Sample records for river site doe

  1. Technical Assessment of DOE Savannah River Site-Sponsored Radionuclide Monitoring Efforts in the Central Savannah River Area

    E-Print Network [OSTI]

    Georgia, University of

    Technical Assessment of DOE Savannah River Site-Sponsored Radionuclide Monitoring Efforts...................................................................................................... 3 Summary Conclusions to DOE Regarding CAB Recommendation 317........................... 4............................................................................................................ 8 Standards

  2. A PUBLICATION OF DOE'S SAVANNAH RIVER SITE NATIONAL ENVIRONMENTAL RESEARCH PARK

    E-Print Network [OSTI]

    Georgia, University of

    #12;A PUBLICATION OF DOE'S SAVANNAH RIVER SITE NATIONAL ENVIRONMENTAL RESEARCH PARK April 1990 River Ecology Laboratory Drawer E Aiken, SC 29802 USA #12;VEGETATION OF THE SAVANNAH RIVER SITE: MAJOR COMMUNITY TYPES Sarah W. Workman Kenneth W. McLeod Savannah River Ecology Laboratory A Publication

  3. Two Years Later: Bill Picciano of DOE's Savannah River Site

    Broader source: Energy.gov [DOE]

    We checked back in with Bill Picciano, who we last spoke to in October 2009 after he'd recently been hired at the Savannah River Site (SRS) through the Recovery Act. Now he's permanently employed at the Site as an Associate Engineer/Technical Support Specialist - a job he's proud to have.

  4. Savannah River Site Team Wins Carolina Challenge at 2012 DOE Security Protection Officer Competition

    Broader source: Energy.gov [DOE]

    Savannah River Site, Aiken, S.C. – Security Protection Officers from Savannah River Site’s (SRS) security contractor WSI-SRS, today won the Department of Energy (DOE) Secretary’s Trophy as the top DOE team in the 2012 Security Protection Officer Team Competition (SPOTC)- 2012 Carolina Challenge, held here, April 22-26. It was the 40th anniversary of the SPOTC competition.

  5. DOE Issues Salt Waste Determination for the Savannah River Site |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE Fits Princeton Plasma PhysicsDepartment

  6. DOE Research Set-Aside Areas of the Savannah River Site

    SciTech Connect (OSTI)

    Davis, C.E.; Janecek, L.L.

    1997-08-31T23:59:59.000Z

    Designated as the first of seven National Environmental Research Parks (NERPs) by the Atomic Energy Commission (now the Department of Energy), the Savannah River Site (SRS) is an important ecological component of the Southeastern Mixed Forest Ecoregion located along the Savannah River south of Aiken, South Carolina. Integral to the Savannah River Site NERP are the DOE Research Set-Aside Areas. Scattered across the SRS, these thirty tracts of land have been set aside for ecological research and are protected from public access and most routine Site maintenance and forest management activities. Ranging in size from 8.5 acres (3.44 ha) to 7,364 acres (2,980 ha), the thirty Set-Aside Areas total 14,005 acres (5,668 ha) and comprise approximately 7% of the Site`s total area. This system of Set-Aside Areas originally was established to represent the major plant communities and habitat types indigenous to the SRS (old-fields, sandhills, upland hardwood, mixed pine/hardwood, bottomland forests, swamp forests, Carolina bays, and fresh water streams and impoundments), as well as to preserve habitats for endangered, threatened, or rare plant and animal populations. Many long-term ecological studies are conducted in the Set-Asides, which also serve as control areas in evaluations of the potential impacts of SRS operations on other regions of the Site. The purpose of this document is to give an historical account of the SRS Set-Aside Program and to provide a descriptive profile of each of the Set-Aside Areas. These descriptions include a narrative for each Area, information on the plant communities and soil types found there, lists of sensitive plants and animals documented from each Area, an account of the ecological research conducted in each Area, locator and resource composition maps, and a list of Site-Use permits and publications associated with each Set-Aside.

  7. Savannah River Site Eastern Transportation Hub: A Concept For a DOE Eastern Packaging, Staging and Maintenance Center - 13143

    SciTech Connect (OSTI)

    England, Jeffery L. [Savannah River National Laboratory, Aiken, South Carolina (United States)] [Savannah River National Laboratory, Aiken, South Carolina (United States); Adams, Karen; Maxted, Maxcine; Ruff Jr, Clarence [U.S. Department of Energy, Savannah River Site, Aiken, SC (United States)] [U.S. Department of Energy, Savannah River Site, Aiken, SC (United States); Albenesius, Andrew; Bowers, Mark D.; Fountain, Geoffrey; Hughes, Michael [Savannah River Nuclear Solutions, Aiken, SC (United States)] [Savannah River Nuclear Solutions, Aiken, SC (United States); Gordon, Sydney [National Security Technologies, LLC, Las Vegas, NV (United States)] [National Security Technologies, LLC, Las Vegas, NV (United States); O'Connor, Stephen [U.S. Department of Energy, HQ DOE, EM-33, Germantown MD (United States)] [U.S. Department of Energy, HQ DOE, EM-33, Germantown MD (United States)

    2013-07-01T23:59:59.000Z

    The Department of Energy (DOE) is working to de-inventory sites and consolidate hazardous materials for processing and disposal. The DOE administers a wide range of certified shipping packages for the transport of hazardous materials to include Special Nuclear Material (SNM), radioactive materials, sealed sources and radioactive wastes. A critical element to successful and safe transportation of these materials is the availability of certified shipping packages. There are over seven thousand certified packagings (i.e., Type B/Type AF) utilized within the DOE for current missions. The synergistic effects of consolidated maintenance, refurbishment, testing, certification, and costing of these services would allow for efficient management of the packagings inventory and to support anticipated future in-commerce shipping needs. The Savannah River Site (SRS) receives and ships radioactive materials (including SNM) and waste on a regular basis for critical missions such as consolidated storage, stabilization, purification, or disposition using H-Canyon and HB-Line. The Savannah River National Laboratory (SRNL) has the technical capability and equipment for all aspects of packaging management. SRS has the only active material processing facility in the DOE complex and is one of the sites of choice for nuclear material consolidation. SRS is a logical location to perform maintenance and periodic testing of the DOE fleet of certified packagings. This initiative envisions a DOE Eastern Packaging Staging and Maintenance Center (PSMC) at the SRS and a western hub at the Nevada National Security Site (NNSS), an active DOE Regional Disposal Site. The PSMC's would be the first place DOE would go to meet their radioactive packaging needs and the primary locations projects would go to disposition excess packaging for beneficial reuse. These two hubs would provide the centralized management of a packaging fleet rather than the current approach to design, procure, maintain and dispose of packagings on a project-by-project basis. This initiative provides significant savings in packaging costs and acceleration of project schedules. In addition to certified packaging, the PSMC would be well suited for select designs of 7A Type A packaging and Industrial Packaging. (authors)

  8. Savannah River Site's Site Specific Plan

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show the Environmental Restoration and Waste Management activities that were identified during the preparation of the Department of Energy-Headquarters (DOE-HQ) Environmental Restoration and Waste Management Five-Year Plan (FYP) for FY 1992--1996. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. The purpose of the SSP is to develop a baseline for policy, budget, and schedules for the DOE Environmental Restoration and Waste Management activities. The plan explains accomplishments since the Fiscal Year (FY) 1990 plan, demonstrates how present and future activities are prioritized, identifies currently funded activities and activities that are planned to be funded in the upcoming fiscal year, and describes future activities that SRS is considering.

  9. DOE - Office of Legacy Management -- Green River Mill Site - UT 0-01

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffalo -Elk RiverFrederickAZGrants AECGreen

  10. DOE Order 435.1 Performance Assessment Savannah River Site | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732 DOE F 243.2 Records Scheduling3-2008 DOE OIGInteractions

  11. DOE/EIS-0279-SA-01 DOE/EIS-0218-SA-06 Supplement Analysis Savannah River Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant6-2002DOE/EA-1313 Rev.79-SA-01 DOE/EIS-0218-SA-06

  12. Savannah River Site Robotics

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  13. Savannah River Site Robotics

    ScienceCinema (OSTI)

    None

    2012-06-14T23:59:59.000Z

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  14. Persistence of uranium groundwater plumes: Contrasting mechanisms at two DOE sites in the groundwater-river interaction zone

    SciTech Connect (OSTI)

    Zachara, John M.; Long, Philip E.; Bargar, John; Davis, James A.; Fox, Patricia M.; Fredrickson, Jim K.; Freshley, Mark D.; Konopka, Allan; Liu, Chongxuan; McKinley, James P.; Rockhold, Mark L.; Williams, Kenneth H.; Yabusaki, Steven B.

    2013-04-01T23:59:59.000Z

    We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and that are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 µg/L or 0.126 µmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (< one pore volume). At the Rifle site, slow oxidation of naturally reduced, contaminant U(IV) in the saturated zone and a continuous influx of U(VI) from natural, up-gradient sources influences plume persistence. Rate-limited mass transfer and surface complexation also control U(VI) migration velocity in the sub-oxic Rifle groundwater. Flux of U(VI) from the vadose zone at the Rifle site may be locally important, but it is not the dominant process that sustains the plume. A wide range in microbiologic functional diversity exists at both sites. Strains of Geobacter and other metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences between the sites include the geochemical nature of residual, contaminant U; the rates of current kinetic processes (both biotic and abiotic) influencing U(VI) solid-liquid distribution; the presence of detrital organic matter and the resulting spatial heterogeneity in microbially-driven redox properties; and the magnitude of groundwater hydrologic dynamics controlled by river-stage fluctuations, geologic structures, and aquifer hydraulic properties. The comparative analysis of these sites provides important guidance to the characterization, understanding, modeling, and remediation of groundwater contaminant plumes influenced by surface water interaction that are common world-wide.

  15. HANFORD SITE RIVER CORRIDOR CLEANUP

    SciTech Connect (OSTI)

    BAZZELL, K.D.

    2006-02-01T23:59:59.000Z

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.

  16. Enterprise Assessments Review, Savannah River Site 2014 Site...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Independent Oversight Inspection, Savannah River Site - January 2010 Independent Oversight Review, Savannah River Site Tritium Facilities - December...

  17. Voluntary Protection Program Onsite Review, Savannah River Site- May 2010

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Savannah River Site is continuing to perform at a level deserving DOE-VPP Star recognition.

  18. Environmental Assessment for DOE permission for off-loading activities to support the movement of Millstone Unit 2 steam generator sub-assemblies across the Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA), for the proposed granting of DOE permission of offloading activities to support the movement Millstone Unit 2 steam generator sub-assemblies (SGSAs) across the Savannah River Site (SRS). Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and the Department is issuing this Finding of No Significant Impact. On the basis of the floodplain/wetlands assessment in the EA, DOE has determined that there is no practicable alternative to the proposed activities and that the proposed action has been designed to minimize potential harm to or within the floodplain of the SRS boat ramp. No wetlands on SRS would be affected by the proposed action.

  19. Implementation of DOE/NFDI D&D Cost Estimating Tool (POWERtool) for Initiative Facilities at the Savannah River Site

    SciTech Connect (OSTI)

    Austin, W. E.; WSRC; Baker, S. B. III, Cutshall, C. M.; Crouse, J. L.

    2003-02-26T23:59:59.000Z

    The Savannah River Site (SRS) has embarked on an aggressive D&D program to reduce the footprint of excess facilities. Key to the success of this effort is the preparation of accurate cost estimates for decommissioning. SRS traditionally uses ''top-down'' rough order-of-magnitude (ROM) estimating for decommissioning cost estimates. A second cost estimating method (POWERtool) using a ''bottoms-up'' approach has been applied to many of the SRS excess facilities in the T and D-area. This paper describes the use of both estimating methods and compares the estimated costs to actual costs of 5 facilities that were decommissioned in 2002.

  20. STEAM REFORMING TECHNOLOGY DEMONSTRATION FOR THE DESTRUCTION OF ORGANICS ON ACTUAL DOE SAVANNAH RIVER SITE TANK 48H WASTE 9138

    SciTech Connect (OSTI)

    Burket, P

    2009-02-24T23:59:59.000Z

    This paper describes the design of the Bench-scale Steam Reformer (BSR); a processing unit for demonstrating steam reforming technology on actual radioactive waste [1]. It describes the operating conditions of the unit used for processing a sample of Savannah River Site (SRS) Tank 48H waste. Finally, it compares the results from processing the actual waste in the BSR to processing simulant waste in the BSR to processing simulant waste in a large pilot scale unit, the Fluidized Bed Steam Reformer (FBSR), operated at Hazen Research Inc. in Golden, CO. The purpose of this work was to prove that the actual waste reacted in the same manner as the simulant waste in order to validate the work performed in the pilot scale unit which could only use simulant waste.

  1. Independent Oversight Activity Report, Savannah River Site -...

    Office of Environmental Management (EM)

    Activity Report, Savannah River Site - February 2014 February 2014 Operational Awareness Visit of the Savannah River Site HIAR-SRS-2014-02-25 This Independent Activity...

  2. Independent Oversight Inspection, Savannah River Site - January...

    Energy Savers [EERE]

    2010 More Documents & Publications Independent Oversight Review, Savannah River Site Tritium Facilities - December 2012 Enterprise Assessments Review, Savannah River Site 2014...

  3. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2005

    SciTech Connect (OSTI)

    Mamatey, A

    2006-07-18T23:59:59.000Z

    The ''Savannah River Site Environmental Report for 2005'' (WSRC-TR-2006-00007) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, ''Environment, Safety and Health Reporting'', and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to: present summary environmental data that characterize site environmental management performance; confirm compliance with environmental standards and requirements; highlight significant programs and efforts; and assess the impact of SRS operations on the public and the environment.

  4. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2007

    SciTech Connect (OSTI)

    Mamatey, A

    2008-08-27T23:59:59.000Z

    The Savannah River Site Environmental Report for 2007 (WSRC-STI-2008-00057) prepared for the US Department of Energy (DOE) according to requirements of DOE Order 231.1A, 'Environment, Safety and Health Reporting', and DOE Order 5400.5, 'Radiation Protection of the Public and Environment'. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; (3) highlight significant programs and efforts; (4) assess the impact of SRS operations on the public and the environment.

  5. Savannah River Site Environmental Report for 2004

    SciTech Connect (OSTI)

    Mamatey, Albert R.

    2005-06-07T23:59:59.000Z

    The Savannah River Site Environmental Report for 2004 (WSRC-TR-2005-00005) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, ''Environment, Safety and Health Reporting,'' and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to present summary environmental data that characterize site environmental management performance; confirm compliance with environmental standards and requirements; highlight significant programs and efforts; and assess the impact of SRS operations on the public and the environment.

  6. Savannah River Site environmental report for 1995

    SciTech Connect (OSTI)

    Arnett, M.W.; Mamatey, A. [eds.

    1995-12-31T23:59:59.000Z

    The 1990s have brought dramatic change to the Savannah River Site (SRS) in its role as a key part of the U.S. Department of Energy`s (DOE) weapons complex. Shrinking federal budgets, sharp workforce reductions, the end of the Cold War, and a major shift in mission objectives have combined to severely test the mettle of SRS-South Carolina`s largest employer. But the sprawling 310-square-mile site`s employees have responded to the test in admirable fashion, effectively shifting their emphasis from weapons production to environmental restoration. This report describes the environmental report for the SRS for 1995.

  7. Independent Oversight Review, Savannah River Site Salt Waste...

    Office of Environmental Management (EM)

    2014 April 2014 Review of the Savannah River Site Salt Waste Processing Facility Construction Quality and Fire Protection Systems The U.S. Department of Energy (DOE) Office of...

  8. Savannah River Site Approved Site Treatment Plan, 1998 Annual Update

    SciTech Connect (OSTI)

    Lawrence, B. [Westinghouse Savannah River Company, AIKEN, SC (United States); Berry, M.

    1998-03-01T23:59:59.000Z

    The U.S. Department of Energy, Savannah River Operations Office (DOE- SR),has prepared the Site Treatment Plan (STP) for Savannah River Site (SRS) mixed wastes in accordance with RCRA Section 3021(b), and SCDHEC has approved the STP (except for certain offsite wastes) and issued an order enforcing the STP commitments in Volume I. DOE-SR and SCDHEC agree that this STP fulfills the requirements contained in the FFCAct, RCRA Section 3021, and therefore,pursuant to Section 105(a) of the FFCAct (RCRA Section 3021(b)(5)), DOE`s requirements are to implement the plan for the development of treatment capacities and technologies pursuant to RCRA Section 3021.Emerging and new technologies not yet considered may be identified to manage waste more safely, effectively, and at lower cost than technologies currently identified in the plan. DOE will continue to evaluate and develop technologies that offer potential advantages in public acceptance, privatization, consolidation, risk abatement, performance, and life-cycle cost. Should technologies that offer such advantages be identified, DOE may request a revision/modification of the STP in accordance with the provisions of Consent Order 95-22-HW.The Compliance Plan Volume (Volume I) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions (LDR). Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume II) and is provided for information.

  9. River Corridor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResources Resources About1 SignG.5

  10. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2008

    SciTech Connect (OSTI)

    Mamatey, A.

    2009-09-15T23:59:59.000Z

    The Savannah River Site Environmental Report for 2008 (SRNS-STI-2009-00190) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, 'Environment, Safety and Health Reporting,' and DOE Order 5400.5, 'Radiation Protection of the Public and Environment.' The annual SRS Environmental Report has been produced for more than 50 years. Several hundred copies are distributed each year to government officials, universities, public libraries, environmental and civic groups, news media, and interested individuals. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; and (3) highlight significant programs and efforts.

  11. Complexity of Groundwater Contaminants at DOE Sites

    SciTech Connect (OSTI)

    Hazen, T.C.; Faybishenko, B.; Jordan, P.

    2010-12-03T23:59:59.000Z

    The U.S. Department of Energy (DOE) is responsible for the remediation and long-term stewardship of one of the world's largest groundwater contamination portfolios, with a significant number of plumes containing various contaminants, and considerable total mass and activity. As of 1999, the DOE's Office of Environmental Management was responsible for remediation, waste management, or nuclear materials and facility stabilization at 144 sites in 31 states and one U.S. territory, out of which 109 sites were expected to require long-term stewardship. Currently, 19 DOE sites are on the National Priority List. The total number of contaminated plumes on DOE lands is estimated to be 10,000. However, a significant number of DOE sites have not yet been fully characterized. The most prevalent contaminated media are groundwater and soil, although contaminated sediment, sludge, and surface water also are present. Groundwater, soil, and sediment contamination are present at 72% of all DOE sites. A proper characterization of the contaminant inventory at DOE sites is critical for accomplishing one of the primary DOE missions -- planning basic research to understand the complex physical, chemical, and biological properties of contaminated sites. Note that the definitions of the terms 'site' and 'facility' may differ from one publication to another. In this report, the terms 'site,' 'facility' or 'installation' are used to identify a contiguous land area within the borders of a property, which may contain more than one plume. The term 'plume' is used here to indicate an individual area of contamination, which can be small or large. Even though several publications and databases contain information on groundwater contamination and remediation technologies, no statistical analyses of the contaminant inventory at DOE sites has been prepared since the 1992 report by Riley and Zachara. The DOE Groundwater Data Base (GWD) presents data as of 2003 for 221 groundwater plumes at 60 DOE sites and facilities. Note that Riley and Zachara analyzed the data from only 18 sites/facilities including 91 plumes. In this paper, we present the results of statistical analyses of the data in the GWD as guidance for planning future basic and applied research of groundwater contaminants within the DOE complex. Our analyses include the evaluation of a frequency and ranking of specific contaminants and contaminant groups, contaminant concentrations/activities and total contaminant masses and activities. We also compared the results from analyses of the GWD with those from the 1992 report by Riley and Zachara. The difference between our results and those summarized in the 1992 report by Riley and Zachara could be caused by not only additional releases, but also by the use of modern site characterization methods, which more accurately reveal the extent of groundwater contamination. Contaminated sites within the DOE complex are located in all major geographic regions of the United States, with highly variable geologic, hydrogeologic, soil, and climatic conditions. We assume that the information from the 60 DOE sites included in the GWD are representative for the whole DOE complex. These 60 sites include the major DOE sites and facilities, such as Rocky Flats Environmental Technology Site, Colorado; Idaho National Laboratory, Idaho; Savannah River Site, South Carolina; Oak Ridge Reservation, Tennessee; and Hanford Reservation, Washington. These five sites alone ccount for 71% of the value of the remediation work.

  12. Savannah River Site environmental report for 1993

    SciTech Connect (OSTI)

    Arnett, M.W.; Karapatakis, L.K.; Mamatey, A.R. [eds.

    1994-08-01T23:59:59.000Z

    Savannah River Site (SRS) conducts effluent monitoring and environmental surveillance to ensure the safety of the public and the well-being of the environment. DOE Order 5400,1, ``General Environmental Protection Program,`` requires the submission of an environmental report that documents the impact of facility operations on the environment and on public health. SRS has had an extensive environmental surveillance program in place since 1951 (before site startup). At that time, data generated by the on-site surveillance program were reported in site documents. Beginning in 1959, data from off-site environmental monitoring activities were presented in reports issued for public dissemination. Separate reporting of SRS`s on- and off-site environmental monitoring activities continued until 1985, when data from both surveillance programs were merged into a single public document. The Savannah River Site Environmental Report for 1993 is an overview of effluent monitoring and environmental surveillance activities conducted on and in the vicinity of SRS from January 1 through December 31, 1993. For complete program descriptions, consult the ``SRS Environmental Monitoring Plan`` (WSRC-3Ql-2-1000). It documents the rationale and design criteria for the monitoring program, the frequency of monitoring and analysis, the specific analytical and sampling procedures, and the quality assurance requirements.

  13. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2010

    SciTech Connect (OSTI)

    Mamatey, A.; Dunaway-Ackerman, J.

    2011-08-16T23:59:59.000Z

    This report was prepared in accordance with U.S. Department of Energy (DOE) Order 231.1A, 'Environment, Safety and Health Reporting,' to present summary environmental data for the purpose of: (a) characterizing site's environmental management performance; (b) summarizing environmental occurrences and responses reported during the calendar year; (c) describing compliance status with respect to environmental standards and requirements; and (d) highlighting significant site programs and efforts. This report is the principal document that demonstrates compliance with the requirements of DOE Order 5400.5, 'Radiation Protection of the Public and the Environment,' and is a key component of DOE's effort to keep the public informed of environmental conditions at Savannah River Site (SRS). SRS has four primary missions: (1) Environmental Management - Cleaning up the legacy of the Cold War efforts and preparing decommissioned facilities and areas for long-term stewardship; (2) Nuclear Weapons Stockpile Support - Meeting the needs of the U.S. nuclear weapons stockpile through the tritium programs of the National Nuclear Security Administration (NNSA); (3) Nuclear Nonproliferation Support - Meeting the needs of the NNSA's nuclear nonproliferation programs by safely storing and dispositioning excess special nuclear materials; and (4) Research and Development - Supporting the application of science by the Savannah River National Laboratory (SRNL) to meet the needs of SRS, the DOE complex, and other federal agencies During 2010, SRS worked to fulfill these missions and position the site for future operations. SRS continued to work with the South Carolina Department of Health and Environmental Control (SCDHEC), the Environmental Protection Agency (EPA), and the Nuclear Regulatory Commission to find and implement solutions and schedules for waste management and disposition. As part of its mission to clean up the Cold War legacy, SRS will continue to address the highest-risk waste management issues by safely storing and preparing liquid waste and nuclear materials for disposition, and by safely stabilizing any tank waste residues that remain on site.

  14. TECHNICAL BASIS FOR DOE STANDARD 3013 EQUIVALENCY SUPPORTING REDUCED TEMPERATURE STABILIZATION OF OXALATE-DERIVED PLUTONIUM OXIDE PRODUCED BY THE HB-LINE FACILITY AT SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Duffey, J.; Livingston, R.; Berg, J.; Veirs, D.

    2012-07-02T23:59:59.000Z

    The HB-Line (HBL) facility at the Savannah River Site (SRS) is designed to produce high-purity plutonium dioxide (PuO{sub 2}) which is suitable for future use in production of Mixed Oxide (MOX) fuel. The MOX Fuel Fabrication Facility (MFFF) requires PuO{sub 2} feed to be packaged per the U.S. Department of Energy (DOE) Standard 3013 (DOE-STD-3013) to comply with the facility's safety basis. The stabilization conditions imposed by DOE-STD-3013 for PuO{sub 2} (i.e., 950 C for 2 hours) preclude use of the HBL PuO{sub 2} in direct fuel fabrication and reduce the value of the HBL product as MFFF feedstock. Consequently, HBL initiated a technical evaluation to define acceptable operating conditions for production of high-purity PuO{sub 2} that fulfills the DOE-STD-3013 criteria for safe storage. The purpose of this document is to demonstrate that within the defined operating conditions, the HBL process will be equivalent for meeting the requirements of the DOE-STD-3013 stabilization process for plutonium-bearing materials from the DOE complex. The proposed 3013 equivalency reduces the prescribed stabilization temperature for high-purity PuO{sub 2} from oxalate precipitation processes from 950 C to 640 C and places a limit of 60% on the relative humidity (RH) at the lowest material temperature. The equivalency is limited to material produced using the HBL established flow sheet, for example, nitric acid anion exchange and Pu(IV) direct strike oxalate precipitation with stabilization at a minimum temperature of 640 C for four hours (h). The product purity must meet the MFFF acceptance criteria of 23,600 {micro}g/g Pu (i.e., 2.1 wt %) total impurities and chloride content less than 250 {micro}g/g of Pu. All other stabilization and packaging criteria identified by DOE-STD-3013-2012 or earlier revisions of the standard apply. Based on the evaluation of test data discussed in this document, the expert judgment of the authors supports packaging the HBL product under a 3013 equivalency. Under the defined process conditions and associated material specifications, the high-purity PuO{sub 2} produced in HBL presents no unique safety concerns for packaging or storage in the 3013 required configuration. The PuO{sub 2} produced using the HBL flow sheet conditions will have a higher specific surface area (SSA) than PuO{sub 2} stabilized at 950 C and, consequently, under identical conditions will adsorb more water from the atmosphere. The greatest challenge to HBL operators will be controlling moisture content below 0.5 wt %. However, even at the 0.5 wt % moisture limit, the maximum acceptable pressure of a stoichiometric mixture of hydrogen and oxygen in the 3013 container is greater than the maximum possible pressure for the HBL PuO{sub 2} product.

  15. Voluntary Protection Program Onsite, Liquid Waste Contract Savannah River Site- February 2011

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Liquid Waste Contract Savannah River Site is continuing to perform at a level deserving DOE-VPP Star recognition.

  16. DOE Employment - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePART I SECTION ADMSEDOE /DOEJimLost Password

  17. ONSITE TRANSPORTATION AUTHORIZATION CHALLENGES AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Watkins, R.; Loftin, B.; Hoang, D.; Maxted, M.

    2012-05-30T23:59:59.000Z

    Prior to 2008, transfers of radioactive material within the Savannah River Site (SRS) boundary, referred to as onsite transfers, were authorized by Transportation Safety Basis (TSB) documents that only required approval by the SRS contractor. This practice was in accordance with the existing SRS Transportation Safety Document (TSD). In 2008 the Department of Energy Savannah River Field Office (DOE-SR) requested that the SRS TSD be revised to require DOE-SR approval of all Transportation Safety Basis (TSB) documents. As a result, the primary SRS contractor embarked on a multi-year campaign to consolidate old or generate new TSB documents and obtain DOE-SR approval for each. This paper focuses on the challenges incurred during the rewriting or writing of and obtaining DOE-SR approval of all Savannah River Site Onsite Transportation Safety Basis documents.

  18. Savannah River Site Environmental Report for 2003

    SciTech Connect (OSTI)

    A. MAMATEY

    2003-01-01T23:59:59.000Z

    The ''Savannah River Site Environmental Report for 2003'' (WSRC-TR-2004-00015) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1, ''Environment, Safety and Health Reporting'', and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; (3) highlight significant programs and efforts; and (4) assess the impact of SRS operations on the public and the environment. This year's report reflects a continuing effort (begun in 2001) to streamline the document and thereby increase its cost effectiveness--without omitting valuable technical data. To that end each author will continue to work toward presenting results in summary fashion, focusing on historical trends. Complete data tables again are included on the CD inside the back cover of the report. The CD also features an electronic version of the report; an appendix of site, environmental sampling location, dose, and groundwater maps; and complete 2003 reports from a number of other SRS organizations.

  19. PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IBARS Srs Site Apps. Accreditation Boundary PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation Boundary PIA - Savannah River Nuclear Solution IBARS Srs Site...

  20. Independent Oversight Review, Savannah River Site Tritium Facilities...

    Energy Savers [EERE]

    Savannah River Site Tritium Facilities - December 2012 Independent Oversight Review, Savannah River Site Tritium Facilities - December 2012 December 2012 Review of Site...

  1. Savannah River Site Environmental Report for 1997

    SciTech Connect (OSTI)

    Arnett, M.W.; Mamatey, A.R. [eds.

    1998-08-01T23:59:59.000Z

    The mission at the Savannah River Site has changed from the production of nuclear weapons materials for national defense to the management of waste, restoration of the environment, and the development of industry in and around the site.

  2. Savannah River Site`s Site Specific Plan. Environmental restoration and waste management, fiscal year 1992

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show the Environmental Restoration and Waste Management activities that were identified during the preparation of the Department of Energy-Headquarters (DOE-HQ) Environmental Restoration and Waste Management Five-Year Plan (FYP) for FY 1992--1996. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. The purpose of the SSP is to develop a baseline for policy, budget, and schedules for the DOE Environmental Restoration and Waste Management activities. The plan explains accomplishments since the Fiscal Year (FY) 1990 plan, demonstrates how present and future activities are prioritized, identifies currently funded activities and activities that are planned to be funded in the upcoming fiscal year, and describes future activities that SRS is considering.

  3. Citizen Contributions to the Closure of High-Level Waste (HLW) Tanks 18 and 19 at the Department of Energy's (DOE) Savannah River Site (SRS) - 13448

    SciTech Connect (OSTI)

    Lawless, W.F. [Paine College, Departments of Math and Psychology, 1235 15th Street, Augusta, GA 30901 (United States)] [Paine College, Departments of Math and Psychology, 1235 15th Street, Augusta, GA 30901 (United States)

    2013-07-01T23:59:59.000Z

    Citizen involvement in DOE's decision-making for the environmental cleanup from DOE's management of its nuclear wastes across the DOE complex has had a positive effect on the cleanup of its SRS site, characterized by an acceleration of cleanup not only for the Transuranic wastes at SRS, but also for DOE's first two closures of HLW tanks, both of which occurred at SRS. The Citizens around SRS had pushed successfully for the closures of Tanks 17 and 20 in 1997, becoming the first closures of HLW tanks under regulatory guidance in the USA. However, since then, HLW tank closures ceased due to a lawsuit, the application of new tank clean-up technology, interagency squabbling between DOE and NRC over tank closure criteria, and finally and almost fatally, from budget pressures. Despite an agreement with its regulators for the closure of Tanks 18 and 19 by the end of calendar year 2012, the outlook in Fall 2011 to close these two tanks had dimmed. It was at this point that the citizens around SRS became reengaged with tank closures, helping DOE to reach its agreed upon milestone. (authors)

  4. Site Map | DOE Data Explorer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund3 Outlook forSDPPP Individual Permit:Site MapSite

  5. Hanford Site River Protection Project (RPP) High Level Waste Storage

    SciTech Connect (OSTI)

    KRISTOFZSKI, J.G.

    2000-01-31T23:59:59.000Z

    The CH2M HILL Hanford Group (CHG) conducts business to achieve the goals of the U.S. Department of Energy's (DOE) Office of River Protection at the Hanford Site. The CHG is organized to manage and perform work to safely store, retrieve, etc.

  6. Ventilation System to Improve Savannah River Site's Liquid Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System to Improve Savannah River Site's Liquid Waste Operations Ventilation System to Improve Savannah River Site's Liquid Waste Operations August 28, 2014 - 12:00pm...

  7. Enterprise Assessments Review of the Savannah River Site Salt...

    Energy Savers [EERE]

    the Savannah River Site Salt Waste Processing Facility Construction Quality and Startup Test Plans - June 2015 Enterprise Assessments Review of the Savannah River Site Salt Waste...

  8. Savannah River Site's Liquid Waste Operations Adds Multi-Functional...

    Office of Environmental Management (EM)

    Savannah River Site's Liquid Waste Operations Adds Multi-Functional Laboratory Savannah River Site's Liquid Waste Operations Adds Multi-Functional Laboratory January 28, 2015 -...

  9. Independent Oversight Review, Savannah River Site Tritium Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 2012 Independent Oversight Review, Savannah River Site Tritium Facilities - June 2012 June 2012 Review of the Savannah River Site Tritium Facilities Implementation...

  10. PIA - Savannah River Nuclear Solutions Badge Request and Site...

    Office of Environmental Management (EM)

    Solutions Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear Solutions Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear...

  11. Savannah River Site Environmental Report for 1998

    SciTech Connect (OSTI)

    Arnett, M.

    1999-06-09T23:59:59.000Z

    The mission at the Savannah River Site (SRS) is focused primarily on support of the national defense, nonproliferation, and environmental cleanup. SRS-through its prime operating contractor, Westinghouse Savannah River Company-continues to maintain a comprehensive environmental monitoring program.

  12. SAVANNAH RIVER SITE A PUIIUCATION OF THE SAVANNAII RIVER ECOI"OGY LAIIORATORY

    E-Print Network [OSTI]

    Georgia, University of

    OF THE SAVANNAH RIVER SITE A PUIIUCATION OF THE SAVANNAII RIVER ECOI"OGY LAIIORATORY NATIONAL of the Savannah River Site National Environmental Research Park Program Publication number: SRO-NERP-2S Printed OF THE SAVANNAH RIVER SITE BY CHARLES E. DAVIS AND LAURA L. JANECEK A PUBLICATION OF THE SAVANNAH RIVER SITE

  13. Savannah River Site environmental data for 1995

    SciTech Connect (OSTI)

    Arnett, M.W. [ed.

    1995-12-31T23:59:59.000Z

    This document presents data from Savannah River Site routine environmental monitoring and surveillance programs. An attempt also has been made to include all available data from environmental research programs.

  14. Independent Oversight Inspection, Savannah River Site, Summary Report- February 2004

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Management and Emergency Management at the Savannah River Site

  15. Land Use Baseline Report Savannah River Site

    SciTech Connect (OSTI)

    Noah, J.C.

    1995-06-29T23:59:59.000Z

    This document is to serve as a resource for Savannah River Site managers, planners, and SRS stakeholders by providing a general description of the site and land-use factors important to future use decisions and plans. The intent of this document is to be comprehensive in its review of SRS and the surrounding area.

  16. Independent Oversight Inspection of Environment, Safety, and Health Programs at the Savannah River Operations Office and Savannah River Site, January 2010

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), inspected environment, safety, and health (ES&H) programs at the DOE Savannah River Site.

  17. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2009

    SciTech Connect (OSTI)

    Mamatey, A.; Fanning, R.

    2010-08-19T23:59:59.000Z

    The Savannah River Site Environmental Report for 2009 (SRNS-STI-2010-00175) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A,'Environment, Safety and Health Reporting,' and DOE Order 5400.5, 'Radiation Protection of the Public and Environment.' The annual SRS Environmental Report has been produced for more than 50 years. Several hundred copies are distributed each year to government officials, universities, public libraries, environmental and civic groups, news media, and interested individuals. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; and (3) highlight significant programs and efforts. SRS maintained its record of environmental excellence in 2009, as its operations continued to result in minimal impact to the offsite public and the surrounding environment. The site's radioactive and chemical discharges to air and water were well below regulatory standards for environmental and public health protection; its air and water quality met applicable requirements; and the potential radiation dose from its discharges was less than the national dose standards. The largest radiation dose that an offsite, hypothetical, maximally exposed individual could have received from SRS operations during 2009 was estimated to be 0.12 millirem (mrem). (An mrem is a standard unit of measure for radiation exposure.) The 2009 SRS dose is just 0.12 percent of the DOE all-pathway dose standard of 100 mrem per year, and far less than the natural average dose of about 300 mrem per year (according to Report No. 160 of the National Council of Radiation Protection and Measurements) to people in the United States. This 2009 all-pathway dose of 0.12 mrem was the same as the 2008 dose. Environmental monitoring is conducted extensively within a 2,000-square-mile network extending 25 miles from SRS, with some monitoring performed as far as 100 miles from the site. The area includes neighboring cities, towns, and counties in Georgia and South Carolina. Thousands of samples of air, rainwater, surface water, drinking water, groundwater, food products, wildlife, soil, sediment, and vegetation are collected by SRS and state authorities and analyzed for the presence of radioactive and nonradioactive contaminants. Compliance with environmental regulations and with DOE orders related to environmental protection provides assurance that onsite processes do not impact the public or the environment adversely. Such compliance is documented in this report. SRS had a National Pollutant Discharge Elimination System (NPDES) compliance rate of 99.92 percent in 2009, with only four of the 4,989 sample analyses performed exceeding permit limits. The NPDES program protects streams, reservoirs, and other wetlands by limiting the release of nonradiological pollution into surface waters. Discharge limits are set for each facility to ensure that SRS operations do not negatively impact aquatic life or degrade water quality.

  18. Radioiodine in the Savannah River Site environment

    SciTech Connect (OSTI)

    Kantelo, M.V.; Bauer, L.R.; Marter, W.L.; Murphy, C.E. Jr.; Zeigler, C.C.

    1993-01-15T23:59:59.000Z

    Radioiodine, which is the collective term for all radioactive isotopes of the element iodine, is formed at the Savannah River Site (SRS) principally as a by-product of nuclear reactor operations. Part of the radioiodine is released to the environment during reactor and reprocessing operations at the site. The purpose of this report is to provide an introduction to radioiodine production and disposition, its status in the environment, and the radiation dose and health risks as a consequence of its release to the environment around the Savannah River Plant. A rigorous dose reconstruction study is to be completed by thee Center for Disease Control during the 1990s.

  19. Current DOE and OSHA VPP Sites

    Broader source: Energy.gov [DOE]

    Need to know which sites are current DOE-VPP or OSHA VPP Sites? The link, below, will take you to a Voluntary Protection Programs Participant's Association web page where you may search for current...

  20. The Savannah River Site's groundwater monitoring program

    SciTech Connect (OSTI)

    Not Available

    1991-10-18T23:59:59.000Z

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results.

  1. Savannah River Site K-Reactor Probabilistic Safety Assessment

    SciTech Connect (OSTI)

    Brandyberry, M.D.; Bailey, R.T.; Baker, W.H.; Kearnaghan, D.P.; O`Kula, K.R.; Wittman, R.S.; Woody, N.D. [Westinghouse Savannah River Co., Aiken, SC (United States); Amos, C.N.; Weingardt, J.J. [Science Applications International Corp. (United States)

    1992-12-01T23:59:59.000Z

    This report gives the results of a Savannah River Site (SRS) K-Reactor Probabilistic Safety Assessment (PSA). Measures of adverse consequences to health and safety resulting from representations of severe accidents in SRS reactors are presented. In addition, the report gives a summary of the methods employed to represent these accidents and to assess the resultant consequences. The report is issued to provide useful information to the U. S. Department of Energy (DOE) on the risk of operation of SRS reactors, for insights into severe accident phenomena that contribute to this risk, and in support of improved bases for other DOE programs in Heavy Water Reactor safety.

  2. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  3. Independent Oversight Review, Savannah River Site- August 2011

    Broader source: Energy.gov [DOE]

    Review of Commercial Grade Dedication Plans for the Safety Instrumented System at the Savannah River Site Waste Solidification Building Project

  4. Terrestrial Carbon Inventory at the Savannah River Site, 1951 – 2001.

    SciTech Connect (OSTI)

    US Forest Service - Annonymous,

    2012-02-01T23:59:59.000Z

    A Power Point slide presentation/report on the terestrial carbon inventory at the Savannah River Site.

  5. Independent Oversight Review, Savannah River Site- July 2011

    Broader source: Energy.gov [DOE]

    Review of Electrical System Configuration Management and Design Change Control at the Savannah River Site, Waste Solidification Building Project

  6. Overview and History of DOE's Hanford Site - 12502

    SciTech Connect (OSTI)

    Flynn, Karen; McCormick, Matt [US DOE (United States)

    2012-07-01T23:59:59.000Z

    Hanford's DOE offices are responsible for one of the largest nuclear cleanup efforts in the world, cleaning up the legacy of nearly five decades of nuclear weapons production. Nowhere in the DOE Complex is cleanup more challenging than at the Hanford Site in southeastern Washington. Hanford cleanup entails remediation of hundreds of large complex hazardous waste sites; disposition of nine production reactors and the preservation of one as a National Historic Landmark; demolition of hundreds of contaminated facilities including five enormous process canyons; remediation of billions of gallons of contaminated groundwater; disposition of millions of tons of low-level, mixed low-level, and transuranic waste; disposition of significant quantities of special nuclear material; storage and ultimate disposition of irradiated nuclear fuel; remediation of contamination deep in the soil that could impact groundwater; decontamination and decommissioning of hundreds of buildings and structures; and treatment of 56 million gallons of radioactive waste in 177 large underground tanks through the construction of a first-of-its-kind Waste Treatment Plant. Cleanup of the Hanford Site is a complex and challenging undertaking. The DOE Richland Operations Office has a vision and a strategy for completing Hanford's cleanup including the transition to post-cleanup activities. Information on the strategy is outlined in the Hanford Site Completion Framework. The framework describes three major components of cleanup - River Corridor, Central Plateau, and Tank Waste. It provides the context for individual cleanup actions by describing the key challenges and approaches for the decisions needed to complete cleanup. The U.S. Department of Energy (DOE), as regulated by the U.S. Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology), is implementing a strategy to achieve final cleanup decisions for the River Corridor portion of the Hanford Site. The DOE Richland Operations Office (RL) and DOE Office of River Protection (ORP) have prepared this document to describe the strategy and to begin developing the approach for making cleanup decisions for the remainder of the Hanford Site. DOE's intent is that the Completion Framework document will facilitate dialogue among the Tri-Parties and with Hanford's diverse interest groups, including Tribal Nations, State of Oregon, Hanford Advisory Board, Natural Resource Trustees, and the public. Future cleanup decisions will be enhanced by an improved understanding of the challenges facing cleanup and a common understanding of the goals and approaches for cleanup completion. The overarching goals for cleanup are sevenfold. - Goal 1: Protect the Columbia River. - Goal 2: Restore groundwater to its beneficial use to protect human health, the environment, and the Columbia River. - Goal 3: Clean up River Corridor waste sites and facilities to: Protect groundwater and the Columbia River. Shrink the active cleanup footprint to the Central Plateau, and support anticipated future uses of the land. - Goal 4: Clean up Central Plateau waste sites, tank farms, and facilities to: Protect groundwater. Minimize the footprint of areas requiring long-term waste management activities. Support anticipated future uses of the land. - Goal 5: Safely manage and transfer legacy materials scheduled for off-site disposition including special nuclear material (including plutonium), spent nuclear fuel, transuranic waste, and immobilized high-level waste. - Goal 6: Consolidate waste treatment, storage, and disposal operations on the Central Plateau. - Goal 7: Develop and implement institutional controls and long-term stewardship activities that protect human health, the environment, and Hanford's unique cultural, historical and ecological resources after cleanup activities are completed. These goals embody more than 20 years of dialogue among the Tri-Party Agencies, Tribal Nations, State of Oregon, stakeholders, and the public. They carry forward key values captured in forums such as the Hanford Future Site Uses

  7. Waste certification review program at the Savannah River Site

    SciTech Connect (OSTI)

    Faulk, G.W.; Kinney, J.C. [Westinghouse Savannah River Co., Aiken, SC (United States); Knapp, D.C. [Bechtel Savannah River Inc., Aiken, SC (United States); Burdette, T.E. [Science Applications International Corp., Oak Ridge, TN (United States)

    1996-02-01T23:59:59.000Z

    After approving the waste certification programs for 45 generators of low-level radioactive and mixed waste, Westinghouse Savannah River Company (WSRC) moved forward to implement a performance-based approach for assuring that approved waste generators maintain their waste certification programs. WSRC implemented the Waste Certification Review Program, which is comprised of two sitewide programs, waste generator self-assessments and Facility Evaluation Board reviews, integrated with the WSRC Solid Waste Management Department Waste Verification Program Evaluations. The waste generator self-assessments ensure compliance with waste certification requirements, and Facility Evaluation Board reviews provide independent oversight of generators` waste certification programs. Waste verification evaluations by the TSD facilities serve as the foundation of the program by confirming that waste contents and generator performance continue to meet waste acceptance criteria (WSRC 1994) prior to shipment to treatment, storage, and disposal facilities. Construction of the Savannah River Site (SRS) was started by the US Government in 1950. The site covers approximately 300 square miles located along the Savannah River near Aiken, South Carolina. It is operated by the US Department of Energy (DOE). Operations are conducted by managing and operating contractors, including the Westinghouse Savannah River Company (WSRC). Historically, the primary purpose of the SRS was to produce special nuclear materials, primarily plutonium and tritium. In general, low-level radioactive and mixed waste is generated through activities in operations. Presently, 47 SRS facilities generate low-level radioactive and mixed waste. The policies, guidelines, and requirements for managing these wastes are determined by DOE and are reflected in DOE Order 5820.2A (US DOE 1988).

  8. Savannah River Site Environmental Report for 1994

    SciTech Connect (OSTI)

    Arnett, M.W.; Mamatey, A.; Spitzer, D.

    1994-12-16T23:59:59.000Z

    The mission at the Savannah River Site has changed from producing nuclear weapons materials for national defense to managing the waste it has generated, restoring the environment, and enhancing industrial development in and around the site. But no matter what the site`s mission is, it will continue to maintain its comprehensive environmental monitoring and surveillance program. In 1994, effluent monitoring and environmental surveillance were conducted within a 30,000-square-mile area in and around SRS that includes neighboring cities, towns, and counties in Georgia and South Carolina and extends up to 100 miles from the site. Thousands of samples of air, surface water, groundwater, foodstuffs, drinking water, wildlife, rainwater, soil, sediment, and vegetation were collected and analyzed for radioactive and nonradioactive contaminants.

  9. TECHNICAL BASIS FOR DOE STANDARD 3013 EQUIVALENCY SUPPORTING REDUCED TEMPERATURE STABILIZATION OF OXALATE-DERIVED PLUTONIUM DIOXIDE PRODUCED BY THE HB-LINE FACILITY AT SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Duffey, J. M.; Livingston, R. R.; Berg, J. M.; Veirs, D. K.

    2013-02-06T23:59:59.000Z

    This report documents the technical basis for determining that stabilizing highpurity PuO{sub 2} derived from oxalate precipitation at the SRS HB-Line facility at a minimum of 625 {degree}C for at least four hours in an oxidizing atmosphere is equivalent to stabilizing at a minimum of 950 {degree}C for at least two hours as regards meeting the objectives of stabilization defined by DOE-STD-3013 if the material is handled in a way to prevent excessive absorption of water.

  10. Supplement Analysis for the Storage of Surplus Plutonium Materials at the Savannah River Site (DOE/EIS-0229-SA-4)(09/05/07)

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummary SpecialFactories |SupercomputingSupervisor

  11. Savannah River site environmental report for 1996

    SciTech Connect (OSTI)

    Arnett, M.; Mamatey, A. [eds.

    1998-12-31T23:59:59.000Z

    The mission at the Savannah River Site (SRS) has changed from the production of nuclear weapons materials for national defense to the management of site-generated waste, restoration of the surrounding environment, and the development of industry in and around the site. However, SRS-through its prime operating contractor, Westinghouse Savannah River Company (WSRC)-continues to maintain a comprehensive environmental monitoring program. In 1996, effluent monitoring and environmental surveillance were conducted within a 31,000-square-mile area in and around SRS that includes neighboring cities, towns, and counties in Georgia and South Carolina and extends up to 100 miles from the site. Though the environmental monitoring program was streamlined in 1996-to improve its cost-effectiveness without compromising data quality or reducing its overall ability to produce critical information-thousands of samples of air, surface water, groundwater, food products, drinking water, wildlife, rainwater, soil, sediment, and vegetation were collected and analyzed for radioactive and nonradioactive contaminants.

  12. 1997 Savannah River Site annual epidemiologic surveillance report

    SciTech Connect (OSTI)

    None

    2000-06-01T23:59:59.000Z

    This report provides a summary of epidemiologic surveillance data collected from Savannah River Site from January 1, 1997 through December 31, 1997. The data were collected by a coordinator at Savannah River Site and submitted to the Epidemiologic Surveillance Data Center located at Oak Ridge Institute for Science and Education, where quality control procedures and preliminary data analyses were carried out. The analyses were interpreted and the final report prepared by the DOE Office of Epidemiologic Studies. The information in this report provides highlights of the data analyses conducted on the 1997 data collected from Savannah River Site. The main sections of the report include: work force characteristics; absences due to injury or illness lasting 5 or more consecutive workdays; workplace illnesses, injuries, and deaths that were reportable to the Occupational Safety and Health Administration (''OSHA-recordable'' events); and disabilities and deaths among current workers. The 199 7 report includes a section on time trends that provides comparative information on the health of the work force from 1994 through 1997.

  13. 1996 Savannah River Site annual epidemiologic surveillance report

    SciTech Connect (OSTI)

    None

    2000-03-01T23:59:59.000Z

    This report provides a summary of epidemiologic surveillance data collected from Savannah River Site from January 1, 1996 through December 31, 1996. The data were collected by a coordinator at Savannah River Site and submitted to the Epidemiologic Surveillance Data Center located at Oak Ridge Institute for Science and Education, where quality control procedures and preliminary data analyses were carried out. The analyses were interpreted and the final report prepared by the DOE Office of Epidemiologic Studies. The information in this report provides highlights of the data analyses conducted on the 1996 data collected from Savannah River Site. The main sections of the report include: work force characteristics; absences due to injury or illness lasting 5 or more consecutive workdays; workplace illnesses, injuries, and deaths that were reportable to the Occupational Safety and Health Administration (''OSHA-recordable'' events); and disabilities and deaths among current workers. The 1996 report includes a new section on time trends that provides comparative information on the health of the work force from 1994 through 1996.

  14. Amended Record of Decision for the Savannah River Site Salt Processing Alternatives (DOE/EIS-0082-S2) (1/24/06)

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth SitePresentations |StateNuclear EnergyofEnergyPower - GreatFacilities4

  15. Waste reduction at the Savannah River Site

    SciTech Connect (OSTI)

    Stevens, W.E.; Lee, R.A.; Reynolds, R.W.

    1990-12-31T23:59:59.000Z

    The Savannah River Site (SRS) is a key installation for the production and research of nuclear materials for national defense and peace time applications and has been operating a full nuclear fuel cycle since the early 1950s. Wastes generated include high level radioactive, transuranic, low level radioactive, hazardous, mixed, sanitary, and aqueous wastes. Much progress has been made during the last several years to reduce these wastes including management systems, characterization, and technology programs. The reduction of wastes generated and the proper handling of the wastes have always been a part of the Site`s operation. This paper summarizes the current status and future plans with respect to waste reduction to waste reduction and reviews some specific examples of successful activities.

  16. Toy to the World: Savannah River Site Celebrates 21 Years of Bringing Joy to Kids

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – Santa Claus and his elves are getting a lot of help from DOE’s Savannah River Site (SRS) this year. Federal employees and contractors donated more than 14,200 toys to support the U.S. Marine Reserves Toys for Tots campaign.

  17. MOX Lead Assembly Fabrication at the Savannah River Site

    SciTech Connect (OSTI)

    Geddes, R.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Spiker, D.L.; Poon, A.P.

    1997-12-01T23:59:59.000Z

    The U. S. Department of Energy (DOE) announced its intent to prepare an Environmental Impact Statement (EIS) under the National Environmental Policy Act (NEPA) on the disposition of the nations weapon-usable surplus plutonium.This EIS is tiered from the Storage and Disposition of Weapons-Usable Fissile Material Programmatic Environmental Impact Statement issued in December 1996,and the associated Record of Decision issued on January, 1997. The EIS will examine reasonable alternatives and potential environmental impacts for the proposed siting, construction, and operation of three types of facilities for plutonium disposition. The three types of facilities are: a pit disassembly and conversion facility, a facility to immobilize surplus plutonium in a glass or ceramic form for disposition, and a facility to fabricate plutonium oxide into mixed oxide (MOX) fuel.As an integral part of the surplus plutonium program, Oak Ridge National Laboratory (ORNL) was tasked by the DOE Office of Fissile Material Disposition(MD) as the technical lead to organize and evaluate existing facilities in the DOE complex which may meet MD`s need for a domestic MOX fuel fabrication demonstration facility. The Lead Assembly (LA) facility is to produce 1 MT of usable test fuel per year for three years. The Savannah River Site (SRS) as the only operating plutonium processing site in the DOE complex, proposes two options to carry out the fabrication of MOX fuel lead test assemblies: an all Category I facility option and a combined Category I and non-Category I facilities option.

  18. Savannah River Site environmental report for 1991

    SciTech Connect (OSTI)

    Arnett, M.W.; Karapatakis, L.K.; Mamatey, A.R.; Todd, J.L.

    1991-01-01T23:59:59.000Z

    This report describes environmental activities conducted on and in the vicinity of the Savannah River Site (SRS) in Aiken, S.C., from Jan. 1 to Dec. 31, 1991, with an update on compliance activities through April 1, 1992. The report is a single volume with a separate summary pamphlet highlighting the major findings for 1991. The report is divided into an executive summary and 14 chapters containing information on environmental compliance issues, environmental monitoring methods and programs, and environmental research activities for 1991, as well as historical data from previous years. Analytical results, figures, charts, and data tables relevant to the environmental monitoring program for 1991 at SRS are included.

  19. Savannah River Site environmental report for 1988

    SciTech Connect (OSTI)

    Cummins, C.L.; Hetrick, C.S.; Stevenson, D.A. (eds.); Davis, H.A.; Martin, D.K.; Todd, J.L.

    1989-01-01T23:59:59.000Z

    This volume of Savannah River Site Environmental report for 1988 (WSRC-RP-89-59-1) contains the figures and tables referenced in Volume 1. The figures contain graphic illustrations of sample locations and/or data. The tables contain summaries of the following types of data: Federal and State standards and guides applicable to SRS operations; concentrations of radioactivity in environmental media; the quantity of radioactivity released to the environment from SRS operations; offsite radiation dose commitments from SRS operations; measurements of physical properties, chemicals, and metals concentrations in environmental media; and interlaboratory comparison of analytical results.

  20. Integration of Environmental Compliance at the Savannah River Site - 13024

    SciTech Connect (OSTI)

    Hoel, David [United States Department of Energy - Savannah River Operations Office (United States)] [United States Department of Energy - Savannah River Operations Office (United States); Griffith, Michael [Savannah River Nuclear Solutions, LLC (United States)] [Savannah River Nuclear Solutions, LLC (United States)

    2013-07-01T23:59:59.000Z

    The Savannah River Site (SRS) is a large federal installation hosting diverse missions and multiple organizations with competing regulatory needs. Accordingly, there was a need to integrate environmental compliance strategies to ensure the consistent flow of information between Department of Energy-Savannah River (DOE-SR), the regulatory agencies and other interested parties. In order to meet this objective, DOE and major SRS contractors and tenants have committed to a strategy of collaboratively working together to ensure that a consistent, integrated, and fully coordinated approach to environmental compliance and regulator relationships is maintained. DOE-SR and Savannah River Nuclear Solutions, LLC, the SRS management and operations contractor, have established an environmental compliance integration process that provides for the consistent flow down of requirements to projects, facilities, SRS contractors, and subcontractors as well as the upward flow of information to assist in the early identification and resolution of environmental regulatory issues and enhancement of compliance opportunities. In addition, this process strongly fosters teamwork to collaboratively resolve complex regulatory challenges, promote pollution prevention and waste minimization opportunities to advance site missions in a manner that balances near-term actions with the long-term site vision, while being protective of human health and the environment. Communication tools are being utilized, some with enhancements, to ensure appropriate information is communicated to all levels with environmental responsibility at SRS. SRS internal regulatory integration is accomplished through a variety of informational exchange forums (e.g., Challenges, Opportunities and Resolution (COR) Team, DOE's Joint Site Regulatory Integration Team, and the Senior Environmental Managers Council (SEMC)). SRS communications and problem-solving with the regulatory agencies have been enhanced through formation of an interagency 'SRS Regulatory Integration Team (SRIT)'. The SRIT is a partnership comprised of representatives from DOE-SR (with contractor support), EPA Region 4 and the South Carolina Department of Health and Environmental Control (SCDHEC) and is chartered to develop a consensus understanding of SRS regulatory issues and activities. These forums and a formal environmental compliance integration process improve timely cross-functional decision making, problem solving, information sharing, and issue resolution. The SRS internal process has been formally documented in an Environmental Regulatory Integration Program Description, which is linked to the SRS Environmental Policy and agreed upon by all major contractors, subcontractors and tenants. (authors)

  1. Collaboration in long-term stewardship at DOE Hanford Site

    SciTech Connect (OSTI)

    Moren, R. J.; Zeisloft, J. H.; Feist, E. T.; Brown, D.; Grindstaff, K. D.

    2013-01-10T23:59:59.000Z

    The U.S. Department of Energy's (DOE) Hanford Site comprises approximately 1,517 km{sup 2} (586 mi{sup 2}) of land in southeastern Washington. The site was established in 1943 as part of the Manhattan Project to produce plutonium for the nation's nuclear weapons program. As the Cold War era came to an end, the mission of the site transitioned from weapons production to environmental cleanup. As the River Corridor area of the site cleanup is completed, the mission for that portion of the site will transition from active cleanup to continued protection of environment through the Long-Term Stewardship (LTS) Program. The key to successful transition from cleanup to LTS is the unique collaboration among three (3) different DOE Programs and three (3) different prime contractors with each contractor having different contracts. The LTS Program at the site is a successful model of collaboration resulting in efficient resolution of issues and accelerated progress that supports DOE's Richland Office 2015 Vision for the Hanford Site. The 2015 Vision for the Hanford Site involves shrinking the active cleanup footprint of the surface area of the site to approximately 20 mi{sup 2} on the Central Plateau. Hanford's LTS Program is defined in DOE's planning document, Hanford Long-Term Stewardship Program Plan, DOE/RL-2010-35 Rev 1. The Plan defines the relationship and respective responsibilities between the federal cleanup projects and the LTS Program along with their respective contractors. The LTS Program involves these different parties (cleanup program and contractors) who must work together to achieve the objective for transition of land parcels. Through the collaborative efforts with the prime contractors on site over the past two years, 253.8 km{sup 2} (98 mi{sup 2}) of property has been successfully transitioned from the cleanup program to the LTS Program upon completion of active surface cleanup. Upcoming efforts in the near term will include transitioning another large parcel that includes one of the six (6) cocooned reactors on site. These accomplishments relied upon the transparency between DOE cleanup programs and their contractors working together to successfully transition the land while addressing the challenges that arise. All parties, the three different DOE Programs and their respective prime contractors are dedicated to working together and continuing the progress of transitioning land to LTS, in alignment with the Program Plan and compliant with contractual requirements. This paper highlights the accomplishments and collaborative efforts to address the challenges faced as work progresses from the cleanup to transitioning of land parcels to LTS Program.

  2. Post-Closure Benefits: DOE Complex vs Closure Sites | Department...

    Office of Environmental Management (EM)

    Post-Closure Benefits: DOE Complex vs Closure Sites Status of Contractor Pension and PRB Benefit Programs - September 30, 2013 DOE Wide Closure Sites Defined Benefit Pension...

  3. Data Summary Report for teh Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    Hulstrom, L.

    2011-02-07T23:59:59.000Z

    This data summary report summarizes the investigation results to evaluate the nature and distribution of Hanford Site-related contaminants present in the Columbia River. As detailed in DOE/RL-2008-11, more than 2,000 environmental samples were collected from the Columbia River between 2008 and 2010. These samples consisted of island soil, sediment, surface water, groundwater upwelling (pore water, surface water, and sediment), and fish tissue.

  4. Savannah River Site Probabilistic Risk Assessment high-level review

    SciTech Connect (OSTI)

    Not Available

    1990-02-01T23:59:59.000Z

    A review of the Savannah River Site (SRS) Probabilistic Risk Assessment (PRA) has been performed by a review committee organized by the US Department of Energy (DOE) and its contractor, EG&G Idaho, Inc. The High-Level Peer Review Committee (referred to as ``the Committee`` in this report) members are identified in Section 2. The main purpose of the review has been to provide assurance that the SRS PRA is responsive to safety issues associated with the restart and continued operation of the Savannah River reactors. The Committee members are all experienced practitioners of PRA, and several of the members have been deeply involved In a concurrent, detailed review of the SRS PRA. Source material and expertise available to the Committee included the SRS PRA document itself issued August 31. 1989, and Interaction with key PRA and plant experts at both the Savannah River Site and the Los Alamos National Laboratory (LANL), who had performed an independent PRA evaluation of the SRS K-reactor. The cooperation and support received from those connected with the review were outstanding.

  5. Site selection for the Salt Disposition Facility at the Savannah River Site

    SciTech Connect (OSTI)

    Bowers, J.A.

    2000-01-03T23:59:59.000Z

    The purpose of this report is to identify, assess, and rank potential sites for the proposed Salt Disposition Facility (SDF) at the Savannah River Site.

  6. Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site

    SciTech Connect (OSTI)

    Wike, L.D.

    2000-12-13T23:59:59.000Z

    The purpose of this study is to identify, assess, and rank potential sites for the proposed Surplus Plutonium Disposition Facilities complex at the Savannah River Site.

  7. Waste reduction at the Savannah River Site

    SciTech Connect (OSTI)

    Stevens, W.E.; Lee, R.A.; Reynolds, R.W.

    1990-01-01T23:59:59.000Z

    The Savannah River Site (SRS) is a key installation for the production and research of nuclear materials for national defense and peace time applications and has been operating a full nuclear fuel cycle since the early 1950s. Wastes generated include high level radioactive, transuranic, low level radioactive, hazardous, mixed, sanitary, and aqueous wastes. Much progress has been made during the last several years to reduce these wastes including management systems, characterization, and technology programs. The reduction of wastes generated and the proper handling of the wastes have always been a part of the Site's operation. This paper summarizes the current status and future plans with respect to waste reduction to waste reduction and reviews some specific examples of successful activities.

  8. Savannah River Site environmental report for 1989

    SciTech Connect (OSTI)

    Cummins, C.L.; Martin, D.K.; Todd, J.L.

    1989-01-01T23:59:59.000Z

    The purpose of this report is to meet three of the primary objectives of the Savannah River Site (SRS) environmental monitoring program. These objectives are to assess actual or potential exposures to populations form the presence of radioactive and nonradioactive materials from normal operations or nonroutine occurrences; to demonstrate compliance with applicable authorized limits and legal requirements; and to communicate results of the monitoring program to the public. This 1989 report contains descriptions of radiological and nonradiological monitoring programs, it provides data obtained from these programs, and it describes various environmental research activities ongoing at the site. Also included are summaries of environmental management and compliance activities, a summary of National Environmental Policy Act activities, and a listing of environmental permits issued by regulatory agencies.

  9. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect (OSTI)

    Not Available

    1991-06-18T23:59:59.000Z

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the fourth quarter of 1990. It includes the analytical data, field data, well activity data, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of analytical and other data, maintenance of the databases containing groundwater monitoring data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  10. Site characterization criteria (DOE-STD-1022-94) for natural phenomena hazards at DOE sites

    SciTech Connect (OSTI)

    Chen, J.C.; Ueng, T.S.; Boissonnade, A.C.

    1995-12-01T23:59:59.000Z

    This paper briefly summarizes requirements of site characterization for Natural Phenomena Hazards (NPH) at DOE sites. In order to comply with DOE Order 5480.28, site characterization criteria has been developed to provide site-specific information needed for development of NPH assessment criteria. Appropriate approaches are outlined to ensure that the current state-of-the-art methodologies and procedures are used in the site characterization. General and detailed site characterization requirements are provided in the areas of meteorology, hydrology, geology, seismology and geotechnical studies.

  11. Independent Activity Report, Savannah River Site- June 2011

    Broader source: Energy.gov [DOE]

    Defense Nuclear Facilities Safety Board Public Meeting in Augusta, Ga, Regarding the Savannah River Site [HIAR-SRS-2011-06-16

  12. Savannah River Site's H Canyon Work Ensures Future Missions for...

    Office of Environmental Management (EM)

    process at MOX, which is now under construction, will eventually create fuel pellets for U.S. commercial reactor fuel assemblies. Savannah River Site's H Canyon Begins...

  13. Enterprise Assessments Review of the Savannah River Site Salt...

    Office of Environmental Management (EM)

    Assurance Plan QC Quality Control QCIR Quality Control Inspection Report SDG Standby Diesel Generator SOT System Operational Test SRS Savannah River Site SS Safety Significant...

  14. Independent Oversight Review, Savannah River Site Salt Waste...

    Broader source: Energy.gov (indexed) [DOE]

    August 2013 Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development. This report documents the results of an independent oversight...

  15. EA-1605: Biomass Cogeneration and Heating Facilities at the Savannah River Site; Aiken, Allendale and Barnwell Counties, South Carolina

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts of the proposed construction and operation of new biomass cogeneration and heating facilities at the Savannah River Site (SRS).

  16. Mammals of the Savannah River Site

    SciTech Connect (OSTI)

    Cothran, E.G.; Smith, M.H.; Wolff, J.O.; Gentry, J.B.

    1991-01-01T23:59:59.000Z

    This book is designed to be used as a field guide, reference book, bibliography, and introduction to the basic biology and ecology of the 54 mammal species that currently or potentially exist on or near the Savannah River Site (SRS). For 50 of these species, we present basic descriptions, distinguishing morphological features, distribution and habitat preferences, food habits, reproductive biology, social behavior, ecological relationships with other species, and economic importance to man. For those species that have been studied on the SRS, we summarize the results of these studies. Keys and illustrations are provided for whole body and skull identification. A selected glossary defines technical terminology. Illustrations of tracks of the more common larger mammals will assist in field identifications. We also summarize the results of two major long-term SRS studies, The Forbearer Census'' and White-tailed Deer Studies''. A cross-indexed list of over 300 SRS publications on mammals classifies each publication by 23 categories such as habitat, reproduction, genetics, etc., and also for each mammal species. The 149 Master's theses and Ph.D. dissertations that have been conducted at the Savannah River Ecology Laboratory are provided as additional references.

  17. Mammals of the Savannah River Site

    SciTech Connect (OSTI)

    Cothran, E.G.; Smith, M.H.; Wolff, J.O.; Gentry, J.B.

    1991-12-31T23:59:59.000Z

    This book is designed to be used as a field guide, reference book, bibliography, and introduction to the basic biology and ecology of the 54 mammal species that currently or potentially exist on or near the Savannah River Site (SRS). For 50 of these species, we present basic descriptions, distinguishing morphological features, distribution and habitat preferences, food habits, reproductive biology, social behavior, ecological relationships with other species, and economic importance to man. For those species that have been studied on the SRS, we summarize the results of these studies. Keys and illustrations are provided for whole body and skull identification. A selected glossary defines technical terminology. Illustrations of tracks of the more common larger mammals will assist in field identifications. We also summarize the results of two major long-term SRS studies, ``The Forbearer Census`` and ``White-tailed Deer Studies``. A cross-indexed list of over 300 SRS publications on mammals classifies each publication by 23 categories such as habitat, reproduction, genetics, etc., and also for each mammal species. The 149 Master`s theses and Ph.D. dissertations that have been conducted at the Savannah River Ecology Laboratory are provided as additional references.

  18. Savannah River Site Workers Share Knowledge with Students in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Site Workers Share Knowledge with Students in Engineering Teach-Ins Savannah River Site Workers Share Knowledge with Students in Engineering Teach-Ins March 30, 2015 - 12:00pm...

  19. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect (OSTI)

    Not Available

    1992-01-10T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1991 are listed in this report.

  20. Savannah River Site generic data base development

    SciTech Connect (OSTI)

    Blanton, C.H.; Eide, S.A.

    1993-06-30T23:59:59.000Z

    This report describes the results of a project to improve the generic component failure data base for the Savannah River Site (SRS). A representative list of components and failure modes for SRS risk models was generated by reviewing existing safety analyses and component failure data bases and from suggestions from SRS safety analysts. Then sources of data or failure rate estimates were identified and reviewed for applicability. A major source of information was the Nuclear Computerized Library for Assessing Reactor Reliability, or NUCLARR. This source includes an extensive collection of failure data and failure rate estimates for commercial nuclear power plants. A recent Idaho National Engineering Laboratory report on failure data from the Idaho Chemical Processing Plant was also reviewed. From these and other recent sources, failure data and failure rate estimates were collected for the components and failure modes of interest. This information was aggregated to obtain a recommended generic failure rate distribution (mean and error factor) for each component failure mode.

  1. Savannah River Site environmental report for 1989

    SciTech Connect (OSTI)

    Cummins, C.L.; Martin, D.K.; Todd, J.L.

    1989-01-01T23:59:59.000Z

    this volume of Savannah River Site Environmental Report for 1989 (WSRC-IM-90-60) contains the figures and tables referenced in Volume I. The figures contain graphic illustrations of sample locations and/or data. The tables present summaries of the following types of data federal and state standards and guides applicable to SRS operations; concentrations of radioactivity in environmental media; the quantity of radioactivity released to the environment from SRS operations; offsite radiation committed dose from SRS operations; measurements of physical properties, chemicals, and metals concentrations in environmental media; and interlaboratory comparison of analytical results. The figures and tables in this report contain information about the routine environmental monitoring program at SRS unless otherwise indicated. No attempt has been made to include all data from environmental research programs. Variations in the report's content from year to year reflect changes in the routine environmental monitoring program or the inability to obtain certain samples from a specific location. 42 figs., 188 tabs.

  2. Savannah River Site generic data base development

    SciTech Connect (OSTI)

    Blanchard , A.

    2000-01-04T23:59:59.000Z

    This report describes the results of a project to improve the generic component failure database for the Savannah River Site (SRS). Additionally, guidelines were developed further for more advanced applications of database values. A representative list of components and failure modes for SRS risk models was generated by reviewing existing safety analyses and component failure data bases and from suggestions from SRS safety analysts. Then sources of data or failure rate estimates were identified and reviewed for applicability. A major source of information was the Nuclear Computerized Library for Assessing Reactor Reliability, or NUCLARR. This source includes an extensive collection of failure data and failure rate estimates for commercial nuclear power plants. A recent Idaho National Engineering Laboratory report on failure data from the Idaho Chemical Processing Plant was also reviewed. From these and other recent sources, failure data and failure rate estimates were collected for the components and failure modes of interest. For each component failure mode, this information was aggregated to obtain a recommended generic failure rate distribution (mean and error factor based on a lognormal distribution). Results are presented in a table in this report. A major difference between generic database and previous efforts is that this effort estimates failure rates based on actual data (failure events) rather than on existing failure rate estimates. This effort was successful in that over 75% of the results are now based on actual data. Also included is a section on guidelines for more advanced applications of failure rate data. This report describes the results of a project to improve the generic component failure database for the Savannah River site (SRS). Additionally, guidelines were developed further for more advanced applications of database values.

  3. Greater Green River basin well-site selection

    SciTech Connect (OSTI)

    Frohne, K.H. [USDOE Morgantown Energy Technology Center, WV (United States); Boswell, R. [EG and G Washington Analytical Services Center, Inc., Morgantown, WV (United States)

    1993-12-31T23:59:59.000Z

    Recent estimates of the natural gas resources of Cretaceous low-permeability reservoirs of the Greater Green River basin indicate that as much as 5000 trillion cubic feet (Tcf) of gas may be in place (Law and others 1989). Of this total, Law and others (1989) attributed approximately 80 percent to the Upper Cretaceous Mesaverde Group and Lewis Shale. Unfortunately, present economic conditions render the drilling of many vertical wells unprofitable. Consequently, a three-well demonstration program, jointly sponsored by the US DOE/METC and the Gas Research Institute, was designed to test the profitability of this resource using state-of-the-art directional drilling and completion techniques. DOE/METC studied the geologic and engineering characteristics of ``tight`` gas reservoirs in the eastern portion of the Greater Green River basin in order to identify specific locations that displayed the greatest potential for a successful field demonstration. This area encompasses the Rocks Springs Uplift, Wamsutter Arch, and the Washakie and Red Desert (or Great Divide) basins of southwestern Wyoming. The work was divided into three phases. Phase 1 consisted of a regional geologic reconnaissance of 14 gas-producing areas encompassing 98 separate gas fields. In Phase 2, the top four areas were analyzed in greater detail, and the area containing the most favorable conditions was selected for the identification of specific test sites. In Phase 3, target horizons were selected for each project area, and specific placement locations were selected and prioritized.

  4. Central Plateau Cleanup at DOE's Hanford Site - 12504

    SciTech Connect (OSTI)

    Dowell, Jonathan [US DOE (United States)

    2012-07-01T23:59:59.000Z

    The discussion of Hanford's Central Plateau includes significant work in and around the center of the Hanford Site - located about 7 miles from the Columbia River. The Central Plateau is the area to which operations will be shrunk in 2015 when River Corridor cleanup is complete. This work includes retrieval and disposal of buried waste from miles of trenches; the cleanup and closure of massive processing canyons; the clean-out and demolition to 'slab on grade' of the high-hazard Plutonium Finishing Plant; installation of key groundwater treatment facilities to contain and shrink plumes of contaminated groundwater; demolition of all other unneeded facilities; and the completion of decisions about remaining Central Plateau waste sites. A stated goal of EM has been to shrink the footprint of active cleanup to less than 10 square miles by 2020. By the end of FY2011, Hanford will have reduced the active footprint of cleanup by 64 percent exceeding the goal of 49 percent. By 2015, Hanford will reduce the active footprint of cleanup by more than 90 percent. The remaining footprint reduction will occur between 2015 and 2020. The Central Plateau is a 75-square-mile region near the center of the Hanford Site including the area designated in the Hanford Comprehensive Land Use Plan Environmental Impact Statement (DOE 1999) and Record of Decision (64 FR 61615) as the Industrial-Exclusive Area, a rectangular area of about 20 square miles in the center of the Central Plateau. The Industrial-Exclusive Area contains the 200 East and 200 West Areas that have been used primarily for Hanford's nuclear fuel processing and waste management and disposal activities. The Central Plateau also encompasses the 200 Area CERCLA National Priorities List site. The Central Plateau has a large physical inventory of chemical processing and support facilities, tank systems, liquid and solid waste disposal and storage facilities, utility systems, administrative facilities, and groundwater monitoring wells. As a companion to the Hanford Site Cleanup Completion Framework document, DOE issued its draft Central Plateau Cleanup Completion Strategy in September 2009 to provide an outline of DOE's vision for completion of cleanup activities across the Central Plateau. As major elements of the Hanford cleanup along the Columbia River Corridor near completion, DOE believed it appropriate to articulate the agency vision for the remainder of the cleanup mission. The Central Plateau Cleanup Completion Strategy and the Hanford Site Cleanup Completion Framework were provided to the regulatory community, the Tribal Nations, political leaders, the public, and Hanford stakeholders to promote dialogue on Hanford's future. The Central Plateau Cleanup Completion Strategy describes DOE's vision for completion of Central Plateau cleanup and outlines the decisions needed to achieve the vision. The Central Plateau strategy involves steps to: (1) contain and remediate contaminated groundwater, (2) implement a geographic cleanup approach that guides remedy selection from a plateau-wide perspective, (3) evaluate and deploy viable treatment methods for deep vadose contamination to provide long-term protection of the groundwater, and (4) conduct essential waste management operations in coordination with cleanup actions. The strategy will also help optimize Central Plateau readiness to use funding when it is available upon completion of River Corridor cleanup projects. One aspect of the Central Plateau strategy is to put in place the process to identify the final footprint for permanent waste management and containment of residual contamination within the 20-square-mile Industrial-Exclusive Area. The final footprint identified for permanent waste management and containment of residual contamination should be as small as practical and remain under federal ownership and control for as long as a potential hazard exists. Outside the final footprint, the remainder of the Central Plateau will be available for other uses consistent with the Hanford Comprehensive Land-Use Plan (DOE 1999), while

  5. Savannah River Site environmental report for 1988

    SciTech Connect (OSTI)

    Cummins, C.L.; Hetrick, C.S.; Stevenson, D.A. (eds.); Davis, H.A.; Martin, D.K.; Todd, J.L.

    1989-01-01T23:59:59.000Z

    During 1988, as in previous years, Savannah River Site operations had no adverse impact on the general public or the environment. Based on the SRS site-specific code, the maximum radiation dose commitment to a hypothetical individual at the SRS boundary from 1988 SRS atmospheric releases of radioactive materials was 0.46 millirem (mrem) (0.0046 millisievert (mSv)). To obtain the maximum dose, an individual would have had to reside on the SRS boundary at the location of highest dose for 24 hours per day, 365 days per year, consume a maximum amount of foliage and meat which originated from the general vicinity of the plant boundary, and drink a maximum amount of milk from cows grazing at the plant boundary. The average radiation dose commitment from atmospheric releases to the hypothetical individual on the SRS boundary in 1988 was 0.18 mrem (0. 0018 mSv). This person, unlike the maximumly exposed individual, consumes an average amount of foliage, meat, and milk which originated from the foliage and animals living at the plant boundary.

  6. The Savannah River Site's groundwater monitoring program

    SciTech Connect (OSTI)

    Not Available

    1991-05-06T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.

  7. ROUGHNESS LENGTHS FOR THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Hunter, C.

    2012-03-28T23:59:59.000Z

    Surface roughness values for the areas surrounding the H, D and N-Area meteorological towers were computed from archived 2010 meteorological data. These 15-minute-averaged data were measured with cup anemometers and bidirectional wind vanes (bivanes) 61 m above the surface. The results of the roughness calculation using the standard deviation of elevation angle {sigma}{sub E}, and applying the simple formula based on tree canopy height, gave consistent estimates for roughness around the H-Area tower in the range of 1.76 to 1.86 m (95% confidence interval) with a mean value of 1.81 m. Application of the {sigma}{sub E} method for the 61-m level at D and N-Areas gave mean values of 1.71 and 1.81 with confidence ranges of 1.62-1.81 and 1.73-1.88 meters, respectively. Roughness results are azimuth dependent, and thus are presented as averages over compass sectors spanning 22.5 degrees. Calculated values were compared to other methods of determining roughness, including the standard deviation of the azimuth direction, {sigma}{sub A}, and standard deviation of the wind speed, {sigma}{sub U}. Additional data was obtained from a sonic anemometer at 61-m on the H-Area tower during a period of a few weeks in 2010. Results from the sonic anemometer support our use of {sigma}{sub E} to calculate roughness. Based on the H-Area tower results, a surface roughness of 1.8 m using is recommended for use in dispersion modeling applications that consider the impacts of a contaminant release to individuals along the Site boundary. The canopy surrounding the H-Area tower is relatively uniform (i.e., little variance in roughness by upwind direction), and data supplied by the U.S. Forest Service at Savannah River show that the canopy height and composition surrounding the H-Area tower is reasonably representative of forested areas throughout the SRS reservation. For dispersion modeling analyses requiring assessments of a co-located worker within the respective operations area, recommended area-specific values range from 0.3 m for E Area to 0.7 m for A Area at the Savannah River National Laboratory. These area-specific values, summarized in Table 4-1, were determined using the Environmental Protection Agency's AERSURFACE computer algorithm.

  8. DOE Awards Small Business Contract for Site Characterization...

    Energy Savers [EERE]

    Site Characterization and Erosion Control Work in Los Alamos, New Mexico DOE Awards Small Business Contract for Site Characterization and Erosion Control Work in Los Alamos, New...

  9. DOE Awards Small Business Contract for Site Characterization...

    Energy Savers [EERE]

    Contract for Site Characterization and Erosion Control Work in Los Alamos, New Mexico DOE Awards Small Business Contract for Site Characterization and Erosion Control Work...

  10. DOE Moab Site Cost-Effectively Eliminates 200 Million Gallons...

    Office of Environmental Management (EM)

    Site Cost-Effectively Eliminates 200 Million Gallons of Contaminated Ground Water DOE Moab Site Cost-Effectively Eliminates 200 Million Gallons of Contaminated Ground Water July...

  11. Savannah River Site radioiodine atmospheric releases and offsite maximum doses

    SciTech Connect (OSTI)

    Marter, W.L.

    1990-11-01T23:59:59.000Z

    Radioisotopes of iodine have been released to the atmosphere from the Savannah River Site since 1955. The releases, mostly from the 200-F and 200-H Chemical Separations areas, consist of the isotopes, I-129 and 1-131. Small amounts of 1-131 and 1-133 have also been released from reactor facilities and the Savannah River Laboratory. This reference memorandum was issued to summarize our current knowledge of releases of radioiodines and resultant maximum offsite doses. This memorandum supplements the reference memorandum by providing more detailed supporting technical information. Doses reported in this memorandum from consumption of the milk containing the highest I-131 concentration following the 1961 1-131 release incident are about 1% higher than reported in the reference memorandum. This is the result of using unrounded 1-131 concentrations of I-131 in milk in this memo. It is emphasized here that this technical report does not constitute a dose reconstruction in the same sense as the dose reconstruction effort currently underway at Hanford. This report uses existing published data for radioiodine releases and existing transport and dosimetry models.

  12. DOE ORP Contracting Officer Representatives - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGas SeparationsRelevant toSiteCurrentAdvancedEnvironmentalDOE ORP

  13. DOE ORP Purchase Card Buyers - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGas SeparationsRelevant toSiteCurrentAdvancedEnvironmentalDOE

  14. Faces of the Recovery Act: Jobs at Savannah River Site

    Broader source: Energy.gov [DOE]

    The Savannah River Site in Aiken, SC has been able to create/save thousands of jobs through the Recovery Act. These are the stories of just a few of the new hires.

  15. Subsurface characterization of the San Jacinto River Research site

    E-Print Network [OSTI]

    Leik, Jason Allan

    1998-01-01T23:59:59.000Z

    In order to develop an effective petroleum repudiation ics. strategy, the interaction between surface and shallow subsurface water was determined for the San Jacinto River Oi1 Spill Remediation Research site. The ten-acre wetland is located...

  16. Faces of the Recovery Act: Jobs at Savannah River Site

    ScienceCinema (OSTI)

    Skila Harris

    2010-09-01T23:59:59.000Z

    The Savannah River Site in Aiken, SC has been able to create/save thousands of jobs through the Recovery Act. These are the stories of just a few of the new hires.

  17. Type B Accident Investigation of the Savannah River Site Arc...

    Energy Savers [EERE]

    H2 Demolition, in Niskayuna, New, York Type B Accident Investigation Board Report of the Savannah River Site Hand Injury at the Salt Waste Processing Facility on October 6, 2009...

  18. Faces of the Recovery Act: Jobs at Savannah River Site

    ScienceCinema (OSTI)

    Clark, Doug; Picciano, Bill; Culpepper, Kelli; Cole, Nancy; Oliver, Rahmel;

    2013-05-29T23:59:59.000Z

    The Savannah River Site in Aiken, SC has been able to create/save thousands of jobs through the Recovery Act. These are the stories of just a few of the new hires.

  19. An overview of treatment and characterization technologies for environmental remediation at the Savannah River Site

    SciTech Connect (OSTI)

    Holt, D.L.; Butcher, B.T.

    1992-05-01T23:59:59.000Z

    The Environmental Restoration Department (ERD) at the Savannah River Site (SRS) has the responsibility to remediate waste sites and groundwater to standards as determined by Federal and State Authorities. This mission requires that certain programmatic interfaces within the ERD, Savannah River Technology Center (SRTC, formerly Savannah River Laboratory (SRL)), the Department of Energy Headquarters (DOE-HQ) Office of Technology Development (OTD), and outside commercial contractors be utilized to ensure cost-effective remediation technologies are utilized. This paper provides a synopsis of a select cross-section of the treatment and characterization technologies currently being pursued by ERD. Environmental Restoration Technology (ERT) Department's future role in providing the necessary technologies for waste sites and groundwater remediation is also discussed.

  20. An overview of treatment and characterization technologies for environmental remediation at the Savannah River Site

    SciTech Connect (OSTI)

    Holt, D.L.; Butcher, B.T.

    1992-05-01T23:59:59.000Z

    The Environmental Restoration Department (ERD) at the Savannah River Site (SRS) has the responsibility to remediate waste sites and groundwater to standards as determined by Federal and State Authorities. This mission requires that certain programmatic interfaces within the ERD, Savannah River Technology Center (SRTC, formerly Savannah River Laboratory (SRL)), the Department of Energy Headquarters (DOE-HQ) Office of Technology Development (OTD), and outside commercial contractors be utilized to ensure cost-effective remediation technologies are utilized. This paper provides a synopsis of a select cross-section of the treatment and characterization technologies currently being pursued by ERD. Environmental Restoration Technology (ERT) Department`s future role in providing the necessary technologies for waste sites and groundwater remediation is also discussed.

  1. The Savannah River Site`s Groundwater Monitoring Program 1993 well installation, abandonment, and maintenance report

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This report is a summary of the well and environmental soil boring information compiled for the groundwater monitoring program of the Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) at the Savannah River Site (SRS) during 1993. It includes discussions of environmental soil borings, surveying, well construction, abandonments, maintenance, and stabilization. EPD/EMS is responsible for monitoring constituents in the groundwater at approximately 135 waste sites in 16 areas at SRS. The majority of this monitoring is required by US Department of Energy (DOE) orders and by federal and state regulations administered by the US Environmental Protection Agency (EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC). The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells; environmental soil borings; development of sampling and analytical schedules; collection and analyses of groundwater samples; review of analytical and other data; maintenance of the databases containing groundwater monitoring data; quality assurance (QA) evaluations of laboratory performance; and reports of results to waste site facility custodians and to the Environmental Protection Section (EPS) of EPD. EPD/EMS is responsible for monitoring the wells but is not responsible for the facilities that are monitored. It is the responsibility of the custodian of each waste site to ensure that EPD/EMS is informed of sampling requirements and special requests for the sampling schedule, to assist in reviewing the data, and to make any decisions regarding groundwater monitoring at the waste site.

  2. An Overview Comparison of Tank Closure Activities at Certain DOE Site

    SciTech Connect (OSTI)

    LUKE, J.J.

    2003-01-01T23:59:59.000Z

    This paper presents a summary-level comparison of the similarities and differences of tank closure programs at the four primary radioactive waste tank sites in the US Department of Energy (DOE) complex. The sites are Hanford, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), and the Savannah River Site (SRS). The depth of our understanding of the closure programs varies with the amount of detailed information each of the four sites has provided to date. This paper was prepared using the best available information, including direct communications with key tank closure personnel at each of the sites. Many of the current schedules are under review for possible acceleration.

  3. SITE SPECIFIC REFERENCE PERSON PARAMETERS AND DERIVED CONCENTRATION STANDARDS FOR THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Jannik, T.

    2013-03-14T23:59:59.000Z

    The purpose of this report is twofold. The first is to develop a set of behavioral parameters for a reference person specific for the Savannah River Site (SRS) such that the parameters can be used to determine dose to members of the public in compliance with Department of Energy (DOE) Order 458.1 “Radiation Protection of the Public and the Environment.” A reference person is a hypothetical, gender and age aggregation of human physical and physiological characteristics arrived at by international consensus for the purpose of standardizing radiation dose calculations. DOE O 458.1 states that compliance with the annual dose limit of 100 mrem (1 mSv) to a member of the public may be demonstrated by calculating the dose to the maximally exposed individual (MEI) or to a representative person. Historically, for dose compliance, SRS has used the MEI concept, which uses adult dose coefficients and adult male usage parameters. Beginning with the 2012 annual site environmental report, SRS will be using the representative person concept for dose compliance. The dose to a representative person will be based on 1) the SRS-specific reference person usage parameters at the 95th percentile of appropriate national or regional data, which are documented in this report, 2) the reference person (gender and age averaged) ingestion and inhalation dose coefficients provided in DOE Derived Concentration Technical Standard (DOE-STD-1196-2011), and 3) the external dose coefficients provided in the DC_PAK3 toolbox. The second purpose of this report is to develop SRS-specific derived concentration standards (DCSs) for all applicable food ingestion pathways, ground shine, and water submersion. The DCS is the concentration of a particular radionuclide in water, in air, or on the ground that results in a member of the public receiving 100 mrem (1 mSv) effective dose following continuous exposure for one year. In DOE-STD-1196-2011, DCSs were developed for the ingestion of water, inhalation of air and submersion in air pathways, only. These DCSs are required by DOE O 458.1 to be used at all DOE sites in the design and conduct of radiological environmental protection programs. In this report, DCSs for the following additional pathways were considered and documented: ingestion of meat, dairy, grains, produce (fruits and vegetables), seafood, submersion in water and ground shine. These additional DCSs were developed using the same methods as in DOE-STD-1196-2011 and will be used at SRS, where appropriate, as screening and reference values.

  4. THE COLD AND DARK PROCESS AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Gilmour, J; William Austin, W; Cathy Sizemore, C

    2007-01-31T23:59:59.000Z

    The deactivation and decommissioning (D&D) of a facility exposes D&D workers to numerous hazards. One of the more serious hazards is coming into contact to hazardous energy sources (e.g. electrical, pressurized steam). At the Savannah River Site (SRS) a formal process for identifying and eliminating sources of hazardous energy was developed and is called ''Cold & Dark''. Several ''near miss'' events involving cutting of energized conductors during D&D work in buildings thought to be isolated identified the need to have a formal process to identify and isolate these potentially hazardous systems. This process was developed using lessons learned from D&D activities at the Rocky Flats Environmental Technology Site (Rocky Flats) in Colorado. The Cold & Dark process defines an isolation boundary (usually a building perimeter) and then systematically identifies all of the penetrations through this boundary. All penetrations that involve hazardous energy sources are then physically air-gapped. The final product is a documented declaration of isolation performed by a team involving operations, engineering, and project management. Once the Cold & Dark declaration is made for a building work can proceed without the usual controls used in an operational facility (e.g. lockout/tagout, arc flash PPE). It is important to note that the Cold & Dark process does not remove all hazards from a facility. Work planning and controls still need to address hazards that can be present from such things as chemicals, radiological contamination, residual liquids, etc., as well as standard industrial hazards.

  5. CRITICAL RADIONUCLIDE AND PATHWAY ANALYSIS FOR THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Jannik, T.

    2011-08-30T23:59:59.000Z

    This report is an update to the analysis, Assessment of SRS Radiological Liquid and Airborne Contaminants and Pathways, that was performed in 1997. An electronic version of this large original report is included in the attached CD to this report. During the operational history (1954 to the present) of the Savannah River Site (SRS), many different radionuclides have been released to the environment from the various production facilities. However, as will be shown by this updated radiological critical contaminant/critical pathway analysis, only a small number of the released radionuclides have been significant contributors to potential doses and risks to offsite people. The analysis covers radiological releases to the atmosphere and to surface waters, the principal media that carry contaminants offsite. These releases potentially result in exposure to offsite people. The groundwater monitoring performed at the site shows that an estimated 5 to 10% of SRS has been contaminated by radionuclides, no evidence exists from the extensive monitoring performed that groundwater contaminated with these constituents has migrated off the site (SRS 2011). Therefore, with the notable exception of radiological source terms originating from shallow surface water migration into site streams, onsite groundwater was not considered as a potential exposure pathway to offsite people. In addition, in response to the Department of Energy's (DOE) Order 435.1, several Performance Assessments (WSRC 2008; LWO 2009; SRR 2010; SRR 2011) and a Comprehensive SRS Composite Analysis (SRNO 2010) have recently been completed at SRS. The critical radionuclides and pathways identified in these extensive reports are discussed and, where applicable, included in this analysis.

  6. Proposed ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    This document presents the US DOE water resources protection strategy for the Green River, Utah mill tailings disposal site. The modifications in the original plan are based on new information, including ground water quality data collected after remedial action was completed, and on a revised assessment of disposal cell design features, surface conditions, and site hydrogeology. All aspects are discussed in this report.

  7. NNSA labs, sites receive DOE Sustainability Awards | National...

    National Nuclear Security Administration (NNSA)

    Scott Rogers, Phil Cox, Kelly Rogers, and John Zepper) Savannah River Site: SRS Biomass Steam and Co-generation Project (Steve Hamlett, James DeMass, Teresa Tomac, Mary-Ellen...

  8. PERFORMANCE OF THE SAVANNAH RIVER SITE COULOMETER FOR NEPTUNIUM PROCESSACCOUNTABILITY AND NEPTUNIUM OXIDE PRODUCT CHARACTERIZATION

    SciTech Connect (OSTI)

    Holland, M; Patterson Nuessle, P; Sheldon Nichols, S; Joe Cordaro, J; George Reeves, G

    2008-06-04T23:59:59.000Z

    The Savannah River Site's (SRS) H-Area B-Line (HB-Line) nuclear facility is processing neptunium solutions for stabilization as an oxide. The oxide will eventually be reprocessed and fabricated into target material and the 237Np irradiated to produce {sup 238}Pu in support of National Aeronautics and Space Administration space program missions. As part of nuclear materials accountability, solution concentrations were measured using a high-precision controlled-potential coulometer developed and manufactured at the SRS for plutonium accountability measurements. The Savannah River Site Coulometer system and measurement methodology for plutonium meets performance standards in ISO 12183-2005, 'Controlled-Potential Coulometric Assay of Plutonium'. The Department of Energy (DOE) does not produce or supply a neptunium metal certified reference material, which makes qualifying a measurement method and determining accuracy and precision difficult. Testing and performance of the Savannah River Site Coulometer indicates that it can be used to measure neptunium process solutions and dissolved neptunium oxide without purification for material control and accountability purposes. Savannah River Site's Material Control and Accountability organization has accepted the method uncertainty for accountability and product characterization measurements.

  9. Savannah River Site Patented Technologies Summaries

    SciTech Connect (OSTI)

    Rabold, D.E.

    1995-07-18T23:59:59.000Z

    This information represents SRS`s contribution of the DOE technology information network, an internet service coordinated out of Los Alamos. The information provided is strictly DOE-SR-titled and-issued patented technologies including environmental remediation, robotics, sensors, materials science, biomedical applications, hydrogen, and consumer products.

  10. The Cold and Dark Process at the Savannah River Site

    SciTech Connect (OSTI)

    Gilmour, John C. [CH2SRC, Savannah River Site, Aiken, SC 29808 (United States); Willis, Michael L. [Washington Savannah River Company, Aiken, SC 29808 (United States)

    2008-01-15T23:59:59.000Z

    The deactivation and decommissioning (D and D) of a facility exposes D and D workers to numerous hazards. One of the more serious hazards is coming into contact to hazardous energy sources (e.g. electrical, pressurized steam). At the Savannah River Site (SRS) a formal process for identifying and eliminating sources of hazardous energy was developed and is called 'Cold and Dark'. Several 'near miss' events involving cutting of energized conductors during D and D work in buildings thought to be isolated identified the need to have a formal process to identify and isolate these potentially hazardous systems. This process was developed using lessons learned from D and D activities at the Rocky Flats Environmental Technology Site (Rocky Flats) in Colorado. The Cold and Dark process defines an isolation boundary (usually a building perimeter) and then systematically identifies all of the penetrations through this boundary. All penetrations that involve hazardous energy sources are then physically air-gapped. The final product is a documented declaration of isolation performed by a team involving operations, engineering, and project management. Once the Cold and Dark declaration is made for a building work can proceed without the usual controls used in an operational facility (e.g. lockout/tag-out, arc flash PPE). It is important to note that the Cold and Dark process does not remove all hazards from a facility. Work planning and controls still need to address hazards that can be present from such things as chemicals, radiological contamination, residual liquids, etc., as well as standard industrial hazards. Savannah River Site experienced 6 electrical events prior to declaring a facility 'cold and dark' and has had zero electrical events after 'cold and dark' declaration (263 facilities to date). The formal Cold and Dark process developed at SRS has eliminated D and D worker exposures to hazardous energy sources. Since the implementation of the process there have been no incidents involving energized conductors or pressurized liquids/gases. During this time SRS has demolished over 200 facilities. The ability to perform intrusive D and D activities without the normal controls such as lock outs results in shorter schedule durations and lower overall costs for a facility D and D.

  11. Department of Energy Plutonium ES&H Vulnerability Assessment Savannah River Site interim compensatory measures

    SciTech Connect (OSTI)

    Bickford, W.E.

    1994-09-15T23:59:59.000Z

    The Savannah River Site (SRS) has recently completed a self-assessment of potential vulnerabilities associated with plutonium and other transuranic materials stored at the site. An independent Working Group Assessment Team (WGAT) appointed by DOE/ES&H also performed an independent assessment, and reviewed and validated the site self-assessment. The purpose of this report is to provide a status of interim compensatory measures at SRS to address hazards in advance of any corrective actions. ES&H has requested this status for all vulnerabilities ranked medium or higher with respect to potential consequences to workers, environment, and the public.

  12. Inspection Report on "Employment Verification at Savannah River Site"

    SciTech Connect (OSTI)

    None

    2009-11-01T23:59:59.000Z

    We conducted a review at the Savannah River Site to determine if Site subcontractors verified the employment status of all employees in accordance with Federal requirements and, if unauthorized individuals accessed the site. During our field work, we reviewed 600 I-9 Forms from 21 subcontractors to verify whether Site subcontractors were using the I-9 Forms; and if the forms were accurate and complete. We also conducted a judgmental sample of individuals who accessed the Site during a six-month period to determine if there were any documentation anomalies.

  13. ADVANCES IN SE-79 ANALYSES ON SAVANNAH RIVER SITE RADIOACTIVE WASTE MATRICES

    SciTech Connect (OSTI)

    Diprete, D; C Diprete, C; Ned Bibler, N; Cj Bannochie, C; Michael Hay, M

    2009-03-16T23:59:59.000Z

    Waste cleanup efforts underway at the United States Department of Energy's (DOE) Savannah River Site (SRS) in South Carolina, as well as other DOE nuclear sites, have created a need to characterize {sup 79}Se in radioactive waste inventories. Successful analysis of {sup 79}Se in high activity waste matrices is challenging for a variety of reasons. As a result of these unique challenges, the successful quantification of {sup 79}Se in the types of matrices present at SRS requires an extremely efficient and selective separation of {sup 79}Se from high levels of interfering radionuclides. A robust {sup 79}Se radiochemical separation method has been developed at the Savannah River National Laboratory (SRNL) which is routinely capable of successfully purifying {sup 79}Se from a wide range of interfering radioactive species. In addition to a dramatic improvements in the Kd, ease, and reproducibility of the analysis, the laboratory time has been reduced from several days to only 6 hours.

  14. Demonstration of Eastman Christensen horizontal drilling system -- Integrated Demonstration Site, Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    An innovative horizontal drilling system was used to install two horizontal wells as part of an integrated demonstration project at the Savannah River Site (SRS), Aiken, South Carolina. The SRS is located in south-central South Carolina in the upper Coastal Plain physiographic province. The demonstration site is located near the A/M Area, and is currently known as the Integated Demonstration Site. The Department of Energy's Office of Technology Development initiated an integrated demonstration of innovative technologies for cleanup of volatile organic compounds (VOCS) in soils and groundwater at the SRS in 1989. The overall goal of the program is to demonstrate, at a single location, multiple technologies in the fields of drilling, characterization, monitoring, and remediation. Innovative technologies are compared to one another and to baseline technologies in terms of technical performance and cost effectiveness. Transfer of successfully demonstrated technologies and systems to DOE environmental restoration organizations, to other government agencies, and to industry is a critical part of the program.

  15. Demonstration of Eastman Christensen horizontal drilling system -- Integrated Demonstration Site, Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    An innovative horizontal drilling system was used to install two horizontal wells as part of an integrated demonstration project at the Savannah River Site (SRS), Aiken, South Carolina. The SRS is located in south-central South Carolina in the upper Coastal Plain physiographic province. The demonstration site is located near the A/M Area, and is currently known as the Integated Demonstration Site. The Department of Energy`s Office of Technology Development initiated an integrated demonstration of innovative technologies for cleanup of volatile organic compounds (VOCS) in soils and groundwater at the SRS in 1989. The overall goal of the program is to demonstrate, at a single location, multiple technologies in the fields of drilling, characterization, monitoring, and remediation. Innovative technologies are compared to one another and to baseline technologies in terms of technical performance and cost effectiveness. Transfer of successfully demonstrated technologies and systems to DOE environmental restoration organizations, to other government agencies, and to industry is a critical part of the program.

  16. Savannah River Site Vegetation Map | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principal Investigators

  17. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2012

    SciTech Connect (OSTI)

    Griffith, M.; Jannik, T.; Cauthen, K.; Bryant, T.; Coward, L.; Eddy, T.; Vangelas, K.; O'Quinn, S.; Meyer, A.

    2013-09-12T23:59:59.000Z

    This report is an overview of effluent monitoring and environmental surveillance activities conducted on and in the vicinity of SRS from January 1 through December 31, 2012 - including the Site?s performance against applicable standards and requirements. Details are provided on major programs such as the Environmental Management System (EMS) and permit compliance.

  18. Enforcement Letter, Westinghouse Savannah River Company - November...

    Broader source: Energy.gov (indexed) [DOE]

    Savannah River Site On November 14, 2003, the U.S. Department of Energy (DOE) issued a nuclear safety Enforcement Letter to Westinghouse Savannah River Company related to...

  19. DOE's Policy Regarding Laboratories, Plants and Sites Engaging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P 481.1, DOE's Policy Regarding Laboratories, Plants and Sites Engaging in Strategic Partnership Projects with Other Federal Agencies, Independent Organizations, and the Private...

  20. Comment and response document for the ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The US Department of Energy (DOE) responses to comments from both the US Nuclear Regulatory Commission (NRC) and the state of Utah are provided in this document. The Proposed Ground Water Protection Strategy for the Uranium Mill Tailings Site at Green River, Utah, presents the proposed (modified) ground water protection strategy for the disposal cell at the Green River disposal site for compliance with Subpart A of 40 CFR Part 192. Before the disposal cell was constructed, site characterization was conducted at the Green River Uranium Mill Tailings Remedial Action (UMTRA) Project site to determine an acceptable compliance strategy. Results of the investigation are reported in detail in the final remedial action plan (RAP) (DOE, 1991a). The NRC and the state of Utah have accepted the final RAP. The changes in this document relate only to a modification of the compliance strategy for ground water protection.

  1. 2003 Savannah River Site Annual Illness and Injury Surveillance Report, Revised September 2007

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-10-05T23:59:59.000Z

    Annual Illness and Injury Surveillance Program report for 2003 for the Savannah River Site. DOE is commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The report monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  2. Entrainment sampling at the Savannah River Site (SRS) Savannah River water intakes (1991)

    SciTech Connect (OSTI)

    Paller, M.

    1990-11-01T23:59:59.000Z

    Cooling water for the Westinghouse Savannah River Company (WSRC) L-Reactor, K-Reactor, and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pumphouses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water. They are passed through the reactor heat exchangers where temperatures may reach 70{degree}C during full power operation. Ichthyoplankton mortality under such conditions is presumably 100%. Apart from a small pilot study conducted in 1989, ichthyoplankton samples have not been collected from the vicinity of the SRS intake canals since 1985. The Department of Energy (DOE) has requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory (SRL) resume ichthyoplankton sampling for the purpose of assessing entrainment at the SRS Savannah River intakes. This request is due to the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River. The following scope of work presents a sampling plan that will collect information on the spatial and temporal distribution of fish eggs and larvae near the SRS intake canal mouths. This data will be combined with information on water movement patterns near the canal mouths in order to determine the percentage of ichthyoplankton that are removed from the Savannah River by the SRS intakes. The following sampling plan incorporates improvements in experimental design that resulted from the findings of the 1989 pilot study. 1 fig.

  3. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington, Collection of Surface Water, River Sediments, and Island Soils

    SciTech Connect (OSTI)

    L. C. Hulstrom

    2009-09-28T23:59:59.000Z

    This report has been prepared in support of the remedial investigation of Hanford Site Releases to the Columbia River and describes the 2008/2009 data collection efforts. This report documents field activities associated with collection of sediment, river water, and soil in and adjacent to the Columbia River near the Hanford Site and in nearby tributaries.

  4. Site-Specific Reference Person Parameters and Derived Concentration Standards for the Savannah River Site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stone, Daniel K.; Higley, Kathryn A.; Jannik, G. Timothy

    2014-01-01T23:59:59.000Z

    The U.S. Department of Energy Order 458.1 states that the compliance with the 1 mSv annual dose constraint to a member of the public may be demonstrated by calculating dose to the maximally exposed individual (MEI) or to a representative person. Historically, the MEI concept was used for dose compliance at the Savannah River Site (SRS) using adult dose coefficients and adult male usage parameters. For future compliance, SRS plans to use the representative person concept for dose estimates to members of the public. The representative person dose will be based on the reference person dose coefficients from the U.S.more »DOE Derived Concentration Technical Standard and on usage parameters specific to SRS for the reference and typical person. Usage parameters and dose coefficients were determined for inhalation, ingestion and external exposure pathways. The parameters for the representative person were used to calculate and tabulate SRS-specific derived concentration standards (DCSs) for the pathways not included in DOE-STD-1196-2011.« less

  5. The Savannah River Site's Groundwater Monitoring Program, third quarter 1991

    SciTech Connect (OSTI)

    Not Available

    1992-02-17T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.

  6. Savannah River Site Environmental Report for 1999

    SciTech Connect (OSTI)

    Arnett, M.

    2000-06-30T23:59:59.000Z

    The purpose of this report is to present summary environmental data that characterize site environmental management performance, confirm compliance with environmental standards and requirements, highlight significant programs and efforts, and assess the impact of SRS operations on the public and the environment.

  7. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect (OSTI)

    Zull, Lawrence M.; Yeniscavich, William [Defense Nuclear Facilities Safety Board, 625 Indiana Ave., NW, Suite 700, Washington, DC 20004-2901 (United States)

    2008-01-15T23:59:59.000Z

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  8. Washington River Protection Solutions - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural PublicRates >

  9. River and Plateau Committee Summaries - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResources Resources About1 SignG.5Hanford Advisory Board

  10. The Savannah River Site's Groundwater Monitoring Program, third quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  11. The Savannah River Site's Groundwater Monitoring Program, first quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  12. The Savannah River Site's Groundwater Monitoring Program, second quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  13. The Savannah River Site`s Groundwater Monitoring Program, third quarter 1991

    SciTech Connect (OSTI)

    Not Available

    1992-02-17T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.

  14. The Savannah River site`s groundwater monitoring program: second quarter 1997

    SciTech Connect (OSTI)

    Rogers, C.D. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-11-01T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1997, EPD/EMS conducted extensive sampling of monitoring wells. A detailed explanation of the flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1997 are included in this report.

  15. The Evolution of LTS at DOE's Hanford Site

    SciTech Connect (OSTI)

    Moren, Richard J. [Mission Support Alliance, Richland, WA (United States); Grindstaff, Keith D. [USDOE Richland Operations Office, Richland, WA (United States)

    2013-11-12T23:59:59.000Z

    Hanford's Long-Term Stewardship (LTS) Program has evolved from a small, informal process, with minimal support, to a robust program that provides comprehensive transitions from cleanup contractors to long-term stewardship for post-cleanup requirements specified in the associated cleanup decision documents. The LTS Program has the responsibility for almost 100,000 acres of land, along with over 200 waste sites and will soon have six cocooned reactors. Close to 2,600 documents have been identified and tagged for storage in the LTS document library. The program has successfully completed six consecutive transitions over the last two years in support of the U.S. DOE Richland Operations Office's (DOE-RL) near-term cleanup objectives of significantly reducing the footprint of active cleanup operations for the River Corridor. The program has evolved from one that was initially responsible for defining and measuring Institutional Controls for the Hanford Site, to a comprehensive, post remediation surveillance and maintenance program that begins early in the transition process. In 2013, the first reactor area -- the cocooned 105-F Reactor and its surrounding 1,100 acres, called the F Area was transitioned. In another first, the program is expected to transition the five remaining cocooned reactors into the program through using a Transition and Turnover Package (TTP). As Hanford's LTS Program moves into the next few years, it will continue to build on a collaborative approach. The program has built strong relationships between contractors, regulators, tribes and stakeholders and with the U.S. Department of Energy's Office of Legacy Management (LM). The LTS Program has been working with LM since its inception. The transition process utilized LM's Site Transition Framework as one of the initial requirement documents and the Hanford Program continues to collaborate with LM today. One example of this collaboration is the development of the LTS Program's records management system in which, LM has been instrumental. The development of a rigorous data collection and records management systems has been influenced and built off of LMs success, which also ensures compatibility between what Hanford's LTS Program develops and LM. In another example, we are exploring a pilot project to ship records from the Hanford Site directly to LM for long-term storage. This pilot would gain program efficiencies so that records would be handled only once. Rather than storage on-site, then shipment to an interim Federal Records Center in Seattle, records would be shipped directly to LM. The Hanford LTS Program is working to best align programmatic processes, find efficiencies, and to benchmark site transition requirements. Involving the Hanford LTS Program early in the transition process with an integrated contractor and DOE team is helping to ensure that there is time to work through details on the completed remediation of transitioning areas. It also will allow for record documentation and storage for the future, and is an opportunity for the program to mature through the experiences that will be gained by implementing LTS Program activities over time.

  16. Cesium removal from Savannah River Site radioactive waste using crystalline silicotitanate (IONSIV(R) IE-911)

    SciTech Connect (OSTI)

    Walker, D.D.

    1999-12-15T23:59:59.000Z

    This study measured the ability of crystalline silicotitanate to remove cesium from Savannah River Site radioactive waste.

  17. Savannah River Site Waste Removal Program - Past, Present and Future

    SciTech Connect (OSTI)

    Saldivar, E.

    2002-02-25T23:59:59.000Z

    The Savannah River Site has fifty-one high level waste tanks in various phases of operation and closure. These tanks were originally constructed to receive, store, and treat the high level waste (HLW) created in support of the missions assigned by the Department of Energy (DOE). The Federal Facilities Agreement (FFA) requires the high level waste to be removed from the tanks and stabilized into a final waste form. Additionally, closure of the tanks following waste removal must be completed. The SRS HLW System Plan identifies the interfaces of safe storage, waste removal, and stabilization of the high level waste and the schedule for the closure of each tank. HLW results from the dissolution of irradiated fuel components. Desired nuclear materials are recovered and the byproducts are neutralized with NaOH and sent to the High Level Waste Tank Farms at the SRS. The HLW process waste clarifies in the tanks as the sludge settles, resulting in a layer of dense sludge with salt supernate settling above the sludge. Salt supernate is concentrated via evaporation into saltcake and NaOH liquor. This paper discusses the history of SRS waste removal systems, recent waste removal experiences, and the challenges facing future removal operations to enhance efficiency and cost effectiveness. Specifically, topics will include the evolution and efficiency of systems used in the 1960's which required large volumes of water to current systems of large centrifugal slurry pumps, with significant supporting infrastructure and safety measures. Interactions of this equipment with the waste tank farm operations requirements will also be discussed. The cost and time improvements associated with these present-day systems is a primary focus for the HLW Program.

  18. DOE-ORP Contracting Officers - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGas SeparationsRelevantDOE Progress Review ofDOE-ORP Contracting

  19. Remote video radioactive process evaluation, Savannah River Site

    SciTech Connect (OSTI)

    Heckendorn, F.M.

    1990-01-01T23:59:59.000Z

    Specialized miniature low cost video equipment has been effectively used in a number of remote, radioactive, and contaminated environments at the Savannah River Site (SRS). The equipment and related techniques have reduced the potential for personnel exposure to both radiation and physical hazards. The valuable process information thus provided would not have otherwise been available for use in improving the quality of operation at SRS.

  20. Remote video radioactive process evaluation, Savannah River Site

    SciTech Connect (OSTI)

    Heckendorn, F.M.

    1990-12-31T23:59:59.000Z

    Specialized miniature low cost video equipment has been effectively used in a number of remote, radioactive, and contaminated environments at the Savannah River Site (SRS). The equipment and related techniques have reduced the potential for personnel exposure to both radiation and physical hazards. The valuable process information thus provided would not have otherwise been available for use in improving the quality of operation at SRS.

  1. Environmental Assessment and Finding of No Significant Impact: Implementation of the Wetland Mitigation Bank Program at the Savannah River Site

    SciTech Connect (OSTI)

    N /A

    1999-04-28T23:59:59.000Z

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1205) for the proposed implementation of a wetland mitigation bank program at the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI) and Floodplain Statement of Findings.

  2. Environmental Assessment and Finding of No Significant Impact: Pond B Dam Repair Project at the Savannah River Site

    SciTech Connect (OSTI)

    N /A

    1999-09-27T23:59:59.000Z

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1285) for the proposed repair of the Pond B dam at the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI) and Floodplain Statement of Findings.

  3. Technical summary of groundwater quality protection program at the Savannah River Site, 1952--1986. Volume 1, Site geohydrology and waste sites

    SciTech Connect (OSTI)

    Heffner, J.D. [ed.] [Exploration Resources, Inc., Athens, GA (United States)

    1991-11-01T23:59:59.000Z

    This report provides information regarding the status of and groundwater quality at the waste sites at the Department of Energy`s (DOE) Savannah River Site (SRS). Specific information provided for each waste site at SRS includes its location, size, inventory (when known), and history. Many waste sites at SRS are considered to be of little environmental concern because they contain nontoxic or inert material such as construction rubble and debris. Other waste sites, however, either are known to have had an effect on groundwater quality or are suspected of having the potential to affect groundwater. Monitoring wells have been installed at most of these sites; monitoring wells are scheduled for installation at the remaining sites. Results of the groundwater analyses from these monitoring wells, presented in the appendices, are used in the report to help identify potential contaminants of concern, if any, at each waste site. The list of actions proposed for each waste site in Christensen and Gordon`s 1983 report are summarized, and an update is provided for each site. Planned actions for the future are also outlined.

  4. DOE RL Contracting Officer Representatives - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGas SeparationsRelevantDOE Progress Review of MINERvA MainOfficer

  5. DOE RL Contracting Officers - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGas SeparationsRelevantDOE Progress Review of MINERvA

  6. The Savannah River Site`s Groundwater Monitoring Program, third quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  7. The Savannah River Site`s Groundwater Monitoring Program, first quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  8. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  9. The Savannah River Site`s Groundwater Monitoring Program, second quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  10. Effluent emissions monitoring at the DOE Hanford Site

    SciTech Connect (OSTI)

    Vance, L.W.

    1993-05-01T23:59:59.000Z

    There are numerous regulatory requirements controlling the effluent emissions monitoring at a U.S. Department of Energy site. This paper defines how these regulatory effluent emissions monitoring requirements and the Quality Assurance oversight of these requirements were implemented by Westinghouse Hanford Company, the operations contractor, at the DOE Hanford Site.

  11. The Savannah River Site`s Groundwater Monitoring Program: Third quarter 1992

    SciTech Connect (OSTI)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-02-04T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. Table 1 lists those well series with constituents in the groundwater above Flag 2 during third quarter 1992, organized by location. Results from all laboratory analyses are used to generate this table. Specific conductance and pH data from the field also are included in this table.

  12. DOE - RL Contracts/Procurements - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePART I SECTION ADMSE

  13. DOE-ORP Prime Contracts - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24,7, 2012 Bill

  14. DOE - ORP Contracts/Procurements - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGas SeparationsRelevant toSiteCurrent Long-TermUpgrade Overview

  15. DOE Human Resources Management Division - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGas SeparationsRelevant toSiteCurrentAdvanced

  16. The Savannah River Site`s groundwater monitoring program. First quarter 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-18T23:59:59.000Z

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program`s activities and rationale, and serves as an official document of the analytical results.

  17. Technology needs for remediation: Hanford and other DOE sites

    SciTech Connect (OSTI)

    Stapp, D.C.

    1993-01-01T23:59:59.000Z

    Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy's (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL's Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

  18. DOE Research Set-Aside Program | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePART I SECTIONPlasma PhysicsDOEDOE2 DOE

  19. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    SciTech Connect (OSTI)

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03T23:59:59.000Z

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs and testing, and fill placement strategy. This information is applicable to decommissioning both the 105-P and 105-R facilities. The ISD process for the entire 105-P and 105-R reactor facilities will require approximately 250,000 cubic yards (191,140 cubic meters) of grout and 2,400 cubic yards (1,840 cubic meters) of structural concrete which will be placed over a twelve month period to meet the accelerated schedule ISD schedule. The status and lessons learned in the SRS Reactor Facility ISD process will be described.

  20. Savannah River Site TEP-SET tests uncertainty report

    SciTech Connect (OSTI)

    Taylor, D.J.N.

    1993-09-01T23:59:59.000Z

    This document presents a measurement uncertainty analysis for the instruments used for the Phase I, II and III of the Savannah River One-Fourth Linear Scale, One-Sixth Sector, Tank/Muff/Pump (TMP) Separate Effects Tests (SET) Experiment Series. The Idaho National Engineering Laboratory conducted the tests for the Savannah River Site (SRS). The tests represented a range of hydraulic conditions and geometries that bound anticipated Large Break Loss of Coolant Accidents in the SRS reactors. Important hydraulic phenomena were identified from experiments. In addition, code calculations will be benchmarked from these experiments. The experimental system includes the following measurement groups: coolant density; absolute and differential pressures; turbine flowmeters (liquid phase); thermal flowmeters (gas phase); ultrasonic liquid level meters; temperatures; pump torque; pump speed; moderator tank liquid inventory via a load cells measurement; and relative humidity meters. This document also analyzes data acquisition system including the presampling filters as it relates to these measurements.

  1. SAVANNAH RIVER SITE'S H-CANYON FACILITY: IMPACTS OF FOREIGN OBLIGATIONS ON SPECIAL NUCLEAR MATERIAL DISPOSITION

    SciTech Connect (OSTI)

    Magoulas, V.

    2013-06-03T23:59:59.000Z

    The US has a non-proliferation policy to receive foreign and domestic research reactor returns of spent fuel materials of US origin. These spent fuel materials are returned to the Department of Energy (DOE) and placed in storage in the L-area spent fuel basin at the Savannah River Site (SRS). The foreign research reactor returns fall subject to the 123 agreements for peaceful cooperation. These “123 agreements” are named after section 123 of the Atomic Energy Act of 1954 and govern the conditions of nuclear cooperation with foreign partners. The SRS management of these foreign obligations while planning material disposition paths can be a challenge.

  2. U.S. Department of Energy electric and hybrid vehicle Site Operator Program at Platte River Power Authority. Final report, July 3, 1991--August 31, 1996

    SciTech Connect (OSTI)

    Emmert, R.A.

    1996-12-31T23:59:59.000Z

    The Platte River Power Authority (Platte River) is a political subdivision of the state of Colorado, owned by the four municipalities of Fort Collins, Loveland, Longmont and Estes Park, Colorado. Platte River is a non-profit, publicly owned, joint-action agency formed to construct, operate and maintain generating plants, transmission systems and related facilities for the purpose of delivering to the four municipalities electric energy for distribution and resale. Platte River, as a participant in the US Department of Energy (DOE) Site Operator Program, worked to accomplish the Site Operator Program goals and objectives to field test and evaluate electric and electric-hybrid vehicles and electric vehicle systems in a real world application/environment. This report presents results of Platte River`s program (Program) during the five-years Platte River participated in the DOE Site Operator Program. Platte River participated in DOE Site Operator Program from July 3, 1991 through August 31, 1996. During its Program, Platte River conducted vehicle tests and evaluations, and electric vehicle demonstrations in the Front Range region of Northern Colorado. Platte River also investigated electric vehicle infrastructure issues and tested infrastructure components. Platte River`s Program objectives were as follows: evaluate the year round performance, operational costs, reliability, and life cycle costs of electric vehicles in the Front Range region of Northern Colorado; evaluate an electric vehicle`s usability and acceptability as a pool vehicle; test any design improvements or technological improvements on a component level that may be made available to PRPA and which can be retrofit into vehicles; and develop, test and evaluate, and demonstrate components to be used in charging electric vehicles.

  3. DOE Selects Savannah River Remediation, LLC for Liquid Waste...

    Broader source: Energy.gov (indexed) [DOE]

    awarded SRS management and operating contract includes operation of the Savannah River National Laboratory (SRNL), National Nuclear Security Administration (NNSA)...

  4. Demonstration Sites of Best Management Practices: A Manual for the Upper Etowah River Alliance

    E-Print Network [OSTI]

    Rosemond, Amy Daum

    Demonstration Sites of Best Management Practices: A Manual for the Upper Etowah River Alliance and the Institute of Ecology #12;UERA BMPs Demonstation Sites Manual 2 of 2 Demonstration Sites of Best Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 iii. Best Management Practices

  5. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter 1988

    SciTech Connect (OSTI)

    Not Available

    1989-12-31T23:59:59.000Z

    The Environmental Monitoring Group of the Health Protection Department administers the Savannah River Site`s Groundwater Monitoring Program. During fourth quarter 1988 (October--December), routine sampling of monitoring wells and drinking water locations was performed. The drinking water samples were collected from Savannah River Site (SRS) drinking water systems supplied by wells. Two sets of flagging criteria were established in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. The drinking water samples were analyzed for radioactive constituents.

  6. LONG-TERM STEWARDSHIP AT DOE HANFORD SITE - 12575

    SciTech Connect (OSTI)

    MOREN RJ; GRINDSTAFF KD

    2012-01-11T23:59:59.000Z

    The U.S. Department of Energy's (DOE) Hanford Site is located in southeast Washington and consists of 1,518 square kilometers (586 square miles) of land. Established in 1943 as part of the Manhattan Project, Hanford workers produced plutonium for our nation's nuclear defense program until the mid 1980's. Since then, the site has been in cleanup mode that is being accomplished in phases. As we achieve remedial objectives and complete active cleanup, DOE will manage Hanford land under the Long-Term Stewardship (LTS) Program until completion of cleanup and the site becomes ready for transfer to the post cleanup landlord - currently planned for DOE's Office of Legacy Management (LM). We define Hanford's LTS Program in the ''Hanford Long-Term Stewardship Program Plan,'' (DOE/RL-201 0-35)[1], which describes the scope including the relationship between the cleanup projects and the LTS Program. DOE designed the LTS Program to manage and provide surveillance and maintenance (S&M) of institutional controls and associated monitoring of closed waste sites to ensure the protection of human health and the environment. DOE's Richland Operations Office (DOE-RL) and Hanford cleanup and operations contractors collaboratively developed this program over several years. The program's scope also includes 15 key activities that are identified in the DOE Program Plan (DOE/RL-2010-35). The LTS Program will transition 14 land segments through 2016. The combined land mass is approximately 570 square kilometers (220 square miles), with over 1,300 active and inactive waste sites and 3,363 wells. Land segments vary from buffer zone property with no known contamination to cocooned reactor buildings, demolished support facilities, and remediated cribs and trenches. DOE-RL will transition land management responsibilities from cleanup contractors to the Mission Support Contract (MSC), who will then administer the LTS Program for DOE-RL. This process requires an environment of cooperation between the contractors and DOE-RL. Information Management (IM) is a key part of the LTS program. The IM Program identifies, locates, stores, protects and makes accessible Hanford LTS records and data to support the transfer of property ultimately to LM. As such, DOE-RL manages the Hanford LTS Program in a manner consistent with LM's goals, policies, and procedures.

  7. Savannah River Site environmental report for 1991. [Contains Glossary

    SciTech Connect (OSTI)

    Arnett, M.W.; Karapatakis, L.K.; Mamatey, A.R.; Todd, J.L.

    1991-01-01T23:59:59.000Z

    This report describes environmental activities conducted on and in the vicinity of the Savannah River Site (SRS) in Aiken, S.C., from Jan. 1 to Dec. 31, 1991, with an update on compliance activities through April 1, 1992. The report is a single volume with a separate summary pamphlet highlighting the major findings for 1991. The report is divided into an executive summary and 14 chapters containing information on environmental compliance issues, environmental monitoring methods and programs, and environmental research activities for 1991, as well as historical data from previous years. Analytical results, figures, charts, and data tables relevant to the environmental monitoring program for 1991 at SRS are included.

  8. M-Area basin closure, Savannah River Site

    SciTech Connect (OSTI)

    McMullin, S.R.; Horvath, J.G.

    1991-12-31T23:59:59.000Z

    M-Area, on the Savannah River Site, processes raw materials and manufactures fuel and target rods for reactor use. Effluent from these processes were discharged into the M-Area settling basin and Lost Lake, a natural wetland. The closure of this basin began in 1988 and included the removal and stabilization of basin fluids, excavation of all contaminated soils from affected areas and Lost Lake, and placement of all materials in the bottom of the emptied basin. These materials were covered with a RCRA style cap, employing redundant barriers of kaolin clay and geosynthetic material. Restoration of excavated uplands and wetlands is currently underway.

  9. M-Area basin closure, Savannah River Site

    SciTech Connect (OSTI)

    McMullin, S.R.; Horvath, J.G.

    1991-01-01T23:59:59.000Z

    M-Area, on the Savannah River Site, processes raw materials and manufactures fuel and target rods for reactor use. Effluent from these processes were discharged into the M-Area settling basin and Lost Lake, a natural wetland. The closure of this basin began in 1988 and included the removal and stabilization of basin fluids, excavation of all contaminated soils from affected areas and Lost Lake, and placement of all materials in the bottom of the emptied basin. These materials were covered with a RCRA style cap, employing redundant barriers of kaolin clay and geosynthetic material. Restoration of excavated uplands and wetlands is currently underway.

  10. DOE Awards Hanford Site Law Enforcement Contract to Benton County

    Broader source: Energy.gov [DOE]

    RICHLAND, WASH. – The U.S. Department of Energy (DOE) today awarded a contract to the Benton County Sheriff’s Office in Kennewick, Wash., to provide law enforcement services at the DOE Hanford Site. The contract has a five-year period of performance, consisting of a one-year base period, with four one-year option periods and an approximate total value of $5 million.

  11. Characterization of candidate DOE sites for fabricating MOX fuel for lead assemblies

    SciTech Connect (OSTI)

    Holdaway, R.F.; Miller, J.W.; Sease, J.D.; Moses, R.J.; O`Connor, D.G. [Oak Ridge National Lab., TN (United States); Carrell, R.D. [Technical Resources International, Inc., Richland, WA (United States); Jaeger, C.D. [Sandia National Labs., Albuquerque, NM (United States); Thompson, M.L.; Strasser, A.A. [Delta-21 Resources, Inc., Oak Ridge, TN (United States)

    1998-03-01T23:59:59.000Z

    The Office of Fissile Materials Disposition (MD) of the Department of Energy (DOE) is directing the program to disposition US surplus weapons-usable plutonium. For the reactor option for disposition of this surplus plutonium, MD is seeking to contract with a consortium, which would include a mixed-oxide (MOX) fuel fabricator and a commercial US reactor operator, to fabricate and burn MOX fuel in existing commercial nuclear reactors. This option would entail establishing a MOX fuel fabrication facility under the direction of the consortium on an existing DOE site. Because of the lead time required to establish a MOX fuel fabrication facility and the need to qualify the MOX fuel for use in a commercial reactor, MD is considering the early fabrication of lead assemblies (LAs) in existing DOE facilities under the technical direction of the consortium. The LA facility would be expected to produce a minimum of 1 metric ton heavy metal per year and must be operational by June 2003. DOE operations offices were asked to identify candidate sites and facilities to be evaluated for suitability to fabricate MOX fuel LAs. Savannah River Site, Argonne National Laboratory-West, Hanford, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory were identified as final candidates to host the LA project. A Site Evaluation Team (SET) worked with each site to develop viable plans for the LA project. SET then characterized the suitability of each of the five plans for fabricating MOX LAs using 28 attributes and documented the characterization to aid DOE and the consortium in selecting the site for the LA project. SET concluded that each option has relative advantages and disadvantages in comparison with other options; however, each could meet the requirements of the LA project as outlined by MD and SET.

  12. Collaboration in Long-Term Stewardship at DOE's Hanford Site - 13019

    SciTech Connect (OSTI)

    Moren, Rick; Brown, David [Mission Support Alliance, LLC, Richland, WA (United States)] [Mission Support Alliance, LLC, Richland, WA (United States); Feist, Ella [Washington Closure Hanford, LLC, Richland WA (United States)] [Washington Closure Hanford, LLC, Richland WA (United States); Grindstaff, Keith; Zeisloft, Jamie [US Department of Energy, Richland Operations, Richland WA (United States)] [US Department of Energy, Richland Operations, Richland WA (United States)

    2013-07-01T23:59:59.000Z

    The U.S. Department of Energy's (DOE) Hanford Site comprises approximately 1,517 km{sup 2} (586 mi{sup 2}) of land in southeastern Washington. The site was established in 1943 as part of the Manhattan Project to produce plutonium for the nation's nuclear weapons program. As the Cold War era came to an end, the mission of the site transitioned from weapons production to environmental cleanup. As the River Corridor area of the site cleanup is completed, the mission for that portion of the site will transition from active cleanup to continued protection of environment through the Long-Term Stewardship (LTS) Program. The key to successful transition from cleanup to LTS is the unique collaboration among three (3) different DOE Programs and three (3) different prime contractors with each contractor having different contracts. The LTS Program at the site is a successful model of collaboration resulting in efficient resolution of issues and accelerated progress that supports DOE's Richland Office 2015 Vision for the Hanford Site. The 2015 Vision for the Hanford Site involves shrinking the active cleanup footprint of the surface area of the site to approximately 20 mi{sup 2} on the Central Plateau. Hanford's LTS Program is defined in DOE's planning document, Hanford Long-Term Stewardship Program Plan [1]. The Plan defines the relationship and respective responsibilities between the federal cleanup projects and the LTS Program along with their respective contractors. The LTS Program involves these different parties (cleanup program and contractors) who must work together to achieve the objective for transition of land parcels. Through the collaborative efforts with the prime contractors on site over the past two years,, 253.8 km{sup 2} (98 mi{sup 2}) of property has been successfully transitioned from the cleanup program to the LTS Program upon completion of active surface cleanup. Upcoming efforts in the near term will include transitioning another large parcel that includes one of the six (6) cocooned reactors on site. These accomplishments relied upon the transparency between DOE cleanup programs and their contractors working together to successfully transition the land while addressing the challenges that arise. All parties, the three different DOE Programs and their respective prime contractors are dedicated to working together and continuing the progress of transitioning land to LTS, in alignment with the Program Plan and compliant with contractual requirements. (authors)

  13. DOE Selects Savannah River Nuclear Solutions, LLC to Manage and...

    Energy Savers [EERE]

    includes three key mission areas: environmental cleanup, operation of the Savannah River National Laboratory (SRNL), and National Nuclear Security Administration (NNSA)...

  14. EIS-0270: Accelerator Production of Tritium at the Savannah River Site

    Broader source: Energy.gov [DOE]

     This EIS evaluates the potential environmental impact of a proposal to construct and operate an Accelerator for the Production of Tritium at the Savannah River Site.  

  15. Environmental assessment for the A-01 outfall constructed wetlands project at the Savannah River Site

    SciTech Connect (OSTI)

    NONE

    1998-10-01T23:59:59.000Z

    The Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed A-01 outfall constructed wetlands project at the Savannah River site (SRS), located near aiken, South Carolina. The proposed action would include the construction and operation of an artificial wetland to treat effluent from the A-01 outfall located in A Area at SRS. The proposed action would reduce the outfall effluent concentrations in order to meet future outfall limits before these go into effect on October 1, 1999. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended; the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Parts 1500--1508); and the DOE Regulations for Implementing NEPA (10 CFR Part 1021).

  16. The Savannah River Site`s Groundwater Monitoring Program: First quarter 1993, Volume 1

    SciTech Connect (OSTI)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-08-01T23:59:59.000Z

    This report summarizes the Savannah River Site (SRS) Groundwater Monitoring Program conducted by the Environmental Protection Department`s Environmental Monitoring Section (EPD/EMS) during the first quarter of 1993. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program`s activities; and serves as an official document of the analytical results.

  17. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter 1992

    SciTech Connect (OSTI)

    Not Available

    1993-05-17T23:59:59.000Z

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by the Environmental Protection Department`s Environmental Monitoring Section (EPD/EMS) during the fourth quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program`s activities; and serves as an official document of the analytical results.

  18. Assessment of tritium in the Savannah River Site environment

    SciTech Connect (OSTI)

    Carlton, W.H.; Murphy, C.E. Jr.; Bauer, L.R. [and others

    1993-10-01T23:59:59.000Z

    This report is the first revision to a series of reports on radionuclides inn the SRS environment. Tritium was chosen as the first radionuclide in the series because the calculations used to assess the dose to the offsite population from SRS releases indicate that the dose due to tritium, through of small consequence, is one of the most important the radionuclides. This was recognized early in the site operation, and extensive measurements of tritium in the atmosphere, surface water, and ground water exist due to the effort of the Environmental Monitoring Section. In addition, research into the transport and fate of tritium in the environment has been supported at the SRS by both the local Department of Energy (DOE) Office and DOE`s Office of Health and Environmental Research.

  19. Zone of Interaction Between Hanford Site Groundwater and Adjacent Columbia River

    SciTech Connect (OSTI)

    Peterson, Robert E.; Connelly, Michael P.

    2001-10-23T23:59:59.000Z

    This report describes the FY 2000 results of a Science and Technology investigation of the groundwater/river interface at the Hanford Site. The investigation focused on (1) a 2-D simulation of water flowpaths beneath the shoreline region under the influence of a transient river stage, and (2) mixing between groundwater and river water.

  20. Savannah River Site Footprint Reduction Results under the American Recovery and Reinvestment Act - 13302

    SciTech Connect (OSTI)

    Flora, Mary [Savannah River Nuclear Solutions Bldg. 730-4B, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions Bldg. 730-4B, Aiken, SC 29808 (United States); Adams, Angelia [United States Department of Energy Bldg. 730-B, Aiken, SC 29808 (United States)] [United States Department of Energy Bldg. 730-B, Aiken, SC 29808 (United States); Pope, Robert [United States Environmental Protection Agency Region IV Atlanta, GA 30303 (United States)] [United States Environmental Protection Agency Region IV Atlanta, GA 30303 (United States)

    2013-07-01T23:59:59.000Z

    The Savannah River Site (SRS) is an 802 square-kilometer United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina, managed and operated by Savannah River Nuclear Solutions. Construction of SRS began in the early 1950's to enhance the nation's nuclear weapons capability. Nuclear weapons material production began in the early 1950's, eventually utilizing five production reactors constructed to support the national defense mission. Past operations have resulted in releases of hazardous constituents and substances to soil and groundwater, resulting in 515 waste sites with contamination exceeding regulatory thresholds. More than 1,000 facilities were constructed onsite with approximately 300 of them considered radiological, nuclear or industrial in nature. In 2003, SRS entered into a Memorandum of Agreement with its regulators to accelerate the cleanup using an Area Completion strategy. The strategy was designed to focus cleanup efforts on the 14 large industrial areas of the site to realize efficiencies of scale in the characterization, assessment, and remediation activities. This strategy focuses on addressing the contaminated surface units and the vadose zone and addressing groundwater plumes subsequently. This approach streamlines characterization and remediation efforts as well as the required regulatory documentation, while enhancing the ability to make large-scale cleanup decisions. In February 2009, Congress approved the American Reinvestment and Recovery Act (ARRA) to create jobs and promote economic recovery. At SRS, ARRA funding was established in part to accelerate the completion of environmental remediation and facility deactivation and decommissioning (D and D). By late 2012, SRS achieved 85 percent footprint reduction utilizing ARRA funding by accelerating and coupling waste unit remediation with D and D of remnant facilities. Facility D and D activities were sequenced and permitted with waste unit remediation activities to streamline regulatory approval and execution. Achieving footprint reduction fulfills the Government's responsibility to address legacy contamination; allows earlier completion of legally enforceable compliance agreement milestones; and enables future potential reuse of DOE resources, including land and infrastructure for other missions. Over the last 3.5 years significant achievements were met that contributed to footprint reduction, including the closure of 41 waste units (including 20 miles of radiologically contaminated stream) and decommissioning of 30 facilities (including the precedent setting in situ closure of two former production reactors, the first in the DOE Complex). Other notable achievements included the removal of over 39,750 cubic meters of debris and 68,810 cubic meters of contaminated soils, including 9175 cubic meters of lead-contaminated soil from a former site small arms testing range and treatment of 1,262 cubic meters of tritium-laden soils and concrete using a thermal treatment system. (authors)

  1. Characterizing the Environmental Availability of Trace Metals in Savannah River Site Soils

    SciTech Connect (OSTI)

    Serkiz, S.M.

    1999-03-18T23:59:59.000Z

    An eight step sequential extraction technique was used to characterize the environmental availability of trace metals from background and waste site soil samples collected from the US Department of Energy's Savannah River Site (SRS).

  2. Radionuclide limits for vault disposal at the Savannah River Site

    SciTech Connect (OSTI)

    Cook, J.R.

    1992-02-04T23:59:59.000Z

    The Savannah River Site is developing a facility called the E-Area Vaults which will serve as the new radioactive waste disposal facility beginning early in 1992. The facility will employ engineered below-grade concrete vaults for disposal and above-grade storage for certain long-lived mobile radionuclides. This report documents the determination of interim upper limits for radionuclide inventories and concentrations which should be allowed in the disposal structures. The work presented here will aid in the development of both waste acceptance criteria and operating limits for the E-Area Vaults. Disposal limits for forty isotopes which comprise the SRS waste streams were determined. The limits are based on total facility and vault inventories for those radionuclides which impact groundwater, and or waste package concentrations for those radionuclides which could affect intruders.

  3. October 1, 1989 tornado at the Savannah River Site

    SciTech Connect (OSTI)

    Parker, M.J.; Kurzeja, R.J.

    1990-01-01T23:59:59.000Z

    A tornado with wind speeds in the 113 to 157 mph range struck the southern portion of the Savannah River Site near Aiken, SC at around 7:30 pm on October 1, 1989. The tornado was spawned from a severe thunderstorm with a height of 57,000 ft in a warm and humid air mass. Two million dollars in timber damage occurred over 2,500 acres along a ten-mile swath, but no onsite structural damage or personal injury occurred. Tree-fall patterns indicated that some of this damage was the result of thunderstorm downbursts which accompanied the tornado. Ground-based and aerial photography showed both snapped and mowed over trees which indicate that the tornado was elevated at times. 4 refs., 25 figs., 2 tabs.

  4. Sanitary landfill groundwater quality assessment plan Savannah River Site

    SciTech Connect (OSTI)

    Wells, D.G.; Cook, J.W.

    1990-06-01T23:59:59.000Z

    This assessment monitoring plan has been prepared in accordance with the guidance provided by the SCDHEC in a letter dated December 7, 1989 from Pearson to Wright and a letter dated October 9, 1989 from Keisler to Lindler. The letters are included a Appendix A, for informational purposes. Included in the plan are all of the monitoring data from the landfill monitoring wells for 1989, and a description of the present monitoring well network. The plan proposes thirty-two new wells and an extensive coring project that includes eleven soil borings. Locations of the proposed wells attempt to follow the SCDHEC guidelines and are downgradient, sidegradient and in the heart of suspected contaminant plumes. Also included in the plan is the current Savannah River Site Sampling and Analysis Plan and the well construction records for all of the existing monitoring wells around the sanitary landfill.

  5. Implementation of ISO140001 at the Savannah River Site

    SciTech Connect (OSTI)

    Marra, S.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Reeves, R.D.

    1998-04-20T23:59:59.000Z

    The Department of Energy`s Savannah River Site (SRS) in Aiken, SC recently received ISO14001 certification. ISO14001 is an internationally recognized standard that delineates the elements of an effective environmental management system (EMS) and enhances environmental stewardship. SRS preparations for ISO14001 certification involved a comparison of existing programs to the requirements of the standard. Gaps in the program were identified and work initiated to fill those gaps. Primarily, these deficiencies were related to documentation of the SRS EMS and employee training. Certification was granted after an extensive review by a team of independent auditors. The review included personnel interviews, documentation reviews, and work practice observations. An overview of the preparation process as well as the independent review will be presented.

  6. Savannah River Site production reactor technical specifications. K Production Reactor

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    These technical specifications are explicit restrictions on the operation of the Savannah River Site K Production Reactor. They are designed to preserve the validity of the plant safety analysis by ensuring that the plant is operated within the required conditions bounded by the analysis, and with the operable equipment that is assumed to mitigate the consequences of an accident. Technical specifications preserve the primary success path relied upon to detect and respond to accidents. This report describes requirements on thermal-hydraulic limits; limiting conditions for operation and surveillance for the reactor, power distribution control, instrumentation, process water system, emergency cooling and emergency shutdown systems, confinement systems, plant systems, electrical systems, components handling, and special test exceptions; design features; and administrative controls.

  7. The Savannah River Site's Groundwater Monitoring Program, second quarter 1990

    SciTech Connect (OSTI)

    Not Available

    1991-02-07T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1990 (April through June) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1990 are listed in this report.

  8. Updated Site Response Analyses for the Waste Treatment Plant, DOE Hanford, Site, Washington.

    SciTech Connect (OSTI)

    Youngs, Robert R.

    2007-06-29T23:59:59.000Z

    This document describes the calculations performed to develop updated relative amplification functions for the Waste Treatment and Immobilization Plant (WTP) facility at the DOE Hanford Site, Washington State. The original 2,000-year return period design spectra for the WTP were based on the results of a probabilistic seismic hazard analysis (PSHA) performed for the DOE Hanford Site by Geomatrix (1996). Geomatrix (1996) performed the PSHA using empirical soil-site ground motion models based primarily on recordings from California. As part of that study, site response analyses were performed to evaluate ground motions at the Hanford sites and California deep soil sites. As described in Appendix A of Geomatrix (1996), characteristic site profiles and dynamic soil properties representative of conditions at various Hanford sites and California deep soil strong motion recording stations were defined. Relative site responses of the Hanford profiles and California profiles were then compared. Based on the results of those site response analyses, it was concluded that ground motions at the Hanford sites underlain by deep soil deposits are similar in character to those on California deep soil sites and it was judged appropriate to use empirical deep soil site attenuation relationships based primarily on California ground motion data to develop design spectra for the Hanford sites. In a subsequent analysis, Geomatrix (2003) updated the site response analyses of Geomatrix (1996, Appendix A) to incorporate randomization of the California and Hanford profiles. The results of that analysis also led to the conclusion that the response of the Hanford profiles was similar to the response of deep soil sites in California.

  9. Site Selection for the Salt Disposition Facility at the Savannah River Site

    SciTech Connect (OSTI)

    Gladden, J.B.; Rueter, K.J.; Morin, J.P.

    2000-11-15T23:59:59.000Z

    A site selection study was conducted to identify a suitable location for the construction and operation of a new Salt Disposition Facility (SDF) at the Savannah River Site (SRS). The facility to be sited is a single processing facility and support buildings that could house either of three technology alternatives being developed by the High Level Waste Systems Engineering Team: Small Tank Tetraphenylborate Precipitation, Crystalline Silicotitanate Non-Elutable Ion Exchange or Caustic Side Solvent Extraction. A fourth alternative, Direct Disposal in grout, is not part of the site selection study because a location has been identified that is unique to this technology (i.e., Z-Area). Facility site selection at SRS is a formal, documented process that seeks to optimize siting of new facilities with respect to facility-specific engineering requirements, sensitive environmental resources, and applicable regulatory requirements. In this manner, the prime objectives of cost minimization, environmental protection, and regulatory compliance are achieved. The results from this geotechnical characterization indicated that continued consideration be given to Site B for the proposed SDF. Suitable topography, the lack of surface hydrology and floodplain issues, no significant groundwater contamination, the presence of minor soft zones along the northeast portion of footprint, and no apparent geological structure in the Gordon Aquitard support this recommendation.

  10. Overview of Fiscal Year 2002 Research and Development for Savannah River Site's Salt Waste Processing Facility

    SciTech Connect (OSTI)

    H. D. Harmon, R. Leugemors, PNNL; S. Fink, M. Thompson, D. Walker, WSRC; P. Suggs, W. D. Clark, Jr

    2003-02-26T23:59:59.000Z

    The Department of Energy's (DOE) Savannah River Site (SRS) high-level waste program is responsible for storage, treatment, and immobilization of high-level waste for disposal. The Salt Processing Program (SPP) is the salt (soluble) waste treatment portion of the SRS high-level waste effort. The overall SPP encompasses the selection, design, construction and operation of treatment technologies to prepare the salt waste feed material for the site's grout facility (Saltstone) and vitrification facility (Defense Waste Processing Facility). Major constituents that must be removed from the salt waste and sent as feed to Defense Waste Processing Facility include actinides, strontium, cesium, and entrained sludge. In fiscal year 2002 (FY02), research and development (R&D) on the actinide and strontium removal and Caustic-Side Solvent Extraction (CSSX) processes transitioned from technology development for baseline process selection to providing input for conceptual design of the Salt Waste Processing Facility. The SPP R&D focused on advancing the technical maturity, risk reduction, engineering development, and design support for DOE's engineering, procurement, and construction (EPC) contractors for the Salt Waste Processing Facility. Thus, R&D in FY02 addressed the areas of actual waste performance, process chemistry, engineering tests of equipment, and chemical and physical properties relevant to safety. All of the testing, studies, and reports were summarized and provided to the DOE to support the Salt Waste Processing Facility, which began conceptual design in September 2002.

  11. Hazardous waste shipment data collection from DOE sites

    SciTech Connect (OSTI)

    Page, L.A.; Kirkpatrick, T.D. (Idaho National Engineering Lab., Idaho Falls, ID (United States)); Stevens, L. (USDOE, Washington, DC (United States))

    1992-01-01T23:59:59.000Z

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste.

  12. Hazardous waste shipment data collection from DOE sites

    SciTech Connect (OSTI)

    Page, L.A.; Kirkpatrick, T.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Stevens, L. [USDOE, Washington, DC (United States)

    1992-12-31T23:59:59.000Z

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste.

  13. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TANK FARM CLOSURE

    SciTech Connect (OSTI)

    JARAYSI, M.N.; SMITH, Z.; QUINTERO, R.; BURANDT, M.B.; HEWITT, W.

    2006-01-30T23:59:59.000Z

    The U. S. Department of Energy, Office of River Protection and the CH2M HILL Hanford Group, Inc. are responsible for the operations, cleanup, and closure activities at the Hanford Tank Farms. There are 177 tanks overall in the tank farms, 149 single-shell tanks (see Figure 1), and 28 double-shell tanks (see Figure 2). The single-shell tanks were constructed 40 to 60 years ago and all have exceeded their design life. The single-shell tanks do not meet Resource Conservation and Recovery Act of 1976 [1] requirements. Accordingly, radioactive waste is being retrieved from the single-shell tanks and transferred to double-shell tanks for storage prior to treatment through vitrification and disposal. Following retrieval of as much waste as is technically possible from the single-shell tanks, the Office of River Protection plans to close the single-shell tanks in accordance with the Hanford Federal Facility Agreement and Consent Order [2] and the Atomic Energy Act of 1954 [3] requirements. The double-shell tanks will remain in operation through much of the cleanup mission until sufficient waste has been treated such that the Office of River Protection can commence closing the double-shell tanks. At the current time, however, the focus is on retrieving waste and closing the single-shell tanks. The single-shell tanks are being managed and will be closed in accordance with the pertinent requirements in: Resource Conservation and Recovery Act of 1976 and its Washington State-authorized Dangerous Waste Regulations [4], US DOE Order 435.1 Radioactive Waste Management [5], the National Environmental Policy Act of 1969 [6], and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [7]. The Hanford Federal Facility Agreement and Consent Order, which is commonly referred to as the Tri-Party Agreement or TPA, was originally signed by Department of Energy, the State of Washington, and the U. S. Environmental Protection Agency in 1989. Meanwhile, the retrieval of the waste is under way and is being conducted to achieve the completion criteria established in the Hanford Federal Facility Agreement and Consent Order.

  14. Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site

    SciTech Connect (OSTI)

    Wike, L.D.

    2000-08-17T23:59:59.000Z

    A site selection study was conducted to evaluate locations for the proposed Surplus Plutonium Disposition Facilities. Facilities to be located include the Mixed Oxide (MOX) Fuel Fabrication Facility, the Pit Disassembly and Conversion Facility (PDCF), and the Plutonium Immobilization Project (PIP) facility. Objectives of the study include: (1) Confirm that the Department of Energy (DOE) selected locations for the MOX and PDCF were suitable based on selected siting criteria, (2) Recommend a site in the vicinity of F Area that is suitable for the PIP, and (3) Identify alternative suitable sites for one or more of these facilities in the event that further geotechnical characterization or other considerations result in disqualification of a currently proposed site.

  15. DOE Site Facility Management Contracts Internet Posting | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE Contract DOEEnergy Site Facility Management

  16. Hanford and Savannah River Site Programmatic and Technical Integration

    SciTech Connect (OSTI)

    Ramsey, William Gene

    2013-08-15T23:59:59.000Z

    Abstract only. The Hanford Site and the Savannah River Site (SRS) were the primary plutonium production facilities within the U.S. nuclear weapons complex. Radioactive wastes were generated as part of these missions and are stored in similar fashion. The majority of radioactivity maintained by the two sites is located in underground carbon steel tanks in the physical form of supernatant, saltcake, or sludge. Disposition of SRS tank waste is ongoing by converting it into glass (pathway for sludge and radionuclides separated from supernatant or dissolved saltcake) or cement (pathway for the decontaminated supernatant and dissolved saltcake). Tank closure activity has also begun at SRS and will continue for the duration of mission. The Hanford tank waste inventory is roughly 2/3rds larger than SRS's by volume- but nominally half the radioactivity. The baseline disposition path includes high-level and low-activity waste vitrification with separate disposition of contact-handled transuranic tank waste. Retrieval of tank waste from aging single­ shell tanks (SSTs) into double-shell tanks (DSTs) is currently ongoing. As vitrification commences later this decade, Hanford will be in a similar operations mode as SRS. Site integration is increasing as the missions align. The ongoing integration is centered on key issues that impact both sites- regardless of mission timeframe. Three recent workshop exchanges have been held to improve communication with the primary intent of improving operations and technical work organization. The topics of these workshops are as follows: DST space utilization, optimization, and closure; Waste Feed Qualification; and, Cementitious Waste Forms. Key goals for these and future exchanges include aligning research and technology, preparing for joint initiatives (to maximize budgetary value for the customer), and reviewing lessons learned. Each site has played a leading role in the development of technology and operational practices that can be used to meet current challenges and to minimize the impact of future challenges. This paper provides an overview of the exchanges held, but predominately focuses on the team development and actions leading from the workshops.

  17. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT SUMMARY FOR 2012

    SciTech Connect (OSTI)

    Griffith, M.; Meyer, A.

    2013-09-12T23:59:59.000Z

    This report's purpose is to: ? Present summary environmental data that characterize Site environmental management performance, ? Describe compliance status with respect to environmental standards and requirements, and ? Highlight significant programs and efforts. Environmental monitoring is conducted extensively with a 2,000-square-mile network extending 25 miles from SRS, with some monitoring performed as far as 100 miles from the Site. The area includes neighboring cities, towns, and counties in Georgia (GA) and South Carolina (SC). Thousands of samples of air, rainwater, surface water, drinking water, groundwater, food products, wildlife, soil, sediment, and vegetation are collected by SRS and analyzed for the presence of radioactive and nonradioactive contaminants. During 2012, SRS accomplished several significant milestones while maintaining its record of environmental excellence, as its operations continued to result in minimal impact to the public and the environment. The Site?s radioactive and chemical discharges to air and water were well below regulatory standards for environmental and public health protection; its air and water quality met applicable requirements; and the potential radiation dose to the public was well below the DOE public dose limit.

  18. RESEARCH AND DEVELOPMENT ACTIVITIES AT SAVANNAH RIVER SITE'S H CANYON FACILITY

    SciTech Connect (OSTI)

    Sexton, L.; Fuller, Kenneth

    2013-07-09T23:59:59.000Z

    The Savannah River Site's (SRS) H Canyon Facility is the only large scale, heavily shielded, nuclear chemical separations plant still in operation in the U.S. The facility's operations historically recovered uranium-235 (U-235) and neptunium-237 (Np-237) from aluminum-clad, enriched-uranium fuel tubes from Site nuclear reactors and other domestic and foreign research reactors. Today the facility, in conjunction with HB Line, is working to provide the initial feed material to the Mixed Oxide Facility also located on SRS. Many additional campaigns are also in the planning process. Furthermore, the facility has started to integrate collaborative research and development (R&D) projects into its schedule. H Canyon can serve as the appropriate testing location for many technologies focused on monitoring the back end of the fuel cycle, due to the nature of the facility and continued operation. H Canyon, in collaboration with the Savannah River National Laboratory (SRNL), has been working with several groups in the DOE complex to conduct testing demonstrations of novel technologies at the facility. The purpose of conducting these demonstrations at H Canyon will be to demonstrate the capabilities of the emerging technologies in an operational environment. This paper will summarize R&D testing activities currently taking place in H Canyon and discuss the possibilities for future collaborations.

  19. USED NUCLEAR MATERIALS AT SAVANNAH RIVER SITE: ASSET OR WASTE?

    SciTech Connect (OSTI)

    Magoulas, V.

    2013-06-03T23:59:59.000Z

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable (“assets”) to worthless (“wastes”). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or – in the case of high level waste – awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site’s (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as “waste” include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest.

  20. DOE Issues Salt Waste Determination for the Savannah River Site |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartment offor EnergyDepartment

  1. Regulatory Framework for Salt Waste Disposal and Tank Closure at the Savannah River Site - 13663

    SciTech Connect (OSTI)

    Thomas, Steve; Dickert, Ginger [Savannah River Remediation LLC, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River Remediation LLC, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    The end of the Cold War has left a legacy of approximately 37 million gallons of radioactive waste in the aging waste tanks at the Department of Energy's Savannah River Site (SRS). A robust program is in place to remove waste from these tanks, treat the waste to separate into a relatively small volume of high-level waste and a large volume of low-level waste, and to actively dispose of the low-level waste on-site and close the waste tanks and associated ancillary structures. To support performance-based, risk-informed decision making and to ensure compliance with all regulatory requirements, the U.S. Department of Energy (DOE) and its current and past contractors have worked closely with the South Carolina Department of Health and Environmental Control (SCDHEC), the U.S. Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) to develop and implement a framework for on-site low-level waste disposal and closure of the SRS waste tanks. The Atomic Energy Act of 1954, as amended, provides DOE the authority to manage defense-related radioactive waste. DOE Order 435.1 and its associated manual and guidance documents detail this radioactive waste management process. The DOE also has a requirement to consult with the NRC in determining that waste that formerly was classified as high-level waste can be safely managed as either low-level waste or transuranic waste. Once DOE makes a determination, NRC then has a responsibility to monitor DOE's actions in coordination with SCDHEC to ensure compliance with the Title 10 Code of Federal Regulations Part 61 (10CFR61), Subpart C performance objectives. The management of hazardous waste substances or components at SRS is regulated by SCDHEC and the EPA. The foundation for the interactions between DOE, SCDHEC and EPA is the SRS Federal Facility Agreement (FFA). Managing this array of requirements and successfully interacting with regulators, consultants and stakeholders is a challenging task but ensures thorough and thoughtful processes for disposing of the SRS low-level waste and the closure of the tank farm facilities. (authors)

  2. The Savannah River Site`s Groundwater Monitoring Program. Second quarter, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-01-10T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1991 are listed in this report.

  3. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-06-18T23:59:59.000Z

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the fourth quarter of 1990. It includes the analytical data, field data, well activity data, and other documentation for this program, provides a record of the program`s activities and rationale, and serves as an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of analytical and other data, maintenance of the databases containing groundwater monitoring data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  4. The Savannah River Site`s Groundwater Monitoring Program, second quarter 1990

    SciTech Connect (OSTI)

    Not Available

    1991-02-07T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1990 (April through June) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1990 are listed in this report.

  5. Response of structures to energetic events for the Savannah River Site production reactors probabilistic risk assessment

    SciTech Connect (OSTI)

    Santa Cruz, S.M.; Smith, D.C. (Science Applications International Corp., Albuquerque, NM (United States)); Yau, W.F. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-01-01T23:59:59.000Z

    The response of structures to energetic events postulated to arise in a probabilistic risk assessment (PRA) of a Savannah River Site (SRS) production reactor is addressed. Energetic events that arise in PRAs can damage structures and therefore have a significant influence on subsequent accident progression. Consequently, the structural response is important to the calculated risk of operating a plant. Difficulties are encountered, however, in the analysis of structural response of components to energetic loadings. First, the analysis of energetic events often does not provide well-defined static or dynamic loads acting on the structures. Secondly, risk assessments, by their nature, address a wide range of events that are not necessarily precisely defined. This paper describes an approach taken to develop the structural analysis required to support the PRA of the SRS production reactor, that overcomes these difficulties.

  6. Response of structures to energetic events for the Savannah River Site production reactors probabilistic risk assessment

    SciTech Connect (OSTI)

    Santa Cruz, S.M.; Smith, D.C. [Science Applications International Corp., Albuquerque, NM (United States); Yau, W.F. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-10-01T23:59:59.000Z

    The response of structures to energetic events postulated to arise in a probabilistic risk assessment (PRA) of a Savannah River Site (SRS) production reactor is addressed. Energetic events that arise in PRAs can damage structures and therefore have a significant influence on subsequent accident progression. Consequently, the structural response is important to the calculated risk of operating a plant. Difficulties are encountered, however, in the analysis of structural response of components to energetic loadings. First, the analysis of energetic events often does not provide well-defined static or dynamic loads acting on the structures. Secondly, risk assessments, by their nature, address a wide range of events that are not necessarily precisely defined. This paper describes an approach taken to develop the structural analysis required to support the PRA of the SRS production reactor, that overcomes these difficulties.

  7. Savannah River Site, Spent Nuclear Fuel Management, Draft Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    1998-12-24T23:59:59.000Z

    The proposed DOE action described in this environmental impact statement (EIS) is to implement appropriate processes for the safe and efficient management of spent nuclear fuel and targets assigned to the Savannah River Site (SRS), including placing these materials in forms suitable for ultimate disposition. Options to treat, package, and store this material are discussed. The material included in this EIS consists of approximately 68 metric tons heavy metal (MTHM) of spent nuclear fuel (20 MTHM of aluminum-based spent nuclear fuel at SRS, as much as 28 MTHM of aluminum-clad spent nuclear fuel from foreign and domestic research reactors to be shipped to SRS through 2035, and 20 MTHM of stainless-steel or zirconium-clad spent nuclear fuel and some programmatic material stored at SRS for repackaging and dry storage pending shipment offsite).

  8. Use of Savannah River Site facilities for blend down of highly enriched uranium

    SciTech Connect (OSTI)

    Bickford, W.E.; McKibben, J.M.

    1994-02-01T23:59:59.000Z

    Westinghouse Savannah River Company was asked to assess the use of existing Savannah River Site (SRS) facilities for the conversion of highly enriched uranium (HEU) to low enriched uranium (LEU). The purpose was to eliminate the weapons potential for such material. Blending HEU with existing supplies of depleted uranium (DU) would produce material with less than 5% U-235 content for use in commercial nuclear reactors. The request indicated that as much as 500 to 1,000 MT of HEU would be available for conversion over a 20-year period. Existing facilities at the SRS are capable of producing LEU in the form of uranium trioxide (UO{sub 3}) powder, uranyl nitrate [UO{sub 2}(NO{sub 3}){sub 2}] solution, or metal. Additional processing, and additional facilities, would be required to convert the LEU to uranium dioxide (UO{sub 2}) or uranium hexafluoride (UF{sub 3}), the normal inputs for commercial fuel fabrication. This study`s scope does not include the cost for new conversion facilities. However, the low estimated cost per kilogram of blending HEU to LEU in SRS facilities indicates that even with fees for any additional conversion to UO{sub 2} or UF{sub 6}, blend-down would still provide a product significantly below the spot market price for LEU from traditional enrichment services. The body of the report develops a number of possible facility/process combinations for SRS. The primary conclusion of this study is that SRS has facilities available that are capable of satisfying the goals of a national program to blend HEU to below 5% U-235. This preliminary assessment concludes that several facility/process options appear cost-effective. Finally, SRS is a secure DOE site with all requisite security and safeguard programs, personnel skills, nuclear criticality safety controls, accountability programs, and supporting infrastructure to handle large quantities of special nuclear materials (SNM).

  9. AUTHORIZING THE DOT SPECIFICATION 6M PACKAGING FOR CONTINUED USE AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Watkins, R.; Loftin, B.; Hoang, D.

    2010-03-04T23:59:59.000Z

    The U.S. Department of Transportation (DOT) Specification 6M packaging was in extensive use for more than 40 years for in-commerce shipments of Type B quantities of fissile and radioactive material (RAM) across the USA, among the Department of Energy (DOE) laboratories, and between facilities in the DOE production complex. In January 2004, the DOT Research and Special Programs Administration (RSPA) Agency issued a final rule in the Federal Register to ammend requirements in the Hazardous Materials Regulations (HMR) pertaining to the transportation of radioactive materials. The final rule became effective on October 1, 2004. One of those changes discontinued the use of the DOT specification 6M, along with other DOT specification packagings, on October 1, 2008. A main driver for the change was due to the fact that 6M specification packagings were not supported by a Safety Analysis Report for Packagings (SARP) that was compliant with Title 10 of the Code of Federal Regulations (CFR) Part 71 (10 CFR 71). The regulatory rules for the discontinued use have been edited in Title 49 of the CFR Parts 100-185, 2004 edition and thereafter. Prior to October 1, 2008, the use of the 6M within the boundaries of the Savannah River Site (SRS), called an onsite transfer, was governed by an onsite transportation document that referenced 49 CFR Parts 100-185. SRS had to develop an Onsite Safety Assessment (OSA) which was independent of 49 CFR in order to justify the continued use of the DOT Specification 6M for the transfer of radioactive material (RAM) at the SRS after October 1, 2008. This paper will discuss the methodology for and difficulties associated with authorizing the DOT Specification 6M Packaging for continued use at the Savannah River Site.

  10. A Three-Year Study of Ichyoplankton in Coastal Plains Reaches of the Savannah River Site and its Tributaries

    SciTech Connect (OSTI)

    Martin, D.

    2007-03-05T23:59:59.000Z

    Altering flow regimes of rivers has large effects on native floras and faunas because native species are adapted to the natural flow regime, many species require lateral connectivity with floodplain habitat for feeding or spawning, and the change in regime often makes it possible for invasive species to replace natives (Bunn & Arthington 2002). Floodplain backwaters, both permanent and temporary, are nursery areas for age 0+ fish and stable isotope studies indicate that much of the productivity that supports fish larvae is autochthonous to these habitats (Herwig et al. 2004). Limiting access by fish to floodplain habitat for feeding, spawning and nursery habitat is one of the problems noted with dams that regulate flow in rivers and is considered to be important as an argument to remove dams and other flow regulating structures from rivers (Shuman 1995; Bednarek 2001). While there have been a number of studies in the literature about the use of floodplain habitat for fish reproduction (Copp 1989; Killgore & Baker 1996; Humphries, et al. 1999; Humphries and Lake 2000; Crain et al. 2004; King 2004) there have been only a few studies that examined this aspect of stream ecology in more than a cursory way. The study reported here was originally designed to determine whether the Department of Energy's (DOE) Savannah River Site was having a negative effect on fish reproduction in the Savannah River but its experimental design allowed examination of the interactions between the river, the floodplain and the tributaries entering the Savannah River across this floodplain. This study is larger in length of river covered than most in the literature and because of its landscape scale may be in important indicator of areas where further study is required.

  11. EIS-0387: DOE Notice of Availability of the Draft Site-Wide Environmen...

    Energy Savers [EERE]

    DOE Notice of Availability of the Draft Site-Wide Environmental Impact Statement EIS-0387: DOE Notice of Availability of the Draft Site-Wide Environmental Impact Statement Y-12...

  12. EA-0387: DOE Notice of Availability of the Final Site-Wide Environment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    87: DOE Notice of Availability of the Final Site-Wide Environmental Impact Statement EA-0387: DOE Notice of Availability of the Final Site-Wide Environmental Impact Statement Y-12...

  13. EIS-0426: DOE Notice of Availability of the Draft Site-Wide Environmen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Notice of Availability of the Draft Site-Wide Environmental Impact Statement and Notice of Public Hearings EIS-0426: DOE Notice of Availability of the Draft Site-Wide...

  14. Independent Oversight Activity Report, Savannah River Site Waste...

    Broader source: Energy.gov (indexed) [DOE]

    Safety and Security (HSS) (Reference 1). Meet with the SRS WSB project staff and Savannah River Nuclear Solutions (SRNS) engineers to discuss the proposed corrective actions...

  15. PIA - Savannah River Site Management and Operating Contractor...

    Energy Savers [EERE]

    Management and Operating Contractor (HRMS) More Documents & Publications PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) Integrated Safety...

  16. Health protection at the Savannah River Site: A guide to records series of the Department of Energy and its contractors

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    As part of the Department of Energy`s (DOE) Epidemiologic Records Inventory Project, History Associates Incorporated (HAI) prepared this guide to the records series pertaining to health protection activities at the DOE`s Savannah River Site (SRS). Since its inception in the early 1950s, the SRS, formerly known as the Savannah River Plant (SRP), has demonstrated significant interest in safeguarding facilities, protecting employees` health, and monitoring the environment. The guide describes records that concern health protection program administration, radiological monitoring of the plant and the environment, calibration and maintenance of monitoring instruments, internal and external dosimetry practices, medical surveillance of employees, occupational safety and training measures, site visitation, and electronic information systems. The introduction to the guide describes the Epidemiologic Records Inventory Project and HAI`s role in the project. It provides brief histories of the DOE, SRS, and the SRS organizational units responsible for health protection activities. This introduction also summarizes HAI`s methodology in developing criteria and conducting its verification of the SRS inventory of active and inactive SRS Health Protection records. Furthermore, it furnishes information on the production of the guide, the content of the records series descriptions, the location of the records, and the procedures for accessing records repositories.

  17. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    L.C. Hulstrom

    2010-08-11T23:59:59.000Z

    This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

  18. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Coumbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    L.C. Hulstrom

    2010-11-10T23:59:59.000Z

    This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

  19. TECHNICAL ASSESSMENT OF FRACTIONAL CRYSTALLIZATION FOR TANK WASTE PRETREATMENT AT THE DOE HANFORD SITE

    SciTech Connect (OSTI)

    HAMILTON, D.W.

    2006-01-03T23:59:59.000Z

    Radioactive wastes from one hundred seventy-seven underground storage tanks in the 200 Area of the Department of Energy (DOE) Hanford Site in Washington State will be retrieved, treated and stored either on site or at an approved off-site repository. DOE is currently planning to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions, which would be treated and permanently disposed in separate facilities. A significant volume of the wastes in the Hanford tanks is currently classified as medium Curie waste, which will require separation and treatment at the Waste Treatment Plant (WTP). Because of the specific challenges associated with treating this waste stream, DOE EM-21 funded a project to investigate the feasibility of using fractional crystallization as a supplemental pretreatment technology. The two process requirements for fractional crystallization to be successfully applied to Hanford waste include: (1) evaporation of water from the aqueous solution to enrich the activity of soluble {sup 137}Cs, resulting in a higher activity stream to be sent to the WTP, and (2) separation of the crystalline salts that are enriched in sodium, carbonate, sulfate, and phosphate and sufficiently depleted in {sup 137}Cs, to produce a second stream to be sent to Bulk Vitrification. Phase I of this project has just been completed by COGEMA/Georgia Institute of Technology. The purpose of this report is to document an independent expert review of the Phase I results with recommendations for future testing. A team of experts with significant experience at both the Hanford and Savannah River Sites was convened to conduct the review at Richland, Washington the week of November 14, 2005.

  20. Darwin : The Third DOE ARM TWP ARCS Site /

    SciTech Connect (OSTI)

    Clements, William E.; Jones, L. A. (Larry A.); Baldwin, T. (Tony); Nitschke, K. (Kim)

    2002-01-01T23:59:59.000Z

    The United States Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Program began operations in its Tropical Western Pacific (TWP) locale in October 1996 when the first Atmospheric Radiation and Cloud Station (ARCS) began collecting data on Manus Island in Papua New Guinea (PNG). Two years later, in November 1998, a second ARCS began operations on the island of Nauru in the Central Pacific. Now a third ARCS has begun collecting data in Darwin, Australia. The Manus, Nauru, and Darwin sites are operated through collaborative agreements with the PNG National Weather Service, The Nauru Department of Industry and Economic Development (IED), and the Australian Bureau of Meteorology's (BOM) Special Services Unit (SSU) respectively. All ARM TWP activities in the region are coordinated with the South Pacific Regional Environment Programme (SPREP) based in Apia, Samoa. The Darwin ARM site and its role in the ARM TWP Program are discussed.

  1. Computation Of The Residual Radionuclide Activity Within Three Natural Waterways At The Savannah River Site

    SciTech Connect (OSTI)

    Hiergesell, R. A.; Phifer, M. A.

    2014-01-07T23:59:59.000Z

    In 2010 a Composite Analysis (CA) of the U.S. Department of Energy’s (DOE’s) Savannah River Site (SRS) was completed. This investigation evaluated the dose impact of the anticipated SRS End State residual sources of radionuclides to offsite members of the public. Doses were assessed at the locations where SRS site streams discharge into the Savannah River at the perimeter of the SRS. Although the model developed to perform this computation indicated that the dose constraint of 0.3 mSv/yr (30 mrem/yr), associated with CA, was not approached at the Points of Assessment (POAs), a significant contribution to the total computed dose was derived from the radionuclides (primarily Cs-137) bound-up in the soil and sediment of the drainage corridors of several SRS streams. DOE’s Low Level Waste Federal Review Group (LFRG) reviewed the 2010 CA and identified several items to be addressed in the SRS Maintenance Program. One of the items recognized Cs-137 in the Lower Three Runs (LTR) Integrator Operable Unit (IOU), as a significant CA dose driver. The item made the recommendation that SRS update the estimated radionuclide inventory, including Cs-137, in the LTR IOU. That initial work has been completed and its radionuclide inventory refined. There are five additional streams at SRS and the next phase of the response to the LFRG concern was to obtain a more accurate inventory and distribution of radionuclides in three of those streams, Fourmile Branch (FMB), Pen Branch (PB) and Steel Creek (SC). Each of these streams is designated as an IOU, which are defined for the purpose of this investigation as the surface water bodies and associated wetlands, including the channel sediment, floodplain sed/soil, and related biota. If present, radionuclides associated with IOUs are adsorbed to the streambed sediment and soils of the shallow floodplains that lie immediately adjacent to stream channels. The scope of this effort included the evaluation of any previous sampling and analysis data that had been collected for various SRS investigations, as well as the additional streambed and floodplain sampling and analysis data acquired more recently as part of the ongoing SRS IOU program, and associated specifically with the FMB, PB, and SC IOUs. Samples have been acquired along the waterways, within the stream channels themselves and in the adjacent floodplain zones. While Cs-137 is the most significant and abundant radionuclide associated with the SRS waterways, it is not the only radionuclide, hence work was conducted to evaluate all radionuclides present.

  2. DOE - Office of Legacy Management -- Elk River Reactor - MN 01

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffalo -Elk River Reactor - MN 01 FUSRAP

  3. Sorption and transport of iodine species in sediments from the Savannah River and Hanford Sites

    E-Print Network [OSTI]

    Hu, Qinhong "Max"

    States b Advanced Analytical Center for Environmental Sciences, Savannah River Ecology LaboratorySorption and transport of iodine species in sediments from the Savannah River and Hanford Sites Division, Lawrence Livermore National Laboratory, 7000 East Avenue, MS L-231, Livermore, CA 94550, United

  4. Environmental assessment operation of the HB-Line facility and frame waste recovery process for production of Pu-238 oxide at the Savannah River Site

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0948, addressing future operations of the HB-Line facility and the Frame Waste Recovery process at the Savannah River Site (SRS), near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, DOE has concluded that, the preparation of an environmental impact statement is not required, and is issuing this Finding of No Significant Impact.

  5. DOE Selects Washington River Protection Solutions, LLC for Tank...

    Broader source: Energy.gov (indexed) [DOE]

    Management and the Hanford site. Media contact(s): Joann Wardrip, (202) 586-4940 Carrie Meyer, (509) 376-2048 Addthis Related Articles Retrieval of the Tenth Single-Shell Tank...

  6. Management approaches for environmental restoration at the U.S. Department of Energy Weapons Complex, Savannah River Site: A case study

    SciTech Connect (OSTI)

    Johnson, S.V. [USDOE Savannah River Operations Office, Aiken, SC (United States); Mayberry, J.J. [Ebasco Environmental Div., Augusta, GA (United States)

    1993-12-31T23:59:59.000Z

    This paper introduces the management approaches for environmental restoration at the US Department of Energy Weapons Complex. A brief chronology of environmental restoration complex-wide is presented. This chronology, which focuses on the changing climate at DOE facilities, is then keyed to activities at the Savannah River Site (SRS) in Aiken, South Carolina, USA. Past, present, and future environmental restoration activities at SRS are discussed, reflecting the change in emphasis at the site.

  7. Cross borehole induced polarization to detect subsurface NAPL at the Savannah River Site, South Carolina

    E-Print Network [OSTI]

    Lambert, Michael B. (Michael Brian), 1980-

    2003-01-01T23:59:59.000Z

    Spectral induced polarization measurements were acquired in six cross-borehole panels within four boreholes at the Savannah River Site. The investigation was performed to delineate the presence of dense non-aqueous phase ...

  8. {sup 239}Pu Holdup Measurements at Savannah River Site's FB-Line

    SciTech Connect (OSTI)

    Hodge, C.A.

    2001-06-20T23:59:59.000Z

    Plutonium holdup measurements were conducted in the dry cabinets of FB-Line at the Savannah River Site. This report will discuss the methodology, measurements, assumptions, calculations, and corrections.

  9. Federal Facilities Liaison Weighs in on EM Achievements, Challenges at Savannah River Site

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – For more than two decades, Shelly Wilson has been working with the Savannah River Site (SRS) as an employee of South Carolina Department of Health and Environmental Control (SCDHEC)....

  10. Community-Minded Interns at Savannah River Site Help Area Residents in Need with Home Repairs

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – More than two dozen college interns who worked at the Savannah River Site (SRS) this summer joined other volunteers and headed into area neighborhoods to help people in need with home repairs.

  11. Demonstration of Small Tank Tetraphenylborate Precipitation Process Using Savannah River Site High Level Waste

    SciTech Connect (OSTI)

    Peters, T.B.

    2001-09-10T23:59:59.000Z

    This report details the experimental effort to demonstrate the continuous precipitation of cesium from Savannah River Site High Level Waste using sodium tetraphenylborate. In addition, the experiments examined the removal of strontium and various actinides through addition of monosodium titanate.

  12. The Savannah River Site`s groundwater monitoring program. Third quarter 1990

    SciTech Connect (OSTI)

    Not Available

    1991-05-06T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.

  13. Greater Green River Basin production improvement project, Phase 1: Site characterization report

    SciTech Connect (OSTI)

    DeJarnett, B.B.; Krystinik, L.F.; Mead, R.H.; Poe, S.C.

    1996-05-01T23:59:59.000Z

    Several tight, naturally-fractured, gas-productive formations in the Greater Green River Basin (GGRB) in Wyoming have been exploited using conventional vertical well technology. Typically, hydraulic fracture treatments must be performed in completing these wells to increase gas production rates to economic levels. However, with the maturation of horizontal drilling technology hydraulic fracture treatments may not be the most effective method for improving gas production from these tight reservoirs. Two of the most prolific tight gas reservoirs in the Green River Basin, the Frontier and the Mesaverde, are candidates for the application of horizontal well completion technology. The objective of the proposed project is to apply the DOE`s technical concept to the Second Frontier Formation on the western flank of the Rock Springs Uplift. Previous industry attempts to produce in commercial quantities from the Second Frontier Formation have been hampered by lack of understanding of both the in-situ natural fracture system and lack of adequate stimulation treatments. The proposed technical approach involves drilling a vertical characterization well to the Second Frontier Formation at a depth of approximately 16,000 ft. from a site located about 18 miles northwest of Rock Springs, Wyoming. Logging, coring, and well testing information from the vertical well will be used to design a hydraulic fracturing treatment and to assess the resulting production performance. Data from the vertical drilling phase will be used to design a 2,500 to 3,000-ft lateral wellbore which will be kicked off from the vertical hole and extend into the blanket marine sandstone bench of the Second Frontier Formation. The trajectory of this wellbore will be designed to intersect the maximum number of natural fractures to maximize production rates. Production testing of the resulting completion will provide an assessment of reserve potential related to horizontal lateral completions.

  14. Nonproliferation impacts assessment for the management of the Savannah River Site aluminum-based spent nuclear fuel

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    On May 13, 1996, the US established a new, 10-year policy to accept and manage foreign research reactor spent nuclear fuel containing uranium enriched in the US. The goal of this policy is to reduce civilian commerce in weapons-usable highly enriched uranium (HEU), thereby reducing the risk of nuclear weapons proliferation. Two key disposition options under consideration for managing this fuel include conventional reprocessing and new treatment and packaging technologies. The Record of Decision specified that, while evaluating the reprocessing option, ``DOE will commission or conduct an independent study of the nonproliferation and other (e.g., cost and timing) implications of chemical separation of spent nuclear fuel from foreign research reactors.`` DOE`s Office of Arms Control and Nonproliferation conducted this study consistent with the aforementioned Record of Decision. This report addresses the nonproliferation implications of the technologies under consideration for managing aluminum-based spent nuclear fuel at the Savannah River Site. Because the same technology options are being considered for the foreign research reactor and the other aluminum-based spent nuclear fuels discussed in Section ES.1, this report addresses the nonproliferation implications of managing all the Savannah River Site aluminum-based spent nuclear fuel, not just the foreign research reactor spent nuclear fuel. The combination of the environmental impact information contained in the draft EIS, public comment in response to the draft EIS, and the nonproliferation information contained in this report will enable the Department to make a sound decision regarding how to manage all aluminum-based spent nuclear fuel at the Savannah River Site.

  15. Lessons Learned and Best Practices in Savannah River Site Saltstone...

    Office of Environmental Management (EM)

    Vegas, NV December 12, 2014 To view all the P&RA CoP 2014 Technical Exchange Meeting videos click here. Video Presentation Lessons Learned and Best Practices in Savannah River...

  16. Savannah River Site High-Level Waste Tank Closure Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2002-05-31T23:59:59.000Z

    The U.S. Atomic Energy Commission, a U.S. Department of Energy (DOE) predecessor agency, established the Savannah River Site (SRS) near Aiken, South Carolina, in the early 1950s. The primary mission of SRS was to produce nuclear materials for national defense. With the end of the Cold War and the reduction in the size of the United States stockpile of nuclear weapons, the SRS mission has changed. While national defense is still an important facet of the mission, SRS no longer produces nuclear materials and the mission is focused on material stabilization, environmental restoration, waste management, and decontamination and decommissioning of facilities that are no longer needed. As a result of its nuclear materials production mission, SRS generated large quantities of high-level radioactive waste (HLW). The HLW resulted from dissolving spent reactor fuel and nuclear targets to recover the valuable radioactive isotopes. DOE had stored the HLW in 51 large underground storage tanks located in the F- and H-Area Tank Farms at SRS. DOE has emptied and closed two of those tanks. DOE is treating the HLW, using a process called vitrification. The highly radioactive portion of the waste is mixed with a glass like material and stored in stainless steel canisters at SRS, pending shipment to a geologic repository for disposal. This process is currently underway at SRS in the Defense Waste Processing Facility (DWPF). The HLW tanks at SRS are of four different types, which provide varying degrees of protection to the environment due to different degrees of containment. The tanks are operated under the authority of the Atomic Energy Act of 1954 (AEA) and DOE Orders issued under the AEA. The tanks are permitted by the South Carolina Department of Health and Environmental Control (SCDHEC) under South Carolina wastewater regulations, which require permitted facilities to be closed after they are removed from service. DOE has entered into an agreement with the U.S. Environmental Protection Agency (EPA) and SCDHEC to close the HLW tanks after they have been removed from service. Closure of the HLW tanks would comply with DOE's responsibilities under the AEA and the South Carolina closure requirements and be carried out under a schedule agreed to by DOE, EPA, and SCDHEC. There are several ways to close the HLW tanks. DOE has prepared this Environmental Impact Statement (EIS) to ensure that the public and DOE's decision makers have a thorough understanding of the potential environmental impacts of alternative means of closing the tanks. This Summary: (1) describes the HLW tanks and the closure process, (2) describes the National Environmental Policy Act (NEPA) process that DOE is using to aid in decision making, (3) summarizes the alternatives for closing the HLW tanks and identifies DOE.s preferred alternative, and (4) identifies the major conclusions regarding environmental impacts, areas of controversy, and issues that remain to be resolved as DOE proceeds with the HLW tank closure process.

  17. PLUTONIUM SOLUBILITY IN SIMULATED SAVANNAH RIVER SITE WASTE SOLUTIONS

    SciTech Connect (OSTI)

    Rudisill, T.; Hobbs, D.; Edwards, T.

    2010-09-27T23:59:59.000Z

    To address the accelerated disposition of the supernate and salt portions of Savannah River Site (SRS) high level waste (HLW), solubility experiments were performed to develop a predictive capability for plutonium (Pu) solubility. A statistically designed experiment was used to measure the solubility of Pu in simulated solutions with salt concentrations and temperatures which bounded those observed in SRS HLW solutions. Constituents of the simulated waste solutions included: hydroxide (OH{sup -}), aluminate (Al(OH){sub 4}{sup -}), sulfate (SO{sub 4}{sup 2-}), carbonate (CO{sub 3}{sup 2-}), nitrate (NO{sub 3}{sup -}), and nitrite (NO{sub 2}{sup -}) anions. Each anion was added to the waste solution in the sodium form. The solubilities were measured at 25 and 80 C. Five sets of samples were analyzed over a six month period and a partial sample set was analyzed after nominally fifteen months of equilibration. No discernable time dependence of the measured Pu concentrations was observed except for two salt solutions equilibrated at 80 C which contained OH{sup -} concentrations >5 mol/L. In these solutions, the Pu solubility increased with time. This observation was attributed to the air oxidation of a portion of the Pu from Pu(IV) to the more soluble Pu(V) or Pu(VI) valence states. A data driven approach was subsequently used to develop a modified response surface model for Pu solubility. Solubility data from this study and historical data from the literature were used to fit the model. The model predicted the Pu solubility of the solutions from this study within the 95% confidence interval for individual predictions and the analysis of variance indicated no statistically significant lack of fit. The Savannah River National Laboratory (SRNL) model was compared with predicted values from the Aqueous Electrolyte (AQ) model developed by OLI Systems, Inc. and a solubility prediction equation developed by Delegard and Gallagher for Hanford tank waste. The agreement between measured or values predicted by the SRNL model and values predicted by the OLI AG model was very poor. The much higher predicted concentrations by the OLI AQ model appears to be the result of the model predicting the predominate Pu oxidation state is Pu(V) which is reported as unstable below sodium hydroxide (NaOH) concentrations of 6 M. There was very good agreement between the predicted Pu concentrations using the SRNL model and the model developed by Delegard and Gallagher with the exception of solutions that had very high OH{sup -} (15 M) concentrations. The lower Pu solubilities in these solutions were attributed to the presence of NO{sub 3}{sup -} and NO{sub 2}{sup -} which limit the oxidation of Pu(IV) to Pu(V).

  18. Carbon-14 geochemistry at the Savannah River Site

    SciTech Connect (OSTI)

    Roberts, Kimberly A.; Kaplan, Daniel I.

    2013-05-10T23:59:59.000Z

    Carbon-14 is among the key radionuclides driving risk at the E-Area Low-Level Waste Disposal Facility on the Savannah River Site (SRS). Much of this calculated risk is believed to be the result of having to make conservative assumptions in risk calculations because of the lack of site-specific data. The original geochemical data package (Kaplan 2006) recommended that performance assessments and composite analyses for the SRS assume that {sup 14}C did not sorbed to sediments or cementitious materials, i.e., that C-14 K{sub d} value (solid:liquid concentration ratio) be set to 0 mL/g (Kaplan 2006). This recommendation was based primarily on the fact that no site-specific experimental work was available and the assumption that the interaction of anionic {sup 14}C as CO{sub 2}{sup 2-}) with similarly charged sediments or cementitious materials would be minimal. When used in reactive transport equations, the 0 mL/g Kd value results in {sup 14}C not interacting with the solid phase and moving quickly through the porous media at the same rate as water. The objective of this study was to quantify and understand how aqueous {sup 14}C, as dissolved carbonate, sorbs to and desorbs from SRS sediments and cementitious materials. Laboratory studies measuring the sorption of {sup 14}C, added as a carbonate, showed unequivocally that {sup 14}C-carbonate K{sub d} values were not equal to 0 mL/g for any of the solid phases tested, but they required several months to come to steady state. After six months of contact, the apparent K{sub d} values for a clayey sediment was 3,000 mL/g, for a sandy sediment was 10 mL/g, for a 36-year-old concrete was 30,000 mL/g, and for a reducing grout was 40 mL/g. Furthermore, it was demonstrated that (ad)sorption rates were appreciably faster than desorption rates, indicating that a kinetic sorption model, as opposed to the steady-state K{sub d} model, may be a more accurate description of the {sup 14}C-carbonate sorption process. A second study demonstrated that the {sup 14}C-carbonate sorbed very strongly onto the various materials and could not be desorbed by anion exchanged with high concentrations of carbonate or nitrate. High phosphate concentrations were able to desorb {sup 14}C-carbonate from the 36-year-old concrete sample, but not the clayey sediment sample. Together these geochemistry studies support the use of non-zero K{sub d} values in risk calculations on the SRS. For performance assessment (PA) calculations, {sup 14}C would be moving with the groundwater, remaining in contact with sediment for days, not months. Therefore for purposes of SRS risk calculations, it is appropriate to select sorption values after a couple days of contact, departing from the traditional definition that states K{sub d} values reflect the system under steady state conditions. Such an “apparent K{sub d} value,” would be expected to provide a better (and more conservative) estimate of what to expect under SRS PA conditions. Based on these results, recommended apparent K{sub d} values for use in the PA are 1 mL/g for sandy sediments and 30 mL/g for clayey sediments.

  19. Site Screening and Technical Guidance for Monitored Natural Attenuation at DOE Sites

    SciTech Connect (OSTI)

    Borns, D.J.; Brady, P.V.; Brady, W.D.; Krupka, K.M.; Spalding, B.P.; Waters, R.D.; Zhang, P.

    1999-03-01T23:59:59.000Z

    Site Screening and Technical Guidance for Monitored Natural Attenuation at DOE Sites briefly outlines the biological and geochemical origins of natural attenuation, the tendency for natural processes in soils to mitigate contaminant transport and availability, and the means for relying on monitored natural attenuation (MNA) for remediation of contaminated soils and groundwaters. This report contains a step-by-step guide for (1) screening contaminated soils and groundwaters on the basis of their potential for remediation by natural attenuation and (2) implementing MNA consistent with EPA OSWER Directive 9200.4-17. The screening and implementation procedures are set up as a web-based tool (http://www.sandia.gov/eesector/gs/gc/na/mnahome.html) to assist US Department of Energy (DOE) site environmental managers and their staff and contractors to adhere to EPA guidelines for implementing MNA. This document is intended to support the Decision Maker's Framework Guide and Monitoring Guide both to be issued from DOE EM-40. Further technical advances may cause some of the approach outlined in this document to change over time.

  20. Savannah River Site Spent Nuclear Fuel Management Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2000-04-14T23:59:59.000Z

    The proposed DOE action considered in this environmental impact statement (EIS) is to implement appropriate processes for the safe and efficient management of spent nuclear fuel and targets at the Savannah River Site (SRS) in Aiken County, South Carolina, including placing these materials in forms suitable for ultimate disposition. Options to treat, package, and store this material are discussed. The material included in this EIS consists of approximately 68 metric tons heavy metal (MTHM) of spent nuclear fuel 20 MTHM of aluminum-based spent nuclear fuel at SRS, as much as 28 MTHM of aluminum-clad spent nuclear fuel from foreign and domestic research reactors to be shipped to SRS through 2035, and 20 MTHM of stainless-steel or zirconium-clad spent nuclear fuel and some Americium/Curium Targets stored at SRS. Alternatives considered in this EIS encompass a range of new packaging, new processing, and conventional processing technologies, as well as the No Action Alternative. A preferred alternative is identified in which DOE would prepare about 97% by volume (about 60% by mass) of the aluminum-based fuel for disposition using a melt and dilute treatment process. The remaining 3% by volume (about 40% by mass) would be managed using chemical separation. Impacts are assessed primarily in the areas of water resources, air resources, public and worker health, waste management, socioeconomic, and cumulative impacts.

  1. Treatment of M-area mixed wastes at the Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The Department of Energy has prepared this environmental assessment, DOE/EA-0918, to assess the potential environmental impacts of the treatment of mixed wastes currently stored in the M-Area at the Savannah River Site, near Aiken, South Carolina. DOE is proposing to treat and stabilize approximately 700,000 gallons of mixed waste currently stored in the Interim Treatment/Storage Facility (IT/SF) and Mixed Waste Storage Shed (MWSS). This waste material is proposed to be stabilized using a vitrification process and temporarily stored until final disposal is available by the year 2005. This document has been prepared to assess the potential environmental impacts attributable to the treatment and stabilization of M-area mixed wastes, the closure of the interim storage area, and storage of the vitrified waste until disposal in onsite RCRA vaults. Based on the analyses in the environmental assessment, the Department of Energy has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and the Department of Energy is issuing this finding of no significant impact.

  2. 06554_GreenRiverGIS | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) - Energy Innovation Portal AdvancedUsing Artificial2June 2015GIS

  3. PIA - DOE Savannah River Operations Office PRISM System | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartmentChartForums OutreachAMWTP2009DOE

  4. Magnetotellurics At New River Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez Pueblo Area (DOE GTP) Exploration Activity1988) |New

  5. Geothermometry At New River Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005)EnergyAmatitlanGmbH und Co2010) |Information|

  6. EM Completes Salt Waste Disposal Units $8 Million under Budget at Savannah River Site

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – The EM program at Savannah River Site (SRS) has built two more low-level salt waste disposal units ahead of schedule and under budget. This work is essential to the mission of cleaning and closing the site's underground waste tanks.

  7. Environmental Stewardship at the Savannah River Site: Generations of Success - 13212

    SciTech Connect (OSTI)

    Looney, Brian B.; Bergren, Christopher L.; Gaughan, Thomas F.; Aylward, Robert S.; Guevara, Karen C.; Whitaker, Wade C.; Hennessey, Brian T.; Mills, Gary L.; Blake, John I. [Savannah River Site, Aiken SC 29808, 773-42A (United States)] [Savannah River Site, Aiken SC 29808, 773-42A (United States)

    2013-07-01T23:59:59.000Z

    Approximately sixty years ago, the Savannah River Site (SRS) was built to produce nuclear materials. SRS production operations impacted air, soil, groundwater, ecology, and the local environment. Throughout its history, SRS has addressed these contamination issues directly and has maintained a commitment to environmental stewardship. The Site boasts many environmental firsts. Notably, SRS was the first major Department of Energy (DOE) facility to perform a baseline ecological assessment. This pioneering effort, by Ruth Patrick and the Philadelphia Academy of Sciences, was performed during SRS planning and construction in the early 1950's. This unique early generation of work set the stage for subsequent efforts. Since that time, the scientists and engineers at SRS pro-actively identified environmental problems and developed and implemented effective and efficient environmental management and remediation solutions. This second generation, spanning the 1980's through the 2000's, is exemplified by numerous large and small cleanup actions to address metals and radionuclides, solvents and hydrocarbons, facility and area decommissioning, and ecological restoration. Recently, a third generation of environmental management was initiated as part of Enterprise SRS. This initiative to 'Develop and Deploy Next Generation Cleanup Technologies' formalizes and organizes the major technology matching, development, and implementation processes associated with historical SRS cleanup success as a resource to support future environmental management missions throughout DOE. The four elements of the current, third generation, effort relate to: 1) transition from active to passive cleanup, 2) in situ decommissioning of large nuclear facilities, 3) new long term monitoring paradigms, and 4) a major case study related to support for recovery and restoration of the Japanese Fukushima-Daiichi nuclear power plant and surrounding environment. (authors)

  8. Sanitary landfill local-scale flow and transport modeling in support of alternative concentrations limit demonstrations, Savannah River Site

    SciTech Connect (OSTI)

    Kelly, V.A.; Beach, J.A.; Statham, W.H.; Pickens, J.F. [INTERA, Inc., Austin, TX (United States)

    1993-02-19T23:59:59.000Z

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility located near Aiken, South Carolina which is currently operated and managed by Westinghouse Savannah River Company (WSRC). The Sanitary Landfill (Sanitary Landfill) at the SRS is located approximately 2,000 feet Northwest of Upper Three Runs Creek (UTRC) on an approximately 70 acre site located south of Road C between the SRS B-Area and UTRC. The Sanitary Landfill has been receiving wastes since 1974 and operates as an unlined trench and fill operation. The original landfill site was 32 acres. This area reached its capacity around 1987 and a Northern Expansion of 16 acres and a Southern Expansion of 22 acres were added in 1987. The Northern Expansion has not been used for waste disposal to date and the Southern Expansion is expected to reach capacity in 1992 or 1993. The waste received at the Sanitary Landfill is predominantly paper, plastics, rubber, wood, metal, cardboard, rags saturated with degreasing solvents, pesticide bags, empty cans, and asbestos in bags. The landfill is not supposed to receive any radioactive wastes. However, tritium has been detected in the groundwater at the site. Gross alpha and gross beta are also evaluated at the landfill. The objectives of this modeling study are twofold: (1) to create a local scale Sanitary Landfill flow model to study hydraulic effects resulting from capping the Sanitary Landfill; and (2) to create a Sanitary Landfill local scale transport model to support ACL Demonstrations for a RCRA Part B Permit Renewal.

  9. Independent Oversight Review of the Savannah River Site Salt...

    Energy Savers [EERE]

    Absorption HP Horsepower HSS DOE Office of Health, Safety and Security HVAC Heating, Ventilation, and Air Conditioning ITM Inspection, Testing, and Maintenance ITP...

  10. CHARACTERIZATION OF GLOVEBOX GLOVES FOR THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Korinko, P.

    2013-01-24T23:59:59.000Z

    A task was undertaken to characterize glovebox gloves that are currently used in the facilities at Savannah River Site (SRS) as well as some experimental and advanced compound gloves that have been proposed for use. Gloves from four manufacturers were tested for permeation in hydrogen and air, thermal stability, tensile properties, puncture resistance and dynamic mechanical response. The gloves were compared to each other within the type and also to the butyl rubber glove that is widely used at the SRS. The permeation testing demonstrated that the butyl compounds from three of the vendors behaved similarly and exhibited hydrogen permeabilities of .52‐.84 x10{sup ‐7} cc H{sub 2}*cm / (cm{sup 2}*atm). The Viton? glove performed at the lower edge of this bound, while the more advanced composite gloves exhibited permeabilities greater than a factor of two compared to butyl. Thermogravimetric analysis was used to determine the amount of material lost under slightly aggressive conditions. Glove losses are important since they can affect the life of glovebox stripper systems. During testing at 90, 120, and 150?C, the samples lost most of the mass in the initial 60 minutes of thermal exposure and as expected increasing the temperature increased the mass loss and shortened the time to achieve a steady state loss. The ranking from worst to best was Jung butyl‐Hypalon? with 12.9 %, Piercan Hypalon? with 11.4 %, and Jung butyl‐Viton? with 5.2% mass loss all at approximately 140?C. The smallest mass losses were experienced by the Jung Viton? and the Piercan polyurethane. Tensile properties were measured using a standard dog bone style test. The butyl rubber exhibited tensile strengths of 11‐15 MPa and elongations or 660‐843%. Gloves made from other compounds exhibited lower tensile strengths (5 MPa Viton) to much higher tensile strengths (49 MPa Urethane) with a comparable range of elongation. The puncture resistance of the gloves was measured in agreement with an ASTM standard. The Butyl gloves exhibited puncture resistance from 183 ? 296 lbs/in for samples of 0.020 ? 0.038? thick. Finally, the glass transition temperature and the elastic and viscoelastic properties as a function of temperature up to maximum use temperature were determined for each glove material using Dynamic Mechanical Analysis. The glass transition temperatures of the gloves were ‐60?C for butyl, ‐30?C for polyurethane, ‐ 16?C Hypalon?, ‐16?C for Viton?, and ‐24?C for polyurethane‐Hypalon?. The glass transition was too complex for the butyl‐Hypalon? and butyl‐Viton? composite gloves to be characterized by a single glass transition temperature. All of the glass transition temperatures exceed the vendor projected use temperatures.

  11. Geochemical and physical properties of wetland soils at the Savannah River site

    SciTech Connect (OSTI)

    Dixon, K.L; Rogers, V.A.; Conner, S.P.; Cummings, C.L.; Gladden, J.B.; Weber, J.M.

    1996-05-01T23:59:59.000Z

    The Savannah River Site (SRS), located in Aiken, Allendale, and Barnwell Counties, South Carolina, is a nuclear production facility operated for the U.S. Department of Energy (DOE) by Westinghouse Savannah River Company (WSRC). To facilitate future human health and ecological risk assessments, treatability studies, remedial investigations, and feasibility studies for its wetland areas, SRS needs a database of background geochemical and physical properties of wetland soils. These data are needed for comparison to data collected from wetland soils that may have been affected by SRS operations. SRS contains 36,000 acres of wetlands and an additional 5,000 acres of bottom land soils subject to flooding. Recent studies of wetland soils near various waste units at SRS show that some wetlands have been impacted by releases of contaminants resulting from SRS operations (WSRC, 1992). Waste waters originating from the operations facilities typically have been discharged into seepage basins located in upland soils, direct discharge of waste water to wetland areas has been minimal. This suggests that impacted wetland areas have been affected indirectly as a result of transport mechanisms such as surface runoff, groundwater seeps, fluvial or sediment transport, and leaching. Looney et al. (1990) conducted a study to characterize the geochemical and physical properties of upland soils and shallow sediments on the SRS. A primary objective of the upland study was to collect the data needed to assess the qualitative and quantitative impacts of SRS operations on the environment. By comparing the upland soils data to data collected from waste units located in similar soils, SRS impacts could be assessed. The data were also intended to aid in selection of remediation alternatives. Because waste units at SRS have historically been located in upland areas, wetland soils were not sampled. (Abstract Truncated)

  12. Instream biological assessment of NPDES point source discharges at the Savannah River Site, 1997-1998

    SciTech Connect (OSTI)

    Specht, W.L.

    2000-02-28T23:59:59.000Z

    The Savannah River Site currently has 33 permitted NPDES outfalls that have been permitted by the South Carolina Department of Health an Environmental Control to discharge to SRS streams and the Savannah River. In order to determine the cumulative impacts of these discharges to the receiving streams, a study plan was developed to perform in-stream assessments of the fish assemblages, macroinvertebrate assemblages, and habitats of the receiving streams.

  13. Environmental Assessment for the Health Protection Instrument Calibration Facility at the Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    The purpose of this Environmental Assessment (EA) is to review the possible environmental consequences associated with the construction and operation of a Health Protection Instrument Calibration Facility on the Savannah River Site (SRS). The proposed replacement calibration facility would be located in B Area of SRS and would replace an inadequate existing facility currently located within A Area of SRS (Building 736-A). The new facility would provide laboratories, offices, test equipment and the support space necessary for the SRS Radiation Monitoring Instrument Calibration Program to comply with DOE Orders 5480.4 (Environmental Protection, Safety and Health Protection Standards) and 5480.11 (Radiation Protection for Occupational Workers). The proposed facility would serve as the central site source for the evaluation, selection, inspection, testing, calibration, and maintenance of all SRS radiation monitoring instrumentation. The proposed facility would be constructed on a currently undeveloped portion in B Area of SRS. The exact plot associated with the proposed action is a 1.2 hectare (3 acre) tract of land located on the west side of SRS Road No. 2. The proposed facility would lie approximately 4.4 km (2.75 mi) from the nearest SRS site boundary. The proposed facility would also lie within the confines of the existing B Area, and SRS safeguards and security systems. Archaeological, ecological, and land use reviews have been conducted in connection with the use of this proposed plot of land, and a detailed discussion of these reviews is contained herein. Socioeconomic, operational, and accident analyses were also examined in relation to the proposed project and the findings from these reviews are also contained in this EA.

  14. Remedial Investigation of Hanford Site Releases to the Columbia River - 13603

    SciTech Connect (OSTI)

    Lerch, J.A.; Hulstrom, L.C. [Washington Closure Hanford, LLC, Richland, Washington 99354 (United States)] [Washington Closure Hanford, LLC, Richland, Washington 99354 (United States); Sands, J.P. [U.S Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)] [U.S Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)

    2013-07-01T23:59:59.000Z

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts from release of Hanford Site radioactive substances to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River [1] was issued in 2008 to initiate assessment of the impacts under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [2]. The work plan established a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities over a 120-mile stretch of the Columbia River began in October 2008 and were completed in 2010. Sampled media included surface water, pore water, surface and core sediment, island soil, and fish (carp, walleye, whitefish, sucker, small-mouth bass, and sturgeon). Information and sample results from the field investigation were used to characterize current conditions within the Columbia River and assess whether current conditions posed a risk to ecological or human receptors that would merit additional study or response actions under CERCLA. The human health and ecological risk assessments are documented in reports that were published in 2012 [3, 4]. Conclusions from the risk assessment reports are being summarized and integrated with remedial investigation/feasibility study (RI/FS) reports developed for upland areas, riparian areas, and groundwater in the Hanford Site River Corridor. The RI/FS reports will evaluate the impacts to soil, groundwater, and river sediments and lead to proposed cleanup actions and records of decision to address releases from the Hanford Site reactor operations. (authors)

  15. Environmental assessment for the reuse of TNX as a multi-purpose pilot plant campus at the Savannah River Site

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    The Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental and safety impacts of DOE planning to allow asset reuse of the TNX Area at the Savannah River Site (SRS) located near Aiken, South Carolina. The proposed action would include providing for a location for the Centers of Excellence at or adjacent to SRS and entering into a cooperative agreement with a non-profit management and operations (management firm) contractor to operate and market the TNX facilities and equipment. The area (formerly TNX) would be called a Multi-Purpose Pilot Plant Campus (MPPC) and would be used: (1) as location for technology research, development, demonstration, and commercial operations; (2) to establish partnerships with industry to develop applied technologies for commercialization; and (3) serve as administrative headquarters for Centers of Excellence in the program areas of soil remediation, radioecology, groundwater contamination, and municipal solid waste minimization.

  16. Decommissioning an Active Historical Reactor Facility at the Savannah River Site - 13453

    SciTech Connect (OSTI)

    Bergren, Christopher L.; Long, J. Tony; Blankenship, John K. [Savannah River Nuclear Solutions, LLC, Bldg. 730-4B, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, LLC, Bldg. 730-4B, Aiken, SC 29808 (United States); Adams, Karen M. [United States Department of Energy, Bldg. 730-B, Aiken, SC 29808 (United States)] [United States Department of Energy, Bldg. 730-B, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    The Savannah River Site (SRS) is an 802 square-kilometer United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina, where Management and Operations are performed by Savannah River Nuclear Solutions (SRNS). In 2004, DOE recognized SRS as structure within the Cold War Historic District of national, state and local significance composed of the first generation of facilities constructed and operated from 1950 through 1989 to produce plutonium and tritium for our nation's defense. DOE agreed to manage the SRS 105-C Reactor Facility as a potentially historic property due to its significance in supporting the U.S. Cold War Mission and for potential for future interpretation. This reactor has five primary areas within it, including a Disassembly Basin (DB) that received irradiated materials from the reactor, cooled them and prepared the components for loading and transport to a Separation Canyon for processing. The 6,317 square meter area was divided into numerous work/storage areas. The walls between the individual basin compartments have narrow vertical openings called 'slots' that permit the transfer of material from one section to another. Data indicated there was over 830 curies of radioactivity associated with the basin sediments and approximately 9.1 M liters of contaminated water, not including a large quantity of activated reactor equipment, scrap metal, and debris on the basin floor. The need for an action was identified in 2010 to reduce risks to personnel in the facility and to eliminate the possible release of contaminants into the environment. The release of DB water could potentially migrate to the aquifer and contaminate groundwater. DOE, its regulators [U. S. Environmental Protection Agency (USEPA)-Region 4 and the South Carolina Department of Health and Environmental Control (SCDHEC)] and the SC Historical Preservation Office (SHPO) agreed/concurred to perform a non-time critical removal action for the In Situ Decommissioning (ISD) of the 105-C Disassembly Basin. ISD consisted of stabilization/isolation of remaining contaminated water, sediment, activated reactor equipment, and scrap metal by filling the DB with underwater non-structural grout to the appropriate (-4.877 meter) grade-level, thence with dry area non-structural grout to the final -10 centimeter level. The roof over the DB was preserved due to its potential historical significance and to prevent the infiltration of precipitation. Forced evaporation was the form of treatment implemented to remove the approximately 9.1 M liters of contaminated basin water. Using specially formulated grouts, irradiated materials and sediment were treated by solidification/isolation thus reducing their mobility, reducing radiation exposure and creating an engineered barrier thereby preventing access to the contaminants. Grouting provided a low permeability barrier to minimize any potential transport of contaminants to the aquifer. Efforts were made to preserve the historical significance of the Reactor in accordance with the National Historic Preservation Act. ISD provides a cost effective means to isolate and contain residual radioactivity from past nuclear operations allowing natural radioactive decay to reduce hazards to manageable levels. This method limits release of radiological contamination to the environment, minimizes radiation exposure to workers, prevents human/animal access to the hazardous substances, and allows for ongoing monitoring of the decommissioned facility. Field construction was initiated in August 2011; evaporator operations commenced January 2012 and ended July 2012 with over 9 M liters of water treated/removed. Over 8,525 cubic meters of grout were placed, completing in August 2012. The project completed with an excellent safety record, on schedule and under budget. (authors)

  17. Restart of K-Reactor, Savannah River Site: Safety evaluation report

    SciTech Connect (OSTI)

    Not Available

    1991-04-01T23:59:59.000Z

    This Safety Evaluation Report (SER) focuses on those issues required to support the restart of the K-Reactor at the Savannah River Plant. This SER provides the safety criteria for restart and documents the results of the staff reviews of the DOE and operating contractor activities to meet these criteria. To develop the restart criteria for the issues discussed in this SER, the Savannah River Restart Office and Savannah River Special Projects Office staffs relied, when possible, on commercial industry codes and standards and on NRC requirements and guidelines for the commercial nuclear industry. However, because of the age and uniqueness of the Savannah River reactors, criteria for the commercial plants were not always applicable. In these cases, alternate criteria were developed. The restart criteria applicable to each of the issues are identified in the safety evaluations for each issue. The restart criteria identified in this report are intended to apply only to restart of the Savannah River reactors. Following the development of the acceptance criteria, the DOE staff and their support contractors evaluated the results of the DOE and operating contractor (WSRC) activities to meet these criteria. The results of those evaluations are documented in this report. Deviations or failures to meet the requirements are either justified in the report or carried as open or confirmatory items to be completed and evaluated in supplements to this report before restart. 62 refs., 1 fig.

  18. DOE Issues Final Site-Wide Environmental Impact Statement for...

    Broader source: Energy.gov (indexed) [DOE]

    Security Site The U.S. Department of Energy, National Nuclear Security Administration (NNSA) has issued the Final Site-Wide Environmental Impact Statement (EIS) for the Nevada...

  19. Savannah River Site offsite hazardous waste shipment data validation report. Revision 1

    SciTech Connect (OSTI)

    Casey, C.; Kudera, D.E.; Page, L.A.; Rohe, M.J.

    1995-05-01T23:59:59.000Z

    The objective of this data validation is to verify that waste shipments reported in response to the US Department of Energy Headquarters data request are properly categorized according to DOE-HQ definitions. This report documents all findings and actions resulting from the independent review of the Savannah River Site data submittal, and provides a summary of the SRS data submittal and data validation strategy. The overall hazardous waste management and offsite release process from 1987--1991 is documented, along with an identification and description of the hazardous waste generation facilities. SRS did not ship any hazardous waste offsite before 1987. Sampling and analysis and surface surveying procedures and techniques used in determining offsite releasability of the shipments are also described in this report. SRS reported 150 manifested waste shipments from 1984 to 1991 that included 4,755 drums or lab packs and 13 tankers. Of these waste items, this report categorizes 4,251 as clean (including 12 tankers), 326 as likely clean, 138 as likely radioactive, and 55 as radioactive (including one tanker). Although outside the original scope of this report, 14 manifests from 1992 and 1993 are included, covering 393 drums or lab packs and seven tankers. From the 1992--1993 shipments, 58 drums or lab packs are categorized as radioactive and 16 drums are categorized as likely radioactive. The remainder are categorized as clean.

  20. Savannah River Site delayed neutron instruments for safeguards measurements. Revision 1

    SciTech Connect (OSTI)

    Studley, R.V.

    1992-12-31T23:59:59.000Z

    The Savannah River Site (SRS) includes a variety of nuclear production facilities that, since 1953, have processed special nuclear materials (SNM) including highly-enriched uranium (>90% {sup 235}U), recycled enriched uranium ({approximately}50% {sup 235}U + 40% {sup 236}U), low burnup plutonium (> 90% {sup 239}Pu + < 6% {sup 240}Pu ) and several other nuclear materials such as heat source plutonium ({sup 238}Pu). DOE Orders, primarily 5633.3, require all nuclear materials to be safeguarded through accountability and material control. Accountability measurements determine the total amount of material in a facility, balancing inventory changes against receipts and shipments, to provide assurance (delayed) that all material was present. Material control immediately detects or deters theft or diversion by assuring materials remain in assigned locations or by impeding unplanned movement of materials within or from a material access area. Goals for accountability or material control, and, therefore, the design of measurement systems, are distinctly different. Accountability measurements are optimized for maximum precision and accuracy, usually for large amounts of special nuclear material. Material control measurements are oriented more toward security features and often must be optimized for sensitivity, to detect small amounts of materials where none should be.

  1. SAVANNAH RIVER SITE'S H-CANYON FACILITY: RECOVERY AND DOWN BLEND URANIUM FOR BENEFICIAL USE

    SciTech Connect (OSTI)

    Magoulas, V.

    2013-05-27T23:59:59.000Z

    For over fifty years, the H Canyon facility at the Savannah River Site (SRS) has performed remotely operated radiochemical separations of irradiated targets to produce materials for national defense. Although the materials production mission has ended, the facility continues to play an important role in the stabilization and safe disposition of proliferable nuclear materials. As part of the US HEU Disposition Program, SRS has been down blending off-specification (off-spec) HEU to produce LEU since 2003. Off-spec HEU contains fission products not amenable to meeting the American Society for Testing and Material (ASTM) commercial fuel standards prior to purification. This down blended HEU material produced 301 MT of ~5% enriched LEU which has been fabricated into light water reactor fuel being utilized in Tennessee Valley Authority (TVA) reactors in Tennessee and Alabama producing economic power. There is still in excess of ~10 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for beneficial use as either ~5% enriched LEU, or for use in subsequent LEU reactors requiring ~19.75% enriched LEU fuel.

  2. Life Extension Program for the Modular Caustic Side Solvent Extraction Unit at Savannah River Site - 13179

    SciTech Connect (OSTI)

    Samadi, Azadeh [Savannah River Remediation, Aiken, SC 29808 (United States)] [Savannah River Remediation, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    Caustic Side Solvent Extraction (CSSX) is currently used at the U.S. Department of Energy (DOE) Savannah River Site (SRS) for removal of cesium from the high-level salt-wastes stored in underground tanks. Currently, the Actinide Removal Process (ARP) and the CSSX process are deployed in the (ARP)/Modular CSSX Unit (MCU), to process salt waste for permanent disposition. The CSSX technology utilizes a multi-component organic solvent and annular centrifugal contactors to extract cesium from alkaline salt waste. The original plant was permitted for a three year design life; however, given the successful operation of the plant, a life extension program was completed to continue operations. The program included detailed engineering analyses of the life-expectancy of passive and active components, resulting in component replacement and/or maintenance and monitoring program improvements. The program also included a review of the operations and resulted in a series of operational improvements. Since the improvements have been made, an accelerated processing rate has been demonstrated. In addition, plans for instituting a next-generation solvent are in place and will enhance the decontamination factors. (author)

  3. Water Quality Sampling Locations Along the Shoreline of the Columbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    Peterson, Robert E.; Patton, Gregory W.

    2009-12-14T23:59:59.000Z

    As environmental monitoring evolved on the Hanford Site, several different conventions were used to name or describe location information for various sampling sites along the Hanford Reach of the Columbia River. These methods range from handwritten descriptions in field notebooks to the use of modern electronic surveying equipment, such as Global Positioning System receivers. These diverse methods resulted in inconsistent archiving of analytical results in various electronic databases and published reports because of multiple names being used for the same site and inaccurate position data. This document provides listings of sampling sites that are associated with groundwater and river water sampling. The report identifies names and locations for sites associated with sampling: (a) near-river groundwater using aquifer sampling tubes; (b) riverbank springs and springs areas; (c) pore water collected from riverbed sediment; and (d) Columbia River water. Included in the listings are historical names used for a particular site and the best available geographic coordinates for the site, as of 2009. In an effort to create more consistency in the descriptive names used for water quality sampling sites, a naming convention is proposed in this document. The convention assumes that a unique identifier is assigned to each site that is monitored and that this identifier serves electronic database management requirements. The descriptive name is assigned for the convenience of the subsequent data user. As the historical database is used more intensively, this document may be revised as a consequence of discovering potential errors and also because of a need to gain consensus on the proposed naming convention for some water quality monitoring sites.

  4. FTCP Site Specific Information - Office of River Protection | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAMDepartmentof Energy River Protection FTCP

  5. FTCP Site Specific Information - Savannah River Field Office | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAMDepartmentof Energy RiverDepartmentof

  6. Savannah River Site Contractor Receives Project Management Institute Award

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmentalEfficiency | DepartmentSavannah River41-HW State|

  7. Savannah River Site Federal Facility Agreement, January 15, 1993 Summary

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmentalEfficiency | DepartmentSavannah River41-HWSite

  8. Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site

    SciTech Connect (OSTI)

    Kaplan, D

    2006-02-28T23:59:59.000Z

    The Savannah River Site disposes of certain types of radioactive waste within subsurface-engineered facilities. One of the tools used to establish the capacity of a given site to safely store radioactive waste (i.e., that a site does not exceed its Waste Acceptance Criteria) is the Performance Assessment (PA). The objective of this document is to provide the geochemical values for the PA calculations. This work is being conducted as part of the on-going maintenance program that permits the PA to periodically update existing calculations when new data becomes available. Because application of values without full understanding of their original purpose may lead to misuse, this document also provides the geochemical conceptual model, approach used for selecting the values, the justification for selecting data, and the assumptions made to assure that the conceptual and numerical geochemical models are reasonably conservative (i.e., reflect conditions that will tend to predict the maximum risk to the hypothetical recipient). The geochemical parameters describe transport processes for 38 elements (>90 radioisotopes) potentially occurring within eight disposal units (Slit Trenches, Engineered Trenches, Low Activity Waste (LAW) Vault, Intermediate Level (ILV) Vaults, TRU-Pad-1, Naval Reactor Waste Pads, Components-in-Grout Trenches, and Saltstone Facility). This work builds upon well-documented work from previous PA calculations (McDowell-Boyer et al. 2000). The new geochemical concepts introduced in this data package are: (1) In the past, solubility products were used only in a few conditions (element existing in a specific environmental setting). This has been expanded to >100 conditions. (2) Radionuclide chemistry in cementitious environments is described through the use of both the Kd and apparent solubility concentration limit. Furthermore, the solid phase is assumed to age during the assessment period (thousands of years), resulting in three main types of controlling solid phases, each possessing a unique set of radionuclide sorption parameters (Kd and solubility concentration limit). (3) A large amount of recent site-specific sorption research has been conducted since the last PA (McDowell-Boyer et al. 2000). These new data have replaced previous Kd values derived from literature values, thus reducing uncertainty and improving accuracy. Finally, because this document will be used by future PA calculations and external acceptance of the document will eventually be required, this document was extensively reviewed. The review process, including the internal review, site review, and external review process is described.

  9. Corrosion Control during Closure Activities at the Savannah River Site - 13514

    SciTech Connect (OSTI)

    Wiersma, Bruce J. [Savannah River National Laboratory, Aiken, SC (United States)] [Savannah River National Laboratory, Aiken, SC (United States); Subramanian, Karthik H.; Martin, Keisha B. [Savannah River Remediation, Aiken, SC (United States)] [Savannah River Remediation, Aiken, SC (United States)

    2013-07-01T23:59:59.000Z

    Liquid radioactive wastes from the Savannah River Site (SRS) separation process are stored in large underground carbon steel tanks. Until the waste is removed from storage, transferred, and processed, the materials and structures of the tanks must maintain a confinement function by providing a barrier to the environment and by maintaining acceptable structural stability during normal service and design basis events (e.g., earthquake conditions). A corrosion control program is in place to ensure that degradation of the steel does not impact the structural and leak integrity functions of these waste tanks. The SRS is currently retrieving waste from older waste tanks and processing the waste through the vitrification for long term stabilization. The retrieval processes prepare the tanks for ultimate closure (i.e., grouting) by removing sludge by mechanical and/or sluicing methods, dissolving salt cake by adding water, and chemical cleaning of the residual sludge with oxalic acid. Each of these retrieval methods will result in waste chemistry that does not meet the requirements of the current corrosion control program. Given the short-term exposure and limited remaining service life for the tanks in which retrievals are being performed, an assessment of the need for corrosion controls in these tanks was performed. The assessment reviewed the corrosion rates in the more aggressive environments and the postulated loads on the structure during the closure activities. The assessment concluded that the current corrosion control program may be suspended for a short period of time while final retrieval of the waste is performed. (authors)

  10. DETERMINATION OF THE DISTRIBUTION AND INVENTORY OF RADIONUCLIDES WITHIN A SAVANNAH RIVER SITE WATERWAY

    SciTech Connect (OSTI)

    Hiergesell, R.; Phifer, M.

    2012-11-09T23:59:59.000Z

    An investigation was conducted to evaluate the radionuclide inventory within the Lower Three Runs (LTR) Integrator Operable Unit (IOU) at the U.S. Department of Energy’s (DOE’s) Savannah River Site (SRS). The scope of this effort included the analysis of previously existing sampling and analysis data as well as additional streambed and floodplain sampling and analysis data acquired to delineate horizontal and vertical distributions of the radionuclide as part of the ongoing SRS environmental restoration program, and specifically for the LTR IOU program. While cesium-137 (Cs-137) is the most significant and abundant radionuclide associated with the LTR IOU it is not the only radionuclide, hence the scope included evaluating all radionuclides present and includes an evaluation of inventory uncertainty for use in sensitivity and uncertainty analyses. The scope involved evaluation of the radionuclide inventory in the P-Reactor and RReactor cooling water effluent canal systems, PAR Pond (including Pond C) and the floodplain and stream sediment sections of LTR between the PAR Pond Dam and the Savannah River. The approach taken was to examine all of the available Sediment and Sediment/Soil analysis data available along the P- and R-Reactor cooling water re-circulation canal system, the ponds situated along those canal reaches and along the length of LTR below Par Pond dam. By breaking the IOU into a series of sub-components and sub-sections, the mass of contaminated material was estimated and a representative central concentration of each radionuclide was computed for each compartment. The radionuclide inventory associated with each sub-compartment was then aggregated to determine the total radionuclide inventory that represented the full LTR IOU. Of special interest was the inventory of Cs-137 due to its role in contributing to the potential dose to an offsite member of the public. The overall LTR IOU inventory of Cs-137 was determined to be 75.5 Ci, which is similar to two earlier estimates. This investigation provides an independent, ground-up estimate of Cs-137 inventory in LTR IOU utilizing the most recent field data.

  11. Modification No. 2 to the remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Green River, Utah: Final

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    Portions of the final Remedial Action Plan (RAP) for the Green River site, Volumes 1 and 2, Appendix B of the Cooperative Agreement No. DE-FC04-81AL16257, March 1991 (DOE, 1991) have been modified. The changes to the RAP are designated as RAP Modification No. 2. These changes have been placed in a three-ring binder that will supplement the original RAP (DOE, 1991), and include the following: addendum to the Executive Summary; Section 3.5 (Ground Water part of the Site Characterization Summary); Section 4.0 (Site Design); Section5.0 (Water Resources Protection Strategy Summary); Appendix D.5 (Ground Water Hydrology); and Appendix E (Ground Water Protection Strategy). In addition to these revisions, there have been editorial changes that clarify the text, but do not change the meaning. Also, certain sections of the document, which are included in the submittal for ease of review and continuity, have been updated to reflect the final ground water protection standards and the current UMTRA Project format and content of RAPs.

  12. A COMPARISON OF HANFORD AND SAVANNAH RIVER SITE HIGH-LEVEL WASTES

    SciTech Connect (OSTI)

    HILL RC PHILIP; REYNOLDS JG; RUTLAND PL

    2011-02-23T23:59:59.000Z

    This study is a simple comparison of high-level waste from plutonium production stored in tanks at the Hanford and Savannah River sites. Savannah River principally used the PUREX process for plutonium separation. Hanford used the PUREX, Bismuth Phosphate, and REDOX processes, and reprocessed many wastes for recovery of uranium and fission products. Thus, Hanford has 55 distinct waste types, only 17 of which could be at Savannah River. While Hanford and Savannah River wastes both have high concentrations of sodium nitrate, caustic, iron, and aluminum, Hanford wastes have higher concentrations of several key constituents. The factors by which average concentrations are higher in Hanford salt waste than in Savannah River waste are 67 for {sup 241}Am, 4 for aluminum, 18 for chromium, 10 for fluoride, 8 for phosphate, 6 for potassium, and 2 for sulfate. The factors by which average concentrations are higher in Hanford sludges than in Savannah River sludges are 3 for chromium, 19 for fluoride, 67 for phosphate, and 6 for zirconium. Waste composition differences must be considered before a waste processing method is selected: A method may be applicable to one site but not to the other.

  13. SUPPLEMENTAL COLUMBIA RIVER PROTECTION ACTIVITIES AT THE DEPARTMENT OF ENERGY HANFORD SITE 2008 TECHNICAL REVIEW

    SciTech Connect (OSTI)

    Looney, B; Dawn S. Kaback, D; Eugene L. LeBoeuf, E; Joe Rossabi, J; Karen L. Skubal, K; David L. Cocke, D; Paul C. Deutsch, P

    2008-09-30T23:59:59.000Z

    Beginning in 2006, the US Department of Energy (DOE) supported nine applied research projects to improve the protection of the Columbia River and mitigate the impacts of Hanford Site groundwater. These projects were funded through a supplemental Congressional budget allocation, and are now in various stages of completion in accordance with the research plans. The DOE Office of Environmental Management Groundwater and Soil Cleanup Technologies (EM-22) sponsored a technical peer review meeting for these projects in Richland WA, July 28-31, 2008. The overall objective of the peer review is to provide information to support DOE decisions about the status and potential future application of the various technologies. The charge for the peer review panel was to develop recommendations for each of the nine 'technologies'. Team members for the July 2008 review were Brian Looney, Gene LeBoeuf, Dawn Kaback, Karen Skubal, Joe Rossabi, Paul Deutsch, and David Cocke. Previous project reviews were held in May 2007 and March-May of 2006. The team used the following four rating categories for projects: (a) Incorporate the technology/strategy in ongoing and future EM activities; (b) Finish existing scope of applied research and determine potential for EM activities when research program is finished; (c) Discontinue current development activities and do not incorporate technology/strategy into ongoing and future EM activities unless a significant and compelling change in potential viability is documented; and (d) Supplement original funded work to obtain the data needed to support a DOE decision to incorporate the technology into ongoing and future EM activities. The supplemental funding portfolio included two projects that addressed strontium, five projects that addressed chromium, one project that addressed uranium and one project that addressed carbon tetrachloride. The projects ranged from in situ treatment methods for immobilizing contaminants using chemical-based methods such as phosphate addition, to innovative surface treatment technologies such as electrocoagulation. Total funding for the nine projects was $9,900,000 in fiscal year (FY) 2006 and $2,000,000 in FY 2007. At the Richland meeting, the peer reviewers provided a generally neutral assessment of the projects and overall progress, and a generally positive assessment with regard to the principal investigators meeting their stated research objectives and performing the planned laboratory research and limited field work. Only one project, the Electrocoagulation Treatability Test, received a rating of 'discontinue' from the team because the project goals had not been met. Because this particular project has already ended, no action with respect to funding withdrawal is necessary. All other projects were recommended to be finished and/or incorporated into field efforts at Hanford. Specific technical comments and recommendations were provided by the team for each project.

  14. DOE to Extend Savannah River Nuclear Solutions Contract at Savannah River

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrack graphics workDepartmentFollowing areofSite to

  15. DOE to Extend Savannah River Nuclear Solutions Contract at Savannah River

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials |ProductionDepartment of Energy toSite to

  16. RADIONUCLIDE DATA PACKAGE FOR PERFORMANCE ASSESSMENT CALCULATIONS RELATED TO THE E-AREA LOW-LEVEL WASTE FACILITY AT THE SAVANNAH RIVER SITE.

    SciTech Connect (OSTI)

    Cook, J

    2007-03-20T23:59:59.000Z

    The Savannah River Site disposes of low-level radioactive waste within on-site engineered disposal facilities. The Savannah River Site must demonstrate that these disposals meet the requirements of DOE Order 435 . 1 through a process known as performance assessment (PA). The objective of this document is to provide the radionuclide -specific data needed for the PA calculations . This work is part of an on-going program to periodically review and update existing PA work as new data becomes available. Revision of the E -Area Low-Level Waste Facility PA is currently underway. The number of radionuclides selected to undergo detailed analysis in the PA is determined by a screening process. The basis of this process is described. Radionuclide-specific data for half-lives, decay modes, daughters, dose conversion factors and groundwater concentration limits are presented with source references and methodologies.

  17. Dry Deposition Velocity Estimation for the Savannah River Site: Part 2 -- Parametric and Site-Specific Analysis

    SciTech Connect (OSTI)

    Napier, Bruce A.; Rishel, Jeremy P.; Cook, Kary M.

    2013-09-12T23:59:59.000Z

    Values for the dry deposition velocity of airborne particles were estimated with the GENII Version 2.10.1 computer code for the Savannah River site using assumptions about surface roughness parameters and particle size and density. Use of the GENII code is recommended by the U.S. Department of Energy for this purpose. Meteorological conditions evaluated include atmospheric stability classes D, E, and F and wind speeds of 0.5, 1.0, 1.5, and 2.0 m/s. Local surface roughness values ranging from 0.03 to 2 meters were evaluated. Particles with mass mean diameters of 1, 5, and 10 microns and densities of 1, 3, 4, and 5 g/cm3 were evaluated. Site specific meteorology was used to predict deposition velocity for Savannah River conditions for a range of distances from 670 to 11,500 meters.

  18. Study plan for conducting a section 316(a) demonstration: K-Reactor cooling tower, Savannah River Site

    SciTech Connect (OSTI)

    Paller, M.H.

    1991-02-01T23:59:59.000Z

    The K Reactor at the Savannah River Site (SRS) began operation in 1954. The K-Reactor pumped secondary cooling water from the Savannah River and discharged directly to the Indian Grave Branch, a tributary of Pen Branch which flows to the Savannah River. During earlier operations, the temperature and discharge rates of cooling water from the K-reactor were up to approximately 70{degree}C and 400 cfs, substantially altering the thermal and flow regimes of this stream. These discharges resulted in adverse impacts to the receiving stream and wetlands along the receiving stream. As a component of a Consent Order (84-4-W as amended) with the South Carolina Department of Health and Environmental Control, the Department of Energy (DOE) evaluated the alternatives for cooling thermal effluents from K Reactor and concluded that a natural draft recirculating cooling tower should be constructed. The cooling tower will mitigate thermal and flow factors that resulted in the previous impacts to the Indian Grave/Pen Branch ecosystem. The purpose of the proposed biological monitoring program is to provide information that will support a Section 316(a) Demonstration for Indian Grave Branch and Pen Branch when K-Reactor is operated with the recirculating cooling tower. The data will be used to determine that Indian Grave Branch and Pen Branch support Balanced Indigenous Communities when K-Reactor is operated with a recirculating cooling tower. 4 refs., 1 fig. 1 tab.

  19. Investigation of nonlinear dynamic soil property at the Savannah River Site

    SciTech Connect (OSTI)

    Lee, R.C.

    2000-01-17T23:59:59.000Z

    This document summarizes laboratory dynamic soil testing investigations conducted by the University of Texas at Austin (UTA) for the Savannah River Site (SRS) (Stokoe et al., 1995a, Stokoe et al., 1995b, Sponseller and Stokoe, 1995). The purpose of the investigation is to provide an evaluation of past testing results in the context of new test data and the development of consistent site wide models of material strain dependencies based upon geologic formation, depth, and relevant index properties.

  20. Contractor Workplace Substance Abuse Program at DOE Sites (10 CFR 707)

    Broader source: Energy.gov [DOE]

    This rule establishes policies, criteria, and procedures for developing and implementing programs to maintain a workplace free from the use of illegal drugs. It applies to DOE contractors performing work at sites owned or controlled by DOE and to individuals with unescorted access to the control areas of certain DOE reactors.

  1. Savannah River Site Ingestion Pathway Methodology Manual for Airborne Radioactive Releases

    SciTech Connect (OSTI)

    Vincent, A.W. III

    2001-01-03T23:59:59.000Z

    This manual documents a recommended methodology for determining the ingestion pathway consequences of hypothetical accidental airborne radiological releases from facilities at the Savannah River Site. Both particulate and tritiated radioactive contaminants are addressed. Other approaches should be applied for evaluation of routine releases.

  2. Finishing Strong in 2011: The Recovery Act at Work at Savannah River Site

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    American Recovery and Reinvestment Act's highlights and accomplishments for 2011 projects. Covers the latest technology and robotics used for waste management. This video is an overview of the success ARRA brought to the Savannah River Site, the environment, the econonmy, and the surrounding communities.

  3. Atoms in Appalachia. Historical report on the Clinch River Breeder Reactor site

    SciTech Connect (OSTI)

    Schaffer, D

    1982-01-01T23:59:59.000Z

    The background information concerning the acquisition of the land for siting the Clinch River Breeder Reactor is presented. Historical information is also presented concerning the land acquisition for the Oak Ridge facilities known as the Manhattan Project during World War II.

  4. Savannah River Site Saves $10 Million with Innovative Commercial Procurement Practices

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – The management and operations contractor for the EM program at the Savannah River Site (SRS) created more than $10 million in cost savings in fiscal year 2013 by adopting successful purchasing practices used by America’s top companies.

  5. Finishing Strong in 2011: The Recovery Act at Work at Savannah River Site

    ScienceCinema (OSTI)

    None

    2012-06-14T23:59:59.000Z

    American Recovery and Reinvestment Act's highlights and accomplishments for 2011 projects. Covers the latest technology and robotics used for waste management. This video is an overview of the success ARRA brought to the Savannah River Site, the environment, the econonmy, and the surrounding communities.

  6. The Hanford Site Richland Operations Office Office of River Protection Office of Science

    E-Print Network [OSTI]

    The Hanford Site Richland Operations Office Office of River Protection Office of Science Plateau Remediation Contractor Tank Operations Contractor Analytical Services Contractor Waste Treatment Plant (WTP;HANFORDSMALLBUSINESSCOUNCIL Richland Operations Office Sally A. Sieracki Small Business Program Manager E-mail: sally

  7. Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan

    SciTech Connect (OSTI)

    Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C.; Walker, Darrell D.

    2001-10-31T23:59:59.000Z

    This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report

  8. Land and water use characteristics in the vicinity of the Savannah River Site

    SciTech Connect (OSTI)

    Hamby, D.M.

    1991-03-01T23:59:59.000Z

    Routine operations at the Savannah River Site (SRS) result in the release of small amounts of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the offsite maximum individual and the offsite population within 50 miles of the SRS are estimated on a yearly basis. These estimates are generated using dose models prescribed for the commercial nuclear power industry by the Nuclear Regulatory Commission (NRC). The NRC provides default values for dose model parameters for facilities not having enough data to develop site-specific values. A survey of land and water use characteristics for the Savannah River area has been conducted to determine as many site-specific values as possible for inclusion in the dose models used at the SRS. These site parameters include local characteristics of meat, milk, and vegetable production; river recreational activities; and meat, milk, and vegetable consumption rates. The report that follows describes the origin of the NRC default values, the methodology for deriving regional data, the results of the study, and the derivations of region-specific usage and consumption rates. 33 refs., 3 figs., 8 tabs.

  9. The Savannah River Site's Groundwater Monitoring Program - Fourth Quarter 1999 (October through December 1999)

    SciTech Connect (OSTI)

    Hutchison, J.B.

    2000-10-12T23:59:59.000Z

    This report summarizes the Groundwater Monitoring Program conducted by the Savannah River site during fourth quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official records of the analytical results.

  10. The Savannah River Site's Groundwater Monitoring Program - Third Quarter 1999 (July through September 1999)

    SciTech Connect (OSTI)

    Hutchison, J.B.

    2000-09-05T23:59:59.000Z

    This report summarizes the Savannah River Site Groundwater Monitoring Program during the third quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program activities; and serves as an official record of the analytical results.

  11. The Savannah River Site's Groundwater Monitoring Program First Quarter 1999 (January through March 1999)

    SciTech Connect (OSTI)

    Hutchison, J.B.

    1999-12-08T23:59:59.000Z

    This report summarizes the Groundwater Monitoring Program conducted by Savannah River Site during first quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  12. The Savannah River Site's Groundwater Monitoring Program second quarter 1999 (April through June 1999)

    SciTech Connect (OSTI)

    Hutchison, J.B.

    1999-12-16T23:59:59.000Z

    This report summarizes the Groundwater Monitoring Program conducted by Savannah River Site during first quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  13. The Savannah River Site's Groundwater Monitoring Program First Quarter 1998 (January through March 1998)

    SciTech Connect (OSTI)

    Hutchison, J.B.

    1999-05-26T23:59:59.000Z

    This report summarizes the Groundwater Monitoring Program conducted by the Savannah River Site during first quarter 1998. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  14. 2010 Savannah River Site Annual Illness and Injury Surveillance Report

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs

    2011-09-12T23:59:59.000Z

    The U.S. Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.

  15. 2006 Savannah River Site Annual Illness and Injury Surveillance Report

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs

    2008-08-20T23:59:59.000Z

    The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.

  16. 2008 Savannah River Site Annual Illness and Injury Surveillance Report

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs

    2009-09-29T23:59:59.000Z

    The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  17. 2007 Savannah River Site Annual Illness and Injury Surveillance Report

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs

    2009-05-05T23:59:59.000Z

    The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  18. Field scale evaluation of the In Situ Permeable Flow Sensor and assessment of river-aquifer interaction at the Brazos River Hydrologic Field Site / by Andrew Scott Alden 

    E-Print Network [OSTI]

    Alden, Andrew Scott

    1996-01-01T23:59:59.000Z

    Two In Situ Permeable Flow Sensors (ISPFS), recently developed by Dr. Sanford Ballard at Sandia National Laboratories, were field tested at the Brazos River Hydrologic Field Site near College Station, Texas. The Flow Sensors use a thermal...

  19. Field scale evaluation of the In Situ Permeable Flow Sensor and assessment of river-aquifer interaction at the Brazos River Hydrologic Field Site / by Andrew Scott Alden

    E-Print Network [OSTI]

    Alden, Andrew Scott

    1996-01-01T23:59:59.000Z

    Two In Situ Permeable Flow Sensors (ISPFS), recently developed by Dr. Sanford Ballard at Sandia National Laboratories, were field tested at the Brazos River Hydrologic Field Site near College Station, Texas. The Flow Sensors use a thermal...

  20. Non-Operational Property Evaluation for the Hanford Site River Corridor - 12409

    SciTech Connect (OSTI)

    Lowe, John [CH2M HILL, Richland, Washington 99354 (United States); Aly, Alaa [CH2M HILL Plateau Remediation Company and INTERA Incorporated, Richland, Washington 99354 (United States)

    2012-07-01T23:59:59.000Z

    The Hanford Site River Corridor consists of the former reactor areas of the 100 Areas and the former industrial (fuel processing) area in the 300 Area. Most of the waste sites are located close to the decommissioned reactors or former industrial facilities along the Columbia River. Most of the surface area of the River Corridor consists of land with little or no subsurface infrastructure or indication of past or present releases of hazardous constituents, and is referred to as non-operational property or non-operational area. Multiple lines of evidence have been developed to assess identified fate and transport mechanisms and to evaluate the potential magnitude and significance of waste site-related contaminants in the non-operational area. Predictive modeling was used for determining the likelihood of locating waste sites and evaluating the distribution of radionuclides in soil based on available soil concentration data and aerial radiological surveys. The results of this evaluation indicated: 1) With the exception of stack emissions, transport pathways associated with waste site contaminants are unlikely to result in dispersion of contaminants in soil away from operational areas, 2) Stack emissions that may have been associated with Hanford Site operations generally emitted short-lived and/or gaseous radionuclides, and (3) the likelihood of detecting elevated radionuclide concentrations or other waste sites in non-operational area soils is very small. The overall conclusions from the NPE evaluation of the River Corridor are: - With the exception of stack emissions to the air, transport pathways associated with waste site contaminants are unlikely to result in dispersion of contaminants in soil away from operational areas. While pathways such as windblown dust, overland transport and biointrusion have the potential for dispersing waste site contaminants, the resulting transport is unlikely to result in substantial contamination in non-operational areas. - Stack emissions that may have been associated with Hanford Site operations generally emitted short-lived and/or gaseous radionuclides; these radionuclides either would have decayed and would be undetectable in soil, or likely would not have deposited onto Hanford Site soils. A small fraction of the total historical emissions consisted of long-lived particulate radionuclides, which could have deposited onto the soil. Soil monitoring studies conducted as part of surveillance and monitoring programs do not indicate a build-up of radionuclide concentrations in soil, which might indicate potential deposition impacts from stack emissions. Aerial radiological surveys of the Hanford Site, while effective in detecting gamma-emitting nuclides, also do not indicate deposition patterns in soil from stack emissions. - The surveillance and monitoring programs also have verified that the limited occurrence of biointrusion observed in the River Corridor has not resulted in a spread of contamination into the non-operational areas. - Monitoring of radionuclides in ambient air conducted as part of the surveillance and monitoring programs generally show a low and declining trend of detected concentrations in air. Monitoring of radionuclides in soil and vegetation correspondingly show declining trends in concentrations, particularly for nuclides with short half lives (Cs-137, Co-60 and Sr-90). - Statistical analysis of the geographical distribution of waste sites based on man -made features and topography describes the likely locations of waste sites in the River Corridor. The results from this analysis reinforce the findings from the Orphan Site Evaluation program, which has systematically identified any remaining waste sites within the River Corridor. - Statistical analysis of the distribution of radionuclide concentrations observable from aerial surveys has confirmed that the likelihood of detecting elevated radionuclide concentrations in non-operational area soils is very small; the occurrences and locations where potentially elevated concentrations may be found are discussed below. In

  1. CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL

    SciTech Connect (OSTI)

    Farfan, E.; Coleman, R.

    2011-03-31T23:59:59.000Z

    RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

  2. FMI Log At New River Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolis Energy JumpFAC 04-08-DOE GTP) JumpNew River

  3. Cleaning Up the Hanford River Corridor and Improving Site Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing: U.S. Competitiveness2 P r o

  4. Cleaning Up the Hanford River Corridor and Improving Site Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing: U.S. Competitiveness2 P r oPlutonium

  5. Cleaning Up the Hanford River Corridor and Improving Site Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing: U.S. Competitiveness2 P r oPlutonium

  6. Disposal Practices at the Savannah River Site | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732 DOE F 243.2DashboardsDepartmentDiana

  7. SAVANNAH RIVER SITE COLD WAR HISTORIC PROPERTY DOCUMENTATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs Running jobsS2. Receipts and QualityHWAR

  8. SAVANNAH RIVER SITE COLD WAR HISTORIC PROPERTY DOCUMENTATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs Running jobsS2. Receipts and

  9. Summary - Savannah River Site Tank 48H Waste Treatment Project

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the Passing of AdmiraltheOil and LessOak Ridge,SRS Co DOES

  10. DOE - Office of Legacy Management -- St Louis Airport Site Vicinity...

    Office of Legacy Management (LM)

    Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: These properties are located in Hazelwood and Berkeley, Missouri,...

  11. Framework for DOE mixed low-level waste disposal: Site fact sheets

    SciTech Connect (OSTI)

    Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y. [eds.

    1994-11-01T23:59:59.000Z

    The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

  12. Environmental Assessment for the construction and operation of the Three Rivers Solid Waste Authority regional waste management center at the Savannah River Site

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    This Environmental Assessment (EA) has been prepared by the US Department of Energy (DOE) to assess the potential environmental impacts associated with the construction and operation of a landfill and technology center for regionally-generated municipal solid waste at the Savannah River Site (SRS) near Aiken, South Carolina. The facility would serve the municipal solid waste disposal needs for SRS and at least nine of the surrounding counties who currently comprise the Three Rivers Solid Waste Authority (TRSWA). Additional counties could become included in the proposed action at some future date. Current Federal and state requirements do not afford individual counties and municipalities within the region encompassing SRS the ability to efficiently or economically operate modern waste management facilities. In addition, consolidation of regional municipal solid waste at one location would have the benefit of reducing the duplicity of environmental consequences associated with the construction and operation of county-level facilities. The option to seek a combined disposal and technology development facility based on a regionally-cooperative effort was selected as a viable alternative to the existing individual SRS or county disposal activities. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended, the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Part 1021). NEPA requires the assessment of environmental consequences of Federal actions that may affect the quality of the human environment. Based on the potential for impacts described for impacts described herein, DOE will either publish a Finding of No Significant Impact or prepare an environmental impact statement (EIS).

  13. Determination of the Distribution and Inventory of Radionuclides within a Savannah River Site Waterway - 13202

    SciTech Connect (OSTI)

    Hiergesell, R.A.; Phifer, M.A. [Savannah River National Laboratory, SRNS Bldg. 773-43A, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, SRNS Bldg. 773-43A, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    An investigation was conducted to evaluate the radionuclide inventory within the Lower Three Runs (LTR) Integrator Operable Unit (IOU) at the U.S. Department of Energy's (DOE's) Savannah River Site (SRS). The scope of this effort included the analysis of previously existing sampling and analysis data as well as additional stream bed and flood plain sampling and analysis data acquired to delineate horizontal and vertical distributions of the radionuclide as part of the ongoing SRS environmental restoration program, and specifically for the LTR IOU program. While cesium-137 (Cs-137) is the most significant and abundant radionuclide associated with the LTR IOU it is not the only radionuclide, hence the scope included evaluating all radionuclides present and includes an evaluation of inventory uncertainty for use in sensitivity and uncertainty analyses. The scope involved evaluation of the radionuclide inventory in the P-Reactor and R-Reactor cooling water effluent canal systems, PAR Pond (including Pond C) and the flood plain and stream sediment sections of LTR between the PAR Pond Dam and the Savannah River. The approach taken was to examine all of the available Sediment and Sediment/Soil analysis data available along the P- and R-Reactor cooling water re-circulation canal system, the ponds situated along those canal reaches and along the length of LTR below Par Pond dam. By breaking the IOU into a series of sub-components and sub-sections, the mass of contaminated material was estimated and a representative central concentration of each radionuclide was computed for each compartment. The radionuclide inventory associated with each sub-compartment was then aggregated to determine the total radionuclide inventory that represented the full LTR IOU. Of special interest was the inventory of Cs-137 due to its role in contributing to the potential dose to an offsite member of the public. The overall LTR IOU inventory of Cs-137 was determined to be 2.87 E+02 GBq, which is similar to two earlier estimates. This investigation provides an independent, ground-up estimate of Cs-137 inventory in LTR IOU utilizing the most recent field data. (authors)

  14. Final Review of Safety Assessment Issues at Savannah River Site, August 2011

    SciTech Connect (OSTI)

    Napier, Bruce A.; Rishel, Jeremy P.; Bixler, Nathan E.

    2011-12-15T23:59:59.000Z

    At the request of Savannah River Nuclear Solutions (SRNS) management, a review team composed of experts in atmospheric transport modeling for environmental radiation dose assessment convened at the Savannah River Site (SRS) on August 29-30, 2011. Though the meeting was prompted initially by suspected issues related to the treatment of surface roughness inherent in the SRS meteorological dataset and its treatment in the MELCOR Accident Consequence Code System Version 2 (MACCS2), various topical areas were discussed that are relevant to performing safety assessments at SRS; this final report addresses these topical areas.

  15. Long-Term Assessment of Critical Radionuclides and Associated Environmental Media at the Savannah River Site

    SciTech Connect (OSTI)

    Jannik, G. T.; Baker, R. A.; Lee, P. L.; Eddy, T. P.; Blount, G. C.; Whitney, G. R.

    2012-11-06T23:59:59.000Z

    During the operational history of the Savannah River Site (SRS), many different radionuclides have been released from site facilities. However, only a relatively small number of the released radionuclides have been significant contributors to doses and risks to the public. At SRS dose and risk assessments indicate tritium oxide in air and surface water, and Cs-137 in fish and deer have been, and continue to be, the critical radionuclides and pathways. In this assessment, indepth statistical analyses of the long-term trends of tritium oxide in atmospheric and surface water releases and Cs-137 concentrations in fish and deer are provided. Correlations also are provided with 1) operational changes and improvements, 2) geopolitical events (Cold War cessation), and 3) recent environmental remediation projects and decommissioning of excess facilities. For example, environmental remediation of the F- and H-Area Seepage Basins and the Solid Waste Disposal Facility have resulted in a measurable impact on the tritium oxide flux to the onsite Fourmile Branch stream. Airborne releases of tritium oxide have been greatly affected by operational improvements and the end of the Cold War in 1991. However, the effects of SRS environmental remediation activities and ongoing tritium operations on tritium concentrations in the environment are measurable and documented in this assessment. Controlled hunts of deer and feral hogs are conducted at SRS for approximately six weeks each year. Before any harvested animal is released to a hunter, SRS personnel perform a field analysis for Cs-137 concentrations to ensure the hunter's dose does not exceed the SRS administrative game limit of 0.22 millisievert (22 mrem). However, most of the Cs-137 found in SRS onsite deer is not from site operations but is from nuclear weapons testing fallout from the 1950's and early 1960's. This legacy source term is trended in the SRS deer, and an assessment of the ''effective'' half-life of Cs-137 in deer (including the physical decay half-life and the environmental dispersion half-life) is provided. The ''creek mouth'' fisherman is the next most critical pathway at SRS. On an annual basis, three species of fish (panfish, catfish, and bass) are sampled from the mouths of the five SRS streams. Three composites of up to five fish of each species are analyzed from each sampling location. Long-term trending of the Cs-137 concentrations in fish and the subsequent doses from consumption of SRS fish is provided.

  16. DOE - Office of Legacy Management -- Exxon Ray Point Site - 032

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffalo -Elk River Reactor - MNEra

  17. DOE - Office of Legacy Management -- Grand Junction Sites

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffalo -Elk RiverFrederickAZ 03

  18. SUPPLEMENTAL COLUMBIA RIVER PROTECTION ACTIVITIES AT THE DEPARTMENT OF ENERGY HANFORD SITE: 2006 TECHNICAL PEER REVIEW

    SciTech Connect (OSTI)

    Looney, B; Dawn Kaback; Gene Leboeuf; Jason Mulvihill-Kuntz; Lynn Lefkoff

    2006-12-20T23:59:59.000Z

    Prompted by a $10 million Congressional allocation to identify supplemental actions to protect the Columbia River from groundwater contamination beneath the Hanford Reservation, the U. S. Department of Energy (DOE) Environmental Management (EM) Office of Clean-up Technology identified twenty-three potential technical projects and then down-selected ten of these for further evaluation. An independent expert peer review was conducted for the ten down-selected proposals. The review panel consisted of twenty-three recognized subject matter experts that broadly represented academia, industry, and federal laboratories. Of the initial ten proposals reviewed, one was given unconditional support, six were given conditional support, and three were not supported as proposed. Three additional proposals were then submitted by DOE for review--these proposals were structured, in part, to respond to the initial round of technical peer review comments. Peer reviews of these additional proposals provided conditional support. For those proposals that received conditional support, DOE requested specific implementation and work plans and assessed whether the plans adequately addressed the technical conditions identified by the review panel. The final list of technology proposals receiving support, or conditional support, primarily focused on understanding and reducing the potential impacts of uranium, chromium, and strontium from facilities adjacent to the Columbia River, with a secondary focus on understanding and limiting the future Columbia River impacts from the large carbon tetrachloride groundwater plume underlying and downgradient of the Hanford Central Plateau facilities. The results and recommendations of the peer reviews informed the final DOE project selections and supported implementation of the selected projects to protect the Columbia River and address groundwater contamination at Hanford.

  19. U. S. Department of Energy Savannah River Operations Office - DOE-SR News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program The NIFDocumentationReleases Savannah River Site

  20. DOE's Former Rocky Flats Weapons Production Site to Become National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flats nuclear weapons production site to the Department of the Interior's (DOI) U.S. Fish and Wildlife Service (FWS) for use as a National Wildlife Refuge. After more than a...

  1. Food chain dynamics and potential ecological risks of mercury at the Carson River site

    SciTech Connect (OSTI)

    Peterson, S.C. [Ecology and Environment, Inc., Lancaster, NY (United States)

    1995-12-31T23:59:59.000Z

    The USEPA is conducting a remedial investigation of mercury contamination in the Carson River watershed, located near Carson City in central west Nevada. As a component of this investigation, water, sediment, and tissue samples were collected for mercury speciation and other analyses. Tissues analyses from the seven site-investigation areas and four background areas include: whole-body and fillet analyses of five species of fish, composite and individual analyses of three species of benthic macroinvertebrates, blood, feather and liver analyses of two bird species, composite analyses of zooplankton, and whole-body analyses of lizards. The data are used to develop site-specific estimates of mercury bioaccumulation in aquatic food chains of riverine/riparian, open-water, and mudflat habitats at the Carson River site. Because the behavior and food chain dynamics of mercury in semi-arid ecosystems of the southwestern US is poorly understood, these data can be compared and contrasted with bioaccumulation estimates derived from well-studied ecosystems such as northern temperate lakes. Potential ecological risks of mercury exposure through the food chain and through ingestion of and contact with contaminated media are evaluated for important wildlife receptors occurring at the Carson River site.

  2. Waste to Energy Power Production at DOE and DOD Sites

    E-Print Network [OSTI]

    Challengesfaced by DOE-SR · AgingInfrastructure Ameresco independent · Coal and fuel oil power plants · Increased will replace existingcoal-fired cogen plant · Located closer to end user · Will operate 24/7/365 · Includesacentral fuel yard for all three plants Measure 2 replaced afuel oil-fired packaged boiler plant

  3. Lesson Learned by Savannah River Site Activity-level Work Planning and Control

    Broader source: Energy.gov [DOE]

    Slide Presentation by Bonnie Barnes, Savannah River Remediation. Work Planning and Control at Savannah River Remediation.

  4. Breeding bird populations and habitat associations within the Savannah River Site (SRS).

    SciTech Connect (OSTI)

    Gauthreaux, Sidney, A.; Steven J. Wagner.

    2005-06-29T23:59:59.000Z

    Gauthreaux, Sidney, A., and Steven J. Wagner. 2005. Breeding bird populations and habitat associations within the Savannah River Site (SRS). Final Report. USDA Forest Service, Savannah River, Aiken, SC. 48 pp. Abstract: During the 1970's and 1980's a dramatic decline occurred in the populations of Neotropical migratory birds, species that breed in North America and winter south of the border in Central and South America and in the Caribbean. In 1991 an international initiative was mounted by U. S. governmental land management agencies, nongovernmental conservation agencies, and the academic and lay ornithological communities to understand the decline of Neotropical migratory birds in the Americas. In cooperation with the USDA Forest Service - Savannah River (FS - SR) we began 1992 a project directed to monitoring population densities of breeding birds using the Breeding Bird Census (BBC) methodology in selected habitats within the Savannah River Site SRS. In addition we related point count data on the occurrence of breeding Neotropical migrants and other bird species to the habitat data gathered by the Forest Inventory and Analysis (FIA) program of the USDA Forest Service and data on habitat treatments within forest stands.

  5. EIS-0220: Interim Management of Nuclear Materials at the Savannah River Site

    Broader source: Energy.gov [DOE]

    This environmental impact statement assesses the potential environmental impacts of actions necessary to manage nuclear materials at the Savannah River Site (SRS) in Aiken, South Carolina, until decisions on their ultimate disposition are made and implemented. The Department of Energy has decided to initiate actions which will stabilize certain of the SRS materials that represent environment, safety and health vulnerabilities in their current storage condition or which may represent a vulnerability within the next 10 years.

  6. Program Name (DOE) Submission Deadline Announcement # Grant Description Web Site / PDF

    E-Print Network [OSTI]

    Wu, Shin-Tson

    Sponsored by the U.S. Department of Energy (DOE), the SunShot Prize aims to spur low-cost rooftop solar be found at: http://www1.eere.energy.gov/solar/pdfs/sunshot_prize_rules.pdf http://www1.eere.energyProgram Name (DOE) Submission Deadline Announcement # Grant Description Web Site / PDF Limited

  7. EMP Attachment 3 DOE-SC PNNL Site Dose Assessment Guidance

    SciTech Connect (OSTI)

    Snyder, Sandra F.

    2011-12-21T23:59:59.000Z

    This Dose Assessment Guidance (DAG) describes methods to use to determine the Maximally-Exposed Individual (MEI) location and to estimate dose impact to that individual under the U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest National Laboratory (PNNL) Site Environmental Monitoring Plan (EMP). This guidance applies to public dose from radioactive material releases to the air from PNNL Site operations. This document is an attachment to the Pacific Northwest National Laboratory (PNNL) Environmental Monitoring Plan (EMP) and describes dose assessment guidance for radiological air emissions. The impact of radiological air emissions from the U.S. Department of Energy Office of Science (DOE-SC) PNNL Site is indicated by dose estimates to a maximally exposed member of the public, referred to as the maximally exposed individual (MEI). Reporting requirements associated with dose to members of the public from radiological air emissions are in 40 CFR Part 61.94, WAC 246-247-080, and DOE Order 458.1. The DOE Order and state standards for dose from radioactive air emissions are consistent with U.S. Environmental Protection Agency (EPA) dose standards in 40 CFR 61.92 (i.e., 10 mrem/yr to a MEI). Despite the fact that the current Contract Requirements Document (CRD) for the DOE-SC PNNL Site operations does not include the requirement to meet DOE CRD 458.1, paragraph 2.b, public dose limits, the DOE dose limits would be met when EPA limits are met.

  8. Radiological bioconcentration factors for aquatic, terrestrial, and wetland ecosystems at the Savannah River site

    SciTech Connect (OSTI)

    Friday, G.P.; Cummins, C.L.; Schwartzman, A.L.

    1996-12-31T23:59:59.000Z

    Since the early 1950s, the Savannah River Site (SRS) released over 50 radionuclides into the environment while producing nuclear defense materials. These releases directly exposed aquatic and terrestrial biota to ionizing radiation from surface water, soil, and sediment, and also indirectly by the ingestion of items in the food chain. As part of new missions to develop waste management strategies and identify cost-effective environmental restoration options, knowledge concerning the uptake and distribution of these radionuclides is essential. This report compiles and summarizes site-specific bioconcentration factors for selected radionuclides released at SRS.

  9. Savannah River Site: Plutonium Preparation Project (PuPP) at Savannah River

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -Energy Proposed1-EReviewLaboratory |Site |

  10. DOE Issues Draft Request for Proposals for Hanford Site Occupational

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE F 1300.2Million) GoDOEMedical Services

  11. DOE Issues Final Environmental Impact Statement for Moab, Utah Site |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE F 1300.2Million)

  12. DOE Honors Safety Star: Department's Program Honors Portsmouth Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department of Energy -StateOffshoreFuelCleanup10 AllDOE H2ADOE

  13. DOE's Top Environmental Cleanup Official Visits Paducah Site | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterialsDevelopEnergyof Energy DOE's Top

  14. DOE, Stoller Work to Understand Environment at INL Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOSTDOENuclear EnergyMeetingMetricDOE, State of

  15. DOE's Former Rocky Flats Weapons Production Site to Become National

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 ChairsEnergyawards contract for sludgeDOEto TransportDOE'sWildlife

  16. ARRA Site Characterization Projects | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP UpdateRefresh ModelES&HresultsARPESARIES at

  17. Aquatic Studies at the Proposed George Parkhouse I Reservoir Site on the South Sulphur River in Northeast Texas 

    E-Print Network [OSTI]

    Gelwick, Frances P.; Burgess, Christine C.

    2002-12-31T23:59:59.000Z

    Aquatic Studies at the Proposed George Parkhouse I Reservoir Site on the South Sulphur River in Northeast Texas December 31, 2002 Submitted to Texas Water Development Board P.O. Box 13231, Capitol Station 1700 N Congress...

  18. DOE Announces Webinars on Overcoming Wind Siting Challenges, Benchmarking

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » ContactDepartment ofa Site Selection ToolResources,and

  19. DOE Annual Site Environmental Reports (ASER) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » ContactDepartment ofa SiteDepartment ofofandDepartment

  20. DOE Research and Development Accomplishments Site Index (A-Z)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePART I SECTIONPlasmaDatabase Help The DOEwithA -

  1. DOE-ORP Contract Management Plans - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24,7, 2012 Bill Taylor,ORP

  2. Site Map | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1U CO1)ProgramsScienceScientific andSite

  3. Paducah DOE and Site Contractors | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMakeEducation ProgramsTourPPPO WebsiteCommunitySite

  4. Portsmouth DOE & Site Contractors | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602Policy_Flash_2011-85__Attachment_2.pdfPollutionOutreach PortsmouthSite

  5. DOE-Evaluating A Potential Microhydro Site | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro Site Jump to: navigation, search Tool Summary LAUNCH

  6. DOE - Office of Legacy Management -- Latty Avenue Site - MO 04

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffaloJohns HopkinsLa PointeLatty Avenue Site

  7. DOE - Office of Legacy Management -- Maryland Disposal Site - MD 05

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffaloJohns0-04Maryland Disposal Site -

  8. DOE - Office of Legacy Management -- Monticello Mill Site - UT 03

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp - CT 0-01 FUSRAPMonsanto ChemicalMill Site

  9. DOE - Office of Legacy Management -- New Canaan Site - CT 08

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp - CT 0-01Naturita36 SupplyCanaan Site -

  10. DOE - Office of Legacy Management -- Seymour CT Site - CT 02

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -K Le BlondSanta SusanaSeymour CT Site - CT

  11. DOE - Office of Legacy Management -- Trinity Test Site - NM 17

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -K LeDowntown SiteTracerlab Inc -

  12. DOE - Office of Legacy Management -- Buffalo NY Site - NY 54

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertowni5WBuffalo NY Site - NY 54

  13. DOE - Office of Legacy Management -- Hamilton OH Site - OH 27

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew Mexico Gnome-Coach, NewHamilton OH Site

  14. Post-NEPA environmental investigations at DOE geopressured-geothermal project sites

    SciTech Connect (OSTI)

    Reed, A.W.

    1985-01-01T23:59:59.000Z

    In 1982, the Oak Ridge National Laboratory (ORNL) conducted follow-up environmental reviews of four US Department of Energy (DOE) geopressured-geothermal design well projects: Dow Parcperdue, Sweet Lake, Gladys McCall and Pleasant Bayou. The reviews determined the implementation and effectiveness of monitoring and mitigation commitments made by DOE in National Environmental Policy Act (NEPA) documents prepared for the individual projects. This paper briefly describes post-NEPA environmental investigations at DOE's geopressured-geothermal design well sites and focuses on three environmental problems that were identified and subsequently mitigated by DOE. These were (1) a breech in the brine pit liner and (2) a torn mud pit liner at the Dow Parcperdue well site, and (3) the disposal of potentially hazardous contents of the reserve pit at the Pleasant Bayou well site. The nature of the environmental problems, recommendations for mitigation of each, and remedial actions that were taken are presented.

  15. Technology needs for remediation: Hanford and other DOE sites. Buried Waste Integrated Demonstration Program

    SciTech Connect (OSTI)

    Stapp, D.C.

    1993-01-01T23:59:59.000Z

    Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy`s (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL`s Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

  16. INNOVATIVE ALARA TOOLS AND WORK PRACTICES USED AT THE DOE HANFORD SITE

    SciTech Connect (OSTI)

    WAGGONER LO

    2010-02-12T23:59:59.000Z

    The Hanford Nuclear Reservation occupies an area of 586 square miles in southeastern Washington state. The site was created as part of the World War II Manhattan Project to produce weapons grade plutonium. A multitude of old reactor plants, processing facilities, underground tank farms, contaminated soil and ground water remain and are part of an on-going environmental cleanup mission of the site. The Columbia River bisects Hanford, and the concern is that the river will become contaminated if the sources of contamination are not removed. Currently facilities are being removed, the ground water is being treated, and contaminated soil is being transferred to an approved burial ground about 15 miles away from the River located in the center of the Hanford Site The remaining facilities and adjacent structures are undergoing D&D (decontaminate and demolish) and to date, significant progress has been made. During this presentation, I will discuss how we are using innovative tools and work practices to D&D these Hanford Site facilities.

  17. INSTALLATION OF BUBBLERS IN THE SAVANNAH RIVER SITED DEFENSE WASTE PROCESSING FACILITY MELTER

    SciTech Connect (OSTI)

    Smith, M.; Iverson, D.

    2010-12-08T23:59:59.000Z

    Savannah River Remediation (SRR) LLC assumed the liquid waste contract at the Savannah River Site (SRS) in the summer of 2009. The main contractual agreement was to close 22 High Level Waste (HLW) tanks in eight years. To achieve this aggressive commitment, faster waste processing throughout the SRS liquid waste facilities will be required. Part of the approach to achieve faster waste processing is to increase the canister production rate of the Defense Waste Processing Facility (DWPF) from approximately 200 canisters filled with radioactive waste glass per year to 400 canisters per year. To reach this rate for melter throughput, four bubblers were installed in the DWPF Melter in the late summer of 2010. This effort required collaboration between SRR, SRR critical subcontractor EnergySolutions, and Savannah River Nuclear Solutions, including the Savannah River National Laboratory (SRNL). The tasks included design and fabrication of the bubblers and related equipment, testing of the bubblers for various technical issues, the actual installation of the bubblers and related equipment, and the initial successful operation of the bubblers in the DWPF Melter.

  18. Understanding the Subsurface Reactive Transport of Transuranic Contaminants at DOE Sites

    SciTech Connect (OSTI)

    Barnett, Mark O. [Auburn University] [Auburn University; Albrecht-Schmitt, Thomas E. [University of Notre Dame] [University of Notre Dame; Saiers, James E. [Yale University] [Yale University; Shuh, David K. [Lawrence Berkeley National Laboratory] [Lawrence Berkeley National Laboratory

    2013-12-20T23:59:59.000Z

    Our primary hypothesis is that actinides can interact with surfaces in fundamentally different ways than other metals, metalloids, and oxyanions and that this fundamental difference requires new approaches to studying and modeling transuranic sorption to minerals and geomedia. This project supports a key mission of the SBR program to develop sufficient scientific understanding such that DOE sites will be able to incorporate coupled physical, chemical, and biological processes into decision making for environmental management and long-term stewardship, while also supporting DOE’s commitment to education, training, and collaboration with DOE user facilities.

  19. Nonlinear Complex-Resistivity Survey for DNAPL at the Savannah River Site A-014 Outfall Robert E. Grimm1,4

    E-Print Network [OSTI]

    Grimm, Robert E.

    , 1500 Illinois St., Golden, Colo. 80401 6 Savannah River National Laboratory, Building 773-42a, Aiken, SNonlinear Complex-Resistivity Survey for DNAPL at the Savannah River Site A-014 Outfall Robert E at the A-014 Outfall at the Savannah River Site, Aiken, SC. The purpose of this experiment was to field

  20. BIOTIC INTEGRITY OF STREAMS IN THE SAVANNAH RIVER SITE INTEGRATOR OPERABLE UNITS, 1996 TO 2003

    SciTech Connect (OSTI)

    Paller, M; Susan Dyer, S

    2004-11-08T23:59:59.000Z

    The Savannah River Site (SRS) has been divided into six Integrator Operable Units (IOUs) that correspond to the watersheds of the five major streams on the SRS (Upper Three Runs, Fourmile Branch, Pen Branch, Steel Creek, and Lower Three Runs) and the portions of the Savannah River and Savannah River Swamp associated with the SRS. The streams are the primary integrators within each IOU because they potentially receive, through surface or subsurface drainage, soluble contaminants from all waste sites within their watersheds. If these contaminants reach biologically significant levels, they would be expected to effect the numbers, types, and health of stream organisms. In this study, biological sampling was conducted within each IOU as a measure of the cumulative ecological effects of the waste sites within the IOUs. The use of information from biological sampling to assess environmental quality is often termed bioassessment. The IOU bioassessment program included 38 sites in SRS streams and nine sites in the Savannah River. Sampling was conducted in 1996 to 1998, 2000, and 2003. Four bioassessment methods were used to evaluate ecological conditions in the IOU streams: the Index of Biotic Integrity, the Fish Health Assessment Index, measurement of fish tissue contaminant levels, and two benthic macroinvertebrate indices. The Index of Biotic Integrity (IBI) is an EPA supported method based on comparison of ecologically important and sensitive fish assemblage variables between potentially disturbed and reference (i.e., undisturbed) sites. It is designed to assess the ability of a stream to support a self-sustaining biological community and ecological processes typical of undisturbed, natural conditions. Since many types of contaminants can bioaccumulate, fish tissue contaminant data were used to determine the types of chemicals fish were exposed to and their relative magnitudes among IOUs. The Fish Health Assessment Index (HAI) is an EPA supported method for assessing the health and condition of individual fish based on dissection and internal examination. It helped to determine whether contaminant concentrations were high enough to adversely affect the health of individual fish. The benthic macroinvertebrate multimetric index (HDMI), used in 1997 to 2000, is a method for assessing stream health based on macroinvertebrate data collected with Hester-Dendy artificial substrates. In 2003 it was replaced with the Multiple Habitat Sampling protocol, a SCDHEC method for collecting and analyzing benthic macroinvertebrate data from natural substrate. These two macroinvertebrate based methods were used in conjunction with the fish based IBI to provide a more comprehensive assessment of ecological conditions. Lastly, habitat data were collected from each stream to assist in determining whether ecological integrity was compromised by physical factors (e.g., erosion) or chemical factors (e.g., discharge of toxic materials). Fish from many SRS streams exhibited evidence of contamination as a result of current or former SRS operations. The most prevalent radiological contaminants were cesium-137 (highest in fish from Lower Three Runs followed by Steel Creek and Fourmile Branch), tritium (highest in fish from Fourmile Branch followed by Pen Branch, and the Savannah River swamp), and strontium (highest in fish from Fourmile Branch followed by Pen Branch). Radiological contaminants were also found in fish collected from the Savannah River near the mouths of contaminated SRS streams; however, contaminant levels were substantially lower than in fish from the streams themselves. Mercury levels were moderately elevated in fish from some streams, particularly Lower Three Runs, and in fish from the Savannah River. Despite the occurrence of contaminants, most SRS streams exhibited comparatively high biotic integrity (based on IBI, HDMI, and MHSP scores) and minimal levels of pathology among individual fish (e.g., presence of tumors or extreme thinness), indicating that contaminant levels were generally insufficient to cause significant ecological de

  1. Life extension program for the modular caustic side solvent extraction unit at Savannah River Site

    SciTech Connect (OSTI)

    Samadi-Dezfouli, Azadeh

    2012-11-14T23:59:59.000Z

    Caustic Side Solvent Extraction (CSSX) is currently used at the U.S. Department of Energy (DOE) Savannah River Site (SRS) for removal of cesium from the high-level salt-wastes stored in underground tanks. At SRS, the CSSX process is deployed in the Modular CSSX Unit (MCU). The CSSX technology utilizes a multi-component organic solvent and annular centrifugal contactors to extract cesium from alkaline salt waste. Coalescers and decanters process the Decontaminated Salt Solution (DSS) and Strip Effluent (SE) streams to allow recovery and reuse of the organic solvent and to limit the quantity of solvent transferred to the downstream facilities. MCU is operated in series with the Actinide Removal Process (ARP) which removes strontium and actinides from salt waste utilizing monosodium titanate. ARP and MCU were developed and implemented as interim salt processing until future processing technology, the CSSX-based Salt Waste Processing Facility (SWPF), is operational. SWPF is slated to come on-line in October 2014. The three year design life of the ARP/MCU process, however, was reached in April 2011. Nevertheless, most of the individual process components are capable of operating longer. An evaluation determined ARP/MCU can operate until 2015 before major equipment failure is expected. The three year design life of the ARP/MCU Life Extension (ARP/MCU LE) program will bridge the gap between current ARP/MCU operations and the start of SWPF operation. The ARP/MCU LE program introduces no new technologies. As a portion of this program, a Next Generation Solvent (NGS) and corresponding flowsheet are being developed to provide a major performance enhancement at MCU. This paper discusses all the modifications performed in the facility to support the ARP/MCU Life Extension. It will also discuss the next generation chemistry, including NGS and new stripping chemistry, which will increase cesium removal efficiency in MCU. Possible implementation of the NGS chemistry in MCU accomplishes two objectives. MCU serves as a demonstration facility for improved flowsheet deployment at SWPF; operating with NGS and boric acid validates improved cesium removal performance and increased throughput as well as confirms Defense Waste Processing Facility (DWPF) ability to vitrify waste streams containing boron. NGS implementation at MCU also aids the ARP/MCU LE operation, mitigating the impacts of delays and sustaining operations until other technology is able to come on-line.

  2. SAVANNAH RIVER SITE R-REACTOR DISASSEMBLY BASIN IN-SITU DECOMMISSIONING -10499

    SciTech Connect (OSTI)

    Langton, C.; Serrato, M.; Blankenship, J.; Griffin, W.

    2010-01-04T23:59:59.000Z

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate intact, structurally sound facilities that are no longer needed for their original purpose, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the 105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate it from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,384 cubic meters or 31,894 cubic yards. Portland cement-based structural fill materials were designed and tested for the reactor ISD project, and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and material flow considerations, maximum lift heights and differential height requirements were determined. Pertinent data and information related to the SRS 105-R Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs and testing, and fill placement strategy. This information is applicable to decommissioning both the 105-P and 105-R facilities. The ISD process for the entire 105-P and 105-R reactor facilities will require approximately 250,000 cubic yards (191,140 cubic meters) of grout and approximately 3,900 cubic yards (2,989 cubic meters) of structural concrete which will be placed over about an eighteen month period to meet the accelerated schedule ISD schedule. The status and lessons learned in the SRS Reactor Facility ISD process will be described.

  3. Report on the oversight assessment of the operational readiness review of the Replacement Tritium Facility at Savannah River Site

    SciTech Connect (OSTI)

    Lee, B.T.

    1993-03-01T23:59:59.000Z

    This report presents the results of an oversight assessment (OA) conducted by the US Department of Energy's (DOE) Office of Environment, Safety and Health (EH) of operational readiness review (ORR) activities for the Replacement Tritium Facility (RTF) located at Savannah River Site (SRS). The EH OA of this facility took place concurrently with an ORR conducted by the DOE Office of Defense Programs (DP). The DP ORR was conducted from January 19 through February 5, 1993. The EH OA was performed in accordance with the protocol and procedures specified in EH Program for Oversight Assessment of Operational Readiness Evaluations for Startups and Restarts,'' dated September 15, 1992. The EH OA Team evaluated the DP ORR to determine whether it was thorough and demonstrated sufficient inquisitiveness to verify that the implementation of programs and procedures adequately ensures the protection of worker safety and health. The EH OA Team performed its evaluation of the DP ORR in the following technical areas: occupational safety, industrial hygiene, and respiratory protection; fire protection; and chemical safety. In the areas of fire protection and chemical safety, the EH OA Team conducted independent vertical-slice reviews to confirm DP ORR results. Within each technical area, the EH OA Team reviewed the DP ORR Plan, including the Criteria Review and Approach Documents (CRADs); the qualifications of individual DP ORR team members; the performance of planned DP ORR activities; and the results of the DP ORR.

  4. Preliminary Review of Safety Assessment Issues at Savannah River Site, August 2011

    SciTech Connect (OSTI)

    Napier, Bruce A.; Rishel, Jeremy P.; Bixler, Nathan E.

    2011-09-19T23:59:59.000Z

    At the request of Savannah River Nuclear Solutions (SRNS) management, a review team composed of experts in atmospheric transport modeling for environmental radiation dose assessment convened at the Savannah River Site (SRS) on August 29-30, 2011. Several issues were presented at the meeting for discussion. This is a short summary that is organized in accordance with the primary issues discussed, which is not necessarily a chronological record. Issues include: SRS Meteorological Data and its Use in MACCS2; Deposition Velocities for Particles; Deposition Velocities for Tritium; MACCS2 Dispersion Coefficients; Use of Low Surface Roughness in Open Areas; Adequacy of Meteorological Tower and Instrumentation; Displacement Height; and Validity of MACCS2 Calculations at Close-in Distances. A longer report will be issued at a later date that expands upon these topics and recommendations.

  5. SRTC input to DOE-HQ R and D database for FY99

    SciTech Connect (OSTI)

    Chandler, L.R. Jr.

    2000-01-05T23:59:59.000Z

    This is a database of the Savannah River Site input to the DOE Research and Development database. The report contains approximately 50 project abstracts.

  6. Seismic hazard for the Savannah River Site: A comparative evaluation of the EPRI and LLNL assessments

    SciTech Connect (OSTI)

    Wingo, H.E.

    1992-05-20T23:59:59.000Z

    This report was conducted to: (1) develop an understanding of causes for the vast differences between the two comprehensive studies, and (2) using a methodology consistent with the reconciled methods employed in the two studies, develop a single seismic hazard for the Savannah River Site suitable for use in seismic probabilistic risk assessments with emphasis on the K Reactor. Results are presented for a rock site which is a typical because detailed evaluations of soil characteristics at the K Reactor are still in progress that account for the effects of a soil stablizing grouting program. However when the soils analysis is completed, the effects of soils can be included with this analysis with the addition of a single factor that will decrease slightly the seismic hazard for a rock site.

  7. Demonstrating and Deploying Private Sector Technologies at DOE Sites - Issues to be Overcome

    SciTech Connect (OSTI)

    Bedick, R. C.

    2002-02-27T23:59:59.000Z

    The Department of Energy (DOE), Office of Environmental Management (EM) continues to pursue cost-effective, environmental cleanup of the weapons complex sites with a concomitant emphasis on deployment of innovative technologies as a means to this end. The EM Office of Science and Technology (OST) pursues a strategy that entails identification of technologies that have potential applications throughout the DOE complex: at multiple DOE sites and at multiple facilities on those sites. It further encourages a competitive procurement process for the various applications entailed in the remediation of a given facility. These strategies require a competitive private-sector supplier base to help meet EM needs. OST supports technology development and deployment through investments in partnerships with private industry to enhance the acceptance of their technology products within the DOE market. Since 1992, OST and the National Energy Technology Laboratory (NETL) have supported the re search and development of technology products and services offered by the private sector. During this time, NETL has managed over 140 research and development projects involving industrial and university partners. These projects involve research in a broad range of EM related topics, including deactivation and decommissioning, characterization, monitoring, sensors, waste separation, groundwater remediation, robotics, and mixed waste treatment. Successful partnerships between DOE and Industry have resulted in viable options for EM's cleanup needs, and require continued marketing efforts to ensure that these technology solutions are used at multiple DOE sites and facilities.

  8. Assessment of plutonium in the Savannah River Site environment. Revision 1

    SciTech Connect (OSTI)

    Carlton, W.H.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-12-31T23:59:59.000Z

    Plutonium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fifth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. These are living documents, each to be revised and updated on a two-year schedule. This document describes the sources of plutonium in the environment, its release from SRS, environmental transport and ecological concentration of plutonium, and the radiological impact of SRS releases to the environment. Plutonium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite SNAP 9-A, plane crashes involving nuclear weapons, and small releases from reactors and reprocessing plants. Plutonium has been produced at SRS during the operation of five production reactors and released in small quantities during the processing of fuel and targets in chemical separations facilities. Approximately 0.6 Ci of plutonium was released into streams and about 12 Ci was released to seepage basins, where it was tightly bound by clay in the soil. A smaller quantity, about 3.8 Ci, was released to the atmosphere. Virtually all releases have occurred in F- and H-Area separation facilities. Plutonium concentration and transport mechanisms for the atmosphere, surface water, and ground water releases have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases to the offsite maximum individual can be characterized by a total dose of 15 mrem (atmospheric) and 0.18 mrem (liquid), compared with the dose of 12,960 mrem from non-SRS sources during the same period of time (1954--1989). Plutonium releases from SRS facilities have resulted in a negligible impact to the environment and the population it supports.

  9. Cutting-Edge Savannah River Site Project Avoids Millions in Costs, Removes Chemical Solvents from Underground: Project avoided costs totaling more than $15 million, removed tons of chemical solvents from beneath the Savannah River Site

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – Workers recently completed a multiyear project that removed more than 33,000 gallons of non-radioactive chemical solvents from beneath a portion of the Savannah River Site (SRS), preventing those pollutants from entering the local water table and helping the site avoid costs of more than $15 million.

  10. TRITIUM UNCERTAINTY ANALYSIS FOR SURFACE WATER SAMPLES AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Atkinson, R.

    2012-07-31T23:59:59.000Z

    Radiochemical analyses of surface water samples, in the framework of Environmental Monitoring, have associated uncertainties for the radioisotopic results reported. These uncertainty analyses pertain to the tritium results from surface water samples collected at five locations on the Savannah River near the U.S. Department of Energy's Savannah River Site (SRS). Uncertainties can result from the field-sampling routine, can be incurred during transport due to the physical properties of the sample, from equipment limitations, and from the measurement instrumentation used. The uncertainty reported by the SRS in their Annual Site Environmental Report currently considers only the counting uncertainty in the measurements, which is the standard reporting protocol for radioanalytical chemistry results. The focus of this work is to provide an overview of all uncertainty components associated with SRS tritium measurements, estimate the total uncertainty according to ISO 17025, and to propose additional experiments to verify some of the estimated uncertainties. The main uncertainty components discovered and investigated in this paper are tritium absorption or desorption in the sample container, HTO/H{sub 2}O isotopic effect during distillation, pipette volume, and tritium standard uncertainty. The goal is to quantify these uncertainties and to establish a combined uncertainty in order to increase the scientific depth of the SRS Annual Site Environmental Report.

  11. AREA COMPLETION STRATEGIES AT SAVANNAH RIVER SITE: CHARACTERIZATION FOR CLOSURE AND BEYOND

    SciTech Connect (OSTI)

    Bagwell, L; Mark Amidon, M; Sadika Baladi, S

    2007-06-11T23:59:59.000Z

    During the first four decades of its 56 year existence, the Savannah River Site (SRS) was a key supplier of nuclear material for national defense. During the 1990s, the site's primary missions became waste site closure, environmental restoration, and deactivation and decommissioning (D&D) of remnant cold war apparatus. Since 1989, with the approval of State and Federal regulatory agencies and with the participation of interested stakeholders, SRS has implemented a final remedy for a majority of the more than 500 individual waste sites at the former nuclear materials complex. These waste sites range from small, inert rubble pits to large, heavy industrial areas and radioactive waste disposal grounds. The closure and final remediation of these waste sites mark significant progress toward achieving SRS's overarching goal of reducing or eliminating future environmental damage and human health threats. However, larger challenges remain. For example, what are appropriate and achievable end-states for decommissioned nuclear facilities? What environmental and human health risks are associated with these end-states? To answer these questions within the strictures of smaller budgets and accelerated schedules, SRS is implementing an ''area completion'' strategy that: (1) unites several discrete waste units into one conceptual model, (2) integrates historically disparate environmental characterization and D&D activities, (3) reduces the number of required regulatory documents, and (4) in some cases, compresses schedules for achieving a stakeholder-approved end-state.

  12. Flow Test At Snake River Plain Region (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs Valley Area (DOE GTP)

  13. TECHNICAL EVALUATION OF THE INTERACTION OF GROUNDWATER WITH THE COLUMBIA RIVER AT THE DEPARTMENT OF ENERGY HANFORD SITE 100-D AREA

    SciTech Connect (OSTI)

    PETERSEN SW

    2008-11-05T23:59:59.000Z

    Groundwater beneath much of Hanford's 100 Areas is contaminated with hexavalent chromium (Cr{sup +6}) as a consequence of treating reactor cooling water to prevent corrosion. Several treatment systems are in place to remove Cr{sup +6} from the groundwater; however, these systems currently do not reduce Cr{sup +6} to concentrations below aquatic standards. Of concern is the transport of Cr{sup +6} to areas within the channel of the river, as sensitive species inhabit the river and its associated transition zone. The aquatic standard for Cr{sup +6} is currently 11 ug/l under the Record of Decision (ROD) for Interim Action and Department of Energy (DOE) currently plans to pursue remediation of the groundwater to achieve the 11 ug/l standard. Because the compliance wells used to monitor the current remediation systems are located some distance from the river, they may not provide an accurate indication of Cr{sup +6} concentrations in the water that reaches the riverbed. In addition, because salmon spawning areas are considered a high priority for protection from Hanford contaminants, it would be advantageous to understand (1) to what extent Cr{sup +6} discharged to the near-shore or river ecosystems is diluted or attenuated and (2) mechanisms that could mitigate the exposure of the river ecosystems to the discharging Cr{sup +6}. The current concentration target for Cr{sup +6} at near-river groundwater monitoring locations is 20 {micro}g/L; it is assumed that this groundwater mixes with river water that contains virtually no chromium to meet Washington Department of Ecology's (Ecology) water quality standard of 10 {micro}g/L in the river environment. This dynamic mixing process is believed to be driven by daily and seasonal changes in river stage and groundwater remediation system operations, and has been validated using analytical data from numerous groundwater samples obtained adjacent to and within the banks of the river. Although the mean mixing factor of river water and site groundwater in this zone has been estimated to be equal parts of groundwater and river water, a wide range of mixing ratios likely occurs at various times of the day and year. The degree of mixing and dilution appears to be greatly influenced by the river stage and other groundwater/surface water interaction. The extent of mixing, thus, has implications for the design and operation of the groundwater remediation systems. Improved understanding of this 'dilution' mechanism is needed to design an optimum 'systems approach' to accelerate remediation of the near-shore contaminant plumes. More information on the pathway from near-river mapped plumes to riverbed receptor locations is also needed to develop a defensible proposed plan for a future ROD for final remedial action of contaminated groundwater. In April 2008, an expert panel of scientists was convened to review existing information and provide observations and suggestions to improve the current understanding of groundwater surface water interactions in the 100 Areas (primarily focusing on 100-D Area), and to identify what additional analyses or approaches may provide critical information needed to design and implement remediation systems that will minimize impacts to river aquatic systems. Specific objectives provided to the panel included: (1) comment on approaches and methods to improve the current understanding of groundwater-surface water interactions, specifically how contaminated groundwater enters the riverbed and how this relates to remediation of chromate in the groundwater in the 100 Areas; (2) evaluate past and current data collection methods, data analysis techniques, assumptions, and groundwater transport and mixing mechanisms; (3) evaluate the current monitoring network (monitoring wells, aquifer tubes, and shoreline/river monitoring); (4) evaluate the role played by modeling; and (5) suggest additional research to fill data gaps and perform modeling.

  14. Savannah River Site Waste Management Program Plan, FY 1993. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The primary purpose of the Waste Management Program Plan is to provide an annual report on facilities being used to manage wastes, forces acting to change current waste management (WM) systems, and how operations are conducted. This document also reports on plans for the coming fiscal year and projects activities for several years beyond the coming fiscal year to adequately plan for safe handling and disposal of radioactive wastes generated at the Savannah River Site (SRS) and for developing technology for improved management of wastes.

  15. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    SciTech Connect (OSTI)

    Chavis, D.M.

    1992-05-01T23:59:59.000Z

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management's operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  16. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    SciTech Connect (OSTI)

    Chavis, D.M.

    1992-05-01T23:59:59.000Z

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management`s operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  17. Independent Technical Review of In-Tank Precipitation (ITP) at the Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    An Independent Technical Review of In-Tank Precipitation (ITP) and Extended Sludge Processing (ESP) at the Savannah River Site (SRS) was carried out in March, 1993. The review focused on ITP/ESP equipment and chemical processes, integration of ITP/ESP within the High Level Waste (HLW) and Defense Waste Processing Facility (DWPF) systems, and management and regulatory concerns. Following the ITR executive summary, this report includes: Chapter I--summary assessment; Chapter II--recommendations; and Chapter III--technical evaluations.

  18. Corrosion Control Measures For Liquid Radioactive Waste Storage Tanks At The Savannah River Site

    SciTech Connect (OSTI)

    Wiersma, B. J.; Subramanian, K. H.

    2012-11-27T23:59:59.000Z

    The Savannah River Site has stored radioactive wastes in large, underground, carbon steel tanks for approximately 60 years. An assessment of potential degradation mechanisms determined that the tanks may be vulnerable to nitrate- induced pitting corrosion and stress corrosion cracking. Controls on the solution chemistry and temperature of the wastes are in place to mitigate these mechanisms. These controls are based upon a series of experiments performed using simulated solutions on materials used for construction of the tanks. The technical bases and evolution of these controls is presented in this paper.

  19. Insect community structure and function in Upper Three Runs, Savannah River Site, South Carolina

    SciTech Connect (OSTI)

    Morse, J.C.; English, W.R. [Clemson Univ., SC (United States). Dept. of Entomology; Looney, B.B. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-07-08T23:59:59.000Z

    A project to document the insect species in the upper reaches of Upper Three Runs at the Savannah River site was recently completed. This research was supported by the US Department of Energy under the National Environmental Research Park Program. The work was performed by the Department of Entomology at Clemson University in clemson, SC, by John C. Morse (principal investigator), William R. English and their colleagues. The major output from this study was the dissertation of Dr. William R. English entitled ``Ecosystem Dynamics of a South Carolina Sandhills Stream.`` He investigated selected environmental resources and determined their dynamics and the dynamics of the aquatic invertebrate community structure in response to them.

  20. Assessment of Neptunium, Americium, and Curium in the Savannah River Site Environment

    SciTech Connect (OSTI)

    Carlton, W.H. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-12-17T23:59:59.000Z

    A series of documents has been published in which the impact of various radionuclides released to the environment by Savannah River Site (SRS) operations has been assessed. The quantity released, the disposition of the radionuclides in the environment, and the dose to offsite individuals has been presented for activation products, carbon cesium, iodine, plutonium, selected fission products, strontium, technetium, tritium, uranium, and the noble gases. An assessment of the impact of nonradioactive mercury also has been published.This document assesses the impact of radioactive transuranics released from SRS facilities since the first reactor became operational late in 1953. The isotopes reported here are 239Np, 241Am, and 244Cm.

  1. Savannah River Site Consent Order 95-22-HW, September 29, 1995 Summary

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmentalEfficiency | DepartmentSavannah River Site

  2. Savannah River Site Consent Order 99-155-W, October 11, 1999

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmentalEfficiency | DepartmentSavannah River Site

  3. Savannah River Site Consent Order 99-155-W, October 11, 1999 Summary

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmentalEfficiency | DepartmentSavannah River Site155-W

  4. Savannah River Site Consent Order 99-21-HW, July 13, 1999

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmentalEfficiency | DepartmentSavannah River Site155-W

  5. The terrestrial carbon inventory on the Savannah River Site: Assessing the change in Carbon pools 1951-2001.

    SciTech Connect (OSTI)

    Dai, Zhaohua; Trettin, Carl, C.; Parresol, Bernard, R.

    2011-11-30T23:59:59.000Z

    The Savannah River Site (SRS) has changed from an agricultural-woodland landscape in 1951 to a forested landscape during that latter half of the twentieth century. The corresponding change in carbon (C) pools associated land use on the SRS was estimated using comprehensive inventories from 1951 and 2001 in conjunction with operational forest management and monitoring data from the site.

  6. Review of Natural Phenomena Hazard (NPH) Assessments for the DOE Hanford Site

    SciTech Connect (OSTI)

    Snow, Robert L.; Ross, Steven B.

    2011-09-15T23:59:59.000Z

    The purpose of this review is to assess the need for updating Natural Phenomena Hazard (NPH) assessments for the DOE's Hanford Site, as required by DOE Order 420.1B Chapter IV, Natural Phenomena Hazards Mitigation, based on significant changes in state-of-the-art NPH assessment methodology or site-specific information. This review is an update and expansion to the September 2010 review of PNNL-19751, Review of Natural Phenomena Hazard (NPH) Assessments for the Hanford 200 Areas (Non-Seismic).

  7. Natural resource management activities at the Savannah River Site. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    This environmental assessment (EA) reviews the environmental consequences of ongoing natural resource management activities on the Savannah River Site (SRS). Appendix A contains the Natural Resources Management Plant (NRMP). While several SRS organizations have primary responsibilities for different elements of the plan, the United States Department of Agriculture (USDA), Forest Service, Savannah River Forest Station (SRFS) is responsible for most elements. Of the river scenarios defined in 1985, the High-Intensity Management alternative established the upper bound of environmental consequences; it represents a more intense level of resource management than that being performed under current resource management activities. This alternative established compliance mechanisms for several natural resource-related requirements and maximum practical timber harvesting. Similarly, the Low-Intensity Management alternative established the lower bound of environmental consequences and represents a less intense level of resource management than that being performed under current resource management activities. This alternative also established compliance mechanisms, but defined a passively managed natural area. The Proposed Action of this EA describes the current level of multiple-natural resource management. This EA reviews the proposed action, and the high and low intensity alternative scenarios.

  8. Seismically-induced soil amplification at the DOE Paducah Gaseous Diffusion Plant site

    SciTech Connect (OSTI)

    Sykora, D.W.; Haynes, M.E. (Army Engineer Waterways Experiment Station, Vicksburg, MS (United States). Geotechnical Lab.); Brock, W.R.; Hunt, R.J.; Shaffer, K.E. (Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States))

    1991-01-01T23:59:59.000Z

    A site-specific earthquake site response (soil amplification) study is being conducted for the Department of Energy (DOE), Paducah Gaseous Diffusion Plant (PGDP). This study is pursuant to an upgraded Final Safety Analysis Report in accordance with requirements specified by DOE. The seismic hazard at PGDP is dominated by the New Madrid Seismic Zone. Site-specific synthetic earthquake records developed by others were applied independently to four soil columns with heights above baserock of about 325 ft. The results for the 1000-year earthquake event indicate that the site period is between 1.0 and 1.5 sec. Incident shear waves are amplified at periods of motion greater than 0.15 sec. The peak free-field horizontal acceleration, occurring at very low periods, is 0.28 g. 13 refs., 13 figs.

  9. EFFECTIVE HALF-LIFE OF CESIUM-137 IN VARIOUS ENVIRONMENTAL MEDIA AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Jannik, T.; Paller, M.; Baker, R.

    2013-12-12T23:59:59.000Z

    During the operational history of the Savannah River Site (SRS), many different radionuclides have been released from site facilities into the SRS environment. However, only a relatively small number of pathways, most importantly {sup 137}Cs in fish and deer, have contributed significantly to doses and risks to the public. The “effective” half-lives (T{sub e}) of {sup 137}Cs (which include both physical decay and environmental dispersion) in Savannah River floodplain soil and vegetation and in fish and white-tailed deer from the SRS were estimated using long-term monitoring data. For 1974–2011, the T{sub e}s of {sup 137}Cs in Savannah River floodplain soil and vegetation were 17.0 years (95% CI = 14.2–19.9) and 13.4 years (95% CI = 10.8–16.0), respectively. These T{sub e}s were greater than in a previous study that used data collected only through 2005 as a likely result of changes in the flood regime of the Savannah River. Field analyses of {sup 137}Cs concentrations in deer collected during yearly controlled hunts at the SRS indicated an overall T{sub e} of 15.9 years (95% CI = 12.3–19.6) for 1965–2011; however, the T{sub e} for 1990–2011 was significantly shorter (11.8 years, 95% CI = 4.8–18.8) due to an increase in the rate of {sup 137}Cs removal. The shortest T{sub e}s were for fish in SRS streams and the Savannah River (3.5–9.0 years), where dilution and dispersal resulted in rapid {sup 137}Cs removal. Long-term data show that T{sub e}s are significantly shorter than the physical half-life of {sup 137}Cs in the SRS environment but that they can change over time. Therefore, it is desirable have a long period of record for calculating Tes and risky to extrapolate T{sub e}s beyond this period unless the processes governing {sup 137}Cs removal are clearly understood.

  10. NEW - DOE P 481.1, DOE's Policy Regarding Laboratories, Plants and Sites Engaging in Strategic Partnership Projects with Other Federal Agencies, Independent Organizations, and the Private Sector

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The purpose of this Policy is to set the context in which DOE and its laboratories, plants, and sites should pursue Strategic Partnership Projects (SSP) with other Federal government agencies, state and local institutions, universities, foreign entities and/or private companies. The Policy is applicable to the DOE laboratories, plants, and sites, and to the DOE programs that own them and facilitate their work.

  11. An aerial radiological survey of the Central Savannah River Site, Aiken, South Carolina

    SciTech Connect (OSTI)

    Feimster, E.L.

    1991-09-01T23:59:59.000Z

    An aerial radiological survey was conducted over a 194-square- kilometer (75-square-mile) area encompassing the central portion of the Savannah River Site (SRS). The survey was flown during February 10--27, 1987. These radiological measurements were used as baseline data for the central area and for determining the extent of man-made radionuclide distribution. Previous SRS surveys included small portions of the area; the 1987 survey was covered during the site- wide survey conducted in 1979. Man-made radionuclides (including cobalt-60, cesium-137, protactinium-234m, and elevated levels of uranium-238 progeny) that were detected during the survey were typical of those produced by the reactor operations and material processing activities being conducted in the area. The natural terrestrial radiation levels were consistent with those measured during prior surveys of other SRS areas. 1 refs., 4 figs.

  12. Resuspension and Settling of Monosodium Titanate and Sludge in Supernate Simulate for the Savannah River Site

    SciTech Connect (OSTI)

    Taylor, P.A.; Mattus, C.H.

    1999-10-01T23:59:59.000Z

    The Savannah River Site (SRS) is testing several methods for their effectiveness in removing the major radionuclides from the supernate solutions that are stored in the high-level waste tanks at the site. One option is to mix the tank contents (sludge and supernate), in situ, with monosodium titanate (MST) powder to remove 90Sr and transuranics. The sludge and MST would be allowed to settle, and thet reated supernate would then be decanted. The sludge and MST would need to be resuspended later so that the solids could be pumped to the Defense Waste Processing Facility for vitrification. Small-scale tests evaluated the effect of various storage conditions on the rheological properties of the sludge/MST slurry. Laboratory-scale and pilot-scale tests were conducted to determine the mixing requirements for resuspending slurries of sludge simulant and MST, following settleing periods of various lengths.`

  13. Measurement of Tc-99 in Savannah River Site High Activity Waste

    SciTech Connect (OSTI)

    DiPrete, D.P.

    2003-03-27T23:59:59.000Z

    Waste cleanup efforts currently underway at the Savannah River Site have created a need to characterize Tc-99 in the various high activity waste matrices currently in Site inventories. The traditional method our laboratory used for analyzing Tc-99 in higher activity matrices was a solvent-solvent extraction method using Aliquat-336 in xylene, which resulted in the problematic generation of mixed waste. In an effort to eliminate the generation of mixed wastes resulting from the Aliquat 336/xylene process, a variety of different separation methodologies have been studied. Eichrom TEVA solid phase extractions using column technology have been employed in a case by case basis over the last several years. More recently, applications using Eichrom TEVA extraction discs and 3M Empore Tc extraction discs have also been explored.

  14. DEVELOPMENT AND DEPLOYMENT OF VACUUM SALT DISTILLATION AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Pierce, R.; Pak, D.; Edwards, T.

    2010-10-28T23:59:59.000Z

    The Savannah River Site has a mission to dissolve fissile materials and disposition them. The primary fissile material is plutonium dioxide (PuO{sub 2}). To support dissolution of these materials, the Savannah River National Laboratory (SRNL) designed and demonstrated a vacuum salt distillation (VSD) apparatus using both representative radioactive samples and non-radioactive simulant materials. Vacuum salt distillation, through the removal of chloride salts, increases the quantity of materials suitable for processing in the site's HB-Line Facility. Small-scale non-radioactive experiments at 900-950 C show that >99.8 wt % of the initial charge of chloride salt distilled from the sample boat with recovery of >99.8 wt % of the ceric oxide (CeO{sub 2}) - the surrogate for PuO{sub 2} - as a non-chloride bearing 'product'. Small-scale radioactive testing in a glovebox demonstrated the removal of sodium chloride (NaCl) and potassium chloride (KCl) from 13 PuO{sub 2} samples. Chloride concentrations were distilled from a starting concentration of 1.8-10.8 wt % to a final concentration <500 mg/kg chloride. Initial testing of a non-radioactive, full-scale production prototype is complete. A designed experiment evaluated the impact of distillation temperature, time at temperature, vacuum, product depth, and presence of a boat cover. Significant effort has been devoted to mechanical considerations to facilitate simplified operation in a glovebox.

  15. U. S. Department of Energy Savannah River Operations Office - Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSite Map Site Map Home Page DOE-SR News Releases

  16. Ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah. Final, Revision 2, Version 5: Appendix E to the remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Green River, Utah

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The purpose of this appendix is to provide a ground water protection strategy for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Green River, Utah. Compliance with the US Environmental Protection Agency (EPA) ground water protection standards will be achieved by applying supplemental standards (40 CFR {section} 192.22(a); 60 FR 2854) based on the limited use ground water present in the uppermost aquifer that is associated with widespread natural ambient contamination (40 CFR {section} 192.11(e); 60 FR 2854). The strategy is based on new information, including ground water quality data collected after remedial action was completed, and on a revised assessment of disposal cell design features, surface conditions, and site hydrogeology. The strategy will result in compliance with Subparts A and C of the EPA final ground water protection standards (60 FR 2854). The document contains sufficient information to support the proposed ground water protection strategy, with monitor well information and ground water quality data included as a supplement. Additional information is available in the final remedial action plan (RAP) (DOE, 1991a), the final completion report (DOE, 1991b), and the long-term surveillance plan (LTSP) (DOE, 1994a).

  17. Office of River Protection (DOE-ORP) Hanford Tank Waste Treatment Alternatives March 2000

    SciTech Connect (OSTI)

    WODRICH, D.D.

    2000-03-24T23:59:59.000Z

    The U.S. Department of Energy (DOE) is currently planning to retrieve, pretreat, immobilize and safely dispose of 53 million gallons of highly radioactive waste currently stored in underground tanks at Hanford Site. The DOE plan is a two-phased approach to privatizing the processing of hazardous and radioactive waste. Phase 1 is a proof-of-concept/commercial demonstration-scale effort whose objectives are to: demonstrate, the technical and business viability of using privatized facilities to treat Hanford tank waste; define and maintain required levels of radiological, nuclear, process and occupational safety; maintain environmental protection and compliance; and substantially reduce life-cycle costs and time required to treat Hanford tank waste. The Phase 1 effort consists of Part A and Part B. On September 25, 1996 (Reference 1), DOE signed a contract with BNFL, Inc. (BNFL) to commence with Phase 1, Part A. In August 1998, BNFL was authorized to proceed with Phase I, Part 6-1, a 24-month design phase that will-provide sufficient engineering and financial maturity to establish fixed-unit prices and financing terms for tank waste processing services in privately-owned and -operated facilities. By August 2000, DOE will decide whether to authorize BNFL to proceed with construction and operation of the proposed processing facilities, or pursue a different path. To support of the decision, DOE is evaluating alternatives to potentially enhance the BNFL tank waste processing contract, as well as, developing an alternate path forward should DOE decide to not continue the BNFL contract. The decision on whether to continue with the current privatization strategy (BNFL contract) or to pursue an alternate can not be made until the evaluation process leading up to the decision on whether to authorize BNFL to proceed with construction and operation (known as the Part 8-2 decision) is completed. The evaluation process includes reviewing and evaluating the information BNFL is scheduled to submit in April 2000, and negotiating the best mutually acceptable contract terms. The alternatives studies completed to-date are summarized in Reference 2.

  18. Training Reciprocity Achieves Greater Consistency, Saves Time and Money for Idaho, Other DOE Sites

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – Contracting companies supporting EM’s cleanup program at the Idaho site volunteered to be among the first to use a new DOE training reciprocity program designed to bring more consistency to health and safety training across the complex, reduce redundancy and realize savings and other efficiencies.

  19. DOE-2 Simulations for Cuero and Karnes County Prison Sites: Draft Progress Report 

    E-Print Network [OSTI]

    Bou-Saada, T. E.; Munger, B. K.; Saman, N. F.; Haberl, J. S.

    1995-01-01T23:59:59.000Z

    The intent of this project was to model each of the large buildings at the Karnes County 2,250 bed and Cuero 1,000 bed prison sites with the DOE-2 building energy simulation program and to deliver a working model to the Texas Department of Criminal...

  20. DOE-2 Simulations for Cuero and Karnes County Prison Sites: Draft Progress Report

    E-Print Network [OSTI]

    Bou-Saada, T. E.; Munger, B. K.; Saman, N. F.; Haberl, J. S.

    The intent of this project was to model each of the large buildings at the Karnes County 2,250 bed and Cuero 1,000 bed prison sites with the DOE-2 building energy simulation program and to deliver a working model to the Texas Department of Criminal...

  1. Memorandum, Approval of a Permanent Variance Regarding Sprinklers and Fire Boundaries in Selected Areas of 22 1-H Canyon at the Savannah River Site

    Broader source: Energy.gov [DOE]

    Approval of a Permanent Variance Regarding Fire Safety in Selected Areas of 221-H Canyon at the Savannah River Site UNDER SECRETARY OF ENERGY

  2. Memorandum Approval of a Permanent Variance Regarding Sprinklers and Fire Boundaries in Selected Areas of 22 1-H Canyon at the Savannah River Site

    Broader source: Energy.gov [DOE]

    Approval of a Permanent Variance Regarding Sprinklers and Fire Boundaries in Selected Areas of 22 1 -H Canyon at the Savannah River Site

  3. Achieving Accelerated Cleanup of Cesium Contaminated Stream at the Savannah River Site; Collaboration between Stakeholders, Regulators, and the Federal Government - 13182

    SciTech Connect (OSTI)

    Bergren, Chris; Flora, Mary; Socha, Ron; Burch, Joseph [Savannah River Nuclear Solutions, LLC, Bldg. 730-4B, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, LLC, Bldg. 730-4B, Aiken, SC 29808 (United States); Freeman, Candice; Hennessey, Brian [United States Department of Energy, Bldg. 730-B, Aiken, SC 29808 (United States)] [United States Department of Energy, Bldg. 730-B, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina that contains six primary stream/river systems. The Lower Three Runs Stream (LTR) is one of the primary streams within the site that is located in the southeast portion of the Savannah River Site and is a large black water stream system that originates in the northeast portion of SRS and follows a southerly direction before it enters the Savannah River. During reactor operations, secondary reactor cooling water, storm sewer discharges, and miscellaneous wastewater was discharged and contaminated a 36 kilometer stretch of Lower Three Runs Stream that narrows providing a limited buffer of US DOE property along the stream and flood plain. Based on data collected during 2009 and 2010 under Recover Act Funding, the stream was determined to be contaminated with cesium-137 at levels that exceeded acceptable risk based limits. As efficiencies were realized within the SRS Recovery Act Program, funding was made available to design, permit and execute remediation of the LTR. This accelerated Project allowed for the remediation of 36 kilometers of LTR in only nine months from inception to completion, contributing significantly to the Foot Print Reduction of SRS. The scope consisted of excavation and disposal of more than 2064 cubic meters of contaminated soil, and installing 11 kilometers of fence and 2,000 signs at 1000 locations. Confirmatory sampling and analysis, and radiological surveying were performed demonstrating that soil concentrations met the cleanup goals. The project completed with a very good safety record considering the harsh conditions including, excessive rain in the early stages of the project, high summer temperatures, swampy terrain, snakes, wild boar, insects and dense vegetation. The regulatory approval process was compressed by over 75% and required significant efforts from SRS's stakeholders including the regulators, U. S. Environmental Protection Agency (US EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC), and the public including local property owners and the SRS Citizens Advisory Board. Stakeholder buy-in was critical in the up-front planning in order to achieve this challenging cleanup. (authors)

  4. DISTRIBUTION AND RANGE OF RADIONUCLIDE SORPTION COEFFICIENTS IN A SAVANNAH RIVER SITE SUBSURFACE: STOCHASTIC MODELING CONSIDERATIONS

    SciTech Connect (OSTI)

    Kaplan, D.; et. al

    2010-01-11T23:59:59.000Z

    The uncertainty associated with the sorption coefficient, or K{sub d} value, is one of the key uncertainties in estimating risk associated with burying low-level nuclear waste in the subsurface. The objective of this study was to measure >648 K{sub d} values and provide a measure of the range and distribution (normal or log-normal) of radionuclide K{sub d} values appropriate for the E-Area disposal site, within the Savannah River Site, near Aiken South Carolina. The 95% confidence level for the mean K{sub d} was twice the mean in the Aquifer Zone (18-30.5 m depth), equal to the mean for the Upper Vadose Zone (3.3-10 m depth), and half the mean for the Lower Vadose Zone (3.10-18 m depth). The distribution of K{sub d} values was log normal in the Upper Vadose Zone and Aquifer Zone, and normal in the Lower Vadose Zone. To our knowledge, this is the first report of natural radionuclide Kd variability in the literature. Using ranges and distribution coefficients that are specific to the hydrostratigraphic unit improved model accuracy and reduced model uncertainty. Unfortunately, extension of these conclusions to other sites is likely not appropriate given that each site has its own sources of hydrogeological variability. However, this study provides one of the first examples of the development stochastic ranges and distributions of K{sub d} values for a hydrological unit for stochastic modeling.

  5. Hanford Site environmental data for calendar year 1994: Surface and Columbia River

    SciTech Connect (OSTI)

    Bisping, L.E.

    1995-07-01T23:59:59.000Z

    Environmental monitoring at the Hanford Site, located in southeastern Washington State, is conducted by Battelle Memorial Institute, Pacific Northwest Division, as part of its contract to operate the Pacific Northwest Laboratory (PNL) for the US Department of Energy. The data collected provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals. Pacific Northwest Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1994 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1994 b PNL`s Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface and river monitoring data. This volume contains the actual raw data used to create the summaries.

  6. Audit Report The Procurement of Safety Class/Safety-Significant Items at the Savannah River Site

    SciTech Connect (OSTI)

    None

    2009-04-01T23:59:59.000Z

    The Department of Energy operates several nuclear facilities at its Savannah River Site, and several additional facilities are under construction. This includes the National Nuclear Security Administration's Tritium Extraction Facility (TEF) which is designated to help maintain the reliability of the U.S. nuclear stockpile. The Mixed Oxide Fuel Fabrication Facility (MOX Facility) is being constructed to manufacture commercial nuclear reactor fuel assemblies from weapon-grade plutonium oxide and depleted uranium. The Interim Salt Processing (ISP) project, managed by the Office of Environmental Management, will treat radioactive waste. The Department has committed to procuring products and services for nuclear-related activities that meet or exceed recognized quality assurance standards. Such standards help to ensure the safety and performance of these facilities. To that end, it issued Departmental Order 414.1C, Quality Assurance (QA Order). The QA Order requires the application of Quality Assurance Requirements for Nuclear Facility Applications (NQA-1) for nuclear-related activities. The NQA-1 standard provides requirements and guidelines for the establishment and execution of quality assurance programs during the siting, design, construction, operation, and decommissioning of nuclear facilities. These requirements, promulgated by the American Society of Mechanical Engineers, must be applied to 'safety-class' and 'safety-significant' structures, systems and components (SSCs). Safety-class SSCs are defined as those necessary to prevent exposure off site and to protect the public. Safety-significant SSCs are those whose failure could irreversibly impact worker safety such as a fatality, serious injury, or significant radiological or chemical exposure. Due to the importance of protecting the public, workers, and environment, we initiated an audit to determine whether the Department of Energy procured safety-class and safety-significant SSCs that met NQA-1 standards at the Savannah River Site. Our review disclosed that the Department had procured and installed safety-class and safety-significant SSCs that did not meet NQA-1 quality standards. Specifically, we identified multiple instances in which critical components did not meet required quality and safety standards. For example: (1) Three structural components were procured and installed by the prime contractor at Savannah River during construction of the MOX Facility that did not meet the technical specifications for items relied on for safety. These substandard items necessitated costly and time consuming remedial action to, among other things, ensure that nonconforming materials and equipment would function within safety margins; (2) In six instances, items used in the construction of TEF failed to satisfy quality standards. In one of these situations, operating procedures had to be modified to ensure that the problem item did not compromise safety; and (3) Finally, at the ISP, one component that did not meet quality standards was procured. The failure of the item could have resulted in a spill of up to 15,000 gallons of high-level radioactive waste. Based on an extensive examination of relevant internal controls and procurement practices, we concluded that these failures were attributable to inadequate attention to quality assurance at Savannah River. Simply put, Departmental controls were not adequate to prevent and/or detect quality assurance problems. For example, Federal and prime contractor officials did not expressly require that subcontractors or lower-tiered vendors comply with quality assurance requirements. Additionally, management did not effectively communicate quality assurance concerns between the several Departmental program elements operating at Savannah River. The procurement and installation of these nonconforming components resulted in cost increases. For example, as of October 2008, the MOX Facility had incurred costs of more than $680,000 due to problems associated with the procurement of $11 million of nonconforming safety-class reinforcing steel.

  7. Evaluation of Fish Passage Sites in the Walla Walla River Basin, 2008

    SciTech Connect (OSTI)

    Chamness, Mickie A. [Pacific Northwest National Laboratory

    2008-08-29T23:59:59.000Z

    In 2008, Pacific Northwest National Laboratory evaluated the Hofer Dam fish screen and provided technical assistance at two other fish passage sites as requested by the Bonneville Power Administration, the Walla Walla Watershed Council, or the Confederated Tribes of the Umatilla Indian Reservation. Evaluation of new sites such as Hofer Dam focuses on their design, construction, operation, and maintenance to determine if they effectively provide juvenile salmonids with safe passage through irrigation diversions. There were two requests for technical assistance in 2008. In the first, the Confederated Tribes of the Umatilla Indian Reservation requested an evaluation of the Nursery Bridge fish screens associated with the fish ladder on the east side of the Walla Walla River. One set of brushes that clean the screens was broken for an extended period. Underwater videography and water velocity measurements were used to determine there were no potential adverse effects on juvenile salmonids when the west set of screens was clean enough to pass water normally. A second request, received from the National Marine Fisheries Service and the Walla Walla Watershed Council, asked for evaluation of water velocities through relatively new head gates above and adjacent to the Eastside Ditch fish screens on the Walla Walla River. Water moving through the head gates and not taken for irrigation is diverted to provide water for the Nursery Bridge fish ladder on the east side of the river. Elevations used in the design of the head gates were incorrect, causing excessive flow through the head gates that closely approached or exceeded the maximum swimming burst speed of juvenile salmonids. Hofer Dam was evaluated in June 2008. PNNL researchers found that conditions at Hofer Dam will not cause impingement or entrainment of juvenile salmonids but may provide habitat for predators and lack strong sweeping flows to encourage juvenile salmonid passage downstream. Further evaluation of velocities at the Eastside Ditch and wasteway gates should occur as changes are made to compensate for the design problems. These evaluations will help determine whether further changes are required. Hofer Dam also should be evaluated again under more normal operating conditions when the river levels are typical of those when fish are emigrating and the metal plate is not affecting flows.

  8. HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT

    SciTech Connect (OSTI)

    Jolly, R; Bruce Martin, B

    2008-01-15T23:59:59.000Z

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea transfers utilizing STPs from July 2006 to August 2007. This operation and successful removal of sludge material meets requirement of approximately 19,000 to 28,000 liters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. Removal of the last 35% of sludge was exponentially more difficult, as less and less sludge was available to mobilize and the lighter sludge particles were likely removed during the early mixing campaigns. The removal of the 72,000 liters (19,000 gallons) of sludge was challenging due to a number factors. One primary factor was the complex internal cooling coil array within Tank 6 that obstructed mixer discharge jets and impacted the Effective Cleaning Radius (ECR) of the Submersible Mixer Pumps. Minimal access locations into the tank through tank openings (risers) presented a challenge because the available options for equipment locations were very limited. Mechanical Sludge Removal activities using SMPs caused the sludge to migrate to areas of the tank that were outside of the SMP ECR. Various SMP operational strategies were used to address the challenge of moving sludge from remote areas of the tank to the transfer pump. This paper describes in detail the Mechanical Sludge Removal activities and mitigative solutions to cooling coil obstructions and other challenges. The performance of the WOW system and SMP operational strategies were evaluated and the resulting lessons learned are described for application to future Mechanical Sludge Removal operations.

  9. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This document evaluates potential impacts to public health and the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1989 by the US DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, UMTRA Project is evaluating ground water contamination in this risk assessment.

  10. LONG-TERM STABILITY TESTING RESULTS USING SURROGATES AND SORBENTS FOR SAVANNAH RIVER SITE ORGANIC AND AQUEOUS WASTESTREAMS - 10016

    SciTech Connect (OSTI)

    Burns, H.

    2009-11-10T23:59:59.000Z

    The U.S. Department of Energy (DOE) has tasked MSE Technology Applications, Inc. (MSE) with evaluating the long-term stability of various commercially available sorbent materials to solidify two organic surrogate wastestreams (both volatile and nonvolatile), a volatile organic surrogate with a residual aqueous phase, an aqueous surrogate, and an aqueous surrogate with a residual organic phase. The Savannah River Site (SRS) Legacy and F-Canyon plutonium/uranium extraction (PUREX) process waste surrogates constituted the volatile organic surrogates, and various oils constituted the nonvolatile organic surrogates. The aqueous surrogates included a rainwater surrogate and an aqueous organic surrogate. MSE also evaluated the PUREX surrogate with a residual aqueous component with and without aqueous type sorbent materials. Solidification of the various surrogate wastestreams listed above was performed from 2004 to 2006 at the MSE Test Facility located in Butte, Montana. This paper summarizes the comparison of the initial liquid release test (LRT) values with LRT results obtained during subsequent sampling events in an attempt to understand and define the long-term stability characteristics for the solidified wastestreams.

  11. Sandhill Crane Roost Site Characteristics in the North Platte River Valley Author(s): Martin J. Folk and Thomas C. Tacha

    E-Print Network [OSTI]

    Sandhill Crane Roost Site Characteristics in the North Platte River Valley Author(s): Martin J the North Platte River Valley (NPRV) of Nebraska in riverine and semipermanent palustrine wetlands from late in the Platte River. Cranes roosted in semipermanent wetlands where widths were >12 m, water depths were 5

  12. Modifications to the remedial action plan and site design for stabilization of the inactive Uranium Mill Tailings Site at Green River, Utah

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    Modifications to the water resources protection strategy detailed in the remedial action plan for the Green River, Utah, disposal site are presented. The modifications are based on new information, including ground water quality data collected after remedial action was completed and on a revised assessment of disposal cell design features, surface conditions, and site hydrogeology. The modifications will result in compliance with the U.S. EPA proposed ground water standards (52 FR 36000 (1987)).

  13. Laboratory And Lysimeter Experimentation And Transport Modeling Of Neptunium And Strontium In Savannah River Site Sediments

    SciTech Connect (OSTI)

    Kaplan, Daniel I.; Powell, B. A.; Miller, Todd J.

    2012-09-24T23:59:59.000Z

    The Savannah River Site (SRS) conducts performance assessment (PA) calculations to determine the appropriate amount of low-level radiological waste that can be safely disposed on site. Parameters are included in these calculations that account for the interaction between the immobile solid phase and the mobile aqueous phase. These parameters are either the distribution coefficient (K{sub d} value) or the apparent solubility value (K{sub sp}). These parameters are readily found in the literature and are used throughout the DOE complex. One shortcoming of K{sub d} values is that they are only applicable to a given set of solid and aqueous phase conditions. Therefore, a given radionuclide may have several K{sub d} values as it moves between formations and comes into contact with different solids and different aqueous phases. It is expected that the K{sub d} construct will be appropriate to use for a majority of the PA and for a majority of the radionuclides. However, semi-mechanistic models would be more representative in isolated cases where the chemistry is especially transitory or the radionuclide chemistry is especially complex, bringing to bear multiple species of varying sorption tendencies to the sediment. Semi-mechanistic models explicitly accommodate the dependency of K{sub d} values, or other sorption parameters, on contaminant concentration, competing ion concentrations, pH-dependent surface charge on the adsorbent, and solute species distribution. Incorporating semi-mechanistic concepts into geochemical models is desirable to make the models more robust and technically defensible. Furthermore, these alternative models could be used to augment or validate a Kd?based DOE Order 435.1 Performance Assessment. The objectives of this study were to: 1) develop a quantitative thermodynamically-based model for neptunium sorption to SRS sediments, and 2) determine a sorption constant from an SRS 11-year lysimeter study. The modeling studies were conducted with existing data sets. The first data set used laboratory generated Np sorption data as a function of concentration (three orders of magnitude) and as a function of pH (four orders of magnitude of proton concentration). In this modeling exercise, a very simple solution was identified by assuming that all sorption occurred only to the iron oxides in the sediment and that all the added NpO{sub 4}{sup -} remained in the oxidized state and was not reduced to the Np(IV) state (as occurs rapidly with Pu(V)). With rather limited input data, very good agreement between experimental and modeling results was observed. This modeling approach would be easy to add to the PA with little additional data requirements. This model would be useful in a system where pH is expected to change greatly, such as directly beneath a grout or concrete structure. The second model discussed in the report was to derive strontium K{sub d} values from data collected in an 11-year-old field transport study. In this controlled lysimeter study, a sensitivity analysis was conducted of hydrological and chemical processes that influence contaminant transport, including diffusion coefficients, seepage velocity, and K{sub d} value. The best overall K{sub d} derived from the model fit to the data was 32 L kg{sup -1}, which was the same value that was previously measured in traditional laboratory batch sorption studies. This was an unexpected result given the differences in experimental conditions between the batch test and the lysimeter flow through test, in particular the differences between strontium adsorption and desorption processes occurring in the latter test and not in the former. There were some trends in the lysimeter strontium data that were not predicted by the K{sub d} model, which suggest that other geochemical processes are likely also controlling strontium transport. Strontium release and cation exchange are being evaluated. These results suggest that future modeling efforts (e.g., PAs) could be improved by employing a more robust semi-empirical modeling approach to transient or complex conditio

  14. Descriptions of representative contaminated sites and facilities within the DOE complex

    SciTech Connect (OSTI)

    Short, S.M.; Buck, J.W.; Clark, L.L.; Fletcher, J.F.; Glantz, C.S.; Holdren, G.R.; Huesties, L.R.; Williams, M.D. [Pacific Northwest Lab., Richland, WA (United States); Oates, L. [ICF, Richland, WA (United States)] [and others

    1994-10-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has initiated efforts to prepare a Programmatic Environmental Impact Statement (PEIS) that will analyze the existing environmental restoration and waste management program and evaluate alternatives for an integrated program. The alternatives being evaluated include (1) a {open_quotes}No Action{close_quotes} alternative as required by the National Environmental Policy Act (NEPA), (2) an Applicable, Relevant, and Appropriate Requirements (ARAR)-driven alternative, (3) a land-use-driven alternative, (4) a health-risk-driven alternative, and (5) a combination land-use and health-risk-driven alternative. The analytical approach being taken to evaluate each of these alternatives is to perform a remedial engineering analysis and human health and ecosystem effects analyses on every contaminated site and facility in the DOE complex. One of Pacific Northwest Laboratory`s (PNL) roles in this approach has been to compile the source term and environmental setting data needed to drive each of these analyses. To date, over 10,000 individual contaminated sites and facilities located throughout the DOE complex of installations have been identified and at least some minimal data compiled on each. The PEIS analyses have been appreciably simplified by categorizing all of these contaminated sites and facilities into six broad categories: (1) contaminated buildings, (2) contaminated soils, (3) solid waste sites (e.g., burial grounds), (4) liquid containment structures (e.g., tanks), (5) surface water sites, and (6) contaminated groundwater sites. A report containing a complete description of each of these thousands of contaminated sites and facilities would be tremendously large and unwildy, as would separate reports describing the application of the analytical methodologies to each.

  15. Independent Assessment of the Savannah River Site High-Level Waste Salt Disposition Alternatives Evaluation

    SciTech Connect (OSTI)

    J. T. Case (DOE-ID); M. L. Renfro (INEEL)

    1998-12-01T23:59:59.000Z

    This report presents the results of the Independent Project Evaluation (IPE) Team assessment of the Westinghouse Savannah River Company High-Level Waste Salt Disposition Systems Engineering (SE) Team's deliberations, evaluations, and selections. The Westinghouse Savannah River Company concluded in early 1998 that production goals and safety requirements for processing SRS HLW salt to remove Cs-137 could not be met in the existing In-Tank Precipitation Facility as currently configured for precipitation of cesium tetraphenylborate. The SE Team was chartered to evaluate and recommend an alternative(s) for processing the existing HLW salt to remove Cs-137. To replace the In-Tank Precipitation process, the Savannah River Site HLW Salt Disposition SE Team downselected (October 1998) 140 candidate separation technologies to two alternatives: Small-Tank Tetraphenylborate (TPB) Precipitation (primary alternative) and Crystalline Silicotitanate (CST) Nonelutable Ion Exchange (backup alternative). The IPE Team, commissioned by the Department of Energy, concurs that both alternatives are technically feasible and should meet all salt disposition requirements. But the IPE Team judges that the SE Team's qualitative criteria and judgments used in their downselection to a primary and a backup alternative do not clearly discriminate between the two alternatives. To properly choose between Small-Tank TPB and CST Ion Exchange for the primary alternative, the IPE Team suggests the following path forward: Complete all essential R and D activities for both alternatives and formulate an appropriate set of quantitative decision criteria that will be rigorously applied at the end of the R and D activities. Concurrent conceptual design activities should be limited to common elements of the alternatives.

  16. NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147

    SciTech Connect (OSTI)

    Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D. [U.S. Nuclear Regulatory Commission (United States)] [U.S. Nuclear Regulatory Commission (United States)

    2013-07-01T23:59:59.000Z

    As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in coordination with South Carolina Department of Health and Environmental Control (SCDHEC). DOE has completed or begun additional work related to salt waste disposal to address these factors. NRC staff continues to evaluate information related to the performance of the SDF and has been working with DOE and SCDHEC to resolve NRC staff's technical concerns. (authors)

  17. Use of Electronic Hand-held Devices for Collection of Savannah River Site Environmental Data - 13329

    SciTech Connect (OSTI)

    Marberry, Hugh [SRNS Savannah River Site 730-4B Room 3043 Aiken, SC 29808 (United States)] [SRNS Savannah River Site 730-4B Room 3043 Aiken, SC 29808 (United States); Moore, Winston [SRNS Savannah River Site 735B Room 116 Aiken, SC 29808 (United States)] [SRNS Savannah River Site 735B Room 116 Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    Savannah River Nuclear Solutions has begun using Xplore Tablet PC's to collect data in the field for soil samples, groundwater samples, air samples and round sheets at the Savannah River Site (SRS). EPA guidelines for groundwater sampling are incorporated into the application to ensure the sample technician follows the proper protocol. The sample technician is guided through the process for sampling and round sheet data collection by a series of menus and input boxes. Field measurements and well stabilization information are entered into the tablet for uploading into Environmental Restoration Data Management System (ERDMS). The process helps to eliminate input errors and provides data integrity. A soil sample technician has the ability to collect information about location of sample, field parameter, describe the soil sample, print bottle labels, and print chain of custody for the sample that they have collected. An air sample technician has the ability to provide flow, pressure, hours of operation, print bottle labels and chain of custody for samples they collect. Round sheets are collected using the information provided in the various procedures. The data are collected and uploaded into ERDMS. The equipment used is weather proof and hardened for the field use. Global Positioning System (GPS) capabilities are integrated into the applications to provide the location where samples were collected and to help sample technicians locate wells that are not visited often. (authors)

  18. A synopsis of environmental horizontal wells at the Savannah River Site

    SciTech Connect (OSTI)

    Denham, M.E.; Lombard, K.H.

    1995-07-01T23:59:59.000Z

    Seven horizontal wells for environmental remediation were installed at the Savannah River Site as part of an Integrated Demonstration Project sponsored by the Department of Energy`s Office of Technology Development. The wells were used to demonstrate innovative remediation systems for the clean up of chlorinated organic solvent contamination in groundwater and the vadose zone. The wells were installed in four demonstrations of different horizontal drilling technologies. A short-radius petroleum industry technology, a modified petroleum industry technology (using a down-hole motor), a utility industry technology, and a river crossing technology were demonstrated. The goals of the demonstrations were to show the utility of horizontal wells in environmental remediation and further development of the technology required to install these wells. From the first demonstration in 1988 to the latest in 1991, there was significant evolution in horizontal drilling technology. The main technical challenges in the first demonstration were directional control during drilling and borehole instability. Through advancement of the technology these problems were overcome and did not affect the last demonstration. Those considering the use of horizontal wells for environmental remediation will benefit from the knowledge gained from these demonstrations.

  19. STATISTICAL SAMPLING FOR IN-SERVICE INSPECTION OF LIQUID WASTE TANKS AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Harris, S.; Baxter, L.

    2011-04-07T23:59:59.000Z

    Savannah River Remediation, LLC (SRR) is implementing a statistical sampling strategy for In-Service Inspection (ISI) of Liquid Waste (LW) Tanks at the United States Department of Energy's Savannah River Site (SRS) in Aiken, South Carolina. As a component of SRS's corrosion control program, the ISI program assesses tank wall structural integrity through the use of ultrasonic testing (UT). The statistical strategy for ISI is based on the random sampling of a number of vertically oriented unit areas, called strips, within each tank. The number of strips to inspect was determined so as to attain, over time, a high probability of observing at least one of the worst 5% in terms of pitting and corrosion across all tanks. The probability estimation to determine the number of strips to inspect was performed using the hypergeometric distribution. Statistical tolerance limits for pit depth and corrosion rates were calculated by fitting the lognormal distribution to the data. In addition to the strip sampling strategy, a single strip within each tank was identified to serve as the baseline for a longitudinal assessment of the tank safe operational life. The statistical sampling strategy enables the ISI program to develop individual profiles of LW tank wall structural integrity that collectively provide a high confidence in their safety and integrity over operational lifetimes.

  20. STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PROJECT - 9225

    SciTech Connect (OSTI)

    Jolly, R

    2009-01-06T23:59:59.000Z

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed {approx} 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of {approx} 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the 'Status of Chemical Cleaning of Waste Tanks at the Savannah River Site--F Tank Farm Closure Project--Abstract 9114'. To support Tank 5 and Tank 6 cooling coil closure, cooling coil isolation and full scale cooling coil grout testing was completed to develop a strategy for grouting the horizontal and vertical cooling coils. This paper describes in detail the performance of the Mechanical Sludge Removal activities and SMP operational strategies within Tank 5. In addition, it will discuss the current status of Tank 5 & 6 cooling coil isolation activities and the results from the cooling coil grout fill tests.

  1. DOE Issues Draft RFP for Hanford Site Lab Services | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732 DOE F 243.2 Records Scheduling Request DOE DOEHanford Site Lab

  2. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  3. SOLUBILITY OF URANIUM AND PLUTONIUM IN ALKALINE SAVANNAH RIVER SITE HIGH LEVEL WASTE SOLUTIONS

    SciTech Connect (OSTI)

    King, W.; Hobbs, D.; Wilmarth, B.; Edwards, T.

    2010-03-10T23:59:59.000Z

    Five actual Savannah River Site tank waste samples and three chemically-modified samples were tested to determine solubility limits for uranium and plutonium over a one year time period. Observed final uranium concentrations ranged from 7 mg U/L to 4.5 g U/L. Final plutonium concentrations ranged from 4 {micro}g Pu/L to 12 mg Pu/L. Actinide carbonate complexation is believed to result in the dramatic solubility increases observed for one sample over long time periods. Clarkeite, NaUO{sub 2}(O)OH {center_dot} H{sub 2}O, was found to be the dominant uranium solid phase in equilibrium with the waste supernate in most cases.

  4. Time-dependent study of Chernobyl fallout near Savannah River Site

    SciTech Connect (OSTI)

    Winn, W.G.; Kantelo, M.V.

    1989-01-01T23:59:59.000Z

    During 1986, atmospheric fallout from the Chernobyl reactor accident in April was detected from early May until late August near the Savannah River site (SRS) in Aiken, South Carolina. A total of 17 man-made nuclides were identified in the fallout, of which {sup 103}Ru, {sup 131}I, {sup 134}Cs, and {sup 137}Cs were predominant. The SRS capabilities for routine atmospheric monitoring were easily extended to study the Chernobyl fallout. The local impact of this fallout was quite minor. Calculations yielded a total inhaled dose of 0.09 {mu}Sv and a thyroid dose of 1.1 {mu}Sv. The {sup 137}Cs levels returned to preaccident levels by August. This indicates that the Chernobly fallout had only a short-term effect on airborne {sup 137}Cs concentrations, which are still dominated by historical fallout from nuclear weapons tests.

  5. A summary of ecological investigations at the burial ground complex, Savannah River Site - 1994

    SciTech Connect (OSTI)

    Friday, G.P.; Hartman, G.D.; Mackey, H.E. Jr.; Riley, R.S.; Roach, J.L.; Specht, W.L.; Westbury, H.M.; Wike, L.D.

    1994-11-01T23:59:59.000Z

    This report summarizes the results of three ecological investigations that were conducted in 1994 at the Burial Ground Complex (BGC) at the Savannah River Site (SRS). The three topics of study included remote sensing, aquatic toxicity testing, and qualitative surveys of herpetofauna and small mammals. Interim reports from each investigation are included in the appendices (A, B, and C). The objectives of the remote sensing effort were to compile historical aerial photography of the BGC and to develop a land use/cover map of the complex using recent aerial imagery. The goal of the aquatic toxicity testing was to determine if surface waters were toxic to aquatic biota whereas the objectives of the vertebrate surveys were to identify the species diversity and relative abundances of amphibians, reptiles, and small mammals inhabiting the study area.

  6. Rapid Bioassessment Methods for Assessing Stream Macroinvertebrate Community on the Savannah River Site

    SciTech Connect (OSTI)

    Specht, W.L.

    1999-11-22T23:59:59.000Z

    Macroinvertebrate sampling was performed at 16 locations in the Savannah River Site (SRS) streams using Hester-Dendy multiplate samplers and EPA Rapid Bioassessment Protocols (RBP). Some of the sampling locations were unimpacted, while other locations had been subject to various forms of perturbation by SRS activities. In general, the data from the Hester-Dendy multiplate samplers were more sensitive at detecting impacts than were the RBP data. We developed a Biotic Index for the Hester-Dendy data which incorporated eight community structure, function, and balance parameters. when tested using a data set that was unrelated to the data set that was used in developing the Biotic Index, the index was very successful at detecting impact.

  7. Dry Deposition Velocity Estimation for the Savannah River Site: Part 1 – Parametric Analysis

    SciTech Connect (OSTI)

    Napier, Bruce A.

    2012-01-16T23:59:59.000Z

    Values for the dry deposition velocity of airborne particles were estimated with the GENII Version 2.10 computer code for the Savannah River site using assumptions about surface roughness parameters and particle size and density. Use of the GENII code is recommended by the U.S. Department of Energy for this purpose. Meteorological conditions evaluated include atmospheric stability classes D, E, and F and wind speeds of 0.5, 1.0, 1.5, and 3.0 m/s. Local surface roughness values ranging from 0.03 to 2 meters were evaluated. Particles with mass mean diameters of 1, 5, and 10 microns and densities of 1, 3, and 5 g/cm3 were evaluated.

  8. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon, Hanford Reach, Columbia River : Final Report 1995 - 1998.

    SciTech Connect (OSTI)

    Geist, David R.

    1999-05-01T23:59:59.000Z

    This report summarizes results of research activities conducted from 1995 through 1998 on identifying the spawning habitat requirements of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The project investigated whether traditional spawning habitat models could be improved in order to make better predictions of available habitat for fall chinook salmon in the Snake River. Results suggest models could be improved if they used spawning area-specific, rather than river-specific, spawning characteristics; incorporated hyporheic discharge measurements; and gave further consideration to the geomorphic features that are present in the unconstrained segments of large alluvial rivers. Ultimately the recovery of endangered fall chinook salmon will depend on how well we are able to recreate the characteristics once common in alluvial floodplains of large rivers. The results from this research can be used to better define the relationship between these physical habitat characteristics and fall chinook salmon spawning site selection, and provide more efficient use of limited recovery resources. This report is divided into four chapters which were presented in the author's doctoral dissertation which he completed through the Department of Fisheries and Wildlife at Oregon State University. Each of the chapters has been published in peer reviewed journals or is currently under review. Chapter one is a conceptual spawning habitat model that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Chapter two describes the comparison of the physical factors associated with fall chinook salmon redd clusters located at two sites within the Reach. Spatial point pattern analysis of redds showed that redd clusters averaged approximately 10 hectares in area and their locations were consistent from year to year. The tendency to spawn in clusters suggests fall chinook salmon's use of spawning habitat is highly selective. Hydraulic characteristics of the redd clusters were significantly different than the habitat surrounding them. Velocity and lateral slope of the river bottom were the most important habitat variables in predicting redd site selection. While these variables explained a large proportion of the variance in redd site selection (86 to 96%), some unmeasured factors still accounted for a small percentage of actual spawning site selection. Chapter three describes the results from an investigation into the hyporheic characteristics of the two spawning areas studied in chapter two. This investigation showed that the magnitude and chemical characteristics of hyporheic discharge were different between and within two spawning areas. Apparently, fall chinook salmon used chemical and physical cues from the discharge to locate spawning areas. Finally, chapter four describes a unique method that was developed to install piezometers into the cobble bed of the Columbia River.

  9. Site Environmental Report for Calendar Year 1999. DOE Operations at The Boeing Company, Rocketdyne

    SciTech Connect (OSTI)

    None

    2000-09-01T23:59:59.000Z

    OAK A271 Site Environmental Report for Calendar Year 1999. DOE Operations at The Boeing Company, Rocketdyne. This Annual Site Environmental Report (ASER) for 1999 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Rocketdyne Santa Susana Field Laboratory (SSFL). In the past, these operations included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials under the former Atomics International Division. Other activities included the operation of large-scale liquid metal facilities for testing of liquid metal fast breeder components at the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility within Area IV. All nuclear work was terminated in 1988, and subsequently, all radiological work has been directed toward decontamination and decommissioning (D&D) of the previously used nuclear facilities and associated site areas. Large-scale D&D activities of the sodium test facilities began in 1996. This Annual Site Environmental Report provides information showing that there are no indications of any potential impact on public health and safety due to the operations conducted at the SSFL. All measures and calculations of off-site conditions demonstrate compliance with applicable regulations, which provide for protection of human health and the environment.

  10. New Composite Membranes for High Throughput Solid-Liquid Separations at the Savannah River Site

    SciTech Connect (OSTI)

    Bhave, Ramesh R [ORNL

    2012-01-01T23:59:59.000Z

    New Composite Membranes for High Throughput Solid-Liquid Separations at the Savannah River Site R. Bhave (Oak Ridge National Laboratory. Oak Ridge, TN) and M. R. Poirier* (Savannah River National Laboratory, Aiken SC) Solid-liquid separation is the limiting step for many waste treatment processes at the Savannah River Site. SRNL researchers have identified the rotary microfilter as a technology to improve the rate of solid-liquid separation processes. SRNL is currently developing the rotary microfilter for radioactive service and plans to deploy the technology as part of the small column ion exchange process. The rotary microfilter can utilize any filter media that is available as a flat sheet. The current baseline membrane is a 0.5 micron (nominal) porous metal filter (Pall PMM050). Previous testing with tubular filters showed that filters composed of a ceramic membrane on top of a stainless steel support produce higher flux than filters composed only of porous metal. The authors are working to develop flat sheet filter media composed of a ceramic membrane and/or ceramic-metal composite on top of a porous stainless steel support that can be used with the rotary microfilter to substantially increase filter flux resulting in a more compact, energy efficient and cost-effective high level radioactive waste treatment system. Composite membranes with precisely controlled pore size distribution were fabricated on porous metal supports. High quality uniform porous metal (316SS) supports were fabricated to achieve high water permeability. Separative layers of several different materials such as ultrafine metal particles and ceramic oxides were used to fabricate composite membranes. The fabrication process involved several high temperature heat treatments followed by characterization of gas and liquid permeability measurements and membrane integrity analysis. The fabricated composite membrane samples were evaluated in a static test cell manufactured by SpinTek. The composite membranes were evaluated on several feed slurries: 1 wt. % strontium carbonate in deionized water, 1 wt. % monosodium titanate in simulated salt solution, and 1 wt. % simulated sludge in simulated salt solution and deionized water. Flux as a function of feed flow rate and transmembrane pressure was measured for each of the above described feed slurries. The authors will discuss the new membrane development efforts, waste slurry filtration performance evaluations and scale-up considerations.

  11. DOE responses to CDH October 1993 comments on the Remedical Action Plan for the Naturita, Colorado, Umtra Site

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This document includes the October 1993 comments provided by the Colorado Department of Health (CDH) on the Department of Energy (DOE) Preliminary Final Remedial Action Plan for the Naturita, Colorado, UMTRA Site. DOE`s responses are included after each CDH comment.

  12. EIS-0147: Continued Operation of the K-,L-, and P- Reactors, Savannah River Site, Aiken, South Carolina

    Broader source: Energy.gov [DOE]

    This environmental impact statement (EIS) analyzes the environmental impacts of the proposed action, which is to continue operation of K-, L-, and P-Reactors at the Savannah River Site (SRS) to ensure the capability to produce nuclear materials, and to produce nuclear materials as necessary for United States defense and nondefense programs.

  13. Soil washing as a potential remediation technology for contaminated DOE sites

    SciTech Connect (OSTI)

    Devgun, J.S.; Beskid, N.J. (Argonne National Lab., IL (United States)); Natsis, M.E. (Princeton Univ., NJ (United States)); Walker, J.S. (USDOE, Washington, DC (United States))

    1993-01-01T23:59:59.000Z

    Frequently detected contaminants at US Department of Energy (DOE) sites include radionuclides, heavy metals, and chlorinated hydrocarbons. Remediation of these sites requires application of several technologies used in concert with each other, because no single technology is universally applicable. Special situations, such as mixed waste, generally require innovative technology development. This paper, however, focuses on contaminated soils, for which soil washing and vitrification technologies appear to have wide ranging application potential. Because the volumes of contaminated soils around the DOE complex are so large, soil washing can offer a potentially inexpensive way to effect remediation or to attain waste volume reduction. As costs for disposal of low-level and mixed wastes continue to rise, it is likely that volume-reduction techniques and in-situ containment techniques will become increasingly important. This paper reviews the status of the soil washing technology, examines the systems that are currently available, and discusses the potential application of this technology to some DOE sites, with a focus on radionuclide contamination and, primarily, uranium-contaminated soils

  14. Soil washing as a potential remediation technology for contaminated DOE sites

    SciTech Connect (OSTI)

    Devgun, J.S.; Beskid, N.J. [Argonne National Lab., IL (United States); Natsis, M.E. [Princeton Univ., NJ (United States); Walker, J.S. [USDOE, Washington, DC (United States)

    1993-03-01T23:59:59.000Z

    Frequently detected contaminants at US Department of Energy (DOE) sites include radionuclides, heavy metals, and chlorinated hydrocarbons. Remediation of these sites requires application of several technologies used in concert with each other, because no single technology is universally applicable. Special situations, such as mixed waste, generally require innovative technology development. This paper, however, focuses on contaminated soils, for which soil washing and vitrification technologies appear to have wide ranging application potential. Because the volumes of contaminated soils around the DOE complex are so large, soil washing can offer a potentially inexpensive way to effect remediation or to attain waste volume reduction. As costs for disposal of low-level and mixed wastes continue to rise, it is likely that volume-reduction techniques and in-situ containment techniques will become increasingly important. This paper reviews the status of the soil washing technology, examines the systems that are currently available, and discusses the potential application of this technology to some DOE sites, with a focus on radionuclide contamination and, primarily, uranium-contaminated soils

  15. Small Column Ion Exchange Technology at Savannah River Site | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site EnvironmentalEnergySafely Delivering DOE'sEnergy SmallAwards

  16. Small Column Ion Exchange at Savannah River Site Technology Readiness Assessment Report

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site EnvironmentalEnergySafely Delivering DOE'sEnergy SmallAwardsSmall Column Ion

  17. Lower Columbia River and Estuary Ecosystem Restoration Program Reference Site Study: 2011 Restoration Analysis - FINAL REPORT

    SciTech Connect (OSTI)

    Borde, Amy B.; Cullinan, Valerie I.; Diefenderfer, Heida L.; Thom, Ronald M.; Kaufmann, Ronald M.; Zimmerman, Shon A.; Sagar, Jina; Buenau, Kate E.; Corbett, C.

    2012-05-31T23:59:59.000Z

    The Reference Site (RS) study is part of the research, monitoring, and evaluation (RME) effort developed by the Action Agencies (Bonneville Power Administration [BPA], U.S. Army Corps of Engineers, Portland District [USACE], and U.S. Bureau of Reclamation) in response to Federal Columbia River Power System (FCRPS) Biological Opinions (BiOp). While the RS study was initiated in 2007, data have been collected at relatively undisturbed reference wetland sites in the LCRE by PNNL and collaborators since 2005. These data on habitat structural metrics were previously summarized to provide baseline characterization of 51 wetlands throughout the estuarine and tidal freshwater portions of the 235-km LCRE; however, further analysis of these data has been limited. Therefore, in 2011, we conducted additional analyses of existing field data previously collected for the Columbia Estuary Ecosystem Restoration Program (CEERP) - including data collected by PNNL and others - to help inform the multi-agency restoration planning and ecosystem management work underway in the LCRE.

  18. Geochemical and physical properties of soils and shallow sediments at the Savannah River Site

    SciTech Connect (OSTI)

    Looney, B.B.; Eddy, C.A.; Ramdeen, M.; Pickett, J. (Savannah River Lab., Aiken, SC (USA)); Rogers, V. (Soil Conservation Service, Aiken, SC (USA). Savannah River Site Savannah River Lab., Aiken, SC (USA)); Scott, M.T.; Shirley, P.A. (Sirrine Environmental Consultants, Greenville, SC (USA))

    1990-08-31T23:59:59.000Z

    A program to characterize the geochemical and physical properties of the unimpacted soils and shallow sediments at the Savannah River Site (SRS) has been completed. The maximum, minimum, median, standard deviation, and mean values for metals, radionuclides, inorganic anions, organic compounds, and agricultural indicator parameters are summarized for six soil series that were identified as representative of the 29 soil series at SRS. The soils from unimpacted areas of SRS are typical of soils found in moderately aggressive weathering environments, including the southeastern United States. Appendix 8 organic compounds were detected in all samples. Since these constituents are not generally present in soil, this portion of the investigation was intended to assess possible laboratory artifacts. An additional objective of the SRS Soil Study was to determine if the composition of the split spoon sampler biased chemical analysis of the soils. Twenty-five duplicate samples were analyzed for a number of metals, radiological and agricultural parameters, and organics by two laboratories currently contracted with to analyze samples during waste site characterization. In all cases, the absolute values of the average differences are relatively small compared to the overall variability in the population. 31 refs., 14 figs., 48 tabs.

  19. Modeling of batch operations in the Defense Waste Processing Facility at the Savannah River Site

    SciTech Connect (OSTI)

    Smith, F.G.

    1995-02-01T23:59:59.000Z

    A computer model is in development to provide a dynamic simulation of batch operations within the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). The DWPF will chemically treat high level waste materials from the site tank farm and vitrify the resulting slurry into a borosilicate glass for permanent disposal. The DWPF consists of three major processing areas: Salt Processing Cell (SPC), Chemical Processing Cell (CPC) and the Melt Cell. Separate models have been developed for each of these process units using the SPEEDUP{trademark} software from Aspen Technology. Except for glass production in the Melt Cell, all of the chemical operations within DWPF are batch processes. Since the SPEEDUP software is designed for dynamic modeling of continuous processes, considerable effort was required to devise batch process algorithms. This effort was successful and the models are able to simulate batch operations and the dynamic behavior of the process. In this paper, we will describe the SPC model in some detail and present preliminary results from a few simulation studies.

  20. The red-cockaded woodpecker on the Savannah River Site: Aspects of reproductive success.

    SciTech Connect (OSTI)

    Johnston, Peter A.; Imm, Donald, W.; Jarvis, William L.

    2004-12-31T23:59:59.000Z

    Red-cockaded woodpecker; Road to Recovery. Proceedings of the 4th Red-cockaded woodpecker Symposium. Ralph Costa and Susan J. Daniels, eds. Savannah, Georgia. January, 2003. Chapter 5. Status and Trends of Populations. Pp 224-229. Abstract: The red-cockaded woodpecker (Picoides borealis) population on the Savannah River Site has been closely monitored and studied over the last 17 years. In 1985, the USDA Forest Service Southern Research Station was given responsibility to study and manage this population in an effort to prevent its extirpation. In December 1985, there were only 4 individuals on the site: 1 pair and 2 solitary males. The population had increased to a total of 175 individuals in 42 active clusters in 2002. Although this represents a very successful recovery effort, there has been substantial annual variation in nesting survival from banding to fledging. Data were analyzed to more completely understand the factors affecting reproduction. No significant effects of age of the breeding male and female, years paired, number of helpers, habitat quality, number of nestings, and time of nest initiation were found when comparing reproductive success in 117 nesting attempts from 1999 to 2002. However, the number of neighboring groups had a direct effect on mortality rates, possibly demonstrating the importance of cluster spacing.

  1. Minimizing Characterization - Derived Waste at the Department of Energy Savannah River Site, Aiken, South Carolina

    SciTech Connect (OSTI)

    Van Pelt, R. S.; Amidon, M. B.; Reboul, S. H.

    2002-02-25T23:59:59.000Z

    Environmental restoration activities at the Department of Energy Savannah River Site (SRS) utilize innovative site characterization approaches and technologies that minimize waste generation. Characterization is typically conducted in phases, first by collecting large quantities of inexpensive data, followed by targeted minimally invasive drilling to collect depth-discrete soil/groundwater data, and concluded with the installation of permanent multi-level groundwater monitoring wells. Waste-reducing characterization methods utilize non-traditional drilling practices (sonic drilling), minimally intrusive (geoprobe, cone penetrometer) and non-intrusive (3-D seismic, ground penetration radar, aerial monitoring) investigative tools. Various types of sensor probes (moisture sensors, gamma spectroscopy, Raman spectroscopy, laser induced and X-ray fluorescence) and hydrophobic membranes (FLUTe) are used in conjunction with depth-discrete sampling techniques to obtain high-resolution 3-D plume profiles. Groundwater monitoring (short/long-term) approaches utilize multi-level sampling technologies (Strata-Sampler, Cone-Sipper, Solinst Waterloo, Westbay) and low-cost diffusion samplers for seepline/surface water sampling. Upon collection of soil and groundwater data, information is portrayed in a Geographic Information Systems (GIS) format for interpretation and planning purposes. At the SRS, the use of non-traditional drilling methods and minimally/non intrusive investigation approaches along with in-situ sampling methods has minimized waste generation and improved the effectiveness and efficiency of characterization activities.

  2. OPERATIONS REVIEW OF THE SAVANNAH RIVER SITE INTEGRATED SALT DISPOSITION PROCESS - 11327

    SciTech Connect (OSTI)

    Peters, T.; Poirier, M.; Fondeur, F.; Fink, S.; Brown, S.; Geeting, M.

    2011-02-07T23:59:59.000Z

    The Savannah River Site (SRS) is removing liquid radioactive waste from its Tank Farm. To treat waste streams that are low in Cs-137, Sr-90, and actinides, SRS developed the Actinide Removal Process and implemented the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The Actinide Removal Process contacts salt solution with monosodium titanate to sorb strontium and select actinides. After monosodium titanate contact, the resulting slurry is filtered to remove the monosodium titanate (and sorbed strontium and actinides) and entrained sludge. The filtrate is transferred to the MCU for further treatment to remove cesium. The solid particulates removed by the filter are concentrated to {approx} 5 wt %, washed to reduce the sodium concentration, and transferred to the Defense Waste Processing Facility for vitrification. The CSSX process extracts the cesium from the radioactive waste using a customized solvent to produce a Decontaminated Salt Solution (DSS), and strips and concentrates the cesium from the solvent with dilute nitric acid. The DSS is incorporated in grout while the strip acid solution is transferred to the Defense Waste Processing Facility for vitrification. The facilities began radiological processing in April 2008 and started processing of the third campaign ('MarcoBatch 3') of waste in June 2010. Campaigns to date have processed {approx}1.2 million gallons of dissolved saltcake. Savannah River National Laboratory (SRNL) personnel performed tests using actual radioactive samples for each waste batch prior to processing. Testing included monosodium titanate sorption of strontium and actinides followed by CSSX batch contact tests to verify expected cesium mass transfer. This paper describes the tests conducted and compares results from facility operations. The results include strontium, plutonium, and cesium removal, cesium concentration, and organic entrainment and recovery data. Additionally, the poster describes lessons learned during operation of the facility.

  3. NRC Consultation and Monitoring at the Savannah River Site: Focusing Reviews of Two Different Disposal Actions - 12181

    SciTech Connect (OSTI)

    Ridge, A. Christianne; Barr, Cynthia S.; Pinkston, Karen E.; Parks, Leah S.; Grossman, Christopher J.; Alexander, George W. [U.S. Nuclear Regulatory Commission (United States)

    2012-07-01T23:59:59.000Z

    Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the U.S. Department of Energy (DOE) to consult with the U.S. Nuclear Regulatory Commission (NRC) for certain non-high level waste determinations. The NDAA also requires NRC to monitor DOE's disposal actions related to those determinations. In Fiscal Year 2011, the NRC staff reviewed DOE performance assessments for tank closure at the F-Tank Farm (FTF) Facility and salt waste disposal at the Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) as part of consultation and monitoring, respectively. Differences in inventories, waste forms, and key barriers led to different areas of focus in the NRC reviews of these two activities at the SRS. Because of the key role of chemically reducing grouts in both applications, the evaluation of chemical barriers was significant to both reviews. However, radionuclide solubility in precipitated metal oxides is expected to play a significant role in FTF performance whereas release of several key radionuclides from the SDF is controlled by sorption or precipitation within the cementitious wasteform itself. Similarly, both reviews included an evaluation of physical barriers to flow, but differences in the physical configurations of the waste led to differences in the reviews. For example, NRC's review of the FTF focused on the modeled degradation of carbon steel tank liners while the staff's review of the SDF performance included a detailed evaluation of the physical degradation of the saltstone wasteform and infiltration-limiting closure cap. Because of the long time periods considered (i.e., tens of thousands of years), the NRC reviews of both facilities included detailed evaluation of the engineered chemical and physical barriers. The NRC staff reviews of residual waste disposal in the FTF and salt waste disposal in the SDF focused on physical barriers to flow and chemical barriers to radionuclide release from the waste. Because the waste inventory and concentration at both sites is sufficient to generate unacceptable doses to an off-site member of the public or inadvertent intruder in the absence of engineered barriers, the NRC staff review focused on the engineering features DOE plans to put in place to limit radionuclide release. At the FTF, DOE expects that peak doses are delayed beyond a 10,000 year performance period by a combination of (1) the flow-limiting effect of the steel tank liner and (2) chemical conditions created by the stabilizing grout overlying the waste that limit the solubility of key radionuclides for tens of thousands of years. At the SDF, DOE expects that flow will be significantly limited by water shedding along the closure cap lower drainage layer and that radionuclide release will be further limited by radionuclide precipitation or sorption within the high pH, chemically reducing conditions created within the saltstone waste form. Because the performance of both facilities depends on the performance of engineered barriers for thousands of years, the reviews included a detailed evaluation of the expected long-term behavior of these barriers. As previously discussed, NRC staff reviews of DOE waste determinations during consultation are designed to evaluate the three NDAA criteria, whereas the review of an updated PA during monitoring only addresses whether the NRC staff has reasonable assurance that the planned disposal action will meet the performance objectives of 10 CFR Part 61. The NRC staff review of the Waste Determination for the FTF did not include conclusions about whether the planned disposal of residual waste at the FTF would meet the NDAA criteria because of the substantial uncertainties in the degree of waste removal DOE would achieve and other technical uncertainties. The main product of the NRC staff review of the planned FTF disposal action is the recommendation that DOE should conduct waste release experiments to increase support for key modeling assumptions related to: (1) the evolution of pH and Eh in the grouted tank syst

  4. Long-Term Assessment of Critical Radionuclides and Associated Environmental Media at the Savannah River Site - 13038

    SciTech Connect (OSTI)

    Jannik, G.T.; Baker, R.A.; Lee, P.L. [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States); Eddy, T.P.; Blount, G.C. [Savannah River Nuclear Solutions, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, Savannah River Site, Aiken, SC 29808 (United States); Whitney, G.R. [US Department of Energy, Savannah River Operations, Aiken, SC 29808 (United States)] [US Department of Energy, Savannah River Operations, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    During the operational history of the Savannah River Site (SRS), many different radionuclides have been released from site facilities. However, only a relatively small number of the released radionuclides have been significant contributors to doses and risks to the public. At SRS dose and risk assessments indicate tritium oxide in air and surface water, and Cs-137 in fish and deer have been, and continue to be, the critical radionuclides and pathways. In this assessment, statistical analyses of the long-term trends of tritium oxide in atmospheric and surface water releases and Cs-137 concentrations in fish and deer are provided. Correlations also are provided with 1) operational changes and improvements, 2) geopolitical events (Cold War cessation), and 3) recent environmental remediation projects and decommissioning of excess facilities. For example, environmental remediation of the F- and H-Area Seepage Basins and the Solid Waste Disposal Facility have resulted in a measurable impact on the tritium oxide flux to the onsite Fourmile Branch stream. Airborne releases of tritium oxide have been greatly affected by operational improvements and the end of the Cold War in 1991. However, the effects of SRS environmental remediation activities and ongoing tritium operations on tritium concentrations in the environment are measurable and documented in this assessment. Controlled hunts of deer and feral hogs are conducted at SRS for approximately six weeks each year. Before any harvested animal is released to a hunter, SRS personnel perform a field analysis for Cs-137 concentrations to ensure the Hunter's dose does not exceed the SRS administrative game limit of 0.22 milli-sievert (22 mrem). However, most of the Cs-137 found in SRS onsite deer is not from site operations but is from nuclear weapons testing fallout from the 1950's and early 1960's. This legacy source term is trended in the SRS deer, and an assessment of the 'effective' half-life of Cs-137 in deer (including the physical decay half-life and the environmental dispersion half-life) is provided. The 'creek mouth' fisherman is the next most critical pathway at SRS. On an annual basis, three species of fish (panfish, catfish, and bass) are sampled from the mouths of the five SRS streams. Three composites of up to five fish of each species are analyzed from each sampling location. Long-term trending of the Cs-137 concentrations in fish and the subsequent doses from consumption of SRS fish is provided. (authors)

  5. Does your facility have CHP potential? Ideal sites will fit the following profile, but sites meeting only a few of these

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Does your facility have CHP potential? Ideal sites will fit the following profile, but sites electricity prices (>5 cents/kWh); average electric load >1 MW; ratio of average electric load to peak load operating hours (> 6000); thermal demand closely matches electric load; and energy security and reliability

  6. Facility Utilization and Risk Analysis for Remediation of Legacy Transuranic Waste at the Savannah River Site - 13572

    SciTech Connect (OSTI)

    Gilles, Michael L.; Gilmour, John C. [Savannah River Nuclear Solutions, LLC (United States)] [Savannah River Nuclear Solutions, LLC (United States)

    2013-07-01T23:59:59.000Z

    Savannah River Nuclear Solutions (SRNS) completed the Accelerated TRU Project for remediating legacy waste at the Savannah River Site with significant cost and schedule efficiencies due to early identification of resources and utilization of risk matrices. Initial project planning included identification of existing facilities that could be modified to meet the technical requirements needed for repackaging and remediating the waste. The project schedule was then optimized by utilization of risk matrices that identified alternate strategies and parallel processing paths which drove the overall success of the project. Early completion of the Accelerated TRU Project allowed SRNS to pursue stretch goals associated with remediating very difficult TRU waste such as concrete casks from the hot cells in the Savannah River National Laboratory. Project planning for stretch goals also utilized existing facilities and the risk matrices. The Accelerated TRU project and stretch goals were funded under the American Recovery and Reinvestment Act (ARRA). (authors)

  7. ELECTRICAL RESISTANCE HEATING OF SOILS AT C-REACTOR AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Blundy, R; Michael Morgenstern, M; Joseph Amari, J; Annamarie MacMurray, A; Mark Farrar, M; Terry Killeen, T

    2007-09-10T23:59:59.000Z

    Chlorinated solvent contamination of soils and groundwater is an endemic problem at the Savannah River Site (SRS), and originated as by-products from the nuclear materials manufacturing process. Five nuclear reactors at the SRS produced special nuclear materials for the nation's defense program throughout the cold war era. An important step in the process was thorough degreasing of the fuel and target assemblies prior to irradiation. Discharges from this degreasing process resulted in significant groundwater contamination that would continue well into the future unless a soil remediation action was performed. The largest reactor contamination plume originated from C-Reactor and an interim action was selected in 2004 to remove the residual trichloroethylene (TCE) source material by electrical resistance heating (ERH) technology. This would be followed by monitoring to determine the rate of decrease in concentration in the contaminant plume. Because of the existence of numerous chlorinated solvent sources around SRS, it was elected to generate in-house expertise in the design and operation of ERH, together with the construction of a portable ERH/SVE system that could be deployed at multiple locations around the site. This paper describes the waste unit characteristics, the ERH system design and operation, together with extensive data accumulated from the first deployment adjacent to the C-Reactor building. The installation heated the vadose zone down to 62 feet bgs over a 60 day period during the summer of 2006 and raised soil temperatures to over 200 F. A total of 730 lbs of trichloroethylene (TCE) were removed over this period, and subsequent sampling indicated a removal efficiency of 99.4%.

  8. Assessing the performance of the saltstone wasteform at the Savannah River Site

    SciTech Connect (OSTI)

    McDowell-Boyer, L.M.; Kocher, D.C. [Oak Ridge National Lab., TN (United States); Cook, J.R. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-03-01T23:59:59.000Z

    The radiological performance of the saltstone disposal facility (SDF) for low-level waste (LLW) at the Savannah River Site is being assessed in accordance with a US Department of Energy Order which was issued in 1988. Saltstone is a high-nitrate concrete matrix formed as a result of solidification of LLW streams. Potential human exposures to radionuclides that will be disposed of in the facility are being addressed. Engineered features of the SDF reduce and retard releases of radionuclides from the facility, but degradation of the features must be considered. Because prediction of the extent and timing of degradation becomes more uncertain over time, predicted releases also become more uncertain, particularly for long-lived radionuclides still present in the facility far into the future. Preliminary analyses indicate that long-lived radionuclides are the saltstone constitutents of greatest concern for radiological protection of groundwater resources. Application of federal drinking water standards to untreated groundwater may be a limiting requirement for LLW disposal facilities like the SDF, where the groundwater pathway is the most important for human exposure to radionuclides. The 4-mrem annual dose limit imposed by these standards is well below limits imposed by other regulations with which the disposal facilities must comply.

  9. Assessing the performance of the saltstone wasteform at the Savannah River Site

    SciTech Connect (OSTI)

    McDowell-Boyer, L.M.; Kocher, D.C. (Oak Ridge National Lab., TN (United States)); Cook, J.R. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-01-01T23:59:59.000Z

    The radiological performance of the saltstone disposal facility (SDF) for low-level waste (LLW) at the Savannah River Site is being assessed in accordance with a US Department of Energy Order which was issued in 1988. Saltstone is a high-nitrate concrete matrix formed as a result of solidification of LLW streams. Potential human exposures to radionuclides that will be disposed of in the facility are being addressed. Engineered features of the SDF reduce and retard releases of radionuclides from the facility, but degradation of the features must be considered. Because prediction of the extent and timing of degradation becomes more uncertain over time, predicted releases also become more uncertain, particularly for long-lived radionuclides still present in the facility far into the future. Preliminary analyses indicate that long-lived radionuclides are the saltstone constitutents of greatest concern for radiological protection of groundwater resources. Application of federal drinking water standards to untreated groundwater may be a limiting requirement for LLW disposal facilities like the SDF, where the groundwater pathway is the most important for human exposure to radionuclides. The 4-mrem annual dose limit imposed by these standards is well below limits imposed by other regulations with which the disposal facilities must comply.

  10. Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual

    SciTech Connect (OSTI)

    Neary, Vincent S [ORNL; Gunawan, Budi [Oak Ridge National Laboratory (ORNL)

    2011-09-01T23:59:59.000Z

    In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

  11. RETENTION AND CHEMICAL SPECIATION OF URANIUM IN A WETLAND ON THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Li, D.; CHANG, H.: SEAMAN, J.; Jaffe, P.; Groos, P.; Jiang, D.; Chen, N.; Lin, J.; Arthur, Z.; Scheckel, K.; Kaplan, D.

    2013-06-17T23:59:59.000Z

    Uranium speciation and retention mechanism onto Savannah River Site (SRS) wetland sediments was studied using batch (ad)sorption experiments, sequential extraction desorption tests and U L{sub 3}-edge X-ray absorption near-edge structure (XANES) spectroscopy of contaminated wetland sediments. U was highly retained by the SRS wetland sediments. In contrast to other similar but much lower natural organic matter (NOM) sediments, significant sorption of U onto the SRS sediments was observed at pH <4 and pH >8. Sequential extraction tests indicated that the U(VI) species were primarily associated with the acid soluble fraction (weak acetic acid extractable) and NOM fraction (Na-pyrophosphate extractable). Uranium L3- edge XANES spectra of the U-retained sediments were nearly identical to that of uranyl acetate. The primary oxidation state of U in these sediments was as U(VI), and there was little evidence that the high sorptive capacity of the sediments could be ascribed to abiotic or biotic reduction to the less soluble U(IV) species. The molecular mechanism responsible for the high U retention in the SRS wetland sediments is likely related to the chemical bonding of U to organic carbon.

  12. Evaluation Of Sludge Heel Dissolution Efficiency With Oxalic Acid Cleaning At Savannah River Site

    SciTech Connect (OSTI)

    Sudduth, Christie; Vitali, Jason; Keefer, Mark

    2014-01-08T23:59:59.000Z

    The chemical cleaning process baseline strategy at the Savannah River Site was revised to improve efficiency during future execution of the process based on lessons learned during previous bulk oxalic acid cleaning activities and to account for operational constraints imposed by safety basis requirements. These improvements were also intended to transcend the difficulties that arise from waste removal in higher rheological yield stress sludge tanks. Tank 12 implemented this improved strategy and the bulk oxalic acid cleaning efforts concluded in July 2013. The Tank 12 radiological removal results were similar to previous bulk oxalic acid cleaning campaigns despite the fact that Tank 12 contained higher rheological yield stress sludge that would make removal more difficult than the sludge treated in previous cleaning campaigns. No appreciable oxalate precipitation occurred during the cleaning process in Tank 12 compared to previous campaigns, which aided in the net volume reduction of 75-80%. Overall, the controls established for Tank 12 provide a template for an improved cleaning process.

  13. Demonstration and evaluation of the pulsed ultraviolet-irradiation gas-treatment system, Savannah River Site

    SciTech Connect (OSTI)

    Schneider, J.; Wilkey, M.; Peters, R.; Tomczyk, N.; Friedlund, J.; Farber, P. [Argonne National Lab., IL (United States). Energy Systems Div.; Mass, B.; Haag, W. [Purus, Inc., San Jose, CA (United States)

    1994-10-01T23:59:59.000Z

    Argonne National Laboratory was asked to demonstrate and evaluate a pulsed ultraviolet-irradiation system developed by Purus, Inc., at the Volatile Organic Compounds Non-Arid Integrated Demonstration at the Savannah River Site near aiken, South Carolina. The Purus system consists of four reactor chambers, each containing a xenon flash lamp. During the two weeks of testing, samples were taken and analyzed from the inlet and outlet sides of the Purus system. The contaminants of concern on the inlet were tetrachloroethylene (PCE), trichloroethylene (TCE), and 1,1,1-trichloroethane (TCA); the contaminants of concern on the outlet were PCE, TCE, TCA, carbon tetrachloride (CT), and chloroform. The evaluation of the Purus system included an examination of the reduction of both TCE and PCE and a search for any change in the concentrations. (Operating conditions included flow rates, ranging from 25 to 100 standard cubic feet per minute; inlet concentration of PCE, ranging from 360 to 10,700 parts per million volume; and flash lamp rates, ranging from 1 to 30 hertz.) The Purus system was quite efficient at reducing the concentrations of both PCE and TCE. The potential by-products, TCA, CT, and chloroform, showed no significant increases throughout the range of the various operating parameters. Overall, the Purus system appears to be a cost-efficient means of reducing the concentrations of PCE and TCE, while the removal of the initial photo-oxidation products and TCA is slower and needs further evaluation.

  14. Summary Of Cold Crucible Vitrification Tests Results With Savannah River Site High Level Waste Surrogates

    SciTech Connect (OSTI)

    Stefanovsky, Sergey; Marra, James; Lebedev, Vladimir

    2014-01-13T23:59:59.000Z

    The cold crucible inductive melting (CCIM) technology successfully applied for vitrification of low- and intermediate-level waste (LILW) at SIA Radon, Russia, was tested to be implemented for vitrification of high-level waste (HLW) stored at Savannah River Site, USA. Mixtures of Sludge Batch 2 (SB2) and 4 (SB4) waste surrogates and borosilicate frits as slurries were vitrified in bench- (236 mm inner diameter) and full-scale (418 mm inner diameter) cold crucibles. Various process conditions were tested and major process variables were determined. Melts were poured into 10L canisters and cooled to room temperature in air or in heat-insulated boxes by a regime similar to Canister Centerline Cooling (CCC) used at DWPF. The products with waste loading from ~40 to ~65 wt.% were investigated in details. The products contained 40 to 55 wt.% waste oxides were predominantly amorphous; at higher waste loadings (WL) spinel structure phases and nepheline were present. Normalized release values for Li, B, Na, and Si determined by PCT procedure remain lower than those from EA glass at waste loadings of up to 60 wt.%.

  15. Product consistency leach tests of Savannah River Site radioactive waste glasses

    SciTech Connect (OSTI)

    Bibler, N.E. (Westinghouse Savannah River Co., Aiken, SC (United States)); Bates, J.K. (Argonne National Lab., IL (United States))

    1989-01-01T23:59:59.000Z

    The Product Consistency Test (PCT) is a glass leach test that was developed at the Savannah River Site (SRS) to routinely confirm the durability of nuclear waste glasses that will be produced in the Defense Waste Processing Facility. The PCT is a 7 day, crushed glass leach test in deionized water at 90{degree}C. Final leachates are filtered and acidified prior to analysis. To demonstrate the reproducibility of the PCT when performed remotely, SRS and Argonne National Laboratory have performed the PCT on samples of two radioactive glasses. The tests were also performed to compare the releases of the radionuclides with the major nonradioactive glass components and to determine if radiation from the glass was affecting the results of the PCT. The test was performed in triplicate at each laboratory. For the major soluble elements, B, Li, Na, and Si, in the glass, each investigator obtained relative precisions in the range 2--5% in the triplicate tests. This range indicates good precision for the PCT when performed remotely with master slave manipulators in a shielded cell environment.

  16. Evaluation of the Dallas Thompson Riverscreen Site on the Touchet River.

    SciTech Connect (OSTI)

    Chamness, Mickie [Pacific Northwest National Laboratory

    2007-07-25T23:59:59.000Z

    Riverscreen irrigation pumps are a relatively new design in which the pump intake floats on the river surface, pulling water in only from the bottom side and surrounded by a self-cleaning screen. The Walla Walla County Conservation District recently started replacing old pump screens with the Riverscreen and was interested in whether the screens are protective of juvenile salmonids. Pacific Northwest National Laboratory evaluated approach velocities and operations at the Riverscreen installation on the Dallas Thompson property, approximately 3 mi. north of Touchet, Washington and 300 ft north of Hofer Dam, on June 18, 2007. Evaluation of this site consisted of underwater videography and water velocity measurements. The Dallas Thompson Riverscreen was pumping approximately 930 gpm during our evaluation, which is close to the maximum pumping rate for this model. Underwater videography showed only slow movement of water-borne particulates toward the pump intake, and the screen material was clean. All water velocity measurements were taken below the pump intake opening and between 3 to 6 in. from the screen face. All approach velocities (flow toward the screen and pump) were below National Marine Fisheries Service draft guidelines for juvenile fish screens.

  17. DOE NNSA Site Facility Management Contracts - 7-23-15.xlsx

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE FitsEnergy AllNNSA Site Facility

  18. Ames Site Office Homepage | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1USummerNewsDOE Office ofHome Ames Site

  19. Argonne Site Office CX Determinations | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » HistoryAugustAreArgonne Site Office

  20. Argonne Site Office EA / EIS | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » HistoryAugustAreArgonne Site

  1. DOE site facility mgt contracts Internet Posting 5-2-11.xlsx | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRUJuly 29,of Energy DOE site facility mgt contracts

  2. Brookhaven Site Office CX Determinations | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials FindAdvancedBrookhaven Site Office CX Determinations

  3. Brookhaven Site Office EA / EIS | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials FindAdvancedBrookhaven Site Office CX

  4. Ames Site Office EA / EIS | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta FeAuthorization forAmes LaboratoryAmes Site

  5. Interim Safe Storage of Plutonium Production Reactors at the US DOE Hanford Site - 13438

    SciTech Connect (OSTI)

    Schilperoort, Daryl L.; Faulk, Darrin [Washington Closure Hanford, 2620 Fermi Avenue, Richland, Washington 99352 (United States)] [Washington Closure Hanford, 2620 Fermi Avenue, Richland, Washington 99352 (United States)

    2013-07-01T23:59:59.000Z

    Nine plutonium production reactors located on DOE's Hanford Site are being placed into an Interim Safe Storage (ISS) period that extends to 2068. The Environmental Impact Statement (EIS) for ISS [1] was completed in 1993 and proposed a 75-year storage period that began when the EIS was finalized. Remote electronic monitoring of the temperature and water level alarms inside the safe storage enclosure (SSE) with visual inspection inside the SSE every 5 years are the only planned operational activities during this ISS period. At the end of the ISS period, the reactor cores will be removed intact and buried in a landfill on the Hanford Site. The ISS period allows for radioactive decay of isotopes, primarily Co-60 and Cs-137, to reduce the dose exposure during disposal of the reactor cores. Six of the nine reactors have been placed into ISS by having an SSE constructed around the reactor core. (authors)

  6. COMPENDIUM OF COMPLETED TESTING IN SUPPORT OF ROTARY MICROFILTRATION AT SAVANNAH RIVER SITE AND HANFORD

    SciTech Connect (OSTI)

    HUBER HJ

    2011-05-24T23:59:59.000Z

    This report presents a chronological summary of previous technology development efforts concerning the rotary microfiltration (RMF) unit from SpinTek{trademark}. Rotary microfiltration has been developed for high radiation application over the last decades as one of the optional filtration techniques for supplemental treatment. Supplemental treatment includes a near- or in-tank solids separation and subsequent cesium removal unit, followed by an immobilization technique; this includes options such as steam reforming, bulk vitrification or cast stone (grout). The main difference between RMF and standard cross flow filtration (CFF) is the disconnection of filtrate flux from feed velocity; i.e., filtrate flux is only dependent on transmembrane pressure, filter fouling and temperature. These efforts have been supported by the U.S. Department of Energy (DOE), Office of Cleanup Technologies since the 1990s by their Environmental Management Program (currently EM-31). In order to appropriately address future testing needs, a compilation of the relevant previous testing reports was essential. This compendium does not intend to cover all of the presentations/reports that were produced over the last decades but focuses on those of relevance for developing an RMF unit fit for deployment at the Hanford site. The report is split into three parts: (1) an introductory overview, (2) Figure 1 graphically covering the main development steps and its key players and (3) a more detailed table of the citations and brief descriptions of results and recommendations.

  7. HOLDUP MEASUREMENTS FOR THREE VISUAL EXAMINATION AND TRU REMEDIATION GLOVEBOX FACILITIES AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Dewberry, R; Donald Pak, D

    2007-05-04T23:59:59.000Z

    Visual Examination (VE) gloveboxes are used to remediate transuranic waste (TRU) drums at three separate facilities at the Savannah River Site. Noncompliant items are removed before the drums undergo further characterization in preparation for shipment to the Waste Isolation Pilot Plant (WIPP). Maintaining the flow of drums through the remediation process is critical to the program's seven-days-per-week operation. Conservative assumptions are used to ensure that glovebox contamination from this continual operation is below acceptable limits. Holdup measurements using cooled HPGe spectrometers are performed in order to confirm that these assumptions are conservative. {sup 239}Pu is the main nuclide of interest; however, {sup 241}Pu, equilibrium {sup 237}Np/{sup 233}Pa and {sup 238}Pu (if detected) are typically assayed. At the Savannah River National Laboratory (SRNL) facility {sup 243,244,245}Cm are also generally observed and are always reported at either finite levels or at limits of detection. A complete assay at each of the three facilities includes a measure of TRU content in the gloveboxes and HEPA filters in the glovebox exhaust. This paper includes a description of the {gamma}-PHA acquisitions, of the modeling, and of the calculations of nuclide content. Because each of the remediation facilities is unique and ergonomically unfavorable to {gamma}-ray acquisitions, we have constructed custom detector support devices specific to each set of acquisitions. This paper includes a description and photographs of these custom devices. The description of modeling and calculations include determination and application of container and matrix photon energy dependent absorption factors and also determination and application of geometry factors relative to our detector calibration geometry. The paper also includes a discussion of our measurements accuracy using off-line assays of two SRNL HEPA filters. The comparison includes assay of the filters inside of 55-gallon drums using the SRNL Q{sup 2} assay system and separately using off-line assay with an acquisition configuration unique from the original in-situ acquisitions.

  8. Characterization and reclamation assessment for the Central Shops Diesel Storage Facility, Savannah River Site, Aiken, South Carolina

    SciTech Connect (OSTI)

    Fliermans, C.B.; Hazen, T.C.; Bledsoe, H.

    1993-10-01T23:59:59.000Z

    The contamination of subsurface terrestrial environments by organic contaminants is a global phenomenon. The remediation of such environments requires innovative assessment techniques and strategies for successful clean-ups. Central Shops Diesel Storage Facility at Savannah River Site was characterized to determine the extent of subsurface diesel fuel contamination using innovative approaches and effective bioremediation techniques for clean-up of the contaminant plume have been established.

  9. TREATABILITY STUDY FOR EDIBLE OIL DEPLOYMENT FOR ENHANCED CVOC ATTENUATION FOR T-AREA, SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Riha, B.; Looney, B.; Noonkester, J.; Hyde, W.; Walker, R.

    2012-05-15T23:59:59.000Z

    Groundwater beneath T-Area, a former laboratory and semiworks operation at the Department of Energy (DOE) Savannah River Site (SRS), is contaminated by chlorinated solvents (cVOCs). Since the contamination was detected in the 1980s, the cVOCs at T-Area have been treated by a combination of soil vapor extraction and groundwater pump and treat. The site received approval to temporarily discontinue the active groundwater treatment and implement a treatability study of enhanced attenuation - an engineering and regulatory strategy that has recently been developed by DOE and the Interstate Technology and Regulatory Council (ITRC 2007). Enhanced attenuation uses active engineering solutions to alter the target site in such a way that the contaminant plume will passively stabilize and shrink and to document that the action will be effective, timely, and sustainable. The paradigm recognizes that attenuation remedies are fundamentally based on a mass balance. Thus, long-term plume dynamics can be altered either by reducing the contaminant loading from the source or by increasing the rate of natural attenuation processes within all, or part of, the plume volume. The combination of technologies that emerged for T-Area included: (1) neat (pure) vegetable oil deployment in the deep vadose zone in the former source area, (2) emulsified vegetable oil deployment within the footprint of the groundwater plume, and (3) identification of attenuation mechanisms and rates for the distal portion of the plume. In the first part, neat oil spreads laterally forming a thin layer on the water table to intercept and reduce future cVOC loading (via partitioning) and reduce oxygen inputs (via biostimulation). In the second and third parts, emulsified oil forms active bioremediation reactor zones within the plume footprint to degrade existing groundwater contamination (via reductive dechlorination and/or cometabolism) and stimulates long-term attenuation capacity in the distal plume (via cometabolism). For TArea, the enhanced attenuation development process proved to be a powerful tool in developing a strategy that provides a high degree of performance while minimizing adverse collateral impacts of the remediation (e.g., energy use and wetland damage) and minimizing life-cycle costs. As depicted in Figure 1, Edible oil deployment results in the development of structured geochemical zones and serves to decrease chlorinated compound concentrations in two ways: (1) physical sequestration, which reduces effective aqueous concentration and mobility; and (2) stimulation of anaerobic, abiotic and cometabolic degradation processes. In the central deployment area, contaminant initially partitions into the added oil phase. Biodegradation of the added organic substrate depletes the aquifer of oxygen and other terminal electron acceptors and creates conditions conducive to anaerobic degradation processes. The organic substrate is fermented to produce hydrogen, which is used as an electron donor for anaerobic dechlorination by organisms such as Dehalococcoides. Daughter products leaving the central treatment zone are amenable to aerobic oxidation. Further, the organic compounds leaving the central deployment zone (e.g., methane and propane) stimulate and enhance down gradient aerobic cometabolism which degrades both daughter compounds and several parent cVOCs. Figure 1 depicts TCE concentration reduction processes (labeled in green) along with their corresponding breakdown products in a structured geochemical zone scenario. A consortium of bacteria with the same net effect of Dehalococcoides may be present in the structured geochemical zones leading to the degradation of TCE and daughter products. Figure 2 shows a schematic of the documented cVOC degradation processes in both the anaerobic and aerobic structured geochemical zones. Specific aerobic and anaerobic bacteria and their degradation pathways are also listed in the diagram and have either been confirmed in the field or the laboratory. See references in the bibliography in Section 11.

  10. DEMONSTRATiON OF A SUBSURFACE CONTAINMENT SYSTEM FOR INSTALLATION AT DOE WASTE SITES

    SciTech Connect (OSTI)

    Thomas J. Crocker; Verna M. Carpenter

    2003-05-21T23:59:59.000Z

    Between 1952 and 1970, DOE buried mixed waste in pits and trenches that now have special cleanup needs. The disposal practices used decades ago left these landfills and other trenches, pits, and disposal sites filled with three million cubic meters of buried waste. This waste is becoming harmful to human safety and health. Today's cleanup and waste removal is time-consuming and expensive with some sites scheduled to complete cleanup by 2006 or later. An interim solution to the DOE buried waste problem is to encapsulate and hydraulically isolate the waste with a geomembrane barrier and monitor the performance of the barrier over its 50-yr lifetime. The installed containment barriers would isolate the buried waste and protect groundwater from pollutants until final remediations are completed. The DOE has awarded a contract to RAHCO International, Inc.; of Spokane, Washington; to design, develop, and test a novel subsurface barrier installation system, referred to as a Subsurface Containment System (SCS). The installed containment barrier consists of commercially available geomembrane materials that isolates the underground waste, similar to the way a swimming pools hold water, without disrupting hazardous material that was buried decades ago. The barrier protects soil and groundwater from contamination and effectively meets environmental cleanup standards while reducing risks, schedules, and costs. Constructing the subsurface containment barrier uses a combination of conventional and specialized equipment and a unique continuous construction process. This innovative equipment and construction method can construct a 1000-ft-long X 34-ft-wide X 30-ft-deep barrier at construction rates to 12 Wday (8 hr/day operation). Life cycle costs including RCRA cover and long-term monitoring range from approximately $380 to $590/cu yd of waste contained or $100 to $160/sq ft of placed barrier based upon the subsurface geology surrounding the waste. Project objectives for Phase I were to validate the SCS construction equipment and process, evaluate the system performance, validate the barrier constructability, and assess the barrier effectiveness. The objectives for Phase 11, which is a full-scale demonstration at a DOE site, are to perform an extensive characterization of the test site, to demonstrate the equipment and the installation process under site-specific performance and regulatory requirements, to validate the operational performance of the equipment, and to perform long-term verification of the barrier using monitoring wells. To date, significant progress has been made to establish the technical and economical feasibility of the SCS. This report describes the SCS conventional and specialized equipment, barrier materials, and construction process. It presents results of the specialized equipment Factory Test, the SCS Control Test and the SCS Advance Control Test at the RAHCO facility. Provided herein are the system performance capabilities and an estimated construction cost and schedule for a 1000-ft-long X 34-ft-wide X 29-ft-deep containment barrier at the DOE Oak Ridge Bear Creek Burial Grounds are also provided.

  11. US Department of Energy DOE Nevada Operations Office, Nevada Test Site: Underground safety and health standards

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The Nevada Test Site Underground Safety and Health Standards Working Group was formed at the direction of John D. Stewart, Director, Nevada Test Site Office in April, 1990. The objective of the Working Group was to compile a safety and health standard from the California Tunnel Safety Orders and OSHA for the underground operations at the NTS, (excluding Yucca Mountain). These standards are called the NTS U/G Safety and Health Standards. The Working Group submits these standards as a RECOMMENDATION to the Director, NTSO. Although the Working Group considers these standards to be the most integrated and comprehensive standards that could be developed for NTS Underground Operations, the intent is not to supersede or replace any relevant DOE orders. Rather the intent is to collate the multiple safety and health references contained in DOE Order 5480.4 that have applicability to NTS Underground Operations into a single safety and heath standard to be used in the underground operations at the NTS. Each portion of the standard was included only after careful consideration by the Working Group and is judged to be both effective and appropriate. The specific methods and rationale used by the Working Group are outlined as follows: The letter from DOE/HQ, dated September 28, 1990 cited OSHA and the CTSO as the safety and health codes applicable to underground operations at the NTS. These mandated codes were each originally developed to be comprehensive, i.e., all underground operations of a particular type (e.g., tunnels in the case of the CTSO) were intended to be adequately regulated by the appropriate code. However, this is not true; the Working Group found extensive and confusing overlap in the codes in numerous areas. Other subjects and activities were addressed by the various codes in cursory fashion or not at all.

  12. The Dry Susie Creek Site: Site Structure of Middle Archaic Habitation Features from the Upper Humboldt River Area, Nevada

    E-Print Network [OSTI]

    Smith, Craig S; Reust, Thomas P

    1995-01-01T23:59:59.000Z

    The Archaeology of James Creek Shelter. University of UtahIn: The Archaeology of James Creek Shelter, Robert G. Elston244-266 (1995). The Dry Susie Creek Site: Site Structure of

  13. Microsoft Word - 2010 SRS SWPF Const Site Visit _June 21-25,...

    Broader source: Energy.gov (indexed) [DOE]

    Activity Report for the Savannah River Site Salt Waste Processing Facility Construction Site, June 21-25, 2010 The U.S. Department of Energy (DOE) Office of Independent...

  14. The Performance of Underground Radioactive Waste Storage Tanks at the Savannah River Site: A 60-Year Historical Perspective

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wiersma, Bruce J.

    2014-03-01T23:59:59.000Z

    The Savannah River Site produced weapons-grade materials for nearly 35 years between 1953 and 1988. The legacy of this production is nearly 37 million gallons of radioactive waste. Since the 1950s, the liquid waste has been stored in large, underground carbon steel waste tanks. During the past 20 years, the site has begun to process the waste so that it may be stored in vitrified and grout forms, which are more suitable for long-term storage. Over the history of the site, some tanks have experienced leakage of the waste to the secondary containment. This article is a review of themore »instances of leakage and corrosion degradation that the tanks and associated equipment have experienced since the first tanks were built. Furthermore, the activities that the site has taken to mitigate the degradation and manage the service life of the tank for its anticipated lifetime are reviewed.« less

  15. Rough order of magnitude cost estimate for immobilization of 50MT of plutonium using new faciliites at the Savannah River site: alternative 12A

    SciTech Connect (OSTI)

    DiSabatino, A., LLNL

    1998-06-01T23:59:59.000Z

    The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 50 metric tons of plutonium using ceramic in a new facility at Savannah River Site (SRS).

  16. Rough order of magnitude cost estimate for immobilization of 50 MT of plutonium using existing facilities at the Savannah River site: alternative 12B

    SciTech Connect (OSTI)

    DiSabatino, A., LLNL

    1998-06-01T23:59:59.000Z

    The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 50 metric tons of plutonium using ceramic in an existing facility (221-F) at an Savannah River Site (SRS).

  17. Groundwater flow and tritium migration in coastal plain sediments, Savannah River Site, South Carolina

    SciTech Connect (OSTI)

    Harris, M.K. [Westinghouse Savannah River Company, Aiken, SC (United States); Flach, G.P.; Thayer, P.A. [Univ. of North Carolina (United States)

    1998-05-01T23:59:59.000Z

    Groundwater modeling was performed to assess groundwater flow and contaminant migration for a tritium plume at the Savannah River Site (SRS). The study supports the Corrective Measures Study and Interim Action Plan regulatory documents for the Old Radioactive Waste Burial Ground (ORWBG). Modeling scenarios were designed to provide data for an economic analysis of alternatives, and subsequently evaluate the effectiveness of the selected remedial technologies for tritium reduction to surface waters. Scenarios assessed include no action, vertical and surface barriers, pump-treat-reinject, and vertical recirculation wells. Hydrostratigraphic units in the area consist of fluvial, deltaic, and shallow marine sand, mud, and calcareous sediments that exhibit abrupt facies changes over short distances. The complex heterogeneity of the sediments, along with characterization data, and tritium contaminant source data required a three-dimensional model be developed in order to accurately illustrate the size, shape and orientation of the plume. Results demonstrate that the shallow confining zone in the region controls the migration path of the plume. The size and shape of the plume were modeled in three-dimensions using detailed core, geophysical and cone-penetrometer data, depth-discrete contaminant data, monitoring well data, and seepline/surface water samples. Three-dimensional tritium plume maps were created for the >20,000, >500 and >50 pCi/ml concentration levels. The three-dimensional plume maps and volumetric calculations indicate that 63 percent of the total activity and 12 percent of the volume above 50 pCi/ml resides in a layer less than 6-m thick riding on top of the shallow confining zone.

  18. SLUDGE HEEL REMOVAL BY ALUMINUM DISSOLUTION AT SAVANNAH RIVER SITE 12390

    SciTech Connect (OSTI)

    Keefer, M.

    2012-01-12T23:59:59.000Z

    High Level Waste (HLW) at the Savannah River Site (SRS) is currently stored in aging underground storage tanks. This waste is a complex mixture of insoluble solids, referred to as sludge, and soluble salts. Continued long-term storage of these radioactive wastes poses an environmental risk. Operations are underway to remove and disposition the waste, clean the tanks and fill with grout for permanent closure. Heel removal is the intermediate phase of the waste retrieval and tank cleaning process at SRS, which is intended to reduce the volume of waste prior to treatment with oxalic acid. The goal of heel removal is to reduce the residual amount of radioactive sludge wastes to less than 37,900 liters (10,000 gallons) of wet solids. Reducing the quantity of residual waste solids in the tank prior to acid cleaning reduces the amount of acid required and reduces the amount of excess acid that could impact ongoing waste management processes. Mechanical heel removal campaigns in Tank 12 have relied solely on the use of mixing pumps that have not been effective at reducing the volume of remaining solids. The remaining waste in Tank 12 is known to have a high aluminum concentration. Aluminum dissolution by caustic leaching was identified as a treatment step to reduce the volume of remaining solids and prepare the tank for acid cleaning. Dissolution was performed in Tank 12 over a two month period in July and August, 2011. Sample results indicated that 16,440 kg of aluminum oxide (boehmite) had been dissolved representing 60% of the starting inventory. The evolution resulted in reducing the sludge solids volume by 22,300 liters (5900 gallons), preparing the tank for chemical cleaning with oxalic acid.

  19. SUBSIDENCE STUDY FOR NONCRUSHABLE CONTAINERS IN SLIT TRENCHES AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Hang, T; Leonard Collard, L; Mark Phifer, M

    2008-01-15T23:59:59.000Z

    This study addresses the issue of waste and cover subsidence caused by corrosion of the non-crushable waste containers defined as containers with significant void space that will not be stabilized by dynamic compaction of the Earea Slit Trenches at the Savannah River Site. Concentrations at the hypothetical 100-m well were evaluated for 1,000 years and compared with the base case value for compliance. To generalize the results, a hypothetical, no-decay radionuclide characterized by a Kd (5 ml/g) that would be most problematic was selected. Although the non-crushable containers will not be stabilized by dynamic compaction, these containers will gradually corrode, eventually collapse after placement of the final closure cap and cause the cap to subside resulting in an increase of the infiltration rates. The vadose zone model estimated the contaminant fluxes that were input to the aquifer model for prediction of concentrations at the 100-m well. To study the potential effect of trench subsidence on the well concentrations within the 1000-year time window, two high-impact cases were considered. In the first case, trenches subsided right after dynamic compaction (i.e., at 125 years). In the second case, trenches subsided at 419 years to make the peak concentrations from both the subsided and unsubsided area align in space and time. The study shows that the first case presented no compliance problem for the subsidence of up to two trenches. In the second case, even a single trench subsidence caused the well concentration to be out of compliance. The peak concentration exceeded the base case value by as much as 15%. This paper discusses the general modeling approach and presents the study results.

  20. COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL SITE

    SciTech Connect (OSTI)

    Earl D Mattson; Mitchell Plummer; Carl Palmer; Larry Hull; Samantha Miller; Randy Nye

    2011-02-01T23:59:59.000Z

    Three conservative tracer tests have been conducted through the Bridge Fault fracture zone at the Raft River Geothermal (RRG) site. All three tests were conducted between injection well RRG-5 and production wells RRG-1 (790 m distance) and RRG-4 (740 m distance). The injection well is used during the summer months to provide pressure support to the production wells. The first test was conducted in 2008 using 136 kg of fluorescein tracer. Two additional tracers were injected in 2010. The first 2010 tracer injected was 100 kg fluorescein disodium hydrate salt on June, 21. The second tracer (100 kg 2,6-naphthalene disulfonic acid sodium salt) was injected one month later on July 21. Sampling of the two productions wells is still being performed to obtain the tail end of the second 2010 tracer test. Tracer concentrations were measured using HPLC with a fluorescence detector. Results for the 2008 test, suggest 80% tracer recover at the two production wells. Of the tracer recovered, 85% of tracer mass was recovered in well RRG-4 indicating a greater flow pathway connection between injection well and RRG-4 than RRG-1. Fluorescein tracer results appear to be similar between the 2008 and 2010 tests for well RRG-4 with peak concentrations arriving approximately 20 days after injection despite the differences between the injection rates for the two tests (~950 gpm to 475 gpm) between the 2008 and 2010. The two 2010 tracer tests will be compared to determine if the results support the hypothesis that rock contraction along the flow pathway due to the 55 oC cooler water injection alters the flow through the ~140 oC reservoir.