Powered by Deep Web Technologies
Note: This page contains sample records for the topic "river power station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

"2. Laramie River Station","Coal","Basin Electric Power Coop...  

U.S. Energy Information Administration (EIA) Indexed Site

the World","Other Renewables","Duke Energy Top Of the World WindPower",200 "7. Wyoming Wind Energy Center","Other Renewables","FPL Energy Wyoming Wind LLC",144 "8....

2

Re: Potomac River Generating Station Department of Energy Case...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Potomac River Generating Station Department of Energy Case No. EO-05-01: Advanced Notice of Power Outages. Notification of Planned 230kV Outage at Potomac River Generating Station...

3

Ohio River Ecological Research Program: Impingement Mortality Characterization Study at 15 Power Stations  

Science Conference Proceedings (OSTI)

This report describes a collaborative approach to impingement abundance monitoring to comply with the Phase II Rule of 316(b) of the Clean Water Act. The study involved sampling at the cooling water intake structures of 15 power plants located over almost the total length of the Ohio River and the development of a model that estimates impingement abundance at each facility over the period of the study.

2009-06-05T23:59:59.000Z

4

Re: Potomac River Generating Station Department of Energy Case...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Notice of Power Outages. Re: Potomac River Generating Station Department of Energy Case No. EO-05-01: Advanced Notice of Power Outages. Docket No. EO-05-01. Order No....

5

Re: Potomac River Generating Station Department of Energy, Case...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

outages for the 230 kV circuits Re: Potomac River Generating Station Department of Energy, Case No. EO-05-01: Potomac Electric Power Company (PEPCO) evised plan for...

6

Trona Injection Tests: Mirant Potomac River Station, Unit 1,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trona Injection Tests: Mirant Potomac River Station, Unit 1, November 12 to December 23, 2005, Summary Report Trona Injection Tests: Mirant Potomac River Station, Unit 1, November...

7

Daily Reporting Rainfall Station DON & PROSERPINE RIVERS Manual Heavy Rainfall Station  

E-Print Network (OSTI)

Daily Reporting Rainfall Station DON & PROSERPINE RIVERS Manual Heavy Rainfall Station Manual River Station Telemetry Rainfall Station Telemetry River Station Revised: Nov 2009 MAP 121.1 FLOOD WARNING Bowen Tide TM Bowen P/S AL GretaCk Peter Faust Dam Crystal Brook Andromache R GoorgangaCk Jocheims TM

Greenslade, Diana

8

Notification of Planned 230kV Outage at Potomac River Generating Station |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notification of Planned 230kV Outage at Potomac River Generating Notification of Planned 230kV Outage at Potomac River Generating Station Notification of Planned 230kV Outage at Potomac River Generating Station Docket No. EO-05-01. In accordance with DOE Order No. 202-05-03 Pepco is required to provide notification of any and all 230kV planned outages at Potomac River Generating Station. On Tuesday February 20, 2007 Potomac Electric Power Company (Pepco) will be taking a planned outage on the 23106 high voltage circuit between the Palmer's Corner Substation and the Potomac River Generating Station. Notification of Planned 230kV Outage at Potomac River Generating Station More Documents & Publications Re: Potomac River Generating Station Department of Energy Case No. EO-05-01: Advanced Notice of Power Outages. Special Environmental Analysis For Actions Taken under U.S. Department of

9

Notification of Planned 230kV Outage at Potomac River Generating Station |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In accordance with DOE Order No. 202-05-03 Pepco is In accordance with DOE Order No. 202-05-03 Pepco is required to provide notification of any and all 230kV planned outages at Potomac River Generating Station. On Tuesday February 20, 2007 Potomac Electric Power Company (Pepco) will be taking a planned outage on the 23106 high voltage circuit between the Palmer's Corner Substation and the Potomac River Generating Station. Notification of Planned 230kV Outage at Potomac River Generating Station More Documents & Publications Re: Potomac River Generating Station Department of Energy Case No. EO-05-01: Advanced Notice of Power Outages. Special Environmental Analysis For Actions Taken under U.S. Department of Energy Emergency Orders Regarding Operation of the Potomac River Generating Station in Alexandria, Virginia

10

Re: Potomac River Generating Station Department of Energy, Case No.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

No. EO-05-01. Order No. 202-07-02: Pursuant to the Department of No. EO-05-01. Order No. 202-07-02: Pursuant to the Department of Energy's Order No. 202-05-3 issued December 20, 2005 ("DOE Potomac River Order"), Pepco has filed notice of the planned outages, in sequence during January 2006, of each of the two 230 kV circuits serving the downtown area of the District of Columbia. Earlier scheduled maintenance on these lines was postponed because of the shutdown of Mirant's Potomac River Generating Plant, but a recent forced outage on one of the lines makes it imprudent to delay maintenance any longer. Department of Energy Order No. 202-05-03 Notice of Planned Outages, in Sequence During January 2006 More Documents & Publications Re: Potomac River Generating Station Department of Energy, Case No. EO-05-01: Potomac Electric Power Company (PEPCO) Concerning Planned Outages

11

Re: Potomac River Generating Station Department of Energy Case No.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Notice of Power Outages. Advanced Notice of Power Outages. Re: Potomac River Generating Station Department of Energy Case No. EO-05-01: Advanced Notice of Power Outages. Docket No. EO-05-01. Order No. 202-05-03: Potomac Electric Power Company ("Pepco"), on behalf of itself and PJM Interconnection, L.L.C. ("PJM"), is providing you with information regarding the planned transmission outages that are scheduled for the upcoming months. In accordance with its internal procedures developed pursuant to the December 20, 2005 order in the captioned proceeding, Order No. 202-05-03 ("December 20 Order"), Pepco will provide advance notification of the outages to Mirant, PJM, the Department of Energy ("Department"), the Federal Energy Regulatory Commission, the Environmental Protection Agency,

12

Illinois Nuclear Profile - Clinton Power Station  

U.S. Energy Information Administration (EIA) Indexed Site

Clinton Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

13

Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station  

U.S. Energy Information Administration (EIA) Indexed Site

Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License...

14

Re: Potomac River Generating Station Department of Energy, Case No.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

evised plan for evised plan for transmission outages for the 230 kV circuits Re: Potomac River Generating Station Department of Energy, Case No. EO-05-01: Potomac Electric Power Company (PEPCO) evised plan for transmission outages for the 230 kV circuits Docket No. EO-05-01. Order No. 202-07-02: Potomac Electric Power Company ("Pepco") is providing you with the following information regarding the revised plan for transmission outages for the 230 kV circuits that are scheduled during the upcoming months. In accordance with its internal procedures developed pursuant to the December 20, 2005 order in the above-captioned proceeding, Order No. 202-05-03, and pursuant to the expanded notice required in Order No. 202-07-02, issued on January 31 Order, Pepco will provide advance notification of the outages to Mirant,

15

Re: Potomac River Generating Station Department of Energy Case No.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PEPCO is providing you with information regarding the planned PEPCO is providing you with information regarding the planned transmission maintenance outage Re: Potomac River Generating Station Department of Energy Case No. EO-05-01: PEPCO is providing you with information regarding the planned transmission maintenance outage Docket No. EO-05-01. Order No. 202-07-02: Per your request, Potomac Electric Power Company ("Pepco"), on behalf of itself and PJM Interconnection, L.L.C. ("PJM"), is providing you with information regarding the planned transmission maintenance outage scheduled for the upcoming weekend. Pepco notes that the scheduled maintenance activities are not associated with its new transmission line installation, but are routine maintenance activities resulting from a switch problem identified during

16

Wisconsin River Power Company | Open Energy Information  

Open Energy Info (EERE)

River Power Company Jump to: navigation, search Name Wisconsin River Power Company Place Wisconsin Utility Id 20863 Utility Location Yes Ownership I NERC Location RFC NERC MRO Yes...

17

Coal dust exposure among power station workers during normal operations at Hatfield's Ferry Power Station.  

E-Print Network (OSTI)

??Changes in coal composition could produce higher levels of coal dust exposure thanthose found in the past at Hatfield's Ferry Power Station. Air sampling was… (more)

Lewis, Christian S.

2008-01-01T23:59:59.000Z

18

Advanced Circulating Pressurized Fluidized Bed Combustion (APFBC) Repowering Concept Assessment at Duke Energy's Dan River Station  

NLE Websites -- All DOE Office Websites (Extended Search)

Wolfmeyer et al. APFBC Repowering Assessment at Duke Energy's Dan River Station Wolfmeyer et al. APFBC Repowering Assessment at Duke Energy's Dan River Station paper 970561 Page 1 of 36 Advanced Circulating Pressurized Fluidized Bed Combustion (APFBC) Repowering Concept Assessment at Duke Energy's Dan River Station John C. Wolfmeyer, P.E., and Cal Jowers, P.E. Duke Energy / Charlotte, North Carolina Richard E. Weinstein, P.E., Harvey N. Goldstein, P.E., and Jay S. White Parsons Power Group Inc. / Reading, Pennsylvania Robert W. Travers, P.E. U.S. Department of Energy Office of Fossil Energy / Germantown, Maryland electronic mail addresses/phone no. electronic mail addresses/phone no. Wolfmeyer { JCWolfme@Duke-Energy.COM 704 / 382-4017 Goldstein { Harvey_N_Goldstein@Parsons.COM 610 / 855-3281 Jowers { -- 704 / 382-9577 White { Jay_S_White@Parsons.COM

19

Design of a photovoltaic central power station  

DOE Green Energy (OSTI)

Photovoltaic central power station designs have been developed for both high-efficiency flat-panel arrays and two-axis tracking concentrator arrays. Both designs are based on a site adjacent to the Saguaro Power Station of Arizona Public Service. The plants are 100 MW each, made of 5 MW subfields. The site specific designs allow detailed cost estimate for site preparation, installation, and engineering. These designs are summarized and cost estimates analyzed. Provided also are recommendations for future work to reduce system cost for each plant design.

Not Available

1984-02-01T23:59:59.000Z

20

BIOMASS COGASIFICATION AT POLK POWER STATION  

SciTech Connect

Part of a closed loop biomass crop was recently harvested to produce electricity in Tampa Electric's Polk Power Station Unit No.1. No technical impediments to incorporating a small percentage of biomass into Polk Power Station's fuel mix were identified. Appropriate dedicated storage and handling equipment would be required for routine biomass use. Polk Unit No.1 is an integrated gasification combined cycle (IGCC) power plant. IGCC is a new approach to generating electricity cleanly from solid fuels such as coal, petroleum coke, The purpose of this experiment was to demonstrate the Polk Unit No.1 could process biomass as a fraction of its fuel without an adverse impact on availability and plant performance. The biomass chosen for the test was part of a crop of closed loop Eucalyptus trees.

John McDaniel

2002-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "river power station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

BIOMASS COGASIFICATION AT POLK POWER STATION  

DOE Green Energy (OSTI)

Part of a closed loop biomass crop was recently harvested to produce electricity in Tampa Electric's Polk Power Station Unit No.1. No technical impediments to incorporating a small percentage of biomass into Polk Power Station's fuel mix were identified. Appropriate dedicated storage and handling equipment would be required for routine biomass use. Polk Unit No.1 is an integrated gasification combined cycle (IGCC) power plant. IGCC is a new approach to generating electricity cleanly from solid fuels such as coal, petroleum coke, The purpose of this experiment was to demonstrate the Polk Unit No.1 could process biomass as a fraction of its fuel without an adverse impact on availability and plant performance. The biomass chosen for the test was part of a crop of closed loop Eucalyptus trees.

John McDaniel

2002-05-01T23:59:59.000Z

22

Environmental impact of HTGR power stations  

SciTech Connect

From ANS topical meeting on gas-cooled reactors: HTGR and GCFBR; Gatlinburg, Tennessee, USA (8 May 1974). The high-temperature gas-cooled reactor power station has all of the potential environmental impacts associated with any large nuclear station. Construction impacts can be minimized by proper planning and are usually of limited duration. The potentially most significant impacts of station operation result from the operation of the heat dissipation system. The use of cooling towers is assumed. The effects of salt deposition, fogging, and icing are expected to be minor. The magnitude of the adverse effects caused by intake and discharge such as entrainment of eggs, larvae, and fish and chemical impacts from blowdown can only be assessed for a specific site but may be signlficant. The impact of radionuclide releases, constrained by the as-low-as- is-practicable criteria, is small. The only potential environmental advantage over other reactor types is lower consumptive water use for the same net electric power production. (auth)

Kelly, M.J.; Kirslis, S.S.; West, R.G.

1974-04-30T23:59:59.000Z

23

Waste heat rejection from geothermal power stations  

DOE Green Energy (OSTI)

This study of waste heat rejection from geothermal power stations is concerned only with the heat rejected from the power cycle. The heat contained in reinjected or otherwise discharged geothermal fluids is not included with the waste heat considered here. The heat contained in the underflow from the flashtanks in such systems is not considered as part of the heat rejected from the power cycle. By following this definition of the waste heat to be rejected, various methods of waste heat dissipation are discussed without regard for the particular arrangement to obtain heat from the geothermal source. Recent conceptual design studies made for 50-MW(e) geothermal power stations at Heber and Niland, California, are of particular interst. The former uses a flashed-steam system and the latter a binary cycle that uses isopentane. In last-quarter 1976 dollars, the total estimated capital costs were about $750/kW and production costs about 50 mills/kWhr. If wet/dry towers were used to conserve 50% of the water evaporation at Heber, production costs would be about 65 mills/kWhr.

Robertson, R.C.

1978-12-01T23:59:59.000Z

24

Solar Powered Radioactive Air Monitoring Stations  

SciTech Connect

Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

Barnett, J. M.; Bisping, Lynn E.; Gervais, Todd L.

2013-10-30T23:59:59.000Z

25

Determining Yankee Nuclear Power Station neutron activation  

Science Conference Proceedings (OSTI)

The Yankee nuclear power station located in Rowe, Massachusetts, permanently ceased power operations on February 26, 1992, after 31 yr of operation. Yankee has since initiated decommissioning planning activities. A significant component of these activities is a determination of the extent of radiological contamination of the Yankee site. Included in this effort was determination of the extent of neutron activation of plant components. This paper describes the determination of the neutron activation of the Yankee reactor vessel, associated internals, and surrounding structures. The Yankee reactor vessel is a 600-MW(thermal) stainless steel-lined, carbon steel vessel with stainless steel internal components designed by Westinghouse. The reactor vessel is surrounded and supported by a carbon steel neutron shield tank that was filled with chromated water during plant operation. A 5-ft-thick concrete biological shield wall surrounds the neutron shield tank. A project is under way to remove the reactor vessel internals from the reactor vessel.

Heider, K.J.; Morrissey, K.J. (Yankee Atomic Electric Co., Bolton, MA (United States))

1993-01-01T23:59:59.000Z

26

Radiological characterization of Yankee Nuclear Power Station  

SciTech Connect

The Yankee nuclear power station located in Rowe, Massachusetts, permanently ceased power operations on February 26, 1992, after 31 yr of operation. Yankee has since initiated decommissioning planning activities. A significant component of these activities is the determination of the extent of radiological contamination of the Yankee site. This paper describes the site radiological characterization program that has been implemented for decommissioning the Yankee plant. Radiological scoping surveys were completed to support submittal of a decommissioning plan to the U.S. Nuclear Regulatory Commission (NRC) by October 1, 1993. These surveys were designed to provide sufficient detail to estimate the extent of contamination, volume of radiological waste, activity of radiological waste, and personnel dose estimates for removal activities. Surveys were conducted both inside and on the grounds outside of the Yankee plant buildings. Survey results were combined with analytical evaluations to characterize the Yankee site.

Bellini, F.X.; Cumming, E.R.; Hollenbeck, P. (Yankee Atomic Electric Co., Bolton, MA (United States))

1993-01-01T23:59:59.000Z

27

Waste heat rejection from geothermal power stations  

DOE Green Energy (OSTI)

Waste heat rejection systems for geothermal power stations have a significantly greater influence on plant operating performances and costs than do corresponding systems in fossil- and nuclear-fueled stations. With thermal efficiencies of only about 10%, geothermal power cycles can reject four times as much heat per kilowatt of output. Geothermal sites in the United States tend to be in water-short areas that could require use of more expensive wet/dry or dry-type cooling towers. With relatively low-temperature heat sources, the cycle economics are more sensitive to diurnal and seasonal variations in sink temperatures. Factors such as the necessity for hydrogen sulfide scrubbers in off-gas systems or the need to treat cooling tower blowdown before reinjection can add to the cost and complexity of goethermal waste heat rejection systems. Working fluids most commonly considered for geothermal cycles are water, ammonia, Freon-22, isobutane, and isopentane. Both low-level and barometric-leg direct-contact condensers are used, and reinforced concrete has been proposed for condenser vessels. Multipass surface condensers also have wide application. Corrosion problems at some locations have led to increased interest in titanium tubing. Studies at ORNL indicate that fluted vertical tubes can enhance condensing film coefficients by factors of 4 to 7.

Robertson, R C

1979-01-01T23:59:59.000Z

28

VERMONT YANKEE NUCLEAR POWER STATION- NRC LICENSE  

E-Print Network (OSTI)

your application for a renewed license of your Vermont Yankee Nuclear Power Station. The enclosed report documents the result of the inspection which was discussed with members of your staff on May 24, 2007, at a publicly observed exit meeting conducted at the Latchis Theater in Brattleboro, VY. The purpose of this inspection was to examine the plant activities and documents that supported the application for a renewed license of the Vermont Yankee Nuclear Power Station. The inspection reviewed the screening and scoping of non-safety related systems, structures, and components, as required in 10 CFR 54.4(a)(2), and determined whether the proposed aging management programs are capable of reasonably managing the effects of aging. These NRC inspection activities constitute one of several inputs into the NRC review process for license renewal applications. The inspection team concluded screening and scoping of nonsafety-related systems, structures, and components, were implemented as required in 10 CFR 54.4(a)(2), and the aging management portions of the license renewal activities were conducted as described in the License Renewal Application. The inspection results supported a conclusion that the

Mr. Theodore; A. Sullivan

2007-01-01T23:59:59.000Z

29

Trona Injection Tests: Mirant Potomac River Station, Unit 1, November 12 to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trona Injection Tests: Mirant Potomac River Station, Unit 1, Trona Injection Tests: Mirant Potomac River Station, Unit 1, November 12 to December 23, 2005, Summary Report Trona Injection Tests: Mirant Potomac River Station, Unit 1, November 12 to December 23, 2005, Summary Report Docket No. EO-05-01: Trona injection tests were conducted at Mirant's Potomac River Station on Unit 1 between November 12 and December 23, 2005. The purpose of these tests was to determine the capability of dry injection of trona to achieve substantial SO2 removal from the stack discharge, and the determination of other operating impacts from he trona injection, if any. Trona Injection Tests: Mirant Potomac River Station, Unit 1, November 12 to December 23, 2005, Summary Report More Documents & Publications Special Environmental Analysis For Actions Taken under U.S. Department of

30

MHK Technologies/Ocean Powered Compressed Air Stations | Open Energy  

Open Energy Info (EERE)

Powered Compressed Air Stations Powered Compressed Air Stations < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Powered Compressed Air Stations.png Technology Profile Primary Organization Wave Power Plant Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Ocean Powered Compressed Air Station is a point absorber that uses an air pump to force air to a landbased generator The device only needs 4m water depth and electricity production fluctations through storing energy at a constant air pressure Technology Dimensions Device Testing Date Submitted 13:16.5 << Return to the MHK database homepage Retrieved from

31

Application of a 2-D particle tracking model to simulate entrainment of winter flounder larvae at the Millstone Nuclear Power Station  

E-Print Network (OSTI)

A 2-D random walk model, developed by Dimou (1989) as part of this research project, was used to simulate entrainment at the Millstone Nuclear Power Station of winter flounder larvae hatched within Niantic River.

Dimou, Nadia K.

1989-01-01T23:59:59.000Z

32

Genesee Power Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Station Biomass Facility Power Station Biomass Facility Jump to: navigation, search Name Genesee Power Station Biomass Facility Facility Genesee Power Station Sector Biomass Owner CMS/Fortistar Location Flint, Michigan Coordinates 43.0125274°, -83.6874562° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0125274,"lon":-83.6874562,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

33

Boralex Chateaugay Power Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Boralex Chateaugay Power Station Biomass Facility Boralex Chateaugay Power Station Biomass Facility Jump to: navigation, search Name Boralex Chateaugay Power Station Biomass Facility Facility Boralex Chateaugay Power Station Sector Biomass Location Franklin County, New York Coordinates 44.5926135°, -74.3387798° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5926135,"lon":-74.3387798,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

34

WWTP Power Generation Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Generation Station Biomass Facility Power Generation Station Biomass Facility Jump to: navigation, search Name WWTP Power Generation Station Biomass Facility Facility WWTP Power Generation Station Sector Biomass Facility Type Non-Fossil Waste Location Alameda County, California Coordinates 37.6016892°, -121.7195459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6016892,"lon":-121.7195459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

35

Springerville Generating Station Solar System Solar Power Plant | Open  

Open Energy Info (EERE)

Springerville Generating Station Solar System Solar Power Plant Springerville Generating Station Solar System Solar Power Plant Jump to: navigation, search Name Springerville Generating Station Solar System Solar Power Plant Facility Springerville Generating Station Solar System Sector Solar Facility Type Photovoltaic Developer Tucson Electric Power Location Springerville, Arizona Coordinates 34.1333799°, -109.2859196° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1333799,"lon":-109.2859196,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

36

Genesee Power Station LP Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Genesee Power Station LP Biomass Facility Genesee Power Station LP Biomass Facility Jump to: navigation, search Name Genesee Power Station LP Biomass Facility Facility Genesee Power Station LP Sector Biomass Location Genesee County, Michigan Coordinates 43.0777289°, -83.6773928° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0777289,"lon":-83.6773928,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

37

Penrose Power Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Penrose Power Station Biomass Facility Penrose Power Station Biomass Facility Jump to: navigation, search Name Penrose Power Station Biomass Facility Facility Penrose Power Station Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

38

MHK Technologies/Jiangxia Tidal Power Station | Open Energy Information  

Open Energy Info (EERE)

Jiangxia Tidal Power Station Jiangxia Tidal Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Jiangxia Tidal Power Station.jpg Technology Profile Primary Organization China Guodian Corporation Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description There are 6 bulb turbine generator units operating in both ebb and flood tides with a total installed capacity up to 3 9 MW Technology Dimensions Technology Nameplate Capacity (MW) 3 9 Device Testing Date Submitted 14:15.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Jiangxia_Tidal_Power_Station&oldid=681601

39

Archbald Power Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Archbald Power Station Biomass Facility Archbald Power Station Biomass Facility Jump to: navigation, search Name Archbald Power Station Biomass Facility Facility Archbald Power Station Sector Biomass Facility Type Landfill Gas Location Lackawanna County, Pennsylvania Coordinates 41.4421199°, -75.5742467° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4421199,"lon":-75.5742467,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

40

Toyon Power Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Toyon Power Station Biomass Facility Toyon Power Station Biomass Facility Jump to: navigation, search Name Toyon Power Station Biomass Facility Facility Toyon Power Station Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "river power station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Re: Potomac River Generating Station Department of Energy, Case...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2005 ("DOE Potomac River Order") Pepco hereby files this revised notice of the planned outage of the 230 kV circuits serving the Potomac River Substation, and through that...

42

Design of photovoltaic central power station concentrator array  

Science Conference Proceedings (OSTI)

A design for a photovoltaic central power station using tracking concentrators has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes an advanced Martin Marietta two-axis tracking fresnel lens concentrator. The concentrators are arrayed in 5 MW subfields, each with its own power conditioning unit. The photovoltaic plant output is connected to the existing 115 kV switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

Not Available

1984-02-01T23:59:59.000Z

43

Police Station Triples Solar Power - and Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Police Station Triples Solar Power - and Savings Police Station Triples Solar Power - and Savings Police Station Triples Solar Power - and Savings July 19, 2010 - 11:00am Addthis North Community Police Substation upgraded its solar energy system with the help of Recovery Act funds. The city’s electric bill will be about $5,000 cheaper. | Courtesy of the City of Henderson North Community Police Substation upgraded its solar energy system with the help of Recovery Act funds. The city's electric bill will be about $5,000 cheaper. | Courtesy of the City of Henderson Stephen Graff Former Writer & editor for Energy Empowers, EERE The Henderson, Nev., police department is going above and beyond the call of duty by tripling the size of its solar panel system on its LEED-certified station, saving the city thousands of dollars in energy

44

Arkansas River Power Authority | Open Energy Information  

Open Energy Info (EERE)

River Power Authority River Power Authority Jump to: navigation, search Name Arkansas River Power Authority Place Colorado Website www.arpapower.org/ Utility Id 712 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

45

Platte River Power Authority | Open Energy Information  

Open Energy Info (EERE)

River Power Authority River Power Authority Jump to: navigation, search Name Platte River Power Authority Place Colorado Website www.prpa.org/ Utility Id 15143 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

46

Didcot B: A power station for the 21st century  

Science Conference Proceedings (OSTI)

Didcot B, one of the new generation combined-cycle gas turbine (CCGT) power stations being built on the Didcot site just south of Oxford, England, will eventually be feeding an additional 1370 MW of electrical power into the national grid. It will be more environmentally friendly, considerably more efficient and a great deal less obtrusive than its coal-fired predecessor. The first module of the US$600 million Didcot B project is now almost ready to be handed over to operator, National Power. This will be the first generating station to use Siemen`s latest and most advanced 230 MW V94.3A gas turbine. 3 figs.

Mullins, P.

1996-12-01T23:59:59.000Z

47

Tuning three-term controllers for power station processes  

Science Conference Proceedings (OSTI)

This paper presents a new approach for tuning three-term control loops encountered in power station processes. The proposed approach is based on the Pseudo-Derivative Feedback (PDF) control configuration. Simple methods are presented for tuning the PDF ... Keywords: controller tuning, dead-time processes, power plant control, process control

K. G. Arvanitis; G. D. Pasgianos; A. K. Boglou

2006-07-01T23:59:59.000Z

48

Singing River Electric Power Association - Comfort Advantage Home Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Singing River Electric Power Association - Comfort Advantage Home Singing River Electric Power Association - Comfort Advantage Home Program Singing River Electric Power Association - Comfort Advantage Home Program < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Heat Pumps Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount Contact Singing River Electric Power Association Provider Singing River Electric Power Association Singing River Electric Power Association provides rebates on energy efficiency measures in new homes and heat pumps that meet [http://www.comfortadvantage.com/Comfort%20Advantage%20brochure.pdf Comfort Advantage] weatherization standards. To qualify for this rebate the home

49

MHK Technologies/Float Wave Electric Power Station | Open Energy  

Open Energy Info (EERE)

Wave Electric Power Station Wave Electric Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Float Wave Electric Power Station.jpg Technology Profile Primary Organization Applied Technologies Company Ltd Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The module of FWEPS is an oblong axisymmetrical capsule float which is located on the sea surface Inside the capsule there is a mechanical wave energy converter consisting of an oscillatory system and drive and an electric generator and energy accumulator Under the wave effect the capsule float and inner oscillatory system of the mechanical converter are in continuous oscillatory motion while the drive engaged with the system provides a continuous turn for the electric generator

50

Re: Potomac River Generating Station Department of Energy, Case...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

maintenance on these lines was postponed because of the shutdown of Mirant's Potomac River Generating Plant, but a recent forced outage on one of the lines makes it imprudent to...

51

Replacing Hazelwood Power Station – Critique of Environment Victoria report  

E-Print Network (OSTI)

Hazelwood Power Station is Australia’s most CO2 emission intensive power station. Replacing it with cleaner technology could reduce Australia’s CO2 emissions by 12 to 16 Mt/a. Energy Victoria recently commissioned a report by Green Energy Markets Pty Ltd to consider options. But the report has a pro-renewables bias, avoids the best option (gas only), and contains many inconsistencies. Comparing the ‘renewables and gas ’ option against the ‘gas only ’ option shows Emissions saved per year: 12.2 Mt/a versus 11.8 Mt/a; Capital cost: $6-$7 billion versus $2 billion;

Peter Lang

2010-01-01T23:59:59.000Z

52

Yankee nuclear power station license renewal assessment  

Science Conference Proceedings (OSTI)

Nuclear power plants are initially licensed to operate for 40 years. Recent changes to US Nuclear Regulatory Commission regulations allow licenses to be renewed for up to 20 additional years. The new regulations require a comprehensive plant assessment to ensure continued effective aging management of equipment important to license renewal (ILR). Under the industry's lead plant program, Yankee Atomic Electric Company (YAEC) has assisted with development and demonstration of a generic license renewal assessment process. The generic assessment process developed under the lead plant program is the Nuclear Management and Resources Council methodology.

Hinkle, W.D. (Yankee Atomic Electric Co., Bolten, MA (United States))

1992-01-01T23:59:59.000Z

53

Notification of Planned 230kV Outage at Potomac River Generating Station  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sent: Wednesday, May 16, 2007 4:49 PM To: #DOE_Notification@pepco.com Subject: Notification of Planned 230kV Outage at Potomac River Generating Station To Whom It May Concern: This morning Pepco and PJM observed that the generation at the Potomac River Generating Station was having difficulty matching the station generation requirement to the Potomac River area load. Mirant has also informed Pepco and PJM that several generating units were experiencing equipment problems which required them to reduce unit and total plant output. Based on these observations and information received from Mirant, Pepco has elected to cease the current work activities underway on xxxxx high voltage circuit and we will be placing this transmission line back in service this afternoon.

54

Trace element speciation under coal fired power station conditions  

Science Conference Proceedings (OSTI)

Coal combustion from power stations is one of the largest contributors of potentially toxic trace elements to the environment. Some trace elements may be released in range of valencies, often with varying toxicity and bioavailability. Hence, determination ... Keywords: arsenic, chromium, coal combustion, mercury, selenium, speciation, trace elements

Pushan Shah; Vladimir Strezov; Peter F. Nelson

2007-05-01T23:59:59.000Z

55

IGCC demonstration plant at Nakoso Power Station, Japan  

Science Conference Proceedings (OSTI)

The 250 MW IGCC demonstration plant at Nakoso Power Station is based on technology form Mitsubishi Heavy Industries (MHI) Ltd that uses a pressurized, air blown, two-stage, entrained-bed coal gasifier with a dry coal feed system. 5 figs., 1 tab.

Peltier, R.

2007-10-15T23:59:59.000Z

56

BOILING NUCLEAR SUPERHEATER (BONUS) POWER STATION. Final Summary Design Report  

SciTech Connect

The design and construction of the Boiling Nuclear Superheater (BONUS) Power Station at Punta Higuera on the seacoast at the westernmost tip of Puerto Rico are described. The reactor has an output of 17.5 Mw(e). This report will serve as a source of information for personnel engaged in management, evaluation, and training. (N.W.R.)

1962-05-01T23:59:59.000Z

57

SIMULATE-E benchmarking of pilgrim nuclear power station  

Science Conference Proceedings (OSTI)

The CASMO-SIMULATE-E methodology is bench-marked to qualify its ability to determine power distributions and critical eigenvalues, k/sub eff/. Once the biases and uncertainties in this methodology are quantified, CASMO/SIMULATE-E will be utilized to generate reload fuel patterns and control rod sequences, and to provide operational support for Pilgrim Nuclear Power Station (PNPS). Only the results of the hot SIMULATE-E benchmarking are presented here.

DeWitt, G.L.; Hu, L.C.; Antonopoulos, P.T.

1986-01-01T23:59:59.000Z

58

Nevada Power: Clark Station; Las Vegas, Nevada (Data)  

Science Conference Proceedings (OSTI)

A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

Stoffel, T.; Andreas, A.

2006-03-27T23:59:59.000Z

59

Nevada Power: Clark Station; Las Vegas, Nevada (Data)  

DOE Data Explorer (OSTI)

A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

Stoffel, T.; Andreas, A.

60

Re: Potomac River Generating Station Department of Energy, Case No. EO-05-01: Potomac Electric Power Company (PEPCO) Concerning Planned Outages of the 230 kV circuits  

Energy.gov (U.S. Department of Energy (DOE))

Docket EO-05-01: Pursuant to the United States Department of Energy ("DOE") Order No. 202-05-3, issued December 20, 2005 ("DOE Potomac River Order") Pepco hereby files this revised notice of the...

Note: This page contains sample records for the topic "river power station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Pearl River Valley Electric Power Association - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pearl River Valley Electric Power Association - Residential Energy Pearl River Valley Electric Power Association - Residential Energy Efficiency Rebate Program Pearl River Valley Electric Power Association - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount New Homes Heat Pump: $150 - $500 Geothermal Heat Pump: $500 Electric Water Heater: $150 Existing Homes Heat Pump: $200 Gas to Electric Water Heater Conversion: $150 Provider Pearl River Valley Electric Power Association Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the

62

Yankee Nuclear Power Station - analysis of decommissioning costs  

SciTech Connect

The preparation of decommissioning cost estimates for nuclear power generating stations has received a great deal of interest in the last few years. Owners are required by regulation to ensure that adequate funds are collected for the timely decommissioning of their facilities. The unexpected premature shutdown of several facilities and uncertainties associated with radioactive waste disposal and long-term spent-fuel storage, when viewed in the light of a deregulated electric utility industry, has caused many companies to reevaluate their decommissioning cost estimates. The decommissioning of the Yankee Nuclear Power Station represents the first large-scale project involving the complete decontamination and dismantlement of a commercial light water nuclear power generation facility in the United States. Since this pressurized water reactor operated for 32 yr at a respectable 74% lifetime capacity factor, the actual costs and resources required to decommission the plant, when compared with decommissioning estimates, will yield valuable benchmarking data.

Lessard, L.P. [Yankee Atomic Electric Co., Bolton, MA (United States)

1996-12-31T23:59:59.000Z

63

MHK Technologies/Vert Network Power Station | Open Energy Information  

Open Energy Info (EERE)

Network Power Station Network Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Vert Network Power Station.jpg Technology Profile Primary Organization Vert Labs LLP Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Vert Network is 1st cost effective wave power system that brings profit with the current level of pricing for renewable electricity The technology of Vert Network is based on an array of plastic floats that produce compressed air from the torque that is created from levers attached to the floats The compressed air is then sent to the shore by rubber pipe which is significantly cheaper and easier to maintain than underwater copper cables Consequently the generation is done on land using a standard turbine generator rather than requiring highly bespoke and overly robust generation devices which have to be specially designed for the marine environment and require specialist skills to maintain The marine based device is therefore made entirely from plastic carbon fibre and rubber so all the components are made from standard materials using mouldings and can be produced very cheaply VERT Labs estimates show that it can provide electricity at about 0 10 kWh When VERT Labs reache

64

Central station advanced power conditioning: technology, utility interface, and performance  

Science Conference Proceedings (OSTI)

A new concept is proposed for central station SPV power conditioning. It avoids heavy dc bus and extensive ac distribution, and so offers technical, cost, and efficiency advantages. Cost and efficiency comparisons with a more conventional approach, akin to that being implemented for the SMUD installation, are presented. Although the capital gains are not great, the simplification of site preparation and installation is considerable. The design used to generate data for this paper if fully compatible with utility transmission system requirements.

Wood, P.

1984-08-01T23:59:59.000Z

65

New Mexico Central Station Solar Power: Feasibility Study  

Science Conference Proceedings (OSTI)

A feasibility study was performed for a 50 to 500 megawatts central station solar power (CSSP) plant to be developed in New Mexico by mid-2011. The project participants included the Public Service Company of New Mexico (PNM), El Paso Electric (EPE), San Diego Gas Electric (SDGE), Southern California Edison (SCE), Tri-State Generation Transmission Association (TSGT), and Xcel Energy. The scope of the study included performing site and technology assessments, analyzing technology-specific design and perfor...

2008-03-31T23:59:59.000Z

66

New Mexico Central Station Solar Power: Summary Report  

Science Conference Proceedings (OSTI)

A feasibility study was performed for a 50 to 500 megawatts central station solar power (CSSP) plant to be developed in New Mexico by mid-2011. The project participants included the Public Service Company of New Mexico (PNM), El Paso Electric (EPE), San Diego Gas & Electric (SDG&E), Southern California Edison (SCE), Tri-State Generation & Transmission Association (TSGT), and Xcel Energy. The scope of the study included performing site and technology assessments, analyzing technology-specific design and p...

2008-03-31T23:59:59.000Z

67

EIS-0037: Springfield City Utilities, James River Generating...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

37: Springfield City Utilities, James River Generating Station, Power Plants 3 and 4, Springfield, Greene County, Missouri EIS-0037: Springfield City Utilities, James River...

68

Automation of a hydroelectric power station using variable-structure control systems  

Science Conference Proceedings (OSTI)

This article presents the basis and conception of, and some experimental results obtained from, the automation of a hydroelectric power station. The principle of this automation, the purpose of which was to maximize the active power supplied by the station, ...

J. Erschler; F. Roubellat; J. P. Vernhes

1974-01-01T23:59:59.000Z

69

Potomac River Generating Station Dept. of Energy Case No. EO-05-01; September 8, 2005  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Craig A. Glazer Craig A. Glazer Vice President - Federal Government Policy PJM Washington Office (202) 393-7756 .FAX (202) 393-7741 e-mail: glazec@pjm.com CRITICAL ENERGY INFRASTRUCTURE INFORMATION HAS BEEN REMOVED FROM THIS SUBMITTAL FOR PRIVILEGED TREATMENT September 8, 2005 Lawrence Mansueti Office of Electricity Delivery and Energy Reliability U.S. Department of Energy Rm. 8H-033 1000 Independence Avenue Washington, D.C. 20585 Re: Potomac River Generating Station Dept. of Energy Case No. EO-05-01 Dear Mr. Mansueti: PJM Interconnection, L.L.C. and PEPCO Holdings, Inc. is hereby providing you with additional information concerning reliability impacts under various system conditions associated with the unavailability of the Potomac River Generating Station to serve load in the D.C. area.

70

Reference: Additional Plant Systems Information Supporting the License Amendment Request to Permit Uprated Power Operation, Dresden Nuclear Power Station and Quad Cities Nuclear Power Station  

E-Print Network (OSTI)

2000 In the referenced letter, Commonwealth Edison Company, now Exelon Generation Company (EGC), LLC, submitted a request for changes to the operating licenses and Technical Specifications (TS) for Dresden Nuclear Power Station, Units 2 and 3, and Quad Cities Nuclear Power Station, Units 1 and 2, to allow operation at uprated power levels. In a telephone conference on August 31, 2001, between representatives of EGC and Mr. L. W. Rossbach and other members of the NRC, the NRC requested additional information regarding these proposed changes. The attachment to this letter provides the requested information. Should you have any questions related to this letter, please contact Mr. Allan R. Haeger

K. A. Ainger

2001-01-01T23:59:59.000Z

71

Provo River Project Power Sales Rate History  

NLE Websites -- All DOE Office Websites (Extended Search)

Provo River Project Power Sales Rate History Updated: 12/20/2013 Rate Schedule Effective Dates Energy (Mills/kWh) Capacity ($/kW-mo.) Combined (Mills/kWh) Administrative Action 4/58 - 6/64 (Summer Season) 3.000 N.A. N.A. Administrative Action 10/58 - 4/64 (Winter Season) 4.500 N.A. N.A. Administrative Action 7/64 - 9/79 (Summer Season) 5.000 N.A. N.A. Administrative Action 10/64 - 9/79 (Winter Season) 3.000 N.A. N.A. Administrative Action 10/79 - 9/82 6.000 N.A. N.A. Administrative Action 10/82 - 9/90 6.850 N.A. N.A. Administrative Action 10/90 - 9/94 8.000 N.A. N.A. Administrative Action 10/94 - Present Installments N.A. N.A. Note: The Provo River Project sells energy only. As of October 1994, customers pay all OM&R expenses and in return, receive all the energy produced by the Project.

72

Auxiliary power controls on the Nelson River HVDC scheme  

SciTech Connect

This paper describes the auxiliary power controls on the Nelson River HVDC scheme. It shows how the fast control feature of the HVDC link can be utilized to enhance the operation of an integrated ac/dc power system.

Chand, J. (Manitoba Hydro, Winnipeg, Manitoba (CA))

1992-02-01T23:59:59.000Z

73

Technical evaluation of the adequacy of station electric distribution system voltages for the Yankee Rowe Nuclear Power Station  

SciTech Connect

This report documents the technical evaluation of the adequacy of the station electric distribution system voltages for the Yankee Rowe Nuclear Power Station. The evaluation is to determine if the onsite distribution system, in conjunction with the offsite power sources, has sufficient capacity to automatically start and operate all Class 1E loads within the equipment voltage ratings under certain conditions established by the Nuclear Regulatory Commission. The analysis shows that the station electric distribution system has the capacity and capability to supply voltage to the Class 1E equipment with their design ratings for the worst case loading condition.

Selan, J.C.

1981-05-29T23:59:59.000Z

74

Topping cycles and advanced conversion machinery for central power stations  

SciTech Connect

From thermal power conference; Pullman, Washington, USA (3 Oct 1973). The possibility of developing dynamic conversion machines for topping cycles --- expanders and turbines ---that might utilize refractory materials not previously applied to this purpose is investigated. A technological basis for topping cycle systems that will extend the conversion efficiency of central power stations to the range of 55 to 60% is provided. The performance of a small (500 cm/sup 3/ displacement) graphite helical rotor compressor-expander set operating on inert gas for nearly 300 hr at temperatures up to 1500 deg C and rotor speeds to 14,000 rpm is described. In a related program, turbine blades and sound monolithic bodies up to 36 in. characteristic dimension were fabricated of the refractory compounds silicon nitride (Si/sub 3/N/sub 4/) and silicon carbide (SiC), which are compatible with air and combustion products. The application of available materials and power-conversion technology to permit a significant improvement in energy conversion efficiency is discussed. The demonstration of this capability is proposed by devising topping cycle systems incorporating ceramic engines capable of extracting useful energy from combustion heat sources at conditions presently inaccessible. 12 references. (auth)

Mohr, P.B.; Rienecker, F.

1973-12-12T23:59:59.000Z

75

Cycling Operation of Fossil Plants: Volume 3: Cycling Evaluation of Pepco's Potomac River Generating Station  

Science Conference Proceedings (OSTI)

This report presents a methodology for examining the economic feasibility of converting fossil power plants from baseload to cycling service. It employs this approach to examine a proposed change of Pepco's Potomac River units 3, 4, and 5 from baseload operation to two-shift cycling.

1991-06-01T23:59:59.000Z

76

Northland Power Mississippi River LLC | Open Energy Information  

Open Energy Info (EERE)

Northland Power Mississippi River LLC Northland Power Mississippi River LLC Jump to: navigation, search Name Northland Power Mississippi River LLC Address 30 St Clair Avenue West 17th Floor Place Toronto Sector Marine and Hydrokinetic Phone number (416) 820-9521 Website http://http://www.northlandpow Region Canada LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: NPI 01 NPI 013 NPI 014 NPI 015 NPI 016A NPI 016B NPI 017 NPI 018 NPI 019 NPI 020 NPI 021 NPI 022 NPI 023 NPI 024 NPI 025 NPI 027 NPI 055 This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Northland_Power_Mississippi_River_LLC&oldid=678391

77

Technical evaluation of the adequacy of station electric-distribution-system voltages for the Pilgrim Nuclear Power Station, Unit 1  

Science Conference Proceedings (OSTI)

This report documents the technical evaluation of the adequacy of the station electric distribution system voltages for the Pilgrim Nuclear Power Station, Unit 1. The evaluation is to determine if the onsite distribution system in conjunction with the offsite power sources has sufficient capacity to automatically start and operate all Class 1E loads within the equipment voltage ratings under certain conditions established by the Nuclear Regulatory Commission. The analyses demonstrated that for the worst case conditions established, the Class 1E equipment will automatically start and continue to operate within the equiment design voltage rating.

Selan, J.C.

1981-12-28T23:59:59.000Z

78

A Test of the Flow Velocity Enhancement System (FVES) for Deflecting Aquatic Vegetation from the Intake of Genoa Power Station #3, Wisconsin  

Science Conference Proceedings (OSTI)

This report reviews the results of an evaluation of the Flow Velocity Enhancement System (FVES), a new technology for generating motive water in the water column to deflect downstream drifting aquatic weeds from cooling water intakes. The research was conducted at Dairyland Power’s Genoa Generating Station on the upper Mississippi River in Wisconsin.BackgroundBlockage of cooling water intake structures (CWIS) by waterborne debris occurs frequently at ...

2013-06-10T23:59:59.000Z

79

Latent Impingement Mortality Assessment of the Geiger Multi-DiscTM Screening System at the Potomac River Generating Station  

Science Conference Proceedings (OSTI)

This report presents the results of a field study evaluating the injury and survival of fish exposed to a Geiger Multi-Disc (Geiger) modified traveling water screen designed to protect juvenile and adult fish. The study was conducted at the Potomac River Generating Station owned by Mirant Potomac River, LLC. Information in this report provides the first performance database for this technology. Also, for the species tested, the data presented provide a basis on which to estimate the potential biological ...

2007-07-23T23:59:59.000Z

80

Power requirements in the Missouri River Basin. [In 1950  

SciTech Connect

Information is presented on the physical characteristics of the Missouri River Region, which includes parts of Montana, Wyoming, North and South Dakota, Nebraska, Missouri and Kansas, on the factors affecting the electric power market in 1950, and predictions on the growth of power demand. (LCL)

1950-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "river power station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Chilled Ammonia Process Product Validation Facility at American Electric Power Mountaineer Station  

Science Conference Proceedings (OSTI)

A CO2 capture and storage (CCS) pilot plant was constructed at American Electric Power’s (AEP’s) 1300-MWe Mountaineer station in New Haven, West Virginia, employing Alstom Power’s Chilled Ammonia Process (CAP). The CAP Product Validation Facility (PVF) treated a slipstream of flue gas from ...

2012-09-30T23:59:59.000Z

82

Loup River Public Power Dist | Open Energy Information  

Open Energy Info (EERE)

River Public Power Dist River Public Power Dist Jump to: navigation, search Name Loup River Public Power Dist Place Nebraska Utility Id 11251 Utility Location Yes Ownership P NERC Location MRO NERC SPP Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting Customer Lease 100W HPS Commercial Area Lighting Customer Lease 175W MV Commercial Area Lighting Customer Lease 250W HPS Commercial Area Lighting Customer Lease 250W MV Commercial

83

Executive Director for Operations RENEWAL OF FULL-POWER OPERATING LICENSE FOR PILGRIM NUCLEAR POWER STATION  

E-Print Network (OSTI)

This paper (1) requests that the Commission authorize the Director of the Office of Nuclear Reactor Regulation (NRR) to renew the operating license for Pilgrim Nuclear Power Station (PNPS) for an additional 20 years, and (2) informs the Commission of the results of the U.S. Nuclear Regulatory Commission (NRC) staff’s review of the PNPS license renewal application (LRA) (Ref. 1) submitted by Entergy Nuclear Generation Company (Entergy Nuclear) and Entergy Nuclear Operations, Inc. (ENO) (owner and operator, respectively, of PNPS). In the Staff Requirements Memorandum for SECY-02-0088, “Turkey Point Nuclear Plant, Units 3 and

R. W. Borchardt

2012-01-01T23:59:59.000Z

84

Combustion Optimization at Allegheny Energy's Armstrong Power Station  

Science Conference Proceedings (OSTI)

Individual air and coal flow measurement instruments have been installed on Allegheny Energy's Armstrong Station with a goal to balance the individual burner air to fuel ratios to minimize NOx, reduce the LOI level in the ash and improve heat rate. These signals are also being incorporated into the NOx optimization package, ULTRAMAX (R). Armstrong Station is a 180 MW front wall boiler burning a low sulfur eastern bituminous coal. Twelve Foster Wheeler IFS low NOx burners are fed by two ball mills, three ...

2000-06-21T23:59:59.000Z

85

THE DEVELOPMENT OF HYDROELECTRIC POWER In the early 1880s the first central power-generating station  

E-Print Network (OSTI)

fostered the growth of power companies interested in potential profits. Earlier advances in dam materialsTHE DEVELOPMENT OF HYDROELECTRIC POWER In the early 1880s the first central power-generating station opened in New York City, and a plant in Appleton, Wisconsin, first utilized falling water

US Army Corps of Engineers

86

Safety Evaluation Report, pump and valve inservice testing program, Maine Yankee Atomic Power Station  

Science Conference Proceedings (OSTI)

This EG and G, Inc., report presents the results of our evaluation of the Maine Yankee Atomic Power Station, Inservice Testing Program for pumps and valves whose function is important to safety.

Rockhold, H.C.; Stromberg, H.M.

1985-04-01T23:59:59.000Z

87

NORTH ANNA POWER STATION RESTART ACTION PLAN (PUBLIC) Initial Action Plan: 10/7/2011  

E-Print Network (OSTI)

The goal of this action plan is to identify and coordinate the agency’s ongoing initiatives related to the North Anna Power Station (NAPS) restart decision as a result of the recent seismic event

Tac Nos Me

2011-01-01T23:59:59.000Z

88

Design of a photovoltaic central power station: flat-plate array  

DOE Green Energy (OSTI)

A design for a photovoltaic central power station using fixed flat-panel arrays has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes high-efficiency photovoltaic modules using dendritic web cells. The modules are arranged in 5 MW subfields, each with its own power conditioning unit. The photovoltaic output is connected to the existing 115 kV utility switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

Not Available

1984-02-01T23:59:59.000Z

89

Sleep Control for Base Stations Powered by Heterogeneous Energy Sources  

E-Print Network (OSTI)

makes it hard to utilize renewable energy efficiently. In literature, some efforts have been made to the power grid, some BSs are purely powered by the renewable energy. BS sleep is introduced not only to save grid power, but also to store renewable energy for future use when the temporal traffic variation does

90

Kings River Conservation District (KRCD) Solar Farm Solar Power Plant |  

Open Energy Info (EERE)

KRCD) Solar Farm Solar Power Plant KRCD) Solar Farm Solar Power Plant Jump to: navigation, search Name Kings River Conservation District (KRCD) Solar Farm Solar Power Plant Facility Kings River Conservation District (KRCD) Solar Farm Sector Solar Facility Type Photovoltaic Developer Cleantech America Location San Joachin Valley, California Coordinates 34.0787104°, -117.8660029° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0787104,"lon":-117.8660029,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

91

A Case Study of Solar Powered  Cellular Base Stations.  

E-Print Network (OSTI)

?? Green power, environment protection and emission reduction are key factors nowadays in the telecom industry. Balancing of these modes while reducing the capital and… (more)

PANDE, GEETHA

2009-01-01T23:59:59.000Z

92

Noise impact evaluation of a power generating station and a refuse?derived fuel facility  

Science Conference Proceedings (OSTI)

Community noiseimpact assessment of a planned addition of refuse?derived fuel (RDF) facility adjacent to a fossil?fueled power plant was conducted using a computerized atmospheric sound propagation model. Close?in measurements of power plant operation and coal handling system were used for station input

V. M. Lee; W. L. Knoll

1979-01-01T23:59:59.000Z

93

Development of HR module in ERP for IB thermal power station: a case study  

Science Conference Proceedings (OSTI)

This paper reports the implementation of HR module in Enterprise Resources Planning (ERP) at IB Thermal Power Station (IBTPS). This paper covers the methodology adopted in implementing the module in ERP besides highlighting the structure ... Keywords: BMR, DFD, ERP, HRIS, HRM, India, business mapping report, data flow diagram, enterprise resources planning, human resource management, human resources information systems, thermal power plants

Sanjib K. Jena; Sarada Baboo; Srikanta Patnaik

2007-01-01T23:59:59.000Z

94

New DOE program to advance fuel cell central power stations  

SciTech Connect

Recent advances in technology have precipitated movement of fuel cells into the central power area in support of FutureGen (coal-based power plants with near-zero emissions). The idea is being implemented under the Fuel Cell Coal-Based Systems (FCCBS) programs. The Solid State Energy Conversion Alliance (SECA) programme has identified solid oxide fuel cell designs with the most promise for scale-up to central power applications. These could be aggregated into modules, and serve as building blocks for greater than 100 MW FutureGen-type plants. The FCCBS objective is to have a SECA SOFC-based power island that costs $400 kW and can enable 50% efficiency and 90% CO{sub 2} capture in a FutureGen plant by 2015. The project teams have been selected and the three phases of the FCCBS project identified. 3 figs.

NONE

2005-09-30T23:59:59.000Z

95

Extra-terrestrial nuclear power stations : transportation and operation  

E-Print Network (OSTI)

Many challenges exist when considering nuclear power to provide electricity for bases on the Moon or Mars, including launch safety, landing safety, deployment, control, and protecting the astronauts from radiation. Examples ...

Kane, Susan Christine

2005-01-01T23:59:59.000Z

96

New River Light & Power Co | Open Energy Information  

Open Energy Info (EERE)

New River Light & Power Co New River Light & Power Co Place North Carolina Utility Id 13482 Utility Location Yes Ownership S NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt SV TOB Lighting 150 Watt SV TOB Lighting 150 Watt Sodium Vapor Lighting 175 Watt MV TOB Lighting 175 Watt Mercury Vapor Lighting 250 Watt Metal Halide Lighting 250 Watt SV TOB Lighting 250 Watt Sodium Vapor Lighting 400 Watt MV TOB Lighting 400 Watt Mercury Vapor Lighting 400 Watt Metal Halide Lighting 400 Watt SV TOB Lighting 750 Watt SV TOB Lighting

97

Technology, safety and costs of decommissioning a reference boiling water reactor power station: Comparison of two decommissioning cost estimates developed for the same commercial nuclear reactor power station  

SciTech Connect

This study presents the results of a comparison of a previous decommissioning cost study by Pacific Northwest Laboratory (PNL) and a recent decommissioning cost study of TLG Engineering, Inc., for the same commercial nuclear power reactor station. The purpose of this comparative analysis on the same plant is to determine the reasons why subsequent estimates for similar plants by others were significantly higher in cost and external occupational radiation exposure (ORE) than the PNL study. The primary purpose of the original study by PNL (NUREG/CR-0672) was to provide information on the available technology, the safety considerations, and the probable costs and ORE for the decommissioning of a large boiling water reactor (BWR) power station at the end of its operating life. This information was intended for use as background data and bases in the modification of existing regulations and in the development of new regulations pertaining to decommissioning activities. It was also intended for use by utilities in planning for the decommissioning of their nuclear power stations. The TLG study, initiated in 1987 and completed in 1989, was for the same plant, Washington Public Supply System's Unit 2 (WNP-2), that PNL used as its reference plant in its 1980 decommissioning study. Areas of agreement and disagreement are identified, and reasons for the areas of disagreement are discussed. 31 refs., 3 figs., 22 tabs.

Konzek, G.J.; Smith, R.I. (Pacific Northwest Lab., Richland, WA (USA))

1990-12-01T23:59:59.000Z

98

Ultrafiltration treatment for liquid laundry wastes from nuclear power stations  

SciTech Connect

The authors conduct a comprehensive analysis of the waste constituents--radioactive and organic--of the laundry water resulting from the on-site laundering and decontamination of clothing worn in nuclear power plants. The primary isotope contaminants consist of niobium and zirconium 95, manganese 54, cobalt 60, iron 59, and cesium 134 and 137. A variety of filter and adsorbent materials used in an ultrafiltration process are comparatively tested for their effectiveness in removing not only these isotopes but also the organic contaminants in the process of recycling the water. Those materials consist of copper hexacyanoferrate, polyacrylophosphonic acid, and several metal-polymer complexes.

Kichik, V.A.; Maslova, M.N.; Svittsov, A.A.; Kuleshov, N.F.

1988-03-01T23:59:59.000Z

99

Analysis of the Use of Wind Energy to Supplement the Power Needs at McMurdo Station and Amundsen-Scott South Pole Station, Antarctica (Poster)  

DOE Green Energy (OSTI)

This poster summarizes the analysis of the inclusion of wind-driven power generation technology into the existing diesel power plants at two U.S. Antarctic research stations, McMurdo and Amundsen-Scott South Pole Station. Staff at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) conducted the analysis. Available data were obtained on the wind resources, power plant conditions, load, and component cost. We then used NREL's Hybrid2 power system modeling software to analyze the potential and cost of using wind turbine generators at the two aforementioned facilities.

Baring-Gould, E. I.; Robichaud, R.; McLain, K.

2005-05-01T23:59:59.000Z

100

Peaking Service Experience at Kansas City Power and Light Hawthorn Station  

Science Conference Proceedings (OSTI)

EPRI's durability surveillance (DS) program -- in place since 1991 -- is producing the first in-service performance and operating data on the newest high-efficiency gas turbines. This detailed investigation of the Siemens V84.3A installed at the Kansas City Power & Light (KCPL) Hawthorn Station is providing plant personnel and the manufacturer with valuable information for solving initial problems. Program results will help all power producers specify, operate, and maintain a new generation of high-perfo...

1999-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "river power station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NOx Reduction Study at New York Power Authority's Charles Poletti Station  

Science Conference Proceedings (OSTI)

This engineering study assessed the feasibility and economics of obtaining significant NOx reduction levels at New York Power Authoritys Charles Poletti Station through one or more of a variety of approaches. Specific NOx reduction technologies included in the assessment were: 30 Unit De-Rate Induced Flue Gas Recirculation (IFGR) IFGR +30 De-Rate Selective Non-Catalytic Reduction (SNCR) IFGR +SNCR IFGR +SNCR +30 De-Rate Selective Catalytic Reduction (SCR) A number of windbox re-powering options, ...

2006-08-01T23:59:59.000Z

102

Colorado River Storage Project Power Sales Rate History  

NLE Websites -- All DOE Office Websites (Extended Search)

Colorado River Storage Project Power Sales Rate History Updated: 10/2/2009 Rate Schedule Effective Dates Energy (Mills/kWh) Capacity ($/kW-mo.) Combined (Mills/kWh) R4-F1 3/62 - 4/74 3.000 $1.275 6.000 UC-F1 4/74 - 6/77 3.000 $1.320 6.110 UC-F2 (Firm Only) 6/77 - 1/81 3.400 $1.340 6.550 UC-FP2 (Peaking Only) 6/77 - 1/81 N.A. $1.340 N.A. SP-F1 (Firm Only) 1/81 - 6/83 4.000 $1.655 7.890 SP-FP1 (Peaking Only) 1/81 - 6/83 N.A. $1.655 N.A. SP-F2 (Firm Only) 6/83 - 9/87 5.000 $2.090 9.920 SP-FP2 (Peaking Only) 6/83 - 9/87 N.A. $2.090 N.A. None 10/87 - Present N.A. N.A. N.A. Note: Beginning October 1, 1987, all Colorado River Storage Project power became a Salt Lake City Area Integrated Projects resource. As of that date, direct sales to power customers ceased.

103

Modeling of a horizontal steam generator for the submerged nuclear power station concept  

SciTech Connect

A submerged nuclear power station has been proposed as an alternative power station with a relatively low environmental impact for use by both industrialized and developing countries. The station would be placed 10 m above the seabed at a depth of 30--100 m and a distance of 10--30 km from shore. The submerged nuclear power station would be manufactured and refueled in a central facility, thus gaining the economies of factoryfabrication and the flexibility of short-lead-time deployment. To minimize the size of the submerged hull, horizontal steam generators are proposed for the primary-to-secondary heat transfer, instead of the more traditional vertical steam generators. The horizontal steam generators for SNPS would be similar in design to the horizontal steam generators used in the N-Reactors except the tube orientation is horizontal (the tube`s inlet and outlet connection points on the tubesheet are at the same elevation). Previous RELAP5 input decks for horizontal steam generators have been either very simplistic (Loviisa PWR) or used a vertical tube orientation (N-Reactor). This paper will present the development and testing of a RELAP5 horizontal steam generator model, complete with a simple secondary water level control system, that accounts for the dynamic flow conditions which exist inside horizontal steam generators.

Palmrose, D.E.; Herring, J.S.

1993-05-01T23:59:59.000Z

104

Modeling of a horizontal steam generator for the submerged nuclear power station concept  

Science Conference Proceedings (OSTI)

A submerged nuclear power station has been proposed as an alternative power station with a relatively low environmental impact for use by both industrialized and developing countries. The station would be placed 10 m above the seabed at a depth of 30--100 m and a distance of 10--30 km from shore. The submerged nuclear power station would be manufactured and refueled in a central facility, thus gaining the economies of factoryfabrication and the flexibility of short-lead-time deployment. To minimize the size of the submerged hull, horizontal steam generators are proposed for the primary-to-secondary heat transfer, instead of the more traditional vertical steam generators. The horizontal steam generators for SNPS would be similar in design to the horizontal steam generators used in the N-Reactors except the tube orientation is horizontal (the tube's inlet and outlet connection points on the tubesheet are at the same elevation). Previous RELAP5 input decks for horizontal steam generators have been either very simplistic (Loviisa PWR) or used a vertical tube orientation (N-Reactor). This paper will present the development and testing of a RELAP5 horizontal steam generator model, complete with a simple secondary water level control system, that accounts for the dynamic flow conditions which exist inside horizontal steam generators.

Palmrose, D.E.; Herring, J.S.

1993-01-01T23:59:59.000Z

105

Columbia River System Operation Review on Selecting an Operating Strategy for the Federal Columbia River Power System; 21Feb1997  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DEPARTMENT OF ENERGY DEPARTMENT OF ENERGY Bonneville Power Administration Columbia River System Operation Review on Selecting an Operating Strategy for the Federal Columbia River Power System (FCRPS) AGENCY: Bonneville Power Administration (BPA), Department of Energy (DOE) ACTION: Record of Decision (ROD) SUMMARY: The Columbia River System Operation Review (SOR) Environmental Impact Statement (EIS) assessed operations at the 14 Federal dams and reservoirs on the Columbia and lower Snake Rivers that have a major influence on the multiple purpose system operation, and for which power production is coordinated under the Pacific Northwest Coordination Agreement. Lead agencies for this six-year process were the U.S. Army Corps of Engineers (Corps), the U.S. Bureau of Reclamation

106

Ohio River Ecological Research Program (ORERP): 2005 Ohio River Monitoring Results  

Science Conference Proceedings (OSTI)

The Ohio River Ecological Research Program (ORERP) is the largest collaborative power plant research program in the world. This report presents the results of the 2005 ORERP fish population sampling near the Ohio River power stations. In 2005, the program consisted of adult/juvenile fish, habitat, and water quality field studies near 17 electric generating stations that covered nearly the entire (~1000 mile) length of the river.

2007-12-17T23:59:59.000Z

107

Turbines Off NYC East River Will Provide Power to 9,500 Residents |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turbines Off NYC East River Will Provide Power to 9,500 Residents Turbines Off NYC East River Will Provide Power to 9,500 Residents Turbines Off NYC East River Will Provide Power to 9,500 Residents February 6, 2012 - 3:16pm Addthis Free Flow System turbine being installed in East River, New York, NY (Dec 2006). | Image Credit: Kris Unger/Verdant Power, Inc. Free Flow System turbine being installed in East River, New York, NY (Dec 2006). | Image Credit: Kris Unger/Verdant Power, Inc. Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program What does this project do? The 30 turbines will generate 1,050 kilowatts of electricity -- this power will be delivered to 9,500 New York homes. As part of the Roosevelt Island Tidal Energy project, 30 turbines are being installed along the strait that connects the Long Island Sound with the

108

Big Bend Power Station Neural Network-Intelligent Sootblower (NN-ISB) Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

Big Bend Power Station neural network- Big Bend Power Station neural network- intelligent SootBlower (nn-iSB) oPtimization (comPleted) Project Description The overall goal of this project was to develop a Neural Network-Intelligent Sootblowing (NN-ISB) system on the 445 MW Tampa Electric Big Bend Unit #2 to initiate sootblowing in response to real-time events or conditions within the boiler rather than relying on general rule-based protocols. Other goals were to increase unit efficiency, reduce NO X , and improve stack opacity. In a coal-fired boiler, the buildup of ash and soot on the boiler tubes can lead to a reduction in boiler efficiency. Thus, one of the most important boiler auxiliary operations is the cleaning of heat-absorbing surfaces. Ash and soot deposits are removed by a process known as sootblowing, which uses mechanical devices for on-line cleaning

109

EPRI Alpha Monitoring and Control Guidelines for Operating Nuclear Power Stations, Revision 2  

Science Conference Proceedings (OSTI)

In 2006, the Electric Power Research Institute (EPRI) first published the EPRI Alpha Monitoring Guidelines for Operating Nuclear Stations (EPRI report 1013509), to provide standardized guidance for monitoring alpha contamination. Minor revisions were made to the guidelines, which were re-issued in 2009 (1019500). Most US and some international utilities have implemented the guidelines, and several areas of improvement were identified to enhance information to support the monitoring and ...

2013-08-29T23:59:59.000Z

110

Physical Sediment Model Test in the Reservoir of Laomukong Hydropower Station in Minjiang River  

Science Conference Proceedings (OSTI)

A physical model is used to investigate the sediment transport in the reservoir of Lamukong hydropower station under design. The model test results are the main theoretical basis for the dyke line layout in the two sides of the reservoir. The test results ... Keywords: physical model, suspended sediment transport, reservoir dyke layout, reservoir operation mode

Yunli Wang; Xujin Zhang; Zhihui Ni

2012-05-01T23:59:59.000Z

111

Analysis of the Use of Wind Energy to Supplement the Power Needs at McMurdo Station and Amundsen-Scott South Pole Station, Antarctica  

DOE Green Energy (OSTI)

This report summarizes an analysis of the inclusion of wind-driven power generation technology into the existing diesel power plants at two U.S. Antarctic research stations, McMurdo and Amundsen-Scott South Pole Station. Staff at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) conducted the analysis. Raytheon Polar Services, which currently holds the private sector support contract for the two research stations, was a major contributor to this report. To conduct the analysis, available data were obtained on the wind resources, power plant conditions, load, and component cost. Whenever possible, we validated the information. We then used NREL's Hybrid2 power system modeling software to analyze the potential and cost of using wind turbine generators at the two aforementioned facilities. Unfortunately, the power systems and energy allocations at McMurdo and South Pole Station are being redeveloped, so it is not possible to validate future fuel use. This report is an initial assessment of the potential use of wind energy and should be followed by further, more detailed analysis if this option is to be considered further.

Baring-Gould, I.; Robichaud, R.; McLain, K.

2005-05-01T23:59:59.000Z

112

Pilgrim Nuclear Power Station Docket No. 50-293 License No. DPR-35 Pilgrim Nuclear Power Station (PNPS) License Renewal Application  

E-Print Network (OSTI)

information that supplemented the LRA as a result of operating experience (OE) and industry activities potentially relevant to aging management in several specific areas. This letter provides further clarification of that supplemental information to the LRA specific to the following areas which Entergy agreed to evaluate based upon communications with the NRC technical staff. 1. Aging management of neutron-absorbing materialsEntergy Nuclear Operations, Inc. Letter Number: 2.11.017 Pilgrim Nuclear Power Station Page 2 2. Inspection of buried pipe and tanks 3. Aging management of low voltage cables 4. Inspection of containment coatings 5. Metal fatigue NUREG/CR-6260 A new regulatory commitment is provided in the PNPS License Renewal Commitment List as

Stephen J. Bethay

2011-01-01T23:59:59.000Z

113

Feasibility study for Boardman River hydroelectric power. Final report  

DOE Green Energy (OSTI)

The feasibility of generating additional hydroelectric power from five consecutive existing dams located on the Boardman River in Grand Traverse County and Traverse City, Michigan, was investigated. The potential hydropower production capabilities, in terms of base load power and peak load power, the legal-institutional-environmental constraints, and the economic feasibility, including capital investment, operating costs and maintenance costs, were evaluated for each of the five dam sites individually and as a series of co-dependent facilities. The impact of installing fish passages at each site was analyzed separately. The feasibility assessment utilized the present worth analytical method, considering revenue based on thirty mills/kWh for power, 0.4% general economy escalation rate, and a 6% net income to the municipal utility. The sensitivity of fuel costs increasing at a different rate than the general price-escalation was tested by allowing the increase in fuel costs to vary from 3 to 8% per year. Assuming fuel costs increase at the same rate as the general economy, it is feasible to update, retrofit, renovate, and install hydroelectric generating capacity at Sabin, Boardman and Brown Bridge. Rehabilitation of Union Street and Keystone is also feasible but somewhat less attractive. Operating the dams as a co-dependent system has environmental advantages and can provide additional revenue through peak load power rates. A development plan to implement the above is outlined utilizing an ownership arrangement whereby Grand Traverse County provides easements for Sabin and Boardman Dams. The plan calls for operation of the system by Traverse City.

None

1979-02-22T23:59:59.000Z

114

Assessment of DC Backup Power Technology Options for Nuclear Power Generation Stations  

Science Conference Proceedings (OSTI)

The March 2011 Fukushima nuclear power plant accident in Japan created a renewed industry interest in examining potential improvements for backup power options to support plant accident scenarios in both near-term and long-term implementation time periods. This report assesses technology options that can be considered in improving DC backup power. Options with near-term applicability were considered and reviewed. Certain energy storage systems and hydrogen power fuel cells were identified that could ...

2013-10-15T23:59:59.000Z

115

Thermal Modeling of NUHOMS HSM-15 and HSM-1 Storage Modules at Calvert Cliffs Nuclear Power Station ISFSI  

Science Conference Proceedings (OSTI)

As part of the Used Fuel Disposition Campaign of the Department of Energy (DOE), visual inspections and temperature measurements were performed on two storage modules in the Calvert Cliffs Nuclear Power Station’s Independent Spent Fuel Storage Installation (ISFSI). Detailed thermal models models were developed to obtain realistic temperature predictions for actual storage systems, in contrast to conservative and bounding design basis calculations.

Suffield, Sarah R.; Fort, James A.; Adkins, Harold E.; Cuta, Judith M.; Collins, Brian A.; Siciliano, Edward R.

2012-10-01T23:59:59.000Z

116

Plant Modernization with Digital Reactor Protection System Safety System Upgrades at US Nuclear Power Stations  

SciTech Connect

As the current fleet of nuclear power plants in the US reaches 25+ years of operation, obsolescence is driving many utilities to implement upgrades to both their safety and non-safety-related Instrumentation and Control (I and C) Systems. Digital technology is the predominant replacement technology for these upgrades. Within the last 15 years, digital control systems have been deployed in non-safety- related control applications at many utilities. In addition, a few utilities have replaced small safety-related systems utilizing digital technology. These systems have shown digital technology to be robust, reliable and simpler to maintain. Based upon this success, acceptance of digital technology has gained momentum with both utilities and regulatory agencies. Today, in an effort to extend the operating lives of their nuclear stations and resolve obsolescence of critical components, utilities are now pursuing digital technology for replacement of their primary safety systems. AREVA is leading this effort in the United States with the first significant digital upgrade of a major safety system. AREVA has previously completed upgrades to safety-related control systems emergency diesel engine controls and governor control systems for a hydro station which serves as the emergency power source for a nuclear station. Currently, AREVA is implementing the replacement of both the Reactor Protection System (RPS) and the Engineered Safety Features Actuation System (ESFAS) on all three units at a US PWR site. (authors)

Heckle, Wm. Lloyd; Bolian, Tricia W. [AREVA NP, an AREVA and Siemens Company, 1345 Ridgeland Parkway, Suite 130 (United States)

2006-07-01T23:59:59.000Z

117

New instrument for the confirmation of declared power histories of central station nuclear power plants  

SciTech Connect

An operationally simple, portable, microprocessor-based, unattended reactor power monitor was developed for International Atomic Energy Agency inspector use in confirming operator records of the power history of nuclear power plants. The monitor is based on the principle that the leakage neutron flux outside the biological shield is proportional to the thermal power level. The leakage flux is detected and compared with the leakage flux from the same reactor for a confirmed calibration period. Several output options are available, and a record of more than three months of hourly measurements of the themal power of the plant can be obtained. The monitor has battery backup power for interruptions of host power of duration up to 18 hours.

Dowdy, E.J.; Robba, A.A.; Hastings, R.D.; France, S.W.

1979-01-01T23:59:59.000Z

118

Potential impact of new power system technology on the design of a manned space station  

DOE Green Energy (OSTI)

Large, more complex spacecraft of the future such as a manned Space Station will require electric power systems of 100 kW and more, orders of magnitude greater than the present state of the art. Power systems at this level will have a significant impact on the spacecraft design. Historically, long-lived spacecraft have relied on silicon solar cell arrays, a nickel-cadium storage battery and operation at 28 V dc. These technologies lead to large array areas and heavy batteries for a Space Station application. This, in turn, presents orbit altitude maintenance, attitude control, energy management and launch weight and volume constraints. Size (area) and weight of such a power system can be reduced if new higher efficiency conversion and lighter weight storage technologies are used. Several promising technology options including concentrator solar photovoltaic arrays, solar thermal dynamic and ultimately nuclear dynamic systems to reduce area are discussed. Also higher energy storage systems such as nickel-hydrogen and the regenerative fuel cell (RFC) and higher voltage power distribution which add system flexibility, simplicity and reduce weight are examined. Emphasis is placed on the attributes and development status of emerging technologies that are sufficiently developed that they could be available for flight use in the early to mid 1990's.

Fordyce, J.S.; Schwartz, H.J.

1984-01-01T23:59:59.000Z

119

Intermediate photovoltaic system application experiment operational performance report. Volume 13. For Newman Power Station, El Paso, Texas  

DOE Green Energy (OSTI)

Presented are the data accumulated during June at the intermediate photovoltaic project at Newman Power Station, El Paso, Texas. Generated energy and environmental (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided.

Not Available

1982-09-01T23:59:59.000Z

120

Seismic margin review of the Maine Yankee Atomic Power Station: Fragility analysis  

SciTech Connect

This Fragility Analysis is the third of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 1 is the Summary Report of the first trial seismic margin review. Volume 2, Systems Analysis, documents the results of the systems screening for the review. The three volumes are part of the Seismic Margins Program initiated in 1984 by the Nuclear Regulatory Commission (NRC) to quantify seismic margins at nuclear power plants. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants.

Ravindra, M. K.; Hardy, G. S.; Hashimoto, P. S.; Griffin, M. J.

1987-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "river power station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Environmental radiological studies in 1989 near the Rancho Seco Nuclear Power Generating Station  

SciTech Connect

In December 1988, the Sacramento Municipal Utilities District (SMUD) asked the Lawrence Livermore National Laboratory's (LLNL) Environmental Sciences Division (ENV) to collect sediment, water,and fish samples downstream from the Rancho Seco Nuclear Power Generating Station for analysis of radionuclides to compare with results from earlier surveys in 1984 through 1987 (1--8). ENV was, however, asked to reduce the total number of sample collections to a minimum in this study because of financial constraints. The proposal ENV submitted for the 1989 Environmental Radiological Studies downstream of the Rancho Seco Nuclear Power Generating Station reflected this reduction, but we believe, nevertheless, the 1989 efforts do allow us to make some meaningful comparisons with the previous studies. Cesium-137 is the most significant radionuclide still observed downstream from the Rancho Seco Nuclear Power Plant. Only occasionally is {sup 134}Cs or {sup 60}CO observed. In 1989, the concentration of {sup 137}Cs in the water and fish decreased with distance from the plant to the same level that is was in 1987, and was lower than it had been from 1984 through 1986. The concentration ratio (CR) for {sup 137}Cs in fish is between 1000 and 1500, which is below the NRC default value of 2000. Physical mixing in the creek environment has moved the {sup 137}Cs deeper into the sediment column, thereby reducing the concentration in the top 12 cm relative to that in previous years. 8 refs., 18 figs., 9 tabs.

Robison, W.L.; Wong, Kai M.; Jones, H.E.

1990-11-01T23:59:59.000Z

122

High Pressure Coolant Injection (HPCI) system risk-based inspection guide: Pilgrim Nuclear Power Station  

Science Conference Proceedings (OSTI)

A review of the operating experience for the High Pressure Coolant Injection (HPCI) system at the Pilgrim Nuclear Power Station is described in this report. The information for this review was obtained from Pilgrim Licensee Event Reports (LERs) that were generated between 1980 and 1989. These LERs have been categorized into 23 failure modes that have been prioritized based on probabilistic risk assessment considerations. In addition, the results of the Pilgrim operating experience review have been compared with the results of of a similar, industry wide operating experience review. this comparison provides an indication of areas in the Pilgrim HPCI system that should be given increased attention in the prioritization of inspection resources.

Shier, W.; Gunther, W. (Brookhaven National Lab., Upton, NY (United States))

1992-10-01T23:59:59.000Z

123

Impact of inverter station on torsional dynamics of parallel HVdc-ac power system  

SciTech Connect

This paper investigates the impact of an inverter station on the torsional dynamics of a turbine-generator set which is located at the rectifier side of a parallel HVdc-ac power system. The studies show that depending on the stiffness of the inverter ac bus and electrical coupling between the inverter and rectifier ac buses, the inverter closed loop control can have noticeable contribution to the instability of torsional dynamics. This adverse torsional impact is observed in the study results even when the inverter ac bus is fairly strong (ESCR larger than 5.0).

Iravani, M.R.; Zhao, Z.; Hamouda, R.M. (Univ. of Toronto, Ontario (Canada). Dept. of Electrical Engineering)

1993-08-01T23:59:59.000Z

124

Economics of a conceptual 75 MW Hot Dry Rock geothermal electric power station  

DOE Green Energy (OSTI)

Man-made, Hot Dry Rock (HDR) geothermal energy reservoirs have been investigated for over ten years. As early as 1977 a research-sized reservoir was created at a depth of 2.9 km near the Valles Caldera, a dormant volcanic complex in New Mexico, by connecting two wells with hydraulic fractures. Thermal power was generated at rates of up to 5 MW(t) and the reservoir was operated for nearly a year with a thermal drawdown less than 10/sup 0/C. A small 60kW(e) electrical generation unit using a binary cycle (hot geothermal water and a low boiling point organic fluid, R-114) was operated. Interest is now worldwide with field research being conducted at sites near Le Mayet de Montagne, France; Falkenberg and Urach, Federal Republic of Germany; Yakedake, Japan; and Rosemanowes quarry in Cornwall, United Kingdom. To assess the commercial viability of future HDR electrical generating stations, an economic modeling study was conducted for a conceptual 75 MW(e) generating station operating at conditions similar to those prevailing at the New Mexico HDR site. The reservoir required for 75 MW(e), equivalent to 550 MW of thermal energy, uses at least 9 wells drilled to 4.3 km and the temperature of the water produced should average 230/sup 0/C. Thermodynamic considerations indicate that a binary cycle should result in optimum electricity generation and the best organic fluids are refrigerants R-22, R-32, R-115 or R-600a (Isobutane). The break-even bus bar cost of HDR electricity was computed by the levelized life-cycle method, and found to be competitive with most alternative electric power stations in the US.

Murphy, H.D.; Drake, R.H.; Tester, J.W.; Zyvoloski, G.A.

1984-01-01T23:59:59.000Z

125

Seismic margin review of the Maine Yankee Atomic Power Station: Summary report  

SciTech Connect

This Summary Report is the first of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 2 is the Systems Analysis of the first trial seismic margin review. Volume 3 documents the results of the fragility screening for the review. The three volumes demonstrate how the seismic margin review guidance (NUREG/CR-4482) of the Nuclear Regulatory Commission (NRC) Seismic Design Margins Program can be applied. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants.

Prassinos, P.G.; Murray, R.C.; Cummings, G.E.

1987-03-01T23:59:59.000Z

126

European legislation in the United Kingdom: a threat to coal-fired power station product utilization?  

SciTech Connect

The author considers that the European Union has not taken the approach adopted in the USA where environmental regulators are keen to promote the use of coal-fired power station ash by-product and recycled materials. The United Kingdom has seen, with some dismay, the effects EU legislation is having on the ash industry. This article outlines only some of the problems being tackled. The Waste Framework Directive is difficult to interpret and fails to define critical aspects of the problem. This directive is discussed at some length in the article. A total of nine directives effect the operation of coal-fired power plant. Many are imprecise and open to interpretation and cause a deal of frustration, delays and confusion to the ash supplier and contractor. This is causing markets to suffer.

Sear, K.A. [Quality Ash Association (United Kingdom)

2006-07-01T23:59:59.000Z

127

Soft-Sensor Modeling on NOx Emission of Power Station Boilers Based on Least Squares Support Vector Machines  

Science Conference Proceedings (OSTI)

The online monitoring for NOx emission of coal-fired boilers in power plants is more difficult to achieve. The soft-sensor technology of artificial neural network (ANN) method that was commonly used has not strong generalization ability, but support ... Keywords: NOx emission, support vector machines, soft sensor, modeling, power station boilers

Feng Lei-hua; Gui Wei-hua; Yang Feng

2009-10-01T23:59:59.000Z

128

Retrofitted feedwater heat storage for steam electric power stations peaking power engineering study. Final report  

DOE Green Energy (OSTI)

The technical and economic feasibility of retrofitting existing nuclear or fossil-fueled steam power plants with feedwater thermal energy storage (TES) systems for peaking power applications was investigated. A major objective of the study was to determine if retrofitted thermal energy storage (RTES) systems could result in significant fuel savings in oil- and gas-fired peaking plants. From this study it was concluded that RTES require high capital expenditure, excessive plant downtime for installation (16 mo for fossil-fuel; 24 mo for nuclear), that retrofitting 17,000 MWe of coal and nuclear plants would result in only about 2 percent annual savings in oil consumed by the U.S. utility industry in 1974, and that the technical questions which remain could best be answered by retrofitting a relatively new reliable plant as a test facility. The utility industry is receptive to the TES concept but not to the RTES concept. It is recommended that no further effort be expended on RTES, that TES studies should concentrate on coal and nuclear plants, and that a TES Proof-of-Concept Facility should be designed and constructed. (LCL)

None

1976-10-01T23:59:59.000Z

129

DEPARTMENT OF ENERGY Western Area Power Administration Provo River Project Rate Order No. WAPA-149  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DEPARTMENT OF ENERGY Western Area Power Administration Provo River Project Rate Order No. WAPA-149 AGENCY: Western Area Power Administration, DOE. ACTION: Notice of Rate Order Concerning a Power Rate Formula. SUMMARY: The Deputy Secretary of Energy confinned and approved Rate Order No. W AP A-149, placing a power rate fOlIDula for the Provo River Project (PRP) of Western Area Power Administration (Western) into effect on an interim basis. The provisional power rate formula will remain in effect on an interim basis until the Federal Energy Regulatory Commission (FERC) COnfilIDs, approves, and places it into effect on a final basis, or until the power rate formula is replaced by another power rate fOlIDula. DATES: The provisional power rate fonnula will be placed into effect on an interim basis on

130

Tampa Electric Company, Polk Power Station Unit No. 1, preliminary public design report  

Science Conference Proceedings (OSTI)

This preliminary Public Design Report (PDR) provides design information about Tampa Electric Company`s Polk Power Station Unit No. 1, which will demonstrate in a commercial 250 MW unit the benefits of the integration of oxygen-blown, entrained-flow coal gasification with advanced combined cycle technology. This project is partially funded by the US Department of Energy (DOE) under Round III of its Clean Coal Technology (CCT) Program under the provisions of Cooperative Agreement between DOE and Tampa Electric Company, novated on March 5,1992. The project is highlighted by the inclusion of a new hot gas cleanup system. DOE`s project management is based at its Morgantown Energy Technology Center (METC) in West Virginia. This report is preliminary, and the information contained herein is subject to revision. Definitive information will be available in the final PDR, which will be published at the completion of detailed engineering.

NONE

1994-06-01T23:59:59.000Z

131

Formation processes and main properties of hollow aluminosilicate microspheres in fly ash from thermal power stations  

Science Conference Proceedings (OSTI)

The main parameters of aluminosilicate microspheres formed at thermal power stations in Russia were studied. These parameters are responsible for the prospective industrial application of these microspheres. A comparative analysis of the properties of mineral coal components, the conditions of coal combustion, and the effects of chemical and phase-mineralogical compositions of mineral impurities in coals from almost all of the main coal deposits on the formation of microspheres was performed. The effects of thermal treatment conditions on gas evolution processes in mineral particles and on the fraction of aluminosilicate microspheres in fly ash were considered. It was found that the yield of microspheres was higher in pulverized coal combustion in furnaces with liquid slag removal, all other factors being equal. The regularities of microsphere formation were analyzed, and the mechanism of microsphere formation in fly ash during the combustion of solid fuels was considered.

V.S. Drozhzhin; M.Ya. Shpirt; L.D. Danilin; M.D. Kuvaev; I.V. Pikulin; G.A. Potemkin; S.A. Redyushev [Russian Federal Nuclear Center VNIIEF, Nizhegorodskaya oblast (Russia)

2008-04-15T23:59:59.000Z

132

"1. John E Amos","Coal","Appalachian Power Co",2900 "2. Harrison Power Station","Coal","Allegheny Energy Supply Co LLC",1954  

U.S. Energy Information Administration (EIA) Indexed Site

West Virginia" West Virginia" "1. John E Amos","Coal","Appalachian Power Co",2900 "2. Harrison Power Station","Coal","Allegheny Energy Supply Co LLC",1954 "3. Mt Storm","Coal","Virginia Electric & Power Co",1571 "4. Mitchell","Coal","Ohio Power Co",1560 "5. Mountaineer","Coal","Appalachian Power Co",1310 "6. Pleasants Power Station","Coal","Allegheny Energy Supply Co LLC",1288 "7. Fort Martin Power Station","Coal","Monongahela Power Co",1107 "8. Philip Sporn","Coal","Appalachian Power Co",1020 "9. Kammer","Coal","Ohio Power Co",600

133

DOE/EA-1498: Advanced Coal Utilization Byproduct Beneficiation Processing Plant Ghent Power Station, Carroll County, Kentucky (01/05)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1498 EA-1498 Advanced Coal Utilization Byproduct Beneficiation Processing Plant Ghent Power Station, Carroll County, Kentucky Final Environmental Assessment January 2005 Note: No comments were received during the public comment period from September 25 to October 25, 2004. Therefore, no changes to the Draft Environmental Assessment were necessary. National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The proposed Federal action is to provide funding, through a cooperative agreement with the University of Kentucky Research Foundation (UKRF), Center for Applied Energy Research (CAER), for the design, construction, and operation of an advanced coal ash beneficiation processing plant at Kentucky Utilities (KU) Ghent Power Station in Carroll County, Kentucky.

134

Tampa Electric Company Polk Power Station Unit Number 1. Annual report, January--December, 1993  

Science Conference Proceedings (OSTI)

This report satisfies the requirements of Cooperative Agreement DE-FC21-91MC27363, novated as of March 5, 1992, to provide an annual update report on the year`s activities associated with Tampa Electric Company`s 250 MW IGCC demonstration project for the year 1993. Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,000 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Approximately 50% of the raw, hot syngas is cooled to 900 F and passed through a moving bed of zinc-based sorbent which removes sulfur containing compounds from the syngas. The remaining portion of the raw, hot syngas is cooled to 400 F for conventional acid gas removal. Sulfur-bearing compounds from both cleanup systems are sent to a conventional sulfuric acid plant to produce a marketable, high-purity sulfuric acid by-product. The cleaned medium-BTU syngas from these processes is routed to the combined cycle power generation system where it is mixed with air and burned in the combustion section of the combustion turbine. Heat is extracted from the expanded exhaust gases in a heat recovery steam generator (HRSG) to produce steam at three pressure levels for use throughout the integrated process. A highly modular, microprocessor-based distributed control system (DCS) is being developed to provide continuous and sequential control for most of the equipment on PPS-1.

Not Available

1994-08-01T23:59:59.000Z

135

Securing the Value of the Federal Columbia River Power System, Keeping Current, June 1998, Issue 98.  

DOE Green Energy (OSTI)

This report focuses on issues which will enhance the value of the Columbia River for the future. Many important decisions must be made about the Bonneville Power Administration in the coming months. These issues include the following: cost management; future fish and wildlife funding; power markets, revenues and subscription; transmission issues; and risk management.

United States. Bonneville Power Administration.

1998-06-01T23:59:59.000Z

136

Technical evaluation report on the monitoring of electric power to the reactor-protection system for the Pilgrim Nuclear Power Station  

Science Conference Proceedings (OSTI)

This report documents the technical evaluation of the monitoring of electric power to the reactor protection system (RPS) at the Pilgrim Nuclear Power Station. The evaluation is to determine if the proposed design modification will protect the RPS from abnormal voltage and frequency conditions which could be supplied from the power supplies and will meet certain requirements set forth by the Nuclear Regulatory Commission. The proposed design modifications will protect the RPS from sustained abnormal voltage and frequency conditions from the supplying sources.

Selan, J.C.

1982-04-29T23:59:59.000Z

137

BOILING NUCLEAR SUPERHEATER (BONUS) POWER STATION. Supplementary Study. Extrapolation to Large Central Station Integral Nuclear Superheat Plant  

SciTech Connect

An evaluation was made of the maximum size plant for which the BONUS reactor plant could serve as a realistic prototype and the design changes required to increase the size and characteristics for the present BONUS design such that it could serve as a realistic prototype for the largest feasible integral-superheat reactor power plant. (M.C.G.)

1962-10-31T23:59:59.000Z

138

Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska University of Massachusetts Amherst  

E-Print Network (OSTI)

Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska Mia Devine Electric Use (kWh/year) 2,173,400 1,032,800 2,520,500 Average Load 300 kW 140 kW 280 kW Peak Load 600 k load profile. Villages usuall

Massachusetts at Amherst, University of

139

ASSESSMENT OF RADIONUCLIDE RELEASE FROM CONTAMINATED CONCRETE AT THE YANKEE NUCLEAR POWER STATION.  

Science Conference Proceedings (OSTI)

Yankee Atomic Energy Company (YAEC) is considering allowing portions of existing structures at the Yankee Nuclear Power Station (YNPS) to remain on site at the time of license termination. Accordingly, release of residual radioactive contaminants (i.e., H-3, C-14, Co-60, Ni-63, Sr-90, and Cs-137) from remaining subsurface concrete structures (Darman, 2004) and dose due to that release must be evaluated. Analyses were performed using DUST-MS to assess the rate of release for each radionuclide from the concrete, based upon an assumed concentration of 1 pCi/g and a concrete density of 2.5 g/cm{sup 3}. Using the same assumptions that were applied to the soil DCGL calculation (and where appropriate, the same input parameters), RESRAD was used to calculate the dose from water pathways. Values for selected RESRAD input parameters were chosen to match the release rate calculated by DUST-MS. The results indicated that Cs-137 yielded the highest dose.

SULLIVAN, T.

2004-03-01T23:59:59.000Z

140

An aerial radiological survey of the Pilgrim Station Nuclear Power Plant and surrounding area, Plymouth, Massachusetts  

SciTech Connect

Terrestrial radioactivity surrounding the Pilgrim Station Nuclear Power Plant was measured using aerial radiolog- ical survey techniques. The purpose of this survey was to document exposure rates near the plant and to identify unexpected, man-made radiation sources within the survey area. The surveyed area included land areas within a three-mile radius of the plant site. Data were acquired using an airborne detection system that employs sodium iodide, thallium-activated detectors. Exposure rate and photopeak counts were computed from these data and plotted on aerial photographs of the survey area. Several ground-based exposure measurements were made for comparison with the,aerial survey results. Exposure rates in areas surrounding the plant site varied from 6 to 10 microroentgens per hour, with exposure rates below 6 microroentgens per hour occurring over bogs and marshy areas. Man-made radiation was found to be higher than background levels at the plant site. Radation due to nitrogen-1 6, which is produced in the steam cycle of a boiling-water reactor, was the primaty source of activity found at the plant site. Cesium-137 activity at levels slightly above those expected from natural fallout was found at isolated locations inland from the plant site. No other detectable sources of man-made radioactivity were found.

Proctor, A.E.

1997-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "river power station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Station blackout at nuclear power plants: Radiological implications for nuclear war  

Science Conference Proceedings (OSTI)

Recent work on station blackout is reviewed its radiological implications for a nuclear war scenario is explored. The major conclusion is that the effects of radiation from many nuclear weapon detonations in a nuclear war would swamp those from possible reactor accidents that result from station blackout.

Shapiro, C.S.

1986-12-01T23:59:59.000Z

142

Solar cogeneration: Cimarron River station, Central Telephone and Utilities-Western Power  

DOE Green Energy (OSTI)

The site-specific conceptual design progress is described for a solar central receiver cogeneration facility at a Kansas utility. The process is described which led to the selection of the preferred solar cogeneration facility. The status of the conceptual design is presented. The evaluation of system performance is described. A test program is described that is to determine the magnitude of impact that local environmental factors have on collector system performance and to measure the direct normal insolation at the cogeneration facility site. The system specification is appended. (LEW)

Harder, J.E.

1981-04-01T23:59:59.000Z

143

WWVB Station Library  

Science Conference Proceedings (OSTI)

... NIST time and frequency broadcast stations. ... International Conference, Washington, DC, August 2001. WWVB Improvements: New Power from an ...

2010-10-05T23:59:59.000Z

144

Coal stocks at power plants are likely sufficient despite river ...  

U.S. Energy Information Administration (EIA)

As of March 31, 2011, EIA estimates that coal-fired power plants in States identified in the map had an average of a two-to-three month supply of coal on hand.

145

River resort owners find LPG a power behind their success  

SciTech Connect

This paper reports on a restaurant and resort which runs entirely on LPG. It has two generators converted to LPG that supply the power for the complex. Energy supplied from the propane is used in the kitchens, to drive the water pump and provide electricity for lighting and other power needs, and to heat the swimming pool. Far more importantly for the owners has been the fuel cost savings of at least 60%.

1991-01-01T23:59:59.000Z

146

Field Evaluation of Debris Handling and Sediment Clogging of a 2.0-mm Fine-Mesh Traveling Water Screen at the Hawthorn Power Plant, Missouri River, in Kansas City, Missouri  

Science Conference Proceedings (OSTI)

This report presents results of an evaluation of the field performance of a fine-mesh (2.0-mm) traveling water screen (TWS) in a debris- and sediment-laden river. Fine-mesh overlay panels were installed on one intake screen at Kansas City Power and Light's Hawthorn Generating Station on the Missouri River, in Kansas City, Missouri. Its operation relative to an adjoining coarse-mesh (9.5-mm) screen was evaluated over a nearly 22-month period from December 2009 through August 2011.

2012-02-29T23:59:59.000Z

147

Results of the first year of operation at Embalse Nuclear Power Station in Argentina  

SciTech Connect

As a part of the International Remote Monitoring Project, during March 1995, a Remote Monitoring System (RMS) was installed at the Embalse Nuclear Power Station in Embalse, Argentina. This system monitors the status of four typical Candu spent fuel dry storage silos. The monitoring equipment for each silo consists of analog sensors for temperature and gamma radiation measurement; digital sensors for motion detection; and electronic fiber-optic seals. The monitoring system for each silo is connected to a wireless Authenticate Item Monitoring System (AIMS). This paper describes the operation of the RMS during the first year of the trial and presents the results of the signals reported by the system compared with the on site inspections conducted by the regulatory bodies, ABACC, IAEA, ENREN. As an additional security feature, each sensor periodically transmits authenticated State-of-Health (SOH) messages. This feature provides assurance that all sensors are operational and have not been tampered with. The details of the transmitted information and the incidents of loss of SOH, referred to as Missing SOH Event, and the possible causes which produced the MSOHE are described. The RMS at the embalse facility uses gamma radiation detectors in a strong radiation field of spent fuel dry storage silos. The detectors are Geiger Muller tubes and Silicon solid state diodes. The study of the thermal drift of electronics in GM detectors and the possible radiation damage in silicon detectors is shown. Since the initial installation, the system has been successfully interrogated from Buenos Aires and Albuquerque. The experience gained, and the small changes made in the hardware in order to improve the performance of the system is presented.

Bonino, A.; Pizarro, L.; Higa, Z. [Ente Nacional Regulador Nuclear, Buenos Aires (Argentina); Dupree, S.A.; Schoeneman, J.L. [Sandia National Labs., Albuquerque, NM (United States)

1996-07-16T23:59:59.000Z

148

Paying Upfront: A Review of Salt River Project's M-Power Prepaid Program  

Science Conference Proceedings (OSTI)

Arizonas Salt River Project (SRP) has operated M-Power, the largest electricity prepayment program in the United States, since 1993. The customer population has grown to about 100,000 (approximately 12% of all residences served by SRP), and it has expanded from the initial target populationconsumers with arrears facing service terminations and low-income customersto include consumers with different expectations from M-Power service. The in-home portion of the SRP prepay configuration consists of a user d...

2010-10-12T23:59:59.000Z

149

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Design Handbook for Fossil-Fueled Electric Generating Stations  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the fifth EPRI ergonomics handbook; it provides a framework and specific guidelines for decisionmaking that will apply ergonomic principles to the design of electric generating stations. Fossil-fueled power plant operation and maintenance is physically strenuous, and it may contribute to development of musculoskeletal disorders (MSDs) such as carp...

2008-03-11T23:59:59.000Z

150

Dubuque generation station, Dubuque, Iowa  

SciTech Connect

Alliant Energy's Dubuque generation station is a fine example of why small does not mean insignificant in the power generation industry. This winner of the EUCG best performer award in the small plant category shows that its operating excellence towers over that of many larger and much newer coal-fired power plants. The plant has three operating units with boilers originally designed for Illinois basin coal but now Powder River Basin coal makes up 75% of the coal consumed. The boilers can also burn natural gas. 4 photos.

Peltier, R.

2008-10-15T23:59:59.000Z

151

"1. Palo Verde","Nuclear","Arizona Public Service Co",3937 "2. Navajo","Coal","Salt River Project",2250  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona" Arizona" "1. Palo Verde","Nuclear","Arizona Public Service Co",3937 "2. Navajo","Coal","Salt River Project",2250 "3. Gila River Power Station","Gas","Gila River Power Station LP",2060 "4. Springerville","Coal","Tucson Electric Power Co",1618 "5. Glen Canyon Dam","Hydroelectric","U S Bureau of Reclamation",1312 "6. Santan","Gas","Salt River Project",1227 "7. Mesquite Generating Station","Gas","Mesquite Power LLC",1073 "8. Harquahala Generating Project","Gas","New Harquahala Generating Co, LLC",1054 "9. Hoover Dam","Hydroelectric","U S Bureau of Reclamation",1040

152

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

DOE Green Energy (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over several years, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana.

Albert Tsang

2003-03-14T23:59:59.000Z

153

Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector  

E-Print Network (OSTI)

at work or "corner" gas-stations, stations near freewaysvisiting a well-populated gas station. On the other hand, anHydrogen PEMFC E-Station Natural gas • Air High-pressure

Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

2005-01-01T23:59:59.000Z

154

Feasibility study of units 3 and 4. Batlle y Ordonez Power Station and expansion of La Tablada Power Station. Export trade information  

SciTech Connect

The study, conducted by Southern Electric International (SEI), was funded by the U.S. Trade and Development Agency on behalf of U.T.E., the Government of Uruguay's electric power company. It is an assessment of three potential projects under consideration by U.T.E. The changes resulting from these projects would add 120 to 360 megawatts capacity to the current system. The first option would involve repowering Jose Batlle y Ordonex Units 3 and 4. As an alternate to this plan, U.T.E. is considering a new combined cycle plant at a Greenfield site. The third project would increase capacity at La Tablada.

Not Available

1994-01-21T23:59:59.000Z

155

Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994  

SciTech Connect

This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

NONE

1995-05-01T23:59:59.000Z

156

Intermediate photovoltaic system application experiment operational performance report. Volume 7, for Newman Power Station, El Paso, TX  

DOE Green Energy (OSTI)

Performance data are given for the month of December, 1981 for a photovoltaic power supply at a Texas power station. Data include: monthly and daily electric energy produced; monthly and daily solar energy received; monthly and daily array efficiency; plots of energy produced as a function of power level, voltage, cell temperature, and hour of the day; monthly and daily electrical energy supplied by the photovoltaic system to the load; daily system availability; monthly and hourly insolation; monthly and hourly ambient temperature; monthly and hourly wind speed; wind direction distribution; heating and cooling degree days; number of freeze/thaw cycles; hourly cell temperature; and a plot of daily data acquisition mode and recording interval. Also included are brief summaries of three site events. (LEW)

Not Available

1982-01-01T23:59:59.000Z

157

Impact of Powder River Basin Coal on Power and Fuel Markets  

Science Conference Proceedings (OSTI)

Powder River Basin coal is becoming everybody's business. Its use has skyrocketed, increasing beyond expectations in every time period since development took off in the 1970s. The trend shows no signs of slowing down and may even accelerate. This report explores how much further growth is possible by 2005, how power prices may be affected in different regions, and what this means for other coal supply regions.

1998-08-27T23:59:59.000Z

158

Mercury 50 Recuperated Combustion Turbine Case Study: Arkansas River Power Authority, Lamar, Colorado  

Science Conference Proceedings (OSTI)

In February 2001, the Arkansas River Power Authority (ARPA) installed a 4-MW natural-gas-fired Mercury 50 combustion turbine manufactured by Solar Turbines at a member power plant in Lamar, Colorado. ARPA's primary objective was to evaluate whether the Mercury 50 -- one of only 10 such units in the world -- could meet ARPA's need to diversify its energy supply and provide reliable, economical, low-emission electricity to its municipal utility members. Partly funded by a grant from the American Public Pow...

2004-02-29T23:59:59.000Z

159

Clinch River Breeder Reactor: an assessment of need for power and regulatory issues  

SciTech Connect

The purpose of this report is to present the results of a research effort designed to assist the US Department of Energy in: (1) reviewing the need for power from the Clinch River Breeder Reactor (CRBR) in the Southeastern Electric Reliability Council (SERC) region, not including Florida, and (2) isolating specific regulatory and institutional issues and physical transmission capacities that may constrain the market for CRBR power. A review of existing electric power wheeling arrangements in the Southeast and specific federal and state regulatory obstacles that may affect power sales from the CRBR was undertaken. This review was a contributing factor to a decision to target the service territory to SERC-less Florida.

Hamblin, D.M.; Tepel, R.C.; Bjornstad, D.J.; Hill, L.J.; Cantor, R.A.; Carroll, P.J.; Cohn, S.M.; Hadder, G.R.; Holcomb, B.D.; Johnson, K.E.

1983-09-01T23:59:59.000Z

160

COST COMPARISONS OF CAPITOL INVESTMENT IN VARIOUS NUCLEAR POWER PLANTS FOR CENTRAL STATION APPLICATION  

SciTech Connect

The capital costs for a number of power reactors are compared after escalation to equivalent construction dates. It is shown that the most important factor affecting nuclear power plant capital costs is the net capacity of the plant. Steam conditions are shown to have a relatively minor effect on capital costs. (auth)

Bender, M.; Stulting, R.D.

1958-10-14T23:59:59.000Z

Note: This page contains sample records for the topic "river power station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The optimization of the stocks within coal power stations using the dynamic programming method  

Science Conference Proceedings (OSTI)

The purpose of this paper is to devise an economic and mathematical model for forecasting and optimizing the need of coal, for determining the current stock size and optimizing the supply-storage costs within a coal-fired power plant. The conditions ... Keywords: continuous flow production, dynamic programming method, energetic resources, optimization of the safety stock, power plants, stock analysis

Rascolean Ilie; Isac Claudia; Dura Codruta

2009-12-01T23:59:59.000Z

162

Power-Optimal Scheduling for a Green Base Station with Delay Constraints  

E-Print Network (OSTI)

renewable energy such as solar or wind energy as well as conventional sources like diesel generators by renewable energy sources, e.g. solar/wind energy and may also be connected to the power grid or diesel

Sharma, Vinod

163

Installation of River and Drain Instrumentation Stations to Monitor Flow and Water Quality and Internet Data Sharing  

E-Print Network (OSTI)

Over the last five years, the Paso del Norte Watershed Council’s Coordinated Water Resources Database and GIS Project (Project) was developed to provide improved access to regional water resources data for regional water stakeholders to make timely decisions in water operations and flood control. This report presents major components of the Project developed from August of 2005 through July of 2007 through funding provided by the United States Bureau of Reclamation (USBR) through the Water 2025 Challenge Grant Program to the El Paso Water Utilities, Texas A&M University, and New Mexico State University. Additional documentation of related Project activities is provided through final project reports being submitted by the City of Las Cruces (CLC) and Elephant Butte Irrigation District (EBID) for the work conducted through linked USBR-funded Projects. Tasks accomplished in the phase of work funded by the USBR include the following specific outcomes, which are detailed in later sections of the report: * Continued compilation and inclusion of new data sources identified as relevant by Project partners and users; * Installation and calibration of additional new monitoring stations and equipment and inclusion of these monitoring sites in web-based GIS map products to fill data gaps and provide additional real-time data; * Linking to additional monitoring sites being implemented by EBID through their Project work and inclusion of these sites and data in web-based GIS map products; * Development and implementation of a user needs survey focusing on new data sets of interest, enhanced access mechanisms, and other suggestions to improve the Project website; * Development and deployment of an online, downloadable Microsoft Access database of Project water resource data to provide search and query functions; * Development and deployment of an online help facility to make the site easier for users to navigate and use; * Exploration of new tools to enhance online data sharing and access; and * Implementation of suggestions compiled in the User Needs Assessment, including resolution of problems related to accessing the Project website using Firefox and Mozilla web browsers. Keywords: Paso del Norte watershed, water resources database, GIS map, ArcIMS, data sharing and transfer, user needs assessment, Rio Grande, Rio Grande Project, gage station, surface water flow, groundwater, downloadable Microsoft Access database.

Sheng, Z.; Brown, C.; Creel, B.; Srinivasan, R.; Michelsen, A.; Fahy, M. P.

2008-08-01T23:59:59.000Z

164

Underground nuclear power station using self-regulating heat-pipe controlled reactors  

DOE Patents (OSTI)

A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

Hampel, Viktor E. (Pleasanton, CA)

1989-01-01T23:59:59.000Z

165

An underground nuclear power station using self-regulating heat-pipe controlled reactors  

DOE Patents (OSTI)

A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

Hampel, V.E.

1988-05-17T23:59:59.000Z

166

Results of a Coal Pile and Mill Rejects Investigation at a Power Generating Station  

Science Conference Proceedings (OSTI)

Besides coal piles, coal-fired power plants may have various by-products, such as mill rejects, fly ash, and bottom ash that must be managed on plant property. This report presents the results of data analyses and groundwater modeling to evaluate potential management options for coal piles and mill rejects at one such site.

1997-07-08T23:59:59.000Z

167

TEM study of PM2.5 emitted from coal and tire combustion in a thermal power station  

Science Conference Proceedings (OSTI)

The research presented here was conducted within the scope of an experiment investigating technical feasibility and environmental impacts of tire combustion in a coal-fired power station. Previous work has shown that combustion of a coal + tire blend rather than pure coal increased bulk emissions of various elements (e.g., Zn, As, Sb, Pb). The aim of this study is to characterize the chemical and structural properties of emitted single particles with dimensions tire blend, whereas yavapaiite, KFe{sup 3+}(SO{sub 4}){sub 2}, is present only when pure coal was combusted. It is concluded that these metal sulfates precipitated from the flue gas may be globally abundant aerosols and have, through hydration or dissolution, a major environmental and health impact. 66 refs., 2 figs., 1 tab.

Reto Giere; Mark Blackford; Katherine Smith [Albert-Ludwigs-Universitaet, Freiburg (Germany). Mineralogisch-Geochemisches Institut

2006-10-15T23:59:59.000Z

168

Evaluation of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station  

SciTech Connect

During a recent inservice inspection (ISI) of a dissimilar metal weld (DMW) in an inlet (hot leg) steam generator nozzle at North Anna Power Station Unit 1, several axially oriented flaws went undetected by the licensee's manual ultrasonic testing (UT) technique. The flaws were subsequently detected as a result of outside diameter (OD) surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the DMW. Further ultrasonic tests were then performed, and a total of five axially oriented flaws, classified as primary water stress corrosion cracking (PWSCC), were detected in varied locations around the weld circumference.

Anderson, Michael T.; Diaz, Aaron A.; Doctor, Steven R.

2012-06-01T23:59:59.000Z

169

A composite P&O MPPT control with intelligent orthogonal particle swarm optimization for steepest gradient river current power generation system  

Science Conference Proceedings (OSTI)

This paper proposes a demonstration system of steepest gradient river current (SGRC) power generation with energy storage system. A direct-drive permanent magnet synchronous generator with multiple poles is used to transfer the steepest gradient river ... Keywords: full-bridge DC/DC converter controller, maximum power point tracking (MPPT), orthogonal particle swarm optimization (OPSO), perturbation and observation (P&O) method, steepest gradient river current (SGRC) power generation

Jian-Long Kuo; Chun-Jae Chang

2010-08-01T23:59:59.000Z

170

CAISO Station Displays  

Science Conference Proceedings (OSTI)

The objective of this report is to describe the results of a project to build Station One-Line Diagram displays for the California Independent System Operator (CAISO) system. The development and maintenance of the Station One-line displays for energy management system applications has historically been a very time consuming, tedious and error prone task. Several man-years of effort may be required to build the station displays for a large interconnected power system. Once these stations displays have bee...

2003-05-07T23:59:59.000Z

171

An aerial radiological survey of the Oyster Creek Nuclear Power Plant and surrounding area, Forked River, New Jersey. Date of survey: September 18--25, 1992  

SciTech Connect

An aerial radiological survey was conducted over the Oyster Creek Nuclear Power Plant in Forked River, New Jersey, during the period September 18 through September 24, 1992. The survey was conducted at an altitude of 150 feet (46 meters) over a 26-square-mile (67-square-kilometer) area centered on the power station. The purpose of the survey was to document the terrestrial gamma radiation environment of the Oyster Creek Nuclear Power plant and surrounding area. The results of the aerial survey are reported as inferred gamma radiation exposure rates at 1 meter above ground level in the form of a contour map. Outside the plant boundary, exposure rates were found to vary between 4 and 10 microroentgens per hour and were attributed to naturally-occurring uranium, thorium, and radioactive potassium gamma emitters. The aerial data were compared to ground-based benchmark exposure rate measurements and radionuclide assays of soil samples obtained within the survey boundary. The ground-based measurements were found to be in good agreement with those inferred from the aerial measuring system. A previous survey of the power plant was conducted in August 1969 during its initial startup phase. Exposure rates and radioactive isotopes revealed in both surveys were consistent and within normal terrestrial background levels.

Hopkins, H.A.; McCall, K.A.

1994-05-01T23:59:59.000Z

172

Potomac River Project Outage Schedule Clarification | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River Project Outage Schedule Clarification River Project Outage Schedule Clarification Potomac River Project Outage Schedule Clarification Docket No. EO-05-01. Order No. 202-07-02: Based on the most current information we have for both circuits, the new outage dates are listed below: Outage Duration Feeder Out April 30, 2007 - June 1, 2007 Circuit 1 June 2, 2007 - July 1, 2007 Circuit 2 Potomac River Project Outage Schedule Clarification More Documents & Publications Re: Potomac River Generating Station Department of Energy, Case No. EO-05-01: Potomac Electric Power Company (PEPCO) evised plan for transmission outages for the 230 kV circuits PEPCO Comments on Special Environmental Analysis For Actions Taken Under U.S. Department of Energy Emergency Orders Regarding Operation of the Potomac River Generating Station in Alexandria, Virginia

173

Potomac River Project Outage Schedule Clarification | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Potomac River Project Outage Schedule Clarification Potomac River Project Outage Schedule Clarification Potomac River Project Outage Schedule Clarification Docket No. EO-05-01. Order No. 202-07-02: Based on the most current information we have for both circuits, the new outage dates are listed below: Outage Duration Feeder Out April 30, 2007 - June 1, 2007 Circuit 1 June 2, 2007 - July 1, 2007 Circuit 2 Potomac River Project Outage Schedule Clarification More Documents & Publications Re: Potomac River Generating Station Department of Energy, Case No. EO-05-01: Potomac Electric Power Company (PEPCO) evised plan for transmission outages for the 230 kV circuits Notification of Planned 230kV Outage at Potomac River Generating Station PEPCO Comments on Special Environmental Analysis For Actions Taken Under U.S. Department of Energy Emergency Orders Regarding Operation of the

174

Damodar Valley Corporation, Chandrapura Unit 2 Thermal Power Station Residual Life Assessment Summary report  

Science Conference Proceedings (OSTI)

The BHEL/NTPC/PFC/TVA teams assembled at the DVC`s Chadrapura station on July 19, 1994, to assess the remaining life of Unit 2. The workscope was expanded to include major plant systems that impact the unit`s ability to sustain generation at 140 MW (Units 1-3 have operated at average rating of about 90 MW). Assessment was completed Aug. 19, 1994. Boiler pressure parts are in excellent condition except for damage to primary superheater header/stub tubes and economizer inlet header stub tubes. The turbine steam path is in good condition except for damage to LP blading; the spar rotor steam path is in better condition and is recommended for Unit 2. Nozzle box struts are severely cracked from the flame outs; the cracks should not be repaired. HP/IP rotor has surface cracks at several places along the steam seal areas; these cracks are shallow and should be machined out. Detailed component damage assessments for above damaged components have been done. The turbine auxiliary systems have been evaluated; cooling tower fouling/blockage is the root cause for the high turbine back pressure. The fuel processing system is one of the primary root causes for limiting unit capacity. The main steam and hot reheat piping systems were conservatively designed and have at least 30 years left;deficiencies needing resolution include restoration of insulation, replacement of 6 deformed hanger clamp/bolts, and adjustment of a few hanger settings. The cold reheat piping system is generally in good condition; some areas should be re-insulated and the rigid support clamps/bolts should be examined. The turbine extraction piping system supports all appeared to be functioning normally.

NONE

1995-02-01T23:59:59.000Z

175

The Evaluation of Mercury Emissions and Control Options for Ontario Power Generation Nanticoke Station  

Science Conference Proceedings (OSTI)

Canada-wide standards for mercury are being developed, and draft requirements will likely be available in 2002 (with a revised version by 2005) for potential implementation in the 2007 to 2010 period. Mercury emissions from coal-fired power plants are also likely to be subjected to regulatory control. The U.S. Environmental Protection Agency (EPA) is developing proposed mercury regulations and plans to issue final regulations on mercury emissions from coal-fired boilers by December 15, 2004 for full comp...

2002-08-13T23:59:59.000Z

176

SUBJECT: SAFETY EVALUATION REPORT WITH OPEN ITEMS RELATED TO THE LICENSE RENEWAL OF KEWAUNEE POWER STATION (TAC NO. MD9408)  

E-Print Network (OSTI)

The license renewal application (LRA) was submitted pursuant to Title 10 of the Code of Federal Regulations Part 54, "Requirements for Renewal of Operating Licenses for Nuclear Power Plants. " The staff determined that the LRA was complete and acceptable for docketing on September 25,2008. The staff has reviewed the KPS LRA and has developed the enclosed "Safety Evaluation Report With Open Items related to the License Renewal of the Kewaunee Power Station," hereinafter referred to as the Safety Evaluation Report (SER). This SER reflects the status of the staff's review of the LRA, requests for additional information (RAts), the applicant's responses to the staff's RAls, and other questions related to the LRA through March 26, 2010, unless otherwise noted. Issuance of the enclosed SER is an important milestone for both the applicant and the staff. The staff has identified four open items in its review which must be resolved before it can make a final determination on the application. SER Section 1.5 includes a listing of the open items with a summary of the information required to satisfactorily resolve the issues. In order to resolve these items, the staff has requested additional information, as identified in the SER.

United States; Mr. David; A. Heacock; Dear Mr. Heacock

2010-01-01T23:59:59.000Z

177

A solar powered distillation plant and pump station for use in ocean side desert areas  

DOE Green Energy (OSTI)

There are thousands of miles of ocean shoreline which could sustain a productive human existence if sufficient fresh water were available for human consumption and for irrigation of crops. While solar stills can be built to produce fresh water at or close to sea level, raising water to a height sufficient to irrigate crops, even with minimum water usage crops, requires a significant amount of energy. This paper describes a ``no-external power`` process by which seawater can be purified and raised to a height above sea level sufficient to carry on a productive living in certain areas of the world. This device, the Solar Evaporation and Pumping System (SEAPS) is described as to function and areas of use.

Dearien, J.A.; Priebe, S.J.

1994-12-31T23:59:59.000Z

178

MEASUREMENTS OF THE CONFINEMENT LEAKTIGHTNESS AT THE KOLA NUCLEAR POWER STATION (UNIT 2) IN RUSSIA  

Science Conference Proceedings (OSTI)

This is the final report on the INSP project entitled, ``Kola Confinement Leaktightness'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.1. This project was initiated in February 1993 to assist the Russians to reduce risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Units 1 and 2, through upgrades in the confinement performance to reduce the uncontrolled leakage rate. The major technical objective of this-project was to improve the leaktightness of the Kola NPP VVER confinement boundaries, through the application of a variety of sealants to penetrations, doors and hatches, seams and surfaces, to the extent that current technology permitted. A related objective was the transfer, through training of Russian staff, of the materials application procedures to the staff of the Kola NPP. This project was part of an overall approach to minimizing uncontrolled releases from the Kola NPP VVER440/230s in the event of a serious accident, and to thereby significantly mitigate the consequences of such an accident. The US provided materials, application technology, and applications equipment for application of sealant materials, surface coatings, potting materials and gaskets, to improve the confinement leaktightness of the Kola VVER-440/23Os. The US provided for training of Russian personnel in the applications technology.

GREENE,G.A.; GUPPY,J.G.

1998-08-01T23:59:59.000Z

179

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

DOE Green Energy (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead previously by Gasification Engineering Corporation (GEC). The project is now under the leadership of ConocoPhillips Company (COP) after it acquired GEC and the E-Gas{trademark} gasification technology from Global Energy in July 2003. The Phase I of this project was supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while the Phase II is supported by Gas Technology Institute, TDA Research, Inc., and Nucon International, Inc. The two project phases planned for execution include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

Thomas Lynch

2004-01-07T23:59:59.000Z

180

New York Power Authority Identifies More than $ 1.75 Million in Savings Annually with RCM at Its Hydro Generating Stations  

Science Conference Proceedings (OSTI)

Member Quote"Working under the direction of the EPRI Solutions Team, NYPA's strategic goals of providing economical and reliable energy, are realized through an effort of applying the RCM process at our large hydro facilities."--Horace Horton, Regional Manager, Western New York, New York Power Authority In BriefThe New York Power Authority (NYPA) identified nearly $1.75 million in annual savings by applying reliability-centered maintenance (RCM) to the electrical equipment at its hydro generating station...

2006-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "river power station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DSW Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Projects Contact DSW Customers Customer Meetings Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Power Projects Contact DSW Customers Customer Meetings Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates DSW Power Projects Boulder Canyon: Straddling the Colorado River near the Arizona-Nevada border, Hoover Dam in Boulder Canyon creates Lake Mead. River waters turning turbines at Hoover Powerplant produce about 2,074 MW--enough electricity for nearly 8 million people. Western markets this power to public utilities in Arizona, California and Nevada over 53.30 circuit-miles of transmission line. Central Arizona: Authorized in 1968, the Central Arizona Project in Arizona and western New Mexico was built to improve water resources in the Colorado River Basin. Segments of the authorization allowed for Federal participation in the Navajo Generating Station. The Federal share of the powerplant's combined capacity is 547 MW.

182

Reference: Quad Cities Nuclear Power Station- Preconditioning of Emergency Diesel Generator Air Start Systems, Fuel Systems, and other Engine and Electrical  

E-Print Network (OSTI)

The purpose of this letter is twofold. First, to inform the NRC that Quad Cities Nuclear Power Station will not dispute the Non-Cited Violation (50-254/01-05-04; 50-265/01-05-04) of 10 CFR 50 Appendix B, Criterion XI, "Test Control, " described in the referenced NRC report. The station similarly concurs that the risk significance was very low (Green). Senior station management and station personnel understand the importance of scheduling and performing Technical Specifications required surveillances such that unacceptable preconditioning does not occur. The instances identified in the referenced NRC report have been entered into the station's corrective action program and corrective actions have been implemented or are scheduled for implementation. Second, given the importance of this subject and based upon our review of the NRC integrated inspection report, the station is providing an update on several of the issues discussed in section three, "Units 1 and 2 Emergency Diesel Generator Timed Test Preconditioning Concerns. " This is intended to update the NRC and supplement our shared understanding of the issues. The following specific points are provided: August 8, 2001 U.S. Nuclear Regulatory Commission

unknown authors

2001-01-01T23:59:59.000Z

183

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

DOE Green Energy (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the U.S. Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. During the reporting period, various methods to remove low-level contaminants for the synthesis gas were reviewed. In addition, there was a transition of the project personnel for GEC which has slowed the production of the outstanding project reports.

Gary Harmond; Albert Tsang

2003-03-14T23:59:59.000Z

184

Mirant Potomac River: DOE Case OE-05-01 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River: DOE Case OE-05-01 River: DOE Case OE-05-01 Mirant Potomac River: DOE Case OE-05-01 Written presentation of information regarding the Potomac River power plant that Mirant shared with DOE, PEPCO and PJM at a meeting called by DOE on September 1, 2005. Mirant Potomac River: DOE Case OE-05-01 More Documents & Publications Comments on Department of Energy's Emergency Order To Resume Limited Operation at Mirant's Potomac River Generating Station and Proposed Mirant Compliance Plan Notice of Emergency Action - Emergency Order To Resume Limited Operation at the Potomac River Generating Station, Alexandria, VA, in Response to Electricity Reliability Concerns in Washington, DC: Federal Register Notice Volume 71, No. 13 - Jan. 20, 2006 Special Environmental Analysis For Actions Taken under U.S. Department of

185

Notice of Unplanned Outage at the Mirant Potomac River Plant | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unplanned Outage at the Mirant Potomac River Plant Unplanned Outage at the Mirant Potomac River Plant Notice of Unplanned Outage at the Mirant Potomac River Plant Docket No. EO-05-01. Order No. 202-05-03: Pursuant to the United States Department of Energy ("DOE") Order No_ 202-05-3, issued December 20, 2005 ("DOE Potomac River Order"), Pepco hereby files this notice of an unplanned outage of one of the 230kV circuits serving the Potomac River Substation, and through that station, the District of Columbia. Notice of Unplanned Outage at the Mirant Potomac River Plant More Documents & Publications Re: Potomac River Generating Station Department of Energy, Case No. EO-05-01: Potomac Electric Power Company (PEPCO) Concerning Planned Outages of the 230 kV circuits Further Notice of 230kV Circuit Planned Outages

186

Northwest Power and Conservation Council Striking a Balance Between Energy and the Environment in the Columbia River Basin  

E-Print Network (OSTI)

Northwest Power and Conservation Council Striking a Balance Between Energy and the Environment in July 2010, examines the effect of 13 dams on Willamette tributaries, plus 42 miles of bank upriver on the Middle Fork Willamette River, the land on the right bank is the Wildish property, where

187

"1. Mystic Generating Station","Gas","Boston Generating LLC",1968  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts" Massachusetts" "1. Mystic Generating Station","Gas","Boston Generating LLC",1968 "2. Brayton Point","Coal","Dominion Energy New England, LLC",1545 "3. Canal","Petroleum","Mirant Canal LLC",1119 "4. Northfield Mountain","Pumped Storage","FirstLight Power Resources Services LLC",1080 "5. Salem Harbor","Coal","Dominion Energy New England, LLC",744 "6. Fore River Generating Station","Gas","Boston Generating LLC",688 "7. Pilgrim Nuclear Power Station","Nuclear","Entergy Nuclear Generation Co",685 "8. Bear Swamp","Pumped Storage","Brookfield Power New England",600

188

ASSESSMENT OF RADIONUCLIDE RELEASE FROM INTACT STRUCTURES BACKFILLED WITH CONTAMINATED CONCRETE AT THE YANKEE NUCLEAR POWER STATION.  

SciTech Connect

This calculation determines the release of residual radioactivity (including H-3, C-14, Co-60, Ni-63, Sr-90, and Cs-137), from subsurface structures filled with concrete debris at the Yankee Nuclear Power Station. Analyses were performed to assess the rate of release from the source of contamination and the resulting dose in the groundwater pathway. Two mechanisms were considered, diffusive release from the concrete structures (walls and floors) that remain intact and sorption onto concrete backfill placed within these structures. RESRAD was used to calculate the predicted maximum dose assuming a unit loading of 1 pCi/g on the intact structures. To the extent possible, the same assumptions in the soil DCGL calculations performed for Yankee Atomic were used in the calculation. However, modifications to some input parameter values were needed to represent the geometry of the subsurface facilities, flow through these facilities, and releases from the backfill and intact structures. Input parameters specific to these calculations included the leach rate, disposal geometry, pumping rate, porosity and bulk density. The dose results for a unit loading of 1 pCi/g on intact structures showed that Sr-90 had the highest dose (3.67E-02 mrem/yr).

SULLIVAN, T.

2004-09-30T23:59:59.000Z

189

WABASH RIVER IMPPCCT, INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES  

DOE Green Energy (OSTI)

In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the Gasification Engineering Corporation and an Industrial Consortium are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an Early Entrance Coproduction Plant located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, financial, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility Study and conceptual design for an integrated demonstration facility and for fence-line commercial plants operated at The Dow Chemical Company or Dow Corning Corporation chemical plant locations (i.e. the Commercial Embodiment Plant or CEP) (2) Research, development, and testing to address any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Ltd., plant in West Terre Haute, Indiana. During the reporting period work was furthered to support the development of capital and operating cost estimates associated with the installation of liquid or gas phase methanol synthesis technology in a Commercial Embodiment Plant (CEP) utilizing the six cases previously defined. In addition, continued development of the plant economic model was accomplished by providing combined cycle performance data. Performance and emission estimates for gas turbine combined cycles was based on revised methanol purge gas information. The economic model was used to evaluate project returns with various market conditions and plant configurations and was refined to correct earlier flaws. Updated power price projections were obtained and incorporated in the model. Sensitivity studies show that break-even methanol prices which provide a 12% return are 47-54 cents/gallon for plant scenarios using $1.25/MM Btu coal, and about 40 cents/gallon for most of the scenarios with $0.50/MM Btu petroleum coke as the fuel source. One exception is a high power price and production case which could be economically attractive at 30 cents/gallon methanol. This case was explored in more detail, but includes power costs predicated on natural gas prices at the 95th percentile of expected price distributions. In this case, the breakeven methanol price is highly sensitive to the required project return rate, payback period, and plant on-line time. These sensitivities result mainly from the high capital investment required for the CEP facility ({approx}$500MM for a single train IGCC-methanol synthesis plant). Finally, during the reporting period the Defense Contractor Audit Agency successfully executed an accounting audit of Global Energy Inc. for data accumulated over the first year of the IMPPCCT project under the Cooperative Agreement.

Doug Strickland

2001-09-28T23:59:59.000Z

190

THE HGCR-1, A DESIGN STUDY OF A NUCLEAR POWER STATION EMPLOYING A HIGH- TEMPERATURE GAS-COOLED REACTOR WITH GRAPHITE-UO$sub 2$ FUEL ELEMENTS  

SciTech Connect

The preliminary design of a 3095-Mw(thermal), helium-cooled, graphite- moderated reactor employing sign conditions, 1500 deg F reactor outlet gas would be circulated to eight steam generators to produce 1050 deg F, 1450-psi steam which would be converted to electrical power in eight 157-Mw(electrical) turbine- generators. The over-all efficiency of this nuclear power station is 36.5%. The significant activities released from the unclad graphite-UO/sub 2/ fuel appear to be less than 0.2% of those produced and would be equivalent to 0.002 curie/ cm/ sup 3/ in the primary helium circuit. The maintenance problems associated with this contamination level are discussed. A cost analysis indicates that the capital cost of this nuclear station per electrical kilowatt would be around 0, and that the production cost of electrical power would be 7.8 mills/kwhr. (auth)

Cottrell, W.B.; Copenhaver, C.M.; Culver, H.N.; Fontana, M.H.; Kelleghan, V.J.; Samuels, G.

1959-07-28T23:59:59.000Z

191

Illinois Nuclear Profile - Dresden Generating Station  

U.S. Energy Information Administration (EIA)

Nuclear Power Plant Data for Dresden Generating Station Author: DOE/EIA Keywords: Dresden Generating Station, Illinois, Nuclear, Plant, Reactor, Generation, Capacity

192

The Navy seeks to identify responsible sources and obtain information in regard to purchasing renewable power for Naval Air Station (NAS) Fallon, located in Fallon, NV  

NLE Websites -- All DOE Office Websites (Extended Search)

REQUEST FOR INFORMATION (RFI) for Renewable Generation REQUEST FOR INFORMATION (RFI) for Renewable Generation Opportunities at NAWS China Lake, NAS Fallon, MCAGCC 29 Palms, and MCAS Yuma The Department of Navy (DoN) intends to issue a Request for Proposal (RFP) in early 2009 for renewable energy generation opportunities at Naval Air Weapons Station (NAWS) China Lake, California; Naval Air Station (NAS) Fallon, Nevada; Marine Corps Air Ground Combat Center (MCAGCC) Twentynine Palms, California, and Marine Corps Air Station (MCAS) Yuma, Arizona. The DoN will consider opportunities for the purchase of renewable power, developer wholesale generation, distributed generation, and the combination of those opportunities. Specifically, the Navy will provide Government land on these installations for large

193

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLGIES (IMPPCCT)  

Science Conference Proceedings (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy in July 2003. The project has completed Phase I, and is currently in Phase II of development. The two project phases include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations; and (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The Phase I of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase II is supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The WREL integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. The early entrance coproduction plant study conducted in Phase I of the IMPPCCT project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there are minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the synthesis gas (syngas). However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase II is to conduct RD&T as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies will address the technical concerns that will make the IMPPCCT concept competitive with natural

Albert C. Tsang

2004-03-26T23:59:59.000Z

194

Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)  

DOE Green Energy (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and later COP and the industrial partners investigated the use of syngas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort were to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from syngas derived from coal, or, coal in combination with some other carbonaceous feedstock. The intended result of the project was to provide the necessary technical, economic, and environmental information that would be needed to move the EECP forward to detailed design, construction, and operation by industry. The EECP study conducted in Phase 1 of the IMPPCCT Project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there were minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the syngas. However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase 2 was to conduct RD&T as outlined in the Phase 1 RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies were designed to address the technical concerns that would mak

Conocophillips

2007-09-30T23:59:59.000Z

195

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLGIES (IMPPCCT)  

DOE Green Energy (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy in July 2003. The project has completed Phase I, and is currently in Phase II of development. The two project phases include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations; and (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The Phase I of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase II is supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The WREL integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. The early entrance coproduction plant study conducted in Phase I of the IMPPCCT project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there are minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the synthesis gas (syngas). However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase II is to conduct RD&T as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies will address the technical concerns that will make the IMPPCCT concept competitive with natural

Albert C. Tsang

2004-03-26T23:59:59.000Z

196

Design and installation of continuous flow and water quality monitoring stations to improve water quality forecasting in the lower San Joaquin River  

E-Print Network (OSTI)

improve water quality forecasting in the lower San Joaquinimprove water quality forecasting in the lower San Joaquinan important real-time forecasting station for water quality

Quinn, Nigel W.T.

2007-01-01T23:59:59.000Z

197

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. During the reporting period, effort continues on identifying potential technologies for removing contaminants from synthesis gas to the level required by methanol synthesis. A liquid phase Claus process and a direct sulfur oxidation process were evaluated. Preliminary discussion was held with interested parties on cooperating on RD&T in Phase II of the project. Also, significant progress was made during the period in the submission of project deliverables. A meeting was held at DOE's National Energy Technology Laboratory in Morgantown between GEC and the DOE IMPPCCT Project Manager on the status of the project, and reached an agreement on the best way to wrap up Phase I and transition into the Phase II RD&T. Potential projects for the Phase II, cost, and fund availability were also discussed.

Albert Tsang

2003-03-14T23:59:59.000Z

198

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

DOE Green Energy (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial plants operated at Dow Chemical or Dow Corning chemical plant locations; (2) Research, development, and testing to define any technology gaps or critical design and integration issues; and (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. This report describes management planning, work breakdown structure development, and feasibility study activities by the IMPPCCT consortium in support of the first project phase. Project planning activities have been completed, and a project timeline and task list has been generated. Requirements for an economic model to evaluate the West Terre Haute implementation and for other commercial implementations are being defined. Specifications for methanol product and availability of local feedstocks for potential commercial embodiment plant sites have been defined. The WREL facility is a project selected and co-funded under the fifth phase solicitation of the U.S. Department of Energy's Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the GEC and an Industrial Consortia are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

Doug Strickland; Albert Tsang

2002-10-14T23:59:59.000Z

199

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

DOE Green Energy (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Two project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. During the reporting period, DOE approved the RD&T Plan submitted in the previous quarter. The RD&T Plan forms the basis for the Continuation Application to initiate the transition of the project from Phase I to Phase II. Potential technologies for removing contaminants from synthesis gas to the level required by methanol synthesis will be tested in slipstream units at the WREL facility during Phase II. A supplemental information package consisting of a revised Work Breakdown Structure and Budget Plan for Phase II and other necessary forms was also submitted. Agreement is being reached with DOE's patent attorney on the scope of the limited rights data to be provided under the Cooperative Agreement. Preparation of a comprehensive Final Report for Phase I of the project, which will consolidate the remaining deliverables including the Initial Feasibility Report, Concept Report, Site Analysis Report, Economic Analysis, and Preliminary Project Financing Plan, continued during the reporting period. Significant progress was made in the Subsystem Design Specification section of the report.

Albert Tsang

2003-10-14T23:59:59.000Z

200

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

DOE Green Energy (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. During the reporting period, effort continues on identifying potential technologies for removing contaminants from synthesis gas to the level required by methanol synthesis. A liquid phase Claus process and a direct sulfur oxidation process were evaluated. Preliminary discussion was held with interested parties on cooperating on RD&T in Phase II of the project. Also, significant progress was made during the period in the submission of project deliverables. A meeting was held at DOE's National Energy Technology Laboratory in Morgantown between GEC and the DOE IMPPCCT Project Manager on the status of the project, and reached an agreement on the best way to wrap up Phase I and transition into the Phase II RD&T. Potential projects for the Phase II, cost, and fund availability were also discussed.

Albert Tsang

2003-03-14T23:59:59.000Z

Note: This page contains sample records for the topic "river power station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Final MTI Data Report: Pilgrim Nuclear Station  

Science Conference Proceedings (OSTI)

During the period from May 2000 to September 2001, ocean surface water temperature data was collected at the Pilgrim Nuclear Power Station near Plymouth, MA. This effort was led by the Savannah River Technology Center (SRTC) with the assistance of a local sub-contractor, Marine BioControl Corporation of Sandwich, MA. Permission for setting up the monitoring system was granted by Energy Corporation, which owns the plant site. This work was done in support of SRTC's ground truth mission for the U.S. Department of Energy's Multispectral Thermal Imager (MTI) satellite.

Parker, M.J.

2003-03-17T23:59:59.000Z

202

The Power of Monitoring Stations and a CO2 Fertilization Effect: Evidence from Causal Relationships between NDVI and Carbon Dioxide  

Science Conference Proceedings (OSTI)

Two hypotheses are tested: 1) monitoring stations (e.g., Mauna Loa) are not able to measure changes in atmospheric concentrations of CO2 that are generated by changes in terrestrial vegetation at distant locations; 2) changes in the atmospheric ...

R. K. Kaufmann; L. F. Paletta; H. Q. Tian; R. B. Myneni; R. D. D’Arrigo

2008-07-01T23:59:59.000Z

203

Technical evaluation of the proposed design modifications and technical specification changes on grid voltage degradation (Part A) for the Pilgrim Nuclear Power Station, Unit 1  

Science Conference Proceedings (OSTI)

This report documents the technical evaluation of the proposed design modifications and Technical Specification changes for protection of Class 1E equipment from grid voltage degradation for the Pilgrim Nuclear Power Station. The review criteria are based on several IEEE standards and the Code of Federal Regulations. The evaluation compares the submittals made by the licensee with the NRC staff positions and the review criteria and presents the reviewer's conclusion on the acceptability of the proposed system.

White, R.L.

1980-01-01T23:59:59.000Z

204

Evaluation of the Submerged Demineralizer System (SDS) flowsheet for decontamination of high-activity-level water at the Three Mile Island Unit 2 Nuclear Power Station  

Science Conference Proceedings (OSTI)

This report discusses the Submerged Demineralizer System (SDS) flowsheet for decontamination of the high-activity-level water at the Three Mile Island Unit 2 Nuclear Power Station was evaluated at Oak Ridge National Laboratory in a study that included filtration tests, ion exchange column tests, and ion exchange distribution tests. The contaminated waters, the SDS flowsheet, and the experiments made are described. The experimental results were used to predict the SDS performance and to indicate potential improvements.

Campbell, D.O., Collins, E.D., King, L.J., Knauer, J.B.

1980-07-01T23:59:59.000Z

205

Testing and Performance of the Siemens V84.3A Gas Turbine in Peaking Service at Hawthorn Station of Kansas City Power & Light Compan y  

Science Conference Proceedings (OSTI)

EPRI's durability surveillance (DS) program, in place since 1991, is producing the first in-service performance and operating data on the newest high-efficiency gas turbines. This detailed investigation of the Siemens V84.3A installed at the Kansas City Power & Light (KCP&L) Hawthorn Station is providing plant personnel and the manufacturer with valuable information for solving initial problems, and will help all power producers specify, operate, and maintain a new generation of high-performance gas turb...

1998-12-31T23:59:59.000Z

206

Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 2. Appendices. Technical report, September 1977-October 1979  

SciTech Connect

Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE. This volume contains the appendices.

Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

1980-06-01T23:59:59.000Z

207

Power Plant Optimization Demonstration Projects Cover Photos:  

NLE Websites -- All DOE Office Websites (Extended Search)

5 SEPTEMBER 2007 5 SEPTEMBER 2007 Power Plant Optimization Demonstration Projects Cover Photos: * Top left: Coal Creek Station * Top right: Big Bend Power Station * Bottom left: Baldwin Energy Complex * Bottom right: Limestone Power Plant A report on four projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * Tampa Electric Company * Pegasus Technologies * NeuCo. , Inc.  Power Plant Optimization Demonstration Projects Executive Summary .......................................................................................4 Background: Power Plant Optimization ......................................................5 Lignite Fuel Enhancement Project ...............................................................8

208

"1. Oahe","Hydroelectric","USCE-Missouri River District",714  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" Dakota" "1. Oahe","Hydroelectric","USCE-Missouri River District",714 "2. Big Bend","Hydroelectric","USCE-Missouri River District",520 "3. Big Stone","Coal","Otter Tail Power Co",476 "4. Fort Randall","Hydroelectric","USCE-Missouri River District",360 "5. Angus Anson","Gas","Northern States Power Co - Minnesota",338 "6. Buffalo Ridge II LLC","Other Renewables","Iberdrola Renewables Inc",210 "7. Groton Generating Station","Gas","Basin Electric Power Coop",169 "8. MinnDakota Wind LLC","Other Renewables","Iberdrola Renewables Inc",150

209

Broadcast Outages for NIST Radio Station WWVB  

Science Conference Proceedings (OSTI)

... Numerous short outages while station was undergoing maintenance and testing during daylight hours. WWVB operated at reduced power during ...

210

EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION  

Science Conference Proceedings (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc. (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal-fired power plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley Region, operated independently of this project. These sites may include (1) the DOE National Energy Technology Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2004-04-02T23:59:59.000Z

211

Federal Power Act section 202(c) - Mirant Corporation, August 2005 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Power Act section 202(c) - Mirant Corporation, August 2005 Federal Power Act section 202(c) - Mirant Corporation, August 2005 Federal Power Act section 202(c) - Mirant Corporation, August 2005 On August 24, 2005 in response to a decision by Mirant Corporation to cease generation of electricity at its Potomac River generating station, the District of Columbia Public Service Commission requested that the Secretary of Energy issue a 202(c) emergency order requiring the operation of the Potomac River generating station in order to ensure compliance with reliability standards for the central D.C. area. After investigation, the Secretary made a determination that without the operation of the Potomac River generating station there was a reasonable possibility an outage would occur that would cause a blackout in the central D.C. area. Therefore, on

212

Microsoft Word - CX_MerrittRadioStationUpgrade_2013.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2013 8, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Ben Deschuytter Project Manager - TEP-CSB-1 Proposed Action: Merritt Radio Station Upgrade Categorical Exclusions Applied (from Subpart D, 10 C.F.R. Part 1021): B1.19 Microwave, meteorological, and radio towers Location: Winton, Chelan County, WA Township 26N, Range 16E, and Section 2 Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA plans to upgrade its Merritt Radio Station in the Wenatchee River Ranger District of the Okanogan-Wenatchee National Forest (USFS). The proposed radio station upgrade would replace the existing communication building, electrical service, and propane tank with a new building and propane tank in adjacent locations on the

213

U.S. Department of Energy electric and hybrid vehicle Site Operator Program at Platte River Power Authority. Final report, July 3, 1991--August 31, 1996  

DOE Green Energy (OSTI)

The Platte River Power Authority (Platte River) is a political subdivision of the state of Colorado, owned by the four municipalities of Fort Collins, Loveland, Longmont and Estes Park, Colorado. Platte River is a non-profit, publicly owned, joint-action agency formed to construct, operate and maintain generating plants, transmission systems and related facilities for the purpose of delivering to the four municipalities electric energy for distribution and resale. Platte River, as a participant in the US Department of Energy (DOE) Site Operator Program, worked to accomplish the Site Operator Program goals and objectives to field test and evaluate electric and electric-hybrid vehicles and electric vehicle systems in a real world application/environment. This report presents results of Platte River`s program (Program) during the five-years Platte River participated in the DOE Site Operator Program. Platte River participated in DOE Site Operator Program from July 3, 1991 through August 31, 1996. During its Program, Platte River conducted vehicle tests and evaluations, and electric vehicle demonstrations in the Front Range region of Northern Colorado. Platte River also investigated electric vehicle infrastructure issues and tested infrastructure components. Platte River`s Program objectives were as follows: evaluate the year round performance, operational costs, reliability, and life cycle costs of electric vehicles in the Front Range region of Northern Colorado; evaluate an electric vehicle`s usability and acceptability as a pool vehicle; test any design improvements or technological improvements on a component level that may be made available to PRPA and which can be retrofit into vehicles; and develop, test and evaluate, and demonstrate components to be used in charging electric vehicles.

Emmert, R.A.

1996-12-31T23:59:59.000Z

214

Operating Plan of Mirant Potomac River, LLC in Compliance with Order No.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operating Plan of Mirant Potomac River, LLC in Compliance with Operating Plan of Mirant Potomac River, LLC in Compliance with Order No. 202-05-03 Operating Plan of Mirant Potomac River, LLC in Compliance with Order No. 202-05-03 Docket No. EO-05-01: Attached is the Operating Plan of Mirant Potomac River, LLC, which is being submitted in compliance with Order No. 202-05-03, issued by the Department of Energy on December 20, 2005, in the captioned proceeding. Operating Plan of Mirant Potomac River, LLC in Compliance with Order No. 202-05-03 More Documents & Publications Supplement Number 1 to Operating Plan of Mirnat Potomac River, LLC in Compliance with Order No. 202-05-03 Re: Potomac River Generating Station Department of Energy Case No. EO-05-01: Advanced Notice of Power Outages. Docket No. EO-05-01: Further Notice of 230kV Circuit Planned Outages

215

EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION  

Science Conference Proceedings (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley Region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley Region.

Kevin Crist

2003-10-02T23:59:59.000Z

216

EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION  

Science Conference Proceedings (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2005-04-02T23:59:59.000Z

217

EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION  

Science Conference Proceedings (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2004-10-02T23:59:59.000Z

218

Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region  

Science Conference Proceedings (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2005-10-02T23:59:59.000Z

219

Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region  

Science Conference Proceedings (OSTI)

As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This is accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results were compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory’s monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions provides critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2008-12-31T23:59:59.000Z

220

Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region  

Science Conference Proceedings (OSTI)

As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2006-04-02T23:59:59.000Z

Note: This page contains sample records for the topic "river power station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Characterizing toxic emissions from a coal-fired power plant demonstrating the AFGD ICCT Project and a plant utilizing a dry scrubber/baghouse system: Bailly Station Units 7 and 8 and AFGD ICCT Project. Final report. Final report  

SciTech Connect

This report describes results of assessment of the risk of emissions of hazardous air pollutants at one of the electric power stations, Bailly Station, which is also the site of a Clean Coal Technology project demonstrating the Pure Air Advanced Flue Gas Desulfurization process (wet limestone). This station represents the configuration of no NO{sub x} reduction, particulate control with electrostatic precipitators, and SO{sub 2} control with a wet scrubber. The test was conducted September 3--6, 1993. Sixteen trace metals were determined along with 5 major metals. Other inorganic substances and organic compounds were also determined.

Dismukes, E.B.

1994-10-20T23:59:59.000Z

222

Investigation of an Emergency Diesel Generator Reliability Program, A Case Study of Crystal River Unit 3  

Science Conference Proceedings (OSTI)

The Florida Power Corporation Crystal River nuclear station has markedly improved emergency diesel generator (EDG) reliability at its Unit 3 reactor. Analysis of plant activities that contributed to this improvement demonstrates the effectiveness of applying practical EDG reliability programs and confirms the usefulness of proposed EPRI guidelines for such programs.

1989-01-26T23:59:59.000Z

223

Pilot Application of Risk Informed Safety Margins to Support Nuclear Plant Long-Term Operation Decisions: Impacts on Safety Margins of Extended Power Uprates for BWR Station Blackout Events  

Science Conference Proceedings (OSTI)

The risk-informed safety margin characterization (RISMC) framework is a technically robust approach that could be used to analyze nuclear power plant (NPP) safety margins for issues of significance to NPP safety. This report describes application of the RISMC framework to analysis of the impacts of an extended power uprate (EPU) to a boiling water reactor (BWR) station blackout (SBO) event, with emphasis on changes in safety margins due to elevated power levels. The analysis focused on probabilistic ...

2013-08-27T23:59:59.000Z

224

High Pressure Coolant Injection (HPCI) System Risk-Based Inspection Guide for Browns Ferry Nuclear Power Station  

Science Conference Proceedings (OSTI)

The High Pressure Coolant Injection (HPCI) system has been examined from a risk perspective. A System Risk-Based Inspection Guide (S-RIG) has been developed as an aid to HPCI system inspections at the Browns Ferry Nuclear Power Plant, Units 1, 2 and 3. The role of. the HPCI system in mitigating accidents is discussed in this S-RIG, along with insights on identified risk-based failure modes which could prevent proper operation of the system. The S-RIG provides a review of industry-wide operating experience, including plant-specific illustrative examples to augment the PRA and operational considerations in identifying a catalogue of basic PRA failure modes for the HPCI system. It is designed to be used as a reference for routine inspections, self-initiated safety system functional inspections (SSFIs), and the evaluation of risk significance of component failures at the nuclear power plant.

Wong, S.; DiBiasio, A.; Gunther, W. [Brookhaven National Lab., Upton, NY (United States)

1993-09-01T23:59:59.000Z

225

Design and installation of continuous flow and water quality monitoring stations to improve water quality forecasting in the lower San Joaquin River  

E-Print Network (OSTI)

sites did not have 110 volt power available and a digital to140. Solar Panel with 12-volt battery Campbell ScientificReservoir. Solar Panel with 12-volt battery Design Analysis

Quinn, Nigel W.T.

2007-01-01T23:59:59.000Z

226

"1. Coal Creek","Coal","Great River Energy",1133 "2. Antelope Valley","Coal","Basin Electric Power Coop",900  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" Dakota" "1. Coal Creek","Coal","Great River Energy",1133 "2. Antelope Valley","Coal","Basin Electric Power Coop",900 "3. Milton R Young","Coal","Minnkota Power Coop, Inc",697 "4. Leland Olds","Coal","Basin Electric Power Coop",670 "5. Garrison","Hydroelectric","USCE-Missouri River District",508 "6. Coyote","Coal","Otter Tail Power Co",427 "7. Stanton","Coal","Great River Energy",202 "8. Tatanka Wind Power LLC","Other Renewables","Acciona Wind Energy USA LLC",180 "9. Langdon Wind LLC","Other Renewables","FPL Energy Langdon Wind LLC",159

227

Raft River binary-cycle geothermal pilot power plant final report  

DOE Green Energy (OSTI)

The design and performance of a 5-MW(e) binary-cycle pilot power plant that used a moderate-temperature hydrothermal resource, with isobutane as a working fluid, are examined. Operating problems experienced and solutions found are discussed and recommendations are made for improvements to future power plant designs. The plant and individual systems are analyzed for design specification versus actual performance figures.

Bliem, C.J.; Walrath, L.F.

1983-04-01T23:59:59.000Z

228

User's Guide for RIVRISK Version 5.0: A Model to Assess Potential Human Health and Ecological Risks from Power Plant and Industrial Facility Releases to Rivers  

Science Conference Proceedings (OSTI)

This is a user's guide to EPRI's RIVRISK framework, Version 5.0, which can be used to assess human health and ecological risks associated with industrial and power plant chemical and thermal releases to rivers. The report also documents RIVRISK's theoretical foundation and graphical user interface. Industrial and government staff concerned with chemical and thermal releases will find this report useful.

2000-11-29T23:59:59.000Z

229

{sup 210}Po-Be start-up source rods for 300 MWe Qinshan Nuclear Power Station  

Science Conference Proceedings (OSTI)

In order to perform the start-up of the pressurized water reactor (PWR) for the 300 MWe Qinshan Nuclear Power Plant, a pair of {open_quotes}primary{close_quotes} source rods with {sup 210}Po-Be neutron sources were made successfully. The total neutron emission was 3.0x10{sup 8} n/s and the dimensions of the source rod were 10 mm in diameter and 3173 mm long. The research on the source core ({sup 210}Po-Be source) and source rod technology is described in this paper. A new production line has been established and approved source rod technology has been used. AU examinations demonstrated that the quality of a pair of source rods is up to or superior to the technical specifications.

Cai Shan-yu; Zhang pin-yuan; Gao Wan-shan; Mao Shi-qi [China Institute of Atomic Energy, Beijing (China)

1994-12-31T23:59:59.000Z

230

Evaluation of severe accident risks and the potential for risk reduction: Surry Power Station, Unit 1: Draft report for comment  

Science Conference Proceedings (OSTI)

The Severe Accident Risk Reduction Program (SARRP) has completed a rebaselining of the risks to the public from a particular pressurized water reactor with a subatmospheric containment (Surry, Unit 1). Emphasis was placed on determining the magnitude and character of the uncertainties, rather than focusing on a point estimate. The risk-reduction potential of a set of proposed safety option backfits was also studied, and their costs and benefits were also evaluated. It was found that the risks from internal events are generally lower than previously evaluated in the Reactor Safety Study (RSS). However, certain unresolved issues (such as direct containment heating) caused the top of the uncertainty band to appear at a level that is comparable with the RSS point estimate. None of the postulated safety options appears to be cost effective for the Surry power plant. This work supports the Nuclear Regulatory Commission's assessment of severe accidents in NUREG-1150.

Benjamin, A.S.; Boyd, G.J.; Kunsman, D.M.; Murfin, W.B.; Williams, D.C.

1987-02-01T23:59:59.000Z

231

PRELIMINARY DESIGN AND COST ESTIMATE FOR THE PRODUCTION OF CENTRAL STATION POWER FROM AN AQUEOUS HOMOGENEOUS REACTOR UTILIZING THORIUM-URANIUM-233  

SciTech Connect

The design and economics of the Aqueous Homogeneous Reactor as basically under development at the Oak Ridge National Laboratory are presented. The reactor system utilizes thorium-U-233 fuel. Conditions accompanying reactor systems generating up to l080 mw of net electrical energy are covered. The study indicates that a generating station, with a net thermal efficiency of 28.l%, might be constructed for approximately 0/kw and 0/kw at the l80 mw and l080 mw electrical levels, respectively. These values result in capital expenses of approximately 4.72 and 2.86 milis/kwh. A major part of fuel cost is the expense of chemical processing. It is therefore advantageous 10 schedule fuel through a relatively large processing system since fixed charges are insensitive to chemical plant size. By handling fuel through a plant large enough for processing 200 kg of thorium per day, total fuel costa of about 1 mill/kwh result. This cost for fuel processing appears applicable to generating stations up to abeut 540 mw in size, decreasing to about 0.6 mills/kwh at the l080 mw level. Operating and maintenance expense, including heavy water cost on a lease basis, varies between l.34 and 0.89 mills/kwh for l80 and l080 megawatts respectively. If the purchase of heavy water is required, 0.3 to 0.4 mills/kwh must be added. It is concluded that the Aqueous Homogeneous Reactor may produce electrical power competitive with conventional generating systems when the remaining technical problems are solved. It is felt ihat the research and development now programed by the Oak Ridge National Laboratory will solve these problems and affect costs favorably. (auth)

Carson, H.G.; Landrum, L.H. eds.

1955-02-01T23:59:59.000Z

232

Operational Performance Evaluation of Boiler 9 at the TAMU Power Plant at College Station, Submitted to the Power Plant of Texas A&M University  

E-Print Network (OSTI)

As part of the engineering assistance project, the ESL staff worked with operating staff at the power plant: (1) to evaluate the boiler efficiency of boiler 9 by using combustion analysis; (2) to evaluate gas and steam meters by using measured air flow rate; (3) to identify air leakage through the pre-heater by balancing 0, before and after the pre-heater; and (4) to correct air and steam metered data.

Wei, G.; Veteto, B.; Liu, M.

1996-01-01T23:59:59.000Z

233

An Engineering and Economic Assessment of Post-Combustion CO2 Capture Applied to Great River Energy's Coal-Fired Coal Creek Station  

Science Conference Proceedings (OSTI)

EPRI is currently examining the feasibility of retrofitting post-combustion CO2 capture (PCC) to existing pulverized coal (PC) and/or circulating fluidized-bed power plants for five "host" participants. Knowledge gained from previous CoalFleet ultra-supercritical (USC) PCC design studies is being applied to specific site conditions, plant design, and operating data provided by each host utility participant. This project highlights the technical and economic issues associated with retrofitting existing PC...

2012-01-20T23:59:59.000Z

234

On construction sequence optimization of cascaded hydroelectric stations  

Science Conference Proceedings (OSTI)

In basin planning, many hydroelectric stations are to be constructed in a river in order to develop the water energy cascadedly. If there were no constraints on financial resources, material resources, and manpower, all the stations would be constructed ... Keywords: algorithm, hydroelectric station, optimization, profits

Xingming Sun; Huowang Chen; Jianping Yin; Xinhai Jin; Aiming Yang; Changyun Li

2002-01-01T23:59:59.000Z

235

Release of radionuclides and chelating agents from cement-solidified decontamination low-level radioactive waste collected from the Peach Bottom Atomic Power Station Unit 3  

SciTech Connect

As part of a study being performed for the Nuclear Regulatory Commission (NRC), small-scale waste-form specimens were collected during a low oxidation-state transition-metal ion (LOMI)-nitric permanganate (NP)-LOMI solidification performed in October 1989 at the Peach Bottom Atomic Power Station Unit 3. The purpose of this program was to evaluate the performance of cement-solidified decontamination waste to meet the low-level waste stability requirements defined in the NRC`s ``Technical Position on Waste Form,`` Revision 1. The samples were acquired and tested because little data have been obtained on the physical stability of actual cement-solidified decontamination ion-exchange resin waste forms and on the leachability of radionuclides and chelating agents from those waste forms. The Peach Bottom waste-form specimens were subjected to compressive strength, immersion, and leach testing in accordance with the NRC`s ``Technical Position on Waste Form,`` Revision 1. Results of this study indicate that the specimens withstood the compression tests (>500 psi) before and after immersion testing and leaching, and that the leachability indexes for all radionuclides, including {sup 14}C, {sup 99}{Tc}, and {sup 129}I, are well above the leachability index requirement of 6.0, required by the NRC`s ``Technical Position on Waste Form,`` Revision 1.

Akers, D.W.; Kraft, N.C.; Mandler, J.W. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1994-03-01T23:59:59.000Z

236

Definition: Vehicle to Grid Charging Station | Open Energy Information  

Open Energy Info (EERE)

charging station that can also deliver AC power to the utility power system from the DC electricity stored in the plug-in electric vehicle batteries. Such a charging station...

237

Serious pitting hazard in the raft river 5MW(e) Geothermal Power Plant isobutane cooling loop  

DOE Green Energy (OSTI)

The 5MW(e) Dual Boiling Cycle Geothermal Power Plant, hence referred to as the Raft River plant, is being developed for DOE by EG and G, Inc., Idaho Falls, Idaho. This pilot power plant is of the binary concept and utilizes isobutane as the working second fluid. The plant will demonstrate the feasibility of power generation from an intermediate temperature ({approx} 290 F) resource. The plant is schematically diagrammed in Figure 1. During the final design phase and after the major components were specified to be made of carbon steel, and ordered, various conditions forced the power plant design to switch from surface water to geothermal fluid for the condenser cooling loop make-up water. Because the geothermal fluid contains significant concentrations of chlorides and sulfates, about 1000 ppm and 65 ppm respectively, aeration in the cooling tower causes this water to become extremely aggressive, especially in the pitting of carbon steel components. Although essentially all of the condenser cooling loop materials are carbon steel, the isobutane condenser and turbine lube oil cooler are the most vulnerable. These components are tubed with carbon steel tubes of 0.085 and 0.075 inch wall thickness. These two components are extremely leak critical heat exchangers. For example, even a single pit perforation in the isobutane condenser can cause plant shutdown through loss of isobutane. Such a leak also poses an explosion or fire hazard. As isobutane pressure falls, the incursion of cooling water into the isobutane loop could occur, causing damage to anhydrous service seals. Under a DOE contract for geothermal failure analysis, Radian Corporation has made a preliminary investigation of the pitting hazard presented by the aggressive cooling fluid and the corrosion inhibition treatment that has thus far been proposed. This report documents Radian's understanding of the present situation and the results of its investigation on possible mitigation of this hazard. Finally, various conclusions and recommendations are made that may, if pursued, lead to a satisfactory solution that will avert a certain early prolonged plant shutdown due to failure of the thin walled isobutane and turbine lube oil cooler tubes.

Ellis, Peter F.

1980-02-25T23:59:59.000Z

238

DOE Orders Mirant Power Plant to Operate Under Limited Circumstances |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orders Mirant Power Plant to Operate Under Limited Orders Mirant Power Plant to Operate Under Limited Circumstances DOE Orders Mirant Power Plant to Operate Under Limited Circumstances Docket No. EO-05-01. Order No. 202-05-3: Secretary of Energy Samuel W. Bodman today issued an order requiring Mirant Corporation's Potomac River Generating Station in Alexandria, Virginia (Mirant) to immediately resume limited operation. The order will help provide electric reliability for Washington, D.C., and will do so at the lowest reasonable impact to the environment. DOE Orders Mirant Power Plant to Operate Under Limited Circumstances More Documents & Publications Comments on Department of Energy's Emergency Order To Resume Limited Operation at Mirant's Potomac River Generating Station and Proposed Mirant Compliance Plan

239

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Interventions for Plant Operators and Mechanics in Fossil-Fueled Generating Stations  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Committee Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the sixth EPRI ergonomics handbook; it specifically focuses on tasks performed by plant operators and mechanics working in fossil-fueled generating stations and also addresses some tasks performed by steam services technicians. Fossil-fueled generating station operational and mechanical work is physically strenuous and can expose workers...

2008-12-15T23:59:59.000Z

240

River Thames River Thames  

E-Print Network (OSTI)

C BD A River Thames River Thames Waterloo & City Southwark Northwood Northwood Hills North Harrow Oaks South Croydon East Croydon Streatham Common West Norwood Gipsy Hill Crystal Palace Birkbeck Penge

Delmotte, Nausicaa

Note: This page contains sample records for the topic "river power station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

History of the Priest River Experiment Station  

E-Print Network (OSTI)

Swift fox reintroductions on the Blackfeet Indian Reservation, Montana, USA David E. Ausbanda, the Blackfeet Tribe and Defenders of Wildlife reintroduced 123 captive-raised swift foxes from 1998 to 2002 to the Blackfeet Indian Reservation, Montana, USA. We used two success criteria, a population growth rate P1

Wellner, Jon A.

242

Technical evaluation of the susceptibility of safety-related systems to flooding caused by the failure of non-category 1 systems for the Yankee Rowe Nuclear Power Station  

SciTech Connect

This report documents the technical evaluation of the Maine Yankee Atomic Power Station. The purpose of this evaluation was to determine whether the failure of any non-Class I (seismic) equipment could result in a condition, such as flooding, that might adversely affect the performance of the safety-related equipment required for the safe shutdown of the facility, or to mitigate the consequences of an accident. Criteria developed by the US Nuclear Regulatory Commission were used to evaluate the acceptability of the existing protection system as well as measures taken by Maine Yankee Atomic Power Company (MYAPC) to minimize the danger of flooding and to protect safety-related equipment.

Epps, R.C.

1980-11-01T23:59:59.000Z

243

Hydrogen Filling Station  

Science Conference Proceedings (OSTI)

Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

2010-02-24T23:59:59.000Z

244

Hydrogen Filling Station  

SciTech Connect

Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

2010-02-24T23:59:59.000Z

245

Solar-powered environmental data collection system  

DOE Green Energy (OSTI)

A solar-powered system consisting of a multipurpose remote data collector, a radio data link, and a data receiving station has been designed to acquire data from various remote areas at the Savannah River Plant. A prototype system has been built to monitor gamma radiation at the plant perimeter. It is operating satisfactorily and will be installed to monitor gamma radiation or other environmental parameters at many remote locations on the plant.

Randolph, H.W.

1980-02-01T23:59:59.000Z

246

Internal Technical Report, Management Plan for Fluid Supply and Injection System for the Raft River 5 MW(e) Pilot Power Plant  

DOE Green Energy (OSTI)

This report details a plan for developing a fluid supply system for the First 5 MW(e) Pilot Power Plant at Raft River. The pilot plant has been specifically designed to use the medium-temperature geothermal water so common throughout the West. EG and G Idaho, Inc., the Department of Energy Raft River Rural Electric Co-op, the US Geological Survey (USGS) and the State of Idaho have worked together to develop a facility that will use an organic liquid as the working fluid. Four wells have been drilled in the Raft River Valley, about ten miles South of Malta, in southern Idaho. The completed well system will consist of seven wells: two conventional injection wells, three production wells, and a standby reserve well of each type. The additional three wells are to be drilled in FY-1978, in order to complete a coordinated test program before the First Pilot Power Plant is ready for operation. The system has been designed to meet the test-loop pilot plant's basic requirement: a 2450 gpm supply of geothermal fluid, at a nominal temperature of 290 F and with salinity of less than 5000 ppm. Injection of cooled geothermal fluid into the Raft River reservoir will also require a network of monitor wells. The Idaho Department of Water Resources (IDWR), USGS, EG and G Idaho, and the Department of Energy will jointly select sites for two 1500-foot and five 500-foot monitoring wells. This plan considers the work required to complete construction of the fluid supply system and obtain a preliminary check of its performance capability; the plan will discuss project management, costs, schedules, drilling, testing, environmental monitoring, and safety.

None

1978-01-09T23:59:59.000Z

247

Pilgrim Station | Open Energy Information  

Open Energy Info (EERE)

Station Station Jump to: navigation, search Name Pilgrim Station Facility Pilgrim Stage Station Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner ReunionPower/Exergy Developer Exergy Location Twin Falls County ID Coordinates 42.741336°, -114.865865° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.741336,"lon":-114.865865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

248

Technical evaluation of the susceptibility of safety-related systems to flooding caused by the failure of non-Category I systems for the Maine Yankee Atomic Power Station  

SciTech Connect

This report documents the technical evaluation of the Maine Yankee Atomic Power Station. The purpose of this evaluation was to determine whether the failure of any non-Class I (seismic) equipment could result in a condition, such as flooding, that might adversely affect the performance of the safety-related equipment required for the safe shutdown of the facility, or to mitigate the consequences of an accident. Criteria developed by the US Nuclear Regulatory Commission were used to evaluate the acceptability of the existing protection system as well as measures taken by Maine Yankee Atomic Power Company (MYAPC) to minimize the danger of flooding and to protect safety-related equipment. Based on the information supplied, we conclude that the licensee, Maine Yankee Atomic Power Company (MYAPC), has demonstrated in its analysis that the Maine Yankee Atomic Power Station has the capacity and capability to manage and mitigate any single incident, such as flooding from a non-Class I system component or pipe, so that this flooding will not prevent a safe shutdown of the facility. 7 refs.

Epps, R.C.

1981-02-01T23:59:59.000Z

249

The Decline and Death of Nuclear Power  

E-Print Network (OSTI)

Y. , & Kitazawa, K. (2012). Fukushima in review: A complexin new nuclear power stations after Fukushima. The Guardian.nuclear-power- stations-fukushima Hvistendahl, M. (2007,

Melville, Jonathan

2013-01-01T23:59:59.000Z

250

Rethink DC Metro Stations.  

E-Print Network (OSTI)

??This thesis intends to rethink the role of Metro stations in the Washington Metropolitan Area. It considers Metro stations as more than infrastructure, but with… (more)

Leung, Yathim

2009-01-01T23:59:59.000Z

251

Case study analysis of the legal and institutional obstacles and incentives to the development of the hydroelectric power of the Boardman River at Traverse City, Michigan  

SciTech Connect

An analytic description of one decision-making process concerning whether or not to develop the hydroelectric potential of the Boardman River is presented. The focus of the analysis is on the factor that the developers considered, or should consider in making a responsible commitment to small-scale hydroelectric development. Development of the Boardman River would occur at the five dam sites. Two existing dams, owned by the county, previously generated hydroelectricity, as did a third before being washed out. One dam has never been utilized. It is owned by the city which also owns the washed-out area. The study concludes that hydroelectric power is feasible at each. Grand Traverse County and Traverse City would engage in a joint venture in developing the resource. Chapter I presents a detailed description of the developers, the river resource, and the contemplated development. Chapter II is an analysis of the factors affecting the decision making process. Chapter III summarizes the impact of the more significant barriers and incentives and presents recommendations that, if implemented, will favorably affect decisions to develop small-scale hydroelectric generation capability.

1980-05-01T23:59:59.000Z

252

Evaluation of the Emission, Transport, and Deposition of Mercury, Arsenic, and Fine Particulate Matter From Coal-Based Power Plants in the Ohio River Valley  

NLE Websites -- All DOE Office Websites (Extended Search)

Kevin crist Kevin crist Principal Investigator Ohio University Research and Technology Center Athens, OH 45701 740-593-4751 cristk@ohiou.edu Environmental and Water Resources Evaluation of thE Emission, transport, and dEposition of mErcury, arsEnic, and finE particulatE mattEr from coal-BasEd powEr plants in thE ohio rivEr vallEy rEgion Background The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has established an aggressive research initiative to address the technical and scientific issues surrounding the impact of coal-based power systems on ambient levels of fine particulate matter (PM 2.5 ), nitrogen oxides (NO X ), mercury/air toxics, and acid gases. Regulatory drivers such as the 1990 Clean Air Act Amendments, the 1997 revised National Ambient Air Quality Standards, and the 2005 Clean Air

253

The Village Base Station Kurtis Heimerl  

E-Print Network (OSTI)

deployment due to low power requirements that enable local generation via solar or wind; · explicit support. At around 20W, its power consumption is low enough to avoid diesel genera- tors and the corresponding damaging equipment [2]. We propose operating the entire base station on solely wind or solar power, which

California at Berkeley, University of

254

Economic evaluation of four types of dry/wet cooling applied to the 5-MWe Raft River geothermal power plant  

DOE Green Energy (OSTI)

A cost study is described which compared the economics of four dry/wet cooling systems to use at the existing Raft River Geothermal Plant. The results apply only at this site and should not be generalized without due consideration of the complete geothermal cycle. These systems are: the Binary Cooling Tower, evaporative condenser, Combin-aire, and a metal fin-tube dry cooling tower with deluge augmentation. The systems were evaluated using cooled, treated geothermal fluid instead of ground or surface water in the cooling loops. All comparisons were performed on the basis of a common plant site - the Raft River 5 MWe geothermal plant in Idaho. The Binary Cooling Tower and the Combin-aire cooling system were designed assuming the use of the isobutane/water surface condenser currently installed at the Raft River Plant. The other two systems had the isobutane ducted to the evaporative condensers. Capital credit was not given to the system employing the direct condensing process. The cost of the systems were estimated from designs provided by the vendors. The levelized energy cost range for each cooling system is listed below. The levelized energy cost reflects the incremental cost of the cooling system for the life of the plant. The estimates are presented in 1981 dollars.

Bamberger, J.A.; Allemann, R.T.

1982-07-01T23:59:59.000Z

255

EA-1969: Clark Fork River Delta Restoration Project, Bonner County...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1969: Clark Fork River Delta Restoration Project, Bonner County, Idaho EA-1969: Clark Fork River Delta Restoration Project, Bonner County, Idaho Summary Bonneville Power...

256

Health hazard evaluation report No. HHE-80-233-793, Davis Bessie Nuclear Power Station, Toledo Edison Company, United Engineers and Contractors Company (UE and C), Oak Harbor, Ohio  

Science Conference Proceedings (OSTI)

Personal air samples were analyzed and employees were given medical evaluations at Davis Bessie Nuclear Power Station (SIC-4911) in Oak Harbor, Ohio. Requests for evaluation were made by a union representative of the United Engineers and Contractors and a union representative of employees of Toledo Edison Company, working on site at the power station, to evaluate employee skin and scalp problems due to exposure to ceramic wood fibers. Preliminary surveys were conducted on September 24 and 25, 1980 and a follow-up survey was performed on October 16, 1980. Environmental evaluation consisted of gravimetric analyses of personal air samples for airborne ceramic wool fibers. A total of 400 production and maintenance workers and varying numbers of construction workers were exposed to the fibers during installation of insulation which was completed at the time of the survey. The three personal air samples showed no accumulation of particulates and fibers detected were nonrespirable. Medical evaluations were conducted in 52 workers and scalp scrapings were obtained from 43 workers. Thirty seven workers had histories suggestive of irritant dermatitis of the scalp; 24 workers had physical findings consistent with the diagnosis. Of the 43 scalp samples, 18 were contaminated with organisms of the gut, perineum, skin or respiratory tract. Dermatitis was directly related to the history of dust exposure. The authors conclude that a potential health hazard exists for employees from exposure to ceramic wool fiber. Recommendations include provision of handwashing facilities and protective clothing for employees, and installation of an impermeable covering for the ceramic wool fiber.

Cone, J.; Hartle, R.

1981-01-01T23:59:59.000Z

257

Categorical Exclusion Determinations: Western Area PowerAdministratio...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Colorado River Storage Project Management Center Categorical Exclusion Determinations: Western Area Power Administration-Colorado River Storage Project Management Center...

258

Heat Transfer Laboratory of the Savannah River Laboratory  

SciTech Connect

The Heat Transfer Laboratory, recently- constructed adjacent to the main Savannah River Laboratory building, was designed to mock up nuclear heating and cooling of reactor components under a variety- of conditions. Nuclear heating is simulated by electrical resistance heating of test sections with a 3 MW directcurrent power supply. Cooling is provided by water. Three test stations (A, B, and C) are available for testing full-size fuel assemblies, measuring flow instabilities, and for measuring burnout heat fluxes. Safeguards provided in the design of the facility and conservative operating procedures minimize or elimnate potential hazards. (auth)

Knoebel, D.H.; Harris, S.D.

1973-10-01T23:59:59.000Z

259

EV Charging Stations Take Off Across America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America November 19, 2012 - 12:14pm Addthis This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager ChargePoint America Program deployed chargers in: Boston, MA Bellevue and Redmond, WA Sacramento, CA San Jose and San Francisco Bay Area

260

EV Charging Stations Take Off Across America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America November 19, 2012 - 12:14pm Addthis This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager ChargePoint America Program deployed chargers in: Boston, MA Bellevue and Redmond, WA Sacramento, CA San Jose and San Francisco Bay Area

Note: This page contains sample records for the topic "river power station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advanced Gas Turbine Guidelines: Performance Retention for GE 7F Unit in Peaking Operation: Durability Surveillance at Potomac Elect ric Power Company's Station H  

Science Conference Proceedings (OSTI)

Worldwide pressures to reduce power generation costs have encouraged domestic and foreign manufacturers to build high-efficiency gas turbines implementing the latest technological advances. To assure the staying power of these turbines, EPRI launched a multi-year durability surveillance program. This report discusses performance monitoring and analysis of a General Electric 7F unit in peaking operation.

1999-04-26T23:59:59.000Z

262

The Potential for Using Stormwater in Power Plants: Lessons Learned from Case Studies at Two Great River Energy Plants  

Science Conference Proceedings (OSTI)

Through detailed analyses for two power plants, this report evaluates the use of stormwater for cooling and other uses. The report will benefit environment, generation, and planning managers within power companies, government agencies, and water resource stakeholders.BackgroundIn recent years, there has been a focus on evaluating the use of nontraditional water sources for thermoelectric power plant cooling, such as reclaimed municipal wastewater, produced ...

2012-12-14T23:59:59.000Z

263

Ohio River Ecological Research Program  

Science Conference Proceedings (OSTI)

This report presents the results of the 2009 Ohio River Ecological Research Program (ORERP) fish community sampling near 14 Ohio River power plants. The sampling program consisted of adult/juvenile fish, habitat, and water quality field studies conducted upstream and downstream of the participating power plants.

2012-02-28T23:59:59.000Z

264

Feasibility study of upgrading Byllesby and Buck power plants on the New River in the Commonwealth of Virginia  

DOE Green Energy (OSTI)

The feasibility of upgrading alternatives of the 66-year-old Byllesby and Buck hydroelectric developments located on the New River in Virginia was investigated. Evaluation of technical, economic and environmental factors led to the conclusion that modernization of the plants could result in an annual generation increase of 20.2 GWh at a cost of $6.1 million and with a benefit-cost ratio of 2.32. The recommended retrofitting includes replacing existing runners with new, more efficiently designed runners, modifying draft tube and wicker gate, and rewinding the generators. (LCL)

Not Available

1979-05-01T23:59:59.000Z

265

Clean Coal Power Initiative Round 1 Demonstration Projects Applying Advanced Technologies to Lower Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

7 JUNE 2012 7 JUNE 2012 Clean Coal Power Initiative Round 1 Demonstration Projects Applying Advanced Technologies to Lower Emissions and Improve Efficiency 2 Cover Photos: * Top left: Great River Energy's Coal Creek Station * Top right: We Energy's Presque Isle Power Plant * Bottom: Dynegy's Baldwin Energy Complex A report on three projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * NeuCo. , Inc. * WeEnergies 3 Executive Summary 4 Clean Coal Technology Demonstration Program 5 CCPI Program 6 Demonstration of Integrated Optimization Software at

266

Clinch River: an alternate financing plan. Hearing before the Subcommittee on Energy Conservation and Power, House of Representatives, Ninety-Eighth Congress, first session, 20 Sep 1983  

Science Conference Proceedings (OSTI)

Representatives of the Clinch River Breeder Reactor (CRBR) project, the nuclear industry, taxpayers, the financial community, and legislators testified at a hearing held to review administration plans for completing the CRBR by attaching its financing to a continuing resolution and avoiding the legislative process. A Congressional Budget Office report noted that the administration's financing proposal will generate up to 37% return on investment from tax relief alone, which is more appropriate for high-risk than government-backed investment. The Congressional Research Service challenged that the plant's power production capacity was overstated and its price overvalued. Of concern to the committee was the fairness of asking taxpayers to share in the $2.5 billion needed to complete the project. Additional material submitted for the record follows the testimony of 20 witnesses.

Not Available

1984-01-01T23:59:59.000Z

267

Field tests of a vertical-fluted-tube condenser in the prototype power plant at the Raft River Geothermal Test Site  

DOE Green Energy (OSTI)

A vertical-fluted-tube condenser was designed, fabricated, and tested with isobutane as the shell-side working fluid in a binary prototype power plant at the Raft River Geothermal Test Site. After shakedown and contamination removal operations were completed, the four-pass water-cooled unit (with 102 outside-fluted Admiralty tubes) achieved performance predictions while operating with the plant surface evaporator on-line. A sample comparison shows that use of this enhanced condenser concept offers the potential for a reduction of about 65% from the size suggested by corresponding designs using conventional horizontal-smooth-tube concepts. Subsequent substitution of a direct-contact evaporator for the surface evaporator brought drastic reductions in system performance, the apparent consequence of high concentrations of noncondensible gases introduced by the brine/working-fluid interaction.

Murphy, R.W.

1983-04-01T23:59:59.000Z

268

Determination of the 5 MW gross nominal design case binary cycle for power generation at Raft River, Idaho. [Using GEOSYS program  

DOE Green Energy (OSTI)

A series of Rankine cycle studies for power generation utilizing geothermal fluid as the heat source and isobutane as the working fluid are reported. To find the plant configuration which would most effectively utilize the available energy, a parametric study was performed. The desirability of supercritical, single boiler or double boiler cycles, and the relative boiler temperatures and percentage isobutane flow split between the boilers in the double cycles for geothermal fluid temperatures of 260/sup 0/F to 360/sup 0/F were considered. This study was designed to discover thermodynamic trends which would point to an optimum isobutane cycle for geothermal fluid temperatures in this temperature range. The results of the parametric study were applied to derive a Nominal Design Case for a demonstration plant at Raft River, with a geothermal fluid resource at 290/sup 0/F. In addition, plant variations due to tolerances applied to thermodynamic properties and other key factors are included.

Ingvarsson, I.J.; Madsen, W.W. (eds.)

1976-12-01T23:59:59.000Z

269

A potential transmitter architecture for future generation green wireless base station  

Science Conference Proceedings (OSTI)

Current radio frequency power amplifiers in 3G base stations have very high power consumption leading to a hefty cost and negative environmental impact. In this paper, we propose a potential architecture design for future wireless base station. Issues ...

Vandana Bassoo; Kevin Tom; A. K. Mustafa; Ellie Cijvat; Henrik Sjoland; Mike Faulkner

2009-02-01T23:59:59.000Z

270

Fossil Generating Station Case Histories  

Science Conference Proceedings (OSTI)

During 2005, EPRI Operations and Management Program managers and contractors have collected information on events that have occurred in fossil generating stations. These events represent only a small sample of those being experienced by the power generation industry, but provide a basis for understanding where actions to improve operations are necessary. Sufficient details have been included for analyzing the events without divulging sources. Recognizing that these reports represent actual events and not...

2006-03-30T23:59:59.000Z

271

Fossil Generating Station Case Histories  

Science Conference Proceedings (OSTI)

During 2006, EPRI Operations and Management Program managers have collected information on events that have occurred in fossil generating stations. These events represent only a small sample of those being experienced by the power generation industry, but provide a basis for understanding where actions to improve operations are necessary. Sufficient details have been included for analyzing the events without divulging sources. Recognizing that these reports represent actual events and not discounting the...

2007-03-27T23:59:59.000Z

272

New York Power Authority Identifies More than $1.8 Million in Savings Annually with RCM at Its Hydro Generating Stations  

Science Conference Proceedings (OSTI)

Member Quote“The NYPA Team, working with the EPRI Solutions staff, has identified measurable savings in O&M costs at our hydro plants, while maintaining the high standard of reliability for which we are recognized”--Randy Crissman, Vice President, Business Development and Asset Management, New York Power Authority In BriefThe New York Power Authority (NYPA) identified nearly $1.8 million in annual savings by applying reliability-centered maintenance (RCM) to the mechanical equipment at its hydro generati...

2006-08-29T23:59:59.000Z

273

Schlumberger soundings in the Upper Raft River and Raft River Valleys,  

Open Energy Info (EERE)

soundings in the Upper Raft River and Raft River Valleys, soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Schlumberger soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Details Activities (1) Areas (1) Regions (0) Abstract: In 1975, the U.S. Geological Survey made seventy Schlumberger resistivity soundings in the Upper Raft River Valley and in parts of the Raft River Valley. These soundings complement the seventy-nine soundings made previously in the Raft River Valley (Zohdy and others, 1975) and bring the total number of soundings to 149. This work was done as part of a hydrogeologic study of the area. The location, number, and azimuth of all 149 Schlumberger sounding stations are presented. The location of the new

274

Preliminary Thermal Modeling of HI-Storm 100S-218 Version B Storage Modules at Hope Creek Cuclear Power Station ISFSI  

Science Conference Proceedings (OSTI)

As part of the Used Fuel Disposition Campaign of the U. S. Department of Energy, Office of Nuclear Energy (DOE-NE) Fuel Cycle Research and Development, a consortium of national laboratories and industry is performing visual inspections and temperature measurements of selected storage modules at various locations around the United States. This report documents thermal analyses in in support of the inspections at the Hope Creek Nuclear Generating Station ISFSI. This site utilizes the HI-STORM100 vertical storage system developed by Holtec International. This is a vertical storage module design, and the thermal models are being developed using COBRA-SFS (Michener, et al., 1987), a code developed by PNNL for thermal-hydraulic analyses of multi assembly spent fuel storage and transportation systems. This report describes the COBRA-SFS model in detail, and presents pre-inspection predictions of component temperatures and temperature distributions. The final report will include evaluation of inspection results, and if required, additional post-test calculations, with appropriate discussion of results.

Cuta, Judith M.; Adkins, Harold E.

2013-08-30T23:59:59.000Z

275

Stations in Special Wind Regions  

Science Conference Proceedings (OSTI)

Stations in Special Wind Regions. ... station_matrix_912850.xlsx (Excel file). [ SED Home | Extreme Winds Home | Previous | Next ] ...

2013-03-11T23:59:59.000Z

276

An Engineering and Economic Assessment of Post-Combustion CO2 Capture Applied to Nova Scotia Power's Coal-Fired Lingan Station  

Science Conference Proceedings (OSTI)

EPRI is currently examining the feasibility of retrofitting post-combustion capture (PCC) to existing pulverized Coal (PC) and/or circulating fluidized-bed (CFB) power plants for five different host participants. One current project is applying knowledge gained from previous CoalFleet ultra-supercritical (USC) PCC design studies to specific site conditions, plant design, and operating data provided by each host utility participant. This project aims to highlight the technical and economic issues associat...

2011-10-31T23:59:59.000Z

277

Notification of Planned 230kV Outage at Potomac River Generating...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to provide notification of any and all 230kV planned and unplanned outages at Potomac River Generating Station. Notification of Planned 230kV Outage at Potomac River Generating...

278

Notification of Planned 230kV Outage at Potomac River Generating...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The next planned outage on xxxxx high voltage circuit between Palmers Corner Substation and the Potomac River Generating Station is scheduled for Sunday, June 3, 2007 and will...

279

Early Station Costs Questionnaire  

NLE Websites -- All DOE Office Websites (Extended Search)

Early Station Costs Questionnaire Early Station Costs Questionnaire Marc Melaina Hydrogen Technologies and Systems Center Market Readiness Workshop February 16-17th, 2011 Washington, DC Questionnaire Goals * The Early Station Costs questionnaire provides an anonymous mechanism for organizations with direct experience with hydrogen station costs to provide feedback on current costs, near-term costs, economies of scale, and R&D priorities. * This feedback serves the hydrogen community and government agencies by increasing awareness of the status of refueling infrastructure costs National Renewable Energy Laboratory Innovation for Our Energy Future Questions for Market Readiness Workshop Attendees * Are these questions the right ones to be asking?

280

US Department of Energy, Bonneville Power Administration US Army Corps of Engineers, North Pacific Division Columbia River System Operation Review Canadian Entitlement Allocation Extension Agreements Record of Decision; April 29, 1997  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia River System Operation Review Columbia River System Operation Review Final Environmental Impact Statement Canadian Entitlement Allocation Extension Agreements Record of Decision Summary The Administrator and Chief Executive Officer (CEO) of the Bonneville Power Administration (BPA), acting for BPA, and, as Chairman of the United States Entity (the Administrator and the Division Engineer, North Pacific Division of the United States Army Corps of Engineers), acting on behalf of the United States Entity, has decided to adopt for the Canadian Entitlement Allocation Extension Agreements (CEAEA) a federal hydroelectric projects allocation of 72.5 percent and a non-Federal hydroelectric projects allocation of 27.5 percent. The Columbia River Treaty (Treaty), ratified in 1964, required the construction of three

Note: This page contains sample records for the topic "river power station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Terrestrial Carbon Inventory at the Savannah River Site, 1951 – 2001.  

Science Conference Proceedings (OSTI)

A Power Point slide presentation/report on the terestrial carbon inventory at the Savannah River Site.

US Forest Service - Annonymous,

2012-02-01T23:59:59.000Z

282

Electric Power Monthly January 2012  

U.S. Energy Information Administration (EIA)

Electric Power Monthly January 2012 With Data for November 2011 ... Electric Utility Power Generation Station (PGS) 2 CA 57696 1 3.8 OBG GT

283

Wabash River coal gasification repowering project: Public design report  

SciTech Connect

The Wabash River Coal Gasification Repowering Project (the Project), conceived in October of 1990 and selected by the US Department of Energy as a Clean Coal IV demonstration project in September 1991, is expected to begin commercial operations in August of 1995. The Participants, Destec Energy, Inc., (Destec) of Houston, Texas and PSI Energy, Inc., (PSI) of Plainfield, Indiana, formed the Wabash River Coal Gasification Repowering Project Joint Venture (the JV) to participate in the DOE`s Clean Coal Technology (CCT) program by demonstrating the coal gasification repowering of an existing 1950`s vintage generating unit affected by the Clean Air Act Amendments (CAAA). The Participants, acting through the JV, signed the Cooperative Agreement with the DOE in July 1992. The Participants jointly developed, and separately designed, constructed, own, and will operate an integrated coal gasification combined cycle (CGCC) power plant using Destec`s coal gasification technology to repower Unit {number_sign}1 at PSI`s Wabash River Generating Station located in Terre Haute, Indiana. PSI is responsible for the new power generation facilities and modification of the existing unit, while Destec is responsible for the coal gasification plant. The Project demonstrates integration of the pre-existing steam turbine generator, auxiliaries, and coal handling facilities with a new combustion turbine generator/heat recovery steam generator tandem and the coal gasification facilities.

1995-07-01T23:59:59.000Z

284

Schlumberger soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah  

DOE Green Energy (OSTI)

In 1975, the U.S. Geological Survey made seventy Schlumberger resistivity soundings in the Upper Raft River Valley and in parts of the Raft River Valley. These soundings complement the seventy-nine soundings made previously in the Raft River Valley (Zohdy and others, 1975) and bring the total number of soundings to 149. This work was done as part of a hydrogeologic study of the area. The location, number, and azimuth of all 149 Schlumberger sounding stations are presented. The location of the new stations is shown with solid circles, whereas the location of the previous stations is shown with open circles. The new stations are numbered from 201 to 270. The data and interpretation of the new soundings are presented.

Zohdy, A.A.R.; Bisdorf, R.J.

1976-01-01T23:59:59.000Z

285

NGPL Louisiana station nears completion  

Science Conference Proceedings (OSTI)

Construction on a 3,600-hp compressor station on the Louisiana line of Natural Gas Pipeline Co. of America near Henry, La., was scheduled for completion later this month. The Louisiana line extends some 205 miles along the Gulf Coast between New Caney, Tex., and the Henry hub area. The new compressor station will be located about 44 miles west of the Henry hub. Work began on the $5.1 million expansion project in Cameron Parish, La., in May following Federal Energy Regulatory Commission (FERC) certification. By mid-September, the compressor building, service building, and meter house has been erected, final compressor inspections were under way, and gas piping tie-ins had been completed, according to NGPL. Powered by three 1,200-hp Solar Saturn gas-fired centrifugal engines, the station is designed to increase the capacity of the Louisiana line east of the Stingray pipeline system by up to 220 MMcfd. Current capacity for east bound flows is approximately 900 MMcfd.

Not Available

1990-10-22T23:59:59.000Z

286

Addendum to the User's Guide for RIVRISK Version 5.0: A Model to Assess Potential Human Health and Ecological Risks from Power Plant and Industrial Facility Releases to Rivers  

Science Conference Proceedings (OSTI)

This is an addendum to the User's Guide for EPRI's RIVRISK analytic framework, Version 5.0. RIVRISK can be used to assess human health and ecological risks associated with industrial and power plant chemical and thermal releases to rivers. Some minor inconsistencies between the original User's Guide (EPRI Report 1000733) and the model examples were discovered during model applications. This addendum provides modified pages of the User's Guide that correct those inconsistencies. Those planning to use RIVR...

2001-05-04T23:59:59.000Z

287

Optimization of compression and storage requirements at hydrogen refueling stations.  

SciTech Connect

The transition to hydrogen-powered vehicles requires detailed technical and economic analyses of all aspects of hydrogen infrastructure, including refueling stations. The cost of such stations is a major contributor to the delivered cost of hydrogen. Hydrogen refueling stations require not only dispensers to transfer fuel onto a vehicle, but also an array of such ancillary equipment as a cascade charging system, storage vessels, compressors and/or pumps/evaporators. This paper provides detailed information on design requirements for gaseous and liquid hydrogen refueling stations and their associated capital and operating costs, which in turn impact hydrogen selling price at various levels of hydrogen demand. It summarizes an engineering economics approach which captures the effect of variations in station size, seasonal, daily and hourly demand, and alternative dispensing rates and pressures on station cost. Tradeoffs in the capacity of refueling station compressors, storage vessels, and the cascade charging system result in many possible configurations for the station. Total costs can be minimized by optimizing that configuration. Using a methodology to iterate among the costs of compression, storage and cascade charging, it was found that the optimum hourly capacity of the compressor is approximately twice the station's average hourly demand, and the optimum capacity of the cascade charging system is approximately 15% of the station's average daily demand. Further, for an hourly demand profile typical of today's gasoline stations, onsite hydrogen storage equivalent to at least 1/3 of the station's average daily demand is needed to accommodate peak demand.

Elgowainy, A.; Mintz, M.; Kelly, B.; Hooks, M.; Paster, M. (Energy Systems); (Nexant, Inc.); (TIAX LLC)

2008-01-01T23:59:59.000Z

288

Kootenai River Ecosystem Finding of No Significant Impact (FONSI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kootenai River Ecosystem Kootenai River Ecosystem Finding of No Significant Impact (FONSI) June 2005 1 Department of Energy BONNEVILLE POWER ADMINISTRATION Kootenai River Ecosystem Project Finding of No Significant Impact (FONSI) Summary: Bonneville Power Administration (BPA) is proposing to fund the Kootenai River Ecosystem Project. With this funding the Kootenai Tribe of Idaho (KTOI) and Idaho Fish and Game (IDFG) would add liquid nitrogen and phosphorus to the Kootenai River from late June through September for up to five years to replace nutrients lost to the hydrosystem. The goal of this project is to help enhance native fish populations and river health. The nutrients are expected to stimulate production in the Kootenai River's

289

Ohio River Ecological Research Program (ORERP): 2006 Ohio River Monitoring Results  

Science Conference Proceedings (OSTI)

The Ohio River Ecological Research Program (ORERP) is the largest collaborative power plant research program in the world. This report presents the results of the 2006 ORERP fish population sampling near 12 Ohio River power plants that covered nearly the entire (1000 mile) length of the river. The sampling program consisted of adult/juvenile fish, habitat, and water quality field studies upstream and downstream of the participating power plants.

2008-10-13T23:59:59.000Z

290

Ohio River Ecological Research Program (ORERP): 2007 Ohio River Monitoring Results  

Science Conference Proceedings (OSTI)

The Ohio River Ecological Research Program (ORERP) is the largest collaborative power plant research program in the world. This report presents the results of the 2007 ORERP fish population sampling near 10 Ohio River power plants that covered nearly the entire (1,000 mile) length of the river. The sampling program consisted of adult/juvenile fish, habitat, and water quality field studies conducted upstream and downstream of the participating power plants.

2009-10-20T23:59:59.000Z

291

Repowering of the Midland Nuclear Station  

E-Print Network (OSTI)

The conversion of the Midland Nuclear Station to a combined cycle power facility is the first of its kind. The existing nuclear steam turbine, combined with new, natural-gas-fired gas turbines, will create the largest cogeneration facility in the United States. The paper describes the project and the converted facility.

Gatlin, C. E. Jr.; Vellender, G. C.; Mooney, J. A.

1988-09-01T23:59:59.000Z

292

EIS-0435: Modification of the Groton Generation Station Interconnection  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Modification of the Groton Generation Station 5: Modification of the Groton Generation Station Interconnection Agreement, Brown County, South Dakota EIS-0435: Modification of the Groton Generation Station Interconnection Agreement, Brown County, South Dakota Summary This EIS evaluates the environmental impacts of a proposal for DOE's Western Area Power Administration to modify its Large Generator Connection Agreement for the Groton Generation Station in Brown County, South Dakota. The modification would allow Basin Electric Power Cooperative, which operates the generation station, to produce power above the current operating limit of 50 average megawatts. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download June 3, 2011 EIS-0435: Final Environmental Impact Statement

293

Xcel Energy Comanche Station: Pueblo, Colorado (Data)  

DOE Green Energy (OSTI)

A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

Stoffel, T.; Andreas, A.

2007-06-20T23:59:59.000Z

294

Xcel Energy Comanche Station: Pueblo, Colorado (Data)  

DOE Data Explorer (OSTI)

A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

Stoffel, T.; Andreas, A.

295

The Ecology of the Navasota River, Texas  

E-Print Network (OSTI)

A general Limnological Survey was made of the Navasota River, Texas, a tributary of the Brazos River, between February, 1968 and March, 1970. Five stations on the main channel were visited twice monthly from February, 1968 to January, 1970, and three major tributaries were visited twice monthly from April, 1969 to March, 1970, at a station near the mouth of each. In addition, collections of fishes and benthos were made from 144 sites distributed throughout the watershed. Data provided include, discharge, temperature, pH, specific conductance, chloride, sulfate, nitrate, hardness, organics, trace elements, bacteria, zooplankton, macro-drift, algae, benthos and fishes (with distribution maps of fish species).

Clark, W. J.

1973-12-01T23:59:59.000Z

296

Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Naval Station Newport Naval Station Newport Wind Resource Assessment A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center Robi Robichaud, Jason Fields, and Joseph Owen Roberts Technical Report NREL/TP-6A20-52801 February 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Naval Station Newport

297

Evaluating Cumulative Ecosystem Evaluating Cumulative Ecosystem Response of the Columbia River Response of the Columbia River  

E-Print Network (OSTI)

Fish ­ presence, abundance, res. time, diet, growth rate, fitness Exchange ­ plant biomass, TOC, NOAA Fisheries, Hammond, OR Northwest Power and Conservation Council Columbia River Estuary Science

298

PILGRIM NUCLEAR POWER STATION- NRC INTEGRATED INSPECTION  

E-Print Network (OSTI)

inspection results, which were discussed on July 18, 2012 with you and other members of your staff. The inspection examined activities conducted under your license as they relate to safety and compliance with the Commission’s rules and regulations and with the conditions of your license. The inspectors reviewed selected procedures and records, observed activities, and interviewed personnel. This report documents one NRC-identified finding of very low safety significance (Green). This finding was determined to involve a violation of NRC requirements. However, because of its very low safety significance, and because it has been entered into your corrective action program (CAP), the NRC is treating this finding as a non-cited violation (NCV), consistent with Section 2.3.2 of the NRC Enforcement Policy. If you contest any NCV in this report, you should provide a written response within 30 days of the date of this inspection report, with the basis for your denial, to the Nuclear Regulatory Commission, ATTN: Document Control Desk, Washington DC 20555-0001; with copies to the Regional Administrator, Region I; the Director,

Region I; Mr. Robert Smith; Pilgrim Nuclear; Power Station

2012-01-01T23:59:59.000Z

299

Definition: Electric Vehicle Charging Station | Open Energy Information  

Open Energy Info (EERE)

Vehicle Charging Station Vehicle Charging Station Jump to: navigation, search Dictionary.png Electric Vehicle Charging Station An electric vehicle charging station that uses communications technology to enable it to intelligently integrate two-way power flow enabling electric vehicle batteries to become a useful utility asset.[1] View on Wikipedia Wikipedia Definition An electric vehicle charging station, also called EV charging station, electric recharging point, charging point and EVSE (Electric Vehicle Supply Equipment), is an element in an infrastructure that supplies electric energy for the recharging of plug-in electric vehicles, including all-electric cars, neighborhood electric vehicles and plug-in hybrids. As plug-in hybrid electric vehicles and battery electric vehicle ownership is

300

Development of a Renewable Hydrogen Energy Station  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of a Renewable Development of a Renewable Hydrogen Energy Station Edward C. Heydorn - Air Products and Chemicals, Inc. Pinakin Patel - FuelCell Energy, Inc. Fred Jahnke - FuelCell Energy, Inc. "Delivering Renewable Hydrogen - A Focus on Near-Term Applications" Palm Springs, CA 16 November 2009 Presentation Outline * Hydrogen Energy Station Technology Overview * Process Description * Performance and Economic Parameters * Proposed Demonstration on Renewable Feedstock * Status of Shop Validation Test * Conclusion 2 Objectives * Determine the economic and technical viability of a hydrogen energy station designed to co-produce power and hydrogen Utilize technology development roadmap to provide deliverables and go/no-go decision

Note: This page contains sample records for the topic "river power station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hydrogen fueling station development and demonstration  

DOE Green Energy (OSTI)

This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop and demonstrate a hydrogen fueling station for vehicles. Such stations are an essential infrastructural element in the practical application of hydrogen as vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology that is the link between the local storage facility and the vehicle.

Edeskuty, F.J.; Daney, D.; Daugherty, M.; Hill, D.; Prenger, F.C.

1996-09-01T23:59:59.000Z

302

ORNL DAAC GLOBAL RIVER DISCHARGE, 1807-1991, V. 1.1 (RIVDIS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Data > Regional/Global > River Discharge (RIVDIS) > Guide Data > Regional/Global > River Discharge (RIVDIS) > Guide Document GLOBAL RIVER DISCHARGE, 1807-1991, V. 1.1 (RIVDIS) Get Data Global River Discharge, 1807-1991, V. 1.1 (RivDIS) Summary: The Global Monthly River Discharge Data Set contains monthly averaged discharge measurements for 1018 stations located throughout the world. The period of record varies widely from station to station with a mean of 21.5 years. The data are derived from the published UNESCO archives for river discharge and checked against information obtained from the Global Runoff Center in Koblenz, Germany, through the U.S. National Geophysical Data Center in Boulder, Colorado. Citation: Cite this data set as follows (citation revised on September 20, 2002): Vorosmarty, C. J., B. M. Fekete, and B. A. Tucker. 1998. Global River

303

Mobile Alternative Fueling Station Locator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Station Locator Alternative Fueling Station Locator Fuel Type Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) Location Enter a city, postal code, or address Include private stations Not all stations are open to the public. Choose this option to also search private fueling stations. Search Caution: The AFDC recommends that users verify that stations are open, available to the public, and have the fuel prior to making a trip to that location. Some stations in our database have addresses that could not be located by the Station Locator application. This may result in the station appearing in the center of the zip code area instead of the actual location. If you're having difficulty, please contact the technical response team at

304

Illinois Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois nuclear power plants, summer capacity and net generation, 2010" Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Braidwood Generation Station Unit 1, Unit 2","2,330","19,200",20.0,"Exelon Nuclear" "Byron Generating Station Unit 1, Unit 2","2,300","19,856",20.6,"Exelon Nuclear" "Clinton Power Station Unit 1","1,065","8,612",9.0,"Exelon Nuclear" "Dresden Generating Station Unit 2, Unit 3","1,734","14,593",15.2,"Exelon Nuclear" "LaSalle Generating Station

305

Our River  

NLE Websites -- All DOE Office Websites (Extended Search)

River River Nature Bulletin No. 22 July 7, 1945 Forest Preserve District of Cook County Clayton F. Smith, President Roberts Mann, Superintendent of Conservation OUR RIVER The people of Cook County are missing a bet. They are not using their DesPlaines River. The other day we took a boat trip down that river from Lake County to Lawndale Avenue in Summit. It being a week day, we saw few people other than an occasional fisherman or pairs of strolling boys. Except for a bridge now and then, there were no signs or sounds of civilization. Chicago might have been a thousand miles away. We rested. There was isolation. There was peace. Once in a while a heron flew ahead of us; or a squirrel scampered up a tree; once we saw a family of young muskrats playing around the entrance to their den in the bank; twice we saw and heard a wood duck; again and again big fish plowed ripples surging ahead of us. It was shady and cool and still beneath the arching trees. We thought of the centuries this river had traveled. We were babes nuzzling again at the breast of Mother Nature.

306

DOE Hydrogen Analysis Repository: Hydrogen Energy Station Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Energy Station Validation Hydrogen Energy Station Validation Project Summary Full Title: Validation of an Integrated Hydrogen Energy Station Previous Title(s): Validation of an Integrated System for a Hydrogen-Fueled Power Park Project ID: 128 Principal Investigator: Dan Tyndall Keywords: Power parks; co-production; hydrogen; electricity; digester gas Purpose Demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell (HTFC) designed to produce power and hydrogen from digester gas. Performer Principal Investigator: Dan Tyndall Organization: Air Products and Chemicals, Inc. Address: 7201 Hamilton Blvd. Allentown, PA 18195 Telephone: 610-481-6055 Email: tyndaldw@airproducts.com Period of Performance Start: September 2001 End: March 2009

307

Savannah River Site  

NLE Websites -- All DOE Office Websites (Extended Search)

River Site Savannah River Site Savannah River Site (SRS) has mission responsibilities in nuclear weapons stockpile stewardship by ensuring the safe and reliable management of...

308

Columbia River Power System Biological Opinion" (The Research, Monitoring and Evaluation Plan, http://www.efw.bpa.gov/cgi-bin/FW/welcome.cgi).  

E-Print Network (OSTI)

Ocean. War Department Vol. IX. Birds. Washington, D.C. Barnhart, R.A. 1986. Species profiles: life and Snake rivers, 1991. National Marine Fisheries Science, Seattle, Washington. #12;291 Akeson, J. J., and H. A. Akeson. 1992. Bighorn sheep movements and summer lamb mortality in central Idaho. Proceedings

309

Robotic dissolution station  

DOE Patents (OSTI)

This invention is comprised of a robotic station for dissolving active metals in acid in an automated fashion. A vessel with cap, containing the active metal is placed onto a shuttle which retracts to a point at which it is directly beneath a cap removing and retaining mechanism. After the cap is removed, a tube carrying an appropriate acid is inserted into the vessel, and the acid is introduced. The structure of the station forms an open hood which is swept of gases generated by the dissolution and the air removed to a remote location for scrubbing. After the reaction is complete, the shuttle extends and the vessel may be removed by a robot arm.

Beugelsdijk, T.J.; Hollen, R.M.; Temer, D.J.; Haggart, R.J.; Erkkila, T.H.

1991-12-31T23:59:59.000Z

310

Quantitative Analysis of Station Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Station Analysis of Station Hydrogen * Role of ENAA (Engineering Advancement Association of Japan) - To manage the construction and operation of hydrogen stations in national project, JHFC Project - To act as secretariat of ISO/TC197 (Hydrogen technologies) committee of Japan Kazuo Koseki Chief Secretary of ISO/TC197 of Japan ENAA Yokohama Daikoku Station (Desulfurized Gasoline) Yokohama Asahi Station (Naphtha) Senju Station (LPG) Kawasaki Station (Methanol) Yokohama Asahi Station Naphtha PSA Compressor Storage Tanks Dispenser Reformer Buffer Tank 25 MPa 35 MPa 1073 K 0.8 MPa Inlet : 0.6 MPa Outlet : 40 MPa Vent Stack 40 MPa Result of Quantitative Analysis Concentration. vol.ppm Min.Detect Analysis Impurity Gasoline Naphtha LPG Methanol Conc. Method CO 0.05 0.06 0.02 0.06 0.01 GC-FID

311

Flood Forecasting in River System Using ANFIS  

Science Conference Proceedings (OSTI)

The aim of the present study is to investigate applicability of artificial intelligence techniques such as ANFIS (Adaptive Neuro-Fuzzy Inference System) in forecasting flood flow in a river system. The proposed technique combines the learning ability of neural network with the transparent linguistic representation of fuzzy system. The technique is applied to forecast discharge at a downstream station using flow information at various upstream stations. A total of three years data has been selected for the implementation of this model. ANFIS models with various input structures and membership functions are constructed, trained and tested to evaluate efficiency of the models. Statistical indices such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and Coefficient of Efficiency (CE) are used to evaluate performance of the ANFIS models in forecasting river flood. The values of the indices show that ANFIS model can accurately and reliably be used to forecast flood in a river system.

Ullah, Nazrin; Choudhury, P. [Dept. of Civil Eng., NIT, Silchar (India)

2010-10-26T23:59:59.000Z

312

Fossil Generating Station Case Histories 2010  

Science Conference Proceedings (OSTI)

During 2010, EPRI Operations and Management Program managers and contractors collected information on events that have occurred in fossil generating stations. These events represent only a small sample of those being experienced by the power generation industry, but they provide a basis for understanding where actions to improve operations are necessary. Sufficient details have been included for analyzing the events without divulging sources. Recognizing that these reports represent actual events and not...

2010-12-23T23:59:59.000Z

313

Fossil Generating Station Case Histories 2009  

Science Conference Proceedings (OSTI)

In this report, the Electric Power Research Institute (EPRI) has compiled the events and activities that occurred at member fossil generating stations in 2009. The purpose of this report is to share this operating experience with other member utilities so that lessons can be learned and applied to improve overall performance across the generation fleet. The report also includes a summary of findings from plant operations and maintenance assessments that were conducted in 2008–2009. The focus of these ass...

2009-12-21T23:59:59.000Z

314

River Steamboats  

NLE Websites -- All DOE Office Websites (Extended Search)

River Steamboats River Steamboats Nature Bulletin No. 628-A February 12, 1977 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation RIVER STEAMBOATS The westward migration of the pioneer settlers and the rapid growth of agriculture, commerce and industry in the Middle West is in large part the story of water transportation on our inland waterways. The two main water routes were the chain of Great Lakes on the north and the Ohio River on the south. Sailing vessels carrying hundreds of tons were able to navigate on the Great Lakes almost as freely as on the ocean. Also, on the Ohio and Mississippi rivers heavy loads could be floated downstream from Pittsburgh to New Orleans -- almost 2000 miles. But boats had to be hauled back upstream by manpower -- grueling labor, stretching over weeks or months to move a few tons a few hundred miles. The coming of the steamboat a century and a half ago changed all this.

315

Final Report: Particulate Emissions Testing, Unit 1, Potomac River  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Report: Particulate Emissions Testing, Unit 1, Potomac River Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating Station, Alexandria, Virginia Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating Station, Alexandria, Virginia Docket No. EO-05-01: TRC Environmental Corporation (TRC) of Lowell, Massachusetts was retained by Mirant Potomac River, LLC (Mirant) to provide sampling and analytical support in completing a Particulate Emission Test of Unit 1 of the Potomac River generating facility. The Test Program at the Potomac facility involved the completion of two series of emissions tests for particulate matter (PM), the first during normal unit operation and the second with the injection of TRONA upstream of hot side ESP fields. All tests were completed while Unit 1 was operating at 90% of full load (84MW)

316

EIS-0241: Hood River Fisheries Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Hood River Fisheries Program 1: Hood River Fisheries Program EIS-0241: Hood River Fisheries Program SUMMARY This EIS evaluates a BPA proposal to protect and improve anadromous salmonid populations in the Hood River Basin. These actions are proposed in an attempt to mitigate the losses of fish and wildlife associated with the construction and operation of Federal hydro-power facilities in the Columbia River Basin. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 4, 2008 EIS-0241-SA-02: Supplement Analysis for the Hood River Fisheries Project Supplement Analysis for the Hood River Fisheries Project May 16, 2005 EIS-0241-SA-01: Supplement Analysis for the Hood River Fisheries Project, Hood River County, Oregon Supplement Analysis for the Hood River Fisheries Project

317

Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy reve  

Science Conference Proceedings (OSTI)

Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy revenue, while meeting other legal water requirements. Reservoir optimization schemes used in practice do not seek flow regimes that maximize aquatic ecosystem health. Here, we review optimization studies that considered environmental goals in one of three approaches. The first approach seeks flow regimes that maximize hydropower generation, while satisfying legal requirements, including environmental (or minimum) flows. Solutions from this approach are often used in practice to operate hydropower projects. In the second approach, flow releases from a dam are timed to meet water quality constraints on dissolved oxygen (DO), temperature and nutrients. In the third approach, flow releases are timed to improve the health of fish populations. We conclude by suggesting three steps for bringing multi-objective reservoir operation closer to the goal of ecological sustainability: (1) conduct research to identify which features of flow variation are essential for river health and to quantify these relationships, (2) develop valuation methods to assess the total value of river health and (3) develop optimal control softwares that combine water balance modelling with models that predict ecosystem responses to flow.

Jager, Yetta [ORNL; Smith, Brennan T [ORNL

2008-02-01T23:59:59.000Z

318

International Space Station Again  

E-Print Network (OSTI)

For the fifth time in 2 1/2 years, the International Space Station (ISS) had to execute a collision avoidance maneuver in early April to ensure a safe miss distance for a piece of orbital debris. As solar activity increases during the next few years, the frequency of ISS collision avoidance might increase as many hundreds of resident space objects drift down through the ISS orbital regime. The subject of concern in late March 2011 was a fragment from Cosmos 2251, the Russian communications satellite which had accidentally collided with the U.S. Iridium 33 communications satellite in February 2009, producing more than

Iss Airlock Shields; A Note On Active; A Publication Of

2011-01-01T23:59:59.000Z

319

A computer program for HVDC converter station RF noise calculations  

SciTech Connect

HVDC converter station operations generate radio frequency (RF) electromagnetic (EM) noise which could interfere with adjacent communication and computer equipment, and carrier system operations. A generic Radio Frequency Computer Analysis Program (RAFCAP) for calculating the EM noise generated by valve ignition of a converter station has been developed as part of a larger project. The program calculates RF voltages, currents, complex power, ground level electric field strength and magnetic flux density in and around an HVDC converter station. The program requires the converter station network to be represented by frequency dependent impedance functions. Comparisons of calculated and measured values are given for an actual HVDC station to illustrate the validity of the program. RAFCAP is designed to be used by engineers for the purpose of calculating the RF noise produced by the igniting of HVDC converter valves.

Kasten, D.G.; Caldecott, R.; Sebo, S.A. (Ohio State Univ., Columbus, OH (United States). Dept. of Electrical Engineering); Liu, Y. (Virginia Polytechnic Inst. State Univ., Blacksburg, VA (United States). Bradley Dept. of Electrical Engineering)

1994-04-01T23:59:59.000Z

320

NIST Radio Station WWVB  

Science Conference Proceedings (OSTI)

... Transformer. Placing new 500 kVA power transformer. ... The following are the old 60 kHz transmitters and antenna matching transformer. Transmitter. ...

Note: This page contains sample records for the topic "river power station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Willamette River Habitat Protection and Restoration Program  

E-Print Network (OSTI)

.............................................................................6 a. The Challenge of Restoration in a Large River/Flood Plain System.............6 b. The Need Goals: Anchor Habitats as Stepping Stones....................20 f. Measuring Results-purpose dams and reservoirs as part of the Federal Columbia River Power System, as well as 42 miles of bank

322

Caney River | Open Energy Information  

Open Energy Info (EERE)

River River Jump to: navigation, search Name Caney River Facility Caney River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Enel Green Power North America Inc. Developer Tradewind Energy LLC Energy Purchaser Tennessee Valley Authority Location Elk County KS Coordinates 37.448424°, -96.425027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.448424,"lon":-96.425027,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network (OSTI)

to the natural gas reformer station. Station 4: On-sitereforming of natural gas at the station b. MeOH 100 (case 3)cost of natural gas at the station is much lower (roughly

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2006-01-01T23:59:59.000Z

324

Hydrogen refueling station costs in Shanghai  

E-Print Network (OSTI)

to the natural gas reformer station. Station 4. On-siteSMR 300) use natural gas at the station; Case 3 (MeOH 100)reforming of natural gas at the station. 100 (case 3) =

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

325

Hayden-Blue River 345-kV transmission line project, Colorado  

SciTech Connect

Tri-State Generation and Transmission Association, Inc., Colorado-Ute Electric Association, Inc., Platte River Power Authority, and Western Area Power Administration propose to construct and operate approximately 90 miles of 345-kilovolt (kV) transmission line between Hayden and the Blue River Valley in Colorado. The project would involve expansion of existing substation facilities at Hayden and construction of two new substations. The line would be operated at 230 kV initially. Estimated cost of the project is $37.8 million. The new line and substation facilities would provide a backup transmission path, satisfy the long-term needs in meeting the energy requirements, improve system reliability, improve system stability for the Craig and Hayden generating stations, and leave the existing 115-kV and 138-kV lines in operation to provide additional transmission capacity that would function as backup transmission during an outage on another line. Minute amounts of lands would be displaced. Construction activities would disturb critical ranges for elk and mule deer, elk calving areas, and the mating and nesting areas of greater sandhill cranes, great blue herons, sage grouse, golden eagles, and prairie falcons. Management of timberland would damage natural vegetation. The line would traverse 3.1 miles of flood-prone area, and as many as three transmission towers would lie within the floodplain of the Colorado River. The visual quality of land crossed by the line would be degraded somewhat.

Not Available

1982-09-01T23:59:59.000Z

326

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

327

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Hydrogen Fueling Stations Photo of a hydrogen fueling station. A handful of hydrogen fueling stations are available in the United States

328

Alternative Fuels Data Center: Biodiesel Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Stations on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a biodiesel fueling station. Hundreds of biodiesel fueling stations are available in the United States.

329

Identification of relationship between sunspots and natural runoff in the Yellow River based on discrete wavelet analysis  

Science Conference Proceedings (OSTI)

Annual natural runoff is an important index of a river, which may be affected by solar activities. In this study, 304 years of annual natural runoff at the Sanmenxia station located in the Yellow River and the sunspot relative number are decomposed with ... Keywords: Natural runoff, Sunspots, The Yellow River, Wavelet analysis

C. H. Li; Z. F. Yang; G. H. Huang; Y. P. Li

2009-03-01T23:59:59.000Z

330

DOE Orders Mirant Power Plant to Operate Under Limited Circumstances |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Orders Mirant Power Plant to Operate Under Limited DOE Orders Mirant Power Plant to Operate Under Limited Circumstances DOE Orders Mirant Power Plant to Operate Under Limited Circumstances December 20, 2005 - 11:44am Addthis DOE finds emergency; determines plant will help electric reliability WASHINGTON, D.C. - Secretary of Energy Samuel W. Bodman today issued an order requiring Mirant Corporation's Potomac River Generating Station in Alexandria, Virginia (Mirant) to immediately resume limited operation. The order will help provide electric reliability for Washington, D.C., and will do so at the lowest reasonable impact to the environment. "After weighing all of the information, I believe an emergency situation exists, and that issuance of this order is in the public interest. This order will provide the level of electricity reliability necessary to keep

331

DOE Orders Mirant Power Plant to Operate Under Limited Circumstances |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orders Mirant Power Plant to Operate Under Limited Orders Mirant Power Plant to Operate Under Limited Circumstances DOE Orders Mirant Power Plant to Operate Under Limited Circumstances December 20, 2005 - 11:44am Addthis DOE finds emergency; determines plant will help electric reliability WASHINGTON, D.C. - Secretary of Energy Samuel W. Bodman today issued an order requiring Mirant Corporation's Potomac River Generating Station in Alexandria, Virginia (Mirant) to immediately resume limited operation. The order will help provide electric reliability for Washington, D.C., and will do so at the lowest reasonable impact to the environment. "After weighing all of the information, I believe an emergency situation exists, and that issuance of this order is in the public interest. This order will provide the level of electricity reliability necessary to keep

332

Hydrogen vehicle fueling station  

DOE Green Energy (OSTI)

The authors describe a hydrogen vehicle fueling station that receives and stores hydrogen in liquid form and dispenses it either as a liquid or compressed gas. The economics that accrue from the favorable weight and volume advantages of liquid hydrogen support this concept both now and probably for some time to come. The model for liquid transfer to a 120-liter vehicle tank shows that transfer times under five minutes are feasible with pump-assisted transfer, or for pressure transfer with subcooling greater than 1 K. The model for compressed gas transfer shows that underfilling of nearly 30% can occur during rapid filling. Cooling the fill gas to 214 K completely eliminates underfilling.

Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.; Prenger, F.C.; Hill, D.D.

1995-09-01T23:59:59.000Z

333

Central Station DHC Phase 1 feasibility  

SciTech Connect

This project assisted a private real estate developer in technically assessing the feasibility of integrating a central DHC system into a proposed 72 acre area mixed-use Planned Development (Central Station) just south of the Chicago Central Business District (Loop). The technical assessment concluded that a district heating and cooling system for Central Station will be feasible, provided that a major anchor load can be connected to the system. The system conceived for the site employs a modular approach that adjusts production capacity to actual load growth. The design concept includes gas-fired boilers for heating, gas turbine driven chillers for base loading, electric motor driven chillers for peaking, steam turbines for peak power and back pressure operation, and chilled water storage. Energy will be supplied to the users in the form of steam or low temperature hot water for heating, and low temperature chilled water for cooling.

Henderson, H.L.

1992-03-01T23:59:59.000Z

334

Wachs Cutter Tooling Station (4495)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is similar to previously operated facility tooling and will utilize an existing hydraulic unit. The temporary station location will require electrical feed, ventilation,...

335

The Station Nightclub Fire 2003  

Science Conference Proceedings (OSTI)

... The final report, "Report of the Technical Investigation of The Station Nightclub Fire (NIST NCSTAR 2), Volume 1 and Volume 2 ," includes details of ...

2013-02-07T23:59:59.000Z

336

High speed imager test station  

DOE Patents (OSTI)

A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment. 12 figs.

Yates, G.J.; Albright, K.L.; Turko, B.T.

1995-11-14T23:59:59.000Z

337

High speed imager test station  

DOE Patents (OSTI)

A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment.

Yates, George J. (Santa Fe, NM); Albright, Kevin L. (Los Alamos, NM); Turko, Bojan T. (Moraga, CA)

1995-01-01T23:59:59.000Z

338

Annual Report to the Bonneville Power Administration, Reporting Period: April 2008 - February 2009 [re: "Survival and Growth in the Columbia River Plume and north California Current"].  

DOE Green Energy (OSTI)

We have made substantial progress toward our objectives outlined in our BPA supported proposal entitled 'Columbia River Basin Juvenile Salmonids: Survival and Growth in the Columbia River Plume and northern California Current' which we report on herein. During 2008, we were able to successfully conduct 3 mesoscale cruises. We also were able to conduct 7 biweekly predator cruises, along with substantial shore-based visual observations of seabirds. Detailed results of the mesoscale cruises are available in the Cruise Reports and summarized in the next section. We have taken a proactive approach to getting the results of our research to fisheries managers and the general public. We have begun to make annual predictions based on ocean conditions of the relative survival of juvenile coho and Chinook salmon well before they return as adults. This is based on both biological and physical indicators that we measure during our surveys or collect from outside data sources. Examples of our predictions for 2009 and 2010 are available on the following web site: http://www.nwfsc.noaa.gov/research/divisions/fed/oeip/a-ecinhome.cfm.

Northwest Fisheries Science Center, NOAA Fisheries; Cooperative Institute for Marine Resources Studies, Oregon State University; OGI School of Science & Engineering, Oregon Health Sciences University.

2009-07-17T23:59:59.000Z

339

Ohio River Ecological Research Program (ORERP): 011 Ohio River Monitoring Results  

Science Conference Proceedings (OSTI)

The 2011 Ohio River Ecological Research Program (ORERP) consisted of adult and juvenile fish surveys, habitat evaluations, and water quality studies that were conducted upstream and downstream of 11 participating power plants that cover nearly 600 river miles. The principal research objectives of this study were to evaluate possible effects of thermal effluents on the temporal and spatial distributions of juvenile and adult fish in the Ohio River and to investigate associations with hydrological, ...

2013-09-05T23:59:59.000Z

340

Ohio River Ecological Research Program (ORERP): 2010 Ohio River Monitoring Results  

Science Conference Proceedings (OSTI)

The 2010 Ohio River Ecological Research Program (ORERP) consisted of adult and juvenile fish surveys, habitat evaluations, and water quality studies conducted upstream and downstream of 11 participating power plants that cover nearly 600 river miles. The principal research objectives of this study were to evaluate possible effects of thermal effluents on the temporal and spatial distributions of juvenile and adult fish in the Ohio River, and to investigate associations with hydrological, water ...

2012-10-12T23:59:59.000Z

Note: This page contains sample records for the topic "river power station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Flood Forecasting in River System Using ANFIS  

Science Conference Proceedings (OSTI)

The aim of the present study is to investigate applicability of artificial intelligence techniques such as ANFIS (Adaptive Neuro?Fuzzy Inference System) in forecasting flood flow in a river system. The proposed technique combines the learning ability of neural network with the transparent linguistic representation of fuzzy system. The technique is applied to forecast discharge at a downstream station using flow information at various upstream stations. A total of three years data has been selected for the implementation of this model. ANFIS models with various input structures and membership functions are constructed

Nazrin Ullah; P. Choudhury

2010-01-01T23:59:59.000Z

342

Locating PHEV Exchange Stations in V2G  

E-Print Network (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are an environmentally friendly technology that is expected to rapidly penetrate the transportation system. Renewable energy sources such as wind and solar have received considerable attention as clean power options for future generation expansion. However, these sources are intermittent and increase the uncertainty in the ability to generate power. The deployment of PHEVs in a vehicle-to-grid (V2G) system provide a potential mechanism for reducing the variability of renewable energy sources. For example, PHEV supporting infrastructures like battery exchange stations that provide battery service to PHEV customers could be used as storage devices to stabilize the grid when renewable energy production is fluctuating. In this paper, we study how to best site these stations in terms of how they can support both the transportation system and the power grid. To model this problem we develop a two-stage stochastic program to optimally locate the stations prior to the realizat...

Pan, Feng; Berscheid, Alan; Izraelevitz, David

2010-01-01T23:59:59.000Z

343

Final environmental assessment for vegetation control at VHF stations, microwave stations, electrical substations, and pole yards  

Science Conference Proceedings (OSTI)

Southwestern Power Adm. operates very high frequency (VHF) and microwave radio stations, electrical substations, and pole yards for electric power transmission throughout AR, MO, and OK. Vegetation growth at the stations must be suppressed for safety of operation and personnel. Southwestern has been using a combination of mechanical/manual and herbicide control for this purpose; Federally- mandated reductions in staff and budgetary resources require Southwestern to evaluate all potentially efficient methods for vegetation control. Three alternatives were examined: no action, mechanical/manual control, and (proposed) a combination of mechanical/manual and herbicide control. Environmental impacts on air and water quality, wetlands, wildlife, endangered species, archaeological and other resources, farmland, human health, transportation, etc. were evaluated.

NONE

1995-10-13T23:59:59.000Z

344

Trends in Precipitation Extremes in the Zhujiang River Basin, South China  

Science Conference Proceedings (OSTI)

Spatial and temporal characteristics of precipitation trends in the Zhujiang River basin, South China, are analyzed. Nonparametric trend tests are applied to daily precipitation data from 192 weather stations between 1961 and 2007 for the ...

Marco Gemmer; Thomas Fischer; Tong Jiang; Buda Su; Lü Liu Liu

2011-02-01T23:59:59.000Z

345

Rainfall Analysis by Power Transformation  

Science Conference Proceedings (OSTI)

Power transformation was used to normalize the peak daily and peak monthly rainfall at various raingage stations in Iraq. Excellent correlations were found between the coefficient of skewness (Cs) and a parameter for power transformation (?), ...

Hameed Rasheed; A. S. Aldabagh; Murur V. Ramamoorthy

1983-08-01T23:59:59.000Z

346

Woodsdale Generating Station project management  

Science Conference Proceedings (OSTI)

This paper is written for those who are planning new generation construction, particularly combustion turbine units, which will, according to projections, constitute a significant portion of new generation construction during the 1990's. Our project management and schedule for the Woodsdale Generating Station is presented to aid others in the planning, organization, and scheduling for new combustion turbine stations.

Carey, R.P. (Cincinnati Gas and Electric Co., OH (United States))

1990-01-01T23:59:59.000Z

347

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network (OSTI)

480 kg/day natural gas reformation station. The table belowReciprocating gas compressor Electrolyzer Station: Thisfor reformer-type stations (natural gas), however, is more

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

348

Station Living Program, RCM, and the maintenance rule  

Science Conference Proceedings (OSTI)

A project is being conducted at Boston Edison's Pilgrim nuclear power station (PNPS) to develop, implement, and demonstrate the effectiveness of a Station Living Program and the US Nuclear Regulatory Commission (NRC) maintenance rule. This project is a collaborative effort by PNPS, the Electric Power Corp, and Quadrex Energy Series Corporation. In parallel, a preventive maintenance optimization project utilizing reliability-centered maintenance (RCM) is being performed on [approximately]90% of the plant's systems. These two projects are being combined as a major cornerstone at PNPS in the implementation of the NRC maintenance rule.

Kleam, J. (Boston Edison Co., Plymouth, MA (United States)); Anderson, J. (Quadrex Energy Services Corp., Campbell, CA (United States))

1993-01-01T23:59:59.000Z

349

station locations | OpenEI  

Open Energy Info (EERE)

00 00 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142288500 Varnish cache server station locations Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol

350

Red River Compact (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The Red River Compact Commission administers the Red River Compact to ensure that Texas receives its equitable share of quality water from the Red River and its tributaries as apportioned by the...

351

UGP Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

River. Seven dams and powerplants have the installed capacity of 2,610 MW. That hydroelectric power is delivered across about 7,919 circuit-miles of Federal transmission line....

352

River Basin Commissions (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

353

Maine Rivers Policy (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Maine Rivers Policy accompanies the Maine Waterway Development and Conservation Act and provides additional protection for some river and stream segments, which are designated as “outstanding...

354

Monticello Steam Electric Station, Mount Pleasant, Texas  

SciTech Connect

Why does Monticello, a 30 year old plant, deserve recognition as one of Power's Top Plants of 2006? Because TXU has been blending Powder River Basin (PRB) coal with local lignite at the plant for the past decade, and steady reductions in air-pollutant emission rates have been the result. That positive experience has made the company confident enough to propose building nearly 9,100 MW of new coal or lignite-fired capacity in Texas by 2010 at a cost of $10 billion. The article records some of the lessons that TXU has learned about handling PRB coal safely. 4 figs., 3 tabs.

Javetski, J. [TXU Power (United States)

2006-07-15T23:59:59.000Z

355

Savannah River National Laboratory - Home  

NLE Websites -- All DOE Office Websites

SRNL Logo SRNL and DOE logo art SRNL Logo SRNL and DOE logo art Top Menu Bar SRNL Update: Embassy Fellows Report A report co-authored by Savannah River National Laboratory Senior Advisory Engineer, Dr. Robert Sindelar, has been released. The report to the Government of Japan - Ministry of the Environment provides observations and recommendations on decontamination work and progress... >>MORE Portable Power Research at SRNL Hadron Technologies, Inc., a microwave technology and systems development and manufacturing company with offices in Tennessee and Colorado, has signed a license for a Hybrid Microwave and Off-Gas Treatment System developed by the Savannah River National Laboratory, the Department of Energy's applied science laboratory located at the Savannah River Site. >>MORE

356

Grays River Watershed Geomorphic Analysis  

SciTech Connect

This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: The effects of historical and current land use practices on erosion and sedimentation within the channel network The ways in which these effects have influenced the sediment budget of the upper watershed The resulting responses in the main stem Grays River upstream of State Highway 4 The past and future implications for salmon habi

Geist, David R.

2005-04-30T23:59:59.000Z

357

Solar-Assisted Electric Vehicle Charging Station Interim Report  

DOE Green Energy (OSTI)

Oak Ridge National Laboratory (ORNL) has been awarded $6.8 million in the Department of Energy (DOE) American Recovery and Reinvestment Act (ARRA) funds as part of an overall $114.8 million ECOtality grant with matching funds from regional partners to install 125 solar-assisted Electric Vehicle (EV) charging stations across Knoxville, Nashville, Chattanooga, and Memphis. Significant progress has been made toward completing the scope with the installation of 25 solar-assisted charging stations at ORNL; six stations at Electric Power Research Institute (EPRI); and 27 stations at Nissan's Smyrna and Franklin sites, with three more stations under construction at Nissan's new lithium-ion battery plant. Additionally, the procurement process for contracting the installation of 34 stations at Knoxville, the University of Tennessee Knoxville (UTK), and Nashville sites is underway with completion of installation scheduled for early 2012. Progress is also being made on finalizing sites and beginning installations of 30 stations in Nashville, Chattanooga, and Memphis by EPRI and Tennessee Valley Authority (TVA). The solar-assisted EV charging station project has made great strides in fiscal year 2011. A total of 58 solar-assisted EV parking spaces have been commissioned in East and Middle Tennessee, and progress on installing the remaining 67 spaces is well underway. The contract for the 34 stations planned for Knoxville, UTK, and Nashville should be underway in October with completion scheduled for the end of March 2012; the remaining three Nissan stations are under construction and scheduled to be complete in November; and the EPRI/TVA stations for Chattanooga, Vanderbilt, and Memphis are underway and should be complete by the end of March 2012. As additional Nissan LEAFs are being delivered, usage of the charging stations has increased substantially. The project is on course to complete all 125 solar-assisted EV charging stations in time to collect meaningful data by the end of government fiscal year 2012. Lessons learned from the sites completed thus far are being incorporated and are proving to be invaluable in completion of the remaining sites.

Lapsa, Melissa Voss [ORNL; Durfee, Norman [ORNL; Maxey, L Curt [ORNL; Overbey, Randall M [ORNL

2011-09-01T23:59:59.000Z

358

Alternative Fuels Data Center: Propane Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Stations to someone by E-mail Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Propane Fueling Stations Photo of a liquefied petroleum gas fueling station. Thousands of liquefied petroleum gas (propane) fueling stations are

359

Hydrogen at the Fueling Station  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen) Service Stations 101 Hydrogen) Service Stations 101 Steven M. Schlasner September 22, 2004 2 DISCLAIMER Opinions expressed within are strictly those of the presenter and do not necessarily represent ConocoPhillips Company. 3 Presentation Outline * Introduction to ConocoPhillips * Introduction to Service Stations * Comparison of Conventional with Hydrogen Fueling Stations * Hydrogen Fueling Life Cycle * Practical Design Example * Concluding Observations 4 ConocoPhillips * 7 th on Fortune's list of largest companies (2003 revenues) * 3 rd largest integrated petroleum company in U.S. * 1 st (largest) petroleum refiner in U.S. * 14,000 retail outlets (350 company-owned) in 44 states * Brands: Conoco, Phillips 66, 76 * 32,800 miles pipeline, owned or interest in * 64 terminals: crude, LPG, refined products

360

Categorical Exclusion Determinations: Savannah River Operations Office |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 29, 2012 November 29, 2012 CX-009607: Categorical Exclusion Determination 772-F Low-Activity Drain (LAD) Discharge Header Modification CX(s) Applied: B1.3 Date: 11/29/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office November 29, 2012 CX-008651: Categorical Exclusion Determination Dismantle and Remove (D&R) and Replace 773-A D-Wing Air Handling and Condensing Units CX(s) Applied: B1.3 Date: 05/17/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office November 29, 2012 CX-009608: Categorical Exclusion Determination Refurbish 607-53C Sanitary Sewer Lift Station CX(s) Applied: B1.3 Date: 11/29/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office November 27, 2012 CX-009611: Categorical Exclusion Determination

Note: This page contains sample records for the topic "river power station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Categorical Exclusion Determinations: Savannah River Operations Office |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 24, 2011 January 24, 2011 CX-005090: Categorical Exclusion Determination Stairway to FM-1H CX(s) Applied: B2.3 Date: 01/24/2011 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office January 21, 2011 CX-005109: Categorical Exclusion Determination Y589, Mobile Digital Radiography Identification System - Station CX(s) Applied: B1.15 Date: 01/21/2011 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office January 20, 2011 CX-005108: Categorical Exclusion Determination Thin Films for Whisker Growth CX(s) Applied: B3.6 Date: 01/20/2011 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office January 19, 2011 CX-005107: Categorical Exclusion Determination Karl Fisher Titration CX(s) Applied: B3.6 Date: 01/19/2011

362

Historical river flow rates for dose calculations  

Science Conference Proceedings (OSTI)

Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS`s, EID`S, SAR`S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants.

Carlton, W.H.

1991-06-10T23:59:59.000Z

363

Categorical Exclusion Determinations: Savannah River Operations Office |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 9, 2010 August 9, 2010 CX-003633: Categorical Exclusion Determination Install Platform and Stairs at F-10 Outfall CX(s) Applied: B2.3 Date: 08/09/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office August 4, 2010 CX-003635: Categorical Exclusion Determination D-Area Chemical Truck Unloading Station CX(s) Applied: B2.5 Date: 08/04/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office August 4, 2010 CX-003636: Categorical Exclusion Determination 484-D Sump Discharge Line Installation CX(s) Applied: B1.3 Date: 08/04/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office July 30, 2010 CX-003640: Categorical Exclusion Determination Howard T. Ricketts Laboratory (HTRL) Lab 134 CX(s) Applied: B3.6

364

SunShot Concentrating Solar Power Program Review 2013 - Speakers  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Power (CSP), Concentrating PV (CPV), as well as run-of-river hydro, geothermal, and biomass power projects. Highlight Presentation Speakers Daniel Chen, Business...

365

Federal Power Marketing Administrations operate across much of ...  

U.S. Energy Information Administration (EIA)

WAPA markets power from the Hoover Dam, which is the nation's sixth largest hydroelectric power facility and is located on the Colorado River.

366

Longmont Power & Communications- Commercial and Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Longmont Power & Communications, in conjunction with the Platte River Power Authority provides businesses incentives for new construction projects and existing building retrofits. The Electric...

367

Chinese Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Up Search Page Edit with form History Facebook icon Twitter icon Chinese Station Biomass Facility Jump to: navigation, search Name Chinese Station Biomass Facility Facility...

368

Transit Infrastructure Finance Through Station Location Auctions  

E-Print Network (OSTI)

as the primary transit infrastructure finance method.Paper 2009-04 Transit Infrastructure Finance Through StationWP-2009-04 Transit Infrastructure Finance Through Station

Ian Carlton

2009-01-01T23:59:59.000Z

369

Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company  

SciTech Connect

Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70[degrees]C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.

Paller, M. (Westinghouse Savannah River Co., Aiken, SC (United States))

1992-03-26T23:59:59.000Z

370

Tri-Generation Success Story: World's First Tri-Gen Energy Station - Fountain Valley  

NLE Websites -- All DOE Office Websites (Extended Search)

Tri-Generation Success Tri-Generation Success Story World's First Tri-Gen Energy Station- Fountain Valley The Fountain Valley energy station, supported in part by a $2.2 million grant from the Energy Department, is the world's first tri-generation hydrogen energy and electrical power station to provide transportation fuel to the public and electric power to an industrial facility. Located at the Orange County Sanitation District's wastewater treatment plant in Fountain Valley, California, the unit is a combined heat, hydrogen, and power (CHHP) system that co-produces hydrogen in addition to electricity and heat, making it a tri-generation system. The hydrogen produced by the system

371

Rancho Seco Nuclear Generating Station Decommissioning Experience Report  

Science Conference Proceedings (OSTI)

Several U.S. nuclear power plants entered decommissioning in the 1990s. Based on current information, the next group of plants whose license will expire will not begin decommissioning for nearly a decade. This report provides detailed information on the decommissioning of one plant, the Rancho Seco Nuclear Generating Station, in order to capture its experience for future plants.

2007-12-19T23:59:59.000Z

372

Planning solar array operations on the international space station  

Science Conference Proceedings (OSTI)

Flight controllers manage the orientation and modes of eight large solar arrays that power the International Space Station (ISS). The task requires generating plans that balance complex constraints and preferences. These considerations include context-dependent ... Keywords: Planning, constraint satisfaction, optimization, scheduling, space mission operations

Sudhakar Y. Reddy; Jeremy D. Frank; Michael J. Iatauro; Matthew E. Boyce; Elif Kürklü; Mitchell Ai-Chang; Ari K. Jónsson

2011-07-01T23:59:59.000Z

373

Flathead River Creel Report, 1992-1993. Final Report.  

DOE Green Energy (OSTI)

A roving creel survey was conducted on the Flathead River system, May 1992 through May 1993, as part of Hungry Horse Dam Fisheries Mitigation, funded by Bonneville Power Administration. The Flathead River system is a tributary to the Clarks Fork of the Columbia River originating in northwest Montana and southern British Columbia. The river creel survey was conducted in conjunction with a Flathead Lake creel survey. This document summarizes the creel survey on the river system. The purpose of these creel surveys was to quantify fishery status prior to mitigation efforts and provide replicative survey methodology to measure success of future mitigation activities. 4 figs., 21 tabs.

Hanzel, Delano

1995-09-01T23:59:59.000Z

374

Lowry Range Solar Station: Arapahoe County, Colorado (Data)  

DOE Green Energy (OSTI)

A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

Yoder, M.; Andreas, A.

2008-05-30T23:59:59.000Z

375

Lowry Range Solar Station: Arapahoe County, Colorado (Data)  

DOE Data Explorer (OSTI)

A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

Yoder, M.; Andreas, A.

376

Speculations on future opportunities to evolve Brayton powerplants aboard the space station  

SciTech Connect

The Space Station provides a unique, low-risk environment in which to evolve new capabilities. In this way, the Station will grow in capacity, in its range of capabilities, and in its economy of operation as a laboratory, as a center for materials processing, and as a center for space operations. Although both Rankine and Brayton cycles, two concepts for solar-dynamic power generation, now compete to power the Station, this paper confines its attention to the Brayton cycle using a mixture of He and Xe as its working fluid. Such a Brayton powerplant to supply the Station`s increasing demands for both electric power and heat has the potential to gradually evolve higher and higher performance by exploiting already-evolved materials (ASTAR-811C and molten-Li heat storage), its peak cycle temperature rising ultimately to 1500 K. Adapting the Station to exploit long tethers (200 to 300 km long) could yield large increases in payloads to LEO, to GEO, and to distant destinations in the solar system. Such tethering of the Space Station would not only require additional power for electric propulsion but also would so increase nuclear safety that nuclear powerplants might provide this power. From an 8000-kWt SP-100 reactor, thermoelectric power generation could produce 300 kWe, or adapted solar-Brayton cycle, 2400 to 2800 kWe.

English, R.E.

1994-09-01T23:59:59.000Z

377

Chinook Salmon Adult Abundance Monitoring; Hydroacoustic Assessment of Chinook Salmon Escapement to the Secesh River, Idaho, 2002-2004 Final Report.  

DOE Green Energy (OSTI)

Accurate determination of adult salmon spawner abundance is key to the assessment of recovery actions for wild Snake River spring/summer Chinook salmon (Onchorynchus tshawytscha), a species listed as 'threatened' under the Endangered Species Act (ESA). As part of the Bonneville Power Administration Fish and Wildlife Program, the Nez Perce Tribe operates an experimental project in the South Fork of the Salmon River subbasin. The project has involved noninvasive monitoring of Chinook salmon escapement on the Secesh River between 1997 and 2000 and on Lake Creek since 1998. The overall goal of this project is to accurately estimate adult Chinook salmon spawning escapement numbers to the Secesh River and Lake Creek. Using time-lapse underwater video technology in conjunction with their fish counting stations, Nez Perce researchers have successfully collected information on adult Chinook salmon spawner abundance, run timing, and fish-per-redd numbers on Lake Creek since 1998. However, the larger stream environment in the Secesh River prevented successful implementation of the underwater video technique to enumerate adult Chinook salmon abundance. High stream discharge and debris loads in the Secesh caused failure of the temporary fish counting station, preventing coverage of the early migrating portion of the spawning run. Accurate adult abundance information could not be obtained on the Secesh with the underwater video method. Consequently, the Nez Perce Tribe now is evaluating advanced technologies and methodologies for measuring adult Chinook salmon abundance in the Secesh River. In 2003, the use of an acoustic camera for assessing spawner escapement was examined. Pacific Northwest National Laboratory, in a collaborative arrangement with the Nez Perce Tribe, provided the technical expertise to implement the acoustic camera component of the counting station on the Secesh River. This report documents the first year of a proposed three-year study to determine the efficacy of using an acoustic camera to count adult migrant Chinook salmon as they make their way to the spawning grounds on the Secesh River and Lake Creek. A phased approach to applying the acoustic camera was proposed, starting with testing and evaluation in spring 2003, followed by a full implementation in 2004 and 2005. The goal of this effort is to better assess the early run components when water clarity and night visibility preclude the use of optical techniques. A single acoustic camera was used to test the technology for enumerating adult salmon passage at the Secesh River. The acoustic camera was deployed on the Secesh at a site engineered with an artificial substrate to control the river bottom morphometry and the passage channel. The primary goal of the analysis for this first year of deployment was to validate counts of migrant salmon. The validation plan involved covering the area with optical video cameras so that both optical and acoustic camera images of the same viewing region could be acquired simultaneously. A secondary test was contrived after the fish passage was complete using a controlled setting at the Pacific Northwest National Laboratory in Richland, Washington, in which we tested the detectability as a function of turbidity levels. Optical and acoustic camera multiplexed video recordings of adult Chinook salmon were made at the Secesh River fish counting station from August 20 through August 29, 2003. The acoustic camera performed as well as or better than the optical camera at detecting adult Chinook salmon over the 10-day test period. However, the acoustic camera was not perfect; the data reflected adult Chinook salmon detections made by the optical camera that were missed by the acoustic camera. The conditions for counting using the optical camera were near ideal, with shallow clear water and good light penetration. The relative performance of the acoustic camera is expected to be even better than the optical camera in early spring when water clarity and light penetration are limited. Results of the laboratory tests at the Pacific North

Johnson, R.; McKinstry, C.; Mueller, R.

2004-01-01T23:59:59.000Z

378

THE APPLICATION OF A STATISTICAL DOWNSCALING PROCESS TO DERIVE 21{sup ST} CENTURY RIVER FLOW PREDICTIONS USING A GLOBAL CLIMATE SIMULATION  

SciTech Connect

The ability of water managers to maintain adequate supplies in coming decades depends, in part, on future weather conditions, as climate change has the potential to alter river flows from their current values, possibly rendering them unable to meet demand. Reliable climate projections are therefore critical to predicting the future water supply for the United States. These projections cannot be provided solely by global climate models (GCMs), however, as their resolution is too coarse to resolve the small-scale climate changes that can affect hydrology, and hence water supply, at regional to local scales. A process is needed to ‘downscale’ the GCM results to the smaller scales and feed this into a surface hydrology model to help determine the ability of rivers to provide adequate flow to meet future needs. We apply a statistical downscaling to GCM projections of precipitation and temperature through the use of a scaling method. This technique involves the correction of the cumulative distribution functions (CDFs) of the GCM-derived temperature and precipitation results for the 20{sup th} century, and the application of the same correction to 21{sup st} century GCM projections. This is done for three meteorological stations located within the Coosa River basin in northern Georgia, and is used to calculate future river flow statistics for the upper Coosa River. Results are compared to the historical Coosa River flow upstream from Georgia Power Company’s Hammond coal-fired power plant and to flows calculated with the original, unscaled GCM results to determine the impact of potential changes in meteorology on future flows.

Werth, D.; Chen, K. F.

2013-08-22T23:59:59.000Z

379

Recommendations to Address Power Reliability Concerns Raised...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reliability Concerns Raised as a Result of Pending Environmental Regulations for Electric Generation Stations Recommendations to Address Power Reliability Concerns Raised as a...

380

DOE Permitting Hydrogen Facilities: Hydrogen Fueling Stations  

NLE Websites -- All DOE Office Websites (Extended Search)

Stations Stations Public-use hydrogen fueling stations are very much like gasoline ones. In fact, sometimes, hydrogen and gasoline cars can be fueled at the same station. These stations offer self-service pumps, convenience stores, and other services in high-traffic locations. Photo of a Shell fueling station showing the site convenience store and hydrogen and gasoline fuel pumps. This fueling station in Washington, D.C., provides drivers with both hydrogen and gasoline fuels Many future hydrogen fueling stations will be expansions of existing fueling stations. These facilities will offer hydrogen pumps in addition to gasoline or natural gas pumps. Other hydrogen fueling stations will be "standalone" operations. These stations will be designed and constructed to

Note: This page contains sample records for the topic "river power station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Effect Analysis of Regulation Mode on Small Disturbance Stability in Hydropower Stations  

Science Conference Proceedings (OSTI)

In the previous stability analysis under small disturbance of the hydropower stations, there are some different regulation modes to be used. In order to analyze the regulation performance accurately and the effect of different regulation modes on system ... Keywords: hydropower station, power regulation, frequency regulation, small disturbance, regulation performance

Zhou Jianxu; Hu Rong; Cao Qing

2009-10-01T23:59:59.000Z

382

Technical Analysis: Integrating a Hydrogen Energy Station into a Federal Building  

E-Print Network (OSTI)

be achievable, and as typical load profiles for the fueling station and for the buildings are often partiallyTechnical Analysis: Integrating a Hydrogen Energy Station into a Federal Building Stefan Unnasch NREL/CP-610-32405 #12;electric power demand from the fuel cell and vehicle hydrogen demand result

383

Charging station selection optimization for plug-in electric vehicles: An oligopolistic game-theoretic framework  

Science Conference Proceedings (OSTI)

In this paper, we describe a framework for the selection of the best charging station when plug-in electric vehicles (PEV) need to recharge their batteries, while at the same time the power utilities, which own the charging stations (CS), optimize their ...

J. Joaquin Escudero-Garzas; Gonzalo Seco-Granados

2012-01-01T23:59:59.000Z

384

Seismic Margin Assessment of the Catawba Nuclear Station, Volume 1: Main Report  

Science Conference Proceedings (OSTI)

A seismic margin assessment of the Duke Power Company Catawba unit 2 nuclear station showed the practicality of an EPRI-developed methodology for demonstrating the ability of nuclear plants to withstand earthquakes beyond design basis. The assessment established that the Catawba station would survive earthquake loads up to twice its design basis.

1989-05-12T23:59:59.000Z

385

Technical Analysis of the Hydrogen Energy Station Concept, Phase I and Phase II  

DOE Green Energy (OSTI)

Phase I Due to the growing interest in establishing a domestic hydrogen infrastructure, several hydrogen fueling stations already have been established around the country as demonstration units. While these stations help build familiarity with hydrogen fuel in their respective communities, hydrogen vehicles are still several years from mass production. This limited number of hydrogen vehicles translates to a limited demand for hydrogen fuel, a significant hurdle for the near-term establishment of commercially viable hydrogen fueling stations. By incorporating a fuel cell and cogeneration system with a hydrogen fueling station, the resulting energy station can compensate for low hydrogen demand by providing both hydrogen dispensing and combined heat and power (CHP) generation. The electrical power generated by the energy station can be fed back into the power grid or a nearby facility, which in turn helps offset station costs. Hydrogen production capacity not used by vehicles can be used to support building heat and power loads. In this way, an energy station can experience greater station utility while more rapidly recovering capital costs, providing an increased market potential relative to a hydrogen fueling station. At an energy station, hydrogen is generated on-site. Part of the hydrogen is used for vehicle refueling and part of the hydrogen is consumed by a fuel cell. As the fuel cell generates electricity and sends it to the power grid, excess heat is reclaimed through a cogeneration system for use in a nearby facility. Both the electrical generation and heat reclamation serve to offset the cost of purchasing the equivalent amount of energy for nearby facilities and the energy station itself. This two-phase project assessed the costs and feasibility of developing a hydrogen vehicle fueling station in conjunction with electricity and cogenerative heat generation for nearby Federal buildings. In order to determine which system configurations and operational patterns would be most viable for an energy station, TIAX developed several criteria for selecting a representative set of technology configurations. TIAX applied these criteria to all possible technology configurations to determine an optimized set for further analysis, as shown in Table ES-1. This analysis also considered potential energy station operational scenarios and their impact upon hydrogen and power production. For example, an energy station with a 50-kWe reformer could generate enough hydrogen to serve up to 12 vehicles/day (at 5 kg/fill) or generate up to 1,200 kWh/day, as shown in Figure ES-1. Buildings that would be well suited for an energy station would utilize both the thermal and electrical output of the station. Optimizing the generation and utilization of thermal energy, hydrogen, and electricity requires a detailed look at the energy transfer within the energy station and the transfer between the station and nearby facilities. TIAX selected the Baseline configuration given in Table ES-1 for an initial analysis of the energy and mass transfer expected from an operating energy station. Phase II The purpose of this technical analysis was to analyze the development of a hydrogen-dispensing infrastructure for transportation applications through the installation of a 50-75 kW stationary fuel cell-based energy station at federal building sites. The various scenarios, costs, designs and impacts of such a station were quantified for a hypothetical cost-shared program that utilizes a natural gas reformer to provide hydrogen fuel for both the stack(s) and a limited number of fuel cell powered vehicles, with the possibility of using cogeneration to support the building heat load.

TIAX, LLC

2005-05-04T23:59:59.000Z

386

Scaleup tests and supporting research for the development of duct injection technology. Topical report No. 2, Task 3.1: Evaluation of system performance, Duct Injection Test Facility, Muskingum River Power Plant, Beverly, Ohio  

Science Conference Proceedings (OSTI)

This Topical Report No. 2 is an interim report on the Duct Injection Test Facility being operated for the Department of Energy at Beverly, Ohio. Either dry calcium hydroxide or an aqueous slurry of calcium hydroxide (prepared by slaking quicklime) is injected into a slipstream of flue gas to achieve partial removal of SO{sub 2} from a coal-burning power station. Water injected with the slurry or injected separately from the dry sorbents cools the flue gas and increases the water vapor content of the gas. The addition of water, either in the slurry or in a separate spray, makes the extent of reaction between the sorbent and the SO{sub 2} more complete; the presumption is that water is effective in the liquid state, when it is able to wet the sorbent particles physically, and not especially effective in the vapor state. An electrostatic precipitator collects the combination of suspended solids (fly ash from the boiler and sorbent from the duct injection process). All of the operations are being carried out on the scale of approximately 50,000 acfm of flue gas.

Felix, L.G.; Dismukes, E.B.; Gooch, J.P. [Southern Research Inst., Birmingham, AL (United States); Klett, M.G.; Demian, A.G. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

1992-04-20T23:59:59.000Z

387

Relationships between Cloud Type and Amount, Precipitation, and Surface Temperature in the Mackenzie River Valley-Beaufort Sea Area  

Science Conference Proceedings (OSTI)

Hourly data from climatological stations in the Mackenzie River valley-Beaufort Sea area of northern Canada have been examined to determine the relationships between cloud type and amount, precipitation, and surface temperatures. During all ...

G. A. Isaac; R. A. Stuart

1996-08-01T23:59:59.000Z

388

Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Projects Power Projects Contact SN Customers Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates You are here: SN Home page > About SNR Power Projects Central Valley: In California's Central Valley, 18 dams create reservoirs that can store 13 million acre-feet of water. The project's 615 miles of canals irrigate an area 400 miles long and 45 miles wide--almost one third of California. Powerplants at the dams have an installed capacity of 2,099 megawatts and provide enough energy for 650,000 people. Transmission lines total about 865 circuit-miles. Washoe: This project in west-central Nevada and east-central California was designed to improve the regulation of runoff from the Truckee and Carson river systems and to provide supplemental irrigation water and drainage, as well as water for municipal, industrial and fishery use. The project's Stampede Powerplant has a maximum capacity of 4 MW.

389

Definition: Plug-in Electric Vehicle Charging Station | Open Energy  

Open Energy Info (EERE)

Plug-in Electric Vehicle Charging Station Plug-in Electric Vehicle Charging Station Jump to: navigation, search Dictionary.png Plug-in Electric Vehicle Charging Station A device or station that provides power to charge the batteries of an electric vehicle. These chargers are classified according to output voltage and the rate at which they can charge a battery. Level 1 charging is the slowest, and can be done through most wall outlets at 120 volts and 15 amps AC. Level 2 charging is faster, and is done at less than or equal to 240 volts and 60 amps AC, with a power output of less than or equal to 14.4 kW. Level 3 charging is fastest, and can be done with power output of greater than 14.4 kW. Level 1 and 2 charging can be done at home with the proper equipment, and Level 2 and 3 charging can be done at fixed public charging

390

Fuel Cell Demonstration at the U.S. Coast Guard Air Station Cape Cod  

Science Conference Proceedings (OSTI)

Journal article reporting on the 250-kW fuel cell combined heat and power plant located at the U.S. Coast Guard Air Station Cape Code in Bourne, Massachusetts.

Halverson, Mark A.; Chvala, William D.; Herrera, Shawn

2005-07-30T23:59:59.000Z

391

Distributed Generation Study/Dakota Station (Minnegasco) | Open Energy  

Open Energy Info (EERE)

Station (Minnegasco) Station (Minnegasco) < Distributed Generation Study Jump to: navigation, search Study Location Burnsville, Minnesota Site Description Other Utility Study Type Case Study Technology Microturbine Prime Mover Capstone C30 Heat Recovery Systems Unifin Fuel Natural Gas System Installer Capstone Turbine Corp System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 30 kW0.03 MW 30,000 W 30,000,000 mW 3.0e-5 GW 3.0e-8 TW Nominal Voltage (V) 0 Heat Recovery Rating (BTU/hr) 290000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Customer Assembled Start Date 2000/03/13 Monitoring Termination Date 2002/03/31 Primary Power Application Based Load

392

Locating PHEV exchange stations in V2G  

SciTech Connect

Plug-in hybrid electric vehicle (PREV) is an environment friendly modem transportation method and has been rapidly penetrate the transportation system. Renewable energy is another contributor to clean power but the associated intermittence increases the uncertainty in power generation. As a foreseen benefit of a vchicle-to-grid (V2G) system, PREV supporting infrastructures like battery exchange stations can provide battery service to PREV customers as well as being plugged into a power grid as energy sources and stabilizer. The locations of exchange stations are important for these two objectives under constraints from both ,transportation system and power grid. To model this location problem and to understand and analyze the benefit of a V2G system, we develop a two-stage stochastic program to optimally locate the stations prior to the realizations of battery demands, loads, and generation capacity of renewable power sources. Based on this model, we use two data sets to construct the V2G systems and test the benefit and the performance of these systems.

Pan, Feng [Los Alamos National Laboratory; Bent, Russell [Los Alamos National Laboratory; Berscheid, Alan [Los Alamos National Laboratory; Izraelevitz, David [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

393

Categorical Exclusion Determinations: Western Area Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Colorado River Storage Project Management Center Colorado River Storage Project Management Center Categorical Exclusion Determinations: Western Area Power Administration-Colorado River Storage Project Management Center Categorical Exclusion Determinations issued by Western Area Power Administration-Colorado River Storage Project Management Center. DOCUMENTS AVAILABLE FOR DOWNLOAD January 25, 2011 CX-005545: Categorical Exclusion Determination Installation of Metering and Circuit Breaker at Powell 69-Kilovolt Substation CX(s) Applied: B4.11 Date: 01/25/2011 Location(s): Page, Arizona Office(s): Western Area Power Administration-Colorado River Storage Project Management Center October 26, 2009 CX-005544: Categorical Exclusion Determination Power Rate Formula for the Provo River Project of the Western Area Power

394

Southeast regional experiment station. Final report  

DOE Green Energy (OSTI)

This is the final report of the Southeast Regional Experiment Station project. The Florida Solar Energy Center (FSEC), a research institute of the University of Central Florida (UCF), has operated the Southeast Regional Experiment Station (SE RES) for the US Department of Energy (DOE) since September 1982. Sandia National Laboratories, Albuquerque (SNLA) provides technical program direction for both the SE RES and the Southwest Regional Experiment Station (SW RES) located at the Southwest Technology Development Institute at Las Cruces, New Mexico. This cooperative effort serves a critical role in the national photovoltaic program by conducting system evaluations, design assistance and technology transfer to enhance the cost-effective utilization and development of photovoltaic technology. Initially, the research focus of the SE RES program centered on utility-connected PV systems and associated issues. In 1987, the SE RES began evaluating amorphous silicon (a-Si) thin-film PV modules for application in utility-interactive systems. Stand-alone PV systems began receiving increased emphasis at the SE RES in 1986. Research projects were initiated that involved evaluation of vaccine refrigeration, water pumping and other stand-alone power systems. The results of this work have led to design optimization techniques and procedures for the sizing and modeling of PV water pumping systems. Later recent research at the SE RES included test and evaluation of batteries and charge controllers for stand-alone PV system applications. The SE RES project provided the foundation on which FSEC achieved national recognition for its expertise in PV systems research and related technology transfer programs. These synergistic products of the SE RES illustrate the high visibility and contributions the FSEC PV program offers to the DOE.

Not Available

1994-08-05T23:59:59.000Z

395

Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Volume 2, Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, Final report  

SciTech Connect

With the issuance of the final Decommissioning Rule (July 27, 1998), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review and reevaluation of the 1978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ``green field`` condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities.

Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.; McDuffie, P.N.

1995-11-01T23:59:59.000Z

396

Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure, Volume 1, Final report  

Science Conference Proceedings (OSTI)

With the issuance of the final Decommissioning Rule (July 27, 1988), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review and reevaluation of the {prime}978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ``green field`` condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities.

Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.; McDuffie, P.N. [Pacific Northwest Lab., Richland, WA (United States)

1995-11-01T23:59:59.000Z

397

South Fork Clearwater River Habitat Enhancement, Nez Perce National Forest.  

SciTech Connect

In 1984, the Nez Perce National forest and the Bonneville Power Administration entered into a contractual agreement which provided for improvement of spring chinook salmon and summer steelhead trout habitat in south Fork Clearwater River tributaries. Project work was completed in seven main locations: Crooked River, Red River, Meadow Creek Haysfork Gloryhole, Cal-Idaho Gloryhole, Fisher Placer and Leggett Placer. This report describes restoration activities at each of these sites.

Siddall, Phoebe

1992-04-01T23:59:59.000Z

398

EIS-0478: Antelope Valley Station to Neset Transmission Project, Mercer,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Antelope Valley Station to Neset Transmission Project, 8: Antelope Valley Station to Neset Transmission Project, Mercer, Dunn, Billngs, Williams, McKenzie, and Mountrail Counties, ND EIS-0478: Antelope Valley Station to Neset Transmission Project, Mercer, Dunn, Billngs, Williams, McKenzie, and Mountrail Counties, ND SUMMARY USDA Rural Utilities Service is preparing this EIS to evaluate the environmental impacts of constructing, operating, and maintaining a proposed transmission line and associated facilities in western North Dakota. DOE's Western Area Power Administration (WAPA), a cooperating agency, would modify its existing Williston Substation to allow a connection of the proposed new transmission line to Western's transmission system. PUBLIC COMMENT OPPORTUNITIES No Public Comment Opportunities at this time

399

Ohio River Ecological Research Program (ORERP): 2008 Ohio River Monitoring Results  

Science Conference Proceedings (OSTI)

This report presents the results of the 2008 ORERP fish community sampling near 11 Ohio River power plants. The sampling program consisted of adult/juvenile fish, habitat, and water quality field studies conducted upstream and downstream of the participating power plants.

2011-05-10T23:59:59.000Z

400

Fossil Generating Station Case Histories  

Science Conference Proceedings (OSTI)

This annual EPRI Technical Update is a compilation of several case histories of events and activities that occurred at member fossil generating stations in 2007. The purpose of this report is to share this operating experience with other member utilities so that lessons can be learned and an opportunity provided to improve overall performance across the generation fleet.

2008-03-27T23:59:59.000Z

Note: This page contains sample records for the topic "river power station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Mobile Alternative Fueling Station Locator  

Science Conference Proceedings (OSTI)

The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

Not Available

2009-04-01T23:59:59.000Z

402

Barrow Meteoroloigcal Station (BMET) Handbook  

SciTech Connect

The Barrow meteorology station (BMET) uses mainly conventional in situ sensors mounted at four different heights on a 40 m tower to obtain profiles of wind speed, wind direction, air temperature, and humidity. It also obtains barometric pressure, visibility, and precipitation data.

Ritsche, MT

2004-11-01T23:59:59.000Z

403

Unique portable signal acquisition/processing station  

SciTech Connect

At Lawrence Livermore National Laboratory, there are experimental applications requiring digital signal acquisition as well as data reduction and analysis. A prototype Signal Acquisition/Processing Station (SAPS) has been constructed and is currently undergoing tests. The system employs an LSI-11/23 computer with Data Translation analog-to-digital hardware. SAPS is housed in a roll-around cart which has been designed to withstand most subtle EMI/RFI environments. A user-friendly menu allows a user to access powerful data acquisition packages with a minimum of training. The software architecture of SAPS involves two operating systems, each being transparent to the user. Since this is a general purpose workstation with several units being utilized, an emphasis on low cost, reliability, and maintenance was stressed during conception and design. The system is targeted for mid-range frequency data acquisition; between a data logger and a transient digitizer.

Garron, R.D.; Azevedo, S.G.

1983-05-16T23:59:59.000Z

404

Pecos River Compact (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation authorizes the state's entrance into the Pecos River Compact, a joint agreement between the states of New Mexico and Texas. The compact is administered by the Pecos River Compact...

405

Savannah River National Laboratory  

At a glance Remote Electrical Throw Device Engineers at the Savannah River National Laboratory ... sufficient manufacturing capacity, established dist ...

406

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area (Redirected from New River Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

407

Categorical Exclusion Determinations: Savannah River Operations Office |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 27, 2012 June 27, 2012 CX-008614: Categorical Exclusion Determination Repair Culvert on Road 3 CX(s) Applied: B1.3 Date: 06/27/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office June 27, 2012 CX-008613: Categorical Exclusion Determination Replace Awning, Building 735-A CX(s) Applied: B1.3 Date: 06/27/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office June 26, 2012 CX-008618: Categorical Exclusion Determination Evaluation of Sorbent/Ion Exchangers for Radiochemical and Metal Separations CX(s) Applied: B3.6 Date: 06/26/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office June 26, 2012 CX-008617: Categorical Exclusion Determination Savannah River National Laboratory Building 735-13A Power Addition CX(s) Applied: B1.15

408

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network (OSTI)

the literature provides cost estimates of actual stations.Hydrogen Supply: Cost Estimate for Hydrogen Pathways -Appendix A: Summary of Cost Estimates for 10 Station Types

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

409

alternative fuels stations | OpenEI  

Open Energy Info (EERE)

fuels stations fuels stations Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics Level of Review Peer Reviewed

410

Alternative Fueling Station Locator | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Fueling Station Locator Alternative Fueling Station Locator Alternative Fueling Station Locator Find Stations Plan a Route Location: Go Start: End: Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search options close × More Search Options Include private stations Include planned stations Owner All Private Federal State Local Utility Payment All American Express Discover MasterCard VISA Cash Checks CFN Clean Energy Fuel Man Gas Card PHH Services Voyager WEX Electric charger types Include level 1 Include level 2 Include DC fast Include legacy chargers Limit results to within 5 miles Limit results to within 5 miles 12,782 alternative fuel stations in the United States Excluding private stations

411

Alternative Fueled Vehicle Charging Station Credit (Connecticut...  

Open Energy Info (EERE)

or improvements to existing stations which allow that station to provide CNG, LNG, or LPG (propane); 2) equipment used to convert vehicles to run exclusively on one of these...

412

Forecasting the Anomalous Discharge of the Caroní River, Venezuela  

Science Conference Proceedings (OSTI)

This study develops methods for the extended-range forecasting of the February–March minimum of water discharge of the Caroní River in eastern Venezuela, a watershed providing more than 70% of the hydroelectric power for the country. The ...

Stefan Hastenrath; Lawrence Greischar; Esperanza Colón; Alfredo Gil

1999-08-01T23:59:59.000Z

413

Savannah River Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Savannah River Site Savannah River Site Work is under way to decommission the Heavy Water Components Test Reactor, which had been used to test experimental fuel assemblies for commercial heavy-water power reactors. SRS is scheduled to remove the dome of the reactor this month (January 2011). Workers also will displace the reactor vessel and steam generators, grout the remaining structure in place, and install a concrete cover over the reactor's footprint Work is under way to decommission the Heavy Water Components Test Reactor, which had been used to test experimental fuel assemblies for commercial heavy-water power reactors. SRS is scheduled to remove the dome of the reactor this month (January 2011). Workers also will displace the reactor vessel and steam generators, grout the remaining structure in place, and

414

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

415

Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure - appendices. Final report  

SciTech Connect

The NRC staff is in need of decommissioning bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2) located at Richland, Washington, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clear structures on the site and to restore the site to a {open_quotes}green field{close_quotes} condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities. Sensitivity of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances is also examined.

Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.; McDuffie, P.N.

1996-07-01T23:59:59.000Z

416

Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure - main report. Final report  

SciTech Connect

The NRC staff is in need of updated bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2), which is a boiling water reactor (BWR), located at Richland, Washington, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a {open_quotes}green field{close_quotes} condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low- level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities. Sensitivity of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances is also examined.

Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.; McDuffie, P.N.

1996-07-01T23:59:59.000Z

417

Performance test plan for a space station toluene heater tube  

DOE Green Energy (OSTI)

Sundstrand Energy Systems was awarded a contract to investigate the performance capabilities of a toluene heater tube integral to a heat pipe as applied to the Organic Rankine Cycle (ORC) solar dynamic power system for the Space Station. This heat pipe is a subassembly of the heat receiver. The heat receiver, the heat absorption component of the ORC solar dynamic power system, consists of forty liquid metal heat pipes located circumferentially around the heat receiver`s outside diameter. Each heat pipe contains a toluene heater, two thermal energy storage (TES) canisters and potassium. The function of the heater tube is to heat the supercritical toluene to the required turbine inlet temperature. During the orbit of the space station, the heat receiver and thereby the heat pipe and heater tube will be subjected to variable heat input. The design of the heater must be such that it can accommodate the thermal and hydraulic variations that will be imposed upon it.

Parekh, M.B. [Sundstrand Energy Systems, Rockford, IL (United States)

1987-10-01T23:59:59.000Z

418

Workforce Statistics - Savannah River Field Office | National Nuclear  

National Nuclear Security Administration (NNSA)

Savannah River Field Office | National Nuclear Savannah River Field Office | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Workforce Statistics - Savannah River Field Office Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - Savannah River Field

419

Nuclear fuels accounting interface: River Bend experience  

SciTech Connect

This presentation describes nuclear fuel accounting activities from the perspective of nuclear fuels management and its interfaces. Generally, Nuclear Fuels-River Bend Nuclear Group (RBNG) is involved on a day-by-day basis with nuclear fuel materials accounting in carrying out is procurement, contract administration, processing, and inventory management duties, including those associated with its special nuclear materials (SNM)-isotopics accountability oversight responsibilities as the Central Accountability Office for the River Bend Station. As much as possible, these duties are carried out in an integrated, interdependent manner. From these primary functions devolve Nuclear Fuels interfacing activities with fuel cost and tax accounting. Noting that nuclear fuel tax accounting support is of both an esoteric and intermittent nature, Nuclear Fuels-RBNG support of developments and applications associated with nuclear fuel cost accounting is stressed in this presentation.

Barry, J.E.

1986-01-01T23:59:59.000Z

420

Scenic Rivers Energy Coop | Open Energy Information  

Open Energy Info (EERE)

Scenic Rivers Energy Coop Scenic Rivers Energy Coop Place Wisconsin Utility Id 16740 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Power Commercial Commercial Power with Water Heater Load Control Commercial Controlled Electric Loads- Controlled Electric Residential Controlled Electric Loads- Off-Peak Storage Residential Large Power Industrial Large Power with Water Heater Load Control Industrial Multiple Site Single Phase Rate Residential Peak Alert Commercial Residential and Small Commercial Service Residential

Note: This page contains sample records for the topic "river power station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Decommissioning San Onofre Nuclear Generating Station Unit 1 (SONGS-1)  

Science Conference Proceedings (OSTI)

Decommissioning a nuclear power plant and termination of the plant license requires the removal of highly activated materials from inside the nuclear reactor pressure vessel (RPV). Such a task presents a major challenge in terms of technology, project management, and worker exposure. This report documents the approach taken by Southern California Edison (SCE) in their highly successful reactor vessel internals (RVI) segmentation of San Onofre Nuclear Generating Station Unit 1 (SONGS-1). The report detail...

2005-12-12T23:59:59.000Z

422

Raft River condenser-tube examination  

DOE Green Energy (OSTI)

In the program of development of a water treatment for the 5 MW Raft River power plants' carbon steel heat rejection system, four carbon steel tubes were analyzed in this batch. The results of visual and scanning electron microscope examination of the tubes are presented. (MHR)

Suciu, D.F.

1981-04-03T23:59:59.000Z

423

*Activity Station Staffing Hunting Station Atlatl (Mr. Boston, Mr. Lilly), Flint knapping  

E-Print Network (OSTI)

*Activity Station Staffing Hunting Station ­ Atlatl (Mr. Boston, Mr. Lilly), Flint knapping (Ms arrive Letchworth-Love Mounds State Park 9:10- 9:45 Red Group Hunting station: atlatl throwing, flint, flint knapping demo, skinning demo*(See back page) Yellow Group Cordage station: wrist or ankle bracelet

Florida, University of

424

Snake River Plain Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Snake River Plain Geothermal Region Snake River Plain Geothermal Region (Redirected from Snake River Plain) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Snake River Plain Geothermal Region Details Areas (8) Power Plants (1) Projects (2) Techniques (11) Map: {{{Name}}} "The Snake River Plain is a large arcuate structural trough that characterizes the topography of southern Idaho that can be divided into three sections: western, central, and eastern. The western Snake River Plain is a large tectonic graben or rift valley filled with several km of lacustrine (lake) sediments; the sediments are underlain by rhyolite and basalt, and overlain by basalt. The western plain began to form around 11-12 Ma with the eruption of rhyolite lavas and ignimbrites. The western plain is not parallel to North American Plate motion, and lies at a high

425

MHK Technologies/Microturbine River In Stream | Open Energy Information  

Open Energy Info (EERE)

Microturbine River In Stream Microturbine River In Stream < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Microturbine River In Stream.png Technology Profile Primary Organization Whitestone Power Communications Project(s) where this technology is utilized *MHK Projects/Microturbine River In Stream Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description HDPE blades are the only moving parts in the water.This gives the turbine high resistance to silty or salty water. Blades designed to survive impact of 1500 lb object. HDPE provides flexibility and strength. Blades penetrate water 24 inches allowing for deep and shallow operation. Mounting design allows for variable depth operation for varying river conditions.All submerged prime-mover parts constructed from HDPE. No underwater gearboxes, generators or electrical cables. Velocity of blades 50% of velocity of river current.

426

Evaluation of Water Temperatures at Which Ohio River Fishes have been Collected, 1991-2011  

Science Conference Proceedings (OSTI)

This EPRI-Ohio River Ecological Research Program (ORERP) Technical Brief can be used to identify the temperatures preferred, tolerated, and avoided by Ohio River fishes. These data result from long-term 1991–2011 ORERP electrofishing upstream and downstream of participating power plants as well as data collected by the Ohio River Valley Sanitation Commission from Ohio River navigation pools during the same period. A description of ORERP is provided in EPRI Technical Brief 1023292.

2013-04-19T23:59:59.000Z

427

Central station photovoltaic array-field designs and design practices  

SciTech Connect

This report reviews and critiques the designs of large (1 MW or greater) photovoltaic power systems operating in a utility generating station mode. Four existing installations and eight paper design studies are reviewed. In addition, subsystem-specific studies on grounding and fault protection, lightning protection, array field electrical circuit design, bypass diodes, power conditioning, and utility interfaces were reviewed. Detailed tabular summaries of system design features and characteristics are presented. Based on a critique of the designs and discussions with designers, installers, and operators, recommendations of design practices for future installations are made.

Noel, G.T.; Smith, R.W.

1987-03-01T23:59:59.000Z

428

Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projects where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.

Robichaud, R.; Fields, J.; Roberts, J. O.

2012-02-01T23:59:59.000Z

429

STATUS REPORT NO. 4 ON CLINCH RIVER STUDY  

SciTech Connect

The status of radioactive contamination of the Clinch and Tennessee River systems from Nov. 1961 to April 1962 is reviewed. Data are included from studies on the fate of radioactive materials discharged to the Clinch River by the Oak Ridge National Laboratory, the mechanisms of dispersion of radionuclides released to the river, the direct and indirect hazards of waste disposal practices during the period, an evaluation of the over-all usefulness of this river for radioactive disposal purposes, and an evaluation of long-term monitoring procedures. The management of liquid wastes at ORNL is discussed and results are reported from studies on the accumulation and movement of radionuclides in White Oak Creek basin, the contamination of river biota, hydrologic measurements and analyses, measurements of radioactivity in the river system and in community water systems downstream from the Clinch River, and calculation of estimated radiation dosages from drinking Clinch River and Tennessee River water or immersion in the water at various downstream points. Results are included from a preimpoundment study of ecological conditions of Melton Hill Lake and estimates of the effects of Melton Hill Lake and power releases from Melton Hill Dam on hydrologic conditions in the river system. (C.H.)

Morton, R.J. ed.

1963-09-25T23:59:59.000Z

430

Alternative Fueling Station Locations | OpenEI  

Open Energy Info (EERE)

Alternative Fueling Station Locations Alternative Fueling Station Locations Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, view U.S. maps, and more. Access up-to-date fuel station data here: http://www.afdc.energy.gov/afdc/data_download The dataset available for download here provides a "snapshot" of the alternative fueling station information for: compressed natural gas (CNG), E85 (85% ethanol, 15% gasoline), propane/liquefied petroleum gas (LPG), biodiesel, electricity, hydrogen, and liquefied natural gas

431

Alternative Fueling Station Locator | Open Energy Information  

Open Energy Info (EERE)

Alternative Fueling Station Locator Alternative Fueling Station Locator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fueling Station Locator Agency/Company /Organization: United States Department of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Fuels & Efficiency, Transportation Phase: Evaluate Options, Prepare a Plan Topics: Datasets Resource Type: Online calculator User Interface: Website Website: www.afdc.energy.gov/afdc/locator/stations/ Web Application Link: www.afdc.energy.gov/afdc/locator/stations/ Cost: Free OpenEI Keyword(s): Featured References: National Renewable Energy Laboratory Advanced Vehicles and Fuels Research: Data and Resources[1] Logo: Alternative Fueling Station Locator The alternative fuel station locator uses an address based search to find

432

Timber Mountain Precipitation Monitoring Station  

SciTech Connect

A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in fiscal year 2011.

Lyles Brad,McCurdy Greg,Chapman Jenny,Miller Julianne

2012-01-01T23:59:59.000Z

433

Neutron proton crystallography station (PCS)  

SciTech Connect

The PCS (Protein Crystallography Station) at Los Alamos Neutron Science Center (LANSCE) is a unique facility in the USA that is designed and optimized for detecting and collecting neutron diffraction data from macromolecular crystals. PCS utilizes the 20 Hz spallation neutron source at LANSCE to enable time-of-flight measurements using 0.6-7.0 {angstrom} neutrons. This increases the neutron flux on the sample by using a wavelength range that is optimal for studying macromolecular crystal structures. The diagram below show a schematic of PCS and photos of the detector and instrument cave.

Fisher, Zoe [Los Alamos National Laboratory; Kovalevsky, Andrey [Los Alamos National Laboratory; Johnson, Hannah [Los Alamos National Laboratory; Mustyakimov, Marat [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

434

Savannah River Site - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Reports Savannah River Site Review Reports 2013 Independent Oversight Review of the Savannah River Field Office Tritium Facilities Radiological Controls Activity-Level Implementation, November 2013 Independent Oversight Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development, August 2013 Independent Oversight Review of the Employee Concerns Program at the Savannah River Operations Office, July 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project, January 2013 Review of the Savannah River Site, Waste Solidification Building, Construction Quality of Mechanical Systems Installation and Selected Aspects of Fire Protection System Design, January 2013 Activity Reports 2013 Savannah River Site Waste Solidification Building Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design, May 2013

435

TABLE 2. U.S. Nuclear Reactor Ownership Data  

U.S. Energy Information Administration (EIA)

Pilgrim Nuclear Power Station Point Beach Nuclear Plant Prairie Island Quad Cities Generating Station R.E. Ginna Nuclear Power Plant River Bend PSEG Salem Generating ...

436

Office of River Protection (ORP) and Washingotn River Protection Solutions,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of River Protection (ORP) and Washingotn River Protection Office of River Protection (ORP) and Washingotn River Protection Solutions, LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project Office of River Protection (ORP) and Washingotn River Protection Solutions, LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project The Mission of the Office of River Protection is to safely retrieve and treat Hanford's tank waste and close the Tank Farms to protect the Columbia River. Office of River Protection (ORP) and Washingotn River Protection Solutions, LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project More Documents & Publications 2011 Annual Workforce Analysis and Staffing Plan Report - Office of River Protection Consent Order, Washington River Protection Solutions, LLC - NCO-2011-01

437

White Sturgeon Mitigation & Restoration in the Columbia & Snake River Upstream from Bonneville Dam  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BONNEVILLE POWER ADMINISTRATION BONNEVILLE POWER ADMINISTRATION White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam Finding of No Significant Impact (FONSI) Summary: Bonneville Power Administration (BPA) is proposing to fund the White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam Project. The project proposes to continue to carry out harvest monitoring and stock status updates coordinated with fisheries management planning, annual young-of-the year recruitment indexing, research, experimental artificial propagation, and transport of white sturgeon to less densely populated areas of the river(s). Additionally, release of hatchery-reared juveniles is proposed to evaluate release

438

Taipei terminal rail station : casting an urban gateway  

E-Print Network (OSTI)

Access is a key issue in the design of railway stations. The evolution of the train station typology, has resulted in many types of stations based on the development of the stations' access. Since rail travel on a larger ...

Tsai, May Deanna

1991-01-01T23:59:59.000Z

439

Savannah River Remediation Procurement  

NLE Websites -- All DOE Office Websites (Extended Search)

and procedures, rules and regulations, terms and conditions and the orders and directives under which Savannah River Remediation LLC (SRR) develops, issues, administers and...

440

Savannah River Ecology Laboratory  

NLE Websites -- All DOE Office Websites

Field Sites SREL is supported largely by external funding. Major sources include DOE Environmental Management, Savannah River Nuclear Solutions, USGS, US Department of the...

Note: This page contains sample records for the topic "river power station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.