D: Mirant Potomac River Schedule of Unit Operations:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhibit D: Mirant Potomac River Schedule of Unit Operations: Supplement 4, January - March 2006 Docket No. EO-05-01: Exhibit D: Mirant Potomac River Schedule of Unit Operations in ...

  15. Black River Farm Solar Project | Open Energy Information

    Open Energy Info (EERE)

    Solar Project Facility Black River Farm Solar Project Sector Solar Facility Type Fixed Tilt Ground-Mount & Roof-Mount Owner EnXco Developer EnXco Energy Purchaser Black River Farm...

  16. Direct-Current Resistivity Survey At Raft River Geothermal Area...

    Open Energy Info (EERE)

    surveys were undertaken at the Raft River geothermal area. References Zohdy, A.A.R.; Jackson, D.B.; Bisdorf, R.J. (12 October 1975) Exploring the Raft River geothermal area,...

  17. Salt River Electric Coop Corp | Open Energy Information

    Open Energy Info (EERE)

    River Electric Coop Corp Jump to: navigation, search Name: Salt River Electric Coop Corp Place: Kentucky References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form...

  18. Savannah River Nuclear Solutions, LLC, Consent Order NCO-2016...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savannah River Nuclear Solutions, LLC, Consent Order NCO-2016-01 Savannah River Nuclear Solutions, LLC, Consent Order NCO-2016-01 April 19, 2016 Nuclear Safety Enforcement Consent ...

  19. Title 10 Chapter 45 Connecticut River Flood Control Compact ...

    Open Energy Info (EERE)

    5 Connecticut River Flood Control Compact Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 10 Chapter 45 Connecticut River...

  20. Peace River Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Peace River Electric Coop, Inc Jump to: navigation, search Name: Peace River Electric Coop, Inc Place: Florida Phone Number: 1-877-282-3656 Website: www.preco.coop Outage Hotline:...