Powered by Deep Web Technologies
Note: This page contains sample records for the topic "river remediation srr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Savannah River Remediation (SRR) Expanded Staff Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Savannah River Remediation Delivering the Mission Dave Olson President and Project Manager January 27, 2012 SRS Executive Management Community Discussion 2 * Liquid Waste Funding...

2

PIA - Savannah River Remediation Accreditation Boundary (SRR...  

Office of Environmental Management (EM)

PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation Boundary PIA - WEB Physical Security Major Application Occupational Medical Surveillance System (OMSS)...

3

Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Remediation Intern Sees Nuclear Industry as Job Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity July 9, 2012 - 10:00am Addthis Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Maddie M. Blair Public Affairs Intern, Savannah River Remediation Why does she keep coming back? "There are so many fascinating processes, people, and work

4

Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Remediation Intern Sees Nuclear Industry as Job Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity July 9, 2012 - 10:00am Addthis Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Maddie M. Blair Public Affairs Intern, Savannah River Remediation Why does she keep coming back? "There are so many fascinating processes, people, and work

5

Independent Activity Report, Savannah River Remediation - July 2010 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation - July 2010 Remediation - July 2010 Independent Activity Report, Savannah River Remediation - July 2010 July 2010 Savannah River Operations Office Integrated Safety Management System Phase II Verification Review of Savannah River Remediation The U.S. Department of Energy (DOE), Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), participated in the DOE Savannah River Operations Office (DOE-SR), Office of Safety and Quality Assurance (OSQA), Technical Support Division (TSD) Integrated Safety Management System (ISMS), Phase II Verification of Savannah River Remediation (SRR). The purpose of the DOE-SR Phase II ISMS Verification was to verify that the SRR ISMS Description that was submitted to and approved by the DOE-SR Manager is being effectively implemented at the Savannah

6

Savannah River Remediation, College Create Job Opportunities for Graduates  

Energy.gov (U.S. Department of Energy (DOE))

AIKEN, S.C. – Savannah River Remediation (SRR), the liquid waste contractor for the EM program at the Savannah River Site (SRS), requires workers with unique skills to protect employees from radiation as the company works safely toward completing its mission.

7

The Internship: Hollywood Plot is a Reality for One SRR Intern | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Internship: Hollywood Plot is a Reality for One SRR Intern The Internship: Hollywood Plot is a Reality for One SRR Intern The Internship: Hollywood Plot is a Reality for One SRR Intern June 20, 2013 - 12:00pm Addthis Johnny Whitaker, a college intern at Savannah River Remediation (SRR), uses system analysis and design to help develop a web-accessible inventory system for SRR subject matter experts. Johnny Whitaker, a college intern at Savannah River Remediation (SRR), uses system analysis and design to help develop a web-accessible inventory system for SRR subject matter experts. In the summer comedy The Internship, two middle-aged men vie for jobs and new careers in the tech industry as Google interns. They are starting over and moving forward, just like one Savannah River Remediation (SRR) intern. Johnny Whitaker has a sense of humor, but he's taking his new venture

8

The Internship: Hollywood Plot is a Reality for One SRR Intern | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Internship: Hollywood Plot is a Reality for One SRR Intern The Internship: Hollywood Plot is a Reality for One SRR Intern The Internship: Hollywood Plot is a Reality for One SRR Intern June 20, 2013 - 12:00pm Addthis Johnny Whitaker, a college intern at Savannah River Remediation (SRR), uses system analysis and design to help develop a web-accessible inventory system for SRR subject matter experts. Johnny Whitaker, a college intern at Savannah River Remediation (SRR), uses system analysis and design to help develop a web-accessible inventory system for SRR subject matter experts. In the summer comedy The Internship, two middle-aged men vie for jobs and new careers in the tech industry as Google interns. They are starting over and moving forward, just like one Savannah River Remediation (SRR) intern. Johnny Whitaker has a sense of humor, but he's taking his new venture

9

Independent Activity Report, Savannah River Remediation - July...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation - July 2010 Independent Activity Report, Savannah River Remediation - July 2010 July 2010 Savannah River Operations Office Integrated Safety Management System Phase II...

10

SRR Staff Send the Holidays to Soldiers Overseas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRR Staff Send the Holidays to Soldiers Overseas SRR Staff Send the Holidays to Soldiers Overseas SRR Staff Send the Holidays to Soldiers Overseas December 21, 2012 - 11:49am Addthis Staffers fill holiday boxes for soldiers overseas. Staffers fill holiday boxes for soldiers overseas. A request for razors from a U.S. Army private serving in Afghanistan transformed into a full-scale holiday gift rescue operation by employees of the Savannah River Site's liquid waste contractor, Savannah River Remediation (SRR). The soldier's stepmom helped rally the "troops" in her office to send him and other soldiers some Christmas cheer. "My stepson's unit is responsible for protecting an Army base far from any city and in a mountainous area of Afghanistan," the SRR Finance and Business Administration employee told her colleagues. "We would get

11

Savannah River Site Achieves Transuranic Waste Disposition Goal...  

Office of Environmental Management (EM)

liquid waste contractor, Savannah River Remediation (SRR): Closed two more underground tanks containing radioactive waste, helping reduce a significant environmental risk to South...

12

Microsoft Word - SRR-CWDA-2010-00003_R1 10-26 aymj.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 INDUSTRIAL WASTEWATER CLOSURE MODULE FOR THE LIQUID WASTE TANKS 18 AND 19 F-AREA TANK FARM, SAVANNAH RIVER SITE October 2011 Industrial Wastewater Construction Permit No. 17,424-IW Prepared by: Savannah River Remediation LLC Closure & Waste Disposal Authority Aiken, SC 29808 Prepared for U.S. Department of Energy Under Contract No. DE-AC09-09SR22505 Industrial Wastewater Closure Module SRR-CWDA-2010-00003 for the Liquid Waste Tanks 18 and 19 Revision 1 F-Area Tank Farm Savannah River Site October 2011 2 of 139 REVISION SUMMARY REV. # DESCRIPTION DATE OF ISSUE 0a Predecisional Deliberative Initial Submittal to DOE-SR 9/23/2010 A Incorporation of DOE -SR comments for submittal to SCDHEC 1/26/2011 B Incorporation of SCDHEC/EPA Comments 6/7/2011

13

Microsoft Word - SRR-CWDA-2010-00003_R2.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 INDUSTRIAL WASTEWATER CLOSURE MODULE FOR THE LIQUID WASTE TANKS 18 AND 19 F-AREA TANK FARM, SAVANNAH RIVER SITE January 2012 Industrial Wastewater Construction Permit No. 17,424-IW Prepared by: Savannah River Remediation LLC Closure & Waste Disposal Authority Aiken, SC 29808 Prepared for U.S. Department of Energy Under Contract No. DE-AC09-09SR22505 Industrial Wastewater Closure Module SRR-CWDA-2010-00003 for the Liquid Waste Tanks 18 and 19 Revision 2 F-Area Tank Farm Savannah River Site January 2012 2 of 140 REVISION SUMMARY REV. # DESCRIPTION DATE OF ISSUE 0 Incorporation of final SCDHEC/EPA comments 8/12/2011 1 Incorporation of additional SCDHEC comments 10/20/2011 2 Submittal following public comment period 1/24/2012

14

Savannah River Remediation Donates $10,000 to South Carolina...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Operations Services General Manager James Taylor, USC Aiken Chancellor Sandra Jordan, and SRR President and Project Manager Ken Rueter. EM Contractors' Donations Support...

15

First Draft Performance Assessment for the H-Area Tank Farm at the Savannah River Site - Part 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRR-CWDA-2010-00128 SRR-CWDA-2010-00128 Revision 0 PERFORMANCE ASSESSMENT for the H-AREA TANK FARM at the SAVANNAH RIVER SITE March 2011 Prepared by: Savannah River Remediation LLC Closure & Waste Disposal Authority Aiken, SC 29808 Prepared for U.S. Department of Energy Under Contract No. DE-AC09-09SR22505 Performance Assessment for the SRR-CWDA-2010-00128 H-Area Tank Farm at the Revision 0 Savannah River Site March 2011 Page ii of 864 REVISION SUMMARY REV. # DESCRIPTION DATE OF ISSUE 0a Initial issue to DOE-SR 09/17/2010

16

Savannah River Remediation Donates $10,000 to South Carolina State Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Remediation Donates $10,000 to South Carolina State Savannah River Remediation Donates $10,000 to South Carolina State Nuclear Engineering Program Savannah River Remediation Donates $10,000 to South Carolina State Nuclear Engineering Program September 28, 2012 - 9:27am Addthis Savannah River Remediation presents a $10,000 to South Carolina State University to support its Nuclear Engineering Program. In the photo, from left: Kayla Miller, Savannah River Remediation Procurement Department and South Carolina State University 2010 graduate; Dr. John Corbitt, Acting Chairman of the South Carolina State University Board of Trustees; Dr. Cynthia Warrick, Interim South Carolina State University President; and Dave Olson, Savannah River Remediation President and Project Manager. Savannah River Remediation presents a $10,000 to South Carolina State

17

Microsoft Word - SRR-CWDA-2012-00045_R1.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

45 45 Revision 1 Nuclear Regulatory Commission's F-Tank Farm Technical Evaluation Report's Recommendations - Department of Energy's Activity Summary Matrix March 2012 Prepared by: Savannah River Remediation LLC Closure and Waste Disposal Authority Aiken, SC 29808 Prepared for U.S. Department of Energy Under Contract No. DE-AC09-09SR22505 Nuclear Regulatory Commission's F-Tank Farm Technical SRR-CWDA-2012-00045 Evaluation Report's Recommendations - Department of Revision 1 Energy's Activity Summary Matrix March 2012 Page 2 of 25 1.0 BACKGROUND On September 30, 2010, the Department of Energy (DOE) issued the Draft Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site for Nuclear Regulatory Commission

18

Microsoft Word - SRR-CWDA-2011-00054_R1.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Comment Response Matrix SRR-CWDA-2011-00054 Comment Response Matrix SRR-CWDA-2011-00054 for NRC Staff Comments on the Draft Basis for Section 3116 Revision 1 Determination and Associated Performance Assessment for the June 2011 F-Tank Farm at the Savannah River Site E Page 2 of 388 REVISION SUMMARY REV. # DESCRIPTION DATE OF ISSUE 0 Initial issue 5/2011 1 Updated reference document information in the responses to RAI-MEP-1 through RAI-MEP-6, CC- MEP-2, and in the reference list, for the following reference documents: DOE/SRS-WD-2011-001 SRR-CWDA-2011-00005 SRR-CWDA-2011-00033 SRR-CWDA-2011-00091 V-ESR-G-00003 6/2011 Comment Response Matrix SRR-CWDA-2011-00054 for NRC Staff Comments on the Draft Basis for Section 3116 Revision 1 Determination and Associated Performance Assessment for the June 2011

19

A large scale environmental assessment: The Clinch River Remedial Investigation  

SciTech Connect

The USEPA identified the Department of Energy Oak Ridge Reservation (ORR) in east Tennessee as a Superfund National Priorities List site in 1989. Facilities at the ORR have released a variety of radiological, organic, and inorganic contaminants to the local aquatic environment as a result of nuclear weapons production, uranium enrichment, and energy research and development activities from the mid 1940s to the present. The Clinch River Remedial Investigation (CRRI) was initiated to meet the Resource Conservation Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements to determine the nature and extent of hazardous releases to the aquatic environment. Phase 1 of the CRRI consisted of sampling and analysis of selected sites representing differing levels of contamination to determine the range of contaminant concentrations present in off-site water, sediment, and fish. Sampling activities in support of Phase 2 of the remedial investigation were designed to assist in defining the nature and extent of the contaminants of concern in sediment, water and biota, and to provide information for assessing the potential risks to human health and the environment associated with those contaminants. A concurrent study evaluated potential remedial alternatives and identified effective and acceptable corrective measures. An overview of the CRRI, including a history of the facilities and their contaminant releases, and the regulatory context in which the remedial investigation occurred is presented.

LeHew, R.; Harris, R. [Oak Ridge National Lab., TN (United States)

1995-12-31T23:59:59.000Z

20

DOE Selects Savannah River Remediation, LLC for Liquid Waste Contract at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Selects Savannah River Remediation, LLC for Liquid Waste DOE Selects Savannah River Remediation, LLC for Liquid Waste Contract at Savannah River Site DOE Selects Savannah River Remediation, LLC for Liquid Waste Contract at Savannah River Site December 8, 2008 - 4:58pm Addthis Washington, D.C. -The U.S. Department of Energy (DOE) today announced the award to Savannah River Remediation, LLC as the liquid waste contractor for DOE's Savannah River Site (SRS) in Aiken, South Carolina. The contract is a cost-plus award-fee contract valued at approximately $3.3 billion over the entire contract, consisting of a base period of six years, plus an option to extend for up to two additional years. The base performance period of the contract will be from April 1, 2009 through March 31, 2015. A 90-day transition period will begin January 2, 2009.

Note: This page contains sample records for the topic "river remediation srr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DOE Selects Savannah River Remediation, LLC for Liquid Waste Contract at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Selects Savannah River Remediation, LLC for Liquid Waste DOE Selects Savannah River Remediation, LLC for Liquid Waste Contract at Savannah River Site DOE Selects Savannah River Remediation, LLC for Liquid Waste Contract at Savannah River Site December 8, 2008 - 4:58pm Addthis Washington, D.C. -The U.S. Department of Energy (DOE) today announced the award to Savannah River Remediation, LLC as the liquid waste contractor for DOE's Savannah River Site (SRS) in Aiken, South Carolina. The contract is a cost-plus award-fee contract valued at approximately $3.3 billion over the entire contract, consisting of a base period of six years, plus an option to extend for up to two additional years. The base performance period of the contract will be from April 1, 2009 through March 31, 2015. A 90-day transition period will begin January 2, 2009.

22

PCB Concentration in Fish in a River System after Remediation of Contaminated Sediment  

Science Journals Connector (OSTI)

An 1991 investigation of PCB concentrations in water and fish along a river was repeated in 1996 after the completion of a remediation of PCB-containing sediment in a lake within the river system. ... The results indicated, that changes in background exposure must be taken into account when evaluating the success of remedial actions measures carried out over several years. ...

Gudrun Bremle; Per Larsson

1998-09-30T23:59:59.000Z

23

Audit of Groundwater Remediation Plans at Savannah River, ER-B-96-02  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AUDIT OF GROUNDWATER REMEDIATION PLANS AT THE SAVANNAH RIVER SITE The Office of Inspector General wants to make the distribution of its reports as customer friendly and cost effective as possible.

24

Supplemental Groundwater Remediation Technologies to Protect the Columbia River at the Hanford Site, Washington - An Update  

SciTech Connect

This paper provides an update on supplemental groundwater remediation technologies to protect the Columbia River at the Hanford Site in Washington State. Major groundwater contaminants at the Hanford Site are described, along with the technologies and remedial activities that will address these environmental challenges.

Thompson, K. M.; Rowley, R. B.; Petersen, Scott W.; Fruchter, Jonathan S.

2008-06-02T23:59:59.000Z

25

Microsoft Word - SRR-CWDA-2011-00120_R0  

NLE Websites -- All DOE Office Websites (Extended Search)

20 20 Revision 0 COMMENT RESPONSE MATRIX FOR THE SAVANNAH RIVER SITE CITIZENS ADVISORY BOARD WASTE MANAGEMENT COMMITTEE COMMENTS ON: DRAFT BASIS FOR SECTION 3116 DETERMINATION FOR CLOSURE OF F-TANK FARM AT THE SAVANNAH RIVER SITE DOE/SRS-WD-2010-001, REVISION 0 SEPTEMBER 30, 2010 SAVANNAH RIVER SITE AIKEN, SOUTH CAROLINA DOE-SR COMMENT RESOLUTION FORM March 2012 COMMENT RESPONSE MATRIX UNITED STATES DEPARTMENT OF ENERGY SAVANNAH RIVER SITE Document Review Record SRR-CWDA-2011-00120, Revision 0 Document No./Title: DOE/SRS-WD-2010-001, Draft Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site Rev.: Revision 0 Doc. Date: 9/30/2010 Commenter(s): Joe Ortaldo and Art Domby Contact: Sherri Ross

26

Microsoft Word - SRR-CWDA-2011-00118_R0  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Revision 0 COMMENT RESPONSE MATRIX FOR UNITED STATES ENVIRONMENTAL PROTECTION AGENCY COMMENTS ON: DRAFT BASIS FOR SECTION 3116 DETERMINATION FOR CLOSURE OF F-TANK FARM AT THE SAVANNAH RIVER SITE DOE/SRS-WD-2010-001, REVISION 0 SEPTEMBER 30, 2010 SAVANNAH RIVER SITE AIKEN, SOUTH CAROLINA DOE-SR COMMENT RESOLUTION FORM March 2012 COMMENT RESPONSE MATRIX UNITED STATES DEPARTMENT OF ENERGY SAVANNAH RIVER SITE Document Review Record SRR-CWDA-2011-00118, Revision 0 Document No./Title: DOE/SRS-WD-2010-001, Draft Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site Rev.: Revision 0 Doc. Date: 9/30/2010 Commenter(s): United States Environmental Protection Agency Contact: Sherri Ross

27

Response of winter birds to soil remediation along the Columbia River at the Hanford Site  

SciTech Connect

The Columbia River at the Hanford Site, located in south-central Washington State, USA, is a regionally important refugium for overwintering birds. Some of the river shoreline has been designated by the U.S. Department of Energy for environmental clean-up following past production of materials for nuclear weapons. We evaluated the effects of soil remediation on winter birds at six inactive nuclear reactor areas. Remediation activities consisted of daily excavation and removal of approximately 1,035 t of contaminated soil from previously herbicided and denuded areas located between 30 m and 400 m and mostly in line-of-sight of the river shoreline. Remediation activities had no apparent effect on numbers of riverine or terrestrial birds using adjacent undisturbed shoreline and riparian habitat.

Becker, James M.; McKinstry, Craig A.

2004-04-01T23:59:59.000Z

28

An overview of treatment and characterization technologies for environmental remediation at the Savannah River Site  

SciTech Connect

The Environmental Restoration Department (ERD) at the Savannah River Site (SRS) has the responsibility to remediate waste sites and groundwater to standards as determined by Federal and State Authorities. This mission requires that certain programmatic interfaces within the ERD, Savannah River Technology Center (SRTC, formerly Savannah River Laboratory (SRL)), the Department of Energy Headquarters (DOE-HQ) Office of Technology Development (OTD), and outside commercial contractors be utilized to ensure cost-effective remediation technologies are utilized. This paper provides a synopsis of a select cross-section of the treatment and characterization technologies currently being pursued by ERD. Environmental Restoration Technology (ERT) Department`s future role in providing the necessary technologies for waste sites and groundwater remediation is also discussed.

Holt, D.L.; Butcher, B.T.

1992-05-01T23:59:59.000Z

29

An overview of treatment and characterization technologies for environmental remediation at the Savannah River Site  

SciTech Connect

The Environmental Restoration Department (ERD) at the Savannah River Site (SRS) has the responsibility to remediate waste sites and groundwater to standards as determined by Federal and State Authorities. This mission requires that certain programmatic interfaces within the ERD, Savannah River Technology Center (SRTC, formerly Savannah River Laboratory (SRL)), the Department of Energy Headquarters (DOE-HQ) Office of Technology Development (OTD), and outside commercial contractors be utilized to ensure cost-effective remediation technologies are utilized. This paper provides a synopsis of a select cross-section of the treatment and characterization technologies currently being pursued by ERD. Environmental Restoration Technology (ERT) Department's future role in providing the necessary technologies for waste sites and groundwater remediation is also discussed.

Holt, D.L.; Butcher, B.T.

1992-05-01T23:59:59.000Z

30

Remediation  

SciTech Connect

The three most frequently used remediation technologies are discussed: (1) NAPL removal, (2) Pump-and-Treat, (3) Soil Vapor Extraction.

Oostrom, Mart; Falta, Ron W.; Mayer, Alex S.; Javandel, I.; Hassanizadeh, S. M.

2005-12-06T23:59:59.000Z

31

U. S. Department of Energy Savannah River Operations Office ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Savannah River Site Liquid Waste System Plans Archive Savannah River Site Liquid Waste System Plans Archive SRR-LWP-2009-00001 R-18 (June 2013) Adobe Acrobat PDF SRR-LWP-2009-00001...

32

Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington, Collection of Surface Water, River Sediments, and Island Soils  

SciTech Connect

This report has been prepared in support of the remedial investigation of Hanford Site Releases to the Columbia River and describes the 2008/2009 data collection efforts. This report documents field activities associated with collection of sediment, river water, and soil in and adjacent to the Columbia River near the Hanford Site and in nearby tributaries.

L. C. Hulstrom

2009-09-28T23:59:59.000Z

33

Remedial Investigation of Hanford Site Releases to the Columbia River - 13603  

SciTech Connect

In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts from release of Hanford Site radioactive substances to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River [1] was issued in 2008 to initiate assessment of the impacts under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [2]. The work plan established a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities over a 120-mile stretch of the Columbia River began in October 2008 and were completed in 2010. Sampled media included surface water, pore water, surface and core sediment, island soil, and fish (carp, walleye, whitefish, sucker, small-mouth bass, and sturgeon). Information and sample results from the field investigation were used to characterize current conditions within the Columbia River and assess whether current conditions posed a risk to ecological or human receptors that would merit additional study or response actions under CERCLA. The human health and ecological risk assessments are documented in reports that were published in 2012 [3, 4]. Conclusions from the risk assessment reports are being summarized and integrated with remedial investigation/feasibility study (RI/FS) reports developed for upland areas, riparian areas, and groundwater in the Hanford Site River Corridor. The RI/FS reports will evaluate the impacts to soil, groundwater, and river sediments and lead to proposed cleanup actions and records of decision to address releases from the Hanford Site reactor operations. (authors)

Lerch, J.A.; Hulstrom, L.C. [Washington Closure Hanford, LLC, Richland, Washington 99354 (United States)] [Washington Closure Hanford, LLC, Richland, Washington 99354 (United States); Sands, J.P. [U.S Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)] [U.S Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)

2013-07-01T23:59:59.000Z

34

Facility Utilization and Risk Analysis for Remediation of Legacy Transuranic Waste at the Savannah River Site - 13572  

SciTech Connect

Savannah River Nuclear Solutions (SRNS) completed the Accelerated TRU Project for remediating legacy waste at the Savannah River Site with significant cost and schedule efficiencies due to early identification of resources and utilization of risk matrices. Initial project planning included identification of existing facilities that could be modified to meet the technical requirements needed for repackaging and remediating the waste. The project schedule was then optimized by utilization of risk matrices that identified alternate strategies and parallel processing paths which drove the overall success of the project. Early completion of the Accelerated TRU Project allowed SRNS to pursue stretch goals associated with remediating very difficult TRU waste such as concrete casks from the hot cells in the Savannah River National Laboratory. Project planning for stretch goals also utilized existing facilities and the risk matrices. The Accelerated TRU project and stretch goals were funded under the American Recovery and Reinvestment Act (ARRA). (authors)

Gilles, Michael L.; Gilmour, John C. [Savannah River Nuclear Solutions, LLC (United States)] [Savannah River Nuclear Solutions, LLC (United States)

2013-07-01T23:59:59.000Z

35

Field Summary Report for Remedial Investigation of Hanford Site Releases to the Coumbia River, Hanford Site, Washington  

SciTech Connect

This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

L.C. Hulstrom

2010-11-10T23:59:59.000Z

36

The Savannah River Site (SRS) is located in south-central South Carolina approximately 100 miles from the Atlantic Coast  

NLE Websites -- All DOE Office Websites (Extended Search)

124 124 Revision 0 Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site February 2012 Prepared by: Savannah River Remediation LLC Closure and Waste Disposal Authority Aiken, SC 29808 Prepared for U.S. Department of Energy Under Contract No. DE-AC09-09SR22505 Tank 18/Tank 19 Special Analysis for the SRR-CWDA-2010-00124 Performance Assessment for the Revision 0 F-Tank Farm at the Savannah River Site February 2012 Page 2 of 132 TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................................. 2 LIST OF FIGURES ...................................................................................................................... 4

37

Lesson Learned by Savannah River Site Activity-level Work Planning and Control  

Energy.gov (U.S. Department of Energy (DOE))

Slide Presentation by Bonnie Barnes, Savannah River Remediation. Work Planning and Control at Savannah River Remediation.

38

INSTALLATION OF BUBBLERS IN THE SAVANNAH RIVER SITED DEFENSE WASTE PROCESSING FACILITY MELTER  

SciTech Connect

Savannah River Remediation (SRR) LLC assumed the liquid waste contract at the Savannah River Site (SRS) in the summer of 2009. The main contractual agreement was to close 22 High Level Waste (HLW) tanks in eight years. To achieve this aggressive commitment, faster waste processing throughout the SRS liquid waste facilities will be required. Part of the approach to achieve faster waste processing is to increase the canister production rate of the Defense Waste Processing Facility (DWPF) from approximately 200 canisters filled with radioactive waste glass per year to 400 canisters per year. To reach this rate for melter throughput, four bubblers were installed in the DWPF Melter in the late summer of 2010. This effort required collaboration between SRR, SRR critical subcontractor EnergySolutions, and Savannah River Nuclear Solutions, including the Savannah River National Laboratory (SRNL). The tasks included design and fabrication of the bubblers and related equipment, testing of the bubblers for various technical issues, the actual installation of the bubblers and related equipment, and the initial successful operation of the bubblers in the DWPF Melter.

Smith, M.; Iverson, D.

2010-12-08T23:59:59.000Z

39

Deployment of Performance Management Methodology as part of Liquid Waste Program at Savannah River Site - 12178  

SciTech Connect

In 2009, Savannah River Remediation LLC (SRR) assumed the management lead of the Liquid Waste (LW) Program at the Savannah River Site (SRS). The four SRR partners and AREVA, as an integrated subcontractor are performing the ongoing effort to safely and reliably: - Close High Level Waste (HLW) storage tanks; - Maximize waste throughput at the Defense Waste Processing Facility (DWPF); - Process salt waste into stable final waste form; - Manage the HLW liquid waste material stored at SRS. As part of these initiatives, SRR and AREVA deployed a performance management methodology based on Overall Equipment Effectiveness (OEE) at the DWPF in order to support the required production increase. This project took advantage of lessons learned by AREVA through the deployment of Total Productive Maintenance and Visual Management methodologies at the La Hague reprocessing facility in France. The project also took advantage of measurement data collected from different steps of the DWPF process by the SRR team (Melter Engineering, Chemical Process Engineering, Laboratory Operations, Plant Operations). Today the SRR team has a standard method for measuring processing time throughout the facility, a reliable source of objective data for use in decision-making at all levels, and a better balance between engineering department goals and operational goals. Preliminary results show that the deployment of this performance management methodology to the LW program at SRS has already significantly contributed to the DWPF throughput increases and is being deployed in the Saltstone facility. As part of the liquid waste program on Savannah River Site, SRR committed to enhance production throughput of DWPF. Beyond technical modifications implemented at different location of the facility, SRR deployed performance management methodology based on OEE metrics. The implementation benefited from the experience gained by AREVA in its own facilities in France. OEE proved to be a valuable tool in order to support the enhancement program in DWPF by providing unified metrics to measure plant performances, identify bottleneck location, and rank the most time consuming causes from objective data shared between the different groups belonging to the organization. Beyond OEE, the Visual Management tool adapted from the one used at La Hague were also provided in order to further enhance communication within the operating teams. As a result of all the initiatives implemented on DWPF, achieved production has been increased to record rates from FY10 to FY11. It is expected that thanks to the performance management tools now available within DWPF, these results will be sustained and even improved in the future to meet system plan targets. (authors)

Prod'homme, A.; Drouvot, O.; Gregory, J. [AREVA, Paris (France); Barnes, B.; Hodges, B.; Hart, M. [SRR, Aiken, SC (United States)

2012-07-01T23:59:59.000Z

40

TBA-0100 - In the Matter of Vinod Chudgar | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(hereinafter referred to as "the Complainant" or "Mr. Chudgar") against Savannah River Remediation (hereinafter referred to as "the Respondent" or "SRR"). SRR is the...

Note: This page contains sample records for the topic "river remediation srr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Phase 1 data summary report for the Clinch River Remedial Investigation: Health risk and ecological risk screening assessment  

SciTech Connect

The Clinch River Remedial Investigation (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants released from the US Department of Energy's (DOE's) Oak Ridge Reservation (ORR) and to assess potential risks to human health and the environment associated with these contaminants. The contaminants released since the early 1940s include a variety of radionuclides, metals, and organic compounds. The purpose of this report is to summarize the results of Phase 1 of the CRRI. Phase 1 was designed to (1) obtain high-quality data to confirm existing historical data for contaminant levels in fish, sediment, and water from the CR/WBR; (2) determine the in the range of contaminant concentrations present river-reservoir system; (3) identify specific contaminants of concern; and (4) establish the reference (background) concentrations for those contaminants.

Cook, R.B.; Adams, S.M.; Beauchamp, J.J.; Bevelhimer, M.S.; Blaylock, B.G.; Brandt, C.C.; Ford, C.J.; Frank, M.L.; Gentry, M.J.; Holladay, S.K.; Hook, L.A.; Levine, D.A.; Longman, R.C.; McGinn, C.W.; Skiles, J.L.; Suter, G.W.; Williams, L.F.

1992-12-01T23:59:59.000Z

42

Savannah River Site, Liquid Waste Program, Savannah River Remediation American Recovery and Reinvestment Act Benefits and Lessons Learned - 12559  

SciTech Connect

Utilizing funding provided by the American Recovery and Reinvestment Act (ARRA), the Liquid Waste Program at Savannah River site successfully executed forty-one design, procurement, construction, and operating activities in the period from September 2009 through December 2011. Project Management of the program included noteworthy practices involving safety, integrated project teams, communication, and cost, schedule and risk management. Significant upgrades to plant capacity, progress toward waste tank closure and procurement of needed infrastructure were accomplished. Over 1.5 million hours were worked without a single lost work day case. Lessons Learned were continually identified and applied to enhance the program. Investment of Recovery Act monies into the Liquid Waste Program has ensured continued success in the disposition of radioactive wastes and the closure of high level waste tanks at SRS. The funding of a portion of the Liquid Waste Program at SRS by ARRA was a major success. Significant upgrades to plant capacity, progress toward waste tank closure and procurement of needed infrastructure was accomplished. Integrated Project Teams ensured quality products and services were provided to the Operations customers. Over 1.5 million hours were worked without a single lost work day case. Lessons Learned were continually reviewed and reapplied to enhance the program. Investment of Recovery Act monies into the Liquid Waste Program has ensured continued success in the disposition of radioactive wastes and the closure of high level waste tanks at SRS. (authors)

Schmitz, Mark A.; Crouse, Thomas N. [Savannah River Remediation, Aiken, South Carolina 29808 (United States)

2012-07-01T23:59:59.000Z

43

Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 5  

SciTech Connect

This volume is in support of the findings of an investigation into contamination of the Clinch River and Poplar Creek near the Oak Ridge Reservation (for more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities there). It addresses the quality assurance objectives for measuring the data, presents selected historical data, contains data from several discrete water characterization studies, provides data supporting the sediment characterization, and contains data related to several biota characterization studies.

NONE

1996-03-01T23:59:59.000Z

44

Microsoft Word - SRR-CWDA-2013-00144_R0_aymj_2014-1-15.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Comment Response Matrix for NRC Staff Clarification SRR-CWDA-2013-00144 Questions on DOE Responses to Request for Additional Information on the Draft Basis for Section 3116...

45

Environmental summary of the F- and H-area seepage basins groundwater remediation project, Savannah River site  

SciTech Connect

This report summarizes the results of nearly 70 investigations of the baseline environment, describes the remedial action, and identifies constituents of interest that pose potential risk to human health and the environment. It also proposes an approach for evaluating the effectiveness of the remedial action.

Friday, G.P.

1997-12-31T23:59:59.000Z

46

Microsoft PowerPoint - Layton02.SRR-CWDA-2011-00099.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Scoping and Scoping and Monitoring Experience Mark Layton May 25, 2011 SRR-CWDA-2011-00099 Print Close 2 * Current Status of SRS LW PAs - Three SRS Liquid Waste (LW) PAs in various stages of review - Prior to implementation, each of these PAs will have been provided to outside agencies for review and comment prior to final DOE approval and site implementation Print Close 3 General Separations Area Savannah River Site Print Close 4 General Separations Area 2 0 0 3 0 0 3 0 0 2 0 0 3 0 0 3 0 0 3 0 0 2 0 0 3 0 0 3 0 0 3 0 0 2 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 300 2 0 0 3 0 0 3 0 0 200 2 0 0 300 3 0 0 F-Area E-Area H-Area Z-Area S-Area U p p e r T h r e e R u n s F o u r m i l e B r a n c h M c Q u e e n B r a n c h C r o u c h B r a n c h 0 2,000 4,000 Feet 0 600 1,200 Meters N F-Area Tank Farm (FTF) LEGEND Perennial Stream USGS Surface Contours (20ft) Facility Boundary FTF Print Close 5 F-Tank Farm F-Tank Farm H-Tank Farm

47

Phase 1 data summary report for the Clinch River Remedial Investigation: Health risk and ecological risk screening assessment. Environmental Restoration Program  

SciTech Connect

The Clinch River Remedial Investigation (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants released from the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) and to assess potential risks to human health and the environment associated with these contaminants. The contaminants released since the early 1940s include a variety of radionuclides, metals, and organic compounds. The purpose of this report is to summarize the results of Phase 1 of the CRRI. Phase 1 was designed to (1) obtain high-quality data to confirm existing historical data for contaminant levels in fish, sediment, and water from the CR/WBR; (2) determine the in the range of contaminant concentrations present river-reservoir system; (3) identify specific contaminants of concern; and (4) establish the reference (background) concentrations for those contaminants.

Cook, R.B.; Adams, S.M.; Beauchamp, J.J.; Bevelhimer, M.S.; Blaylock, B.G.; Brandt, C.C.; Ford, C.J.; Frank, M.L.; Gentry, M.J.; Holladay, S.K.; Hook, L.A.; Levine, D.A.; Longman, R.C.; McGinn, C.W.; Skiles, J.L.; Suter, G.W.; Williams, L.F.

1992-12-01T23:59:59.000Z

48

Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 5. Appendixes J, K, L, M, and N-other supporting information  

SciTech Connect

This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 5 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

NONE

1996-06-01T23:59:59.000Z

49

Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 4. Information related to the feasibility study and ARARs. Appendixes G, H, I  

SciTech Connect

This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

NONE

1996-03-01T23:59:59.000Z

50

Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 5. Appendixes G, H, I, J  

SciTech Connect

The Quality Assurance/Quality Control (QA/QC) Program for Phase 2 of the Clinch River Remedial Investigation (CRRI) was designed to comply with both Department of Energy (DOE) Order 5700.6C and Environmental Protection Agency (EPA) QAMS-005/80 (EPA 1980a) guidelines. QA requirements and the general QA objectives for Phase 2 data were defined in the Phase 2 Sampling and Analysis Plan (SAP)-Quality Assurance Project Plan, and scope changes noted in the Phase 2 Sampling and Analysis Plan Addendum. The QA objectives for Phase 2 data were the following: (1) Scientific data generated will withstand scientific and legal scrutiny. (2) Data will be gathered using appropriate procedures for sample collection, sample handling and security, chain of custody (COC), laboratory analyses, and data reporting. (3) Data will be of known precision and accuracy. (4) Data will meet data quality objectives (DQOs) defined in the Phase 2 SAP.

NONE

1995-09-01T23:59:59.000Z

51

Microsoft Word - 2012sr01_tanks18_19 (3).doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Campbell, SRR, 803.208.8270 Dean.Campbell@srs.gov Grouting Begins on First SRS Waste Tanks Since 1997 AIKEN, S.C. - At about 9 AM today, Savannah River Remediation (SRR), LLC,...

52

REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Power Plant Docket Records REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications PIA - Savannah River Remediation Accreditation Boundary (SRR AB) REQUEST...

53

Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Achieves Transuranic Waste Disposition Goal in Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 December 24, 2013 - 12:00pm Addthis Workers gather behind a “Safety and Security begins with Me” banner at the Savannah River Site. Workers gather behind a "Safety and Security begins with Me" banner at the Savannah River Site. Workers sort through transuranic waste at the Savannah River Site. Workers sort through transuranic waste at the Savannah River Site. SRR employees Glenn Kelly and Fred Merriweather pour the final amount of grout into Tank 6. SRR employees Glenn Kelly and Fred Merriweather pour the final amount of grout into Tank 6. Workers gather behind a "Safety and Security begins with Me" banner at the Savannah River Site.

54

Savannah River Site Contractor Receives Project Management Institute Award  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Contractor Receives Project Management Savannah River Site Contractor Receives Project Management Institute Award Savannah River Site Contractor Receives Project Management Institute Award November 15, 2011 - 12:00pm Addthis SRR Bubbler Project Manager Bill Pepper, center, accepts the PMI Project of the Year award from Eloy Saldivar, left, president of the Savannah River Chapter of PMI. DWPF Facility Manager Les Sonnenberg is on the right. SRR Bubbler Project Manager Bill Pepper, center, accepts the PMI Project of the Year award from Eloy Saldivar, left, president of the Savannah River Chapter of PMI. DWPF Facility Manager Les Sonnenberg is on the right. AIKEN, S.C. - The local chapter of the Project Management Institute (PMI) recently honored the Savannah River Site liquid waste contractor with its

55

Soil & Groundwater Remediation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Soil & Groundwater Soil & Groundwater Remediation Soil & Groundwater Remediation Soil & Groundwater Remediation The U.S. Department of Energy (DOE) manages the largest groundwater and soil remediation effort in the world. The inventory at the DOE sites includes 6.5 trillion liters of contaminated groundwater, an amount equal to about four times the daily U.S. water consumption, and 40 million cubic meters of soil and debris contaminated with radionuclides, metals, and organics. The Office of Groundwater and Soil Remediation is working with DOE site managers around the country regarding specific technical issues. At the large sites such as Hanford, Savannah River, and Oak Ridge, the Office of Groundwater and Soil Remediation has conducted research and demonstration projects to test new technologies and remediation

56

Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 2. Appendixes A, B, C, and D-Biota and representative concentrations of contaminants  

SciTech Connect

This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 2 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

NONE

1996-06-01T23:59:59.000Z

57

Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 4. Appendixes G, H, and I and information related to the feasibility study and ARARs  

SciTech Connect

This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 4 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

NONE

1996-06-01T23:59:59.000Z

58

Wall-E Is So Jealous Right Now: SRR Robots Help Clean Up SRS  

Energy.gov (U.S. Department of Energy (DOE))

Science fiction is now science fact as remote-controlled robots work on tank waste removal and inspection at Savannah River Site (SRS).

59

Savannah River Site Contractor Receives Project Management Institute Award  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contractor Receives Project Management Contractor Receives Project Management Institute Award Savannah River Site Contractor Receives Project Management Institute Award November 15, 2011 - 12:00pm Addthis SRR Bubbler Project Manager Bill Pepper, center, accepts the PMI Project of the Year award from Eloy Saldivar, left, president of the Savannah River Chapter of PMI. DWPF Facility Manager Les Sonnenberg is on the right. SRR Bubbler Project Manager Bill Pepper, center, accepts the PMI Project of the Year award from Eloy Saldivar, left, president of the Savannah River Chapter of PMI. DWPF Facility Manager Les Sonnenberg is on the right. AIKEN, S.C. - The local chapter of the Project Management Institute (PMI) recently honored the Savannah River Site liquid waste contractor with its 2011 Project of the Year award.

60

Type B Accident Investigation Board Report Employee Puncture Wound at the F-TRU Waste Remediation Facility at the Savannah River Site on June 14, 2010  

Energy.gov (U.S. Department of Energy (DOE))

This report documents the results of the Type B Accident Investigation Board investigation of the June 14, 2010, employee puncture wound at the Department of Energy (DOE) Savannah River Site (SRS) F-TRU Wste Facility located in the F Canyon Facility.

Note: This page contains sample records for the topic "river remediation srr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Record of Decision/Remedial Alternative Selection for the Motor Shops Seepage Basin (716-A)  

SciTech Connect

This decision document presents the selected remedial alternative for the Motor Shops Seepage Basin located at the Savannah River Site in Aiken, South Carolina

Palmer, E.

1999-02-03T23:59:59.000Z

62

SR201002.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

John Lindsay, SRR, (803) 208-6253 John Lindsay, SRR, (803) 208-6253 john02lindsay@srs.gov Recovery Act Funding Accelerates Tank Closure at the Savannah River Site Aiken, SC (Dec. 9) - "Innovate and accelerate safely" describes the upgrade work underway at H Area Waste Tank 13, an American Recovery and Reinvestment Act project being performed by Savannah River Remediation LLC ( SRR). Placed in service in 1956, Tank 13 is an underground waste storage tank with a capacity

63

Applied Field Research Initiative Attenuation Based Remedies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PA00133 - March 2011 PA00133 - March 2011 Applied Field Research Initiative Attenuation Based Remedies in the Subsurface Located at the Savannah River Site in Aiken, South Carolina, the Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) was established to develop the tools, approaches and technologies that will be required to address the technical challenges associated characteriza- tion, remediation and long-term monitoring of recalcitrant compounds in the subsurface at Department of Energy (DOE) Environmental Management (EM) sites. The ABRS AFRI site provides a unique setting for researchers in both applied and basic science fields. A wealth of subsurface data is available to support research activities and remedial decision making.

64

Remediation Experiences in Finland  

Science Journals Connector (OSTI)

This chapter discusses remediation practices for addressing gasoline-impacted soil and ground water at several hundred Neste Marketing Limited (Neste ... in Finland. The first systematic investigation and remediation

Martti R. Suominen; Nancy E. Milkey P.G.

2003-01-01T23:59:59.000Z

65

Pinellas Remediation Agreement Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pinellas Pinellas Agreement Name Remediation Agreement for the Four and One-Half Acre Site in Largo, Pinellas County, Florida State Florida Agreement Type Remediation Agreement Legal Driver(s) CERCLA/ Atomic Energy Act of 1954, as amended/ Florida Air and Water Pollution Control Act Scope Summary Remediation of property adjacent to the former Pinellas Plant Parties DOE; Florida Department of Environmental Protection Date 3/12/2001 SCOPE * Remediate the groundwater under a parcel of property adjacent to DOE's former Pinellas Plant to levels consistent with industrial use. * Complete remedial actions at the site in accordance with a Remedial Action Plan prepared by DOE and approved by FDEP. * Submit quarterly reports of interim remedial actions at the Site.

66

Cleaning Up the Hanford River Corridor and Improving Site Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

operations * Continue River Corridor cleanup, including remediation of 618-10 Burial Ground * Continue Plutonium Finishing Plant deactivation, decommissioning and demolition *...

67

Groundwater Remediation and Modeling  

Science Journals Connector (OSTI)

Because of the author’s vantage point, this chapter is necessarily based on experience in ground-water remediation in the United States. Much of that...

Peter Shanahan

1995-01-01T23:59:59.000Z

68

2010sr31_box-remediation.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Thursday, November 18, 2010 Thursday, November 18, 2010 james-r.giusti@srs.gov Paivi Nettamo, SRNS, (803) 292-2484 paivi.nettamo@srs.gov SRS Recovery Act TRU Waste Project Ahead of Schedule with Box Remediation Program Aiken, SC - The U.S. Department of Energy's Savannah River Site (SRS) started off the last 12 months of the American Recovery and Reinvestment Act with an enormous success in its legacy transuranic (TRU) waste program. The H-Canyon

69

John Tanaka SRR Director  

E-Print Network (OSTI)

; Ecological Provinces #12; 0 5 10 15 20 25 30 35 Black Hills Coniferous Forest Great Plains - Palouse Dry,000 250,000 300,000 Black Hills Coniferous Forest Great Plains - Palouse Dry Steppe Intermountain Semi,000 60,000 70,000 Black Hills Coniferous Forest Great Plains - Palouse Dry Steppe Intermountain Semi

Wyoming, University of

70

Savannah River Remediation, College Create Job Opportunities...  

Office of Environmental Management (EM)

skills, and they are helping treat and disposition radioactive waste and close waste tanks. They are all graduates of Aiken Technical College (ATC), a public, two-year...

71

Observational Approach to Chromium Site Remediation - 13266  

SciTech Connect

Production reactors at the U.S. Department of Energy's (DOE) Hanford Site in Richland, Washington, required massive quantities of water for reactor cooling and material processing. To reduce corrosion and the build-up of scale in pipelines and cooling systems, sodium dichromate was added to the water feedstock. Spills and other releases at the makeup facilities, as well as leaks from miles of pipelines, have led to numerous areas with chromium-contaminated soil and groundwater, threatening fish populations in the nearby Columbia River. Pump-and-treat systems have been installed to remove chromium from the groundwater, but significant contamination remain in the soil column and poses a continuing threat to groundwater and the Columbia River. Washington Closure Hanford, DOE, and regulators are working on a team approach that implements the observational approach, a strategy for effectively dealing with the uncertainties inherent in subsurface conditions. Remediation of large, complex waste sites at a federal facility is a daunting effort. It is particularly difficult to perform the work in an environment of rapid response to changing field and contamination conditions. The observational approach, developed by geotechnical engineers to accommodate the inherent uncertainties in subsurface conditions, is a powerful and appropriate method for site remediation. It offers a structured means of quickly moving into full remediation and responding to the variations and changing conditions inherent in waste site cleanups. A number of significant factors, however, complicate the application of the observational approach for chromium site remediation. Conceptual models of contamination and site conditions are difficult to establish and get consensus on. Mid-stream revisions to the design of large excavations are time-consuming and costly. And regulatory constraints and contract performance incentives can be impediments to the flexible responses required under the observational approach. The WCH project team is working closely with stakeholders and taking a number of steps to meet these challenges in a continuing effort to remediate chromium contaminated soil in an efficient and cost-effective manner. (authors)

Scott Myers, R. [Washington Closure Hanford, 2620 Fermi, Richland, Washington 99354 (United States)] [Washington Closure Hanford, 2620 Fermi, Richland, Washington 99354 (United States)

2013-07-01T23:59:59.000Z

72

RCRA Facility Investigation/Remedial Investigation Report for the Grace Road Site (631-22G)  

SciTech Connect

This report summarizes the activities and documents the results of a Resource Conservation and Recovery Act Facility Investigation/Remedial Investigation conducted at Grace Road Site on the Savannah River Site near Aiken, South Carolina.

Palmer, E.

1998-10-02T23:59:59.000Z

73

Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI)  

Energy.gov (U.S. Department of Energy (DOE))

Located at the Savannah River Site in Aiken, South Carolina, the Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) was established to develop the tools,...

74

Audit of the Savannah River Site's Quality Control Program for Groundwater Sampling, IG-0405  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 1997 0, 1997 MEMORANDUM FOR: THE SECRETARY FROM: John C. Layton Inspector General SUBJECT: INFORMATION: Report on "Audit of the Savannah River Site's Quality Control Program for Groundwater Sampling" BACKGROUND The Savannah River Site's groundwater remediation program was managed by the Department of Energy's (Department) management and operating contractor for the site, Westinghouse Savannah River Company (Westinghouse). One component of the remediation

75

A Framework for Sustainable Remediation  

Science Journals Connector (OSTI)

However, after more than 30 years of experience with remediation projects, it is now clear that remedial actions are frequently energy intensive, may produce their own pollutant emissions, and may disturb and cause controversy in neighboring communities. ... Regulators, industry, and communities recognize that sustainability principles must be integrated into remediation activities, and various sustainable remediation guidance documents have been developed. ...

Karin S. Holland

2011-08-11T23:59:59.000Z

76

Attenuation Based Remedies  

Energy.gov (U.S. Department of Energy (DOE))

The mission of the Attenuation Based Remedies in the Subsurface Applied Field Research Initiative is to seek holistic solutions to DOE’s groundwater contamination problems that consider not only...

77

Smith River Rancheria's Development of an Energy Organization Investigation  

SciTech Connect

Smith River Rancheria (SRR), for some time, has had a strong commitment to attaining energy selfsufficiency, to reduce overall energy costs and concurrently initiate economic development within the community. Early on it was recognized that the development of an energy organization was important and for this reason was made part of the SRR's strategic review not only for economic development but also the reduction of energy costs. Towards this end, SRR retained Werner G. Buehler of W.G. Buehler & Associates to investigate the many phases or steps required to establish such an energy organization and determine, if in fact, it could benefit the Tribe. The basic phases are delineated as: (1) Identify potential sources of wholesale power and transmission paths; (2) Evaluating the various forms of energy organizations; (3) Determining the benefits (and disadvantages) of each form of organization; (4) Gathering costs to organize and operate the selected form or energy organization; (5) Performing an economic analysis of forming and operating an energy organization; and (6) Develop an implementation plan.

W.G Buehler & Associates

2007-08-27T23:59:59.000Z

78

In-situ remediation system for groundwater and soils  

DOE Patents (OSTI)

The present invention relates to a system for in-situ remediation of contaminated groundwater and soil. In particular the present invention relates to stabilizing toxic metals in groundwater and soil. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

Corey, J.C.; Kaback, D.S.; Looney, B.B.

1991-01-01T23:59:59.000Z

79

Independent Activity Report, Savannah River Operation - June 2010 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Operation - June 2010 Savannah River Operation - June 2010 Independent Activity Report, Savannah River Operation - June 2010 June 2010 Savannah River Operations Office Self-Assessment of the Technical Qualification Program The U.S. Department of Energy (DOE), Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), participated in the DOE Savannah River Operations Office (DOE-SR) self-assessment of the Technical Qualification Program (TQP). Independent Activity Report, Savannah River Operation - June 2010 More Documents & Publications Independent Oversight Review, Savannah River Operations Office - July 2013 Independent Activity Report, Savannah River Remediation - July 2010 2011 Annual Workforce Analysis and Staffing Plan Report - Savannah River

80

Microsoft PowerPoint - Zachara HAB-River Plateau Mtg 1-8-09.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Northwest National Laboratory, Richland, WA 99354 Hanford 300 A IFC River & Plateau Mtg January 8, 2009 Office of ScienceEnvironmental Remediation Sciences Division (ERSD)...

Note: This page contains sample records for the topic "river remediation srr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Sustainable Soil Remediation:  

Science Journals Connector (OSTI)

...wastes and creating new markets for the end products...study of the treatment of diesel-contaminated soil indicated...size and location of markets relative to waste production...remediation scenario for a diesel-contaminated site using...catabolic activity in diesel contaminated soil following...

David L. Jones; John R. Healey

82

Sustainable Soil Remediation:  

Science Journals Connector (OSTI)

...recognised since the birth of agriculture, the landspreading of industrial...full life cycle assessment (LCA). For example, blending high-nutrient-content...cradle-to-grave) of an LCA can also lead to misleading...remediation option is best. In LCA, impacts are classified as...

David L. Jones; John R. Healey

83

Record of decision remedial alternative selection for the Central Shops burning/Rubble Pit (631-6G)  

SciTech Connect

The Central Shops Burning Rubble Pit is listed as a solid waste management unit at the Savannah River Plant. This report describes the remedial action alternative for the pit.

Palmer, E.

1997-04-01T23:59:59.000Z

84

Remedial Action Performed  

Office of Legacy Management (LM)

General Motors Site in General Motors Site in Adrian, Michigan Department of Energy OiZce of Assistant Manager for Environmental Management Oak Ridge Operations January 2001 69 Printed on recycledhcydable paper. CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE GENERAL MOTORS SITE ADRIAN, MICHIGAN JANUARY 200 1 Prepared for United States Army Corps of Engineers Under Contract No. DACW45-98-D-0028 BY Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 CONTENTS FIGURES .............................................................................................................................................. TABLES ...............................................................................................................................................

85

CENTRAL PLATEAU REMEDIATION  

SciTech Connect

A systematic approach to closure planning is being implemented at the Hanford Site's Central Plateau to help achieve the goal of closure by the year 2035. The overall objective of Central Plateau remediation is to protect human health and the environment from the significant quantity of contaminated material that resulted from decades of plutonium production in support of the nation's defense. This goal will be achieved either by removing contaminants or placing the residual contaminated materials in a secure configuration that minimizes further migration to the groundwater and reduces the potential for inadvertent intrusion into contaminated sites. The approach to Central Plateau cleanup used three key concepts--closure zones, closure elements, and closure process steps--to create an organized picture of actions required to complete remediation. These actions were merged with logic ties, constraints, and required resources to produce an integrated time-phased schedule and cost profile for Central Plateau closure. Programmatic risks associated with implementation of Central Plateau closure were identified and analyzed. Actions to mitigate the most significant risks are underway while high priority remediation projects continue to make progress.

ROMINE, L.D.

2006-02-01T23:59:59.000Z

86

Remedial Alternative Selection for the F Area Tank Farm,  

NLE Websites -- All DOE Office Websites (Extended Search)

Notice of Availability: Notice of Availability: Explanation of Significant Difference for Incorporating Tanks 18 and 19 into Revision 1 Interim Record Of Decision Remedial Alternative Selection for the F Area Tank Farm, Waste Tanks 17 and 20 at the Savannah River Site The Explanation of Significant Difference for Incorporating Tanks 18 and 19 into Revision 1 Interim Record of Decision Remedial Alternative Selection for the F Area Tank Farm, (hereafter referred to as the Tank 18 and 19 ESD) is being issued by the U.S. Department of Energy (DOE), the lead agency for the Savannah River Site (SRS), with concurrence by the U.S. Environmental Protection Agency - Region 4 (EPA), and South Carolina Department of Health and Environmental Control (SCDHEC). The Tank 18 and 19 ESD modifies

87

CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY  

SciTech Connect

THE CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY WAS CONDUCTED TO DEVELOP AN OPTIMAL SEQUENCE OF REMEDIATION ACTIVITIES IMPLEMENTING THE CERCLA DECISION ON THE CENTRAL PLATEAU. THE STUDY DEFINES A SEQUENCE OF ACTIVITIES THAT RESULT IN AN EFFECTIVE USE OF RESOURCES FROM A STRATEGIC PERSPECTIVE WHEN CONSIDERING EQUIPMENT PROCUREMENT AND STAGING, WORKFORCE MOBILIZATION/DEMOBILIZATION, WORKFORCE LEVELING, WORKFORCE SKILL-MIX, AND OTHER REMEDIATION/DISPOSITION PROJECT EXECUTION PARAMETERS.

BERGMAN TB; STEFANSKI LD; SEELEY PN; ZINSLI LC; CUSACK LJ

2012-09-19T23:59:59.000Z

88

River Corridor Baseline Risk Assessment (RCBRA) Human Health...  

NLE Websites -- All DOE Office Websites (Extended Search)

by end of year Status of River Corridor Risk Assessments 2 RCBRA will be used in CERCLA Remedial InvestigationFeasibility Study (RIFS) * RCBRA provides "basis for action" to...

89

Remedial Action Performed  

Office of Legacy Management (LM)

Baker and Williams Baker and Williams Warehouses Site in New York, New York, 7997 - 7993 Department of Energy Former Sites Restoration Division Oak Ridge Operations Office November 7 995 CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE BAKER AND WILLIAMS WAREHOUSES SITE IN NEW YORK, NEW YORK, 1991-1993 NOVEMBER 1995 Prepared for United States Department of Energy Oak Ridge Operations Office Under Contract No. DE-AC05-910R21949 BY Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 __ CONTENTS .- ~_- _- ..- ^_ FIGURES . ...,.,.....,,........,,.,_.....,.,.,.__,....,,,,, v TABLES ,.,__...,,....,..._._..,,,,_._...,.,.,,.,,,..._,,,, vi ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..v~

90

Remedial Action Performed  

Office of Legacy Management (LM)

' ' at the C. H. Schnoor Site, Springdale, Pennsylvania, in 1 994 Department of Energy Former Sites Restoration Division Oak Ridge Operations Office November 1996 CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE C. H. SCHNOOR SITE SPRINGDALE, PENNSYLVANIA, IN 1994 NOVEMBER 1996 prep&ed for United States Department of ~nergy Oak Ridge Operations Off= r Under Contract No. DE-AC05-910R21949 Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. '14501 CONTENTS FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi UNITS OF MEASURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

91

Remedial Action Performed  

Office of Legacy Management (LM)

Alba Craft Laboratory and Alba Craft Laboratory and Vicinity Properties Site in Oxford, Ohio C Department of Energy Former Sites Restoration Division Oak Ridge Operations Office January 1997 $$@T Op% 3 @!B . i~d!l Ab Printed on recycled/recyclable paper. CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE FORMER ALBA CRAFT LABORATORY AND VICINITY PROPERTIES SITE IN OXFORD, OHIO JANUARY 1997 Prepared for United States Department of Energy Oak Ridge Operations Office Under Contract No. DE-AC0591 OR2 1949 Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 CONTENTS Page FIGURES .............................................................................................................................................. v TABLES.. .............................................................................................................................................. vi

92

Remedial Action Performed  

Office of Legacy Management (LM)

Aliquippa Forge Site Aliquippa Forge Site in Aliquippa, Pennsylvania Department of Energy Former Sites Restoration Division Oak Ridge Operations Office November 1996 CERTIFICATION DOCKE.~ FOR THE REMEDIAL ACTION PERFORMED AT THE ALIQUIPPA FORGE SITE IN ALIQUIPPA, PENNSYLVANIA NOVEMBER 1996 Prepared for . UNITED STATES DEPARTMENT OF ENERGY Oak Ridge Operations Office Under Contract No. DE-AC05-9 1 OR2 1949 Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 CONTENTS Page FIGURES v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TABLES vii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii UNITSOFMEASURE ix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INTRODUCTION xi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

93

Advanced Remediation Technologies  

SciTech Connect

The United States Department of Energy (DOE), Office of Environmental Management (EM) is responsible for the cleanup of nation's nuclear weapons program legacy wastes, along with waste associated with nuclear energy programs and research. The EM cleanup efforts continue to progress, however the cleanup continues to be technologically complex, heavily regulated, long-term; and the effort also has a high life cycle cost estimate (LCCE) effort. Over the past few years, the EM program has undergone several changes to accelerate its cleanup efforts with varying degrees of success. This article will provide some insight into the Advanced Remediation Technologies (ART) projects that may enhance cleanup efforts and reduce life cycle costs. (authors)

Krahn, St.; Miller, C.E. [The United States Department of Energy, Office of Environmental Management, Washington, D.C. (United States)

2008-07-01T23:59:59.000Z

94

Saxton soil remediation project  

SciTech Connect

The Saxton Nuclear Experimental Facility (SNEF) consists of a 23-MW(thermal) pressurized light water thermal reactor located in south central Pennsylvania. The Saxton Nuclear Experimental Corporation (SNEC), a wholly owned subsidiary of the General Public Utilities (GPU) Corporation, is the licensee for the SNEF. Maintenance and decommissioning activities at the site are conducted by GPU Nuclear, also a GPU subsidiary and operator of the Three Mile Island and Oyster Creek nuclear facilities. The remediation and radioactive waste management of contaminated soils is described.

Holmes, R.D. [GPU Nuclear Corporation, Middletown, PA (United States)

1995-12-31T23:59:59.000Z

95

Surfactants and subsurface remediation  

SciTech Connect

Because of the limitations of pump-and-treat technology, attention is now focused on the feasibility of surfactant use to increase its efficiency. Surfactants have been studied for use in soil washing and enhanced oil recovery. Although similarities exist between the applications, there are significant differences in the objectives of the technologies and the limitations placed on surfactant use. In this article we review environmental studies concerned with the fate and transport of surface-active compounds in the subsurface environment and discuss key issues related to their successful use for in situ aquifer remediation, particularly with respect to nonaqueous-phase liquids.

West, C.C.; Harwell, J.H.

1992-01-01T23:59:59.000Z

96

River Protection.PDF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

cc: cc: DOE/IG-0506 I N S P E C T I O N R E P O R T U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF INSPECTIONS I N S P E C T I O N O F SELECTED ASPECTS OF THE OFFICE OF RIVER PROTECTION PERFORMANCE-BASED INCENTIVE PROGRAM JUNE 2001 U.S. DEPARTMENT OF ENERGY Washington, DC 20585 June 14, 2001 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman /s/ Inspector General SUBJECT: INFORMATION: Report on "Inspection of Selected Aspects of the Office of River Protection Performance-Based Incentive Program" BACKGROUND The Office of River Protection (ORP), which reports to the Office of Environmental Management, is responsible for remediation of the radioactive waste stored in tanks at the Hanford Site in the State of Washington. For Fiscal Year (FY) 2000, ORP established 26 performance-based contract

97

Microsoft Word - ARRA pump delivered.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

.8270 .8270 Dean.Campbell@srs.gov Last Piece of Equipment Delivered for SRR ARRA Project AIKEN, S.C. (February 6, 2012) - The final procurement in the $200 million American Recovery and Reinvestment Act (ARRA) for Savannah River Remediation (SRR) was received in December 2011, completing the delivery of needed equipment purchased under the program. A 4,000 pound, 24-foot long remote cell transfer pump that cost $1.7 million was delivered and accepted in December, completing the procurement of over $20 million of equipment to enhance liquid waste operations at the Savannah River Site (SRS). SRR President and Project Manager Dave Olson congratulated all SRR ARRA employees for the work that was accomplished. "Over 10 percent of the money SRR received under the ARRA project was spent on

98

Radioactive Tank Waste Remediation Focus Area. Technology summary  

SciTech Connect

In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

NONE

1995-06-01T23:59:59.000Z

99

BUILDING 96 RECOMMENDATION FOR SOURCE AREA REMEDIATION  

E-Print Network (OSTI)

of the 1999 Operable Unit (OU) III Remedial Investigation/Feasibility Study(RI/FS) and was designated as AreaOU III BUILDING 96 RECOMMENDATION FOR SOURCE AREA REMEDIATION FINAL Prepared by: Brookhaven REMEDIATION Executive Summary

100

DWPF SMECT PVV SAMPLE CHARACTERIZATION AND REMEDIATION  

SciTech Connect

On April 2, 2013, a solid sample of material collected from the Defense Waste Processing Facility’s Process Vessel Vent (PVV) jumper for the Slurry Mix Evaporator Condensate Tank (SMECT) was received at the Savannah River National Laboratory (SRNL). DWPF has experienced pressure spikes within the SMECT and other process vessels which have resulted in processing delays while a vacuum was re-established. Work on this sample was requested in a Technical Assistance Request (TAR). This document reports the results of chemical and physical property measurements made on the sample, as well as insights into the possible impact to the material using DWPF’s proposed remediation methods. DWPF was interested in what the facility could expect when the material was exposed to either 8M nitric acid or 90% formic acid, the two materials they have the ability to flush through the PVV line in addition to process water once the line is capped off during a facility outage.

Bannochie, C.; Crawford, C.

2013-06-18T23:59:59.000Z

Note: This page contains sample records for the topic "river remediation srr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Digging Begins at Hazardous Hanford Burial Ground - River Corridor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Digging Begins at Hazardous Hanford Burial Ground - River Corridor Digging Begins at Hazardous Hanford Burial Ground - River Corridor Contractor Spent Two Years Preparing to Remediate 618-10 Digging Begins at Hazardous Hanford Burial Ground - River Corridor Contractor Spent Two Years Preparing to Remediate 618-10 August 3, 2011 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE Cameron.Hardy@rl.doe.gov 509-376-5365 Todd Nelson, Washington Closure media@wch-rcc.com 509-372-9097 RICHLAND, WASH. - After careful preparation and characterization, the Department of Energy's (DOE) River Corridor contractor, Washington Closure Hanford, has begun remediation of one of the most hazardous burial grounds tackled to date on the Hanford Site's River Corridor. The $57 million American Recovery and Reinvestment Act project began with nearly two years of preparation and characterization before reaching their

102

River Thames River Thames  

E-Print Network (OSTI)

West Kent House Penge East Lower Sydenham Forest Hill Honor Oak Park Crofton Park Nunhead New CrossC BD A River Thames River Thames Waterloo & City Southwark Northwood Northwood Hills North Harrow Harrow- on-the-Hill Northwick Park Harrow & Wealdstone Headstone Lane Pinner Kenton Stanmore Canons Park

Delmotte, Nausicaa

103

River Thames River Thames  

E-Print Network (OSTI)

River Thames River Thames Du Cane Road Wood Lane Wood Lane North Pole Road Barlby Road Highlever Street Acton Market Place Acton Horn Lane Wood Lane Du Cane Road Wood Lane South Africa Road White City for BBC Television Centre Wood Lane Ariel Way Wood Lane Shepherd's Bush Green Shepherd's Bush Green

104

P34 Weston Tank 50 Sampler Development.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

C. S. Weston, Savannah River Remediation LLC C. S. Weston, Savannah River Remediation LLC We do the right thing S A V A N N A H R I V E R S I T E ď‚ź A I K E N , S C ď‚ź W W W . S R S . G O V Fluidic Sampler Technology Improvement Technology Driver - Continuous Improvement SRS Salt Waste Processing Mission Present Waste Sampling Method Funded by DOE-EM20 in 2009, the Single Point Fluidic Waste Sampler is being designed by NuVision Engineering. SRR is providing technical support for deployment in H-Tank Farm Tank 50 ABSTRACT The SRS Liquid Waste Contract is managed by Savannah River Remediation LLC (SRR) a team of companies led by URS Corp. with partners Bechtel National, CH2M Hill and Babcock & Wilcox. The SRR

105

SRR Rangeland Ecosystem Services Assessment  

E-Print Network (OSTI)

Contributes to clean air Hydrologic, Solar, and Wind energy potential Flood mitigation #12;Miscellaneous EGS Added Costs Reduced Costs Reduced Benefits Total Positive Total Negative #12; For relatively small for the EGS Set of questions to ponder How to Determine the Potential Benefits and Costs #12; Must Haves

Wyoming, University of

106

UNIVERSITY OF MINNESOTA UMore Park Remedial Investigation  

E-Print Network (OSTI)

UNIVERSITY OF MINNESOTA UMore Park Remedial Investigation Frequently Asked Questions What is a remedial investigation? A remedial investigation is a technical assessment that characterizes the soil. A remedial investigation includes the analysis of soil and water samples as well as evaluating existing data

Netoff, Theoden

107

ICDF Complex Remedial Action Report  

SciTech Connect

This Idaho CERCLA Disposal Facility (ICDF) Remedial Action Report has been prepared in accordance with the requirements of Section 6.2 of the INEEL CERCLA Disposal Facility Remedial Action Work Plan. The agency prefinal inspection of the ICDF Staging, Storage, Sizing, and Treatment Facility (SSSTF) was completed in June of 2005. Accordingly, this report has been developed to describe the construction activities completed at the ICDF along with a description of any modifications to the design originally approved for the facility. In addition, this report provides a summary of the major documents prepared for the design and construction of the ICDF, a discussion of relevant requirements and remedial action objectives, the total costs associated with the development and operation of the facility to date, and identification of necessary changes to the Agency-approved INEEL CERCLA Disposal Facility Remedial Action Work Plan and the ICDF Complex Operations and Maintenance Plan.

W. M. Heileson

2007-09-26T23:59:59.000Z

108

Remediation alternatives for low-level herbicide contaminated groundwater  

SciTech Connect

In early 1995, an evaluation of alternatives for remediation of a shallow groundwater plume containing low-levels of an organic herbicide was conducted at BASF Corporation, a petrochemical facility located in Ascension Parish, Louisiana. The contaminated site is located on an undeveloped portion of property within 1/4 mile of the east bank of the Mississippi River near the community of Geismar. Environmental assessment data indicated that about two acres of the thirty acre site had been contaminated from past waste management practices with the herbicide bentazon. Shallow soils and groundwater between 5 to 15 feet in depth were affected. Maximum concentrations of bentazon in groundwater were less than seven parts per million. To identify potentially feasible remediation alternatives, the environmental assessment data, available research, and cost effectiveness were reviewed. After consideration of a preliminary list of alternatives, only two potentially feasible alternatives could be identified. Groundwater pumping, the most commonly used remediation alternative, followed by carbon adsorption treatment was identified as was a new innovative alternative known as vegetative transpiration. This alternative relies on the natural transpiration processes of vegetation to bioremediate organic contaminants. Advantages identified during screening suggest that the transpiration method could be the best remediation alternative to address both economic and environmental factors. An experiment to test critical factors of the vegetatived transpiration alternative with bentazon was recommended before a final decision on feasibility can be made.

Conger, R.M. [BASF Corp., Geismar, LA (United States)

1995-10-01T23:59:59.000Z

109

Risk-Based Remediation Approach for Cs-137 Contaminated Sediment/Soils at the Savannah River Site (SRS) Lower Three Runs Tail (U) - 13348 - SRNS-RP-2012-00546  

SciTech Connect

Lower Three Runs is a large blackwater stream that runs through the eastern and southern portion of the Savannah River Site. The Lower Three Runs watershed includes two SRS facility areas: P Area (P Reactor) and R Area (R Reactor) that provided effluent discharges to Lower Three Runs. During reactor operations, effluent discharges were well above natural (pre-industrial) or present day stream discharges. The watershed contains a 2,500-acre mainstream impoundment (PAR Pond), several smaller pre-cooler ponds, and a canal system that connects the pre-cooler ponds and discharges surface water to PAR Pond. From the PAR Pond dam, Lower Three Runs flows approximately 36 kilometers braiding through bottom-land/flood-plain forests before it enters the Savannah River. About eight kilometers downstream from the PAR Pond dam, the SRS boundary narrows (termed the Lower Three Runs tail) providing a limited buffer of DOE property for the Lower Three Runs stream and associated flood-plain. Previous screening characterization efforts revealed Cs-137 contamination in the sediment/soils of the flood-plain. As a part of the American Recovery and Reinvestment Act stimulus package, a comprehensive characterization effort was executed on the sediment/soils of the Lower Three Runs tail flood-plain providing a comprehensive look at the contaminant signature of the area. As a follow-up to that characterization, a regulatory decision Core Team, comprised of members of the South Carolina Department of Health and Environmental Control, Environmental Protection Agency - Region IV, and DOE, conducted negotiations on a risk-based approach to address the level of contamination found in the tail flood-plain as an early action that provided a long-term solution to exposure scenarios. For evaluation purposes, the adolescent trespasser was selected as the most likely human receptor for the Lower Three Runs tail portion because of the natural attractiveness of the area for recreational activities (i.e., hunting, fishing, hiking etc.) and access from public property. Exposure of the adolescent trespasser to Cs-137 contaminated sediment/soil at concentrations greater than 23.7 pico curies per gram have been calculated to result in an unacceptable cancer risk (> 1 x 10{sup -4}). Comparing the characterization sampling results conducted in 2009 with the benchmark concentration of 23.7 pCi/g, identified elevated risk levels along three sampling areas in the Lower Three Runs tail portion. On January 5, 2012, it was agreed by the core team that a Removal Action in the Lower Three Runs tail was to be conducted for the identified soil/sediment locations in the three identified areas that exceed the 1 x 10{sup -4} risk (23.7 pCi/g) for the adolescent trespasser receptor. The addition of Land Use Controls following the Removal Action was appropriate to protect human health and the environment. A systematic screening matrix was initiated at the identified hot spots (i.e., sampling points with Cs-137 activities greater than 23.7 pCi/g) to identify the limits of the excavation area. Sediment/soil within the defined removal areas would be excavated to the depth necessary to achieve the cleanup goal and disposed of in a CERCLA Off-Site Rule approved disposal facility. It was agreed that this removal action would adequately reduce the volume of available Cs-137 in the Lower Three Runs tail and consequently residual activities of the Cs-137 would decay over time reducing the amount of Cs-137 available in the tail which would curtail risk. The Land Use Controls consist of installation of an additional seven miles of fencing at major road crossings, utility easements, and at areas that showed a higher probability of access. In addition, signs were placed along the entire SRS perimeter of the Lower Three Runs tail approximately every 200 feet. Sign posts included both a No Trespassing sign and a Contaminant Warning sign. The project initiated a subcontract for both the removal action and the installation of fencing and signs on May 1, 2012. All field activities were completed

Freeman, Candice [Department of Energy- Savannah River Site, Aiken, SC (United States)] [Department of Energy- Savannah River Site, Aiken, SC (United States); Bergren, Christopher; Blas, Susan; Kupar, James [Area Completion Projects, Savannah River Nuclear Solutions, LLC (United States)] [Area Completion Projects, Savannah River Nuclear Solutions, LLC (United States)

2013-07-01T23:59:59.000Z

110

Uncertainty in Octanol?Water Partition Coefficient:? Implications for Risk Assessment and Remedial Costs  

Science Journals Connector (OSTI)

U. S. Geological Survey Water-Resources Investigations Report 01-4201; USGS:? Reston, VA, 2001. ... (37)?Baseline Ecological Risk Assessment for the Hudson River Remedial Investigation/Feasibility Study; U. S. Environmental Protection Agency, Prepared by Menzie-Cura & Associates and TAMS Consultants, Inc. July, 1999. ...

Igor Linkov; Michael R. Ames; Edmund A. C. Crouch; F. Kyle Satterstrom

2005-08-11T23:59:59.000Z

111

Recovery Act Begins Box Remediation Operations at F Canyon | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Begins Box Remediation Operations at F Canyon Recovery Act Begins Box Remediation Operations at F Canyon Recovery Act Begins Box Remediation Operations at F Canyon May 17, 2011 - 12:00pm Addthis Media Contacts Jim Giusti, DOE (803) 952-7697 james-r.giusti@srs.gov Paivi Nettamo, SRNS (803) 646-6075 paivi.nettamo@srs.gov AIKEN, S.C. - The F Canyon box remediation program, an American Recovery and Reinvestment Act project at Savannah River Site (SRS), has come online to process legacy transuranic (TRU) waste for off-site shipment and permanent disposal at the Waste Isolation Pilot Plant (WIPP), a geological repository in New Mexico. The $40-million facility will process approximately 330 boxes containing TRU waste with a radiological risk higher than seen in the rest of the Site's original 5,000-cubic-meter

112

DOE Amends Decision for the Remediation of the Moab Uranium Mill Tailings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amends Decision for the Remediation of the Moab Uranium Mill Amends Decision for the Remediation of the Moab Uranium Mill Tailings in Moab, Utah DOE Amends Decision for the Remediation of the Moab Uranium Mill Tailings in Moab, Utah February 29, 2008 - 11:43am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced an amendment to its 2005 Record of Decision (ROD) for the Moab Uranium Mill Tailings Remedial Action (UMTRA) Project to allow for the use of truck or rail in transporting residual radioactive materials from the Moab site in Utah. These materials will be relocated to a new disposal site 30 miles north at Crescent Junction, Utah. "The Department is committed to ensuring the protection of human health and the environment in the Moab area and in the communities served by the Colorado River," Assistant Secretary for Environmental Management Jim

113

Savannah River Laboratory monthly report, February 1992  

SciTech Connect

This report is a progress report for the Savannah River Laboratory for the month of February 1992. The progress and activities in six categories were described in the report. The categories are reactor, tritium, separations, environmental, waste management, and general. Each category described numerous and varied activities. Some examples of these activities described are such things as radiation monitoring, maintenance, modifications, and remedial action.

Ferrell, J.M. (comp.); Ice, L.W. (ed.)

1992-02-01T23:59:59.000Z

114

Categorical Exclusion Determinations: Savannah River Operations Office |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Operations Savannah River Operations Office Categorical Exclusion Determinations: Savannah River Operations Office Categorical Exclusion Determinations issued by Savannah River Operations Office. DOCUMENTS AVAILABLE FOR DOWNLOAD September 10, 2013 CX-010669: Categorical Exclusion Determination 484-17D Coal Yard Remediation CX(s) Applied: B6.1 Date: 06/07/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office August 1, 2013 CX-010837: Categorical Exclusion Determination Disassembly, Relocation, and Reassembly of a Metal-framed Quonset Hut CX(s) Applied: B1.22 Date: 08/01/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office August 1, 2013 CX-010836: Categorical Exclusion Determination Subcontractor Roof Repair at 717-12S CX(s) Applied: B1.3

115

Development of a Performance and Processing Property Acceptance Region for Cementitious Low-Level Waste Forms at Savannah River Site - 13174  

SciTech Connect

The Saltstone Production and Disposal Facilities (SPF and SDF) at the Savannah River Site (SRS) have been treating decontaminated salt solution, a low-level aqueous waste stream (LLW) since facility commissioning in 1990. In 2012, the Saltstone Facilities implemented a new Performance Assessment (PA) that incorporates an alternate design for the disposal facility to ensure that the performance objectives of DOE Order 435.1 and the National Defense Authorization Act (NDAA) of Fiscal Year 2005 Section 3116 are met. The PA performs long term modeling of the waste form, disposal facility, and disposal site hydrogeology to determine the transport history of radionuclides disposed in the LLW. Saltstone has been successfully used to dispose of LLW in a grout waste form for 15 years. Numerous waste form property assumptions directly impact the fate and transport modeling performed in the PA. The extent of process variability and consequence on performance properties are critical to meeting the assumptions of the PA. The SPF has ensured performance property acceptability by way of implementing control strategies that ensure the process operates within the analyzed limits of variability, but efforts continue to improve the understanding of facility performance in relation to the PA analysis. A similar understanding of the impact of variability on processing parameters is important from the standpoint of the operability of the production facility. The fresh grout slurry properties (particularly slurry rheology and the rate of hydration and structure formation) of the waste form directly impact the pressure and flow rates that can be reliably processed. It is thus equally important to quantify the impact of variability on processing parameters to ensure that the design basis assumptions for the production facility are maintained. Savannah River Remediation (SRR) has been pursuing a process that will ultimately establish a property acceptance region (PAR) to incorporate elements important to both processability and long-term performance properties. This process involves characterization of both emplaced product samples from the disposal facility and laboratory-simulated samples to demonstrate the effectiveness of the lab simulation. With that basis confirmed, a comprehensive variability study using non-radioactive simulants will define the acceptable PAR, or 'operating window' for Saltstone production and disposal. This same process will be used in the future to evaluate new waste streams for disposal or changes to the existing process flowsheet. (authors)

Staub, Aaron V. [Savannah River Remediation, Aiken, SC 29808 (United States)] [Savannah River Remediation, Aiken, SC 29808 (United States); Reigel, Marissa M. [Savannah River National Lab, Aiken, SC 29808 (United States)] [Savannah River National Lab, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

116

Waste Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 2, 2012 August 2, 2012 Energy Department Announces New Technical Review to Assess Black Cells at Hanford's Waste Treatment Plant Secretary of Energy Steven Chu has assembled a group of independent technical experts to assess the Hanford Site's Waste Treatment Plant, specifically as it relates to the facility's "black cells." July 9, 2012 Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity College intern Spencer Isom recently began her second summer with Savannah River Remediation (SRR), and her fourth year at Savannah River Site (SRS),

117

EM Sees Growth Across Complex in Partnering Agreements with Contractors |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sees Growth Across Complex in Partnering Agreements with Sees Growth Across Complex in Partnering Agreements with Contractors EM Sees Growth Across Complex in Partnering Agreements with Contractors May 30, 2013 - 12:00pm Addthis Representatives of DOE Savannah River Operations Office and liquid waste contractor Savannah River Remediation sign the next generation partnering agreement. Representatives of DOE Savannah River Operations Office and liquid waste contractor Savannah River Remediation sign the next generation partnering agreement. AIKEN, S.C. - DOE Savannah River Operations Office Manager Dave Moody views the partnering relationship between his office and liquid waste contractor Savannah River Remediation (SRR) as an opportunity to view cleanup work from each other's point of view. "While both DOE and SRR continue to work well together, the partnering

118

Staff and Contractor Archive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 30, 2012 July 30, 2012 Statement on the Passing of Admiral James D. Watkins Secretary Chu gives a statement on for Secretary of Energy Admiral James Watkins. July 9, 2012 Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity College intern Spencer Isom recently began her second summer with Savannah River Remediation (SRR), and her fourth year at Savannah River Site (SRS), where she continues a 31-year family legacy on site. July 5, 2012 Secretary Chu visits Delaware State University to commemorate the school's efforts with the Better Buildings Initiative.

119

EM Sees Growth Across Complex in Partnering Agreements with Contractors |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Sees Growth Across Complex in Partnering Agreements with EM Sees Growth Across Complex in Partnering Agreements with Contractors EM Sees Growth Across Complex in Partnering Agreements with Contractors May 30, 2013 - 12:00pm Addthis Representatives of DOE Savannah River Operations Office and liquid waste contractor Savannah River Remediation sign the next generation partnering agreement. Representatives of DOE Savannah River Operations Office and liquid waste contractor Savannah River Remediation sign the next generation partnering agreement. AIKEN, S.C. - DOE Savannah River Operations Office Manager Dave Moody views the partnering relationship between his office and liquid waste contractor Savannah River Remediation (SRR) as an opportunity to view cleanup work from each other's point of view. "While both DOE and SRR continue to work well together, the partnering

120

Surfactants for ground water remediation  

Science Journals Connector (OSTI)

Ground water contamination is a most intractable form of pollution. Spilled solvent or fuel liquids are trapped below the water table by colloidal forces. Surfactants may be used to dramatically improve contaminated aquifer remediation rates. Principal remediation mechanisms include micellar solubilization and mobilization of the trapped liquids by lowering of the oil/water interfacial tension. Surfactant selection is a key to the successful design of a remediation effort, and involves consideration of factors including Krafft Point, surfactant adsorption onto the aquifer solids, and the phase behavior of the oil/water/surfactant system. Successful field demonstrations have occurred in recent months and the technology is moving rapidly toward commercialization. Critical research issues remain including acceptable clean-up levels, surfactant/contaminant in situ biodegradation rates, and surfactant decontamination and reuse.

Jeffrey H. Harwell; David A. Sabatini; R.C. Knox

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "river remediation srr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

AQUATIC ASSESSMENT OF THE CHERNOBYL NUCLEAR ACCIDENT AND ITS REMEDIATION  

SciTech Connect

This modeling study evaluated aquatic environment affected by the Chernobyl nuclear accident and the effectiveness of remediation efforts. Study results indicate that radionuclide concentrations in the Pripyat and Dnieper rivers were well above the drinking water limits immediately after the Chernobyl accident, but have decreased significantly in subsequent years due to flashing, burying, and decay. Because high concentrations of 90Sr and 137Cs, the major radionuclides affecting human health through aquatic pathways, are associated with flooding, an earthen dike was constructed along the Pripyat River in its most contaminated floodplain. The dike was successful in reducing the 90Sr influx to the river by half. A 100-m-high movable dome called the New Safe Confinement is planned to cover the Chernobyl Shelter (formally called the sarcophagus) that was erected shortly after the accident. The NSC will reduce radionuclide contamination further in these rivers and nearby groundwater; however, even if the Chernobyl Shelter collapses before the NSC is built, the resulting peak concentrations of 90Sr and 137Cs in the Dnieper River would still be below the drinking water limits.

Onishi, Yasuo; Kivva, Sergey L.; Zheleznyak, Mark J.; Voitsekhovitch, Oleg V.

2007-11-01T23:59:59.000Z

122

Streamline simulation of Surfactant Enhanced Aquifer Remediation  

E-Print Network (OSTI)

Nonaqueous Phase Liquids (NAPLS) are a recognized source of groundwater contamination. Surfactant Enhanced Aquifer Remediation (SEAR) shows promise in increasing the efficiency and effectiveness over traditional "pump and treat" NAPL remediation...

Tunison, Douglas Irvin

1996-01-01T23:59:59.000Z

123

Use of Risk Analysis on Remedial Alternatives  

Science Journals Connector (OSTI)

Quantitative risk assessment (RA) is a tool used in determining a remedial alternative’s effectiveness of reducing public health ... to occur at a site. Under the Remedial Investigation/Feasibility Study (RI/FS) ...

Teresa A. Schuller; Denice H. Wardrop…

1991-01-01T23:59:59.000Z

124

Assessment of Remedial Actions for Contaminated Sites  

Science Journals Connector (OSTI)

During the investigation in the field of remedial actions on contaminated land, an appropriate concept ... site, an evaluation of the existing alternative remedial techniques is necessary. The comparative evaluat...

Th. Neteler; H. L. Jessberger

1993-01-01T23:59:59.000Z

125

Toxic Remediation System And Method  

DOE Patents (OSTI)

What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.

Matthews, Stephen M. (Alameda County, CA); Schonberg, Russell G. (Santa Clara County, CA); Fadness, David R. (Santa Clara County, CA)

1996-07-23T23:59:59.000Z

126

Residential radon remediation: performance over 17 years  

Science Journals Connector (OSTI)

......covering about 1000 m2. Water drains into the basin...sub-slab ventilation remediation system installed, i...sub-slab ventilation remediation (Bq mSE). Measured...concentration with height above ground level. For example...had a sub-slab radon remediation system installed that......

Naomi H. Harley; Passaporn Chittaporn; Anthony Marsicano

2011-05-01T23:59:59.000Z

127

Bargaining over Remedies in Merger Bruce Lyons  

E-Print Network (OSTI)

on the internationally standard 2-phase investigation structure and remedy negotiations of the form practiced by the EC jurisdictions, remedies can be agreed in either phase of investigation. In particular, both the EU and US merger regulations allow remedies to be agreed in either phase of the investigation. Either de jure (as in the EU

Feigon, Brooke

128

Savannah River Site Marks Waste Processing Milestone with Melter's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Marks Waste Processing Milestone with Savannah River Site Marks Waste Processing Milestone with Melter's 2,000th Waste Canister Savannah River Site Marks Waste Processing Milestone with Melter's 2,000th Waste Canister February 1, 2012 - 12:00pm Addthis A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility, where a melter pours molten glass into a canister. A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility, where a melter pours molten glass into a canister. AIKEN, S.C. - The second melter to operate in the 16-year history of the nation's largest radioactive waste glassification plant shows no signs of slowing after recently pouring its 2,000 canister of glass-formed hazardous

129

Preliminary Notice of Violation, Westinghouse Savannah River Company - EA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preliminary Notice of Violation, Westinghouse Savannah River Preliminary Notice of Violation, Westinghouse Savannah River Company - EA 98-09 Preliminary Notice of Violation, Westinghouse Savannah River Company - EA 98-09 September 21, 1998 Preliminary Notice of Violation issued to Westinghouse Savannah River Company, related to Bioassay Program Deficiencies at the Savannah River Site, (EA-98-09) This letter refers to the Department of Energy's (DOE) investigation of the facts and circumstances concerning deficiencies in Westinghouse Savannah River Company's (WSRC) bioassay participation requirements and WSRC's corrective actions to remedy those deficiencies. Preliminary Notice of Violation, Westinghouse Savannah River Company - EA 98-09 More Documents & Publications Preliminary Notice of Violation, Westinghouse Savannah River Company -

130

Contractor Issues 2011 Annual Review | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contractor Issues 2011 Annual Review Contractor Issues 2011 Annual Review Contractor Issues 2011 Annual Review March 1, 2012 - 12:00pm Addthis SRR has released its 2011 Annual Review. SRR has released its 2011 Annual Review. AIKEN, S.C. - Savannah River Remediation (SRR), the liquid waste contractor at the Savannah River Site (SRS), has released its 2011 Annual Review available here. The document summarizes the activities and accomplishments of the safe and efficient liquid waste operations at SRS for the 2011 calendar year, which SRR President and Project Manager Dave Olson calls a year of excellence. "Our employees continue the legacy of safe leadership in processing high-level waste with an eye toward operationally closing waste tanks," Olson said. "We have made great strides in many areas."

131

Contractor Issues 2011 Annual Review | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contractor Issues 2011 Annual Review Contractor Issues 2011 Annual Review Contractor Issues 2011 Annual Review March 1, 2012 - 12:00pm Addthis SRR has released its 2011 Annual Review. SRR has released its 2011 Annual Review. AIKEN, S.C. - Savannah River Remediation (SRR), the liquid waste contractor at the Savannah River Site (SRS), has released its 2011 Annual Review available here. The document summarizes the activities and accomplishments of the safe and efficient liquid waste operations at SRS for the 2011 calendar year, which SRR President and Project Manager Dave Olson calls a year of excellence. "Our employees continue the legacy of safe leadership in processing high-level waste with an eye toward operationally closing waste tanks," Olson said. "We have made great strides in many areas."

132

Historic Marker.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

your email here@srs.gov your email here@srs.gov Historic Tank Marker Donated to Savannah River Site Archives AIKEN, S.C. (February 6, 2013) - The 1997 marker commemorating the operational closure of the nation's first Cold War era nuclear waste tank has been donated by Savannah River Remediation (SRR) to the Savannah River Cold War Artifact Collection. In accepting the marker, Caroline Bradford, curator of the Savannah River Cold War

133

DOE Selects Savannah River Remediation, LLC for Liquid Waste...  

Energy Savers (EERE)

objective of the Liquid Waste contract is to achieve closure of the SRS liquid waste tanks in compliance with the Federal Facilities Agreement, utilizing the Defense Waste...

134

Geology and environmental remediation: Savannah River Site, South Carolina  

Science Journals Connector (OSTI)

...actions necessary for the dilute fringe (GeoTrans Inc., 2001). Model simulations indicate...bridge/ (accessed September 6, 2004). GeoTrans Inc., 2001, Groundwater modeling for...actions necessary for the dilute fringe (GeoTrans Inc., 2001). Model simulations indicate...

Mary K. Harris; Brian B. Looney; Dennis G. Jackson

135

Summary Protocol: Identification, Characterization, Designation, Remedial  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary Protocol: Identification, Characterization, Designation, Summary Protocol: Identification, Characterization, Designation, Remedial Action, Certification Summary Protocol: Identification, Characterization, Designation, Remedial Action, Certification Summary Protocol: Identification, Characterization, Designation, Remedial Action, Certification (January 1986) Summary Protocol: Identification, Characterization, Designation, Remedial Action, Certification (January 1986) More Documents & Publications Supplement No. 1 to the FUSRAP Summary Protocol - Designation/Elimination Protocol Pre-MARSSIM Surveys in a MARSSIM World: Demonstrating How Pre-MARSSIM Radiological Data Demonstrate Protectiveness at Formerly Utilized Sites Remedial Action Program Sites U.S. Department of Energy Guidelines for Residual Radioactive Material at

136

Monitoring groundwater and river interaction along the Hanford reach of the Columbia River  

SciTech Connect

As an adjunct to efficient Hanford Site characterization and remediation of groundwater contamination, an automatic monitor network has been used to measure Columbia River and adjacent groundwater levels in several areas of the Hanford Site since 1991. Water levels, temperatures, and electrical conductivity measured by the automatic monitor network provided an initial database with which to calibrate models and from which to infer ground and river water interactions for site characterization and remediation activities. Measurements of the dynamic river/aquifer system have been simultaneous at 1-hr intervals, with a quality suitable for hydrologic modeling and for computer model calibration and testing. This report describes the equipment, procedures, and results from measurements done in 1993.

Campbell, M.D.

1994-04-01T23:59:59.000Z

137

Savannah River Site Homepage  

NLE Websites -- All DOE Office Websites (Extended Search)

7/2014 7/2014 SEARCH GO News Releases Video Releases Upcoming Events 12.31.13 Dr. Sam Fink Earns Donald Orth Lifetime Achievement Award 12.31.13 Savannah River Remediation Issues Fiscal Year 2013 Annual Report 12.18.13 Prototype System Brings Advantages of Wireless Technology to Secure Environment CLICK HERE FOR ADDITIONAL NEWS RELEASES CLICK HERE for our email news service, govDELIVERY 2013 PMI Project of the Year Award - Click to play on YouTube 2013 PMI Project of the Year Award Finalist: SRS Recovery Act Project PLAY VIDEO CLICK HERE FOR ADDITIONAL VIDEO RELEASES Enterprise.SRS - Safety and Security begin with me! SRS Status & Emergency Information * Cold War Patriot's Resource Fair - Aiken, SC (04.25.13) * 3rd Annual Small Modular Reactor Conference - Columbia, SC (04.16-17.13)

138

X-701B Groundwater Remedy Portsmouth Ohio  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

X-701B Groundwater Remediation X-701B Groundwater Remediation ETR Report Date: December 2008 ETR-20 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the X-701B Groundwater Remedy, Portsmouth, Ohio Why DOE-EM Did This Review The Department of Energy (DOE) Portsmouth Paducah Project Office (PPPO) has responsibility for remediation of the X-701B ground water plume with the key contaminant of trichloroethene (TCE). The remedy has been divided into four phases: Phase I- Initial Source Area Treatment, Phase II-Expanded Source Area Treatment, Phase III-Evaluation and Reporting, and Phase IV- Downgradient Remediation and Confirmation of Source Area Treatment. Phase II treatment has injected

139

Performance Assessment Program for the Savannah River Site Liquid Waste Facilities - 13610  

SciTech Connect

The Liquid Waste facilities at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) are operated by Liquid Waste Operations contractor Savannah River Remediation LLC (SRR). A separate Performance Assessment (PA) is prepared to support disposal operations at the Saltstone Disposal Facility and closure evaluations for the two liquid waste tank farm facilities at SRS, F-Tank Farm and H-Tank Farm. A PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified in operations and closure regulatory guidance. The Saltstone Disposal Facility is subject to a State of South Carolina industrial solid waste landfill permit and the tank farms are subject to a state industrial waste water permit. The three Liquid Waste facilities are also subject to a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Due to the regulatory structure, a PA is a key technical document reviewed by the DOE, the State of South Carolina and the EPA. As the waste material disposed of in the Saltstone Disposal Facility and the residual material in the closed tank farms is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005, the U.S. Nuclear Regulatory Commission (NRC) is also a reviewing agency for the PAs. Pursuant to the Act, the NRC also has a continuing role to monitor disposal actions to assess compliance with stated performance objectives. The Liquid Waste PA program at SRS represents a continual process over the life of the disposal and closure operations. When the need for a PA or PA revision is identified, the first step is to develop a conceptual model to best represent the facility conditions. The conceptual model will include physical dimensions of the closed system, both the engineered and natural system, and modeling input parameters associated with the modeled features, both initial values (at the time of facility closure) and degradation rates/values. During the development of the PA, evaluations are conducted to reflect not only the results associated with the best available information at the time but also to evaluate potential uncertainties and sensitivities associated with the modeled system. While the PA will reflect the modeled system results from the best available information, it will also identify areas for future work to reduce overall PA uncertainties moving forward. DOE requires a PA Maintenance Program such that work continues to reduce model uncertainties, thus bolstering confidence in PA results that support regulatory decisions. This maintenance work may include new Research and Development activities or modeling as informed by previous PA results and other new information that becomes available. As new information becomes available, it is evaluated against previous PAs and appropriate actions are taken to ensure continued confidence in the regulatory decisions. Therefore, the PA program is a continual process that is not just the development of a PA but seeks to incorporate new information to reduce overall model uncertainty and provide continuing confidence in regulatory decisions. (author)

Rosenberger, Kent H. [Savannah River Remediation LLC, Building 705-1C, Aiken, SC 29808 (United States)] [Savannah River Remediation LLC, Building 705-1C, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

140

Savannah River Ecology Laboratory, annual technical progress report of ecological research for the year ending June 30, 1997  

SciTech Connect

This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.

Wein, G.; Rosier, B.

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "river remediation srr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Savannah River Ecology Laboratory, annual technical progress report of ecological research for the year ending June 30, 1998  

SciTech Connect

This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.

Wein, G.; Rosier, B.

1998-12-31T23:59:59.000Z

142

Avian Research at the Savannah River Site: A Model For Integrating Basic Research and Long-Term Management  

E-Print Network (OSTI)

... Savannah River Site: implications for habitat management and nuclear waste site remediation ... I. Lehr Brisbin, Jr., and Robert A. ... The resulting discus- sions improved our collective understanding of the research/management interaction, and even- tually ...

143

Savannah River Site Contractor Achieves Tank Waste Milestone | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contractor Achieves Tank Waste Milestone Contractor Achieves Tank Waste Milestone Savannah River Site Contractor Achieves Tank Waste Milestone February 2, 2012 - 12:00pm Addthis Pictured here is a component of the Interim Salt Disposition Process — known as Modular Caustic Side Solvent Extraction Unit (MCU) — that helped Savannah River Remediation process more than 500,000 gallons of salt waste since October last year, a contract milestone. Pictured here is a component of the Interim Salt Disposition Process - known as Modular Caustic Side Solvent Extraction Unit (MCU) - that helped Savannah River Remediation process more than 500,000 gallons of salt waste since October last year, a contract milestone. AIKEN, S.C. - The Savannah River Site's liquid waste contractor recently achieved a contract milestone by processing 500,000 gallons of

144

DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M Hill Plateau Remediation Company for Plateau CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site June 19, 2008 - 1:29pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that CH2M Hill Plateau Remediation Company has been selected as the plateau remediation contractor for DOE's Hanford Site in southeastern Washington State. The contract is a cost-plus award-fee contract valued at approximately $4.5 billion over ten years (a five-year base period with the option to extend it for another five years). CH2M Hill Plateau Remediation Company is a limited liability company formed by CH2M Hill Constructors, Inc. The team also includes AREVA Federal

145

Summary - Mitigation and Remediation of Mercury Contamination...  

Office of Environmental Management (EM)

and surface water Hg remediation strategy for adequacy in reducing Hg levels in the fish and to indentify opportunities to achieve cost and technical improvements andor to...

146

Recommendation 192: Comments on Remediation Effectiveness Report  

Energy.gov (U.S. Department of Energy (DOE))

The ORSSAB Recommendations and Comments on the Draft 2010 Remediation Effectiveness Report for the U.S. Department of Energy Oak Ridge Reservation.

147

CRITICAL RADIONUCLIDE AND PATHWAY ANALYSIS FOR THE SAVANNAH RIVER SITE  

SciTech Connect

This report is an update to the analysis, Assessment of SRS Radiological Liquid and Airborne Contaminants and Pathways, that was performed in 1997. An electronic version of this large original report is included in the attached CD to this report. During the operational history (1954 to the present) of the Savannah River Site (SRS), many different radionuclides have been released to the environment from the various production facilities. However, as will be shown by this updated radiological critical contaminant/critical pathway analysis, only a small number of the released radionuclides have been significant contributors to potential doses and risks to offsite people. The analysis covers radiological releases to the atmosphere and to surface waters, the principal media that carry contaminants offsite. These releases potentially result in exposure to offsite people. The groundwater monitoring performed at the site shows that an estimated 5 to 10% of SRS has been contaminated by radionuclides, no evidence exists from the extensive monitoring performed that groundwater contaminated with these constituents has migrated off the site (SRS 2011). Therefore, with the notable exception of radiological source terms originating from shallow surface water migration into site streams, onsite groundwater was not considered as a potential exposure pathway to offsite people. In addition, in response to the Department of Energy's (DOE) Order 435.1, several Performance Assessments (WSRC 2008; LWO 2009; SRR 2010; SRR 2011) and a Comprehensive SRS Composite Analysis (SRNO 2010) have recently been completed at SRS. The critical radionuclides and pathways identified in these extensive reports are discussed and, where applicable, included in this analysis.

Jannik, T.

2011-08-30T23:59:59.000Z

148

Consideration of Reliability in System Design for Ground Water Remediation  

Science Journals Connector (OSTI)

A remedial action design system is described that may be used to evaluate candidate remediation systems and select the preferred alternative under conditions of uncertainty. The remedial action design method i...

W. Woldt; I. Bogardi; L. Duckstein

1991-01-01T23:59:59.000Z

149

Community-Minded Interns at Savannah River Site Help Area Residents in Need  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community-Minded Interns at Savannah River Site Help Area Residents Community-Minded Interns at Savannah River Site Help Area Residents in Need with Home Repairs Community-Minded Interns at Savannah River Site Help Area Residents in Need with Home Repairs August 1, 2012 - 12:00pm Addthis James Cunningham, right, nails a board to the framework for a deck project in Jackson. Ashley Flowers, Savannah River Remediation project controls intern, assists by holding the board in place. James Cunningham, right, nails a board to the framework for a deck project in Jackson. Ashley Flowers, Savannah River Remediation project controls intern, assists by holding the board in place. AIKEN, S.C. - More than two dozen college interns who worked at the Savannah River Site (SRS) this summer joined other volunteers and headed into area neighborhoods to help people in need with home repairs.

150

Community-Minded Interns at Savannah River Site Help Area Residents in Need  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community-Minded Interns at Savannah River Site Help Area Residents Community-Minded Interns at Savannah River Site Help Area Residents in Need with Home Repairs Community-Minded Interns at Savannah River Site Help Area Residents in Need with Home Repairs August 1, 2012 - 12:00pm Addthis James Cunningham, right, nails a board to the framework for a deck project in Jackson. Ashley Flowers, Savannah River Remediation project controls intern, assists by holding the board in place. James Cunningham, right, nails a board to the framework for a deck project in Jackson. Ashley Flowers, Savannah River Remediation project controls intern, assists by holding the board in place. AIKEN, S.C. - More than two dozen college interns who worked at the Savannah River Site (SRS) this summer joined other volunteers and headed into area neighborhoods to help people in need with home repairs.

151

Groundwater Remediation Strategy Using Global Optimization Algorithms  

E-Print Network (OSTI)

. DOI: 10.1061/ ASCE 0733-9496 2002 128:6 431 CE Database keywords: Ground water; Remedial action; Algorithms; Ground-water management. Introduction The contamination of groundwater is a widespread problemGroundwater Remediation Strategy Using Global Optimization Algorithms Shreedhar Maskey1 ; Andreja

Neumaier, Arnold

152

Remediation of the Maxey Flats Site  

SciTech Connect

This report describes issues associated with remedial action of Maxey Flats, a low-level radioactive waste disposal site from 1963-1977, located in Fleming County, Kentucky. Present remedial action alternatives being considered are discussed along with emergency plans, ground water monitoring plans, and budgets.

Not Available

1990-01-12T23:59:59.000Z

153

Agencies plan continued DOE landfill remediation  

NLE Websites -- All DOE Office Websites (Extended Search)

Agencies plan continued DOE landfill remediation Agencies plan continued DOE landfill remediation The U.S. Department of Energy (DOE), Idaho Department of Environmental Quality and U.S. Environmental Protection Agency have released a planning document that specifies how DOE will continue to remediate a landfill containing hazardous and transuranic waste at DOE's Idaho Site located in eastern Idaho. The Phase 1 Remedial Design/Remedial Action Work Plan for Operable Unit 7-13/14 document was issued after the September 2008 Record of Decision (ROD) and implements the retrieval of targeted waste at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC). The SDA began receiving waste in 1952 and contains radioactive and chemical waste in approximately 35 acres of disposal pits, trenches and soil vaults.

154

Preliminary Notice of Violation,Savannah River Nuclear Solutions, LLC -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Nuclear Solutions, Savannah River Nuclear Solutions, LLC - NEA-2011-02 Preliminary Notice of Violation,Savannah River Nuclear Solutions, LLC - NEA-2011-02 July 22, 2011 Preliminary Notice of Violation issued to Savannah River Nuclear Solutions, LLC related to a Puncture Wound Injury resulting in a Radiological Uptake at the Savannah River Site This letter refers to the Office of Health, Safety and Security's Office of Enforcement and Oversight investigation into the facts and circumstances associated with the June 14, 2010, employee puncture wound injury, which occurred in the F-TRU Remediation Enclosure within the F-Canyon Facility, at the U.S. Department of Energy' s (DOE) Savannah River Site. This occurrence was reported in Noncompliance Tracking System (NTS) report NTS-SRSO--SRNS-CPWM-20IO-0002, Contaminated Puncture Wound During TRU Drum

155

Remediation of Contaminated Marine Sediment Using Thin-Layer Capping with Activated Carbon—A Field Experiment in Trondheim Harbor, Norway  

Science Journals Connector (OSTI)

Remediation of Contaminated Marine Sediment Using Thin-Layer Capping with Activated Carbon—A Field Experiment in Trondheim Harbor, Norway ... Innovative chemical and biological monitoring methods were deployed to test capping effectiveness. ... (1) Two earlier pilot studies on AC amendment in the field have been established: one at Hunters Point, in San Francisco Bay, CA,(2, 3) and the other at Grasse River, NY.(1) The first field test aimed at remediating polychlorinated biphenyl (PCB)-contaminated mud flats in the San Francisco Bay, and the second field study was carried out on a permanently inundated freshwater river bed also contaminated with PCBs. ...

Gerard Cornelissen; Marie Elmquist Krusĺ; Gijs D. Breedveld; Espen Eek; Amy M.P. Oen; Hans Peter H. Arp; Caroline Raymond; Göran Samuelsson; Jenny E. Hedman; Řystein Stokland; Jonas S. Gunnarsson

2011-06-14T23:59:59.000Z

156

Remediation of Mercury and Industrial Contaminants Applied Field...  

Office of Environmental Management (EM)

Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Remediation of Mercury and Industrial Contaminants Applied Field Research...

157

Building C-400 Thermal Treatment 90% Remedial Design Report and...  

Energy Savers (EERE)

Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation Full Document...

158

Groundwater remediation technologies for trichloroethylene and technetium-99.  

E-Print Network (OSTI)

??M. Eng. The Technical Advisory Group (TAG) of the Innovative Treatment Remediation Demonstration Program (ITRD) made technology recommendations after reviewing thirty in situ remediation technologies… (more)

Uhl, John Nicholas, 1960-

2005-01-01T23:59:59.000Z

159

Surfactant-enhanced electrokinetic remediation of hydrocarbon-contaminated soils.  

E-Print Network (OSTI)

??Concern over soil and groundwater contamination has created a demand for new and efficient remediation technologies. Surfactant-enhanced electrokinetic remediation is an innovative technique which has… (more)

Thomas, Steven P.

2012-01-01T23:59:59.000Z

160

Operable Unit 3-14, Tank Farm Soil and INTEC Groundwater Remedial Design/Remedial Action Scope of Work  

SciTech Connect

This Remedial Design/Remedial Action (RD/RA) Scope of Work pertains to OU 3-14 Idaho Nuclear Technology and Engineering Center and the Idaho National Laboratory and identifies the remediation strategy, project scope, schedule, and budget that implement the tank farm soil and groundwater remediation, in accordance with the May 2007 Record of Decision. Specifically, this RD/RA Scope of Work identifies and defines the remedial action approach and the plan for preparing the remedial design documents.

D. E. Shanklin

2007-07-25T23:59:59.000Z

Note: This page contains sample records for the topic "river remediation srr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Innovative vitrification for soil remediation  

SciTech Connect

The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project. During Phase 2, the basic nitrification process design was modified to meet the specific needs of the new waste streams available at Paducah. The system design developed for Paducah has significantly enhanced the processing capabilities of the Vortec vitrification process. The overall system design now includes the capability to shred entire drums and drum packs containing mud, concrete, plastics and PCB`s as well as bulk waste materials. This enhanced processing capability will substantially expand the total DOE waste remediation applications of the technology.

Jetta, N.W.; Patten, J.S.; Hart, J.G.

1995-12-01T23:59:59.000Z

162

Our River  

NLE Websites -- All DOE Office Websites (Extended Search)

River River Nature Bulletin No. 22 July 7, 1945 Forest Preserve District of Cook County Clayton F. Smith, President Roberts Mann, Superintendent of Conservation OUR RIVER The people of Cook County are missing a bet. They are not using their DesPlaines River. The other day we took a boat trip down that river from Lake County to Lawndale Avenue in Summit. It being a week day, we saw few people other than an occasional fisherman or pairs of strolling boys. Except for a bridge now and then, there were no signs or sounds of civilization. Chicago might have been a thousand miles away. We rested. There was isolation. There was peace. Once in a while a heron flew ahead of us; or a squirrel scampered up a tree; once we saw a family of young muskrats playing around the entrance to their den in the bank; twice we saw and heard a wood duck; again and again big fish plowed ripples surging ahead of us. It was shady and cool and still beneath the arching trees. We thought of the centuries this river had traveled. We were babes nuzzling again at the breast of Mother Nature.

163

Categorical Exclusion Determinations: Office of River Protection-Richland  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

14, 2012 14, 2012 CX-009693: Categorical Exclusion Determination CH2MHill Plateau Remediation Company - Site Characterization and Environmental Monitoring, December 2012 to December 2013 CX(s) Applied: B3.1 Date: 12/14/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office December 14, 2012 CX-009692: Categorical Exclusion Determination CH2MHill Plateau Remediation Company - Cleanup Actions, December 2012 to December 2013 CX(s) Applied: B6.1 Date: 12/14/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office December 14, 2012 CX-009673: Categorical Exclusion Determination Washington River Protection Solutions LLC - Facility Safety and Environmental Improvements CX(s) Applied: B2.5 Date: 12/14/2012 Location(s): Washington

164

Savannah River Site Marks Waste Processing Milestone with Melter's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marks Waste Processing Milestone with Marks Waste Processing Milestone with Melter's 2,000th Waste Canister Savannah River Site Marks Waste Processing Milestone with Melter's 2,000th Waste Canister February 1, 2012 - 12:00pm Addthis A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility, where a melter pours molten glass into a canister. A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility, where a melter pours molten glass into a canister. AIKEN, S.C. - The second melter to operate in the 16-year history of the nation's largest radioactive waste glassification plant shows no signs of slowing after recently pouring its 2,000 canister of glass-formed hazardous

165

Categorical Exclusion Determinations: Savannah River Operations Office |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 2, 2009 September 2, 2009 CX-000521: Categorical Exclusion Determination Cut and Cap #325 Steam Supply Header, 261-H Consolidated Incineration Facility CX(s) Applied: B1.27 Date: 09/02/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office September 2, 2009 CX-000520: Categorical Exclusion Determination 690-N (Ford Building) Fire System Isolation and Sanitary Sewer Grouting CX(s) Applied: B1.27 Date: 09/02/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office September 1, 2009 CX-000519: Categorical Exclusion Determination E-Area Box Remediation Project CX(s) Applied: B6.6 Date: 09/01/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office

166

Remediation of Mercury and Industrial Contaminants  

Energy.gov (U.S. Department of Energy (DOE))

The mission of the Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of...

167

Engineered Polymeric Nanoparticles for Soil Remediation  

Science Journals Connector (OSTI)

compds. in soil-water systems in which surfactants play a role in contaminant remediation or facilitated transport. ... (9)?Abdul, A. S.; Ang, C. C. Ground Water 1994, 32, 727. ...

Warapong Tungittiplakorn; Leonard W. Lion; Claude Cohen; Ju-Young Kim

2004-01-28T23:59:59.000Z

168

SITE MAINTENANCE PLAN CSMRI SITE REMEDIATION  

E-Print Network (OSTI)

...............................................................................................................5 5.2 Ground and Surface Water MonitoringSITE MAINTENANCE PLAN CSMRI SITE REMEDIATION June 29, 2004 Prepared by: Colorado School of Mines .................................................................................................4 5.0 SITE AIR AND WATER MONITORING

169

Avoiding Destructive Remediation at DOE Sites  

Science Journals Connector (OSTI)

...Pollutants, Radioactive 0 Water Pollutants, Radioactive...States Government Agencies Water Pollutants, Radioactive...management government agencies ground water policy pollutants pollution...pumping radioactive waste remediation risk assessment soils...

F. W. Whicker; T. G. Hinton; M. M. MacDonell; J. E. Pinder III; L. J. Habegger

2004-03-12T23:59:59.000Z

170

In situ Groundwater Remediation Using Treatment Walls  

Science Journals Connector (OSTI)

Development of treatment wall technology for the clean up of contaminated ground-water resources has expanded in the past few...ex situ and other in situ ground-water remediation approaches is reduced operation a...

Radisav D. Vidic; Frederick G. Pohland

2002-01-01T23:59:59.000Z

171

Electrolytic remediation of chromated copper arsenate wastes  

E-Print Network (OSTI)

While chromated copper arsenate (CCA) has proven to be exceptionally effective in protecting wood from rot and infestation, its toxic nature has led to the problem of disposal of CCA-treated lumber and remediation of waters ...

Stern, Heather A. G. (Heather Ann Ganung)

2006-01-01T23:59:59.000Z

172

SAMPLING AND ANALYSIS PLAN CSMRI SITE REMEDIATION  

E-Print Network (OSTI)

Littleton, CO 80127 #12;CSMRI Site Remediation Quality Assurance Project Plan March 30, 2004 SAMPLING Environmental Consultants, Inc. Approved By: Date: Sally Cuffin Project Quality Assurance Manager New Horizons...................................................................................................................................3 2.5 Decision Rules

173

Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Remedial Design/Remedial Action Work Plan  

SciTech Connect

This Remedial Design/Remedial Action Work Plan provides the framework for defining the remedial design requirements, preparing the design documentation, and defining the remedial actions for Waste Area Group 3, Operable Unit 3-13, Group 3, Other Surface Soils, Remediation Sets 4-6 (Phase II) located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory. This plan details the design developed to support the remediation and disposal activities selected in the Final Operable Unit 3-13, Record of Decision.

D. E. Shanklin

2006-06-01T23:59:59.000Z

174

Hazardous waste treatment and environmental remediation research  

SciTech Connect

Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity.

Not Available

1989-09-29T23:59:59.000Z

175

River Steamboats  

NLE Websites -- All DOE Office Websites (Extended Search)

River Steamboats River Steamboats Nature Bulletin No. 628-A February 12, 1977 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation RIVER STEAMBOATS The westward migration of the pioneer settlers and the rapid growth of agriculture, commerce and industry in the Middle West is in large part the story of water transportation on our inland waterways. The two main water routes were the chain of Great Lakes on the north and the Ohio River on the south. Sailing vessels carrying hundreds of tons were able to navigate on the Great Lakes almost as freely as on the ocean. Also, on the Ohio and Mississippi rivers heavy loads could be floated downstream from Pittsburgh to New Orleans -- almost 2000 miles. But boats had to be hauled back upstream by manpower -- grueling labor, stretching over weeks or months to move a few tons a few hundred miles. The coming of the steamboat a century and a half ago changed all this.

176

Removal of River-Stage Fluctuations from Well Response Using Multiple-Regression  

SciTech Connect

Many contaminated unconfined aquifers are located in proximity to river systems. In groundwater studies, the physical presence of a river is commonly represented as a transient-head boundary that imposes hydrologic responses within the intersected unconfined aquifer. The periodic fluctuation of river-stage height at the boundary produces associated responses within the adjacent aquifer system, the magnitude of which is a function of the existing well, aquifer, boundary conditions, and river-stage fluctuation characteristics. The presence of well responses induced by the river stage can significantly limit characterization and monitoring of remedial activities within the stress-impacted area. This paper demonstrates the use of a time-domain, multiple-regression, convolution (superposition) method to develop well/aquifer river response function (RRF) relationships. Following RRF development, a multiple-regression deconvolution correction approach can be applied to remove river-stage effects from well water-level responses. Corrected well responses can then be analyzed to improve local aquifer characterization activities in support of optimizing remedial actions, assessing the area-of-influence of remediation activities, and determining mean groundwater flow and contaminant flux to the river system.

Spane, Frank A.; Mackley, Rob D.

2011-11-01T23:59:59.000Z

177

Integrated Strategy to Address Hanford’s Deep Vadose Zone Remediation Challenges  

SciTech Connect

A vast majority of Hanford’s remaining in-ground contaminants reside in the vadose zone of the Central Plateau, where reprocessing operations occurred. The vadose zone is comprised of about 75 meters of water-unsaturated sediments above groundwater. These contaminants have, and continue to release into groundwater that discharges to the Columbia River. If left untreated, these contaminants could remain a threat for centuries. Much of this contamination resides deep in the vadose zone, below the effective depth of tradition surface remedy influence. In 2008, the Department of Energy initiated deep vadose zone treatability testing to seek remedies for technetium-99 and uranium contamination. These tests include the application of desiccation for technetium-99 and reactive gas technologies for uranium. To complement these efforts, the Department of Energy has initiated a “defense-in-depth” approach to address the unique challenges for characterization and remediation of the deep vadose zone. This defense-in-depth approach will implement multiple approaches to understand and control contaminant flux from the deep vadose zone to the groundwater. Among these approaches is an increased investment in science and technology solutions to resolve deep vadose zone challenges including characterization, prediction, remediation, and monitoring.

Triplett, Mark B.; Freshley, Mark D.; Truex, Michael J.; Wellman, Dawn M.; Gerdes, Kurt D.; Charboneau, Briant L.; Morse, John G.; Lober, Robert W.; Chronister, Glen B.

2010-10-03T23:59:59.000Z

178

Department of Energy Awards Hanford River Corridor Contract To Washington  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford River Corridor Contract To Hanford River Corridor Contract To Washington Closure, LLC Department of Energy Awards Hanford River Corridor Contract To Washington Closure, LLC March 23, 2005 - 10:56am Addthis WASHINGTON, DC - U.S. Energy Secretary Samuel Bodman today announced that Washington Closure, LLC has been awarded the contract to manage the clean up and remediation of the Columbia River Corridor at the Department of Energy's Hanford Reservation in the state of Washington. The five-member team includes the Washington Group International Inc., Bechtel National Inc., CH2M Hill Inc., Eberline Services Inc., and Integrated Logistics Services Inc. The Columbia River Corridor is composed of roughly 210 square miles along the outer edge of the Hanford Site. The contract calls for cleaning up and

179

Department of Energy Awards Hanford River Corridor Contract To Washington  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Awards Hanford River Corridor Contract To Department of Energy Awards Hanford River Corridor Contract To Washington Closure, LLC Department of Energy Awards Hanford River Corridor Contract To Washington Closure, LLC March 23, 2005 - 10:56am Addthis WASHINGTON, DC - U.S. Energy Secretary Samuel Bodman today announced that Washington Closure, LLC has been awarded the contract to manage the clean up and remediation of the Columbia River Corridor at the Department of Energy's Hanford Reservation in the state of Washington. The five-member team includes the Washington Group International Inc., Bechtel National Inc., CH2M Hill Inc., Eberline Services Inc., and Integrated Logistics Services Inc. The Columbia River Corridor is composed of roughly 210 square miles along the outer edge of the Hanford Site. The contract calls for cleaning up and

180

Overview of Green and Sustainable Remediation for Soil and Groundwater Remediation - 12545  

SciTech Connect

Making remediation efforts more 'sustainable' or 'green' is a topic of great interest in the remediation community. It has been spurred on by Executive Orders from the White House, as well as Department of Energy (DOE) sustainability plans. In private industry, it is motivated by corporate sustainability goals and corporate social responsibility. It has spawned new organizations, areas of discussion, tools and practices, and guidance documents around sustainable remediation or green remediation. Green remediation can be thought of as a subset of sustainable remediation and is mostly focused on reducing the environmental footprint of cleanup efforts. Sustainable remediation includes both social and economic considerations, in addition to environmental. Application of both green and sustainable remediation (GSR) may involve two primary activities. The first is to develop technologies and alternatives that are greener or more sustainable. This can also include making existing remediation approaches greener or more sustainable. The second is to include GSR criteria in the evaluation of remediation alternatives and strategies. In other words, to include these GSR criteria in the evaluation of alternatives in a feasibility study. In some cases, regulatory frameworks allow the flexibility to include GSR criteria into the evaluation process (e.g., state cleanup programs). In other cases, regulations allow less flexibility to include the evaluation of GSR criteria (e.g., Comprehensive Environmental Response Compensation, and Liability Act (CERCLA)). New regulatory guidance and tools will be required to include these criteria in typical feasibility studies. GSR provides a number of challenges for remediation professionals performing soil and groundwater remediation projects. Probably the most significant is just trying to stay on top of the ever changing landscape of products, tools, and guidance documents coming out of various groups, the US EPA, and states. However, this process also provides new opportunities to think differently and look at the bigger picture of the overall benefit we are providing with our remediation projects. The opportunities from the move towards GSR are very real. They will help us make remedial actions truly more beneficial to the environment and to society. They will also allow (or force) remediation practitioners to think outside of the usual realm of approaches to find newer and more beneficial technologies. (authors)

Simpkin, Thomas J. [CH2M HILL, Denver, Colorado (United States); Favara, Paul [CH2M HILL, Gainesville, Florida (United States)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "river remediation srr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

River Data Package for Hanford Assessments  

SciTech Connect

This data package documents the technical basis for selecting physical and hydraulic parameters and input values that will be used in river modeling for Hanford assessments. This work was originally conducted as part of the Characterization of Systems Task of the Groundwater Remediation Project managed by Fluor Hanford, Inc. and revised as part of the Characterization of Systems Project managed by PNNL for DOE. The river data package provides calculations of flow and transport in the Columbia River system. The module is based on the legacy code for the Modular Aquatic Simulation System II (MASS2), which is a two-dimensional, depth-averaged model that provides the capability to simulate the lateral (bank-to-bank) variation of flow and contaminants. It simulates river hydrodynamics (water velocities and surface elevations), sediment transport, contaminant transport, biotic transport, and sediment-contaminant interaction, including both suspended sediments and bed sediments. This document presents the data assembled to run the river module components for the section of the Columbia River from Vernita Bridge to the confluence with the Yakima River. MASS2 requires data on the river flow rate, downstream water surface elevation, groundwater influx and contaminants flux, background concentrations of contaminants, channel bathymetry, and the bed and suspended sediment properties. Stochastic variability for some input parameters such as partition coefficient (kd) values and background radionuclide concentrations is generated by the Environmental Stochastic Preprocessor. River flow is randomized on a yearly basis. At this time, the conceptual model does not incorporate extreme flooding (for example, 50 to 100 years) or dam removal scenarios.

Rakowski, Cynthia L.; Guensch, Gregory R.; Patton, Gregory W.

2006-08-01T23:59:59.000Z

182

Microsoft Word - ~7453498.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

SRS Salt Waste Processing: 5 Years of Success SRS Salt Waste Processing: 5 Years of Success AIKEN, S.C. (April 22, 2013) - Something unique in environmental risk reduction involving the processing of radioactive salt waste is taking place at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) near Aiken, SC. Savannah River Remediation (SRR), SRS's liquid waste contractor, is safely and successfully disposing of salt waste from massive underground storage tanks - as the

183

In Situ Remediation Integrated Program: Technology summary  

SciTech Connect

The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed.

Not Available

1994-02-01T23:59:59.000Z

184

Salt Waste Contractor Reaches Contract Milestone | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Contractor Reaches Contract Milestone Salt Waste Contractor Reaches Contract Milestone Salt Waste Contractor Reaches Contract Milestone April 29, 2013 - 12:00pm Addthis Robert Brown, SRR tank farm operator, performs daily inspections of a salt disposition process facility. The inspections and improvement upgrades have resulted in continued successful operations. Robert Brown, SRR tank farm operator, performs daily inspections of a salt disposition process facility. The inspections and improvement upgrades have resulted in continued successful operations. AIKEN, S.C. - The liquid waste cleanup contractor for the EM program at the Savannah River Site (SRS) recently surpassed a 2013 contract milestone by processing more than 600,000 gallons of salt waste. Savannah River Remediation (SRR) salt disposition process facilities

185

Multiscale modeling of surfactant phase behavior in the remediation of DNAPL contamination.  

E-Print Network (OSTI)

??The brine barrier remediation technique (BBRT) has been proposed as a novel Brine barrier remediation techniques (BBRT) that use surfactants have been proposed for remediating… (more)

Fan, Xiangyu.

2008-01-01T23:59:59.000Z

186

Remediation of water contamination using catalytic technologies  

Science Journals Connector (OSTI)

Remediation of contaminated ground and underground water is becoming a critical issue in Europe and worldwide. We discuss here the role of catalysis in water remediation, with reference to two specific examples of catalytic water remediation technologies: (i) the elimination of nitrate and pesticides from water contaminated as a result of agricultural practices and (ii) the conversion of methyl tert-butyl ether (MTBE) in contaminated underground water. Of particular interest is a technology based on catalytic membranes for remediation of water contaminated by nitrate, which offers various advantages with respect to conventional technologies. Using a Pd-Cu-based catalytic membrane, a reaction temperature below 15 °C, a mixed 4:1 CO2:H2 feed and controlling bulk solution pH by \\{HCl\\} addition, it is possible to obtain a nitrate conversion higher than 80% even with ammonium ion formation below 0.5 ppm, i.e. the maximum concentration allowed to meet the requirements for drinking water quality. In MTBE conversion in contaminated underground water, acid zeolites with suitable pore structures (channel structure and pore openings) such as H-ZSM-5 and H-BEA can be used as catalytic permeable reactive barriers for in situ remediation. These zeolites not only act as adsorbents for both MTBE and its reaction products, but also effectively catalyze the hydrolysis of MTBE to t-butyl alcohol (TBA) and methanol (MeOH) which then can be rapidly biodegraded by indigenous microorganisms.

Gabriele Centi; Siglinda Perathoner

2003-01-01T23:59:59.000Z

187

ICDF Complex Remedial Action Work Plan  

SciTech Connect

This Remedial Action Work Plan provides the framework for operation of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility Complex (ICDF). This facility includes (a) an engineered landfill that meets the substantial requirements of DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, Idaho Hazardous Waste Management Act, and Toxic Substances Control Act polychlorinated biphenyl landfill requirements; (b) centralized receiving, inspections, administration, storage/staging, and treatment facilities necessary for CERCLA investigation-derived, remedial, and removal waste at the Idaho National Laboratory (INL) prior to final disposition in the disposal facility or shipment off-Site; and (c) an evaporation pond that has been designated as a corrective action management unit. The ICDF Complex, including a buffer zone, will cover approximately 40 acres, with a landfill disposal capacity of approximately 510,000 yd3. The ICDF Complex is designed and authorized to accept INL CERCLA-generated wastes, and includes the necessary subsystems and support facilities to provide a complete waste management system. This Remedial Action Work Plan presents the operational approach and requirements for the various components that are part of the ICDF Complex. Summaries of the remedial action work elements are presented herein, with supporting information and documents provided as appendixes to this work plan that contain specific detail about the operation of the ICDF Complex. This document presents the planned operational process based upon an evaluation of the remedial action requirements set forth in the Operable Unit 3-13 Final Record of Decision.

W. M. Heileson

2006-12-01T23:59:59.000Z

188

U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER SITE * AIKEN * SC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* SAVANNAH RIVER SITE * AIKEN * SC * SAVANNAH RIVER SITE * AIKEN * SC from Savannah River National Laboratory srnl.doe.gov SRNL is a DOE National Laboratory operated by Savannah River Nuclear Solutions. The SRNL Technical Assistance Program: When standard approaches don't work Teams provide phased technical solutions that combine applied strategies with technologies that are carefully matched to site- specific conditions and issues. The teams then delineate steps to optimize and focus final selection and implementation of strategies. At SRNL, we focus on matching remediation technologies with real- world conditions and desired goals to achieve transformational outcomes for the Environmental Management program. This innovation and flexibility is vital in meeting the needs

189

SRR Ecological Assessment Indicators: Selection and  

E-Print Network (OSTI)

, Soil aggregate stability · Water - Surface water frequency, Volume · Plants - Key species, Invasives, Pounds of domestic meat produced, Pounds of harvestable materials produced #12;Why these indicators in cover or stability is expected from better management. #12;Surface Water Availability · Water is vital

Wyoming, University of

190

Waste area Grouping 2 Phase I remedial investigation: Sediment and Cesium-137 transport modeling report  

SciTech Connect

This report is one of five reports issued in 1996 that provide follow-up information to the Phase I Remedial Investigation (RI) Report for Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL). The five reports address areas of concern that may present immediate risk to public health at the Clinch River and ecological risk within WAG 2 at ORNL. A sixth report, on groundwater, in the series documenting WAG 2 RI Phase I results were part of project activities conducted in FY 1996. The five reports that complete activities conducted as part of Phase I of the Remedial Investigation (RI) for WAG 2 are as follows: (1) Waste Area Grouping 2, Phase I Task Data Report: Seep Data Assessment, (2) Waste Area Grouping 2, Phase I Task Data Report: Tributaries Data Assessment, (3) Waste Area Grouping 2, Phase I Task Data Report: Ecological Risk Assessment, (4) Waste Area Grouping 2, Phase I Task Data Report: Human Health Risk Assessment, (5) Waste Area Grouping 2, Phase I Task Data Report: Sediment and {sup 137}Cs Transport Modeling In December 1990, the Remedial Investigation Plan for Waste Area Grouping 2 at Oak Ridge National Laboratory was issued (ORNL 1990). The WAG 2 RI Plan was structured with a short-term component to be conducted while upgradient WAGs are investigated and remediated, and a long-term component that will complete the RI process for WAG 2 following remediation of upgradient WAGs. RI activities for the short-term component were initiated with the approval of the Environmental Protection Agency, Region IV (EPA), and the Tennessee Department of Environment and Conservation (TDEC). This report presents the results of an investigation of the risk associated with possible future releases of {sup 137}Cs due to an extreme flood. The results are based on field measurements made during storms and computer model simulations.

Clapp, R.B.; Bao, Y.S.; Moore, T.D.; Brenkert, A.L.; Purucker, S.T.; Reece, D.K.; Burgoa, B.B.

1996-06-01T23:59:59.000Z

191

Engineering assessment of inactive uranium mill tailings, Green River Site, Green River, Utah  

SciTech Connect

Ford, Bacon and Davis Utah Inc. has reevaluated the Green River site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Green River, Utah. This evaluation has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative remedial actions. Radon gas released from the 123,000 tons of tailings at the Green River site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors.

none,

1981-08-01T23:59:59.000Z

192

How to accelerate the Fernald remediation  

SciTech Connect

The Fernald Environmental Management Project is unique among Department of Energy (DOE) sites by virtue of successful efforts by the Fernald Environmental Restoration Management Corporation (FERMCO) and DOE-Fernald Area Office (FN) in securing a stak-eholder-assisted final site closure vision and all Record of Decisions (ROD) or Interim RODs required to set the stage for final remediation. DOE and FERMCO have agreed in principle on a Ten Year Plan which accelerates all activities to remediate the site in approximately half the target schedule. This paper presents the path that led to the current Ten Year Plan, the key elements of the plan and the implementation strategies.

Yates, M.K. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States). Fernald Environmental Management Project; Reising, J. [USDOE Cincinnati, OH (United States)

1996-01-10T23:59:59.000Z

193

Limiting factors in ground water remediation  

Science Journals Connector (OSTI)

If one is charged with restoring a contaminated aquifer today, the procedure of pumping contaminated water to the surface for treatment and discharge is most often the state-of-practice technology. The perceived success of pump-and-treat technology can be misleading if the hydrology and contaminant characteristics at the site are not adequately understood. A failure to understand the processes controlling contaminant transport can result in extremely long pumping periods and, consequently, costly and inefficient remediation. Effects of tailing, sorption, and residual immiscible fluids on time required for pump-and-treat remediation of ground water are discussed.

Clinton W. Hall; Jeffrey A. Johnson

1992-01-01T23:59:59.000Z

194

Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nonaqueous-Phase Liquid Characterization and Post-Remediation Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds. May 2004, Monterey, California. Charles Tabor, Randall Juhlin, Paul Darr, Julian Caballero, Joseph Daniel, David Ingle Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling More Documents & Publications Steam and ET-DSP Combined for DNAPL Remediation: Full-Scale Site Restoration at Young - Rainey STAR Center Project Overview: Successful Field-Scale In Situ Thermal NAPL Remediation Successful Field-Scale In Situ Thermal NAPL Remediation at the Young - Rainey STAR Center

195

Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nonaqueous-Phase Liquid Characterization and Post-Remediation Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds. May 2004, Monterey, California. Charles Tabor, Randall Juhlin, Paul Darr, Julian Caballero, Joseph Daniel, David Ingle Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling More Documents & Publications Project Overview: Successful Field-Scale In Situ Thermal NAPL Remediation Successful Field-Scale In Situ Thermal NAPL Remediation at the Young - Rainey STAR Center Steam and ET-DSP Combined for DNAPL Remediation: Full-Scale Site Restoration at Young - Rainey STAR Center

196

Mitigation and Remediation of Mercury Contamination at the Y...  

Office of Environmental Management (EM)

Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Full Document and...

197

Hydrocarbon pollution control and remediation of groundwater: a brief review  

Science Journals Connector (OSTI)

...oil-contaminated sediments. There are two main remediation techniques: soil washing and bio- remediation. With soil washing, contaminated soil is leached with water containing a surfactant to assist in hydrocarbon removal. In situ washing is undertaken...

L. Clark

198

Remedial Costs for MTBE in Soil and Ground Water  

Science Journals Connector (OSTI)

The contamination of MTBE in ground water has introduced concerns about the increased cost of remediating MTBE/BTEX releases compared to remediating sites with BTEX only contamination. In an attempt to evaluat...

Barbara H. Wilson; John T. Wilson Ph.D.

2003-01-01T23:59:59.000Z

199

Draft Final Remedial Investigation/Feasibility Study and Proposed Plan  

E-Print Network (OSTI)

Draft Final Remedial Investigation/Feasibility Study and Proposed Plan Colorado School of Mines, Colorado 80021 #12;The S.M. Stoller Corporation Flood Plain Remedial Investigation / Feasibility Study ..................................................................................................... 1-8 1.6 Previous Investigations

200

Field Sampling and Analysis Plan for the Remedial Investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Responses to comments  

SciTech Connect

This report provides responses to US Environmental Protection Agency Region IV EPA-M and Tennessee Department of Environment and Conservation Oversite Division (TDEC-O) comments on report ORNL/ER-58, Field Sampling and Analysis Plan for the Remedial Investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Waste Area Grouping (WAG) 2 consists of the White Oak Creek (WOC) drainage system downgradient of the major ORNL WAGs in the WOC watershed. A strategy for the remedial investigation (RI) of WAG2 was developed in report ES/ER-14&Dl, Remedial Investigation Plan for Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. This strategy takes full advantage of WAG2`s role as an integrator of contaminant releases from the ORNL WAGs in the WOC watershed, and takes full advantage of WAG2`s role as a conduit for contaminants from the ORNL site to the Clinch River. The strategy calls for a multimedia environmental monitoring and characterization program to be conducted in WAG2 while upgradient contaminant sources are being remediated. This monitoring and characterization program will (1) identify and quantify contaminant fluxes, (2) identify pathways of greatest concern for human health and environmental risk, (3) improve conceptual models of contaminant movement, (4) support the evaluation of remedial alternatives, (5) support efforts to prioritize sites for remediation, (6) document the reduction in contaminant fluxes following remediation, and (7) support the eventual remediation of WAG2. Following this strategy, WAG2 has been termed an ``integrator WAG,`` and efforts in WAG2 over the short term are directed toward supporting efforts to remediate the contaminant ``source WAGS`` at ORNL.

Not Available

1992-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "river remediation srr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Acoustically enhanced remediation, Phase 2: Technology scaling  

SciTech Connect

Weiss Associates is conducting the following three phase program investigating the in-situ application of acoustically enhanced remediation (AER) of contaminated unconsolidated soil and ground water under both saturated and unsaturated conditions: Phase I-- laboratory scale parametric investigation; Phase II--technology Scaling; and Phase III--large scale field tests. AER addresses the need for NAPL (either lighter or denser than water: LNAPL or DNAPL, respectively) in high and low permeability sediments, and the remediation of other types of subsurface contaminants (e.g., metals, radionuclides) in low permeability soils. This program has been placed in the U.S. Department of Energy`s (DOE`s) DNAPL product. Phase I indicated that AER could be used to effectively remediate NAPL in high permeability soil, and that removal of NAPL from low permeability soil could be increased since the water flux through these soils was significantly increased. Phase II, Technology Scaling, the subject of this paper, focused on (1) evaluating the characteristics of an AER field deployment system, (2) developing DNAPL flow and transport performance data under acoustic excitation, (3) predicting the effect of acoustic remediation in three-dimensional unconsolidated hydrogeologic conditions, (4) conducting an engineering analysis of acoustical sources, and (5) identifying candidate field site(s) for large-scale field testing of the technology.

Iovenitti, J.L.; Hill, D.G. [Weiss Associates, Emeryville, CA (United States); Rynne, T.M.; Spadaro, J.F.; Hutchinson, W. [Scientific Applications and Research Associates, Inc., Huntington Beach, CA (United States); Illangasakere, T. [Colorado Univ., Boulder, CO (United States). Dept. of Civil, Environmental, and Architectural Engineering

1996-12-31T23:59:59.000Z

202

groundwater nitrogen source identification and remediation  

E-Print Network (OSTI)

producer profits. This will, in turn, benefit water bodies in the area that receive stream baseflow fromgroundwater nitrogen source identification and remediation The Seymour Aquifer is a shallow aquifer water withdraws are used for irrigation while the cities of Vernon, Burk- burnett and Electra and many

203

Gamma Ray Imaging for Environmental Remediation  

SciTech Connect

This program is the development of germanium strip detectors for environmental remediation. It is a collaboration between the Naval Research Laboratory and Lawrence Berkeley National Lab. The goal is to develop detectors that are simultaneously capable of excellent spectroscopy and imaging of gamma radiation.

B.F. Philips; R.A. Kroeger: J.D. Kurfess: W.N. Johnson; E.A. Wulf; E. I. Novikova

2004-11-12T23:59:59.000Z

204

Red River Compact (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The Red River Compact Commission administers the Red River Compact to ensure that Texas receives its equitable share of quality water from the Red River and its tributaries as apportioned by the...

205

River Protection Project (RPP) Project Management Plan  

SciTech Connect

The U.S. Department of Energy (DOE), in accordance with the Strom Thurmond National Defense Authorization Act for Fiscal Year 1999, established the Office of River Protection (ORP) to successfully execute and manage the River Protection Project (RPP), formerly known as the Tank Waste Remediation System (TWRS). The mission of the RPP is to store, retrieve, treat, and dispose of the highly radioactive Hanford tank waste in an environmentally sound, safe, and cost-effective manner. The team shown in Figure 1-1 is accomplishing the project. The ORP is providing the management and integration of the project; the Tank Farm Contractor (TFC) is responsible for providing tank waste storage, retrieval, and disposal; and the Privatization Contractor (PC) is responsible for providing tank waste treatment.

SEEMAN, S.E.

2000-04-01T23:59:59.000Z

206

The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan  

SciTech Connect

Pacific Northwest National Laboratory researchers are working on the Columbia River Protection Supplemental Technologies Project. This project is a U. S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies, and technologies for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Technologies Project staff.

Fix, N. J.

2008-03-12T23:59:59.000Z

207

2010 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report  

SciTech Connect

This report documents eh status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with CERLA cleanup of National Priorities List waste sites at Hanford. This report contains vegetation monitoring data that were collected in the spring and summer of 2010 from the River Corridor Closure Contract’s revegetation and mitigation areas on the Hanford Site.

C. T. Lindsey, A. L. Johnson

2010-09-30T23:59:59.000Z

208

2011 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report  

SciTech Connect

This report documents the status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 cleanup of National Priorities List waste sites at Hanford. This report contains the vegetation monitoring data that was collected in the spring and summer of 2011 from the River Corridor Closure Contractor’s revegetation and mitigation areas on the Hanford Site.

West, W. J.; Lucas, J. G.; Gano, K. A.

2011-11-14T23:59:59.000Z

209

Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase III  

SciTech Connect

The remedial design/remedial action for Operable Unit 6-05 (Waste Area Group 6) and Operable Unit 10-04 (Waste Area Group 10) - collectively called Operable Unit 10-04 has been divided into four phases. Phase I consists of developing and implementing institutional controls at Operable Unit 10-04 sites and developing and implementing Idaho National Laboratory-wide plans for both institutional controls and ecological monitoring. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase III will remediate lead contamination at a gun range, and Phase IV will remediate hazards from unexploded ordnance. This Phase III remedial Design/Remedial Action Work Plan addresses the remediation of lead-contaminated soils found at the Security Training Facility (STF)-02 Gun Range located at the Idaho National Laboratory. Remediation of the STF-02 Gun Range will include excavating contaminated soils; physically separating copper and lead for recycling; returning separated soils below the remediation goal to the site; stabilizing contaminated soils, as required, and disposing of the separated soils that exceed the remediation goal; encapsulating and disposing of creosote-contaminated railroad ties and power poles; removing and disposing of the wooden building and asphalt pads found at the STF-02 Gun Range; sampling and analyzing soil to determine the excavation requirements; and when the remediation goals have been met, backfilling and contouring excavated areas and revegetating the affected area.

R. P. Wells

2006-09-19T23:59:59.000Z

210

Groundwater model recalibration and remediation well network design at the F-Area Seepage Basins  

SciTech Connect

On September 30, 1992, the South Carolina Department of Health and Environmental Control (SCDHEC) issued a Resource Conservation and Recovery Act (RCRA) Hazardous Waste Part B Permit prescribing remediation of contaminated groundwater beneath and downgradient of the F- and H-Area Seepage Basins at the Savannah River Site. The remediation outlined in the Part B Permit calls for a three phase approach. For the F-Area Seepage Basins, the first phase requires the ``installation of an adequate number of pumping and injection wells or trenches, as appropriate, to capture and remediate those portions of-the contaminant plume delineated by the 10,000 pCi/ml tritium isoconcentration contour.`` Geochemical results from 1992 groundwater monitoring were used to delineate this isoconcentration contour in the Corrective Action Program (CAP) (WSRC, 1992a). The 1992 results were used based on SCDHEC written requirement to use the most recent data available at the time the CAP was formulated. The rationale used by SCDHEC in selecting the 10,000 pCi/ml tritium isoconcentration contour was that it also encompassed most of the other contaminants listed in the Groundwater Protection Standards. After extraction and treatment, the water is required to be reinjected into the aquifer due to the high levels of tritium still present in the treated water. The conceptual plan is to have recirculation of the tritium (as much as can practically be accomplished) to allow more time for radioactive decay before natural discharge to surface water.

Sadler, W.R.

1995-04-01T23:59:59.000Z

211

Scenic Rivers Act (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

Virginia Scenic Rivers Program’s intent is to identify, designate and help protect rivers and streams that possess outstanding scenic, recreational, historic and natural characteristics of...

212

Platte River Cooperative Agreement  

NLE Websites -- All DOE Office Websites (Extended Search)

Platte River Cooperative Agreement Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Platte River Cooperative Agreement PEIS, NE, WY,...

213

River Basin Commissions (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

214

Maine Rivers Policy (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Maine Rivers Policy accompanies the Maine Waterway Development and Conservation Act and provides additional protection for some river and stream segments, which are designated as “outstanding...

215

Investigation of the Strontium-90 Contaminant Plume along the Shoreline of the Columbia River at the 100-N Area of the Hanford Site  

SciTech Connect

Efforts are underway to remediate strontium-laden groundwater to the Columbia River at the 100-N Area of the Hanford Site. Past practices of the 100-N reactor liquid waste disposal sites has left strontium-90 sorbed onto sediments which is a continuing source of contaminant discharge to the river. The Remediation Task of the Science and Technology Project assessed the interaction of groundwater and river water at the hyporheic zone. Limited data have been obtained at this interface of contaminant concentrations, geology, groundwater chemistry, affects of river stage and other variables that may affect strontium-90 release. Efforts were also undertaken to determine the extent, both laterally and horizontally, of the strontium-90 plume along the shoreline and to potentially find an alternative constituent to monitor strontium-90 that would be more cost effective and could possibly be done under real time conditions. A baseline of strontium-90 concentrations along the shoreline was developed to help assess remediation technologies.

Mendoza, Donaldo P.; Patton, Gregory W.; Hartman, Mary J.; Spane, Frank A.; Sweeney, Mark D.; Fritz, Brad G.; Gilmore, Tyler J.; Mackley, Rob D.; Bjornstad, Bruce N.; Clayton, Ray E.

2007-10-01T23:59:59.000Z

216

WASTE PACKAGE REMEDIATION SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The Waste Package Remediation System remediates waste packages (WPs) and disposal containers (DCs) in one of two ways: preparation of rejected DC closure welds for repair or opening of the DC/WP. DCs are brought to the Waste Package Remediation System for preparation of rejected closure welds if testing of the closure weld by the Disposal Container Handling System indicates an unacceptable, but repairable, welding flaw. DC preparation of rejected closure welds will require removal of the weld in such a way that the Disposal Container Handling System may resume and complete the closure welding process. DCs/WPs are brought to the Waste Package Remediation System for opening if the Disposal Container Handling System testing of the DC closure weld indicates an unrepairable welding flaw, or if a WP is recovered from the subsurface repository because suspected damage to the WP or failure of the WP has occurred. DC/WP opening will require cutting of the DC/WP such that a temporary seal may be installed and the waste inside the DC/WP removed by another system. The system operates in a Waste Package Remediation System hot cell located in the Waste Handling Building that has direct access to the Disposal Container Handling System. One DC/WP at a time can be handled in the hot cell. The DC/WP arrives on a transfer cart, is positioned within the cell for system operations, and exits the cell without being removed from the cart. The system includes a wide variety of remotely operated components including a manipulator with hoist and/or jib crane, viewing systems, machine tools for opening WPs, and equipment used to perform pressure and gas composition sampling. Remotely operated equipment is designed to facilitate DC/WP decontamination and hot cell equipment maintenance, and interchangeable components are provided where appropriate. The Waste Package Remediation System interfaces with the Disposal Container Handling System for the receipt and transport of WPs and DCs. The Waste Handling Building System houses the system, and provides the facility, safety, and auxiliary systems required to support operations. The system receives power from the Waste Handling Building Electrical System. The system also interfaces with the various DC systems.

N.D. Sudan

2000-06-22T23:59:59.000Z

217

Recommendations for Remedial Action at Everest, Kansas.  

SciTech Connect

On September 7, 2005, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) presented a Scoping Memo (Argonne 2005) for preliminary consideration by the Kansas Department of Health and Environment (KDHE). This document suggested possible remedial options for the carbon tetrachloride contamination in groundwater at Everest, Kansas. The suggested approaches were discussed by representatives of the KDHE, the CCC/USDA, and Argonne at the KDHE office in Topeka on September 8-9, 2005, along with other technical and logistic issues related to the Everest site. In response to these discussions, the KDHE recommended (KDHE 2005) evaluation of several remedial processes, either alone or in combination, as part of a Corrective Action Study (CAS) for Everest. The primary remedial processes suggested by the KDHE included the following: (1) Hydraulic control by groundwater extraction with aboveground treatment; (2) Air sparging-soil vapor extraction (SVE) in large-diameter boreholes; and (3) Phytoremediation. As a further outcome of the 2005 meeting and as a precursor to the proposed CAS, the CCC/USDA completed the following supplemental investigations at Everest to address several specific technical concerns discussed with the KDHE: (1) Construction of interpretive cross sections at strategic locations selected by the KDHE along the main plume migration pathway, to depict the hydrogeologic characteristics affecting groundwater flow and contaminant movement (Argonne 2006a); (2) A field investigation in early 2006 (Argonne 2006c), as follows: (a) Installation and testing of a production well and associated observation points, at locations approved by the KDHE, to determine the response of the Everest aquifer to groundwater extraction near the Nigh property; (b) Groundwater sampling for the analysis of volatile organic compounds (VOCs) and the installation of additional permanent monitoring points at locations selected by the KDHE, to further constrain the existing contaminant plume; and (c) Resampling of all existing permanent monitoring points for VOCs and biodegradation parameter analyses, at the request of the KDHE. On the basis of these studies (Argonne 2006a,c) and the CCC/USDA's past investigations at Everest (Argonne 2006b), the CCC/USDA concluded that groundwater extraction is not an effective remedial option for this site, and the KDHE concurred (KDHE 2006). As outlined in the next section, the CCC/USDA also believes that air sparging does not represent a viable remedial alternative. The CCC/USDA therefore proposes to collect the technical data required to evaluate the potential viability of a phytoremediation approach for this site and, if appropriate, to support the development of a remedial design.

LaFreniere, L. M. (Environmental Science Division)

2007-02-15T23:59:59.000Z

218

Preliminary Notice of Violation, Rocky Mountain Remediation Services -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Remediation Rocky Mountain Remediation Services - EA-97-04 Preliminary Notice of Violation, Rocky Mountain Remediation Services - EA-97-04 June 6, 1997 Preliminary Notice of Violation issued to Rocky Mountain Remediation Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site, (EA-97-04) This letter refers to the Department of Energy's (DOE) evaluation of noncompliances associated with the dispersal of radioactive material during the remediation of trenches. Preliminary Notice of Violation, Rocky Mountain Remediation Services - EA-97-04 More Documents & Publications Preliminary Notice of Violation, Kaiser-Hill Company - EA-97-03 Consent Order, Kaiser-Hill Company, LLC - EA 98-03 Preliminary Notice of Violation , Rocky Flats Environmental Technology Site

219

Disentangling dam impacts in river networks1 Kris Van Looy, Thierry Tormos and Yves Souchon2  

E-Print Network (OSTI)

justified guidelines for restoration and remediation of impairments14 requires better understanding integrity; macroinvertebrates; fish; trait metrics.46 47 48 49 50 51 Author-produced version of the article the rehabilitation of river systems and53 water allocation for a sustainable provision of services of freshwater

Paris-Sud XI, Université de

220

Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.  

SciTech Connect

This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

Howerton, Jack; Hwang, Diana

1984-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "river remediation srr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

from Savannah River Nuclear Solutions, LLC NEWS SRS Employees Donate Food to Golden Harvest Food Bank  

NLE Websites -- All DOE Office Websites (Extended Search)

Employees Donate Food to Golden Harvest Food Bank Employees Donate Food to Golden Harvest Food Bank AIKEN, S.C. - (June 7, 2012) Today, the Savannah River Site (SRS) donated $22,000 and 18,000 pounds of food during its annual food drive for the Golden Harvest Food Bank. Several SRS organizations participated in this food drive-Savannah River Nuclear Solutions, Savannah River Remediation, U.S. Forest Service-Savannah River, URS and WSI- Savannah River. The SRS food drive is one of Golden Harvest Food Bank's largest, local fund-raisers. According to Savannah River Nuclear Solutions, LLC President and CEO Dwayne Wilson, the Site's past food drives have collec- tively yielded over 262,475 pounds of food for Golden Harvest. "We're pleased to support Golden Harvest in their highly effective efforts as they strive

222

Remediation of a large contaminated reactor cooling reservoir: Resolving and environmental/regulatory paradox  

SciTech Connect

This paper presents a case study of a former reactor cooling water reservoir, PAR Pond, located Savannah River Site. PAR Pond, a 2640 acre, man-made reservoir was built in 1958 and until 1988, received cooling water from two DOE nuclear production reactors, P and R. The lake sediments were contaminated with low levels of radiocesium (CS-137) and transuranics in the late 1950s and early 1960s because of leaking fuel elements. Elevated levels of mercury accumulated in the sediments from pumping water from the Savannah River to maintain a full pool. PAR Ponds` stability, size, and nutrient content made a significant, unique, and highly studied ecological resource for fish and wildlife populations until it was partially drained in 1991 due to a depression in the downslope of the earthen dam. The drawdown, created 1340 acres of exposed, radioactively contaminated sediments along 33 miles of shoreline. This led US EPA to declare PAR Pond as a CERCLA operable unit subject to remediation. The drawdown also raised concerns for the populations of aquatic plants, fish, alligators, and endangered species and increased the potential for off-site migration of contaminated wildlife from contact with the exposed sediments. Applicable regulations, such as NEPA and CERCLA, require wetland loss evaluations, human health and ecological risk assessments, and remediation feasibility studies. DOE is committed to spending several million dollars to repair the dam for safety reasons, even though the lake will probably not be used for cooling purposes. At the same time, DOE must make decisions whether to refill and expend additional public funds to maintain a full pool to reduce the risks defined under CERCLA or spend hundreds of millions in remediation costs to reduce the risks of the exposed sediments.

Bowers, J.A.: Gladden, J.B.; Hickey, H.M.; Jones, M.P.; Mackey, H.E.; Mayer, J.J. [Westinghouse Savannah River Co., Aiken, SC (United States); Doswell, A. [USDOE, Washington, DC (United States)

1994-05-01T23:59:59.000Z

223

Rethinking remediation technologies for desertified landscapes  

SciTech Connect

Shrub-dominated communities have replaced native grasslands throughout much of the arid Southwest during the past 120 years. Most currently available remediation technologies are uneconomical due to large inputs of energy, fertilizers, herbicides and labor, or are ecologically ineffective due to harsh environments and the highly competitive nature of these native shrubs. Our analysis of these historical remediation technologies together with new information on ecosystem processes has led us to pursue an ecologically-based approach in which more limited inputs are targeted to promote natural processes of regeneration. Advantages to this approach include lower costs, reduced reliance on agronomic practices, and maintenance of natural landscape features. Disadvantages include longer time required for desired changes to occur, and a need for increased understanding of arid land processes.

Herrick, J.E.; Havstad, K.M. [New Mexico State Univ., Las Cruces, NM (United States); Coffin, D.P. [Colorado State Univ., Fort Collins, CO (United States)

1997-07-01T23:59:59.000Z

224

The role of innovative remediation technologies  

SciTech Connect

There are currently over 1200 sites on the US Superfund's National Priorities List (NPL) of hazardous waste sites, and there are over 30, 000 sites listed by the Comprehensive Environmental Responsibility, Compensation and Liability Information System (CERCLIS). The traditional approach to remediating sites in the US has been to remove the material and place it in a secure landfill, or in the case of groundwater, pump and treat the effluent. These technologies have proven to be very expensive and don't really fix the problem. The waste is just moved from one place to another. In recent years, however, alternative and innovative technologies have been increasingly used in the US to replace the traditional approaches. This paper will focus on just such innovative remediation technologies in the US, looking at the regulatory drivers, the emerging technologies, some of the problems in deploying technologies, and a case study.

Doesburg, J.M.

1992-05-01T23:59:59.000Z

225

The role of innovative remediation technologies  

SciTech Connect

There are currently over 1200 sites on the US Superfund`s National Priorities List (NPL) of hazardous waste sites, and there are over 30, 000 sites listed by the Comprehensive Environmental Responsibility, Compensation and Liability Information System (CERCLIS). The traditional approach to remediating sites in the US has been to remove the material and place it in a secure landfill, or in the case of groundwater, pump and treat the effluent. These technologies have proven to be very expensive and don`t really fix the problem. The waste is just moved from one place to another. In recent years, however, alternative and innovative technologies have been increasingly used in the US to replace the traditional approaches. This paper will focus on just such innovative remediation technologies in the US, looking at the regulatory drivers, the emerging technologies, some of the problems in deploying technologies, and a case study.

Doesburg, J.M.

1992-05-01T23:59:59.000Z

226

Remediation and Recycling of Linde FUSRAP Materials  

SciTech Connect

During World War II, the Manhattan Engineering District (MED) utilized facilities in the Buffalo, New York area to extract natural uranium from uranium-bearing ores. The Linde property is one of several properties within the Tonawanda, New York Formerly Utilized Sites Remedial Action Program (FUSRAP) site, which includes Linde, Ashland 1, Ashland 2, and Seaway. Union Carbide Corporation's Linde Division was placed under contract with the Manhattan Engineering District (MED) from 1942 to 1946 to extract uranium from seven different ore sources: four African pitchblende ores and three domestic ores. Over the years, erosion and weathering have spread contamination from the residuals handled and disposed of at Linde to adjacent soils. The U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) negotiated a Federal Facilities Agreement (FFA) governing remediation of the Linde property. In Fiscal Year (FY) 1998, Congress transferred cleanup management responsibility for the sites in the FUSRAP program, including the Linde Site, from the DOE to the U.S. Army Corps of Engineers (USACE), with the charge to commence cleanup promptly. All actions by the USACE at the Linde Site are being conducted subject to the administrative, procedural, and regulatory provisions of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) and the existing FFA. USACE issued a Proposed Plan for the Linde Property in 1999 and a Final Record of Decision (ROD) in 2000. USACE worked with the local community near the Tonawanda site, and after considering public comment, selected the remedy calling for removing soils that exceed the site-specific cleanup standard, and transporting the contaminated material to off-site locations. The selected remedy is protective of human health and the environment, complies with Federal and State requirements, and meets commitments to the community.

Coutts, P. W.; Franz, J. P.; Rehmann, M. R.

2002-02-27T23:59:59.000Z

227

Thixotropic gel for vadose zone remediation  

DOE Patents (OSTI)

A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

Rhia, Brian D. (Augusta, GA)

2011-03-01T23:59:59.000Z

228

Innovative mathematical modeling in environmental remediation  

Science Journals Connector (OSTI)

There are two different ways to model reactive transport: ad hoc and innovative reaction-based approaches. The former, such as the Kd simplification of adsorption, has been widely employed by practitioners, while the latter has been mainly used in scientific communities for elucidating mechanisms of biogeochemical transport processes. It is believed that innovative mechanistic-based models could serve as protocols for environmental remediation as well. This paper reviews the development of a mechanistically coupled fluid flow, thermal transport, hydrologic transport, and reactive biogeochemical model and example-applications to environmental remediation problems. Theoretical bases are sufficiently described. Four example problems previously carried out are used to demonstrate how numerical experimentation can be used to evaluate the feasibility of different remediation approaches. The first one involved the application of a 56-species uranium tailing problem to the Melton Branch Subwatershed at Oak Ridge National Laboratory (ORNL) using the parallel version of the model. Simulations were made to demonstrate the potential mobilization of uranium and other chelating agents in the proposed waste disposal site. The second problem simulated laboratory-scale system to investigate the role of natural attenuation in potential off-site migration of uranium from uranium mill tailings after restoration. It showed inadequacy of using a single Kd even for a homogeneous medium. The third example simulated laboratory experiments involving extremely high concentrations of uranium, technetium, aluminum, nitrate, and toxic metals (e.g., Ni, Cr, Co). The fourth example modeled microbially-mediated immobilization of uranium in an unconfined aquifer using acetate amendment in a field-scale experiment. The purposes of these modeling studies were to simulate various mechanisms of mobilization and immobilization of radioactive wastes and to illustrate how to apply reactive transport models for environmental remediation.

Gour-Tsyh Yeh; Jin-Ping Gwo; Malcolm D. Siegel; Ming-Hsu Li; Yilin Fang; Fan Zhang; Wensui Luo; Steve B. Yabusaki

2013-01-01T23:59:59.000Z

229

Remedial design through effective electronic associations  

SciTech Connect

Black and Veatch Special Projects Corp. (BVSPC) used an environmental data management system (EDMS) to consolidate x-ray fluorescence (XRF), global positioning system (GPS), and laboratory analytical data into a unique and flexible electronic database. Cost savings were acknowledged in all phases of the remedial design due to the development and use of the EDMS and its distinct associations with various electronic software packages. The EDMS allowed effective and efficient completion of the remedial design investigation of the Oronogo-Duenweg Mining Belt Site. The Site is a 125-year old mining community in Jasper County, Missouri. Approximately 6,500 residences are now located within the 60 square-mile Superfund Site where lead and zinc were mined. Smelting and mining activities were conducted in several areas throughout the community. These operations left approximately 9 million tons of mine wastes at the Site upon completion of the mining activities. The purpose of the remedial design investigation was to quantify and identify the residential yards that were adversely affected by these activities.

Deis, J.L.; Wankum, R.D.

1999-07-01T23:59:59.000Z

230

Project #31: Connecticut River  

Science Journals Connector (OSTI)

GEOMORPHIC SETTING: At the project location, the Connecticut River has an annual average discharge of...

Wendi Goldsmith; Donald Gray; John McCullah

2014-01-01T23:59:59.000Z

231

DOE F 1325  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(08-93) United States Government Department of Energy Memorandum DATE: May 3, 2010 Audit Report Number: OAS-L-10-04 REPLY TO ATTN OF: IG-34 (A09SR037) SUBJECT: Report on "The Interim Treatment of Salt Waste at the Savannah River Site" TO: Manager, Savannah River Operations Office On December 8, 2008, the Department of Energy (Department) named Savannah River Remediation, LLC (SRR) as the contractor to manage the radioactive liquid waste operations at the Savannah River Site (SRS). SRR was to take action to treat and dispose of waste stored in 49 underground storage tanks and operate and maintain the equipment and facilities that make up the liquid waste management system. The mission of the SRS Tank Farms is to receive, store, transfer and manage high-level radioactive liquid waste

232

Salmon Site Remedial Investigation Report, Exhibit 2  

SciTech Connect

This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

USDOE NV

1999-09-01T23:59:59.000Z

233

Salmon Site Remedial Investigation Report, Exhibit 4  

SciTech Connect

This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

USDOE /NV

1999-09-01T23:59:59.000Z

234

Salmon Site Remedial Investigation Report, Exhibit 5  

SciTech Connect

This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

USDOE /NV

1999-09-01T23:59:59.000Z

235

Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program (March 2012)

236

Information summary, Area of Concern: Ashtabula River, Ohio. Final report  

SciTech Connect

The Water Quality Act of 1987, Section 118, authorizes the Great Lakes National Program Office (GLNPO) to carry out a 5-year study and demonstration project, Assessment and Remediation of Contaminated Sediments (ARCS), with emphasis on the removal of toxic pollutants from bottom sediments. Information from the ARCS program is to be used to guide the development of Remedial Action Plans (RAPs) for 42 identified Great Lakes Areas of Concern (AOCs) as well as Lake-wide Management Plans. The AOCs are areas where serious impairment of beneficial uses of water or biota (drinking, swimming, fishing, navigation, etc.) is known to exist, or where environmental quality criteria are exceeded to the point that such impairment is likely. Priority consideration was given to the following AOCs: Saginaw Bay, Michigan; Sheboygan Harbor, Wisconsin; Grand Calumet River, Indiana; Ashtabula River, Ohio; and Buffalo River, New York. This report summarizes the information obtained for the Ashtabula River AOC. (GLNPO Subject-Reference Matrix). Data and information from numerous reports have been included as figures and tables; wherever possible, the reference sources are identified.

Tatem, H.E.; Brandon, D.L.; Lee, C.R.; Simmers, J.W.; Skogerboe, J.G.

1990-12-01T23:59:59.000Z

237

Remediation of Mercury and Industrial Contaminants Applied Field Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation of Mercury and Industrial Contaminants Applied Field Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Located on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee, the RoMIC-AFRI was established to protect water resources by addressing the challenge of preventing contamination. The initiative at Oak Ridge is a collaborative effort that leverages DOE investments in basic science and applied research and the work of site contractors to address the complex challenges in the remediation of legacy waste at the Oak Ridge Reservation. The mission of the Remediation of Mercury and Industrial Contaminants

238

Independent Activity Report, CH2M Hill Plateau Remediation Company -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Activity Report, CH2M Hill Plateau Remediation Company Independent Activity Report, CH2M Hill Plateau Remediation Company - January 2011 Independent Activity Report, CH2M Hill Plateau Remediation Company - January 2011 January 2011 Review of the CH2M Hill Plateau Remediation Company Unreviewed Safety Question Procedure [ARPT-RL-2011-003] The U.S. Department of Energy Office of Independent Oversight, within the Office of Health, Safety and Security, during a site visit from January 10-14, 2011, presented the results of a technical review of the CH2M Hill Plateau Remediation Company (PRC) Unreviewed Safety Question (USQ) Procedure. Independent Activity Report, CH2M Hill Plateau Remediation Company - January 2011 More Documents & Publications CX-009415: Categorical Exclusion Determination Independent Activity Report, Richland Operations Office - January 2011

239

Gas: A Neglected Phase in Remediation of Metals and Radionuclides  

SciTech Connect

The gas phase is generally ignored in remediation of metals and radionuclides because it is assumed that there is no efficient way to exploit it. In the literal sense, all remediations involve the gas phase because this phase is linked to the liquid and solid phases by vapor pressure and thermodynamic relationships. Remediation methods that specifically use the gas phase as a central feature have primarily targeted volatile organic contaminants, not metals and radionuclides. Unlike many organic contaminants, the vapor pressure and Henry's Law constants of metals and radionuclides are not generally conducive to direct air stripping of dissolved contaminants. Nevertheless, the gas phase can play an important role in remediation of inorganic contaminants and provide opportunities for efficient, cost effective remediation. The objective here is to explore ways in which manipulation of the gas phase can be used to facilitate remediation of metals and radionuclides.

Denham, Miles E.; Looney, Brian B

2005-09-28T23:59:59.000Z

240

Part 2: Quality Assurance Project Plan Remedial Investigation, UMore East  

E-Print Network (OSTI)

Part 2: Quality Assurance Project Plan Remedial Investigation, UMore East Dakota County, Minnesota\\23191092 UMore 1948 Parcel Remedial Inv\\WorkFiles\\SAP\\Part 2-QAPP Umore East v2.1\\QAPP rev. 2.1.doc A2 Table\\19\\23191092 UMore 1948 Parcel Remedial Inv\\WorkFiles\\SAP\\Part 2-QAPP Umore East v2.1\\QAPP rev. 2

Netoff, Theoden

Note: This page contains sample records for the topic "river remediation srr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

First of Hanford's Highly Radioactive Sludge Moved Away from River |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First of Hanford's Highly Radioactive Sludge Moved Away from First of Hanford's Highly Radioactive Sludge Moved Away from River First of Hanford's Highly Radioactive Sludge Moved Away from River July 13, 2012 - 12:00pm Addthis Media Contacts Geoff Tyree, DOE Geoffrey.Tyree@rl.doe.gov 509-376-4171 Dee Millikin, CH2M HILL Dee_Millikin@rl.doe.gov 509-376-1297 RICHLAND, Wash. - Workers have started moving highly radioactive material, called sludge, away from the Columbia River, marking a significant milestone in the U. S. Department of Energy (DOE)'s cleanup of the Hanford Site in Washington State. Today, DOE contractor CH2M HILL Plateau Remediation Company (CH2M HILL) safely transferred the first large container of highly radioactive sludge from a basin next to a former plutonium production reactor to dry storage in the center of the site. Today's transfer is the first of six shipments

242

Utah Division of Environmental Response and Remediation Underground...  

Open Energy Info (EERE)

Division of Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah...

243

Remediation of environmental contaminants by novel organoclay adsorbents.  

E-Print Network (OSTI)

??Naturally occuring layer silicate clay minerals could be value-added by modifying the surface properties in order to enhance their efficacy in the remediation of environmental… (more)

Sarkar, Binoy

2011-01-01T23:59:59.000Z

244

SBA Increases Size Standards for Waste Remediation Services ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Remediation Services & InformationAdmin Support December 12, 2012 - 10:22am Addthis John Hale III John Hale III Director, Office of Small and Disadvantaged Business Utilization...

245

EPA - National Remedy Review Board webpage | Open Energy Information  

Open Energy Info (EERE)

Review Board webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - National Remedy Review Board webpage Abstract This webpage provides...

246

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D. D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline Working Group...

247

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

DOE has determined that the contamination is not attirbutable to the AEC-sponsored operations. Therefore, DOE does not have legal authority to conduct remedial actions at...

248

100-D/H Remedial Investigation/ Feasibility Study /Proposed...  

NLE Websites -- All DOE Office Websites (Extended Search)

Remedial Investigation Feasibility Study Proposed Plan Nina Menard Washington State Department of Ecology 100-DH RIFSPP * Received Draft RIFSPP on December 14, 2012 *...

249

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Barriers: Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?) hpwgwembrittlementsteelssofronis.pdf More Documents & Publications Webinar: I2CNER: An...

250

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

DOW CHEMICAL COMPANY WALNUT CREEK, CALIFORNIA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site...

251

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

RADIOLOGICAL HEALTH LABORATORY) WINCHESTER, MASSACHUSE'ITS Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and...

252

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and...

253

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

SYLVANIA-CORNING NUCLEAR CORPORATION BAYSIDE, NEW YORK VW. Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and...

254

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

COLUMBIA UNIVERSITY NEW YORK, NEW YORK Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning...

255

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

OF ARIZONA (U.S. BUREAU OF MINES) TUCSON, ARIZONA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and...

256

Waterjet injection of powdered activated carbon for sediment remediation .  

E-Print Network (OSTI)

??"In situ sediment remediation through waterjet-activated carbon amendment delivery is an innovative means to mitigate the dangers posed by hydrophobic organic compounds. Ease of use… (more)

Redell, Chris J.

2011-01-01T23:59:59.000Z

257

Attenuation-Based Remedies in the Subsurface Applied Field Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

setting for researchers in both applied and basic science fields. A wealth of subsurface data is available to support research activities and remedial decision making. Led by the...

258

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

ELECTRIC CORPORATION BUILDING 7 BLOOMFIELD, NEW JERSEY SW 30 1985 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of...

259

MANAGEMENT ALERT Remediation of Selected Transuranic Waste Drums...  

Office of Environmental Management (EM)

MANAGEMENT ALERT Remediation of Selected Transuranic Waste Drums at Los Alamos National Laboratory - Potential Impact on the Shutdown of the Department's Waste Isolation Plant DOE...

260

Biological remediation of contaminated sediments, with special emphasis on the Great Lakes: Report of a workshop, Manitowoc, Wisconsin, July 17-19, 1990  

SciTech Connect

These proceedings describe a workshop at which biological remediation of contaminated sediments was discussed. For the purpose of the workshop, contaminated sediments of primary interest were those within six of the Areas of Concern (AOC) identified in the U.S./Canada International Joint Commission's Great Lakes Water Quality Board; five of these AOC are priority concerns of the U.S. Environmental Protection Agency's Assessment and Remediation of Contaminated Sediments (ARCS) Program. The workshop was organized around four topic areas: (1) Overview of the Areas of Concern, (2) Biological degradation of PCBs; (3) Biological degradation of PAHs, and (4) Biological treatment of metal species. For the first topic area, presentations were made describing site characteristics of the Ashtabula River, OH; the Buffalo River, NY; the Sheboygan River, WI; the Grand Calumet River, IN; the Saginaw River and Bay, MI; and the Hamilton Harbor, Ontario, Canada. For the remaining topic areas, presentations were made by investigators actively involved in either bench, pilot, or full-scale studies concerning these areas. The document provides extended abstracts and brief summaries of the presentations and discussion sessions at the workshop.

Jafvert, C.T.; Rogers, J.E.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "river remediation srr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Record of Decision Remedial Alternative Selection for the D-Area Burning/Rubble Pits (431-D and 431-1D)  

SciTech Connect

The D-Area Burning/Rubble Pits (DBRP) (431-D and 431-1D) Waste Unit is listed as a Resource Conservation and Recovery Act (RCRA) 3004(U) Solid Waste Management Unit/Comprehensive Environmental Response Compensation and Liability Act (CERCLA) unit in Appendix C of the Federal Facility Agreement (FFA) for the Savannah River Site (SRS). This decision document presents the selected remedial alternative for the DBRP located at the SRS in Aiken, South Carolina.

Palmer, E.R. [Westinghouse Savannah River Company, AIKEN, SC (United States); Mason, J.T.

1997-02-01T23:59:59.000Z

262

Innovative mathematical modeling in environmental remediation  

SciTech Connect

There are two different ways to model reactive transport: ad hoc and innovative reaction-based approaches. The former, such as the Kd simplification of adsorption, has been widely employed by practitioners, while the latter has been mainly used in scientific communities for elucidating mechanisms of biogeochemical transport processes. It is believed that innovative mechanistic-based models could serve as protocols for environmental remediation as well. This paper reviews the development of a mechanistically coupled fluid flow, thermal transport, hydrologic transport, and reactive biogeochemical model and example-applications to environmental remediation problems. Theoretical bases are sufficiently described. Four example problems previously carried out are used to demonstrate how numerical experimentation can be used to evaluate the feasibility of different remediation approaches. The first one involved the application of a 56-species uranium tailing problem to the Melton Branch Subwatershed at Oak Ridge National Laboratory (ORNL) using the parallel version of the model. Simulations were made to demonstrate the potential mobilization of uranium and other chelating agents in the proposed waste disposal site. The second problem simulated laboratory-scale system to investigate the role of natural attenuation in potential off-site migration of uranium from uranium mill tailings after restoration. It showed inadequacy of using a single Kd even for a homogeneous medium. The third example simulated laboratory experiments involving extremely high concentrations of uranium, technetium, aluminum, nitrate, and toxic metals (e.g.,Ni, Cr, Co).The fourth example modeled microbially-mediated immobilization of uranium in an unconfined aquifer using acetate amendment in a field-scale experiment. The purposes of these modeling studies were to simulate various mechanisms of mobilization and immobilization of radioactive wastes and to illustrate how to apply reactive transport models for environmental remediation.The second problem simulated laboratory-scale system to investigate the role of natural attenuation in potential off-site migration of uranium from uranium mill tailings after restoration. It showed inadequacy of using a single Kd even for a homogeneous medium.

Yeh, Gour T. [Taiwan Typhoon and Flood Research Institute (Taiwan); National Central Univ. (Taiwan); Univ. of Central Florida (United States); Gwo, Jin Ping (Jack) [Nuclear Regulatory Commission (NRC), Rockville, MD (United States); Siegel, Malcolm D. [Sandia National Laboratories, Albuquerque, NM (United States); Li, Ming-Hsu [National Central Univ. (Taiwan); ; Fang, Yilin [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Zhang, Fan [Inst. of Tibetan Plateau Research, Chinese Academy of Sciences (China); Luo, Wensui [Inst. of Tibetan Plateau Research, Chinese Academy of Sciences (China); Yabusaki, Steven B. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

2013-05-12T23:59:59.000Z

263

Retrospection of Chernobyl nuclear accident for decision analysis concerning remedial actions in Ukraine  

SciTech Connect

It is considered the efficacy of decisions concerning remedial actions when of-site radiological monitoring in the early and (or) in the intermediate phases was absent or was not informative. There are examples of such situations in the former Soviet Union where many people have been exposed: releases of radioactive materials from 'Krasnoyarsk-26' into Enisey River, releases of radioactive materials from 'Chelabinsk-65' (the Kishtim accident), nuclear tests at the Semipalatinsk Test Site, the Chernobyl nuclear accident etc. If monitoring in the early and (or) in the intermediate phases is absent the decisions concerning remedial actions are usually developed on the base of permanent monitoring. However decisions of this kind may be essentially erroneous. For these cases it is proposed to make retrospection of radiological data of the early and intermediate phases of nuclear accident and to project decisions concerning remedial actions on the base of both retrospective data and permanent monitoring data. In this Report the indicated problem is considered by the example of the Chernobyl accident for Ukraine. Their of-site radiological monitoring in the early and intermediate phases was unsatisfactory. In particular, the pasture-cow-milk monitoring had not been made. All official decisions concerning dose estimations had been made on the base of measurements of {sup 137}Cs in body (40 measurements in 135 days and 55 measurements in 229 days after the Chernobyl accident). For the retrospection of radiological data of the Chernobyl accident dynamic model has been developed. This model has structure similar to the structure of Pathway model and Farmland model. Parameters of the developed model have been identified for agricultural conditions of Russia and Ukraine. By means of this model dynamics of 20 radionuclides in pathways and dynamics of doses have been estimated for the early, intermediate and late phases of the Chernobyl accident. The main results are following: - During the first year after the Chernobyl accident 75-93% of Commitment Effective Dose had been formed; - During the first year after the Chernobyl accident 85-90% of damage from radiation exposure had been formed. During the next 50 years (the late phase of accident) only 10-15% of damage from radiation exposure will have been formed; - Remedial actions (agricultural remedial actions as most effective) in Ukraine are intended for reduction of the damage from consumption of production which is contaminated in the late phase of accident. I.e. agricultural remedial actions have been intended for minimization only 10 % of the total damage from radiation exposure; - Medical countermeasures can minimize radiation exposure damage by an order of magnitude greater than agricultural countermeasures. - Thus, retrospection of nuclear accident has essentially changed type of remedial actions and has given a chance to increase effectiveness of spending by an order of magnitude. This example illustrates that in order to optimize remedial actions it is required to use data of retrospection of nuclear accidents in all cases when monitoring in the early and (or) intermediate phases is unsatisfactory. (author)

Georgievskiy, Vladimir [Russian Research Center 'Kurchatov Insitute', Kurchatov Sq., 1, 123182 Moscow (Russian Federation)

2007-07-01T23:59:59.000Z

264

New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B  

SciTech Connect

This remedial action work plan identifies the approach and requirements for implementing the medical zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Engineering and Environmental Laboratory (INEEL). This plan details management approach for the construction and operation of the New Pump and Treat Facility. As identified in the remedial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action. This work plan was originally prepared as an early implementation of the final Phase C remediation. At that time, The Phase C implementation strategy was to use this document as the overall Phase C Work Plan and was to be revised to include the remedial actions for the other remedial zones (hotspot and distal zones). After the completion of Record of Decision Amendment: Technical Support Facility Injection Well (TSF-05) and Surrounding Groundwater Contamination (TSF-23) and Miscellaneous No Action Sites, Final Remedial Action, it was determined that each remedial zone would have it own stand-alone remedial action work plan. Revision 1 of this document converts this document to a stand-alone remedial action plan specific to the implementation of the New Pump and Treat Facility used for plume remediation within the medical zone of the OU 1-07B contaminated plume.

D. Vandel

2003-09-01T23:59:59.000Z

265

Pecos River Compact (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation authorizes the state's entrance into the Pecos River Compact, a joint agreement between the states of New Mexico and Texas. The compact is administered by the Pecos River Compact...

266

Access to Courts and Preemption of State Remedies in Collective Action Perspective  

E-Print Network (OSTI)

application of preemption doctrine to state judicial remedies. This article applies a “collective action” framework for preemption analysis to the issue of remedial preemption. Our analysis suggests that while remedial preemption may be justified in some...

Glicksman, Robert L.; Levy, Richard E.

2009-01-01T23:59:59.000Z

267

RCRA Information Brief, June 1996: Conditional remedies under RCRA correction action  

SciTech Connect

This document describes conditional remedies under RCRA corrective action. The definition of conditional remedies, criteria that must be met, applications to DOE facilities, applicable clean-up standards, and implementation of conditional remedies are discussed in the document.

NONE

1996-06-01T23:59:59.000Z

268

Characterization of complex mineral assemblages: Implications for contaminant transport and environmental remediation  

Science Journals Connector (OSTI)

...W P ( 1996 ) Ground Water 34 : 778 – 783...environmental remediation. | Surface...and biological remediation strategies...environmental effects ground water humic acids humic...pollutants pollution remediation risk assessment...

Paul M. Bertsch; John C. Seaman

1999-01-01T23:59:59.000Z

269

Microsoft PowerPoint - 2011_1012_Hansen_100-K_Remediation.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

K Area Remediation Summary of Draft Su a y o a t Remedial InvestigationFeasibility Study and Proposed Plan Study and Proposed Plan October 2011 Purpose * The 100-K Remedial...

270

New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B  

SciTech Connect

This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

Nelson, L. O.

2007-06-12T23:59:59.000Z

271

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

E-Print Network (OSTI)

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D% · Contractor share: 25% · Barriers ­ Hydrogen embrittlement of pipelines and remediation (mixing with water;Objectives · To come up with a mechanistic understanding of hydrogen embrittlement in pipeline steels

272

Integration of biotechnology in remediation and pollution prevention activities  

SciTech Connect

The North American Free Trade Agreement/North American Agreement on Environmental Cooperation provides a mechanism for an international collaboration between the US, Canada, and Mexico to jointly develop, modify, or refine technologies that remediate or protect the environment. These countries have a vested interest in this type of collaboration because contaminants do not respect the boundaries of a manufacturing site, region, city, state, or country. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) consists of a diverse group of individuals who address a variety of environmental issues. ESD is involved in basic and applied research on the fate, transport, and remediation of contaminants; environmental assessment; environmental engineering; and demonstrations of advanced remediation technologies. The remediation and protection of the environment includes water, air, and soils for organic, inorganic, and radioactive contaminants. In addition to remediating contaminated sites, research also focuses on life-cycle analyses of industrial processes and the production of green technologies. The author focuses this discussion on subsurface remediation and pollution prevention; however, the research activities encompass water, soil and air and many of the technologies are applicable to all environments. The discussion focuses on the integration of biotechnology with remediation activities and subsequently linking these biological processes to other remediation technologies.

Strong-Gunderson, J.M. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

1996-02-01T23:59:59.000Z

273

Remediation of the Maxey Flats Site. Final report  

SciTech Connect

This report describes issues associated with remedial action of Maxey Flats, a low-level radioactive waste disposal site from 1963-1977, located in Fleming County, Kentucky. Present remedial action alternatives being considered are discussed along with emergency plans, ground water monitoring plans, and budgets.

Not Available

1990-01-12T23:59:59.000Z

274

Turbulent Rivers Bjorn Birnir  

E-Print Network (OSTI)

) function gives rise to Hack's law [16]; stating that the length of the main river, in mature river basins, scales with the area of the basin l Ah, h = 0.568 being Hack's exponent. 1 Introduction The flow]. One of the best known scaling laws of river basins is Hack's law [16] that states that the area

Birnir, Björn

275

Audit Report: OAS-L-10-04 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Audit Report: OAS-L-10-04 May 3, 2010 The Interim Treatment of Salt Waste at the Savannah River Site On December 8, 2008, the Department of Energy (Department) named Savannah River Remediation, LLC (SRR) as the contractor to manage the radioactive liquid waste operations at the Savannah River Site (SRS). SRR was to take action to treat and dispose of waste stored in 49 underground storage tanks and operate and maintain the equipment and facilities that make up the liquid waste management system. The mission of the SRS Tank Farms is to receive, store, transfer and manage high-level radioactive liquid waste generated at SRS. Currently, approximately 36 million gallons of liquid radioactive waste are stored in the 49 underground tanks. The Salt Waste Processing Facility (SWPF), which is being designed and constructed by a

276

Audit Report: OAS-L-10-04 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OAS-L-10-04 OAS-L-10-04 Audit Report: OAS-L-10-04 May 3, 2010 The Interim Treatment of Salt Waste at the Savannah River Site On December 8, 2008, the Department of Energy (Department) named Savannah River Remediation, LLC (SRR) as the contractor to manage the radioactive liquid waste operations at the Savannah River Site (SRS). SRR was to take action to treat and dispose of waste stored in 49 underground storage tanks and operate and maintain the equipment and facilities that make up the liquid waste management system. The mission of the SRS Tank Farms is to receive, store, transfer and manage high-level radioactive liquid waste generated at SRS. Currently, approximately 36 million gallons of liquid radioactive waste are stored in the 49 underground tanks. The Salt Waste

277

EA-1331: Remediation of Subsurface and Groundwater Contamination at the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

331: Remediation of Subsurface and Groundwater Contamination at 331: Remediation of Subsurface and Groundwater Contamination at the Rock Springs in situ Oil Shale Retort Site, Sweetwater County, Wyoming EA-1331: Remediation of Subsurface and Groundwater Contamination at the Rock Springs in situ Oil Shale Retort Site, Sweetwater County, Wyoming SUMMARY This EA evaluates the environmental impacts for the proposal for the Rock Springs In-Situ Oil Shale Retort Test Site remediation that would be performed at the Rock Springs site in Sweetwater County, Wyoming. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 31, 2000 EA-1331: Finding of No Significant Impact Remediation of Subsurface and Groundwater Contamination at the Rock Springs in situ Oil Shale Retort Site July 31, 2000 EA-1331: Final Environmental Assessment

278

EIS-0198: Uranium Mill Tailings Remedial Action Groundwater Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

198: Uranium Mill Tailings Remedial Action Groundwater Project 198: Uranium Mill Tailings Remedial Action Groundwater Project EIS-0198: Uranium Mill Tailings Remedial Action Groundwater Project SUMMARY This EIS assesses the potential programmatic impacts of conducting the Ground Water Project, provides a method for determining the site-specific ground water compliance strategies, and provides data and information that can be used to prepare site-specific environmental impacts analyses more efficiently. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 28, 1997 EIS-0198: Record of Decision Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project (April 1997) December 1, 1996 EIS-0198: Programmatic Environmental Impact Statement Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project

279

Implementation of the Formerly Utilized Sites Remedial Action Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Implementation of the Formerly Utilized Sites Remedial Action Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers (Waste Management Conference 2010) Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers (Waste Management Conference 2010) More Documents & Publications Recent Developments in DOE FUSRAP

280

Summary - X-701B Groundwater Remedy, Portsmouth, Ohio  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

X-701B Groundwater Remediation ETR Report Date: December 2008 ETR-20 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the X-701B Groundwater Remedy, Portsmouth, Ohio Why DOE-EM Did This Review The Department of Energy (DOE) Portsmouth Paducah Project Office (PPPO) has responsibility for remediation of the X-701B ground water plume with the key contaminant of trichloroethene (TCE). The remedy has been divided into four phases: Phase I- Initial Source Area Treatment, Phase II-Expanded Source Area Treatment, Phase III-Evaluation and Reporting, and Phase IV- Downgradient Remediation and Confirmation of Source Area Treatment. Phase II treatment has injected catalyzed hydrogen peroxide without meeting the

Note: This page contains sample records for the topic "river remediation srr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DOE Awards Contract for Environmental Remediation Services at California  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Remediation Services at Environmental Remediation Services at California Santa Susana Field Laboratory DOE Awards Contract for Environmental Remediation Services at California Santa Susana Field Laboratory September 27, 2012 - 12:00pm Addthis Media Contact Bill Taylor bill.taylor@srs.gov 803-952-8564 Cincinnati - The Department of Energy (DOE) today awarded a task order (contract) to CDM, A Joint Venture, of Fairfax, Virginia, to provide environmental remediation services for the Energy Technology Engineering Center at the Santa Susana Field Laboratory, Canoga Park, California. The cost-plus incentive fee task order has a 36-month performance period and a value of $11.3 million. CDM will continue to assist DOE in chemical sampling, the preparation of a chemical data gap analysis and preparing a soils remediation action

282

DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION  

SciTech Connect

The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.

Barry L. Burks

2002-12-01T23:59:59.000Z

283

Promoting decision making through a Sustainable Remediation Assessment Matrix (SRAM)  

Science Journals Connector (OSTI)

This paper describes the steps taken in a decision making process through a Sustainable Remediation Assessment Matrix (SRAM). The development of the SRAM deals with Complex, Large-scale Interconnected, Open, and Socio-technical System (CLIOS). For both large and small contaminated areas, considers potential impacts on neighbouring areas, the contribution to air emissions from the materials of the proposed project and the energy to be consumed. Along this line, the research focused on setting up a model under a systems perspective. A systemigram, from remedial investigation to project closeout, has been developed. For each stage of the remediation project, the process to identify stakeholders has been outlined. Moreover, and as an illustrative example, environmental, social, and economic aspects of remedial operations have been addressed on a specific case using the US Air Force Sustainable Remediation Tool (SRT).

Aspasia Kalomoiri; Washington Braida

2013-01-01T23:59:59.000Z

284

SRNL - News Room  

NLE Websites -- All DOE Office Websites (Extended Search)

SRR and SRNL: Partners in Technology Development for Waste Tank Cleanup Acceleration at SRS SRR and SRNL: Partners in Technology Development for Waste Tank Cleanup Acceleration at SRS ( PDF button Download printer-friendly, PDF version) AIKEN, S.C. (December 27, 2010) - Savannah River Remediation (SRR) and the Savannah River National Laboratory (SRNL) have a long standing partnership in developing new technologies for waste processing, which is helping accelerate tank waste removal at the Savannah River Site (SRS). Technology development and effective and timely deployment is a shared common goal in meeting the objectives of SRR's Enhanced Tank Waste (ETW) strategy. SRNL, the U.S. Department of Energy-Environmental Management national laboratory, is a key component and vital resource for the multiple facets of the ETW strategy, including base operations technical support and technology deployment support. SRNL conducts research activities that make use of the Laboratory's expertise in high-level waste processing, including waste glassification, salt waste material processing, and support for base operations across multiple DOE sites.

285

Evaluation Of Glass Density To Support The Estimation Of Fissile Mass Loadings From Iron Concentrations In SB8 Glasses  

SciTech Connect

The Department of Energy – Savannah River (DOE-SR) has provided direction to Savannah River Remediation (SRR) to maintain fissile concentration in glass below 897 g/m{sup 3}. In support of that guidance, the Savannah River National Laboratory (SRNL) provided a technical basis and a supporting Microsoft® Excel® spreadsheet for the evaluation of fissile loading in Sludge Batch 5 (SB5), Sludge Batch 6 (SB6), Sludge Batch 7a (SB7a), and Sludge Batch 7b (SB7b) glass based on the iron (Fe) concentration in glass as determined by the measurements from the Slurry Mix Evaporator (SME) acceptability analysis. SRR has since requested that the necessary density information be provided to allow SRR to update the Excel® spreadsheet so that it may be used to maintain fissile concentration in glass below 897 g/m{sup 3} during the processing of Sludge Batch 8 (SB8). One of the primary inputs into the fissile loading spreadsheet includes an upper bound for the density of SB8-based glasses. Thus, these bounding density values are to be used to assess the fissile concentration in this glass system. It should be noted that no changes are needed to the underlying structure of the Excel-based spreadsheet to support fissile assessments for SB8. However, SRR should update the other key inputs to the spreadsheet that are based on fissile and Fe concentrations reported from the SB8 Waste Acceptance Product Specification (WAPS) sample.

Edwards, T. B.; Peeler, D. K.; Kot, W. K.; Gan, H.; Pegg, I. L.

2013-04-30T23:59:59.000Z

286

ACTIVE CAPPING TECHNOLOGY - NEW APPROACHES FOR IN SITU REMEDIATION OF CONTAMINATED SEDIMENTS  

SciTech Connect

This study evaluated pilot-scale active caps composed of apatite, organoclay, biopolymers, and sand for the remediation of metal-contaminated sediments. The active caps were constructed in Steel Creek, at the Savannah River Site near Aiken, South Carolina. Monitoring was conducted for 12 months. Effectiveness of the caps was based on an evaluation of contaminant bioavailability, resistance to erosion, and impacts on benthic organisms. Active caps lowered metal bioavailability in the sediment during the one-year test period. Biopolymers reduced sediment suspension during cap construction, increased the pool of carbon, and lowered the release of metals. This field validation showed that active caps can effectively treat contaminants by changing their speciation, and that caps can be constructed to include more than one type of amendment to achieve multiple goals.

Knox, A.; Paller, M.; Roberts, J.

2012-02-13T23:59:59.000Z

287

E-Print Network 3.0 - active chemical remediation Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

.405 Discovery or notification. 300.410 Removal site evaluation. 300.415 Removal action. 300.420 Remedial site... evaluation. 300.425 Establishing remedial...

288

Verification of Active and Passive Ground-Water Contamination Remediation Efforts  

Science Journals Connector (OSTI)

The verification of ground-water contamination remediation efforts requires thorough documentation of subsurface conditions ... comprehensive approach to the design and operation of remediation efforts with an em...

M. J. Barcelona

1995-01-01T23:59:59.000Z

289

An investigation of school factors related to enrollment in remedial writing at postsecondary institutions in Montana.  

E-Print Network (OSTI)

?? Remedial postsecondary coursework, while ubiquitous, is a high cost means for students to become prepared to complete the rigors of postsecondary education. Remedial coursework… (more)

Shipman, Dustin Harry

2011-01-01T23:59:59.000Z

290

An investigation of school factors related to enrollment in remedial writing at postsecondary institutions in Montana.  

E-Print Network (OSTI)

??Remedial postsecondary coursework, while ubiquitous, is a high cost means for students to become prepared to complete the rigors of postsecondary education. Remedial coursework represents… (more)

Shipman, Dustin Harry.

2011-01-01T23:59:59.000Z

291

120 Ground Water Monitoring & Remediation 32, no. 1/ Winter 2012/pages 120130 NGWA.org Ground Water Monitoring & Remediation  

E-Print Network (OSTI)

120 Ground Water Monitoring & Remediation 32, no. 1/ Winter 2012/pages 120­130 NGWA.org Ground Water Monitoring & Remediation © 2011, National Ground Water Association. Published 2011. This article known as emerging contaminants (ECs) to surrounding groundwater and surface water. ECs consist

292

Tank waste remediation system engineering plan  

SciTech Connect

This Engineering Plan describes the engineering process and controls that will be in place to support the Technical Baseline definition and manage its evolution and implementation to the field operations. This plan provides the vision for the engineering required to support the retrieval and disposal mission through Phase 1 and 2, which includes integrated data management of the Technical Baseline. Further, this plan describes the approach for moving from the ``as is`` condition of engineering practice, systems, and facilities to the desired ``to be`` configuration. To make this transition, Tank Waste Remediation System (TWRS) Engineering will become a center of excellence for TWRS which,will perform engineering in the most effective manner to meet the mission. TWRS engineering will process deviations from sitewide systems if necessary to meet the mission most effectively.

Rifaey, S.H.

1998-01-09T23:59:59.000Z

293

Environmental remediation and waste management information systems  

SciTech Connect

The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency`s (EPA`s) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA`s CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information.

Harrington, M.W.; Harlan, C.P.

1993-12-31T23:59:59.000Z

294

Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action  

SciTech Connect

The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section.

NONE

1994-09-01T23:59:59.000Z

295

Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results  

SciTech Connect

This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field.

Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

2000-03-14T23:59:59.000Z

296

River Protection Project (RPP) Environmental Program Plan  

SciTech Connect

This Environmental Program Plan was developed in support of the Integrated Environment, Safety, and Health Management System Plan (ISMS) (RPP-MP-003), which establishes a single, defined environmental, safety, and health management system that integrates requirements into the work planning and execution processes to protect workers, the public, and the environment. The ISMS also provides mechanisms for increasing worker involvement in work planning, including hazard and environmental impact identification, analysis, and control; work execution; and feedback/improvement processes. The ISMS plan consists of six core functions. Each section of this plan describes the activities of the River Protection Project (RPP) (formerly known as the Tank Waste Remediation System) Environmental organization according to the following core functions: Establish Environmental Policy; Define the Scope of Work; Identify Hazards, Environmental Impacts, and Requirements; Analyze Hazards and Environmental Impacts and Implement Controls; Perform Work within Controls; and Provide Feedback and Continuous Improvement.

POWELL, P.A.

2000-03-29T23:59:59.000Z

297

Effects of remediation amendments on vadose zone microorganisms  

SciTech Connect

Surfactant-based foam delivery technology has been studied to remediate Hanford 200 area deep vadose zone sediment. However, the surfactants and remediation amendments have an unknown effect on indigenous subsurface microorganisms. Microbial populations are important factors to consider in remediation efforts due to their potential to alter soil geochemistry. This project focuses on measuring microbial metabolic responses to remediation amendments in batch and column studies using Deep Vadose Zone Sediments. Initial studies of the microbes from Hanford 200 area deep vadose zone sediment showed surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CAPB) and remediation amendment calcium polysulfide (CPS) had no affect on microbial growth using BiologTM Ecoplates. To move towards a more realistic field analog, soil columns were packed with Hanford 200 Area sediment. Once microbial growth in the column was verified by observing growth of the effluent solution on tryptic soy agar plates, remedial surfactants were injected into the columns, and the resulting metabolic diversity was measured. Results suggest surfactant sodium dodecyl sulfate (SDS) stimulates microbial growth. The soil columns were also visualized using X-ray microtomography to inspect soil packing and possibly probe for evidence of biofilms. Overall, BiologTM Ecoplates provide a rapid assay to predict effects of remediation amendments on Hanford 200 area deep vadose zone microorganisms.

Miller, Hannah M.; Tilton, Fred A.

2012-08-10T23:59:59.000Z

298

Superfund record of decision (EPA Region 2): Dover Municipal Well 4, Morris County, Dover, NJ. (First remedial action), September 1992  

SciTech Connect

The Dover Municipal Well 4 (DMW-4) site is located within the 500-year floodplain of the Rockaway River, in the Town of Dover, Morris County, New Jersey. Surrounding land use is mixed residential and commercial/light industrial. In 1980, sampling and analysis of ground water from DMW-4 identified the presence of VOCs-specifically, chlorinated solvents-above federal and state drinking water standards. Subsequently, DMW-4 was voluntarily removed from service by the Town, and standby Well 3 was activated as a potable water production well. The sources of VOC contamination have been traced to the Howmet Turbine Components Corporation (Dover Casting Division) and the New Jersey Natural Gas Company, both of which are under state administrative consent orders to remediate their individual properties. The ROD addresses remediation of the contaminated ground water in the shallow, intermediate, and deep aquifers at the DMW-4 site, as OU1. The primary contaminants of concern affecting the ground water are VOCs, including benzene, PCE and TCE, and, metals including lead. The selected remedial action for this site includes onsite pumping and treatment of contaminated ground water from both the intermediate and deep aquifers using air stripping to remove VOCs; discharging the treated water offsite to the public water supply system to be used for potable water, with reinjection of surplus quantities.

Not Available

1992-09-30T23:59:59.000Z

299

FORMERLY REMEDIAL UTILIZED SITES ACTION PROGRAM ELIMINATION REPORT ELIMINATION REPORT  

Office of Legacy Management (LM)

(' (' . . FORMERLY REMEDIAL UTILIZED SITES ACTION PROGRAM ELIMINATION REPORT ELIMINATION REPORT FORMER VITRO LABORATORIES FORMER VITRO LABORATORIES VITRO CORPORATION VITRO CORPORATION WEST ORANGE, NEW JERSEY WEST ORANGE, NEW JERSEY SEP 30 1985 SEP 30 1985 Department of Energy Office of Nuclear Waste Office of Remedial Action and Waste Technology Division of Facility and Site Deconxnissioning Projects . CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES iii Page 7 3 4 - _- mI _---. ELSMINATION REPORT FORMER VITRO LABORATORIES, VITRO CORPORATION, WEST ORAN6E, NEW JERSEY INTRODUCTION . The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site

300

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM . ELIMINATION REPORT FOR AL-TECH SPECIALTY STEEL CORPORATION (THE FORMER ALLEGHENY-LUDLUM STEEL CORPORATION) _ WATERYLIET, NEW YORK, AND DUNKIRK, NEW YORK SEP 301985 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects ----- ----_l_.._- .._. _- CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES iii .- --- .- Page . 1 4 ELIMINATION REPORT AL-TECH SPECIALTY STEEL CORPORATION (THE FORMER ALLEGHENY-LUDLUM STEEL CORPORATION) WATERYLIET, NEW YORK, AND DUNKIRK, NEW YORK 1 INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office

Note: This page contains sample records for the topic "river remediation srr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

I I c. ,..I -. i FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR BRIDGEPORT BRASS COMPANY HAVENS LABORATORY (REACTIVE METALS, INC.) KOSSUTH AND PULASKI STREETS BRIDGEPORT, CONNECTICUT i Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decomnissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 . 2 ii .-_. _.--_- "~ ELIMINATION REPORT FORMER BRIDGEPORT BRASS COMPANY HAVENS LABORATORY (REACTIVE METALS, INC. 1 KOSSUTH AND PULASKI STREETS BRIDGEPORT, CONNECTICUT INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and kaste Technology, Division of Facility and Site

302

Sulfate Reduction in Groundwater: Characterization and Applications for Remediation  

SciTech Connect

Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. Sulfate reduction reactions play a significant role in mediating redox conditions and biogeochemical processes for subsurface systems. They also serve as the basis for innovative in-situ methods for groundwater remediation. An overview of sulfate reduction in subsurface environments is provided, with a specific focus on implications for groundwater remediation. A case study presenting the results of a pilot-scale ethanol injection test illustrates the advantages and difficulties associated with the use of electron-donor amendments for sulfate remediation.

Miao, Z.; Brusseau, M. L.; Carroll, Kenneth C.; Carreon-Diazconti, C.; Johnson, B.

2012-06-01T23:59:59.000Z

303

Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Land Recycling and Environmental Remediation Standards Act Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources

304

TECHNICAL EVALUATION OF THE INTERACTION OF GROUNDWATER WITH THE COLUMBIA RIVER AT THE DEPARTMENT OF ENERGY HANFORD SITE 100-D AREA  

SciTech Connect

Groundwater beneath much of Hanford's 100 Areas is contaminated with hexavalent chromium (Cr{sup +6}) as a consequence of treating reactor cooling water to prevent corrosion. Several treatment systems are in place to remove Cr{sup +6} from the groundwater; however, these systems currently do not reduce Cr{sup +6} to concentrations below aquatic standards. Of concern is the transport of Cr{sup +6} to areas within the channel of the river, as sensitive species inhabit the river and its associated transition zone. The aquatic standard for Cr{sup +6} is currently 11 ug/l under the Record of Decision (ROD) for Interim Action and Department of Energy (DOE) currently plans to pursue remediation of the groundwater to achieve the 11 ug/l standard. Because the compliance wells used to monitor the current remediation systems are located some distance from the river, they may not provide an accurate indication of Cr{sup +6} concentrations in the water that reaches the riverbed. In addition, because salmon spawning areas are considered a high priority for protection from Hanford contaminants, it would be advantageous to understand (1) to what extent Cr{sup +6} discharged to the near-shore or river ecosystems is diluted or attenuated and (2) mechanisms that could mitigate the exposure of the river ecosystems to the discharging Cr{sup +6}. The current concentration target for Cr{sup +6} at near-river groundwater monitoring locations is 20 {micro}g/L; it is assumed that this groundwater mixes with river water that contains virtually no chromium to meet Washington Department of Ecology's (Ecology) water quality standard of 10 {micro}g/L in the river environment. This dynamic mixing process is believed to be driven by daily and seasonal changes in river stage and groundwater remediation system operations, and has been validated using analytical data from numerous groundwater samples obtained adjacent to and within the banks of the river. Although the mean mixing factor of river water and site groundwater in this zone has been estimated to be equal parts of groundwater and river water, a wide range of mixing ratios likely occurs at various times of the day and year. The degree of mixing and dilution appears to be greatly influenced by the river stage and other groundwater/surface water interaction. The extent of mixing, thus, has implications for the design and operation of the groundwater remediation systems. Improved understanding of this 'dilution' mechanism is needed to design an optimum 'systems approach' to accelerate remediation of the near-shore contaminant plumes. More information on the pathway from near-river mapped plumes to riverbed receptor locations is also needed to develop a defensible proposed plan for a future ROD for final remedial action of contaminated groundwater. In April 2008, an expert panel of scientists was convened to review existing information and provide observations and suggestions to improve the current understanding of groundwater surface water interactions in the 100 Areas (primarily focusing on 100-D Area), and to identify what additional analyses or approaches may provide critical information needed to design and implement remediation systems that will minimize impacts to river aquatic systems. Specific objectives provided to the panel included: (1) comment on approaches and methods to improve the current understanding of groundwater-surface water interactions, specifically how contaminated groundwater enters the riverbed and how this relates to remediation of chromate in the groundwater in the 100 Areas; (2) evaluate past and current data collection methods, data analysis techniques, assumptions, and groundwater transport and mixing mechanisms; (3) evaluate the current monitoring network (monitoring wells, aquifer tubes, and shoreline/river monitoring); (4) evaluate the role played by modeling; and (5) suggest additional research to fill data gaps and perform modeling.

PETERSEN SW

2008-11-05T23:59:59.000Z

305

Remedial action selection report Maybell, Colorado, site. Final report  

SciTech Connect

The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The site is 2.5 mi (4 km) northeast of the Yampa River on relatively flat terrain broken by low, flat-topped mesas. U.S. Highway 40 runs east-west 2 mi (3.2 km) south of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. The site is situated between Johnson Wash to the east and Rob Pit Mine to the west. Numerous reclaimed and unreclaimed mines are in the immediate vicinity. Aerial photographs (included at the end of this executive summary) show evidence of mining activity around the Maybell site. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [ml]) and contains 2.8 million cubic yards (yd{sup 3}) (2.1 million cubic meters [m{sup 3}]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd 3 (15,000 m{sup 3}) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd{sup 3}(420,000 m{sup 3}). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd{sup 3} (2.58 million m{sup 3}).

NONE

1996-12-01T23:59:59.000Z

306

Savannah River Site - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Reports Savannah River Site Review Reports 2013 Independent Oversight Review of the Savannah River Field Office Tritium Facilities Radiological Controls Activity-Level Implementation, November 2013 Independent Oversight Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development, August 2013 Independent Oversight Review of the Employee Concerns Program at the Savannah River Operations Office, July 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project, January 2013 Review of the Savannah River Site, Waste Solidification Building, Construction Quality of Mechanical Systems Installation and Selected Aspects of Fire Protection System Design, January 2013 Activity Reports 2013 Savannah River Site Waste Solidification Building Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design, May 2013

307

WATER AS A REAGENT FOR SOIL REMEDIATION  

SciTech Connect

SRI International is conducting experiments to develop and evaluate hydrothermal extraction technology or hot water extraction (HWE) technology for remediating petroleum-contaminated soils. Most current remediation practices either fail to remove the polycyclic aromatic hydrocarbons (PAHs) found in petroleum-contaminated sites, are too costly, or require the use of organic solvents at the expense of additional contamination and with the added cost of recycling solvents. Hydrothermal extraction offers the promise of efficiently extracting PAHs and other kinds of organics from contaminated soils at moderate temperatures and pressures, using only water and inorganic salts such as carbonate. SRI has conducted experiments to measure the solubility and rate of solubilization of selected PAHs (fluoranthene, pyrene, chrysene, 9,10-dimethylanthracene) in water using SRI's hydrothermal optical cell with the addition of varying amounts of sodium carbonate to evaluate the efficiency of the technology for removing PAHs from the soil. SRI data shows a very rapid increase in solubility of PAHs with increase in temperature in the range 25-275 C. SRI also measured the rate of solubilization, which is a key factor in determining the reactor parameters. SRI results for fluoranthene, pyrene, chrysene, and 9,10-dimethylanthracene show a linear relationship between rate of solubilization and equilibrium solubility. Also, we have found the rate of solubilization of pyrene at 275 C to be 6.5 ppm/s, indicating that the equilibrium solubilization will be reached in less than 3 min at 275 C; equilibrium solubility of pyrene at 275 C is 1000 ppm. Also, pyrene and fluoranthene appear to have higher solubilities in the presence of sodium carbonate. In addition to this study, SRI studied the rate of removal of selected PAHs from spiked samples under varying conditions (temperature, pore sizes, and pH). We have found a higher removal of PAHs in the presence of sodium carbonate in both sand and bentonite systems. Also, sodium carbonate greatly reduces the possible reactor corrosion under hydrothermal conditions. Our results show that a water-to-sand ratio of at least 3:1 is required to efficiently remove PAH from soil under static conditions.

Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

2001-03-29T23:59:59.000Z

308

Office of River Protection (ORP) and Washingotn River Protection Solutions,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of River Protection (ORP) and Washingotn River Protection Office of River Protection (ORP) and Washingotn River Protection Solutions, LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project Office of River Protection (ORP) and Washingotn River Protection Solutions, LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project The Mission of the Office of River Protection is to safely retrieve and treat Hanford's tank waste and close the Tank Farms to protect the Columbia River. Office of River Protection (ORP) and Washingotn River Protection Solutions, LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project More Documents & Publications 2011 Annual Workforce Analysis and Staffing Plan Report - Office of River Protection Consent Order, Washington River Protection Solutions, LLC - NCO-2011-01

309

THE RELATIONSHIP BETWEEN THE RADIATION SURVEY AND SITE INVESTIGATION PROCESS, THE CERCLA REMEDIAL OR REMOVAL  

E-Print Network (OSTI)

Assessment Site Inspection Remedial Investigation Feasibility Study Remedial Design/ Remedial Action PassAPPENDIX F THE RELATIONSHIP BETWEEN THE RADIATION SURVEY AND SITE INVESTIGATION PROCESS, THE CERCLA REMEDIAL OR REMOVAL PROCESS, AND THE RCRA CORRECTIVE ACTION PROCESS This appendix presents a discussion

310

Managing Legacy Records for Formerly Utilized Sites Remedial Action Program Sites  

Energy.gov (U.S. Department of Energy (DOE))

Managing Legacy Records for Formerly Utilized Sites Remedial Action Program Sites (Waste Management Conference 2008)

311

REMEDIATION OF HIGH WATER CONTENT GEOMATERIALS: A REVIEW OF GEOTEXTILE FILTER PERFORMANCE  

E-Print Network (OSTI)

costly remediation alternatives is capping of surface impoundments such as lagoons, ponds or old quarries

Aydilek, Ahmet

312

Savannah River Site's H Canyon Begins 2012 with New and Continuing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site's H Canyon Begins 2012 with New and Site's H Canyon Begins 2012 with New and Continuing Missions - Transuranic waste remediation, new mission work are the focus of the nation's only active nuclear chemical separations facility in 2012 Savannah River Site's H Canyon Begins 2012 with New and Continuing Missions - Transuranic waste remediation, new mission work are the focus of the nation's only active nuclear chemical separations facility in 2012 January 1, 2012 - 12:00pm Addthis H Canyon, above, and HB-Line are scheduled to soon begin dissolving and purifying plutonium currently stored at the Savannah River Site to demonstrate the capability to produce oxide material that meets the Mixed Oxide Facility (MOX) feedstock specifications. The production process at MOX, which is now under construction, will eventually create fuel pellets for U.S. commercial reactor fuel assemblies.

313

Columbia River Treaty  

NLE Websites -- All DOE Office Websites (Extended Search)

an understanding of the implications for post-2024 Treaty planning and Columbia River operations. The joint effort by the Entities to conduct initial post-2024 modeling and...

314

Savannah River Ecology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

of lab building SREL Home Faculty and Scientists Research Technical Reports Assessment of Radionuclide Monitoring in the CSRA Savannah River NERP Research Opportunities Field Sites...

315

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR OCCIDENTAL CHEMICAL CORPORATION ( FORMER HOOKER ELECTROCHEMICAL COMPANY ) NIAGARA FALLS, NEW YORK SEP 30 1985 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects ELIMINATION REPORT FOR OCCIDENTAL CHEMICAL CORPORATION (FORMER HOOKER ELECTROCHEMICAL COMPANY) L NIAGARA FALLS, NEW YORK- INTRODUCTION The Department ' of Energy (DDE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or the predecessor agencies, offices, and divisions), has reviewed the past activities of the Manhattan Engineer District (MED) and the Atomic Energy Commission (MED/AEC) at

316

CH2M HILL Plateau Remediation Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M HILL Plateau Remediation Company CH2M HILL Plateau Remediation Company CH2M HILL Plateau Remediation Company The Office of Hea1th, Safety and Security's Office of Enforcement and Oversight has evaluated the facts and circumstances of a series of radiological work deficiencies at the Plutonium Finishing Plant (PFP) and the 105 K-East Reactor Facility (105KE Reactor) by CH2M HILL Plateau Remediation Company (CHPRC). The radiological work deficiencies at PFP are documented in the April 29, 2011, Department of Energy Richland Operations Office (DOE-RL) Surveillance Report S-11-SED-CHP~C-PFP-002, Planning and Execution of Radiological Work. S-11-SED-CHPRC-PFP-002 documented four examples where inadequate hazard analysis resulted in airborne radioactivity that exceeded the limits of the controlling radiological work permit.

317

Integrated Systems-Based Approach to Monitoring Environmental Remediation  

SciTech Connect

The US Department of Energy (DOE) is responsible for risk reduction and cleanup of its nuclear weapons complex. Remediation strategies for some of the existing contamination use techniques that mitigate risk, but leave contaminants in place. Monitoring to verify remedy performance and long-term mitigation of risk is a key element for implementing these strategies and can be a large portion of the total cost of remedy implementation. Especially in these situations, there is a need for innovative monitoring approaches that move away from the cost and labor intensive point-source monitoring. A systems-based approach to monitoring design focuses monitoring on controlling features and processes to enable effective interpretation of remedy performance.

Bunn, Amoret L.; Truex, Michael J.; Oostrom, Martinus; Carroll, Kenneth C.; Wellman, Dawn M.

2013-02-24T23:59:59.000Z

318

Integrated Systems-Based Approach to Monitoring Environmental Remediation - 13211  

SciTech Connect

The US Department of Energy (DOE) is responsible for risk reduction and cleanup of its nuclear weapons complex. Remediation strategies for some of the existing contamination use techniques that mitigate risk, but leave contaminants in place. Monitoring to verify remedy performance and long-term mitigation of risk is a key element for implementing these strategies and can be a large portion of the total cost of remedy implementation. Especially in these situations, there is a need for innovative monitoring approaches that move away from the cost and labor intensive point-source monitoring. A systems-based approach to monitoring design focuses monitoring on controlling features and processes to enable effective interpretation of remedy performance. (authors)

Truex, Mike; Oostrom, Mart; Carroll, K.C.; Bunn, Amoret; Wellman, Dawn [Pacific Northwest National Laboratory (PNNL), Richland, Washington (United States)] [Pacific Northwest National Laboratory (PNNL), Richland, Washington (United States)

2013-07-01T23:59:59.000Z

319

Oak Ridge Associated Universities OF Preparedfor REMEDIAL ACTIONS  

Office of Legacy Management (LM)

-7 8,-7 C 7 I 2o.1-1o 1 ORAU 891-29 Prepared by VERIFICATION Oak Ridge Associated Universities OF Preparedfor REMEDIAL ACTIONS ecommissioning ALBANY RESEARCH CENTER...

320

Groundwater remediation at a former oil service site  

E-Print Network (OSTI)

not only because I spent more time on it than any other project, but also because it represents the broadness and depth of a typical URS remediation project. In this report, findings from previous environmental investigations were summarized and used...

Han, Liping

2005-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "river remediation srr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DRAFT HAB Advice: Remedial Investigation/Feasibility Study and...  

NLE Websites -- All DOE Office Websites (Extended Search)

HAB Advice: Remedial InvestigationFeasibility Study and Proposed Plan for the 100-FR-1, 100-FR-2, 100-FR-3, 100-IU-2 and 100-IU-6 Operable Units; DOERL Authors; Shelley Cimon,...

322

Summary - Building C-400 Thermal Treatment Remedial Design Report...  

Office of Environmental Management (EM)

Management (DOE-EM) External Technical Review of Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation, Paducah Kentucky Why DOE-EM Did This Review...

323

300 Area Remedial Investigation/Feasibility Study and Proposed...  

NLE Websites -- All DOE Office Websites (Extended Search)

S. Hudson Page 1 of 2 300 Area Remedial InvestigationFeasibility Study and Proposed Plan Deconstruct Advice Points (paragraph number ) 4-1 The Board believes the Tri-Party...

324

Applications of triazine chemistry: education, remediation, and drug delivery  

E-Print Network (OSTI)

and its effect on the environment and society. The modification of chitosan for herbicide remediation has been accomplished using triazine chemistry, as well. Treatment of chitosan iteratively with cyanuric chloride followed by piperazine produces...

Hatfield, Susan Elizabeth

2009-05-15T23:59:59.000Z

325

Transfer and commercialisation of contaminated groundwater remediation technologies  

Science Journals Connector (OSTI)

High costs and poor performance of conventional groundwater remediation technologies have brought a call for the deployment of innovative technologies capable of attaining regulatory standards while satisfying time and budget constraints. To develop an innovative technology in the laboratory and ultimately transition it to full-scale commercialisation, presents challenges at various levels. Scientific and engineering problems and regulatory and legal issues exist that must be dealt with when moving a technology from the laboratory to the field. Importantly, cost and performance data must be presented in a manner that convinces stakeholders that the technology can accomplish remediation more economically, safely and efficiently than conventional technologies. The challenges of transferring and commercialising innovative groundwater remediation technologies and strategies that may be used to help overcome these challenges are discussed. Case studies of groundwater remediation technology transfer are presented.

Mark N. Goltz; Kenneth J. Williamson

2002-01-01T23:59:59.000Z

326

Uranium mining legacies remediation and renaissance development: an international overview  

Science Journals Connector (OSTI)

The uranium mining industry has a record of environmental management that has been very variable over the past 50 years. Although there have been examples of good remediation in some countries, sadly there are...

Peter Waggitt

2008-01-01T23:59:59.000Z

327

Preliminary Notice of Violation, Rocky Mountain Remediation Services...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site, (EA-97-04) On June 6, 1997, the U.S. Department...

328

SBA Increases Size Standards for Waste Remediation Services &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SBA Increases Size Standards for Waste Remediation Services & SBA Increases Size Standards for Waste Remediation Services & Information/Admin Support SBA Increases Size Standards for Waste Remediation Services & Information/Admin Support December 12, 2012 - 10:22am Addthis John Hale III John Hale III Director, Office of Small and Disadvantaged Business Utilization Earlier this week, the U.S. Small Business Administration announced that they have revised size definitions for small businesses in Administrative and Support & Waste Management and Remediation Services categories, saying these revisions "reflect changes in marketplace conditions." The new standards are published in the Federal Register. Increases to size standards will enable some growing small businesses in these sectors to retain their small business status; will give federal

329

The 100-C-7 Remediation Project. An Overview of One of DOE's Largest Remediation Projects - 13260  

SciTech Connect

The U.S. Department of Energy Richland Operations Office (RL), U.S. Environmental Protection Agency (EPA) and Washington Closure Hanford LLC (WCH) completed remediation of one of the largest waste sites in the U.S. Department of Energy complex. The waste site, 100-C-7, covers approximately 15 football fields and was excavated to a depth of 85 feet (groundwater). The project team removed a total of 2.3 million tons of clean and contaminated soil, concrete debris, and scrap metal. 100-C-7 lies in Hanford's 100 B/C Area, home to historic B and C Reactors. The waste site was excavated in two parts as 100-C-7 and 100-C-7:1. The pair of excavations appear like pit mines. Mining engineers were hired to design their tiered sides, with safety benches every 17 feet and service ramps which allowed equipment access to the bottom of the excavations. The overall cleanup project was conducted over a span of almost 10 years. A variety of site characterization, excavation, load-out and sampling methodologies were employed at various stages of remediation. Alternative technologies were screened and evaluated during the project. A new method for cost effectively treating soils was implemented - resulting in significant cost savings. Additional opportunities for minimizing waste streams and recycling were identified and effectively implemented by the project team. During the final phase of cleanup the project team applied lessons learned throughout the entire project to address the final, remaining source of chromium contamination. The C-7 cleanup now serves as a model for remediating extensive deep zone contamination sites at Hanford. (authors)

Post, Thomas C. [U.S. Department of Energy Richland Operations Office, Richland, WA 99352 (United States)] [U.S. Department of Energy Richland Operations Office, Richland, WA 99352 (United States); Strom, Dean [Washington Closure Hanford LLC, 2620 Fermi Avenue, Richland, WA 99354 (United States)] [Washington Closure Hanford LLC, 2620 Fermi Avenue, Richland, WA 99354 (United States); Beulow, Laura [U.S. Environmental Protection Agency, 309 Bradley Boulevard, Suite 115, Richland, WA 99352 (United States)] [U.S. Environmental Protection Agency, 309 Bradley Boulevard, Suite 115, Richland, WA 99352 (United States)

2013-07-01T23:59:59.000Z

330

Remediation of Uranium Impacted Sediments in a Watercourse - 12486  

SciTech Connect

In 2009, remediation was initiated for a non-operational fuel cycle facility previously used for government contract work. Between 2009 and the spring of 2011, remediation efforts were focused on demolition of contaminated buildings and removal of contaminated soil. In the late spring of 2011, the last phase of remediation commenced involving the removal of contaminated sediments from portions of a 1,200 meter long gaining stream. Planning and preparation for remediation of the stream began in 2009 with submittal of permit applications to undertake construction activities in a wetland area. The permitting process was lengthy and involved securing permits from multiple agencies. However, early and frequent communication with stakeholders played an integral role in efficiently obtaining the permit approvals. Frequent communication with stakeholders throughout the planning and remediation process also proved to be a key factor in timely completion of the project. The remediation of the stream involved the use of temporary bladder berms to divert surface water flow, water diversion piping, a sediment vacuum removal system, excavation of sediments using small front-end loaders, sediment dewatering, and waste packaging, transportation and disposal. Many safeguards were employed to protect several species of concern in the work area, water management during project activities, challenges encountered during the project, methods of Final Status Survey, and stream restoration. The planning and permitting effort for the Site Brook remediation began in May 2009 and permits were approved and in place by February 2011. The remediation and restoration of the Site Brook began in April 2011 and was completed in November 2011. The remediation of the Site Brook involved the use of temporary bladder berms to divert surface water flow, water diversion piping, a sediment vacuum removal system, excavation of sediments using small front-end loaders, sediment dewatering, and waste packaging, transportation, disposal, FSS, and restoration. Early and frequent communications with stakeholders proved to be a key factor in timely completion of the project. Challenges encountered during the remediation effort were overcome by proper planning and having preparedness procedures in place prior to executing the work. With the remediation and restoration successfully completed, the only remaining task is to monitor/maintain the restoration for 10 years. (authors)

Shephard, E.; Walter, N.; Downey, H.; Collopy, P. [AMEC E and I, Inc., 511 Congress Street, Suite 200, Portland, ME 04101 (United States); Conant, J. [ABB, Inc., 5 Waterside Crossing, Windsor, CT 06095 (United States)

2012-07-01T23:59:59.000Z

331

FOAM: NOVEL DELIVERY TECHNOLOGY FOR REMEDIATION OF VADOSE ZONE ENVIRONMENTS  

SciTech Connect

Deep vadose zone environments can be a primary source and pathway for contaminant migration to groundwater. These environments present unique characterization and remediation challenges that necessitate scrutiny and research. The thickness, depth, and intricacies of the deep vadose zone, combined with a lack of understanding of the key subsurface processes (e.g., biogeochemical and hydrologic) affecting contaminant migration, make it difficult to create validated conceptual and predictive models of subsurface flow dynamics and contaminant behavior across multiple scales. These factors also make it difficult to design and deploy sustainable remedial approaches and monitor long-term contaminant behavior after remedial actions. Functionally, the methods for addressing contamination must remove and/or reduce transport of contaminants. This problem is particularly challenging in the arid western United States where the vadose zone is hundreds of feet thick, rendering transitional excavation methods exceedingly costly and ineffective. Delivery of remedial amendments is one of the most challenging and critical aspects for all remedy-based approaches. The conventional approach for delivery is through injection of aqueous remedial solutions. However, heterogeneous deep vadose zone environments present hydrologic and geochemical challenges which limit the effectiveness. Because the flow of solution infiltration is dominantly controlled by gravity and suction, injected liquid preferentially percolates through highly permeable pathways, by-passing low-permeability zones which frequently contain the majority of contamination. Moreover, the wetting front can readily mobilize and enhance contaminant transport to the underlying aquifer prior to stabilization. Development of innovative, in-situ technologies may be the only way to meet remedial action objectives and long-term stewardship goals. Surfactants can be used to lower the liquid surface tension and create stabile foams, which readily penetrate low permeability zones. Although surfactant foams have been utilized for subsurface mobilization efforts in the oil and gas industry, so far, the concept of using foams as a delivery mechanism for transporting remedial amendments into deep vadose zone environments to stabilize metal and long-lived radionuclide contaminants has not been explored. Foam flow can be directed by pressure gradients, rather than being dominated by gravity; and, foam delivery mechanisms limit the volume of water (< 5% vol.) required for remedy delivery and emplacement, thus mitigating contaminant mobilization. We will present the results of a numerical modeling and integrated laboratory- / intermediate-scale investigation to simulate, develop, demonstrate, and monitor (i.e. advanced geophysical techniques and advanced predictive biomarkers) foam-based delivery of remedial amendments to remediate metals and radionuclides in vadose zone environments.

Jansik, Danielle P.; Wellman, Dawn M.; Mattigod, Shas V.; Zhong, Lirong; Wu, Yuxin; Foote, Martin; Zhang, Z. F.; Hubbard, Susan

2011-07-05T23:59:59.000Z

332

Salmon Site Remedial Investigation Report - Volume I  

Office of Legacy Management (LM)

494-VOL I/REV 1 494-VOL I/REV 1 U.S. Department of Energy Nevada Operations Office E nv i r onm ent al R es t or at i on D i v i s i on N ev ada E nv i r onm ent al R es t or at i on Pr oj ect S al m on S i t e R em edi al Inv es t i gat i on R epor t Vol u m e I R ev i s i on N o. : 1 S ept em ber 1999 Approved for public release; further dissemination unlimited. This page intentionally left blank DOE/NV--494-VOL I/REV 1 SALMON SITE REMEDIAL INVESTIGATION REPORT DOE Nevada Operations Office Las Vegas, Nevada Revision No.: 1 September 1999 Approved for public release; further dissemination unlimited. Available to the public from - U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 (703) 487-4650 Available electronically at http://www.doe.gov/bridge. Available to U.S. Department of Energy and its contractors in paper from -

333

WATER AS A REAGENT FOR SOIL REMEDIATION  

SciTech Connect

SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, to separate petroleum-related contaminants and other hazardous pollutants from soil and sediments. In this process, water with added electrolytes (inexpensive and environmentally friendly) is used as the extracting solvent under subcritical conditions (150-300 C). The use of electrolytes allows us to operate reactors under mild conditions and to obtain high separation efficiencies that were hitherto impossible. Unlike common organic solvents, water under subcritical conditions dissolves both organics and inorganics, thus allowing opportunities for separation of both organic and inorganic material from soil. In developing this technology, our systematic approach was to (1) establish fundamental solubility data, (2) conduct treatability studies with industrial soils, and (3) perform a bench-scale demonstration using a highly contaminated soil. The bench-scale demonstration of the process has shown great promise. The next step of the development process is the successful pilot demonstration of this technology. Once pilot tested, this technology can be implemented quite easily, since most of the basic components are readily available from mature technologies (e.g., steam stripping, soil washing, thermal desorption). The implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and will provide a stand-alone technology for removal of both volatile and heavy components from contaminated soil.

Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

2001-11-12T23:59:59.000Z

334

Remedial Action and Waste Disposal Conduct of OperationsMatrix  

SciTech Connect

This Conduct of Operations (CONOPS) matrix incorporates the Environmental Restoration Disposal Facility (ERDF) CONOPS matrix (BHI-00746, Rev. 0). The ERDF CONOPS matrix has been expanded to cover all aspects of the RAWD project. All remedial action and waste disposal (RAWD) operations, including waste remediation, transportation, and disposal at the ERDF consist of construction-type activities as opposed to nuclear power plant-like operations. In keeping with this distinction, the graded approach has been applied to the developmentof this matrix.

M. A. Casbon.

1999-05-24T23:59:59.000Z

335

Commencement Bay Nearshore/Tideflats Remedial Investigation. summary report  

SciTech Connect

The report summarizes work complete under the U.S. EPA/WDOE Cooperative Agreement for the Commencement Bay Nearshore/Tideflats Remedial Investigation of the Waterways/Shoreline area. The Commencement Bay Superfund Investigation includes various integrated program management and technical components. These include assessments of chemical contamination, biological effects, toxicity, and public health concerns; identification of sources; and identification of potential remedial actions and technologies.

Not Available

1985-08-01T23:59:59.000Z

336

A New Approach to Wastewater Remediation Based on Bifunctional Electrodes  

Science Journals Connector (OSTI)

A New Approach to Wastewater Remediation Based on Bifunctional Electrodes ... To illustrate this innovative technique, TiO2/Ti/Ta2O5?IrO2 bifunctional electrodes were prepared using a facile thermal decomposition technique and employed in this study. ... The establishment and enforcement of limits for the discharge and/or disposal of toxic and hazardous materials has required the development of new technologies to effectively remediate a variety of gaseous and liquid effluents, solid waste and sludge. ...

Robert Matthew Asmussen; Min Tian; Aicheng Chen

2009-05-29T23:59:59.000Z

337

--No Title--  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation (SRR) tank closure SRNL will perform rheology measurements of simulated sludge. The objective of this task is to measure the rheology of samples containing...

338

Schlumberger soundings in the Upper Raft River and Raft River...  

Open Energy Info (EERE)

Schlumberger soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Abstract In 1975, the U.S. Geological Survey made seventy Schlumberger resistivity...

339

Savannah River | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River River Savannah River Following are compliance agreements for the Savannah River Site. Also included are short summaries of the agreements. Natural Resources Defense Council Consent Decree, May 26, 1988 Natural Resources Defense Council Consent Decree, May 26, 1988 Summary Savannah River Site Consent Order 99-155-W, October 11, 1999 Savannah River Site Consent Order 99-155-W, October 11, 1999 Summary Savannah River Site Consent Order 85-70-SW, November 7, 1985 Savannah River Site Consent Order 85-70-SW, November 7, 1985 Summary Savannah River Site Consent Order 95-22-HW, September 29, 1995 Savannah River Site Consent Order 95-22-HW, September 29, 1995 Summary Savannah River Site Consent Order 99-21-HW, July 13, 1999 Savannah River Site Consent Order 99-21-HW, July 13, 1999 Summary

340

Savannah River | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Savannah River Savannah River Following are compliance agreements for the Savannah River Site. Also included are short summaries of the agreements. Natural Resources Defense Council Consent Decree, May 26, 1988 Natural Resources Defense Council Consent Decree, May 26, 1988 Summary Savannah River Site Consent Order 99-155-W, October 11, 1999 Savannah River Site Consent Order 99-155-W, October 11, 1999 Summary Savannah River Site Consent Order 85-70-SW, November 7, 1985 Savannah River Site Consent Order 85-70-SW, November 7, 1985 Summary Savannah River Site Consent Order 95-22-HW, September 29, 1995 Savannah River Site Consent Order 95-22-HW, September 29, 1995 Summary Savannah River Site Consent Order 99-21-HW, July 13, 1999 Savannah River Site Consent Order 99-21-HW, July 13, 1999 Summary

Note: This page contains sample records for the topic "river remediation srr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Research in Support of Remediation Activities at the Savannah River Site  

Science Journals Connector (OSTI)

...Site, 2 m for the Oak Ridge Reservation, 15 m for Rocky Flats, and 50 m for the Idaho National Engineering and Environmental...3H), as well as other synthetic elements such as neptunium (Np), americium (Am), curium (Cm), and californium...

J. C. Seaman; B. B. Looney; M. K. Harris

342

P:\DECISION\0100.tba.wpd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OFFICE OF HEARINGS AND APPEALS OFFICE OF HEARINGS AND APPEALS Appeal Name of Petitioner: Vinod Chudgar Date of Filing: January 28, 2011 Case Number: TBA-0100 This Decision considers an Appeal of an Initial Agency Decision (IAD) issued on January 13, 2011, involving a complaint of retaliation filed under the Department of Energy (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708, by Vinod Chudgar (hereinafter referred to as "the Complainant" or "Mr. Chudgar") against Savannah River Remediation (hereinafter referred to as "the Respondent" or "SRR"). SRR is the Management and Operations contractor for the Department of Energy's (DOE) Savannah River Site (SRS). In his complaint, Mr. Chudgar alleged that he

343

Microsoft Word - 2010SR09.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

March 23, 2010 March 23, 2010 james-r.giusti@srs.gov John Lindsay, SRR, (803) 208-6253 john02lindsay@srs.gov Recovery Act Funds Move SRS Tank 5 Closer to Final Closure Aiken, SC -- One more radioactive liquid waste tank at the Department of Energy's Savannah River Site (SRS) has moved closer to final closure thanks to American Recovery and Reinvestment Act funding. Savannah River Remediation LLC (SRR), DOE's liquid waste contractor at SRS, safely completed its first Recovery Act project on March 15, 2010, which required refurbishing an internal purge ventilation system as well as removing and replacing a 50-foot long mixing pump located within the 750,000 gallon radioactive liquid waste tank. As many as 50 Recovery Act workers were involved in the $1.4 million project.

344

SRS Waste Tanks 5 and 6 Are Operationally Closed | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRS Waste Tanks 5 and 6 Are Operationally Closed SRS Waste Tanks 5 and 6 Are Operationally Closed SRS Waste Tanks 5 and 6 Are Operationally Closed December 19, 2013 - 12:00pm Addthis The final amount of grout is poured into Tank 6, marking the operational closure of Tanks 5 and 6. The final amount of grout is poured into Tank 6, marking the operational closure of Tanks 5 and 6. Media Contacts Amy Caver, Amy.Caver@srs.gov, 803-952-7213 Rick Kelley, Rick.Kelley@srs.gov, 803-208-0198 AIKEN, S.C. - Savannah River Remediation (SRR), the liquid waste contractor at the U.S. Department of Energy (DOE) Savannah River Site, has removed from service two more Cold War-era liquid radioactive waste tanks, marking the third and fourth tanks operationally closed by SRR in the last 14 months. Grouting and closure of Tanks 5 and 6 were completed approximately two

345

River Edge Redevelopment Zone (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of the River Edge Redevelopment Program is to revive and redevelop environmentally challenged properties adjacent to rivers in Illinois.

346

The Nation's Rivers  

Science Journals Connector (OSTI)

...task of water quality assessment." Such interpretation...environment demands continuing assessment and interpretation...pro-cesses active in river systems and hence such measures...character of many river systems. To date, observations...money, observational tools must be designed to...

M. Gordon Wolman

1971-11-26T23:59:59.000Z

347

Optimized remedial groundwater extraction using linear programming  

SciTech Connect

Groundwater extraction systems are typically installed to remediate contaminant plumes or prevent further spread of contamination. These systems are expensive to install and maintain. A traditional approach to designing such a wellfield uses a series of trial-and-error simulations to test the effects of various well locations and pump rates. However, the optimal locations and pump rates of extraction wells are difficult to determine when objectives related to the site hydrogeology and potential pumping scheme are considered. This paper describes a case study of an application of linear programming theory to determine optimal well placement and pump rates. The objectives of the pumping scheme were to contain contaminant migration and reduce contaminant concentrations while minimizing the total amount of water pumped and treated. Past site activities at the area under study included disposal of contaminants in pits. Several groundwater plumes have been identified, and others may be present. The area of concern is bordered on three sides by a wetland, which receives a portion of its input budget as groundwater discharge from the pits. Optimization of the containment pumping scheme was intended to meet three goals: (1) prevent discharge of contaminated groundwater to the wetland, (2) minimize the total water pumped and treated (cost benefit), and (3) avoid dewatering of the wetland (cost and ecological benefits). Possible well locations were placed at known source areas. To constrain the problem, the optimization program was instructed to prevent any flow toward the wetland along a user-specified border. In this manner, the optimization routine selects well locations and pump rates so that a groundwater divide is produced along this boundary.

Quinn, J.J.

1995-12-31T23:59:59.000Z

348

Phyto remediation groundwater trends at the DOE portsmouth gaseous  

SciTech Connect

This paper describes the progress of a phyto-remediation action being performed at the Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS) X-740 Waste Oil Handling Facility to remediate contaminated groundwater under a Resource Conservation and Recovery Act (RCRA) closure action. This action was effected by an Ohio Environmental Protection Agency (OEPA) decision to use phyto-remediation as the preferred remedy for the X-740 groundwater contamination. This remedy was recognized as a cost-effective, low-maintenance, and promising method to remediate groundwater contaminated with volatile organic compounds (VOCs), primarily trichloroethylene (TCE). During 1999, prior to the tree installation at the X-740 Phyto-remediation Area, water level measurements in the area were collected from 10 monitoring wells completed in the Gallia Formation. The Gallia is the uppermost water-bearing zone and contains most of the groundwater contamination at PORTS. During the tree installation which took place during the summer of 1999, four new Gallia monitoring wells were installed at the X-740 Area in addition to the 10 Gallia wells which had been installed in the same area during the early 1990's. Manual water level measurements were collected quarterly from these 14 Gallia monitoring wells between 1998 and 2001. These manual water level measurements were collected to monitor the combined impact of the trees on the groundwater prior to root development. Beginning in 2001, water level measurements were collected monthly during the growing season (April-September) and quarterly during the dormant season (October-March). A total of eight water level measurements were collected annually to monitor the phyto-remediation system's effect on the groundwater in the X- 740 Area. The primary function of the X-740 Phyto-remediation Area is to hydraulically prevent further spreading of the TCE plume. This process utilizes deep-rooted plants, such as poplar trees, to extract large quantities of water from the saturated zone. The focus of any phyto-remediation system is to develop a cone of depression under the entire plantation area. This cone of depression can halt migration of the contaminant plume and can create a hydraulic barrier, thereby maintaining plume capture. While a cone of depression is not yet evident at the X-740 Phyto-remediation Area, water level measurements in 2004 and 2005 differed from measurements taken in previous years, indicating that the now mature trees are influencing groundwater flow direction and gradient at the site. Water level measurements taken from 2003 through 2005 indicate a trend whereby groundwater elevations steadily decreased in the X-740 Phyto-remediation System. During this time, an average groundwater table drop of 0.30 feet was observed. Although the time for the phyto-remediation system to mature had been estimated at two to three years, these monitoring data indicate a period of four to five years for the trees to reach maturity. Although, these trends are not apparent from analysis of the potentiometric surface contours, it does appear that the head gradient across the site is higher during the spring and lower during the fall. It is not clear, however, whether this trend was initiated by the installation of the phyto-remediation system. This paper will present the groundwater data collected to date to illustrate the effects of the trees on the groundwater table. (authors)

Lewis, A.C.; Baird, D.R. [CDM, Piketon, OH (United States)

2007-07-01T23:59:59.000Z

349

Remediation of contaminated soils and sediments using Daramend bioremediation  

SciTech Connect

Soils and sediments containing polyaromatic hydrocarbons (PAH), petroleum hydrocarbons, heavy oils, chlorinated phenols, pesticides, herbicides and phthalates, either individually or in combination, have been difficult to remediate in the past. Not only the species of contaminant, but contaminant concentrations were roadblocks to successful use of bioremediation. Daramend{sup Tm} remediation has removed many of these obstacles through extensive research. Bench-scale, pilot-scale and full-scale demonstrations have been conducted at a variety of industrial sites. At a manufactured gas site, 295 days of Daramend remediation reduced concentrations of chrysene and fluoranthene from 38.9 mg/kg to 5.9 mg/kg and 84.6 mg/kg to 7.8 mg/kg respectively. Elsewhere, the total PAH concentration in a silty soil was reduced from 1,442 mg/kg to 36 mg/kg. Concentrations of even the most refractory PAHs (e.g. pyrene, benzo(a)pyrene) were reduced to below the established clean-up guidelines. Total petroleum hydrocarbons (diesel fuel) have also been reduced from 8,700 mg/kg to 34 mg/kg after 182 days of treatment. Similarly, in a clay soil contaminated by crude oil processing, the concentrations of high molecular weight aliphatic hydrocarbons were rapidly reduced (138 days) to below the remediation criteria. Demonstrations with wood treatment site soils have proven Daramend remediation effective in enhancing the target compound degradation rates. Soils containing 2170 mg PCP/kg were shown to contain only 11 mg PCP/kg after 280 days of Darmend remediation. The issue of toxicity of soil containing increased amounts of pentachlorophenols was solved. Performance data collected during these projects indicate that Daramend remediation provides a cost effective method for clean-up of soils and sediments containing a variety of organic compounds.

Burwell, S.W.; Bucens, P.G.; Seech, A.G.

1996-05-01T23:59:59.000Z

350

Chapter 28 - Nanotechnology for Contaminated Subsurface Remediation: Possibilities and Challenges  

Science Journals Connector (OSTI)

Groundwater represents a significant source of potable and industrial process water throughout the world. With population growth the availability of this precise resource is becoming increasingly scarce. Historically, the subsurface was thought to act as a natural filter of wastes injected into the ground. The potential for these wastes to persist in the subsurface for decades, potentially contaminating drinking water sources was ignored. Not only do toxic compounds have significant detrimental impacts on the environment and human health, there are also economic and social costs associated with contaminated groundwater. Due to increased demands on groundwater resources and historical contamination there is a need to remediate contaminated groundwater to meet current and future demands. At many hazardous sites, however, current remediation technologies routinely defy attempts at satisfactory restoration. As a result new, innovative remediation technologies are required. Nanomaterials are receiving widespread interest in a variety of fields due to their unique, beneficial chemical, physical, and mechanical properties. They have recently been proposed to address a number of environmental problems including the remediation of the contaminated subsurface. A wide variety of nanoparticles, such as metallic (e.g., zero valent iron or bimetallic nanoparticles) and carbon based nanoparticles (e.g., C60 nanoparticles) have been investigated to assess their potential for contaminated site remediation. Studies suggest that nanoparticles have the ability to convert or sequester a wide variety of subsurface contaminants (e.g., chlorinated solvents and heavy metals). In addition they are more reactive than similar, larger sized, reactive materials. The majority of these studies have, however, been conducted at the batch scale. Considerable work is necessary prior to the application of nanotechnology for contaminated site remediation. One problem, for example, is the delivery of reactive nanometals to the contaminated source zone where they will react. This chapter will summarize the use of nanoparticles for contaminated site remediation and highlight some of the challenges that remain unresolved.

Denis M. O’Carroll

2014-01-01T23:59:59.000Z

351

Predicting the river’s blue line for fish conservation  

Science Journals Connector (OSTI)

...Basin (VRB), a tributary to the lower Colorado River that has been the poster child...rivers like the San Pedro River (also a Colorado River tributary in Arizona), citizen...reaches with zero flows (i.e., during floods) and hence colonize parts of the distant...

John L. Sabo

2014-01-01T23:59:59.000Z

352

Evaluation of previous remedial construction along the Duquesne Bluff  

Science Journals Connector (OSTI)

The Boulevard of the Allies is a major four lane roadway in Pittsburgh, Pennsylvania that is constructed atop a near vertical, 35 meter high rock slope known locally as the Duquesne Bluff. Stratigraphic relief observed on the bluff consists of alternating sequences of flat lying sedimentary deposits of sandstone, siltstone, shale, carbonaceous shale, claystone and limestone. Expsoure of alternating sequences of durable and less durable rock has resulted in differential weathering and the formation of precarious overhanging conditions. In the interest of motorist safety and roadway improvement, a major remedial program was undertaken by the Pennsylvania Department of Transportation (PennDOT) in the mid 1980s. Primary remedial activities included rock trimming, rock bolting, the construction of dental concrete buttressing for overhanging rock support and shotcrete slope facing to arrest continued weathering of less durable claystone and carbonaceous shale exposures. As part of a current roadway improvement project, PennDOT and their consultant, Gannett Fleming, Inc., are evaluating the performance of previous remedial construction and are developing preliminary alternatives for future remediation. This paper will discuss the slope geology, overall favorable performance of the previous remedial construction and unfavorable slope conditions that may have resulted from large scale trimming operations.

J.W. Kovacs; W.R. Adams Jr.

1997-01-01T23:59:59.000Z

353

Remediation plan for fluorescent light fixtures containing polychlorinated biphenyls (PCBs)  

SciTech Connect

This report describes the remedial action to achieve compliance with 29 CFR 1910 Occupational Safety and Health Administration (OSHA) requirements of fluorescent light fixtures containing PCBs at K-25 site. This remedial action is called the Remediation Plan for Fluorescent Light Fixtures Containing PCBs at the K-25 Site (The Plan). The Plan specifically discusses (1) conditions of non-compliance, (2) alternative solutions, (3) recommended solution, (4) remediation plan costs, (5) corrective action, (6) disposal of PCB waste, (7) training, and (8) plan conclusions. The results from inspections by Energy Systems personnel in 2 buildings at K-25 site and statistical extension of this data to 91 selected buildings at the K-25 site indicates that there are approximately 28,000 fluorescent light fixtures containing 47,036 ballasts. Approximately 38,531 contain PCBs and 2,799 of the 38,531 ballasts are leaking PCBs. Review of reportable occurrences at K-25 for the 12 month period of September 1990 through August 1991 shows that Energy Systems personnel reported 69 ballasts leaking PCBs. Each leaking ballast is in non-compliance with 29 CFR 1910 - Table Z-1-A. The age of the K-25 facilities indicate a continued and potential increase in ballasts leaking PCBs. This report considers 4 alternative solutions for dealing with the ballasts leaking PCBs. The advantages and disadvantages of each alternative solution are discussed and ranked using cost of remediation, reduction of health risks, and compliance with OSHA as criteria.

NONE

1992-04-30T23:59:59.000Z

354

Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report  

SciTech Connect

The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

1994-02-01T23:59:59.000Z

355

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

itI.2 -2 itI.2 -2 FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR THE FORMER BRUSH BERYLLIUM COMPANY CLEVELAND, OHIO Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects __I__,_-. - ---.. ____- .- CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Pa e -5 2 2 2 4 4 4 ii ELIMINATION REPORT THE FORMER BRUSH BERYLLIUM COMPANY CLEVELAND, OHIO INTRODUCTION The Oepartment of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decorrnnissioning Projects (and/or predecessor agencies, offices and divisionsa has reviewed the past activities of the Manhattan Engineer

356

Geoengineering: Plan B Remedy for Global Warming Andrew A. Lacis  

NLE Websites -- All DOE Office Websites (Extended Search)

Geoengineering: Plan B Remedy for Global Warming Geoengineering: Plan B Remedy for Global Warming Andrew A. Lacis NASA Goddard Institute for Space Studies Accelerated melting of Greenland ice is a clear indication that consequences of global warming are real and impending. The underlying causes of global warming are well enough understood, but the necessary reduction of greenhouse gases to prevent irreversible climate change is unlikely to happen before the point of no return is reached. To reverse the impending sea level rise, geoengineering counter- measures may be required to counter the current global energy imbalance due to global warming. Of the many proposed remedies, deploying aerosols within the stratosphere offers realistic prospects. Sulfur injections in the lower stratosphere would have the cooling effect of naturally occurring volcanic aerosols. Soot at

357

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

fi.q 2, fi.q 2, I: * FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects INTRODUCTION BACKGROUND CONTENTS Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 4 iii ELIMINATION REPORT WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decormnissioning Projects (and/or predecessor agencies, offices and

358

Northeast Site Area A NAPL Remediation Final Report.doc  

Office of Legacy Management (LM)

82-TAC 82-TAC U.S. Department of Energy Work Performed Under DOE Contract No. for the U.S. Department of Energy DE-AC13-02GJ79491 Approved for public release; distribution is unlimited. Pinellas Environmental Restoration Project Northeast Site Area A NAPL Remediation Final Report September 2003 N0065200 GJO- 2003- 482- TAC GJO- PIN 13.12.10 Pinellas Environmental Restoration Project Northeast Site Area A NAPL Remediation Final Report Young - Rainey STAR Center September 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number DE-AC13- 02GJ79491 Document Number N0065200 Contents DOE/Grand Junction Office Northeast Site Area A NAPL Remediation Final Report September 2003 Page iii

359

The mission of the Remediation of Mercury and Industrial  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation of Mercury and Industrial Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of protecting surface water, groundwater, and ecological receptors. For more information, contact: Eric Pierce Oak Ridge National Laboratory 1 Bethel Valley Road, MS 6038 Oak Ridge, TN 37831 pierceem@ornl.gov (865) 574-9968 Kurt Gerdes DOE-EM Office of Groundwater and Soil Remediation kurt.gerdes@em.doe.gov (301) 903-7289 Sediment Biota Groundwater Flow Fluctuating Water Table Hg in building structures and rubble Waterborne mercury (mercury being transported via water being released from the facilities to the creeks) Hg currently present in the creek and sediments along the base of the creek

360

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

-p,l-I -p,l-I . . FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR MOBIL MINING AND MINERALS COMPANY (THE FORMER MATHIESON CHEMICAL COMPANY) PASADENA, TEXAS D Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 2 2 2 3 3 4 ii --. ELIMINATION REPORT MOBIL MINING AND MINERALS COMPANY (THE FORMER MATHIESON CHEMICAL COMPANY) PASADENA, TEXAS INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor offices and divisions),

Note: This page contains sample records for the topic "river remediation srr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Review on electrical discharge plasma technology for wastewater remediation  

Science Journals Connector (OSTI)

Abstract As wastewater remediation becomes a global concern, the development of innovative advanced oxidation processes for wastewater treatment is still a major challenge. With regard to its fast removal rate and environmental compatibility, plasma technology is considered as a promising remediation technology for water remediation. The principles of electrical plasma with liquids for pollutant removal and the reactors of various electrical discharge types are outlined in this review. To improve energy efficiency, combination of plasma technology with catalysts has attracted significant attention. The present review is concerned about present understanding of the mechanisms involved in these combined processes. Further on, detailed discussions are given of the effects of various factors on the performance of pulsed electrical plasma technology in water treatment processes. Finally, special attention is paid to the future challenges of plasma technology utilized for industrial wastewater treatment.

Bo Jiang; Jingtang Zheng; Shi Qiu; Mingbo Wu; Qinhui Zhang; Zifeng Yan; Qingzhong Xue

2014-01-01T23:59:59.000Z

362

Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506  

SciTech Connect

The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

Beres, Christopher M.; Fort, E. Joseph [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States)] [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States); Boyle, James D. [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)] [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)

2013-07-01T23:59:59.000Z

363

Savannah River National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Savannah River National Laboratory Savannah River National Laboratory srnl.doe.gov SRNL is a DOE National Laboratory operated by Savannah River Nuclear Solutions. At a glance Additive Manufacturing (3D Printing): Selectively Printed Conductive Pathways Researchers at the Savannah River National Laboratory (SRNL) have developed a rapid prototype conductive material that can be used for electrical shielding or circuit fabrication. Background Several rapid prototype technologies currently exist. A few of the technologies produce metallic parts, but the majority produce nonconductive parts made from various grades of plastic. In all of these technologies however, only conductive material or nonconductive material can be used within one part created. There is no known option for 3D printing conductive material for

364

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

,: /A (,) i_ - z ,: /A (,) i_ - z FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR FORMERLY UTILIZED PORTIONS OF THE WATERTOWN ARSENAL WATERTOWN, MASSACHUSETTS Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decotwnissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Radiological History and Status ELIMINATION ANALYSIS Findings and Recommendation 6 REFERENCES iii Page 1 1 1 3 4 7 "..*.w..,, -. ._ ..- ". --. AUTHORITY REVIEW WATERTOWN ARSENAL WATERTOWN, MASSACHUSETTS INTRODUCTION The purpose of this review is to present information pertaining to work performed under the sponsorship of the Atomic Energy Commission (AEC) Manhattan Engineer District (MED) and the facts and circum-

365

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

SENECA ARMY DEPOT SENECA ARMY DEPOT ROMULUS, NEW YORK Department of Energy Office of Nuclear Energy Office of Remedial Action and kaste Technology. Division of Facility and Site Decommissioning Projects INTRODUCTION t3ACKGROUND CONTENTS . -Page Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES 1 4 ii .___ -_-_..--. ._.".. ELIMINATION REPORT SENECA ARMY DEPOT ROMULUS, NEW YORK . INTRODUCTION The Department pf Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices, and divisions) has reviewed the past activities of the Manhattan Engineer District (MED) at Seneca Army Depot, Romulus, hew York. Based on the

366

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

\ \ ,.-c , 2 2 a. . FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM . ELIMINATION REPORT FOR THE FORMER GENERAL SERVICES ADMINISTRATION 39TH STREET WAREHOUSE 1716 PERSHING ROAD CHICAGO, ILLINOIS SEP301985 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects __--... -_ -._.-_- _"_-. .___.. -... .._ ..-. .-. ..--- . , ' , CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES iii 4 __-.I ._-----.- --- ELIMINATION REPORT FOR THE FORMER GENERAL SERVICES ADMINISTRATION 39TH STREET WAREHOUSE 1716 PERSHING ROAD CHICAGO, ILLINOIS INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office

367

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

CF INDUSTRIES, INC. CF INDUSTRIES, INC. ( THE FORMER INTERNATIONAL MI NERALS AND CHEMICAL CORPORATION) BARTON, FLORIDA Department of Energy Office of Nuclear Energy. Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects - - .._. ..--.. . . I."__ . - INTRODUCTION CONTENTS Page BACKGROUND Site Function Site Description Radiological. History and Status ELIMINATION ANALYSIS REFERENCES Summary of Findings ii 7 8 --..I--- - ..-___-_--.___-"-- -- ' . ELIMINATION REPORT CF INDUSTRIES, INC. (THE FORMER INTERNATIONAL MINERALS AND CHEMICAL CORPORATION) BARTOW, FLORIDA INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices, and

368

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

ROHM & HAAS COMPANY ROHM & HAAS COMPANY PHILADELPHIA, PENNSYLYANIA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects CONTENTS Page INTRODUCTIOk BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES 2 2 2 2 3 3 iii ELIMINATION REPORT ROHM & HAAS COMPANY PHILADELPHIA, PENNSYLVANXA INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor offices and divisions) has reviewed the past activities of the Atomic Energy Commission (AEC) at the Rohm & Haas Company, Philadelphia, Pennsylvania. Based on a

369

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

BETHLEHEM STEEL CORPORATION BETHLEHEM STEEL CORPORATION LACKAWANNA, NEW YORK Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects P bl@ C.' , 1 & cr INTRODUCTION BACKGROUND CONTENTS Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 5 iii ELIMINATION REPORT BETHLEHEM STEEL CORPORATION LACKAWANNA, NEW YORK INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices and divisions), has reviewed the past activities of the Atomic Energy Commission (AEC) at the Bethlehem Steel Corporation, Lackawanna, New

370

Designation of Sites for Remedial Action - Metal Hydrides, Beverly,  

Office of Legacy Management (LM)

T: T: Designation of Sites for Remedial Action - Metal Hydrides, Beverly, MA; Bridgeport Brass, Adrian, MI and Seymour, Chicago, IL CT; National Guard Armory, 0: Joe LaGrone, Manager Oak Ridge Operations Office Based on the attached radiological survey data (Attachments 1 through 3) and an appropriate authority review, the following properties are being authorized for remedial action. It should be noted that the attached survey data are for designation purposes only and that Bechtel National, Inc. (BNI) should conduct appropriate comprehensive characterization studies to determine the extent'and magnitude of contamination on properties. Site Location Priority Former Bridgeport Brass Co. (General Motors) Adrian, MI Low Former Bridgeport Brass Co.

371

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

UNIVERSITY OF ARIZONA UNIVERSITY OF ARIZONA (U.S. BUREAU OF MINES) TUCSON, ARIZONA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects -- --- .- _- --__ CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES ii - ,. -- Page 1 4 4 ..I___ - ~-___- ELIMINATION REPORT UNIVERSITY OF ARIZONA (U.S. BUREAU OF MINES) TUCSON, ARIZONA INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor offices and divisions) has reviewed the past activities of the Atomic Energy Commission (AEC)

372

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

NATIONAL BUREAU OF STANDARDS BUILDINGS NATIONAL BUREAU OF STANDARDS BUILDINGS VAN NESS STREET WASHINGTON, D.C. Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects - __-~---- -._.. .._ .-. .- INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status CONTENTS ELIMINATION ANALYSIS REFERENCES ii Paqe 1 4 INiRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices, and divisions) has reviewed the past activities conducted for the Atomic Energy Commission and the Manhattan Engineer District (MED) (DOE predecessors) at

373

Tank waste remediation system systems engineering management plan  

SciTech Connect

This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation Systems (TWRS) implementation of U.S. Department of Energy (DOE) Systems Engineering (SE) policy provided in Tank Waste Remediation System Systems Engineering Management Policy, DOE/RL letter, 95-RTI-107, Oct. 31, 1995. This SEMP defines the products, process, organization, and procedures used by the TWRS Program to accomplish SE objectives. This TWRS SEMP is applicable to all aspects of the TWRS Program and will be used as the basis for tailoring SE to apply necessary concepts and principles to develop and mature the processes and physical systems necessary to achieve the desired end states of the program.

Peck, L.G.

1996-02-06T23:59:59.000Z

374

Duct Remediation Program: Material characterization and removal/handling  

SciTech Connect

Remediation efforts were successfully performed at Rocky Flats to locate, characterize, and remove plutonium holdup from process exhaust ducts. Non-Destructive Assay (NDA) techniques were used to determine holdup locations and quantities. Visual characterization using video probes helped determine the physical properties of the material, which were used for remediation planning. Assorted equipment types, such as vacuum systems, scoops, brushes, and a rotating removal system, were developed to remove specific material types. Personnel safety and material handling requirements were addressed throughout the project.

Beckman, T.d.; Davis, M.M.; Karas, T.M.

1992-11-01T23:59:59.000Z

375

Sioux River Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Sioux River Ethanol LLC Jump to: navigation, search Name: Sioux River Ethanol LLC Place: Hudson, South Dakota Zip: 57034 Product: Farmer owned ethanol producer, Sioux River Ethanol...

376

Enforcement Letter, Westinghouse Savannah River Company - April...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Company - July 21, 1998 Enforcement Letter, Westinghouse Savannah River Company - March 29, 2000 Enforcement Letter, Savannah River Ecology Laboratory - June 7, 2000...

377

Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Act  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Act (Minnesota) Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Act (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting

378

Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites  

Energy.gov (U.S. Department of Energy (DOE))

This document summarizes radiological conditions at sites remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP) and transferred to the U.S. Department of Energy (DOE) for...

379

Integrated Remediation Process for a High Salinity Industrial Soil Sample Contaminated with Heavy Oil and Metals  

Science Journals Connector (OSTI)

A highly saline industrial soil sample contaminated with heavy oils and several heavy metals, was tested for remediation using NRC’s Solvent Extraction Soil Remediation (SESR) process. The sample was provided ...

Abdul Majid; Bryan D. Sparks

2002-01-01T23:59:59.000Z

380

E-Print Network 3.0 - animal-based folk remedies Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 Determinants of the success of remedy offers W: www.uea.ac.ukccp T... : +44 (0)1603 593715 A: UEA, Norwich, NR4 7TJ Determinants of the success of remedy offers:...

Note: This page contains sample records for the topic "river remediation srr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Preliminary Notice of Violation, Rocky Mountain Remediation Services- EA-97-04  

Energy.gov (U.S. Department of Energy (DOE))

Preliminary Notice of Violation issued to Rocky Mountain Remediation Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site, (EA-97-04)

382

In Situ Vitrification an Innovative Melting Technology for the Remediation of Contaminated Soil  

Science Journals Connector (OSTI)

The remediation of contaminated sites is an increasingly serious problem in industrialised countries. There is a growing need for efficient techniques for remedial actions, especially for on-site treatment of ...

Dipl.-Ing. Hans Joachim Hampel; V. F. Fitzpatrick

1988-01-01T23:59:59.000Z

383

Steam and ET-DSP Combined for DNAPL Remediation: Full-Scale Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam and ET-DSP Combined for DNAPL Remediation: Full-Scale Site Steam and ET-DSP Combined for DNAPL Remediation: Full-Scale Site Restoration at Young - Rainey STAR Center Steam and ET-DSP Combined for DNAPL Remediation: Full-Scale Site Restoration at Young - Rainey STAR Center Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds. May 2004, Monterey, California. Gorm Heron, Steven Carroll, Hank Sowers, Bruce McGee, Randall Juhlin, Joe Daniel, David S. Ingle Steam and ET-DSP Combined for DNAPL Remediation: Full-Scale Site Restoration at Young - Rainey STAR Center More Documents & Publications Successful Field-Scale In Situ Thermal NAPL Remediation at the Young - Rainey STAR Center Project Overview: Successful Field-Scale In Situ Thermal NAPL Remediation Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification

384

Recommendation 170: Remedial Investigation/Feasibility Study for East Tennessee Technology Park  

Energy.gov (U.S. Department of Energy (DOE))

The ORSSAB Recommendation to DOE on a Remedial Investigation/Feasibility Study for East Tennessee Technology Park.

385

Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program  

Energy.gov (U.S. Department of Energy (DOE))

Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program (March 2012)

386

Voluntary Protection Program Onsite Review, Soil and Groundwater Remediation Project- March 2007  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation to determine whether Soil and Groundwater Remediation Project is performing at a level deserving DOE-VPP recognition.

387

Assessing and Implementing LTS&M Requirements for Remediation Sites Under the FUSRAP Program  

Energy.gov (U.S. Department of Energy (DOE))

Assessing and Implementing LTS&M Requirements for Remediation Sites Under the FUSRAP Program (Waste Management Conference 2007)

388

Description of the Formerly Utilized Sites Remedial Action Program  

SciTech Connect

The background and the results to date of the Department of Energy program to identify and evaluate the radiological conditions at sites formerly utilized by the Corps of Engineers' Manhattan Engineer District (MED) and the US Atomic Energy Commission (AEC) are summarized. The sites of concern were federally, privately, and institutionally owned and were used primarily for research, processing, and storage of uranium and thorium ores, concentrates, or residues. Some sites were subsequently released for other purposes without radiological restriction. Surveys have been conducted since 1974 to document radiological conditions at such sites. Based on radiological surveys, sites are identified in this document that require, or are projected to require, remedial action to remove potential restrictions on the use of the property due to the presence of residual low-level radioactive contamination. Specific recommendations for each site will result from more detailed environmental and engineering surveys to be conducted at those sites and, if necessary, an environmental impact assessment or environmental impact statement will be prepared. Section 3.0 describes the current standards and guidelines now being used to conduct remedial actions. Current authority of the US Department of Energy (DOE) to proceed with remedial actions and the new authority required are summarized. A plan to implement the Formerly Utilized Sites Remedial Action Program (FUSRAP) in accordance with the new authority is presented, including the objectives, scope, general approach, and a summary schedule. Key issues affecting schedule and cost are discussed.

Not Available

1980-09-01T23:59:59.000Z

389

Adapting Advances in Remediation Science to Long-Term Surveillance  

SciTech Connect

Several facets of groundwater remediation stand to gain from the advances made during recent years in disciplines that contribute to remediation science. Engineered remedies designed to aggressively remove subsurface contamination should benefit from this progress, and more passive cleanup methods and the long-term monitoring of such passive approaches may benefit equally well if not more. The U.S. Department of Energy Office of Legacy Management (LM) has adopted a strategic plan that is designed to take advantage of technological improvements in the monitoring and assessment of both active and passive groundwater remedies. Flexible adaptation of new technologies, as they become available, to long-term surveillance at LM sites is expected to reduce site stewardship costs while ensuring the future protection of human health and the environment. Some of the technologies are expected to come from government initiatives that focus on the needs of subsurface monitoring. Additional progress in monitoring science will likely result from continual improvements in our understanding of contaminant fate-and-transport processes in the groundwater and the vadose zone.

Peterson, Dave [S.M. Stoller Corporation

2006-03-01T23:59:59.000Z

390

FY-95 technology catalog. Technology development for buried waste remediation  

SciTech Connect

The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

NONE

1995-10-01T23:59:59.000Z

391

Managing Complex Environmental Remediation amidst Aggressive Facility Revitalization Milestones  

SciTech Connect

Unlike the final closure projects at Rocky Flats and Fernald, many of the Department of Energy's future CERCLA and RCRA closure challenges will take place at active facilities, such as the Oak Ridge National Laboratory (ORNL) central campus. ORNL has aggressive growth plans for a Research Technology Park and cleanup must address and integrate D and D, soil and groundwater remediation, and on-going and future business plans for the Park. Different planning and tracking tools are needed to support closures at active facilities. To support some large Airport redevelopment efforts, we created tools that allowed the Airline lease-holder to perform environmental remediation on the same schedule as building D and D and new building construction, which in turn allowed them to migrate real estate from unusable to usable within an aggressive schedule. In summary: The FIM and OpenGate{sup TM} spatial analysis system were two primary tools developed to support simultaneous environmental remediation, D and D, and construction efforts at an operating facility. These tools helped redevelopers to deal with environmental remediation on the same schedule as building D and D and construction, thereby meeting their goals of opening gates, restarting their revenue streams, at the same time complying with all environmental regulations. (authors)

Richter Pack, S. [PMP Science Applications International Corporation, Oak Ridge, TN (United States)

2008-07-01T23:59:59.000Z

392

In-Situ Thermal Remediation of Contaminated Soil1  

E-Print Network (OSTI)

differentials at the electrodes. Water is also pumped into the soil via the injection well and out of the groundChapter 1 In-Situ Thermal Remediation of Contaminated Soil1 Written by Huaxiong Huang,2 Serguei meters under the ground) has been proposed by McMillan-McGee Corp. The process can be described

Lapin, Sergey

393

Remediation of arsenic-contaminated soils and groundwaters  

DOE Patents (OSTI)

An in situ method is described for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal. 8 figs.

Peters, R.W.; Frank, J.R.; Feng, X.

1998-06-23T23:59:59.000Z

394

Application of groundwater modeling in remedial action development  

Science Journals Connector (OSTI)

The development and implementation of a remedial program usually is a costly process. Available scientific and engineering data should be used to optimize the investigation program which will lead to the development of a cost-effective remedial action. As part of the scope of the Remedial Investigation (RI), the data needs and significance of the key parameters as related to the final remedial design should be assessed and determined to obtain necessary data in a timely and cost-effective manner. Properly verified groundwater computer models are powerful tools for both identifying data gaps which must be filled before an appropriate design can be prepared and for assessing the significance of site features on the problem and solution. These models can be used effectively during both the RI and Feasibility Study (FS) phases. In the RI phase, the models can be used for optimization of field and laboratory testing programs and in data analysis to assess adequateness of the field investigation and provide basic data for

Sirous H. Djafari; David E. Troxell

1990-01-01T23:59:59.000Z

395

Remedial action work plan for the Colonie site. Revision 1  

SciTech Connect

The Colonie site is a DOE Formerly Utilized Sites Remedial Action Program (FUSRAP) site located in the Town of Colonie, New York, and consisting of an interim storage site and several vicinity properties. The Colonie Interim Storage Site (CISS) is the former National Lead (NL) Industries plant located at 1130 Central Avenue. There are 11 vicinity properties that received remedial action in 1984: 7 located south of the site on Yardboro and Palmer Avenues just across the Colonie-Albany town limits in Albany, and 4 located northwest of the site along Central Avenue in Colonie. Of these properties, nine are residences and two are commercial properties. This document describes the engineering design, construction, and associated plans for remedial action on the vicinity properties and the interim storage site. These plans include both radiological and chemical work. Radiological work includes: excavating the above-guideline radioactive wastes on the vicinity properties; designing required facilities for the interim storage site; preparing the interim storage site to receive these contaminated materials; transporting the contaminated materials to the interim waste storage stockpile; and preparing necessary schedules for accomplishing the remedial actions. Chemical work involves: developing the Resource Conservation and Recovery Act (RCRA) closure plans; neutralizing chemical hazards associated with plating solutions; inventorying on-site chemicals; and disposal of chemicals and/or residues. 17 refs., 5 figs., 1 tab.

Not Available

1985-08-01T23:59:59.000Z

396

In situ Remediation Technologies Associated with Sanitation Improvement  

E-Print Network (OSTI)

by poor levels of sanitation and inadequate water and wastewater management. Pressure from urban areas12 In situ Remediation Technologies Associated with Sanitation Improvement: An Opportunity, the implementation of sanitation infrastructure is also necessary. With the increase of the negative environmental

Paris-Sud XI, Université de

397

Remediation of Petroleum-Contaminated Groundwater Using High Carbon Content Fly Ash  

E-Print Network (OSTI)

1 Remediation of Petroleum-Contaminated Groundwater Using High Carbon Content Fly Ash M. Melih for retardation of petroleum contaminants in barrier applications. Sorbed amounts measured in batch scale tests on remediation efficiency. INTRODUCTION Remediation of groundwater contaminated with petroleum-based products has

Aydilek, Ahmet

398

CSMRI Site Remediation Quality Assurance Project Plan March 30, 2004 TABLE OF CONTENTS  

E-Print Network (OSTI)

..........................................................................................................................................5 9.0 Ground- and Surface-Water MonitoringCSMRI Site Remediation Quality Assurance Project Plan March 30, 2004 TASK PLAN TABLE OF CONTENTS 1 .............................................................................................5 FIGURES #12;CSMRI Site Remediation Task Plan March 31, 2004 TASK PLAN CSMRI SITE REMEDIATION 1

399

A Hydraulic Capture Application for Optimal Remediation Design K. R. Fowlera  

E-Print Network (OSTI)

. INTRODUCTION Hydraulic capture methods for remediation attempt to control the direction of ground- water1 A Hydraulic Capture Application for Optimal Remediation Design K. R. Fowlera , C. T. Kelley b , C Carolina Chapel Hill, NC 27599-7400, USA The goal of a hydraulic capture model for remediation purposes

400

Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks  

SciTech Connect

This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

T. M. Blakley; W. D. Schofield

2007-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "river remediation srr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Minnesota Pollution Control Agency Public Meeting -5/19/2011 Remedial Investigation of UMore Park East  

E-Print Network (OSTI)

Minnesota Pollution Control Agency Public Meeting - 5/19/2011 Remedial Investigation of UMore Park MINNESOTA POLLUTION CONTROL AGENCY University of Minnesota Remedial Investigation of UMore Park East Dakota Public Meeting - 5/19/2011 Remedial Investigation of UMore Park East (763) 591-0535 or (800) 591

Netoff, Theoden

402

Relationship Between Solute Permeability and Osmotic Remediability in a Galactose-Negative Strain of Saccharomyces cerevisiae  

Science Journals Connector (OSTI)

...workers defined an osmotic remedial mutant as one in which the...inorganic, are effective osmotic remedial agents. The results reported here are a continuation of an investigation into the genetic and physiological...galactose-negative, osmotic remedial mutant. In S. cerevisiae...

John Bassel; Howard C. Douglas

1970-11-01T23:59:59.000Z

403

Community Involvement Plan: Remedial Investigation of UMore Park East, Dakota County, Minnesota  

E-Print Network (OSTI)

i Community Involvement Plan: Remedial Investigation of UMore Park East, Dakota County, Minnesota Appendix A Fact Sheet on Planned Remedial Investigation of UMore Park East UMP012331 #12;1 1.0 Overview participation in the planned Remedial Investigation (RI) of the eastern portion of the University of Minnesota

Netoff, Theoden

404

Osmotic Remedial Response in a Galactose-negative Mutant of Saccharomyces cerevisiae  

Science Journals Connector (OSTI)

...proposed that an osmotic remedial allele produces an...The object of this investigation was to examine the...particular osmotic remedial mutant in some detail...possibility that the osmotic remedial response affects trans...is currently under investigation. ACKNOWLEDGMENTS This...

John Bassel; H. C. Douglas

1968-03-01T23:59:59.000Z

405

The prevalence of folate-remedial MTHFR enzyme variants in humans  

Science Journals Connector (OSTI)

...The hypothesis that folate-remedial alleles of MTHFR are those...response that is currently under investigation. In this way the activity...function and would be nutrient remedial. The contribution from common...The prevalence of folate-remedial MTHFR enzyme variants in humans...

Nicholas J. Marini; Jennifer Gin; Janet Ziegle; Kathryn Hunkapiller Keho; David Ginzinger; Dennis A. Gilbert; Jasper Rine

2008-01-01T23:59:59.000Z

406

SRS - Website Map  

NLE Websites -- All DOE Office Websites (Extended Search)

1/2011 1/2011 SEARCH GO menu spacer SRS Home Savannah River Site Website Map About SRS Mission & Vision Where We Are SRS History Fact Sheets Tour SRS Contact SRS SRS Organizations Savannah River Nuclear Solutions, LLC (SRNS) Savannah River Remediation LLC (SRR) Savannah River Ecology Laboratory (SREL) USDA Forest Service - Savannah River Wackenhut Services, Inc. Mixed Oxide Fuel Fabrication Facility (MOX) Parsons Related Links & Resources Department of Energy (DOE) Department of Energy - Environmental Management (DOE-EM) National Nuclear Security Administration (NNSA) American Recovery & Reinvestment Act (ARRA) News News Releases Video Releases Fact Sheets Photo Gallery Speakers Media Contacts Business Opportunities Community Reuse Organization Technology Transfer Savannah River National Laboratory (SRNL)

407

Slide 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Congressional Nuclear Cleanup Caucus Congressional Nuclear Cleanup Caucus Savannah River Site T. Zack Smith Deputy Manager Savannah River Operations Office June 12, 2013 www.energy.gov/EM 2 President Truman announced that Russia tested its first atomic weapon. Sept. 23, 1949 Atomic Energy Commission asked E.I. Du Pont de Nemours & Company to undertake a new atomic project. Du Pont built the Savannah River Plant and operated it for nearly 40 years. June 12, 1950 Westinghouse Savannah River Company took over as SRS's prime contractor. April 1, 1989 Savannah River Nuclear Solutions (SRNS) assumed responsibility for SRS management and operations. Aug. 1, 2008 Savannah River Remediation (SRR) assumed responsibility for SRS Liquid Waste operations.

408

Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase IV  

SciTech Connect

This Phase IV Remedial Design/Remedial Action Work Plan addresses the remediation of areas with the potential for UXO at the Idaho National Laboratory. These areas include portions of the Naval Proving Ground, the Arco High-Altitude Bombing Range, and the Twin Buttes Bombing Range. Five areas within the Naval Proving Ground that are known to contain UXO include the Naval Ordnance Disposal Area, the Mass Detonation Area, the Experimental Field Station, The Rail Car Explosion Area, and the Land Mine Fuze Burn Area. The Phase IV remedial action will be concentrated in these five areas. For other areas, such as the Arco High-Altitude Bombing Range and the Twin Buttes Bombing Range, ordnance has largely consisted of sand-filled practice bombs that do not pose an explosion risk. Ordnance encountered in these areas will be addressed under the Phase I Operations and Maintenance Plan that allows for the recovery and disposal of ordnance that poses an imminent risk to human health or the environment.

R. P. Wells

2006-11-14T23:59:59.000Z

409

Rivanna River Basin Commission (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

410

Ecotoxicology | Savannah River Ecology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Savannah River NERP Research Opportunities Field Sites Data Research Facilities Low Dose Irradiation Facility Tritium Irrigation Facility Microsatellite Development Education...

411

PORFLOW MODELING FOR A PRELIMINARY ASSESSMENT OF THE PERFORMANCE OF NEW SALTSTONE DISPOSAL UNIT DESIGNS  

SciTech Connect

At the request of Savannah River Remediation (SRR), SRNL has analyzed the expected performance obtained from using seven 32 million gallon Saltstone Disposal Units (SDUs) in the Z-Area Saltstone Disposal Facility (SDF) to store future saltstone grout. The analysis was based on preliminary SDU final design specifications. The analysis used PORFLOW modeling to calculate the release of 20 radionuclides from an SDU and transport of the radionuclides and daughters through the vadose zone. Results from this vadose zone analysis were combined with previously calculated releases from existing saltstone vaults and FDCs and a second PORFLOW model run to calculate aquifer transport to assessment points located along a boundary 100 m from the nearest edge of the SDF sources. Peak concentrations within 12 sectors spaced along the 100 m boundary were determined over a period of evaluation extending 20,000 years after SDF closure cap placement. These peak concentrations were provided to SRR to use as input for dose calculations.

Smith, F.

2012-08-06T23:59:59.000Z

412

River restoration Ellen Wohl,1  

E-Print Network (OSTI)

, massive expenditures, and the burgeoning industry of aquatic and riparian restoration, river ecosystems. Introduction: Problem Statement [2] Continuing degradation of river ecosystems and loss of aquatic biodiversityRiver restoration Ellen Wohl,1 Paul L. Angermeier,2 Brian Bledsoe,3 G. Mathias Kondolf,4 Larry Mac

Poff, N. LeRoy

413

DOE-EMSP Final Report: Characterization of Changes in Colloid and DNAPL Affecting Surface Chemistry and Remediation  

SciTech Connect

The waste disposal to the M-area basin and A-14 outfall at the Savannah River Department of Energy facility in Aiken SC (USA) included a wide variety of inorganic aqueous flows and organic solvents in the form of dense non-aqueous phase liquids (DNAPL). The DNAPL has migrated through the subsurface resulting in widespread groundwater contamination. The goal of this research was to identify and quantify processes that could have affected the migration and remediation of the DNAPL in the subsurface. It was hypothesized that the variety of waste disposed at this site could have altered the mineral, microbial and DNAPL properties at this site relative to other DNAPL sites. The DNAPL was determined to have a very low interfacial tension and is suspected to be distributed in fine grained media, thereby reducing the effectiveness of soil vapor extraction remediation efforts. Although the DNAPL is primarily comprised of tetrachloroethene and trichloroethane, it also contains organic acids and several heavy metals. Experimental results suggest that iron from the aqueous and DNAPL phases undergoes precipitation and dechlorination reactions at the DNAPL-water interface, contributing to the low interfacial tension and acidity of the DNAPL. Biological activity in the contaminated region can also contribute to the low interfacial tension. PCE degrading bacteria produce biosurfactants and adhere to the DNAPL-water interface when stressed by high tetrachloroethene or low dissolved oxygen concentrations. The presence of iron can reduce the interfacial tension by nearly an order of magnitude, while the PCE degraders reduced the interfacial tension by nearly 50%. Abiotic changes in the mineral characteristics were not found to be substantially different between contaminated and background samples. The research completed here begins to shed some insight into the complexities of DNAPL fate and migration at sites where co-disposal of many different waste products occurred. Quantifying the low interfacial tension of the SRS DNAPL helps to formulate a new conceptual picture of the subsurface DNAPL migration and provides an explanation of the limited effectiveness of remediation efforts. Alternative designs for remediation that are more effective for sites with DNAPL in fine grained media are required.

Susan E. Powers; Stefan J. Grimberg; Miles Denham

2007-02-07T23:59:59.000Z

414

The U.S. Department of Energy Formerly Utilized Sites Remedial Action  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The U.S. Department of Energy Formerly Utilized Sites Remedial The U.S. Department of Energy Formerly Utilized Sites Remedial Action Program: Ensuring Protectiveness and Preserving Knowledge The U.S. Department of Energy Formerly Utilized Sites Remedial Action Program: Ensuring Protectiveness and Preserving Knowledge The U.S. Department of Energy Formerly Utilized Sites Remedial Action Program: Ensuring Protectiveness and Preserving Knowledge (Waste Management Conference 2010) The U.S. Department of Energy Formerly Utilized Sites Remedial Action Program: Ensuring Protectiveness and Preserving Knowledge More Documents & Publications Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP

415

Microsoft Word - 2010 SRS ISMS Verification _Activity Report_ _June 24 - July2, 2010_  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assurance, Technical Support Division Assurance, Technical Support Division Integrated Safety Management System (ISMS), Phase II Verification Review of Savannah River Remediation, July 2010 The U.S. Department of Energy (DOE), Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), participated in the DOE Savannah River Operations Office (DOE-SR), Office of Safety and Quality Assurance (OSQA), Technical Support Division (TSD) Integrated Safety Management System (ISMS), Phase II Verification of Savannah River Remediation (SRR). The HSS participation, through its Site Lead program, provided HSS with an opportunity to maintain operational awareness and evaluate site programs, while supporting DOE line management efforts to safely and securely accomplish their missions. The onsite

416

Chao Phraya River  

Science Journals Connector (OSTI)

the river flow during low flow in January and 4% during high flow conditions in July 2004. The unit shoreline ...... since the water first became enriched in radium isotopes assuming no ... uranium-series isotopes (223Ra and 226Ra), estimating radium ages .... inventory into concentration by dividing by the water depth, which

2006-08-16T23:59:59.000Z

417

Condamine River Meteor Zamia  

E-Print Network (OSTI)

CONNORS Cape Townshend Townshend Island Island Long Broad Sound Condamine River Maran oa Comet Isaac Daws Roper Nogoa Ca llide Bungeworgorai North Balmy L ogan Denison L o t us Buck land Con ciliation Humb oldt Elphinstone Dam Eungella Dam R Ck Nebo RomaAmby Wowan Warra Miles Moura Dingo Comet Alpha Banana Rannes Marmor

Greenslade, Diana

418

Savannah River Site Robotics  

ScienceCinema (OSTI)

Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

None

2012-06-14T23:59:59.000Z

419

The Nation's Rivers  

Science Journals Connector (OSTI)

...soil erosion and the need for soil conserva-tion were first clearly...residuals accumu-lated in soils, vegetation, and other organisms...from the Potomac River near Washing-ton, D.C., and doubtless...Ruhe and R. B. Daniels, J. Soil Water Conserv. 20, 52 (1965...

M. Gordon Wolman

1971-11-26T23:59:59.000Z

420

River meandering dynamics  

Science Journals Connector (OSTI)

The Ikeda, Parker, and Sawai river meandering model is reexamined using a physical approach employing an explicit equation of motion. For periodic river shapes as seen from above, a cross-stream surface elevation gradient creates a velocity shear that is responsible for the decay of small-wavelength meander bends, whereas secondary currents in the plane perpendicular to the downstream direction are responsible for the growth of large-wavelength bends. A decay length D=H/2Cf involving the river depth H and the friction coefficient Cf sets the scale for meandering, giving the downstream distance required for the fluid velocity profile to recover from changes in the channel curvature. Using this length scale and a time scale T, we explicitly trace the observed length scale invariance to the equations of motion, and predict similar time and velocity scale invariances. A general time-dependent nonlinear modal analysis for periodic rivers reveals that modes higher than the third mode are needed to describe upstream migration of bend apexes just before oxbow cutoff, and are important to accurate calculations of the time and sinuosity at cutoff.

Boyd F. Edwards and Duane H. Smith

2002-03-26T23:59:59.000Z

Note: This page contains sample records for the topic "river remediation srr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

ENVIRONMENTAL ASSESSMENT OF No REMEDIAL ACTION AT THE INACTIVE URANIFEROUS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 206 7 206 REV. 0 ENVIRONMENTAL ASSESSMENT OF No REMEDIAL ACTION AT THE INACTIVE URANIFEROUS LIGNITE ASHING SITES AT BELFIELD AND BOWMAN. NORTH DAKOTA United States Department of Energy Uranium Mill Tailings Remedial Action Project June 1997 INTENDED FOR PUBLIC RELEASE This report has been reproduced from the best available copy. Available in paper copy and microfiche Number of pages in this report: 5 8 DOE and DOE contractors can obtain copies of this report from: Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 (61 5) 576-8401 This report is publicly available from: National Technical Information Service Department of Commerce 5285 Port Royai Road Springfield, VA 22161 (703) 487-4650 DOE/EA-1206 REV. 0 ENVIRONMENTAL ASSESSMENT

422

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIkNATION REPORT  

Office of Legacy Management (LM)

ELIkNATION REPORT ELIkNATION REPORT .FOR WESTINGHOUSE .ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Deconrmissioning Projects l CONTENTS INTRODUCTICIN BACKGROUND. Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 2 2 2' 4 4 iii ELIMINATION~REPORT WESTINGHOUSE ATOMIC POWER,DEVELOPMENT,PLANT: EAST PITTSBURGH PLANT: 'FOREST HILLS ,PITTS.BURGH, PENNSYLVANIA INTRODUCTION The Department of,Energy (DOE), Office of Nuclear Energy, Office of 'Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices and

423

In Situ Biological Uranium Remediation within a Highly Contaminated Aquifer  

NLE Websites -- All DOE Office Websites (Extended Search)

In Situ Biological Uranium Remediation In Situ Biological Uranium Remediation within a Highly Contaminated Aquifer Matthew Ginder-Vogel1, Wei-Min Wu1, Jack Carley2, Phillip Jardine2, Scott Fendorf1 and Craig Criddle1 1Stanford University, Stanford, CA 2Oak Ridge National Laboratory, Oak Ridge, TN Microbial Respiration Figure 1. Uranium(VI) reduction is driven by microbial respiration resulting in the precipitation of uraninite. Uranium contamination of ground and surface waters has been detected at numerous sites throughout the world, including agricultural evaporation ponds (1), U.S. Department of Energy nuclear weapons manufacturing areas, and mine tailings sites (2). In oxygen-containing groundwater, uranium is generally found in the hexavalent oxidation state (3,4), which is a relatively soluble chemical form. As U(VI) is transported through

424

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM - ELIMINATION REPORT FOR  

Office of Legacy Management (LM)

- - ELIMINATION REPORT FOR . UNIVERSITY OF NEVADA MACKAY SCHOOL OF MINES RENO, NEVADA s,d k I",, ici ;3J(, i Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES 1 , Page . 1 2 2 2' 3 3 iii The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor offices and divisions) has reviewed the past activities conducted under contract to the Atomic Energy Conrmission (AEC) at the University of Nevada, Mackay

425

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

FORMER ALLIED CHEMICAL CORPORATION, CHEMICALS COMPANY FORMER ALLIED CHEMICAL CORPORATION, CHEMICALS COMPANY (NOW GENERAL CHEMICAL CORPORATION) NORTH CLAYMONT, DELAWARE Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioni.ng Projects " .___ . ..-. --.- ------ ". CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 1 1 2 2 2 4 ii INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices, and divisions) has reviewed the past activities of the Manhattan Engineer -- District (MED) and the Atomic Energy Commission (AEC) at the Allied Chemical

426

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

AMOCO CHEMICAL COMPANY AMOCO CHEMICAL COMPANY (THE FORMER TEXAS CITY CHEMICALS, INC.) TEXAS CITY, TEXAS Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS Summary of Findings REFERENCES ii --.. ---_ .l.- _-__II__-_. -. Page 1 7 7 ' c . ELIMINATION REPORT AMOCO CHEMICAL COMPANY (THE FORMER TEXAS CITY CHEMICALS, INC.) TEXAS CITY, TEXAS INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor offices and divisions), has reviewed the past activities conducted on behalf of the Atomic

427

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

NLE Websites -- All DOE Office Websites (Extended Search)

Embrittlement Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D. D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline Working Group Workshop Augusta, GA, August 30, 2005 Funding and Duration * Timeline - Project start date: 7/20/05 - Project end date: 7/19/09 - Percent complete: 0.1% * Budget: Total project funding: 300k/yr * DOE share: 75% * Contractor share: 25% * Barriers - Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?) - Assessment of hydrogen compatibility of the existing natural gas pipeline system for transporting hydrogen - Suitable steels, and/or coatings, or other materials to provide safe and reliable hydrogen transport and reduced capital cost 2 Team and Collaborators 3 * Industrial Partners: SECAT

428

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

SYLVANIA-CORNING NUCLEAR CORPORATION SYLVANIA-CORNING NUCLEAR CORPORATION BAYSIDE, NEW YORK VW. Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects ..- .-- ---- CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES ii Page 1 L 2 2 3 3 5 5 - --__( -_..... _ .._ ELIMINATION REPORT THE FORMER SYLVANIA-CORNING NUCLEAR CORPORATION BAYSIDE, NEW YORK L -rc c INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices, and divisions) has reviewed the past activities of the Atomic Energy

429

NE-24 Unlverslty of Chicayo Remedial Action Plan  

Office of Legacy Management (LM)

(YJ 4 tlsj .?I2 (YJ 4 tlsj .?I2 416 17 1983 NE-24 Unlverslty of Chicayo Remedial Action Plan 22&d 7 IA +-- E. I.. Keller, Director Technical Services Division Oak Ridge Operations Ufflce In response to your memorandum dated July 29, 1983, the Field Task Proposal/Agreement (FTP/A) received frw Aryonne National Laboratory (ANL) appears to be satisfactory, and this office concurs in the use of ANL to provide the decontamination effort as noted in the FTP/A. The final decontaminatton report should Include the data needed for certiff- cation of the cleanup and any contamination left In place, e.g., sewer lines should be so documented in the permanent records of the University as well as the certification documents and reports. The remedial action to be conducted appears to be clearly InsIgnifIcant from an environmental

430

Monticello Mill Tailings Site Operable Unit Ill Interim Remedial Action  

Office of Legacy Management (LM)

Site Site Operable Unit Ill Interim Remedial Action Mark Perfxmed Under DOE Contrici No. DE-AC13-96CJ873.35 for th3 U.S. De[:ar!menf of Energy app~oveJioi'ptiL#ic re1ease;dCinWlionis Unlimilra' This page intentionally left blank Monticello Mill Tailings Site Operable Unit I11 Interim Remedial Action Annual Status Report August 1999 Prepared for U.S. Department of Energy Albuquerque Operations Office Grand Junction Office Project Number MSG-035-0011-00-000 Document Number Q0017700 Work Performed Under DOE Contract Number DE-AC13-96GJ87335 Task Order Number MAC99-03 This page intentionally blank Document Number Q0017700 Acronyms Contents Page ACRONYMS .............................................................................................................................. V

431

Final Report Northeast Site Area B NAPL Remediation Project  

Office of Legacy Management (LM)

Northeast Site Area B Northeast Site Area B NAPL Remediation Project at the Young - Rainey STAR Center Largo, Pinellas County, Florida April 2007 Office of Legacy Management DOE M/1457 2007 - -L Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management U.S. Department of Energy This page intentionally left blank DOE-LM/1457-2007 Final Report Northeast Site Area B NAPL Remediation Project at the Young - Rainey STAR Center Largo, Pinellas County, Florida April 2007 Work Performed by S.M. Stoller Corporation under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado

432

Oak Ridge Operations Formerly Utilized Sites Remedial Action Program  

Office of Legacy Management (LM)

IC77GLg /'-Oi. SEP 20 1982 IC77GLg /'-Oi. SEP 20 1982 10-05-04B-001 Deportment of Energy Oak Ridge Operations Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-AC05-810R20722 PRELIMINARY ENGINEERING EVALUATION OF REMEDIAL ACTION ALTERNATIVES BAYO CANYON SITE, LOS ALAMOS, NEW MEXICO SEPTEMBER 1982 Bechtel Job 14501 Bechtel National, Inc. Nuclear Fuel Operations LEGAL NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use

433

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT,  

Office of Legacy Management (LM)

REPORT, REPORT, FOR AL-TECH SPECIALTY STEEL CORPORATION (THE FORMER ALLEGHENY-LUDLUM STEEL CORPORATION) WATERVLIET, NEW YORK, AND DUNKIRK, NEW YORK Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste.Technology Division of Facility and Site Decommissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES * 1 2 2 2 3 4 4 . . . 111 ELIMINATION REPORT AL-TECH SPECIALTY STEEL CORPORATION (THE FORMER ALLEGHENY-LUDLUM STEEL CORPORATION) WATERVLIET. NEW YORK, AND DUNKIRK, NEW YORK INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices, and

434

In-situ groundwater remediation by selective colloid mobilization  

DOE Patents (OSTI)

An in-situ groundwater remediation pump and treat technique effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment.

Seaman, John C. (New Ellenton, SC); Bertch, Paul M. (Aiken, SC)

1998-01-01T23:59:59.000Z

435

In situ RF/microwave remediation of soil experiment overview  

SciTech Connect

Contaminant plumes are significant waste problems that require remediation in both the government and private sectors. The authors are developing an in situ process that uses RF/microwave stimulation to remove pollutants from contaminated soils. This process is more efficient than existing technologies, creates less secondary pollution, and is applicable to situations that are not amenable to treatment by existing technologies. Currently, the most commonly used process is soil vapor extraction. However, even when it is successful, this technology is energy inefficient. The authors objective is to combine RF/microwave energy application with soil vapor extraction to help mobilize and efficiently remove the soil contaminants, specifically demonstrating the viability of RF/microwave induced, in situ, soil remediation of light and dense non-aqueous phase liquids (LNAPL, DNAPL) contaminants.

Regan, A.H.; Palomares, M.E.; Polston, C.; Rees, D.E.; Roybal, W.T. [Los Alamos National Lab., NM (United States); Ross, T.J. [Univ. of New Mexico, Albuquerque, NM (United States)

1995-09-01T23:59:59.000Z

436

Clean option: An alternative strategy for Hanford Tank Waste Remediation  

SciTech Connect

Plans for remediation of the Hanford underground storage tanks are currently undergoing reevaluation. As part of this process, many options are being considered for the Tank Waste Remediation System (MRS). The clean option'' described here proposes an aggressive waste processing strategy to achieve the three ma or objectives: Greatly reduce the volume of high-level waste (HLW) to lessen demands on geologic repository space; decrease by several orders of magnitude the amount of radioactivity and toxicity now in the waste tanks that will be left permanently onsite as low-level solid waste (LLW); and accomplish the first two objectives without significantly increasing the total amount of waste for disposal. The study discussed here focuses on process chemistry, as it provides the foundation for achieving the clean option objectives. Because demonstrated separation steps have been identified and connected in a way that meets these objectives, the study concludes that the process chemistry rests on a firm technical basis.

Straalsund, J.L.; Swanson, J.L.; Baker, E.G.; Jones, E.O.; Kuhn, W.L. (Pacific Northwest Lab., Richland, WA (United States)); Holmes, J.J. (Westinghouse Hanford Co., Richland, WA (United States))

1992-12-01T23:59:59.000Z

437

A method for desalination and water remediation by hydrodynamic cavitation  

Science Journals Connector (OSTI)

Water is becoming an increasingly valuable commodity with population growth demanding more and more amounts of this limited resource. Increased efforts are directed toward recycling and remediation as well as desalination of the large quantities of seawater available. Dr. Bertwin Langenecker was a pioneer in utilizing hydrodynamic cavitation in a variety of applications that would remove dissolved solids from water and other liquids. His combination of intense cavitation using a rotor-stator combination as well as simultaneously adding an adsorbent demonstrated impressive results in desalination and waste water remediation. In this presentation a description will be given of Dr. Langenecker’s technology as well as a sampling of some of his most impressive results. Speculations as to why this approach works as well as it does will be presented.

2013-01-01T23:59:59.000Z

438

A method for desalination and water remediation by hydrodynamic cavitation  

Science Journals Connector (OSTI)

Water is becoming an increasingly valuable commodity with population growth demanding more and more amounts of this limited resource. Increased efforts are directed toward recycling and remediation as well as desalination of the large quantities of seawater available. Dr. Bertwin Langenecker was a pioneer in utilizing hydrodynamic cavitation in a variety of applications that would remove dissolved solids from water and other liquids. His combination of intense cavitation using a rotor-stator combination as well as simultaneously adding an adsorbent demonstrated impressive results in desalination and waste water remediation. In this presentation a description will be given of Dr. Langenecker's technology as well as a sampling of some of his most impressive results. Speculations as to why this approach works as well as it does will be presented.

Lawrence A. Crum; Michael Skinner; Scott Zeilinger

2013-01-01T23:59:59.000Z

439

Decontamination formulation with additive for enhanced mold remediation  

DOE Patents (OSTI)

Decontamination formulations with an additive for enhancing mold remediation. The formulations include a solubilizing agent (e.g., a cationic surfactant), a reactive compound (e.g., hydrogen peroxide), a carbonate or bicarbonate salt, a water-soluble bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate), a mold remediation enhancer containing Fe or Mn, and water. The concentration of Fe.sup.2+ or Mn.sup.2+ ions in the aqueous mixture is in the range of about 0.0001% to about 0.001%. The enhanced formulations can be delivered, for example, as a foam, spray, liquid, fog, mist, or aerosol for neutralization of chemical compounds, and for killing certain biological compounds or agents and mold spores, on contaminated surfaces and materials.

Tucker, Mark D. (Albuquerque, NM); Irvine, Kevin (Huntsville, AL); Berger, Paul (Rome, NY); Comstock, Robert (Bel Air, MD)

2010-02-16T23:59:59.000Z

440

In-situ groundwater remediation by selective colloid mobilization  

DOE Patents (OSTI)

An in-situ groundwater remediation pump and treat technique is described which is effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, and which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment. 3 figs.

Seaman, J.C.; Bertch, P.M.

1998-12-08T23:59:59.000Z

Note: This page contains sample records for the topic "river remediation srr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

FORMERLY REMEDIAL UTILIZED SITES ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

REMEDIAL UTILIZED SITES ACTION PROGRAM ELIMINATION REPORT FOR FORMER CARPENTER STEEL COMPANY; 101 WEST BERN STREET; READING, PENNSYLVANIA December 1991 U.S. Department of Energy Office of Environmental Restoration Elimination Report Former Carpenter Steel Company CONTENTS INTRODUCTION ........................... 1 BACKGROUND ............................ 1 Site Function ......................... Site Description. ....................... : Radiological History and Status ................ 2 ELIMINATION ANALYSIS ....................... 3 REFERENCES ............................ 4 Elimination Report Former Carpenter Steel Company INTRODUCTION The Department of Energy (DOE), Office of Environmental Restoration, has reviewed the past activities of the Manhattan Engineer District (MEO) and

442

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

< < .. ,:. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR JESSOP STEEL COMPANY; 500 GREEN STREET: WASHINGTON, PENNSYLVANIA December 1991 U.S. Department of Energy Office of Environmental Restoration Elimination Report Jessop Steel Company CONTENTS INTRODUCTION ...................... .'. .... 1 BACKGROUND ............................. 1 Site Function Site Description : : : : : : : .................................... : Radiological History and Status ................. 2 ELIMINATION ANALYSIS ........................ 3 REFERENCES .............................. 4 Elimination Report Jessop Steel Company 1 INTRODUCTION The Department of Energy (DOE)., Office of Environmental Restoration, has reviewed the past activities of the Manhattan Engineer District (MED) and

443

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

REMEDIAL ACTION PROGRAM ELIMINATION REPORT SONABOND ULTRASONICS FORMERLY AEROPROJECTS, INC. 200-T E. ROSEDALE AVENUE WEST CHESTER,~PENNSYLVANIA December 1991 U.S. Department of Energy Office of Environmental Restoration and Waste Management Office of Environmental Restoration Office of Eastern Area Programs . . . CONTENTS INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS . . . . . . . . . . . . . . . . . . . REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . m . . 1 . . 1 . . 2 . . 2 I . . ELIMINATIO N REPO R T SONABOND ULTRASONICS FORMERLY AEROPROJECTS, INC. 200-T E. ROSEDALE AVENUE W EST CHESTER, PENNSYLVANIA

444

Mercury contaminated sediment sites—An evaluation of remedial options  

SciTech Connect

Mercury (Hg) is a naturally-occurring element that is ubiquitous in the aquatic environment. Though efforts have been made in recent years to decrease Hg emissions, historically-emitted Hg can be retained in the sediments of aquatic bodies where they may be slowly converted to methylmercury (MeHg). Consequently, Hg in historically-contaminated sediments can result in high levels of significant exposure for aquatic species, wildlife and human populations consuming fish. Even if source control of contaminated wastewater is achievable, it may take a very long time, perhaps decades, for Hg-contaminated aquatic systems to reach relatively safe Hg levels in both water and surface sediment naturally. It may take even longer if Hg is present at higher concentration levels in deep sediment. Hg contaminated sediment results from previous releases or ongoing contributions from sources that are difficult to identify. Due to human activities or physical, chemical, or biological processes (e.g. hydrodynamic flows, bioturbation, molecular diffusion, and chemical transformation), the buried Hg can be remobilized into the overlying water. Hg speciation in the water column and sediments critically affect the reactivity (i.e. conversion of inorganic Hg(II) to MeHg), transport, and its exposure to living organisms. Also, geochemical conditions affect the activity of methylating bacteria and its availability for methylation. This review paper discusses remedial considerations (e.g. key chemical factors in fate and transport of Hg, source characterization and control, environmental management procedures, remediation options, modeling tools) and includes practical case studies for cleaning up Hg-contaminated sediment sites. -- Highlights: ? Managing mercury-contaminated sediment sites are challenging to remediate. ? Remediation technologies are making a difference in managing these sites. ? Partitioning plays a dominant role in the distribution of mercury species. ? Mathematical models can be used to help us understand the chemistry and processes.

Randall, Paul M., E-mail: randall.paul@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States); Chattopadhyay, Sandip, E-mail: Sandip.Chattopadhyay@tetratech.com [Tetra Tech, Inc., 250 West Court Street, Suite 200W, Cincinnati, OH 45202 (United States)] [Tetra Tech, Inc., 250 West Court Street, Suite 200W, Cincinnati, OH 45202 (United States)

2013-08-15T23:59:59.000Z

445

Integrating GIS and GPS in environmental remediation oversight  

SciTech Connect

This paper presents findings on Ohio EPA Office of Federal Facilities Oversight`s (OFFO) use of GIS and GPS for environmental remediation oversight at the U.S. Department of Energy`s (DOE) Fernald Site. The Fernald site is a former uranium metal production facility within DOE`s nuclear weapons complex. Significant uranium contamination of soil and groundwater is being remediated under state and federal regulations. OFFO uses GIS/GPS to enhance environmental monitoring and remediation oversight. These technologies are utilized within OFFO`s environmental monitoring program for sample location and parameter selection, data interpretation and presentation. GPS is used to integrate sample data into OFFO`s GIS and for permanently linking precise and accurate geographic data to samples and waste units. It is important to identify contamination geographically as all visual references (e.g., buildings, infrastructure) will be removed during remediation. Availability of the GIS allows OFFO to perform independent analysis and review of DOE contractor generated data, models, maps, and designs. This ability helps alleviate concerns associated with {open_quotes}black box{close_quotes} models and data interpretation. OFFO`s independent analysis has increased regulatory confidence and the efficiency of design reviews. GIS/GPS technology allows OFFO to record and present complex data in a visual format aiding in stakeholder education and awareness. Presented are OFFO`s achievements within the aforementioned activities and some reasons learned in implementing the GIS/GPS program. OFFO`s two years of GIS/GPS development have resulted in numerous lessons learned and ideas for increasing effectiveness through the use of GIS/GPS.

Kaletsky, K.; Earle, J.R.; Schneider, T.A. [Ohio EPA, Dayton, OH (United States)

1996-12-31T23:59:59.000Z

446

Remedial Action Work Plan Amchitka Island Mud Pit Closures  

SciTech Connect

This remedial action work plan presents the project organization and construction procedures developed for the performance of the remedial actions at U.S. Department of Energy (DOE's) sites on Amchitka Island, Alaska. During the late1960s and early 1970s, the U.S. Department of Defense and the U.S. Atomic Energy Commission (the predecessor agency to DOE) used Amchitka Island as a site for underground nuclear tests. A total of nine sites on the Island were considered for nuclear testing; however, tests were only conducted at three sites (i.e., Long Shot in 1965, Milrow in 1969, and Cannikin in 1971). In addition to these three sites, large diameter emplacement holes were drilled in two other locations (Sites D and F) and an exploratory hole was in a third location (Site E). It was estimated that approximately 195 acres were disturbed by drilling or preparation for drilling in conjunction with these activities. The disturbed areas include access roads, spoil-disposal areas, mud pits which have impacted the environment, and an underground storage tank at the hot mix plant which was used to support asphalt-paving operations on the island. The remedial action objective for Amchitka Island is to eliminate human and ecological exposure to contaminants by capping drilling mud pits, removing the tank contents, and closing the tank in place. The remedial actions will meet State of Alaska regulations, U.S. Fish and Wildlife Service refuge management goals, address stakeholder concerns, and address the cultural beliefs and practices of the native people. The U.S. Department of Energy, Nevada Operations Office will conduct work on Amchitka Island under the authority of the Comprehensive Emergency Response, Compensation, and Liability Act. Field activities are scheduled to take place May through September 2001. The results of these activities will be presented in a subsequent Closure Report.

DOE/NV

2001-04-05T23:59:59.000Z

447

Task 3: PNNL Visit by JAEA Researchers to Participate in TODAM Code Applications to Fukushima Rivers and to Evaluate the Feasibility of Adaptation of FLESCOT Code to Simulate Radionuclide Transport in the Pacific Ocean Coastal Water Around Fukushima  

SciTech Connect

Four JAEA researchers visited PNNL for two weeks in February, 2013 to learn the PNNL-developed, unsteady, one-dimensional, river model, TODAM and the PNNL-developed, time-dependent, three dimensional, coastal water model, FLESCOT. These codes predict sediment and contaminant concentrations by accounting sediment-radionuclide interactions, e.g., adsorption/desorption and transport-deposition-resuspension of sediment-sorbed radionuclides. The objective of the river and coastal water modeling is to simulate • 134Cs and 137Cs migration in Fukushima rivers and the coastal water, and • their accumulation in the river and ocean bed along the Fukushima coast. Forecasting the future cesium behavior in the river and coastal water under various scenarios would enable JAEA to assess the effectiveness of various on-land remediation activities and if required, possible river and coastal water clean-up operations to reduce the contamination of the river and coastal water, agricultural products, fish and other aquatic biota. PNNL presented the following during the JAEA visit to PNNL: • TODAM and FLESCOT’s theories and mathematical formulations • TODAM and FLESCOT model structures • Past TODAM and FLESCOT applications • Demonstrating these two codes' capabilities by applying them to simple hypothetical river and coastal water cases. • Initial application of TODAM to the Ukedo River in Fukushima and JAEA researchers' participation in its modeling. PNNL also presented the relevant topics relevant to Fukushima environmental assessment and remediation, including • PNNL molecular modeling and EMSL computer facilities • Cesium adsorption/desorption characteristics • Experiences of connecting molecular science research results to macro model applications to the environment • EMSL tour • Hanford Site road tour. PNNL and JAEA also developed future course of actions for joint research projects on the Fukushima environmental and remediation assessments.

Onishi, Yasuo

2013-03-29T23:59:59.000Z

448

FORMERLY UTILIZED elTEB REMEDIAL ACTION PROORAM [FUSRAP] AND  

Office of Legacy Management (LM)

bE8IQM CRITERIA FOR bE8IQM CRITERIA FOR r FORMERLY UTILIZED elTEB REMEDIAL ACTION PROORAM [FUSRAP] AND r 8URPLUS FACIL~TIES MANAOEMENT PROQRAM [SFMPI FEBRUARY 1886 i r s o i - o o - ~ c - o l - 1 ~ R e v . 1 DESIGN CRITERIA FOR FORMERLY UTILIZED Sf TES REMEDIAL' ACTION PROGAM ( PUSRAPL AND . . -- SURPLUS F A C I L I T I E S UANAGEMENT PROGRAM ( SFMP ( I S S U E D FOR CLIENT APPROVAL) SF proved by: 2-24-86 D a t e T e c h n i c a l Services D i v i s i o n A p p r o v e d by: 2-24-86 D a t e C o n s t r u c t i o n a n d E n g i n e e r i n g Oak R i d g e O p e r a t i o n s O f f ice 14SOl-00-PC-01 Rev. 1 PREFACE T O DESIGN CRITERIA These design criteria have been written in a generic form that sunmarizes criteria applicabl'e for remedial action and long-tern ranasenent activities associated with t h e radioactive wastes at the FOSRAP *and SFflP sites. Site-specific information i

449

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

WINCHESTER ENGINEERING AND ANALYTICAL CENTER WINCHESTER ENGINEERING AND ANALYTICAL CENTER (NORTHEASTERN RADIOLOGICAL HEALTH LABORATORY) WINCHESTER, MASSACHUSE'ITS Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects . . I . I C O N T E N T S IN T R O D U C T IO N B A C K G R O U N D S i te F u n c ti o n S i te D e s c ri p ti o n R a d i o l o g i c a l H i s to ry a n d S ta tu s E L IM IN A T IO N A N A L Y S IS R E F E R E N C E S - P a g e 1 2 2 2 3 5 5 i i i -..- - ELIMINATION REPORT WINCHESTER ENGINEERING AND ANALYTICAL CENTER (NORTHEASTERN RADIOLOGICAL HEALTH LABORATORY) WINCHESTER, MASSACHUSETTS INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Terminal Waste Disposal and Remedial Action, Division of Remedial Action Projects (and/or predecessor agencies, offices and divisions,)

450

Remediation of a uranium-contamination in ground water  

SciTech Connect

The former production site of NUKEM where nuclear fuel-elements were developed and handled from 1958 to 1988 was situated in the centre of an industrial park for various activities of the chemical and metallurgical industry. The size of the industrially used part is about 300.000 m{sup 2}. Regulatory routine controls showed elevated CHC (Chlorinated Hydro-Carbons) values of the ground water at the beginning of the 1990's in an area which represented about 80.000 m{sup 2} down-gradient of locations where CHC compounds were stored and handled. Further investigations until 1998 proved that former activities on the NUKEM site, like the UF{sub 6} conversion process, were of certain relevance. The fact that several measured values were above the threshold values made the remediation of the ground water mandatory. This was addressed in the permission given by the Ministry for Nuclear Installations and Environment of Hesse according to chap. 7 of the German atomic law in October 2000. Ground water samples taken in an area of about 5.000 m{sup 2} showed elevated values of total Uranium activity up to between 50 and 75 Bq/l in 2002. Furthermore in an area of another 20.000 m{sup 2} the samples were above threshold value. In this paper results of the remediation are presented. The actual alpha-activities of the ground waters of the remediation wells show values of 3 to 9 Bq/l which are dominated by 80 to 90 % U-234 activity. The mass-share of total Uranium for this nuclide amounts to 0,05% on average. The authority responsible for conventional water utilisation defined target values for remediation: 20 {mu}g/l for dissolved Uranium and 10 {mu}g/l for CHC. Both values have not yet been reached for an area of about 10.000 m{sup 2}. The remediation process by extracting water from four remediation wells has proved its efficiency by reduction of the starting concentrations by a factor of 3 to 6. Further pumping will be necessary especially in that area of the site where the contaminations were found later during soil remediation activities. Only two wells have been in operation since July 2002 when the remediation technique was installed and an apparatus for direct gamma-spectroscopic measurement of the accumulated activities on the adsorbers was qualified. Two further remediation wells have been in operation since August 2006, when the installed remediation technique was about to be doubled from a throughput of 5 m{sup 3}/h to 10 m{sup 3}/h. About 20.000 m{sup 3} of ground water have been extracted since from these two wells and the decrease of their Uranium concentrations behaves similar to that of the two other wells being extracted since the beginning of remediation. Both, total Uranium-concentrations and the weight-share of the nuclides U-234, U-235 and U-238 are measured by ICP-MS (Inductively Coupled Plasma - Mass Spectrometry) besides measurements of Uranium-Alpha-Activities in addition to the measurement of CHC components of which PCE (Per-chlor-Ethene) is dominant in the contaminated area. CHC compounds are measured by GC (Gas Chromatography). Down-gradient naturally attenuated products are detected in various compositions. Overall 183.000 m{sup 3} of ground water have been extracted. Using a pump and treat method 11 kg Uranium have been collected on an ion-exchange material based on cellulose, containing almost 100 MBq U-235 activity, and almost 15 kg of CHC, essentially PCE, were collected on GAC (Granules of Activated Carbon). Less than 3% of the extracted Uranium have passed the adsorber-system of the remediation plant and were adsorbed by the sewage sludge of the industrial site's waste water treatment. The monthly monitoring of 19 monitoring wells shows that an efficient artificial barrier was built up by the water extraction. The Uranium contamination of two ground water plumes has drastically been reduced by the used technique dependent on the amounts of extracted water. The concentration of the CHC contamination has changed depending on the location of temporal pumping. Thereby maximum availability of this contaminan

Woerner, Joerg; Margraf, Sonja; Hackel, Walter [RD Hanau GmbH (Germany)

2007-07-01T23:59:59.000Z

451

Environmental restoration and remediation technical data management plan  

SciTech Connect

The tasks performed in the Remedial Investigation/Feasibility Study (RI/FS) work plan for each Hanford Site operable unit must meet the requirements of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) and the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et. al 1992). An extensive amount of data will be generated in the evaluation and remediation of hazardous waste sites at the Site. The data must be of sufficient quality, as they will be used to evaluate the need, select the method(s), and support the full remediation of the waste sites as stipulated in the Tri-Party Agreement. In particular, a data management plan (DMP) is to be included in an RI/FS work plan for managing the technical data obtained during the characterization of an operable unit, as well as other data related to the study of the operable unit. Resource Conservation and Recovery Act of 1976 (RCRA) sites are involved in the operable unit. Thus, the data management activities for the operable unit should be applied consistently to RCRA sites in the operable unit as well. This DMP provides common direction for managing-the environmental technical data of all defined operable units at the Hanford Site during the RI/FS activities. Details specific to an operable unit will be included in the actual work plan of that operable unit.

Key, K.T.; Fox, R.D.

1994-02-01T23:59:59.000Z

452

Salmon Site Remedial Investigation Report, Appendix B (Part 2)  

SciTech Connect

This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

USDOE /NV

1999-09-01T23:59:59.000Z

453

Savannah River Site Footprint Reduction Results under the American Recovery and Reinvestment Act - 13302  

SciTech Connect

The Savannah River Site (SRS) is an 802 square-kilometer United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina, managed and operated by Savannah River Nuclear Solutions. Construction of SRS began in the early 1950's to enhance the nation's nuclear weapons capability. Nuclear weapons material production began in the early 1950's, eventually utilizing five production reactors constructed to support the national defense mission. Past operations have resulted in releases of hazardous constituents and substances to soil and groundwater, resulting in 515 waste sites with contamination exceeding regulatory thresholds. More than 1,000 facilities were constructed onsite with approximately 300 of them considered radiological, nuclear or industrial in nature. In 2003, SRS entered into a Memorandum of Agreement with its regulators to accelerate the cleanup using an Area Completion strategy. The strategy was designed to focus cleanup efforts on the 14 large industrial areas of the site to realize efficiencies of scale in the characterization, assessment, and remediation activities. This strategy focuses on addressing the contaminated surface units and the vadose zone and addressing groundwater plumes subsequently. This approach streamlines characterization and remediation efforts as well as the required regulatory documentation, while enhancing the ability to make large-scale cleanup decisions. In February 2009, Congress approved the American Reinvestment and Recovery Act (ARRA) to create jobs and promote economic recovery. At SRS, ARRA funding was established in part to accelerate the completion of environmental remediation and facility deactivation and decommissioning (D and D). By late 2012, SRS achieved 85 percent footprint reduction utilizing ARRA funding by accelerating and coupling waste unit remediation with D and D of remnant facilities. Facility D and D activities were sequenced and permitted with waste unit remediation activities to streamline regulatory approval and execution. Achieving footprint reduction fulfills the Government's responsibility to address legacy contamination; allows earlier completion of legally enforceable compliance agreement milestones; and enables future potential reuse of DOE resources, including land and infrastructure for other missions. Over the last 3.5 years significant achievements were met that contributed to footprint reduction, including the closure of 41 waste units (including 20 miles of radiologically contaminated stream) and decommissioning of 30 facilities (including the precedent setting in situ closure of two former production reactors, the first in the DOE Complex). Other notable achievements included the removal of over 39,750 cubic meters of debris and 68,810 cubic meters of contaminated soils, including 9175 cubic meters of lead-contaminated soil from a former site small arms testing range and treatment of 1,262 cubic meters of tritium-laden soils and concrete using a thermal treatment system. (authors)

Flora, Mary [Savannah River Nuclear Solutions Bldg. 730-4B, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions Bldg. 730-4B, Aiken, SC 29808 (United States); Adams, Angelia [United States Department of Energy Bldg. 730-B, Aiken, SC 29808 (United States)] [United States Department of Energy Bldg. 730-B, Aiken, SC 29808 (United States); Pope, Robert [United States Environmental Protection Agency Region IV Atlanta, GA 30303 (United States)] [United States Environmental Protection Agency Region IV Atlanta, GA 30303 (United States)

2013-07-01T23:59:59.000Z

454

EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

355: Remediation of the Moab Uranium Mill Tailings, Grand and 355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah Summary The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Environmental Impact Statement and associated supplements and amendments provides information on the environmental impacts of the U.S. Department of Energy's (DOE's) proposal to (1) remediate approximately 11.9 million tons of contaminated materials located on the Moab site and approximately 39,700 tons located on nearby vicinity properties and (2) develop and implement a ground water compliance strategy for the Moab site using the framework of the Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water

455

DOE/OR/20722-88 Formerly Utilized Sites Remedial Action Program (FUSRAP)  

Office of Legacy Management (LM)

88 88 . Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-AC05-810R20722 POST-REMEDIAL ACTION REPORT FOR THE WAYNE SITE - 1985 AND 1987 Wayne, New Jersey March 1989 Bechtel National, Inc. DOE/OR/20722-88 POST-REMEDIAL ACTION REPORT FOR THE WAYNE SITE - 1985 AND 1987 WAYNE, NEW JERSEY MARCH 1989 Prepared for UNITED STATES DEPARTMENT OF ENERGY OAK RIDGE OPERATIONS OFFICE Under Contract No. DE-AC05-810R20722 BY R. M. Howard Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 TABLE OF CONTENTS Paqe 1.0 2.0 3.0 4.0 Introduction 1.1 Background 1.2 History Remedial Action Guidelines 5 Remedial Action 3.1 Cleanup/Decontamination Activities 3.2 Contamination Control During the Cleanup 8 8 11 Post-Remedial-Action Sampling 13

456

Microsoft PowerPoint - S05-01_Maryak_StructInteg11_12_10PM.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Structural Integrity Program Structural Integrity Program Presentation to: EM Waste Processing Technical Exchange Date: November 17, 2010 Author: Matthew Maryak, PE Position: Senior Technical Adviser Savannah River Remediation SRR-MS-2010-00240 Print Close 2 Over View * Mission * Tank Integrity Program * Tank Details * Corrosion Control Program * Historical Inspection Results * Independent Panel Assessment * Assimilation of Panel Comments * Recent Analysis Results * Conclusions * Where to Now? Print Close 3 Mission * Mission of Structural Integrity Program: To ensure continued safe management and operation of the waste tanks for whatever period of time these tanks are required. Print Close 4 SI Program Elements Structural Integrity Design & Fabrication Historical Environment Degradation Mechanisms Probabilistic

457

Savannah River Site - Enforcement Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Enforcement Documents Enforcement Documents Savannah River Site Preliminary Notice of Violation issued to Savannah River Nuclear Solutions, LLC related to a Puncture Wound Injury resulting in a Radiological Uptake at the Savannah River Site, July 22, 2011 (NEA-2011-02) Consent Order issued to Parsons Infrastructure & Technology Group, Inc., related to Nuclear Facility Construction Deficiencies and Subcontractor Oversight at the Salt Waste Processing Facility at the Savannah River Site, April 13, 2010 Enforcement Letter issued to Amer Industrial Technologies, Inc. related to Weld Deficiencies at the Salt Waste Processing Facility at the Savannah River Site, April 13, 2010 Enforcement Letter issued to Parsons Technology Development & Fabrication Complex related to Deficiencies in the Fabrication of Safety Significant Embed Plates at the Salt Waste Processing Facility at the Savannah River Site, April 13, 2010

458

Remediation of Methyl Iodide in Aqueous Solution and Soils Amended with Thiourea  

Science Journals Connector (OSTI)

Remediation of Methyl Iodide in Aqueous Solution and Soils Amended with Thiourea ... Therefore, spraying thiourea on the soil surface to form a “reactive surface barrier” may be an effective and innovative strategy for controlling fumigant emissions to the atmosphere and for improving environmental protection. ... Currently, new and innovative remediation technologies including bioremediation, phytoremediation, and chemical remediation have been proposed for use in cleaning polluted soil and groundwater. ...

Wei Zheng; Sharon K. Papiernik; Mingxin Guo; Scott R. Yates

2004-01-08T23:59:59.000Z

459

Guide to using Multiple Regression in Excel (MRCX v.1.1) for Removal of River Stage Effects from Well Water Levels  

SciTech Connect

A software tool was created in Fiscal Year 2010 (FY11) that enables multiple-regression correction of well water levels for river-stage effects. This task was conducted as part of the Remediation Science and Technology project of CH2MHILL Plateau Remediation Company (CHPRC). This document contains an overview of the correction methodology and a user’s manual for Multiple Regression in Excel (MRCX) v.1.1. It also contains a step-by-step tutorial that shows users how to use MRCX to correct river effects in two different wells. This report is accompanied by an enclosed CD that contains the MRCX installer application and files used in the tutorial exercises.

Mackley, Rob D.; Spane, Frank A.; Pulsipher, Trenton C.; Allwardt, Craig H.

2010-09-01T23:59:59.000Z

460

Susquehanna River Basin Compact (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

Note: This page contains sample records for the topic "river remediation srr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Florida Nuclear Profile - Crystal River  

U.S. Energy Information Administration (EIA) Indexed Site

Crystal River1" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

462

Remedial System Performance Improvement for the 200-ZP-1_PW-1 Operable Units at Hanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Operations Review Report: Feasibility Study Strategies and Remedial System Performance Improvement for the 200- ZP-1/PW-1 Operable Units at Hanford Prepared for Office of Groundwater and Soil Remediation Office of Environmental Management February 9, 2007 i EXECUTIVE SUMMARY At the request of the U.S. Department of Energy, Headquarters' Office of Environmental Management, the Office of Groundwater and Soil Remediation (EM-22), performed a Remediation System Evaluation (RSE) of the 200-ZP-1/PW-1 groundwater pump and treat (P&T) system, as well as the vadose zone Soil Vapor Extraction (SVE) system at the Hanford

463

DOE/OFVZ1949402 Formerly Utilized Sites Remedial Action Program (FUSRAP)  

Office of Legacy Management (LM)

DOE/OFVZ1949402 DOE/OFVZ1949402 Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-ACO5-9%OR21949 Post-Remedial Action Report for the Former Baker Brothers Site Toledd, Ohio . February 1997 . . DOWORRl949-402 POST-REMEDIAL ACTION REPORT FOR THE REMEDIAL ACTION ATTHE FORMER BAKER BROTHERS SITE TOLEDO. OHIO FEBRUARY 1997 . United States Department of Energy I OakRidgeOpcrationsOfficc Under Contract No. DE-AC059 I OR2 1949 BY Bcchtcl National, Inc. . . : ; '.' OakRldnc.Tc~~~.- ~--~-' -------m . . Be&cl Job No. 14501 CQNTENTS FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..~~................................................................................ iv TABLES . . . . . . . ..i.................................................................................................................................

464

Remedial design work plan for Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee  

SciTech Connect

The Remedial Design Work Plan (RDWP) for Lower East Fork Poplar Creek (EFPC) Operable Unit (OU) in Oak Ridge, Tennessee. This remedial action fits into the overall Oak Ridge Reservation (ORR) cleanup strategy by addressing contaminated floodplain soil. The objective of this remedial action is to minimize the risk to human health and the environment from contaminated soil in the Lower EFPC floodplain pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Federal Facility Agreement (FFA) (1992). In accordance with the FFA, a remedial investigation (RI) (DOE 1994a) and a feasibility study (DOE 1994b) were conducted to assess contamination of the Lower EFPC and propose remediation alternatives. The remedial investigation determined that the principal contaminant is mercury, which originated from releases during Y-12 Plant operations, primarily between 1953 and 1963. The recommended alternative by the feasibility study was to excavate and dispose of floodplain soils contaminated with mercury above the remedial goal option. Following the remedial investigation/feasibility study, and also in accordance with the FFA, a proposed plan was prepared to more fully describe the proposed remedy.

NONE

1995-10-01T23:59:59.000Z

465

E-Print Network 3.0 - area remediation case Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Short Courses Module F: Remediation... for professionals working in or intending to enter the field of contaminated site assessment, ... Source: Baird, Mark - Climate and...

466

E-Print Network 3.0 - accelerated remedial strategy Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Short Courses Module F: Remediation... for professionals working in or intending to enter the field of contaminated site assessment, ... Source: Baird, Mark - Climate and...

467

E-Print Network 3.0 - advanced remediation technologies Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

in humid gas streams Ann C. Gentilea)and Mark J. Kushnerb) Summary: remediation in humid gas streams is an efficient technology for disposal of volatile organic compounds......

468

The effects of viscosity and subsurface heterogeneity on a brine barrier approach to DNAPL remediation.  

E-Print Network (OSTI)

??Dense nonaqueous phase liquids (DNAPLs) are a long-term source of groundwater contamination. Difficulties of current remediation methods have led to the study of a novel… (more)

Murphy, Lauren L.

2006-01-01T23:59:59.000Z

469

Voluntary Protection Program Onsite Review, CHPlateau Remediation Contract Hanford Site- March 2011  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation to determine whether Plateau Remediation Contract Hanford Site is continuing to perform at a level deserving DOE-VPP Star recognition.

470

Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations establish procedures for the investigation and remediation of contamination resulting from the unpermitted release of hazardous materials. The regulations aim to protect water...

471

Successful Field-Scale In Situ Thermal NAPL Remediation at the Young- Rainey STAR Center  

Energy.gov (U.S. Department of Energy (DOE))

Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds.May 2004, Monterey, California.Randall Juhlin, Michael Butherus, Joseph Daniel, David S....

472

INVESTIGATION OF REMEDIAL EDUCATION COURSE SCORES AS A PREDICTOR OF FRESHMAN-LEVEL COURSE PERFORMANCES.  

E-Print Network (OSTI)

??This study sought to determine the relationship between the performance in remedial courses (English and math) and college-level course performances among students in a large… (more)

Ulmer, Larry

2010-01-01T23:59:59.000Z

473

Lovato learning: a guide for interactive, differential instruction in a high school remedial math class.  

E-Print Network (OSTI)

??The implementation of different instructional strategies and their affects on student attitudes toward learning will be investigated in two Northern Humboldt High School remedial math… (more)

Lovato, Susan

2006-01-01T23:59:59.000Z

474

Drought remedial measures through resistivity investigations in a typical crystalline region  

Science Journals Connector (OSTI)

Systematic geoelectrical investigations were carried out in a typical drought ... of Andhra Pradesh, India, for evolving drought remedial strategies. Depth to basement maps, geoelectrical...

B. H. Briz-Kishore

475

Innovative Soil and Groundwater Remediation; Applications and Demonstrations: The Site Program Experience  

Science Journals Connector (OSTI)

The Superfund Innovative Technology Evaluation (SITE) program of the ... United States Environmental Protection Agency (EPA) evaluates innovative hazardous waste remediation technologies. The program works with t...

S. Rock; J. Martin

1995-01-01T23:59:59.000Z

476

EIS-0195: Remedial Actions at Operable Unit 4, Fernald Environmental Management Project, Fernald, Ohio  

Energy.gov (U.S. Department of Energy (DOE))

This EIS evaluates the potential environmental impacts of a proposal to conduct remedial action at Operable Unit 4 at the Fernald Environmental Management Project.

477

Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program -12184  

SciTech Connect

The U. S. Department of Energy (DOE) methods and protocols allow evaluation of remediation and final site conditions to determine if