Sample records for river nuclear solutions

  1. PIA - Savannah River Nuclear Solutions Electronic Safeguards...

    Energy Savers [EERE]

    System (E3S) PIA - Savannah River Nuclear Solutions Electronic Safeguards Security System (E3S) More Documents & Publications PIA - 10th International Nuclear Graphite...

  2. Preliminary Notice of Violation,Savannah River Nuclear Solutions...

    Office of Environmental Management (EM)

    Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC - WEA-2012-04 Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC - WEA-2010-05...

  3. PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IBARS Srs Site Apps. Accreditation Boundary PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation Boundary PIA - Savannah River Nuclear Solution IBARS Srs Site...

  4. PIA - Savannah River Nuclear Solution SRNS ProRad Environment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management...

  5. PIA - Savannah River Nuclear Solutions Training Records and Informatio...

    Office of Environmental Management (EM)

    Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River...

  6. PIA - Savannah River Nuclear Solutions Badge Request and Site...

    Office of Environmental Management (EM)

    Solutions Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear Solutions Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear...

  7. PIA - Savannah River Nuclear Solution SRNS Electronic Document...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) MOX Services Unclassified Information System PIA, National Nuclear Services Administration...

  8. Department of Energy Cites Savannah River Nuclear Solutions for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Worker Safety and Health Violations Department of Energy Cites Savannah River Nuclear Solutions for Worker Safety and Health Violations October 8, 2010 - 12:00am...

  9. PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (OHS) (Includes the Drug and Alcohol Testing System (Assistant)) PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health and Safety Medical System (OHS)...

  10. PIA - Savannah River Nuclear Solutions (SRNS) Human Resource...

    Energy Savers [EERE]

    Contractor (HRMS) PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health and Safety Medical System (OHS) (Includes the Drug and Alcohol Testing System (Assistant)...

  11. PIA - Savannah River Nuclear Solution (SRNS) Energy Employees...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (SRNS) MedGate Occupational Health and Safety Medical System (OHS) (Includes the Drug and Alcohol Testing System (Assistant)) PIA - Savannah River Nuclear Solution (SRNS)...

  12. PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle...

    Office of Environmental Management (EM)

    System (HRMS) PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health and Safety Medical System (OHS) (Includes the Drug and Alcohol Testing System (Assistant)...

  13. Preliminary Notice of Violation, Savannah River Nuclear Solutions...

    Office of Environmental Management (EM)

    River Nuclear Solutions (SRNS), LLC, related to a Worker Fall from a Scaffold in the K-Area Complex at the Savannah River Site On November 9, 2012, the U.S. Department of...

  14. DOE Selects Savannah River Nuclear Solutions, LLC to Manage and...

    Energy Savers [EERE]

    includes three key mission areas: environmental cleanup, operation of the Savannah River National Laboratory (SRNL), and National Nuclear Security Administration (NNSA)...

  15. Preliminary Notice of Violation, Savannah River Nuclear Solutions...

    Office of Environmental Management (EM)

    on August 18, 2009, and an electrical arc flash event with that occurred in the D Area powerhouse on September 23, 2009, at the Savannah River Site. Preliminary Notice of...

  16. Savannah River Nuclear Solutions awards family scholarships | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART SignedhostsNuclear

  17. Department of Energy Cites Savannah River Nuclear Solutions for Worker

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal Nuclear EnergySouthDepartmentHydrogenSafety andSafety

  18. FY 2009 Savannah River Nuclear Solutions, LLC, PER Summary | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer0017NationalNationalNuclear Security

  19. FY 2012 Savannah River Nuclear Solutions, LLC, PER Summary | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:Administration Sandia CorporationNuclear Security Administration

  20. Independent Activity Report, Washington River Protection Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington River Protection Solutions, LLC - October 2011 October 2011 Industrial Hygiene Surveillance of the Washington River Protection Solutions, LLC Industrial Hygiene...

  1. Management of Legacy Spent Nuclear Fuel Wastes at the Chalk River Laboratories: The Challenges and Innovative Solutions Implemented - 13301

    SciTech Connect (OSTI)

    Schruder, Kristan [Atomic Energy of Canada Limited - Chalk River Laboratories, Chalk River, Ontario (Canada)] [Atomic Energy of Canada Limited - Chalk River Laboratories, Chalk River, Ontario (Canada); Goodwin, Derek [Rolls-Royce Civil Nuclear Canada Limited, 678 Neal Dr., Peterborough, Ontario (Canada)] [Rolls-Royce Civil Nuclear Canada Limited, 678 Neal Dr., Peterborough, Ontario (Canada)

    2013-07-01T23:59:59.000Z

    AECL's Fuel Packaging and Storage (FPS) Project was initiated in 2004 to retrieve, transfer, and stabilize an identified inventory of degraded research reactor fuel that had been emplaced within in-ground 'Tile Hole' structures in Chalk River Laboratories' Waste Management Area in the 1950's and 60's. Ongoing monitoring of the legacy fuel storage conditions had identified that moisture present in the storage structures had contributed to corrosion of both the fuel and the storage containers. This prompted the initiation of the FPS Project which has as its objective to design, construct, and commission equipment and systems that would allow for the ongoing safe storage of this fuel until a final long-term management, or disposition, pathway was available. The FPS Project provides systems and technologies to retrieve and transfer the fuel from the Waste Management Area to a new facility that will repackage, dry, safely store and monitor the fuel for a period of 50 years. All equipment and the new storage facility are designed and constructed to meet the requirements for Class 1 Nuclear Facilities in Canada. (authors)

  2. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    009-0270-y Is Nuclear Energy the Solution? Milton H. Saier &in the last 50 years, nuclear energy subsidies have totaledadministration, the Global Nuclear Energy Partnership (GNEP)

  3. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    10.1007/s11270-009-0270-y Is Nuclear Energy the Solution?MHS) attended a lecture on “Nuclear Responsibility” on theof the Alliance for Nuclear Responsibility. The information

  4. Savannah River Nuclear Solutions S A V A N N A H R I V E R S

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland andEffects andFundedUniversityEnergy Innovation7566

  5. Louisiana Nuclear Profile - River Bend

    U.S. Energy Information Administration (EIA) Indexed Site

    River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  6. Florida Nuclear Profile - Crystal River

    U.S. Energy Information Administration (EIA) Indexed Site

    Crystal River1" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  7. Nuclear waste solutions

    DOE Patents [OSTI]

    Walker, Darrel D. (1684 Partridge Dr., Aiken, SC 29801); Ebra, Martha A. (129 Hasty Rd., Aiken, SC 29801)

    1987-01-01T23:59:59.000Z

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  8. Louisiana Nuclear Profile - River Bend

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet)FuelDecade Year-0InputYear Jan FebtotalRiver

  9. Florida Nuclear Profile - Crystal River

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Light-Duty Vehicles,Year Jan Feb MarYeartotal

  10. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    Savannah River Site (SC), as well as the reprocessing of naval irradiated fuel at the Idaho National Laboratory (

  11. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    the potential of nuclear power to combat global warming havecompetitive today, and for nuclear power to succeed, it must

  12. Independent Activity Report, Washington River Protection Solutions, LLC- October 2011

    Broader source: Energy.gov [DOE]

    Industrial Hygiene Surveillance of the Washington River Protection Solutions, LLC Industrial Hygiene Program Strategy and Implementation of the Hanford Concerns Council Recommendations [HIAR-ORP-2011-10-26

  13. Scientific Solutions to Nuclear Waste Environmental Challenges

    SciTech Connect (OSTI)

    Johnson, Bradley R.

    2014-01-30T23:59:59.000Z

    The Hidden Cost of Nuclear Weapons The Cold War arms race drove an intense plutonium production program in the U.S. This campaign produced approximately 100 tons of plutonium over 40 years. The epicenter of plutonium production in the United States was the Hanford site, a 586 square mile reservation owned by the Department of Energy and located on the Colombia River in Southeastern Washington. Plutonium synthesis relied on nuclear reactors to convert uranium to plutonium within the reactor fuel rods. After a sufficient amount of conversion occurred, the rods were removed from the reactor and allowed to cool. They were then dissolved in an acid bath and chemically processed to separate and purify plutonium from the rest of the constituents in the used reactor fuel. The acidic waste was then neutralized using sodium hydroxide and the resulting mixture of liquids and precipitates (small insoluble particles) was stored in huge underground waste tanks. The byproducts of the U.S. plutonium production campaign include over 53 million gallons of high-level radioactive waste stored in 177 large underground tanks at Hanford and another 34 million gallons stored at the Savannah River Site in South Carolina. This legacy nuclear waste represents one of the largest environmental clean-up challenges facing the world today. The nuclear waste in the Hanford tanks is a mixture of liquids and precipitates that have settled into sludge. Some of these tanks are now over 60 years old and a small number of them are leaking radioactive waste into the ground and contaminating the environment. The solution to this nuclear waste challenge is to convert the mixture of solids and liquids into a durable material that won't disperse into the environment and create hazards to the biosphere. What makes this difficult is the fact that the radioactive half-lives of some of the radionuclides in the waste are thousands to millions of years long. (The half-life of a radioactive substance is the amount of time it takes for one-half of the material to undergo radioactive decay.) In general, the ideal material would need to be durable for approximately 10 half-lives to allow the activity to decay to negligible levels. However, the potential health effects of each radionuclide vary depending on what type of radiation is emitted, the energy of that emission, and the susceptibility for the human body to accumulate and concentrate that particular element. Consequently, actual standards tend to be based on limiting the dose (energy deposited per unit mass) that is introduced into the environment. The Environmental Protection Agency (EPA) has the responsibility to establish standards for nuclear waste disposal to protect the health and safety of the public. For example, the Energy Policy Act of 1992 directed the EPA to establish radiation protection standards for the Yucca Mountain geologic repository for nuclear wastes. The standards for Yucca Mountain were promulgated in 2008, and limit the dose to 15 millirem per year for the first 10,000 years, and 100 milirem per year between 10,000 years and 1 million years (40 CFR Part 197; http://www.epa.gov/radiation/yucca/2008factsheet.html). So, the challenge is two-fold: (1) develop a material (a waste form) that is capable of immobilizing the waste over geologic time scales, and (2) develop a process to convert the radioactive sludge in the tanks into this durable waste form material. Glass: Hard, durable, inert, and with infinite chemical versatility Molten glass is a powerful solvent liquid, which can be designed to dissolve almost anything. When solidified, it can be one of the most chemically inert substances known to man. Nature's most famous analogue to glass is obsidian, a vitreous product of volcanic activity; formations over 17 million years old have been found. Archaeologists have found man-made glass specimens that are five thousand years old.

  14. Project Management Institute Highlights Savannah River Nuclear...

    Office of Environmental Management (EM)

    employee Matthew Gay uses critical electronic rounds to take a reading at the Savannah River National Laboratory. In one Continuous Improvement initiative, SRNS switched to...

  15. John C. Barnes of Savannah River Operations named 2012 Facility...

    Office of Environmental Management (EM)

    right, discusses a transuranic (TRU) waste container with Charles Fairburn of Savannah River Nuclear Solutions. The TRU waste container was repackaged in the Savannah River Site...

  16. Independent Oversight Review, Savannah River Field Office Tritium...

    Broader source: Energy.gov (indexed) [DOE]

    River Site (SRS) tritium facilities implemented at the activity-level by Savannah River Nuclear Solutions, LLC and its subcontractors. The review was performed by the...

  17. Concept Paper Savannah River Nuclear Solutions, LLC Savannah River Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercialization andComputer SimulationsConcentrating Solar Power Paper

  18. Concept Paper Savannah River Nuclear Solutions, LLC Savannah River Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercialization andComputer SimulationsConcentrating Solar Power

  19. Voluntary Protection Program Onsite Review, Washington River Protection Solutions, LLC, Hanford – Feb 2014

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Washington River Protection Solutions, LLC, Hanford is performing at a level deserving DOE-VPP Star recognition.

  20. Nuclear Fusion: A Solution to the GlobalNuclear Fusion: A Solution to the Global Energy CrisisEnergy Crisis

    E-Print Network [OSTI]

    Strathclyde, University of

    Nuclear Fusion: A Solution to the GlobalNuclear Fusion: A Solution to the Global Energy Crisis.maclellan@strath.ac.uk Introduction and Motivation What is Nuclear Fusion? Laser Plasma Interactions The world, and particularly is harnessing the power of nuclear fusion. It is however, extremely difficult to sustain a fusion reaction

  1. Reprocessing of nuclear fuels at the Savannah River Plant

    SciTech Connect (OSTI)

    Gray, L.W.

    1986-10-04T23:59:59.000Z

    For more than 30 years, the Savannah River Plant (SRP) has been a major supplier of nuclear materials such as plutonium-239 and tritium-3 for nuclear and thermonuclear weapons, plutonium-238 for space exploration, and isotopes of americium, curium, and californium for use in the nuclear research community. SRP is a complete nuclear park, providing most of the processes in the nuclear fuel cycle. Key processes involve fabrication and cladding of the nuclear fuel, target, and control assemblies; rework of heavy water for use as reactor moderator; reactor loading, operation, and unloading; chemical recovery of the reactor transmutation products and spent fuels; and management of the gaseous, liquid, and solid nuclear and chemical wastes; plus a host of support operations. The site's history and the key processes from fabrication of reactor fuels and targets to finishing of virgin plutonium for use in the nuclear weapons complex are reviewed. Emphasis has been given to the chemistry of the recovery and purification of weapons grade plutonium from irradiated reactor targets.

  2. Savannah River Site | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland andEffects andFundedUniversityEnergyLocations /

  3. PLUTONIUM SOLUBILITY IN SIMULATED SAVANNAH RIVER SITE WASTE SOLUTIONS

    SciTech Connect (OSTI)

    Rudisill, T.; Hobbs, D.; Edwards, T.

    2010-09-27T23:59:59.000Z

    To address the accelerated disposition of the supernate and salt portions of Savannah River Site (SRS) high level waste (HLW), solubility experiments were performed to develop a predictive capability for plutonium (Pu) solubility. A statistically designed experiment was used to measure the solubility of Pu in simulated solutions with salt concentrations and temperatures which bounded those observed in SRS HLW solutions. Constituents of the simulated waste solutions included: hydroxide (OH{sup -}), aluminate (Al(OH){sub 4}{sup -}), sulfate (SO{sub 4}{sup 2-}), carbonate (CO{sub 3}{sup 2-}), nitrate (NO{sub 3}{sup -}), and nitrite (NO{sub 2}{sup -}) anions. Each anion was added to the waste solution in the sodium form. The solubilities were measured at 25 and 80 C. Five sets of samples were analyzed over a six month period and a partial sample set was analyzed after nominally fifteen months of equilibration. No discernable time dependence of the measured Pu concentrations was observed except for two salt solutions equilibrated at 80 C which contained OH{sup -} concentrations >5 mol/L. In these solutions, the Pu solubility increased with time. This observation was attributed to the air oxidation of a portion of the Pu from Pu(IV) to the more soluble Pu(V) or Pu(VI) valence states. A data driven approach was subsequently used to develop a modified response surface model for Pu solubility. Solubility data from this study and historical data from the literature were used to fit the model. The model predicted the Pu solubility of the solutions from this study within the 95% confidence interval for individual predictions and the analysis of variance indicated no statistically significant lack of fit. The Savannah River National Laboratory (SRNL) model was compared with predicted values from the Aqueous Electrolyte (AQ) model developed by OLI Systems, Inc. and a solubility prediction equation developed by Delegard and Gallagher for Hanford tank waste. The agreement between measured or values predicted by the SRNL model and values predicted by the OLI AG model was very poor. The much higher predicted concentrations by the OLI AQ model appears to be the result of the model predicting the predominate Pu oxidation state is Pu(V) which is reported as unstable below sodium hydroxide (NaOH) concentrations of 6 M. There was very good agreement between the predicted Pu concentrations using the SRNL model and the model developed by Delegard and Gallagher with the exception of solutions that had very high OH{sup -} (15 M) concentrations. The lower Pu solubilities in these solutions were attributed to the presence of NO{sub 3}{sup -} and NO{sub 2}{sup -} which limit the oxidation of Pu(IV) to Pu(V).

  4. Nuclear Power No Solution to the Climate Crisis

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Nuclear Power No Solution to the Climate Crisis Michael Mariotte Nuclear Information and Resource-12, 2009 #12;Environmental Statement on Nuclear Power and the Climate Crisis "We do not support emissions than nuclear power." Signed by 483 US organizations, 164 int'l organizations and 10

  5. Savannah River Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Savannah River Field Office Savannah River Field Office FY15 Semi Annual Report...

  6. Nuclear winter: Asymmetrical problems and unilateral solutions

    SciTech Connect (OSTI)

    Reule, F.J.

    1986-09-01T23:59:59.000Z

    Nuclear winter creates a dilemma for policymakers. Awareness of that dilemma may not be new, however. Long before the phrase nuclear winter became popular, policymakers may well have been aware of the possibility that the indirect effects of a nuclear exchange could be more damaging than the direct effects. Nevertheless, the more widespread public awareness of such a possibility deepens the dilemma and makes it more apparent. The policymakers' dilemma arises from their requirement to create a perception of security from any and all threats. To do this they must be able to credibly threaten to use nuclear weapons in order to deter their use by others. These threats can be tacit, arising from the very existence of nuclear delivery systems, or direct, as evidenced by the instances of missile rattling that have occurred over the years. In either case, such threats begin to ring hollow if the policymakers are known to believe that carrying them out could result in nuclear winter. If policymakers keep secret their personal beliefs about nuclear winter they can still credibly threaten to use nuclear weapons but they have difficulty believing their own threats. Further, they cannot capitalize on the deterrent value of nuclear winter and must live in fear that their bluff may some day be called or that any of the other nuclear powers could cause a nuclear winter out of ignorance.

  7. Tour of Entergy's Nuclear Power Plant in River Bend Owner: Entergy Gulf States Inc.

    E-Print Network [OSTI]

    Ervin, Elizabeth K.

    Tour of Entergy's Nuclear Power Plant in River Bend Owner: Entergy Gulf States Inc. Reactor Type a nuclear power plant. Plant was Entergy, a Boiling Water Reactor (BWR) type. Built in the 80's, it has of the veteran plant workers. The presentation gave the nuclear plant engineering basics and built

  8. USED NUCLEAR MATERIALS AT SAVANNAH RIVER SITE: ASSET OR WASTE?

    SciTech Connect (OSTI)

    Magoulas, V.

    2013-06-03T23:59:59.000Z

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable (“assets”) to worthless (“wastes”). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or – in the case of high level waste – awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site’s (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as “waste” include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest.

  9. Method for cleaning solution used in nuclear fuel reprocessing

    DOE Patents [OSTI]

    Tallent, O.K.; Crouse, D.J.; Mailen, J.C.

    1980-12-17T23:59:59.000Z

    Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.

  10. Independent Oversight Activity Report, Savannah River Site Waste...

    Broader source: Energy.gov (indexed) [DOE]

    Safety and Security (HSS) (Reference 1). Meet with the SRS WSB project staff and Savannah River Nuclear Solutions (SRNS) engineers to discuss the proposed corrective actions...

  11. PIA - Savannah River Site Management and Operating Contractor...

    Energy Savers [EERE]

    Management and Operating Contractor (HRMS) More Documents & Publications PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) Integrated Safety...

  12. Exact solution of the nuclear pairing problem

    E-Print Network [OSTI]

    Alexander Volya; B. Alex Brown; Vladimir Zelevinsky

    2001-02-20T23:59:59.000Z

    In many applications to finite Fermi-systems, the pairing problem has to be treated exactly. We suggest a numerical method of exact solution based on SU(2) quasispin algebras and demonstrate its simplicity and practicality. We show that the treatment of binding energies with the use of the exact pairing and uncorrelated monopole contribution of other residual interactions can serve as an effective alternative to the full shell-model diagonalization in spherical nuclei. A self-consistent combination of the exactly treated pairing and Hartree-Fock method is discussed. Results for Sn isotopes indicate a good agreement with experimental data.

  13. CONTROL TESTING OF THE UK NATIONAL NUCLEAR LABORATORY'S RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Farfan, E.

    2009-11-23T23:59:59.000Z

    The UK National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. To date, the RadBall has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK. The trials have demonstrated the successful ability of the RadBall technology to be deployed and retrieved from active areas. The positive results from these initial deployment trials and the anticipated future potential of RadBall have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further underpin and strengthen the technical performance of the technology. RadBall consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. It has no power requirements and can be positioned in tight or hard-to reach places. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly less transparent, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation maps provides information on the spatial distribution and strength of the sources in a given area forming a 3D characterization of the area of interest. This study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this part of the testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment completed at SRNL were successful in that for each trial, the technology was able to locate the radiation sources. The NNL believe that the ability of RadBall to be remotely deployed with no electrical supplies into difficult to access areas of plant and locate and quantify radiation hazards is a unique radiation mapping service. The NNL consider there to be significant business potential associated with this innovative technology.

  14. Savannah River Nuclear Solutions, LLC Preliminary Notice of Violation

    Office of Environmental Management (EM)

    proper use of the hot tap's packing gland and stop ring, which would have prevented corrosion and mechanical failure of the hot tap assembly and the resulting nitric acid spill....

  15. Department of Energy Cites Savannah River Nuclear Solutions,...

    Broader source: Energy.gov (indexed) [DOE]

    of hazards; (2) scaffold safety; (3) training and information; and (4) occupational medicine. SRNS is cited for failure to comply with 10 Code of Federal Regulations (C.F.R.)...

  16. Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC -

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T enAmountCammie Croft SeniorDepartment2015 |

  17. Preliminary Notice of Violation,Savannah River Nuclear Solutions, LLC -

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T enAmountCammie Croft SeniorDepartment2015NEA-2011-02 |

  18. PIA - Savannah River Nuclear Solution (SRNS) Energy Employees Occupational

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMakeEducation Programs Business EnclavePositiveRocky

  19. PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System (PCS)

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMakeEducation Programs Business EnclavePositiveRockyand|

  20. PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMakeEducation Programs Business

  1. PIA - Savannah River Nuclear Solution SRNS Electronic Document Workflow

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMakeEducation Programs BusinessRECORDS System (EDWS) |

  2. PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMakeEducation Programs BusinessRECORDS System (EDWS)System

  3. PIA - Savannah River Nuclear Solutions Badge Request and Site Personnel

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMakeEducation Programs BusinessRECORDS System

  4. PIA - Savannah River Nuclear Solutions Electronic Safeguards Security

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMakeEducation Programs BusinessRECORDS SystemSystem (E3S) |

  5. PIA - Savannah River Nuclear Solutions Training Records and Information

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMakeEducation Programs BusinessRECORDS SystemSystem (E3S)

  6. PIA - Savannah River Nuclear Solution SRNS Electronic Document Workflow

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse toOctoberMultifamily Landlords1Reality2009 |RECORDS System

  7. PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse toOctoberMultifamily Landlords1Reality2009 |RECORDS

  8. Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA AdministrativeofDepartment of-Department ofof|

  9. Project Management Institute Highlights Savannah River Nuclear Solutions in

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 | Department ofPlantLong Island HTS -Publication |

  10. Principal Media Contact: DT Townsend Savannah River Nuclear Solutions, LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, information andNetarchiveScience,Area High School

  11. Principal Media Contact: DT Townsend Savannah River Nuclear Solutions, LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, information andNetarchiveScience,Area High SchoolSRS

  12. Principal Media Contact: Lindsey Evans Savannah River Nuclear Solutions, LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, information andNetarchiveScience,Area High

  13. Principal Media Contact: Lindsey Evans Savannah River Nuclear Solutions, LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, information andNetarchiveScience,Area HighSRS

  14. Department of Energy Cites Savannah River Nuclear Solutions for Worker

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 ThisFinalResearch andand Radiation ProtectionSafety and

  15. FY 2010 Savannah River Nuclear Solutions, LLC, PER Summary | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:Administration Sandia Corporation PER Summary | National

  16. FY 2011 Savannah River Nuclear Solutions, LLC, PER Summary | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:Administration Sandia Corporation PER

  17. Method for cleaning solution used in nuclear fuel reprocessing

    DOE Patents [OSTI]

    Tallent, Othar K. (Oak Ridge, TN); Dodson, Karen E. (Knoxville, TN); Mailen, James C. (Oak Ridge, TN)

    1983-01-01T23:59:59.000Z

    A nuclear fuel processing solution containing (1) hydrocarbon diluent, (2) tri-n-butyl phosphate or tri-2-ethylhexyl phosphate, and (3) monobutyl phosphate, dibutyl phosphate, mono-2-ethylhexyl phosphate, di-2-ethylhexyl phosphate, or a complex formed by plutonium, uranium, or a fission product thereof with monobutyl phosphate, dibutyl phosphate, mono-2-ethylhexyl phosphate, or di-2-ethylhexyl phosphate is contacted with silica gel having alkali ions absorbed thereon to remove any one of the degradation products named in section (3) above from said solution.

  18. Savannah River Site, Spent Nuclear Fuel Management, Draft Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    1998-12-24T23:59:59.000Z

    The proposed DOE action described in this environmental impact statement (EIS) is to implement appropriate processes for the safe and efficient management of spent nuclear fuel and targets assigned to the Savannah River Site (SRS), including placing these materials in forms suitable for ultimate disposition. Options to treat, package, and store this material are discussed. The material included in this EIS consists of approximately 68 metric tons heavy metal (MTHM) of spent nuclear fuel (20 MTHM of aluminum-based spent nuclear fuel at SRS, as much as 28 MTHM of aluminum-clad spent nuclear fuel from foreign and domestic research reactors to be shipped to SRS through 2035, and 20 MTHM of stainless-steel or zirconium-clad spent nuclear fuel and some programmatic material stored at SRS for repackaging and dry storage pending shipment offsite).

  19. SPD SEIS References for Appendix E | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Guide, SAND2009-5129P, Albuquerque, New Mexico and Livermore, California, May. 258 SRNS (Savannah River Nuclear Solutions, LLC), 2012, Surplus Plutonium Disposition Supplemental...

  20. Malonamides as new extractants for nuclear waste solutions

    SciTech Connect (OSTI)

    Cuillerdier, C.; Musikas, C.; Hoel, P.; Nigond, L.; Vitart, X. (Commissariat a L'Energie Atomique, Fontenay-aux-Roses (France))

    1991-09-01T23:59:59.000Z

    A new class of extractants has been investigated: pentaalkylpropane diamides. Due to their chelating effect on metallic cations, they extract trivalent actinides such as Am{sup 3+} and Cm{sup 3+} from acidic nitrate nuclear waste solutions. These solvents are completely incinerable and do not generate large amounts of waste. A review is provided of their chemical properties, leading to the choice of the proper molecule. The results of a bench-scale experiment performed in a mixer-settler battery are presented.

  1. EIS-0220: Interim Management of Nuclear Materials at the Savannah River Site

    Broader source: Energy.gov [DOE]

    This environmental impact statement assesses the potential environmental impacts of actions necessary to manage nuclear materials at the Savannah River Site (SRS) in Aiken, South Carolina, until decisions on their ultimate disposition are made and implemented. The Department of Energy has decided to initiate actions which will stabilize certain of the SRS materials that represent environment, safety and health vulnerabilities in their current storage condition or which may represent a vulnerability within the next 10 years.

  2. Modernization project comes online at Savannah River | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.govSecurityMaintaining theSan Jose-San| National Nuclear

  3. Savannah River Site hosts military interns | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART SignedhostsNuclearAdministration

  4. Regional Nuclear Workforce Development in the Central Savannah River Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently Approved JustificationBio-Inspired Power ContractsNuclear

  5. The distribution and history of nuclear weapons related contamination in sediments from the Ob River, Siberia as determined by isotopic ratios of Plutonium, Neptunium, and Cesium

    E-Print Network [OSTI]

    Kenna, Timothy C

    2002-01-01T23:59:59.000Z

    This thesis addresses the sources and transport of nuclear weapons related contamination in the Ob River region, Siberia. In addition to being one of the largest rivers flowing into the Arctic Ocean, the bulk of the former ...

  6. NEUTRALIZATIONS OF HIGH ALUMINUM LOW URANIUM USED NUCLEAR FUEL SOLUTIONS CONTAINING GADOLINIUM AS A NEUTRON POISON

    SciTech Connect (OSTI)

    Taylor-Pashow, K.

    2011-06-08T23:59:59.000Z

    H-Canyon will begin dissolving High Aluminum - Low Uranium (High Al/Low U) Used Nuclear Fuel (UNF) following approval by DOE which is anticipated in CY2011. High Al/Low U is an aluminum/enriched uranium UNF with small quantities of uranium relative to aluminum. The maximum enrichment level expected is 93% {sup 235}U. The High Al/Low U UNF will be dissolved in H-Canyon in a nitric acid/mercury/gadolinium solution. The resulting solution will be neutralized and transferred to Tank 39H in the Tank Farm. To confirm that the solution generated could be poisoned with Gd, neutralized, and discarded to the Savannah River Site (SRS) high level waste (HLW) system without undue nuclear safety concerns the caustic precipitation of simulant solutions was examined. Experiments were performed with three simulant solutions representative of the H-Canyon estimated concentrations in the final solutions after dissolution. The maximum U, Gd, and Al concentration were selected for testing from the range of solution compositions provided. Simulants were prepared in three different nitric acid concentrations, ranging from 0.5 to 1.5 M. The simulant solutions were neutralized to four different endpoints: (1) just before a solid phase was formed (pH 3.5-4), (2) the point where a solid phase was obtained, (3) 0.8 M free hydroxide, and (4) 1.2 M free hydroxide, using 50 wt % sodium hydroxide (NaOH). The settling behavior of the neutralized solutions was found to be slower compared to previous studies, with settling continuing over a one week period. Due to the high concentration of Al in these solutions, precipitation of solids was observed immediately upon addition of NaOH. Precipitation continued as additional NaOH was added, reaching a point where the mixture becomes almost completely solid due to the large amount of precipitate. As additional NaOH was added, some of the precipitate began to redissolve, and the solutions neutralized to the final two endpoints mixed easily and had expected densities of typical neutralized waste. Based on particle size and scanning electron microscopy analyses, the neutralized solids were found to be homogeneous and less than 20 microns in size. The majority of solids were less than 4 microns in size. Compared to previous studies, a larger percentage of the Gd was found to precipitate in the partially neutralized solutions (at pH 3.5-4). In addition the Gd:U mass ratio was found to be at least 1.0 in all of the solids obtained after partial or full neutralization. The hydrogen to U (H:U) molar ratios for two accident scenarios were also determined. The first was for transient neutralization and agitator failure. Experimentally this scenario was determined by measuring the H:U ratio of the settled solids. The minimum H:U molar ratio for solids from fully neutralized solutions was 388:1. The second accident scenario is for the solids drying out in an unagitiated pump box. Experimentally, this scenario was determined by measuring the H:U molar ratio in centrifuged solids. The minimum H:U atom ratios for centrifuged precipitated solids was 250:1. It was determined previously that a 30:1 H:Pu atom ratio was sufficient for a 1:1 Gd:Pu mass ratio. Assuming a 1:1 equivalence with {sup 239}Pu, the results of these experiments show Gd is a viable poison for neutralizing U/Gd solutions with the tested compositions.

  7. DOE to Extend Savannah River Nuclear Solutions Contract at Savannah River

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrack graphics workDepartmentFollowing areofSite to

  8. DOE to Extend Savannah River Nuclear Solutions Contract at Savannah River

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials |ProductionDepartment of Energy toSite to

  9. NUCLEAR CHEMISTRY ANNUAL REPORT 1970

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Nuclear Laboratories, AECL, Chalk River, Ontario, Canada.Nuclear Laboratories, AECL, Chalk River, Ontario, Canada. 1.Nuclear Laboratories, AECL, Chalk River, Ontario, Canada. 1.

  10. Building America Whole-House Solutions for New Homes: Hood River Passive House- Hood River, Oregon (Fact Sheet)

    Broader source: Energy.gov [DOE]

    The Hood River Passive Project incorporates high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless minisplit heat pump.

  11. EM Develops Database for Efficient Solutions to Nuclear Cleanup...

    Broader source: Energy.gov (indexed) [DOE]

    illustrate the benefits of the database. EM also shared the database with the UK's Nuclear Decommissioning Authority and the Canadian Nuclear Laboratories to identify remote...

  12. SAVANNAH RIVER SITE'S H-CANYON FACILITY: IMPACTS OF FOREIGN OBLIGATIONS ON SPECIAL NUCLEAR MATERIAL DISPOSITION

    SciTech Connect (OSTI)

    Magoulas, V.

    2013-06-03T23:59:59.000Z

    The US has a non-proliferation policy to receive foreign and domestic research reactor returns of spent fuel materials of US origin. These spent fuel materials are returned to the Department of Energy (DOE) and placed in storage in the L-area spent fuel basin at the Savannah River Site (SRS). The foreign research reactor returns fall subject to the 123 agreements for peaceful cooperation. These “123 agreements” are named after section 123 of the Atomic Energy Act of 1954 and govern the conditions of nuclear cooperation with foreign partners. The SRS management of these foreign obligations while planning material disposition paths can be a challenge.

  13. Savannah River Site Spent Nuclear Fuel Management Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2000-04-14T23:59:59.000Z

    The proposed DOE action considered in this environmental impact statement (EIS) is to implement appropriate processes for the safe and efficient management of spent nuclear fuel and targets at the Savannah River Site (SRS) in Aiken County, South Carolina, including placing these materials in forms suitable for ultimate disposition. Options to treat, package, and store this material are discussed. The material included in this EIS consists of approximately 68 metric tons heavy metal (MTHM) of spent nuclear fuel 20 MTHM of aluminum-based spent nuclear fuel at SRS, as much as 28 MTHM of aluminum-clad spent nuclear fuel from foreign and domestic research reactors to be shipped to SRS through 2035, and 20 MTHM of stainless-steel or zirconium-clad spent nuclear fuel and some Americium/Curium Targets stored at SRS. Alternatives considered in this EIS encompass a range of new packaging, new processing, and conventional processing technologies, as well as the No Action Alternative. A preferred alternative is identified in which DOE would prepare about 97% by volume (about 60% by mass) of the aluminum-based fuel for disposition using a melt and dilute treatment process. The remaining 3% by volume (about 40% by mass) would be managed using chemical separation. Impacts are assessed primarily in the areas of water resources, air resources, public and worker health, waste management, socioeconomic, and cumulative impacts.

  14. Solutions of the stream power equation and application to the evolution of river longitudinal profiles

    E-Print Network [OSTI]

    Royden, Leigh H.

    Erosion by bedrock river channels is commonly modeled with the stream power equation. We present a two-part approach to solving this nonlinear equation analytically and explore the implications for evolving river profiles. ...

  15. Surfactant based imbibition and induced solution gas drive process: investigation by nuclear magnetic resonance

    E-Print Network [OSTI]

    Cox, James Calvin

    1993-01-01T23:59:59.000Z

    drive mechanism. This imbibition and induced solution gas drive study employed nuclear magnetic resonance (NMR) spectroscopy techniques to monitor and characterize the progress of oil recovery inside the rock sample core. A specially designed core...SURFACTANT BASED IMBIBITION AND INDUCED SOLUTION GAS DRIVE PROCESS: INVESTIGATION BY NUCLEAR MAGNETIC RESONANCE A Thesis by JAMES CALVIN COX Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

  16. Nonproliferation impacts assessment for the management of the Savannah River Site aluminum-based spent nuclear fuel

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    On May 13, 1996, the US established a new, 10-year policy to accept and manage foreign research reactor spent nuclear fuel containing uranium enriched in the US. The goal of this policy is to reduce civilian commerce in weapons-usable highly enriched uranium (HEU), thereby reducing the risk of nuclear weapons proliferation. Two key disposition options under consideration for managing this fuel include conventional reprocessing and new treatment and packaging technologies. The Record of Decision specified that, while evaluating the reprocessing option, ``DOE will commission or conduct an independent study of the nonproliferation and other (e.g., cost and timing) implications of chemical separation of spent nuclear fuel from foreign research reactors.`` DOE`s Office of Arms Control and Nonproliferation conducted this study consistent with the aforementioned Record of Decision. This report addresses the nonproliferation implications of the technologies under consideration for managing aluminum-based spent nuclear fuel at the Savannah River Site. Because the same technology options are being considered for the foreign research reactor and the other aluminum-based spent nuclear fuels discussed in Section ES.1, this report addresses the nonproliferation implications of managing all the Savannah River Site aluminum-based spent nuclear fuel, not just the foreign research reactor spent nuclear fuel. The combination of the environmental impact information contained in the draft EIS, public comment in response to the draft EIS, and the nonproliferation information contained in this report will enable the Department to make a sound decision regarding how to manage all aluminum-based spent nuclear fuel at the Savannah River Site.

  17. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12T23:59:59.000Z

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

  18. FURTHER DEVELOPMENT OF MODIFIED MONOSODIUM TITANATE, AN IMPROVED SORBENT FOR PRETREATMENT OF HIGH LEVEL NUCLEAR WASTE AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Taylor-Pashow, K.; Hobbs, D.; Fondeur, F.; Fink, S.

    2011-01-12T23:59:59.000Z

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove Cs-137, Sr-90, and alpha-emitting radionuclides (i.e., actinides) prior to disposal onsite as low level waste. Separation processes planned at SRS include caustic side solvent extraction, for Cs-137 removal, and sorption of Sr-90 and alpha-emitting radionuclides onto monosodium titanate (MST). The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes Pu-238, Pu-239, and Pu-240. This paper describes recent results from the development of an improved titanate material that exhibits increased removal kinetics and effective capacity for Sr-90 and alpha-emitting radionuclides compared to the baseline MST material.

  19. Development of alkaline solution separations for potential partitioning of used nuclear fuels

    SciTech Connect (OSTI)

    Jarvinen, Gordon D [Los Alamos National Laboratory; Runde, Wolfgang H [Los Alamos National Laboratory; Goff, George S [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The processing of used nuclear fuel in alkaline solution provides potentially useful new selectivity for separating the actinides from each other and f rom the fission products. Over the ast decade, several research teams around the world have considered dissolution of used fuel in alkaline solution and further partitioning in this medium as an alternative to acid dissolution. The chemistry of the actinides and fission products in alkaline soilltion requires extensive investigation to more carefully evaluate its potential for developing useful separation methods for used nuclear fueI.

  20. Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium nitrate solutions

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01T23:59:59.000Z

    1.1 These test methods cover procedures for the chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium nitrate solutions to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Plutonium by Controlled-Potential Coulometry Plutonium by Amperometric Titration with Iron(II) Plutonium by Diode Array Spectrophotometry Free Acid by Titration in an Oxalate Solution 8 to 15 Free Acid by Iodate Precipitation-Potentiometric Titration Test Method 16 to 22 Uranium by Arsenazo I Spectrophotometric Test Method 23 to 33 Thorium by Thorin Spectrophotometric Test Method 34 to 42 Iron by 1,10-Phenanthroline Spectrophotometric Test Method 43 to 50 Impurities by ICP-AES Chloride by Thiocyanate Spectrophotometric Test Method 51 to 58 Fluoride by Distillation-Spectrophotometric Test Method 59 to 66 Sulfate by Barium Sulfate Turbidimetric Test Method 67 to 74 Isotopic Composition by Mass Spectrom...

  1. Savannah River Remediation Donates $10,000 to South Carolina State Nuclear Engineering Program

    Broader source: Energy.gov [DOE]

    *Editor's note: This article is cross-posted from Savannah River Remediation's website, where it was posted on September 28, 2012.

  2. Radiation re-solution of fission gas in non-oxide nuclear fuel

    SciTech Connect (OSTI)

    Christopher Matthews; Daniel Schwen; Andrew C. Klein

    2014-12-01T23:59:59.000Z

    Renewed interest in fast nuclear reactors is creating a need for better understanding of fission gas bubble behavior in non-oxide fuels to support very long fuel lifetimes. Collisions between fission fragments and their subsequent cascades can knock fission gas atoms out of bubbles and back into the fuel lattice. We showed that these collisions can be treated as using the so-called ‘‘homogenous’’ atom-by-atom re-solution theory and calculated using the Binary Collision Approximation code 3DOT. The calculations showed that there is a decrease in the re-solution parameter as bubble radius increases until about 50 nm, at which the re-solution parameter stays nearly constant. Furthermore, our model shows ion cascades created in the fuel result in many more implanted fission gas atoms than collisions directly with fission fragments. This calculated re-solution parameter can be used to find a re-solution rate for future bubble simulations.

  3. A solute transport model calibration procedure as applied to a tritium plume in the Savannah River Plant F-Area, South Carolina

    E-Print Network [OSTI]

    Edwards, David Arthur

    1988-01-01T23:59:59.000Z

    A SOLUTE TRANSPORT MODEL CALIBRATION PROCEDURE AS APPLIED TO A TRITIUM PLUME IN THE SAVANNAH RIVER PLANT F-AREA, SOUTH CAROLINA A Thesis by DAVID ARTHUR EDWARDS Submitted to the Graduate College of Texas ARM University in partial fulfilment... of the requhements for the degree of MASTER OF SCIENCE May 1988 Major Subject: Geology A SOLUTE TRANSPORT MODEL CALIBRATION PROCEDURE AS APPLIED TO A TRITII JM PLUME IN THE SAVANNAH RIVER PLANT F-AREA, SOUTH CAROLINA A Thesis by DAVID ARTHUR EDWARDS...

  4. Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade uranyl nitrate solutions

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    1999-01-01T23:59:59.000Z

    1.1 These test methods cover procedures for the chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade uranyl nitrate solution to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Determination of Uranium 7 Specific Gravity by Pycnometry 15-20 Free Acid by Oxalate Complexation 21-27 Determination of Thorium 28 Determination of Chromium 29 Determination of Molybdenum 30 Halogens Separation by Steam Distillation 31-35 Fluoride by Specific Ion Electrode 36-42 Halogen Distillate Analysis: Chloride, Bromide, and Iodide by Amperometric Microtitrimetry 43 Determination of Chloride and Bromide 44 Determination of Sulfur by X-Ray Fluorescence 45 Sulfate Sulfur by (Photometric) Turbidimetry 46 Phosphorus by the Molybdenum Blue (Photometric) Method 54-61 Silicon by the Molybdenum Blue (Photometric) Method 62-69 Carbon by Persulfate Oxidation-Acid Titrimetry 70 Conversion to U3O8 71-74 Boron by ...

  5. SOLUBILITY OF URANIUM AND PLUTONIUM IN ALKALINE SAVANNAH RIVER SITE HIGH LEVEL WASTE SOLUTIONS

    SciTech Connect (OSTI)

    King, W.; Hobbs, D.; Wilmarth, B.; Edwards, T.

    2010-03-10T23:59:59.000Z

    Five actual Savannah River Site tank waste samples and three chemically-modified samples were tested to determine solubility limits for uranium and plutonium over a one year time period. Observed final uranium concentrations ranged from 7 mg U/L to 4.5 g U/L. Final plutonium concentrations ranged from 4 {micro}g Pu/L to 12 mg Pu/L. Actinide carbonate complexation is believed to result in the dramatic solubility increases observed for one sample over long time periods. Clarkeite, NaUO{sub 2}(O)OH {center_dot} H{sub 2}O, was found to be the dominant uranium solid phase in equilibrium with the waste supernate in most cases.

  6. Deployment at the Savannah River Site of a standardized, modular transportable and connectable hazard category 2 nuclear system for repackaging TRU waste

    SciTech Connect (OSTI)

    Lussiez, G. (Guy); Hickman, S. (Scott); Anast, K. R. (Kurt R.); Oliver, W. B. (William B.)

    2004-01-01T23:59:59.000Z

    This paper describes the conception, design, fabrication and deployment of a modular, transportable, connectable Category 2 nuclear system deployed at the Savannah River site to be used for characterizing and repackaging Transuranic Waste destined for the Waste Isolation Pilot Plant (WIPP). A standardized Nuclear Category 2 and Performance Category 2 envelope called a 'Nuclear Transportainer' was conceived and designed that provides a safety envelope for nuclear operations. The Nuclear Transportainer can be outfitted with equipment that performs functions necessary to meet mission objectives, in this case repackaging waste for shipment to WIPP. Once outfitted with process and ventilation systems the Nuclear Transportainer is a Modular Unit (MU). Each MU is connectable to other MUS - nuclear or non-nuclear - allowing for multiple functions, command & control, or increasing capacity. The design took advantage of work already in-progress at Los Alamos National Laboratory (LANL) for a similar system to be deployed at LANL's Technical Area 54.

  7. Safety of interim storage solutions of used nuclear fuel during extended term

    SciTech Connect (OSTI)

    Shelton, C.; Bader, S.; Issard, H.; Arslan, M. [AREVA, 7135 Minstrel Way, Suite 300 Columbia, MD 21045 (United States)

    2013-07-01T23:59:59.000Z

    In 2013, the total amount of stored used nuclear fuel (UNF) in the world will reach 225,000 T HM. The UNF inventory in wet storage will take up over 80% of the available total spent fuel pool (SFP) capacity. Interim storage solutions are needed. They give flexibility to the nuclear operators and ensure that nuclear reactors continue to operate. However, we need to keep in mind that they are also an easy way to differ final decision and implementation of a UNF management approach (recycling or final disposal). In term of public perception, they can have a negative impact overtime as it may appear that nuclear industry may have significant issues to resolve. In countries lacking an integrated UNF management approach, the UNF are being discharged from the SFPs to interim storage (mostly to dry storage) at the same rate as UNF is being discharged from reactors, as the SFPs at the reactor sites are becoming full. This is now the case in USA, Taiwan, Switzerland, Spain, South Africa and Germany. For interim storage, AREVA has developed different solutions in order to allow the continued operation of reactors while meeting the current requirements of Safety Authorities: -) Dry storage canisters on pads, -) Dual-purpose casks (dry storage and transportation), -) Vault dry storage, and -) Centralized pool storage.

  8. SOLUTIONS

    E-Print Network [OSTI]

    2012-07-04T23:59:59.000Z

    MA 162 - Quiz 5 (20 minutes). SOLUTIONS. The solutions I present are not necessarily the only solutions. As long as you give a correct method of solving a ...

  9. Development of Dodecaniobate Keggin Chain Materials as Alternative Sorbents for SR and Actinide Removal from High-Level Nuclear Waste Solutions

    SciTech Connect (OSTI)

    Nyman, May; Bonhomme, Francois

    2004-03-28T23:59:59.000Z

    The current baseline sorbent (monosodium titanate) for Sr and actinide removal from Savannah River Site's high level wastes has excellent adsorption capabilities for Sr but poor performance for the actinides. We are currently investigating the development of alternative materials that sorb radionuclides based on chemical affinity and/or size selectivity. The polyoxometalates, negatively-charged metal oxo clusters, have known metal binding properties and are of interest for radionuclide sequestration. We have developed a class of Keggin-ion based materials, where the Keggin ions are linked in 1- dimensional chains separated by hydrated, charge-balancing cations. These Nb-based materials are stable in the highly basic nuclear waste solutions and show good selectivity for Sr and Pu. Synthesis, characterization and structure of these materials in their native forms and Sr-exchanged forms will be presented.

  10. DOE Selects Savannah River Nuclear Solutions, LLC to Manage and Operate its

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »DepartmentLaboratory | Department ofthe Nation'sSavannah

  11. PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMakeEducation Programs Business EnclavePositiveRockyand

  12. PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMakeEducation Programs BusinessRECORDS System (EDWS)

  13. AUDIT REPORT Funds Control Management of Savannah River Nuclear Solutions Recovery Act Projects

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJune 17, 2015Energy 283-ILeadershipATVMAUDIT REPORT Funds

  14. Department of Energy Cites Savannah River Nuclear Solutions, LLC for Worker

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrack graphics4 Volume 1DeborahDenverWorker Safety

  15. DOE Selects Savannah River Nuclear Solutions, LLC to Manage and Operate its

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions andDefinition ofthe Nation's Electricity GridSavannah

  16. Savannah River Remediation Donates $10,000 to South Carolina...

    Broader source: Energy.gov (indexed) [DOE]

    Savannah River Remediation Donates 10,000 to South Carolina State Nuclear Engineering Program Savannah River Remediation Donates 10,000 to South Carolina State Nuclear...

  17. Enforcement Letter, Westinghouse Savannah River Company - November...

    Broader source: Energy.gov (indexed) [DOE]

    Savannah River Site On November 14, 2003, the U.S. Department of Energy (DOE) issued a nuclear safety Enforcement Letter to Westinghouse Savannah River Company related to...

  18. THERMODYNAMIC TABLES FOR NUCLEAR WASTE ISOLATION, V.1: AQUEOUS SOLUTIONS DATABASE

    E-Print Network [OSTI]

    Phillips, S.L.; Hale, F.V.; Silvester, L.F.

    2008-01-01T23:59:59.000Z

    National Laboratory Nuclear Waste Nanagement Division Upton,~ermodynamic Tables for Nuclear Waste Isolation Vol. I. Aq~Thermodynamic Tables for Nuclear Waste Isolation. Vol 1.

  19. Alternative dispositioning methods for HEU spent nuclear fuel at the Savannah River Site

    SciTech Connect (OSTI)

    Krupa, J.F.; McKibben, J.M.; Parks, P.B.; DuPont, M.E.

    1995-11-01T23:59:59.000Z

    The United States has a strong policy on prevention of the international spread of nuclear weapons. This policy was announced in Presidential Directive PDD-13 and summarized in a White House press release September 27, 1993. Two cornerstones of this policy are: seek to eliminate where possible the accumulation of stockpiles of highly- enriched uranium or plutonium; propose{hor_ellipsis}prohibiting the production of highly-enriched uranium (HEU) or plutonium for nuclear explosives purposes or outside international safeguards. The Department of Energy is currently struggling to devise techniques that safely and efficiently dispose of spent nuclear fuel (SNF) while satisfying national non-proliferation policies. SRS plans and proposals for disposing of their SNF are safe and cost effective, and fully satisfy non-proliferation objectives.

  20. Americium/Lanthanide Separations in Alkaline Solutions for Advanced Nuclear Fuel Cycles

    SciTech Connect (OSTI)

    Goff, George S. [Los Alamos National Laboratory; Long, Kristy Marie [Los Alamos National Laboratory; Reilly, Sean D. [Los Alamos National Laboratory; Jarvinen, Gordon D. [Los Alamos National Laboratory; Runde, Wolfgang H. [Los Alamos National Laboratory

    2012-06-11T23:59:59.000Z

    Project goals: Can used nuclear fuel be partitioned by dissolution in alkaline aqueous solution to give a solution of uranium, neptunium, plutonium, americium and curium and a filterable solid containing nearly all of the lanthanide fission products and certain other fission products? What is the chemistry of Am/Cm/Ln in oxidative carbonate solutions? Can higher oxidation states of Am be stabilized and exploited? Conclusions: Am(VI) is kinetically stable in 0.5-2.0 M carbonate solutions for hours. Aliquat 336 in toluene has been successfully shown to extract U(VI) and Pu(VI) from carbonate solutions. (Stepanov et al 2011). Higher carbonate concentration gives lower D, SF{sub U/Eu} for = 4 in 1 M K{sub 2}CO{sub 3}. Experiments with Am(VI) were unsuccessful due to reduction by the organics. Multiple sources of reducing organics...more optimization. Reduction experiments of Am(VI) in dodecane/octanol/Aliquat 336 show that after 5 minutes of contact, only 30-40% of the Am(VI) has been reduced. Long enough to perform an extraction. Shorter contact times, lower T, and lower Aliquat 336 concentration still did not result in any significant extraction of Am. Anion exchange experiments using a strong base anion exchanger show uptake of U(VI) with minimal uptake of Nd(III). Experiments with Am(VI) indicate Am sorption with a Kd of 9 (10 minute contact) but sorption mechanism is not yet understood. SF{sub U/Nd} for = 7 and SF{sub U/Eu} for = 19 after 24 hours in 1 M K{sub 2}CO{sub 3}.

  1. Nuclear Magnetic Resonance Studies on Vanadium(IV) Electrolyte Solutions for Vanadium Redox Flow Battery

    SciTech Connect (OSTI)

    Vijayakumar, M.; Burton, Sarah D.; Huang, Cheng; Li, Liyu; Yang, Zhenguo; Graff, Gordon L.; Liu, Jun; Hu, Jian Z.; Skyllas-Kazacos, Maria

    2010-11-15T23:59:59.000Z

    The vanadium (IV) electrolyte solutions with various vanadium concentrations are studied by variable temperature 1H and 17O Nuclear Magnetic Resonance (NMR) spectroscopy. The structure and kinetics of vanadium (IV) species in the electrolyte solutions are explored with respect to vanadium concentration and temperature. It was found that the vanadium (IV) species exist as hydrated vanadyl ion, i.e. [VO(H2O)5]2+ forming an octahedral coordination with vanadyl oxygen in the axial position and the remaining positions occupied by water molecules. This hydrated vanadyl ion structure is stable in vanadium concentrations up to 3M and in the temperature range of 240 to 340 K. The sulfate anions in the electrolyte solutions are found to be weekly bound to this hydrated vanadyl ion and occupies its second coordination sphere. The possible effects of these sulfate anions in proton and water exchange between vanadyl ion and solvent molecules are discussed based on 1H and 17O NMR results.

  2. Savannah River Site’s H Canyon Begins 2012 with New and Continuing Missions- Transuranic waste remediation, new mission work are the focus of the nation’s only active nuclear chemical separations facility in 2012

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – The Savannah River Site (SRS) is breathing new life into the H Canyon, the only active nuclear chemical separations facility still operating in the U.S.

  3. Washington River Protection Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural PublicRates > RateWannier90089Operation

  4. Solution of the Two-Dimensional Time-Dependent Schroedinger Equation Applied to Nuclear Proton Decay

    SciTech Connect (OSTI)

    Rizea, M. [National Institute of Physics and Nuclear Engineering, 'Horia Hulubei', PO Box MG-6, Bucharest (Romania); Carjan, N. [Centre d'Etudes Nucleaires de Bordeaux-Gradignan, UMR 5797, CNRS/IN2P3-Universite Bordeaux 1, BP 120, 33175 Gradignan Cedex (France)

    2009-09-09T23:59:59.000Z

    A rigorous approach to study the temporal evolution of physical processes is to follow the development in time of a given initial state, by numerically solving the time-dependent Schroedinger equation. This represents a natural modeling of the dynamical behaviour. We considered the equation in two spatial coordinates, to describe deformed nuclear shapes. The Hamiltonian is discretized by special, functionally fitted difference formulae of the derivatives and then a Crank-Nicolson scheme is applied. The resulting linear system with large sparse matrix is solved by a variant of Conjugate Gradient Method. The numerical solution has been used to the description of the proton decay. We also discuss the treatment of numerical boundary conditions, the preparation of the initial wavefunction and the calculation of the decay rate through the flux.

  5. Hood River Passive House, Hood River, Oregon (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar PowerCommercialEnergy Star HomePowerHood River Passive House

  6. Report on the Savannah River Site aluminum-based spent nuclear fuel alternatives cost study

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    Initial estimates of costs for the interim management and disposal of aluminum-based spent nuclear fuel (SNF) were developed during preparation of the Environmental Impact Statement (EIS) on the Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. The Task Team evaluated multiple alternatives, assessing programmatic, technical, and schedule risks, and generated life-cycle cost projections for each alternative. The eight technology alternatives evaluated were: direct co-disposal; melt and dilute; reprocessing; press and dilute; glass material oxidation dissolution system (GMODS); electrometallurgical treatment; dissolve and vitrify; and plasma arc. In followup to the Business Plan that was developed to look at SNF dry storage, WSRC prepared an addendum to the cost study. This addendum estimated the costs for the modification and use of an existing (105L) reactor facility versus a greenfield approach for new facilities (for the Direct Co-Disposal and Melt and Dilute alternatives). WSRC assessed the impacts of a delay in reprocessing due to the potential reservation of H-Canyon for other missions (i.e., down blending HEU for commercial use or the conversion of plutonium to either MOX fuel or an immobilized repository disposal form). This report presents the relevant results from these WSRC cost studies, consistent with the most recent project policy, technology implementation, canyon utilization, and inventory assumptions. As this is a summary report, detailed information on the technical alternatives or the cost assumptions raised in each of the above-mentioned cost studies is not provided. A comparison table that briefly describes the bases used for the WSRC analyses is included as Appendix A.

  7. Proceedings of a conference on nuclear war: The search for solutions

    SciTech Connect (OSTI)

    Perry, T.L.; DeMille, D.

    1985-01-01T23:59:59.000Z

    This book presents the proceedings of a conference on the problem of nuclear war. Topics include civil defense; nuclear winter; the psychological consequences of nuclear war, arms control and verification.

  8. NUCLEAR SCIENCE ANNUAL REPORT 1975

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    Gove and A. H. Wapstra, Nuclear Data Tables 11, 127 (1972).P. Jackson, Chalk River Nuclear Laboratories Report (1975)national Conference on Nuclear Structure and Spec­ troscopy,

  9. Corrosion property of 9Cr-ODS steel in nitric acid solution for spent nuclear fuel reprocessing

    SciTech Connect (OSTI)

    Takeuchi, M.; Koizumi, T. [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Inoue, M.; Koyama, S.I. [Japan Atomic Energy Agency, Oarai-machi, Higashi-ibaraki-gun, Ibaraki 311-1393 (Japan)

    2013-07-01T23:59:59.000Z

    Corrosion tests of oxide dispersion strengthened with 9% Cr (9Cr-ODS) steel, which is one of the desirable materials for cladding tube of sodium-cooled fast reactors, in pure nitric acid solution, spent FBR fuel solution, and its simulated solution were performed to understand the corrosion behavior in a spent nuclear fuel reprocessing. In this study, the 9Cr-ODS steel with lower effective chromium content was evaluated to understand the corrosion behavior conservatively. As results, the tube-type specimens of the 9Cr-ODS steels suffered severe weight loss owing to active dissolution at the beginning of the immersion test in pure nitric acid solution in the range from 1 to 3.5 M. In contrast, the weight loss was decreased and they showed a stable corrosion in the higher nitric acid concentration, the dissolved FBR fuel solution, and its simulated solution by passivation. The corrosion rates of the 9Cr-ODS steel in the dissolved FBR fuel solution and its simulated solution were 1-2 mm/y and showed good agreement with each other. The passivation was caused by the shift of corrosion potential to noble side owing to increase in nitric acid concentration or oxidative ions in the dissolved FBR fuel solution and the simulated spent fuel solution. (authors)

  10. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

  11. Solution

    E-Print Network [OSTI]

    2011-09-09T23:59:59.000Z

    Solution: We're looking for the presale cost of the shirt, so let x be the price of ... The sale price is $10 and we've called the presale price x, so we need to solve.

  12. Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation

    SciTech Connect (OSTI)

    Morgan, Dane; Eapen, Jacob

    2013-10-01T23:59:59.000Z

    Recovery of actinides is an integral part of a closed nuclear fuel cycle. Pyrometallurgical nuclear fuel recycling processes have been developed in the past for recovering actinides from spent metallic and nitride fuels. The process is essentially to dissolve the spent fuel in a molten salt and then extract just the actinides for reuse in a reactor. Extraction is typically done through electrorefining, which involves electrochemical reduction of the dissolved actinides and plating onto a cathode. Knowledge of a number of basic thermokinetic properties of salts and salt-fuel mixtures is necessary for optimizing present and developing new approaches for pyrometallurgical waste processing. The properties of salt-fuel mixtures are presently being studied, but there are so many solutes and varying concentrations that direct experimental investigation is prohibitively time consuming and expensive (particularly for radioactive elements like Pu). Therefore, there is a need to reduce the number of required experiments through modeling of salt and salt-fuel mixture properties. This project will develop first-principles-based molecular modeling and simulation approaches to predict fundamental thermokinetic properties of dissolved actinides and fission products in molten salts. The focus of the proposed work is on property changes with higher concentrations (up to 5 mol%) of dissolved fuel components, where there is still very limited experimental data. The properties predicted with the modeling will be density, which is used to assess the amount of dissolved material in the salt; diffusion coefficients, which can control rates of material transport during separation; and solute activity, which determines total solubility and reduction potentials used during electrorefining. The work will focus on La, Sr, and U, which are chosen to include the important distinct categories of lanthanides, alkali earths, and actinides, respectively. Studies will be performed using LiCl-KCl salt at the eutectic composition (58 mol% LiCl, 42 mol% KCl), which is used for treating spent EBR-II fuel. The same process being used for EBRII fuel is currently being studied for widespread international implementation. The methods will focus on first-principles and first- principles derived interatomic potential based simulations, primarily using molecular dynamics. Results will be validated against existing literature and parallel ongoing experimental efforts. The simulation results will be of value for interpreting experimental results, validating analytical models, and for optimizing waste separation by potentially developing new salt configurations and operating conditions.

  13. Nuclear spin relaxation of sodium cations in bacteriophage Pf1 solutions D. N. Sobieski, N. R. Krueger, S. Vyas,a

    E-Print Network [OSTI]

    Augustine, Mathew P.

    Nuclear spin relaxation of sodium cations in bacteriophage Pf1 solutions D. N. Sobieski, N. R The nuclear magnetic resonance NMR spectra for the I=3/2 23 Na cation dissolved into filamentous bacteriophage the 23 Na nuclear quadrupole moment and the electric field gradient produced by the negatively charged Pf

  14. Numerical solutions of the aerosol general dynamic equation for nuclear reactor safety studies

    SciTech Connect (OSTI)

    Park, J.W.

    1988-01-01T23:59:59.000Z

    Methods and approximations inherent in modeling of aerosol dynamics and evolution for nuclear reactor source term estimation have been investigated. Several aerosol evolution problems are considered to assess numerical methods of solving the aerosol dynamic equation. A new condensational growth model is constructed by generalizing Mason's formula to arbitrary particle sizes, and arbitrary accommodation of the condensing vapor and background gas at particle surface. Analytical solution is developed for the aerosol growth equation employing the new condensation model. The space-dependent aerosol dynamic equation is solved to assess implications of spatial homogenization of aerosol distributions. The results of our findings are as follows. The sectional method solving the aerosol dynamic equation is quite efficient in modeling of coagulation problems, but should be improved for simulation of strong condensation problems. The J-space transform method is accurate in modeling of condensation problems, but is very slow. For the situation considered, the new condensation model predicts slower aerosol growth than the corresponding isothermal model as well as Mason's model, the effect of partial accommodation is considerable on the particle evolution, and the effect of the energy accommodation coefficient is more pronounced than that of the mass accommodation coefficient. For the initial conditions considered, the space-dependent aerosol dynamics leads to results that are substantially different from those based on the spatially homogeneous aerosol dynamic equation.

  15. THERMODYNAMIC TABLES FOR NUCLEAR WASTE ISOLATION, V.1: AQUEOUS SOLUTIONS DATABASE

    E-Print Network [OSTI]

    Phillips, S.L.; Hale, F.V.; Silvester, L.F.

    2008-01-01T23:59:59.000Z

    Vol. I. Aq~leous Solutions Database D L S.1,. Philiips, F.V.Vol 1. Aqueous Solutions Database Sidney L. Phillips, FrankDatabase ..

  16. Determination of dispersivities and reactionkinetics of selected basalts of columbia river plateau using an inverse analytical solution technique

    E-Print Network [OSTI]

    Fahlquist, Lisa Armstrong

    1994-01-01T23:59:59.000Z

    on the determination of transport parameters by modeling sodium transport in the Priest Rapids and Roza flow tops of the Wanapum formation, and Rocky Coulee and Umtanum flow tops of the Grande Ronde formation, within the Cold Creek Syncline of the Hanford Nuclear Waste...

  17. Standard test method for nondestructive analysis of special nuclear materials in homogeneous solutions by Gamma-Ray spectrometry

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01T23:59:59.000Z

    1.1 This test method covers the determination of the concentration of gamma-ray emitting special nuclear materials dissolved in homogeneous solutions. The test method corrects for gamma-ray attenuation by the solution and its container by measurement of the transmission of a beam of gamma rays from an external source (Refs. (1), (2), and (3)). 1.2 Two solution geometries, slab and cylinder, are considered. The solution container that determines the geometry may be either a removable or a fixed geometry container. This test method is limited to solution containers having walls or a top and bottom of equal transmission through which the gamma rays from the external transmission correction source must pass. 1.3 This test method is typically applied to radionuclide concentrations ranging from a few milligrams per litre to several hundred grams per litre. The assay range will be a function of the specific activity of the nuclide of interest, the physical characteristics of the solution container, counting equip...

  18. In Situ Production of Chlorine-36 in the Eastern Snake River Plain Aquifer, Idaho: Implications for Describing Ground-Water Contamination Near a Nuclear Facility

    SciTech Connect (OSTI)

    L. D. Cecil; L. L. Knobel; J. R. Green (USGS); S. K. Frape (University of Waterloo)

    2000-06-01T23:59:59.000Z

    The purpose of this report is to describe the calculated contribution to ground water of natural, in situ produced 36Cl in the eastern Snake River Plain aquifer and to compare these concentrations in ground water with measured concentrations near a nuclear facility in southeastern Idaho. The scope focused on isotopic and chemical analyses and associated 36Cl in situ production calculations on 25 whole-rock samples from 6 major water-bearing rock types present in the eastern Snake River Plain. The rock types investigated were basalt, rhyolite, limestone, dolomite, shale, and quartzite. Determining the contribution of in situ production to 36Cl inventories in ground water facilitated the identification of the source for this radionuclide in environmental samples. On the basis of calculations reported here, in situ production of 36Cl was determined to be insignificant compared to concentrations measured in ground water near buried and injected nuclear waste at the INEEL. Maximum estimated 36Cl concentrations in ground water from in situ production are on the same order of magnitude as natural concentrations in meteoric water.

  19. Initiation of nuclear reactions under laser irradiation of Au nanoparticles in the aqueous solution of Uranium salt

    E-Print Network [OSTI]

    A. V. Simakin; G. A. Shafeev

    2009-11-29T23:59:59.000Z

    Laser exposure of suspension of either gold or palladium nanoparticles in aqueous solutions of UO2Cl2 of natural isotope abundance was experimentally studied. Picosecond Nd:YAG lasers at peak power from 1011 to 1013 W/cm2 at the wavelength of 1064 and 355 nm were used as well as a visible-range Cu vapor laser at peak power of 1010 W/cm2. The composition of colloidal solutions before and after laser exposure was analyzed using atomic absorption and gamma spectroscopy between 0.06 and 1 MeV range of photon energy. A real-time gamma-spectroscopy was used to characterize the kinetics of nuclear reactions during laser exposure. It was found that laser exposure initiated nuclear reactions involving both 238U and 235U nuclei via different channels in H2O and D2O. The influence of saturation of both the liquid and nanoparticles by gaseous H2 and D2 on the kinetics of nuclear transformations was found. Possible mechanisms of observed processes are discussed.

  20. Results of 2001 Groundwater Sampling in Support of Conditional No Longer Contained-In Determination for the Snake River Plain Aquifer in the Vicinity of the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Meachum, T.R.

    2002-04-26T23:59:59.000Z

    This report summarizes the results of sampling five groundwater monitoring wells in the vicinity of the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory in 2001. Information on general sampling practices, quality assurance practices, parameter concentrations, representativeness of sampling results, and cumulative cancer risk are presented. The information is provided to support a conditional No Longer Contained-In Determination for the Snake River Plain Aquifer in the vicinity of the Idaho Nuclear Technology and Engineering Center.

  1. DOE Selects Savannah River Remediation, LLC for Liquid Waste...

    Broader source: Energy.gov (indexed) [DOE]

    awarded SRS management and operating contract includes operation of the Savannah River National Laboratory (SRNL), National Nuclear Security Administration (NNSA)...

  2. Savannah River Nuclear Solutions S A V A N N A H R I V E R S

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principal Investigators PostdoctoralSasha BioEnergySRS

  3. Savannah River Nuclear Solutions S A V A N N A H R I V E R S

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principal Investigators PostdoctoralSasha BioEnergySRSSRNS

  4. Savannah River Nuclear Solutions S A V A N N A H R I V E R S

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principal Investigators PostdoctoralSasha

  5. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2010

    SciTech Connect (OSTI)

    Mamatey, A.; Dunaway-Ackerman, J.

    2011-08-16T23:59:59.000Z

    This report was prepared in accordance with U.S. Department of Energy (DOE) Order 231.1A, 'Environment, Safety and Health Reporting,' to present summary environmental data for the purpose of: (a) characterizing site's environmental management performance; (b) summarizing environmental occurrences and responses reported during the calendar year; (c) describing compliance status with respect to environmental standards and requirements; and (d) highlighting significant site programs and efforts. This report is the principal document that demonstrates compliance with the requirements of DOE Order 5400.5, 'Radiation Protection of the Public and the Environment,' and is a key component of DOE's effort to keep the public informed of environmental conditions at Savannah River Site (SRS). SRS has four primary missions: (1) Environmental Management - Cleaning up the legacy of the Cold War efforts and preparing decommissioned facilities and areas for long-term stewardship; (2) Nuclear Weapons Stockpile Support - Meeting the needs of the U.S. nuclear weapons stockpile through the tritium programs of the National Nuclear Security Administration (NNSA); (3) Nuclear Nonproliferation Support - Meeting the needs of the NNSA's nuclear nonproliferation programs by safely storing and dispositioning excess special nuclear materials; and (4) Research and Development - Supporting the application of science by the Savannah River National Laboratory (SRNL) to meet the needs of SRS, the DOE complex, and other federal agencies During 2010, SRS worked to fulfill these missions and position the site for future operations. SRS continued to work with the South Carolina Department of Health and Environmental Control (SCDHEC), the Environmental Protection Agency (EPA), and the Nuclear Regulatory Commission to find and implement solutions and schedules for waste management and disposition. As part of its mission to clean up the Cold War legacy, SRS will continue to address the highest-risk waste management issues by safely storing and preparing liquid waste and nuclear materials for disposition, and by safely stabilizing any tank waste residues that remain on site.

  6. Precipitation process for the removal of technetium values from nuclear waste solutions

    DOE Patents [OSTI]

    Walker, D.D.; Ebra, M.A.

    1985-11-21T23:59:59.000Z

    High efficiency removal of techetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  7. 8/25/07 11:53 PMNUCLEAR POWER:A Nuclear Solution to Climate Change? --Sailor et al. 288 (5469): 1177 --Science Page 1 of 6http://www.sciencemag.org/cgi/content/full/288/5469/1177

    E-Print Network [OSTI]

    Kammen, Daniel M.

    8/25/07 11:53 PMNUCLEAR POWER:A Nuclear Solution to Climate Change? -- Sailor et al. 288 (5469: Vol. 288. no. 5469, pp. 1177 - 1178 DOI: 10.1126/science.288.5469.1177 POLICY FORUM NUCLEAR POWER. , pp. 1177 - 1178 #12;8/25/07 11:53 PMNUCLEAR POWER:A Nuclear Solution to Climate Change? -- Sailor et

  8. Uranyl nitrate pouring solution for producing nuclear fuel particles and a method for its preparation

    SciTech Connect (OSTI)

    Hein, K.

    1983-05-24T23:59:59.000Z

    Sorbitol, or another polyalcohol such as erythritol, dulcitol or xylitol, is added to a solution containing uranyl nitrate which may also contain another heavy metal, such as thorium or plutonium, prior to preneutralization with ammonia in order to provide a highly viscous solution that can be preneutralized to a great extent without premature precipitation of uranium. The high viscosity makes possible the formation of favorably large drops when the solution is dripped into an ammonia containing bath for external gelification of the drops. According to the pouring apparatus used, the particles after washing, drying and sintering have a diameter between 0.6 and 1.5 mm. The polyalcohol is added to a hydrosol containing from 1.5 to 2 moles per liter of heavy metal, the polyalcohol being added until concentration of onethird mole of polyalcohol per mole of heavy metal is reached. In certain cases up to four moles of ammonium nitrate per liter are added. The solution so produced can be preneutralized with up to 90% of the amount of ammonia stoichiometrically necessary for T separation of uranium without the formation of any precipitate, preferably by first adding ammonia gas under strong stirring and then adding ammonium bicarbonate in excess, which decomposes to liberate ammonia to an extent determined by the temperature, which is to be precisely controlled. It is possible to obtain this way a solution of predetermined viscosity from which the excess ammonium bicarbonate can readily be separated.

  9. Risk-based Prioritization of Facility Decommissioning and Environmental Restoration Projects in the National Nuclear Legacy Liabilities Program at the Chalk River Laboratory - 13564

    SciTech Connect (OSTI)

    Nelson, Jerel G.; Kruzic, Michael [WorleyParsons, Mississauga, ON, L4W 4H2 (United States)] [WorleyParsons, Mississauga, ON, L4W 4H2 (United States); Castillo, Carlos [WorleyParsons, Las Vegas, NV 89128 (United States)] [WorleyParsons, Las Vegas, NV 89128 (United States); Pavey, Todd [WorleyParsons, Idaho Falls, ID 83402 (United States)] [WorleyParsons, Idaho Falls, ID 83402 (United States); Alexan, Tamer [WorleyParsons, Burnaby, BC, V5C 6S7 (United States)] [WorleyParsons, Burnaby, BC, V5C 6S7 (United States); Bainbridge, Ian [Atomic Energy Canada Limited, Chalk River Laboratories, Chalk River, ON, K0J1J0 (Canada)] [Atomic Energy Canada Limited, Chalk River Laboratories, Chalk River, ON, K0J1J0 (Canada)

    2013-07-01T23:59:59.000Z

    Chalk River Laboratory (CRL), located in Ontario Canada, has a large number of remediation projects currently in the Nuclear Legacy Liabilities Program (NLLP), including hundreds of facility decommissioning projects and over one hundred environmental remediation projects, all to be executed over the next 70 years. Atomic Energy of Canada Limited (AECL) utilized WorleyParsons to prioritize the NLLP projects at the CRL through a risk-based prioritization and ranking process, using the WorleyParsons Sequencing Unit Prioritization and Estimating Risk Model (SUPERmodel). The prioritization project made use of the SUPERmodel which has been previously used for other large-scale site prioritization and sequencing of facilities at nuclear laboratories in the United States. The process included development and vetting of risk parameter matrices as well as confirmation/validation of project risks. Detailed sensitivity studies were also conducted to understand the impacts that risk parameter weighting and scoring had on prioritization. The repeatable prioritization process yielded an objective, risk-based and technically defendable process for prioritization that gained concurrence from all stakeholders, including Natural Resources Canada (NRCan) who is responsible for the oversight of the NLLP. (authors)

  10. CHARACTERIZATION OF INDIVIDUAL CHEMICAL REACTIONS CONSUMING ACID DURING NUCLEAR WASTE PROCESSING AT THE SAVANNAH RIVER SITE - 136B

    SciTech Connect (OSTI)

    Koopman, D.; Pickenheim, B.; Lambert, D.; Newell, J.; Stone, M.

    2009-09-02T23:59:59.000Z

    Conversion of legacy radioactive high-level waste at the Savannah River Site into a stable glass waste form involves a chemical pretreatment process to prepare the waste for vitrification. Waste slurry is treated with nitric and formic acids to achieve certain goals. The total quantity of acid added to a batch of waste slurry is constrained by the catalytic activity of trace noble metal fission products in the waste that can convert formic acid into hydrogen gas at many hundreds of times the radiolytic hydrogen generation rate. A large block of experimental process simulations were performed to characterize the chemical reactions that consume acid prior to hydrogen generation. The analysis led to a new equation for predicting the quantity of acid required to process a given volume of waste slurry.

  11. Spectroscopic Monitoring of Spent Nuclear Fuel Reprocessing Streams: An Evaluation of Spent Fuel Solutions via Raman, Visible, and Near-Infrared Spectroscopy

    SciTech Connect (OSTI)

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Johnsen, Amanda M.; Orton, Christopher R.; Peterson, James M.

    2011-09-01T23:59:59.000Z

    The potential of using optical spectroscopic techniques, such as Raman and Visible/Near Infrared (Vis/NIR), for on-line process control and special nuclear materials accountability applications at a spent nuclear fuel reprocessing facility was evaluated. Availability of on-line real-time techniques that directly measure process concentrations of nuclear materials will enhance performance and proliferation resistance of the solvent extraction processes. Further, on-line monitoring of radiochemical streams will also improve reprocessing plant operation and safety. This report reviews current state of development of the spectroscopic on-line monitoring techniques for such solutions. To further examine applicability of optical spectroscopy for monitoring reprocessing solutions, segments of a spent nuclear fuel, with approximate burn-up values of 70 MWd/kgM, were dissolved in concentrated nitric acid and adjusted to varying final concentrations of HNO3. The resulting spent fuel solutions were batch-contacted with tributyl phosphate/dodecane organic solvent. The feed and equilibrium aqueous and loaded organic solutions were subjected to optical measurements. The obtained spectra showed the presence of the quantifiable Raman bands due to NO3- and UO22+ and Vis/NIR bands due to multiple species of Pu(IV), Pu(VI), Np(V), the Np(V)-U(VI) cation-cation complex, and Nd(III) in fuel solutions, justifying spectroscopic techniques as a promising methodology for monitoring spent fuel processing solutions in real-time. Quantitative evaluation of the fuel solution was performed based on spectroscopic measurements and compared to ICP-MS analysis.

  12. System and method for the analysis of one or more compounds and/or species produced by a solution-based nuclear reactor

    DOE Patents [OSTI]

    Policke, Timothy A; Nygaard, Eric T

    2014-05-06T23:59:59.000Z

    The present invention relates generally to both a system and method for determining the composition of an off-gas from a solution nuclear reactor (e.g., an Aqueous Homogeneous Reactor (AHR)) and the composition of the fissioning solution from those measurements. In one embodiment, the present invention utilizes at least one quadrupole mass spectrometer (QMS) in a system and/or method designed to determine at least one or more of: (i) the rate of production of at least one gas and/or gas species from a nuclear reactor; (ii) the effect on pH by one or more nitrogen species; (iii) the rate of production of one or more fission gases; and/or (iv) the effect on pH of at least one gas and/or gas species other than one or more nitrogen species from a nuclear reactor.

  13. Final Review of Safety Assessment Issues at Savannah River Site, August 2011

    SciTech Connect (OSTI)

    Napier, Bruce A.; Rishel, Jeremy P.; Bixler, Nathan E.

    2011-12-15T23:59:59.000Z

    At the request of Savannah River Nuclear Solutions (SRNS) management, a review team composed of experts in atmospheric transport modeling for environmental radiation dose assessment convened at the Savannah River Site (SRS) on August 29-30, 2011. Though the meeting was prompted initially by suspected issues related to the treatment of surface roughness inherent in the SRS meteorological dataset and its treatment in the MELCOR Accident Consequence Code System Version 2 (MACCS2), various topical areas were discussed that are relevant to performing safety assessments at SRS; this final report addresses these topical areas.

  14. The Influence of Pre-oxidation on the Corrosion of Copper Nuclear Waste Canisters in Aqueous Anoxic Sulphide Solutions

    SciTech Connect (OSTI)

    Smith, J.M.; Qin, Z.; Wren, J.C.; Shoesmith, D.W. [Chemistry, The University of Western Ontario, 1151 Richmond St., London, N6A5B7 (Canada)

    2007-07-01T23:59:59.000Z

    Scandinavian/Canadian high-level nuclear waste repository conditions are expected to evolve from initially warm and oxic to eventually cool and anoxic. During the warm, oxic period corrosion products will accumulate on the container surface. These deposits could impede the reaction of Cu with aqueous sulphide, the only reaction that could lead to the significant accumulation of additional corrosion damage under the long-term anoxic conditions. The kinetics of the reaction of Cu with aqueous sulphide solutions have been studied using electrochemical and surface analytical techniques. Corrosion potential measurements were used to follow the evolution of the surface as oxides/hydroxides were converted to sulphides in the sulphide concentration range 10{sup -5} to 10{sup -3} mol/L. Changes in composition were followed by in-situ Raman spectroscopy. Of critical importance is whether or not a period of pre-oxidation of a Cu container surface can prevent subsequent reaction of the surface with remotely produced sulphide. (authors)

  15. A Parallel Multi-Domain Solution Methodology Applied to Nonlinear Thermal Transport Problems in Nuclear Fuel Pins

    SciTech Connect (OSTI)

    Philip, Bobby [ORNL; Berrill, Mark A [ORNL; Allu, Srikanth [ORNL; Hamilton, Steven P [ORNL; Sampath, Rahul S [ORNL; Clarno, Kevin T [ORNL; Dilts, Gary [Los Alamos National Laboratory (LANL)

    2015-01-01T23:59:59.000Z

    This paper describes an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors are described. Details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstrating the achieved efficiency of the algorithm are presented. Furthermore, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.

  16. PERFORMANCE OF THE SAVANNAH RIVER SITE COULOMETER FOR NEPTUNIUM PROCESSACCOUNTABILITY AND NEPTUNIUM OXIDE PRODUCT CHARACTERIZATION

    SciTech Connect (OSTI)

    Holland, M; Patterson Nuessle, P; Sheldon Nichols, S; Joe Cordaro, J; George Reeves, G

    2008-06-04T23:59:59.000Z

    The Savannah River Site's (SRS) H-Area B-Line (HB-Line) nuclear facility is processing neptunium solutions for stabilization as an oxide. The oxide will eventually be reprocessed and fabricated into target material and the 237Np irradiated to produce {sup 238}Pu in support of National Aeronautics and Space Administration space program missions. As part of nuclear materials accountability, solution concentrations were measured using a high-precision controlled-potential coulometer developed and manufactured at the SRS for plutonium accountability measurements. The Savannah River Site Coulometer system and measurement methodology for plutonium meets performance standards in ISO 12183-2005, 'Controlled-Potential Coulometric Assay of Plutonium'. The Department of Energy (DOE) does not produce or supply a neptunium metal certified reference material, which makes qualifying a measurement method and determining accuracy and precision difficult. Testing and performance of the Savannah River Site Coulometer indicates that it can be used to measure neptunium process solutions and dissolved neptunium oxide without purification for material control and accountability purposes. Savannah River Site's Material Control and Accountability organization has accepted the method uncertainty for accountability and product characterization measurements.

  17. Independent Activity Report, Savannah River Site- June 2011

    Broader source: Energy.gov [DOE]

    Defense Nuclear Facilities Safety Board Public Meeting in Augusta, Ga, Regarding the Savannah River Site [HIAR-SRS-2011-06-16

  18. Savannah River Site Environmental Report for 1997

    SciTech Connect (OSTI)

    Arnett, M.W.; Mamatey, A.R. [eds.

    1998-08-01T23:59:59.000Z

    The mission at the Savannah River Site has changed from the production of nuclear weapons materials for national defense to the management of waste, restoration of the environment, and the development of industry in and around the site.

  19. Pennsylvania Scenic Rivers Program

    Broader source: Energy.gov [DOE]

    Rivers included in the Scenic Rivers System will be classified, designated and administered as Wild, Scenic, Pastoral, Recreational and Modified Recreational Rivers (Sections 4; (a) (1) of the...

  20. The Kootenai Tribe's Kootenai River Ecosystem

    E-Print Network [OSTI]

    The Kootenai Tribe's Kootenai River Ecosystem Restoration Project 1994-2012 Project # 199404900 · PURPOSE: TO ADDRESS FISHERIES RELATED PROBLEMS AT AN ECOSYSTEM LEVEL AND PROVIDE RESTORATION SOLUTIONS Kootenai River OBJ-2: Restore Ecosystem Productivity OBJ-3: Restore Ecosystem Productivity to Kootenay Lake

  1. Nuclear Energy. It is not a solution, it is a problem The Mediterranean Antinuclear Watch (MANW) is a non -

    E-Print Network [OSTI]

    production and energy consumption are two issues on which the public is intentionally misinformed. The nuclear industry is powerful in technologically advanced countries like France, Canada, the USA. Expansion of investment and profit maximisation are its goals. The 1990 oil crisis (Gulf war), the Hurricane Catrina

  2. Solution of resource allocation problem for identification of cost-effective measures to reduce nuclear proliferation risks

    SciTech Connect (OSTI)

    Andrianov, A.; Kuptsov, I. [Obninsk Institute for Nuclear Power Engineering, Studgorodok 1, Obninsk, Kaluga region 249030 (Russian Federation)

    2013-07-01T23:59:59.000Z

    This report presents a methodology of selection of cost-effective measures to reduce nuclear proliferation risks. The methodology relies on a graded security model used in practice in different applications. The method is based on the controlled finite Markov chain approach set in combination with discrete dynamic programming and MCDM (Multi Criteria Decision Making) techniques that enables the expert to select the cost-effective measures to reduce nuclear proliferation risks depending on availability of resources. The analysis performed with different number of possible measures confirms the conclusions that the implementation of extra-large costs may not produce the required effect, and the increase in resources above a certain level does not appear sensitive. Diversification in improving the effectiveness of other measures seems more rational and efficient for the whole system than the unlimited improvement of the effectiveness of only one measure.

  3. Facility Utilization and Risk Analysis for Remediation of Legacy Transuranic Waste at the Savannah River Site - 13572

    SciTech Connect (OSTI)

    Gilles, Michael L.; Gilmour, John C. [Savannah River Nuclear Solutions, LLC (United States)] [Savannah River Nuclear Solutions, LLC (United States)

    2013-07-01T23:59:59.000Z

    Savannah River Nuclear Solutions (SRNS) completed the Accelerated TRU Project for remediating legacy waste at the Savannah River Site with significant cost and schedule efficiencies due to early identification of resources and utilization of risk matrices. Initial project planning included identification of existing facilities that could be modified to meet the technical requirements needed for repackaging and remediating the waste. The project schedule was then optimized by utilization of risk matrices that identified alternate strategies and parallel processing paths which drove the overall success of the project. Early completion of the Accelerated TRU Project allowed SRNS to pursue stretch goals associated with remediating very difficult TRU waste such as concrete casks from the hot cells in the Savannah River National Laboratory. Project planning for stretch goals also utilized existing facilities and the risk matrices. The Accelerated TRU project and stretch goals were funded under the American Recovery and Reinvestment Act (ARRA). (authors)

  4. United States Government National Nuclear Security Administration...

    Broader source: Energy.gov (indexed) [DOE]

    United States Government National Nuclear Security Administration (NNSA) Savannah River Field Office (SRFO) Memorandum DATE: January 10, 2014 REPLY TO ATTN OF: sv (McAlhany,...

  5. PRELIMINARY NUCLEAR CRITICALITY NUCLEAR SAFETY EVLAUATION FOR THE CONTAINER SURVEILLANCE AND STORAGE CAPABILITY PROJECT

    SciTech Connect (OSTI)

    Low, M; Matthew02 Miller, M; Thomas Reilly, T

    2007-04-30T23:59:59.000Z

    Washington Safety Management Solutions (WSMS) provides criticality safety services to Washington Savannah River Company (WSRC) at the Savannah River Site. One activity at SRS is the Container Surveillance and Storage Capability (CSSC) Project, which will perform surveillances on 3013 containers (hereafter referred to as 3013s) to verify that they meet the Department of Energy (DOE) Standard (STD) 3013 for plutonium storage. The project will handle quantities of material that are greater than ANS/ANSI-8.1 single parameter mass limits, and thus required a Nuclear Criticality Safety Evaluation (NCSE). The WSMS methodology for conducting an NCSE is outlined in the WSMS methods manual. The WSMS methods manual currently follows the requirements of DOE-O-420.1B, DOE-STD-3007-2007, and the Washington Savannah River Company (WSRC) SCD-3 manual. DOE-STD-3007-2007 describes how a NCSE should be performed, while DOE-O-420.1B outlines the requirements for a Criticality Safety Program (CSP). The WSRC SCD-3 manual implements DOE requirements and ANS standards. NCSEs do not address the Nuclear Criticality Safety (NCS) of non-reactor nuclear facilities that may be affected by overt or covert activities of sabotage, espionage, terrorism or other security malevolence. Events which are beyond the Design Basis Accidents (DBAs) are outside the scope of a double contingency analysis.

  6. INSTALLATION OF BUBBLERS IN THE SAVANNAH RIVER SITED DEFENSE WASTE PROCESSING FACILITY MELTER

    SciTech Connect (OSTI)

    Smith, M.; Iverson, D.

    2010-12-08T23:59:59.000Z

    Savannah River Remediation (SRR) LLC assumed the liquid waste contract at the Savannah River Site (SRS) in the summer of 2009. The main contractual agreement was to close 22 High Level Waste (HLW) tanks in eight years. To achieve this aggressive commitment, faster waste processing throughout the SRS liquid waste facilities will be required. Part of the approach to achieve faster waste processing is to increase the canister production rate of the Defense Waste Processing Facility (DWPF) from approximately 200 canisters filled with radioactive waste glass per year to 400 canisters per year. To reach this rate for melter throughput, four bubblers were installed in the DWPF Melter in the late summer of 2010. This effort required collaboration between SRR, SRR critical subcontractor EnergySolutions, and Savannah River Nuclear Solutions, including the Savannah River National Laboratory (SRNL). The tasks included design and fabrication of the bubblers and related equipment, testing of the bubblers for various technical issues, the actual installation of the bubblers and related equipment, and the initial successful operation of the bubblers in the DWPF Melter.

  7. Detection of localized and general corrosion of mild steel in simulated defense nuclear waste solutions using electrochemical noise analysis

    SciTech Connect (OSTI)

    Edgemon, G.L.; Ohl, P.C. [Westinghouse Hanford Co., Richland, WA (United States); Bell, G.E.C. [M.J. Schiff and Associates, Inc., Claremont, CA (United States); Wilson, D.F. [Oak Ridge National Lab., TN (United States)

    1995-12-01T23:59:59.000Z

    Underground waste tanks fabricated from mild steel store more than 60 million gallons of radioactive waste from 50 years of weapons production. Leaks are suspected in a significant number of tanks. The probable modes of corrosion failures are reported to be localized corrosion (e.g. nitrate stress corrosion cracking and pitting). The use of electrochemical noise (EN) for the monitoring and detection of localized corrosion processes has received considerable attention and application over the last several years. Proof of principle laboratory tests were conducted to verify the capability of EN evaluation to detect localized corrosion and to compare the predictions of general corrosion obtained from EN with those derived from other sources. Simple, pre-fabricated flat and U-bend specimens of steel alloys A516-Grade 60 (UNS K02100) and A537-CL 1 (UNS K02400) were immersed in temperature controlled simulated waste solutions. The simulated waste solution was either 5M NaNO{sub 3} with 0.3M NaOH at 90 C or 11M NaNO{sub 3} with 0.15M NaOH at 95 C. The electrochemical noise activity from the specimens was monitored and recorded for periods ranging between 140 and 240 hours. At the end of each test period, the specimens were metallographically examined to correlated EN data with corrosion damage.

  8. Initial comparison of leach behavior between fully radioactive and simulated nuclear waste glasses through long-term testing. Part 1, Solution analysis

    SciTech Connect (OSTI)

    Feng, Xiangdong; Bates, J.K.

    1992-04-01T23:59:59.000Z

    A comparison of glass reactivity between radioactive sludge based and simulated nuclear waste glasses has been made through long-term testing of both glass types for SRL 165, SRL 131, and SRL 200 frit compositions. The data demonstrate that for time periods through 280 days, differences in elemental release to solution up to 400% are observed. However, in general, differences in glass reactivity as measured by the release of boron, lithium, and sodium are less than a factor of two. The differences in reactivity are not large enough to alter the order of glass durability for the different compositions or to change the controlling glass dissolution mechanism. A radiation effect exists, mainly in the influence on the leachate pH, which in turn affects the glass reaction mechanism and rate. The differences in reactivity between fully radioactive and the simulated glasses can be reasonably explained if the controlling reaction mechanism is accounted for. Those differences are glass composition and leaching mechanism dependent. Lithium is found to have the highest elemental release in an ion-exchange dominated glass reaction process, while lithium has a lower release than boron and sodium in a matrix dissolution dominated process, where boron and sodium are usually among the most concentrated solution species.

  9. TESTING OF THE RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Farfan, E.; Foley, T.

    2010-02-10T23:59:59.000Z

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, nonelectrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. Positive results from initial deployment trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and the anticipated future potential use of RadBall throughout the U.S. Department of Energy Complex have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further test, underpin, and strengthen the technical performance of the technology. The study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment were successful in that for each trial radiation tracks were visible. The deployment of RadBall can be accomplished in different ways depending on the size and characteristics of the contaminated area (e.g., a hot cell that already has a crane/manipulator available or highly contaminated room that requires the use of a remote control device with sensor and video equipment to position RadBall). This report also presents SRNL-designed RadBall accessories for future RadBall deployment (a harness, PODS, and robot).

  10. SUCCESSES AND EMERGING ISSUES IN SIMULATING THE PROCESSING BEHAVIOR OF LIQUID-PARTICLE NUCLEAR WASTE SLURRIES AT THE SAVANNAH RIVER SITE - 205E

    SciTech Connect (OSTI)

    Koopman, D.; Lambert, D.; Stone, M.

    2009-09-02T23:59:59.000Z

    Slurries of inorganic solids, containing both stable and radioactive elements, were produced during the cold war as by-products of the production of plutonium and enriched uranium and stored in large tanks at the Savannah River Site. Some of this high level waste is being processed into a stable glass waste form today. Waste processing involves various large scale operations such as tank mixing, inter-tank transfers, washing, gravity settling and decanting, chemical adjustment, and vitrification. The rheological properties of waste slurries are of particular interest. Methods for modeling flow curve data and predicting the properties of slurry blends are particularly important during certain operational phases. Several methods have been evaluated to predict the rheological properties of sludge slurry blends from the data on the individual slurries. These have been relatively successful.

  11. Office of River Protection (ORP) and Washingotn River Protection Solutions,

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T en Y earEnergy T H E DofitemsFallFederalOfficeLLC (WRPS)

  12. Preliminary Review of Safety Assessment Issues at Savannah River Site, August 2011

    SciTech Connect (OSTI)

    Napier, Bruce A.; Rishel, Jeremy P.; Bixler, Nathan E.

    2011-09-19T23:59:59.000Z

    At the request of Savannah River Nuclear Solutions (SRNS) management, a review team composed of experts in atmospheric transport modeling for environmental radiation dose assessment convened at the Savannah River Site (SRS) on August 29-30, 2011. Several issues were presented at the meeting for discussion. This is a short summary that is organized in accordance with the primary issues discussed, which is not necessarily a chronological record. Issues include: SRS Meteorological Data and its Use in MACCS2; Deposition Velocities for Particles; Deposition Velocities for Tritium; MACCS2 Dispersion Coefficients; Use of Low Surface Roughness in Open Areas; Adequacy of Meteorological Tower and Instrumentation; Displacement Height; and Validity of MACCS2 Calculations at Close-in Distances. A longer report will be issued at a later date that expands upon these topics and recommendations.

  13. Red River Compact (Texas)

    Broader source: Energy.gov [DOE]

    The Red River Compact Commission administers the Red River Compact to ensure that Texas receives its equitable share of quality water from the Red River and its tributaries as apportioned by the...

  14. River Basin Commissions (Indiana)

    Broader source: Energy.gov [DOE]

    This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

  15. Maine Rivers Policy (Maine)

    Broader source: Energy.gov [DOE]

    The Maine Rivers Policy accompanies the Maine Waterway Development and Conservation Act and provides additional protection for some river and stream segments, which are designated as “outstanding...

  16. Wabash River Heritage Corridor (Indiana)

    Broader source: Energy.gov [DOE]

    The Wabash River Heritage Corridor, consisting of the Wabash River, the Little River, and the portage between the Little River and the Maumee River, is considered a protected area, where...

  17. Native copper deposits of the Portage Lake volcanics, Michigan: their implications with respect to canister stability for nuclear waste isolation in the Columbia River basalts beneath the Hanford Site, Washington

    SciTech Connect (OSTI)

    Crisman, D.P.; Jacobs, G.K.

    1982-01-01T23:59:59.000Z

    Copper deposits in the Portage Lake Volcanics of northern Michigan have been evaluated as a natural analogue for canister material to be emplaced in a nuclear waste repository located in the basalts beneath the Hanford Site near Richland, Washington. Te native copper, which precipitated from high temperature (200/sup 0/C to 300/sup 0/C) hydrothermal solutions between 500 and 800 million yr ago, has remained relatively unaltered in the Portage lake basalt-groundwater system. The results of this study illustrate the stability of copper in solutions of moderate pH, low to moderate Eh, and low total dissolved solids. Chemical trends and geochemical modeling of te near-surface waters suggestthat similarities (moderate pH, low E, low total dissolved solids) exist between the groundwater-basalt system of the Keweenaw Peninsula and the groundwater-basalt system at the Hanford Site. These similarities and the stability of copper in the Keweenswan basalts imply that copper alloys are adequate materials for nuclear waste canisters emplaced in a repository located in basalt.

  18. Washington River Protection Solutions - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural PublicRates >

  19. SPD SEIS References for Appendix J | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    the Construction and Operation of a Proposed Mixed Oxide Fuel Fabrication Facility at the Savannah River Site, South Carolina, NUREG-1767, Office of Nuclear Material Safety and...

  20. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    Canada N1G 2W1 e-mail: jtrevors@uoguelph.ca Water Air Soil Pollut (2010) 208:1–3 over 50 billion US dollars, and renewable energy

  1. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    fired power plant per unit of electrical energy. Wind powerpower plants will not be cost competitive with other electricity-generating alternatives. For example, wind

  2. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    wind power and other renewable technologies, combined with energy efficiency and conservation can be more cost

  3. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    is the sector that accounts for most of USA oil consumption.thirds of the country's oil consumption is used by vehicles,

  4. PII S0016-7037(00)00379-3 Geologic control of Sr and major element chemistry in Himalayan Rivers, Nepal

    E-Print Network [OSTI]

    Garzione, Carmala N.

    , Nepal N. B. ENGLISH,* J. QUADE, P. G. DECELLES, and C. N. GARZIONE Department of Geology, University) Abstract--Our study of the Seti River in far western Nepal shows that the solute chemistry of the river

  5. EIS-0219: F-Canyon Plutonium Solutions

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of processing the plutonium solutions to metal form using the F-Canyon and FB-Line facilities at the Savannah River Site.

  6. Pecos River Compact (Texas)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the state's entrance into the Pecos River Compact, a joint agreement between the states of New Mexico and Texas. The compact is administered by the Pecos River Compact...

  7. Canadian River Compact (Texas)

    Broader source: Energy.gov [DOE]

    The Canadian River Commission administers the Canadian River Compact which includes the states of New Mexico, Oklahoma, and Texas. Signed in 1950 by the member states, the Compact was subsequently...

  8. Platte River Cooperative Agreement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agreement Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Platte River Cooperative Agreement PEIS, NE, WY, CO, DOE...

  9. Savannah River Plant/Savannah River Laboratory radiation exposure report

    SciTech Connect (OSTI)

    Rogers, C.D.; Hyman, S.D.; Keisler, L.L. (Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Plant); Reeder, D.F.; Jolly, L.; Spoerner, M.T.; Schramm, G.R. (Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Lab.)

    1989-01-01T23:59:59.000Z

    The protection of worker health and safety is of paramount concern at the Savannah River Site. Since the site is one of the largest nuclear sites in the nation, radiation safety is a key element in the protection program. This report is a compendium of the results in 1988 of the programs at the Savannah River Plant and the Savannah River Laboratory to protect the radiological health of employees. By any measure, the radiation protection performance at this site in 1988 was the best since the beginning of operations. This accomplishment was made possible by the commitment and support at all levels of the organizations to reduce radiation exposures to ALARA (As Low As Reasonably Achievable). The report provides detailed information about the radiation doses received by departments and work groups within these organizations. It also includes exposure data for recent years to allow Plant and Laboratory units to track the effectiveness of their ALARA efforts. Many of the successful practices and methods that reduced radiation exposure are described. A new goal for personnel contamination cases has been established for 1989. Only through continual and innovative efforts to minimize exposures can the goals be met. The radiation protection goals for 1989 and previous years are included in the report. 27 figs., 58 tabs.

  10. Microsoft Word - M-2 Section B -Conformed thru 345.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Washington Savannah River Company (WSRC), Savannah River Remediation (SRR), Savannah River Nuclear Solutions (SRNS), and the Savannah River National Laboratory (SRNL) on...

  11. Radioiodine in the Savannah River Site environment

    SciTech Connect (OSTI)

    Kantelo, M.V.; Bauer, L.R.; Marter, W.L.; Murphy, C.E. Jr.; Zeigler, C.C.

    1993-01-15T23:59:59.000Z

    Radioiodine, which is the collective term for all radioactive isotopes of the element iodine, is formed at the Savannah River Site (SRS) principally as a by-product of nuclear reactor operations. Part of the radioiodine is released to the environment during reactor and reprocessing operations at the site. The purpose of this report is to provide an introduction to radioiodine production and disposition, its status in the environment, and the radiation dose and health risks as a consequence of its release to the environment around the Savannah River Plant. A rigorous dose reconstruction study is to be completed by thee Center for Disease Control during the 1990s.

  12. Species for the screening assessment. Columbia River Comprehensive Impact Assessment

    SciTech Connect (OSTI)

    Becker, J.M.; Brandt, C.A.; Dauble, D.D.; Maughan, A.D.; O`Neil, T.K.

    1996-03-01T23:59:59.000Z

    Because of past nuclear production operations along the Columbia River, there is intense public and tribal interest in assessing any residual Hanford Site related contamination along the river from the Hanford Reach to the Pacific Ocean. The Columbia River Comprehensive Impact Assessment was proposed to address these concerns. The assessment of the Columbia River is being conducted in phases. The initial phase is a screening assessment of the risk, which addresses current environmental conditions for a range of potential uses. One component of the screening assessment estimates the risk from contaminants in the Columbia River to the environment. The objective of the ecological risk assessment is to determine whether contaminants from the Columbia River pose a significant threat to selected receptor species that exist in the river and riparian communities of the study area. This report (1) identifies the receptor species selected for the screening assessment of ecological risk and (2) describes the selection process. The species selection process consisted of two tiers. In Tier 1, a master species list was developed that included many plant and animal species known to occur in the aquatic and riparian systems of the Columbia River between Priest Rapids Dam and the Columbia River estuary. This master list was reduced to 368 species that occur in the study area (Priest Rapids Dam to McNary Dam). In Tier 2, the 181 Tier 1 species were qualitatively ranked based on a scoring of their potential exposure and sensitivity to contaminants using a conceptual exposure model for the study area.

  13. National Nuclear Security Administration Babcock & Wilcox Technical

    National Nuclear Security Administration (NNSA)

    France, and Italy. B&W Y-12 led efforts with TVA, AREVA, Nuclear Fuel Services, and the Savannah River Site (SRS) to coordinate the resumption of the Blended Low- Enriched...

  14. Kampung Capacity Local Solutions for

    E-Print Network [OSTI]

    Kammen, Daniel M.

    utility customers. Using a hybrid energy resource optimization framework, we explore optimal configurationKampung Capacity Local Solutions for Sustainable Rural Energy in the Baram River Basin, Sarawak Energy Laboratory (RAEL) & Energy and Resources Group and Goldman School of Public Policy Release Date

  15. Savannah River Site | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTARTOperations / Acquisition and Project

  16. OFFICE OF RIVER PROTECTION NUCLEAR WASTE PROGRAM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 FederalTransformers | DepartmentAnnual ReportSF-428S

  17. Savannah River Site | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,Intelligence andGeneralonlinetools |Savannah

  18. Sandia National Laboratories: radioactive waste solution cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solution cleanup ECIS and UOP (a Honewell Company): CSTs Clean Radioactive Waste in Fukushima and Worldwide On February 14, 2013, in Energy, Materials Science, Nuclear Energy,...

  19. Saving a Dwindling River

    E-Print Network [OSTI]

    Wythe, Kathy

    2007-01-01T23:59:59.000Z

    information on this research is available by downloading TWRI Technical Report 291, ?Reconnaissance Survey of Salt Sources and Loading into the Pecos River,? at http://twri.tamu.edu/reports.php. The research team has also compared flow and salinity data from... Water Act, Section 319 from the U.S. Environmental Protection Agency. ?The river?s importance?historically, biologically, hydrologically and economically?to the future of the entire Pecos River Basin and the Rio Grande is huge,? said Will Hatler, project...

  20. Large Scale Weather Control Using Nuclear Reactors

    E-Print Network [OSTI]

    Singh-Modgil, M

    2002-01-01T23:59:59.000Z

    It is pointed out that controlled release of thermal energy from fission type nuclear reactors can be used to alter weather patterns over significantly large geographical regions. (1) Nuclear heat creates a low pressure region, which can be used to draw moist air from oceans, onto deserts. (2) Creation of low pressure zones over oceans using Nuclear heat can lead to Controlled Cyclone Creation (CCC).(3) Nuclear heat can also be used to melt glaciers and control water flow in rivers.

  1. Large Scale Weather Control Using Nuclear Reactors

    E-Print Network [OSTI]

    Moninder Singh Modgil

    2002-10-02T23:59:59.000Z

    It is pointed out that controlled release of thermal energy from fission type nuclear reactors can be used to alter weather patterns over significantly large geographical regions. (1) Nuclear heat creates a low pressure region, which can be used to draw moist air from oceans, onto deserts. (2) Creation of low pressure zones over oceans using Nuclear heat can lead to Controlled Cyclone Creation (CCC).(3) Nuclear heat can also be used to melt glaciers and control water flow in rivers.

  2. Sabine River Compact (Multiple States)

    Broader source: Energy.gov [DOE]

    The Sabine River Compact Commission administers the Sabine River Compact to ensure that Texas receives its equitable share of quality water from the Sabine River and its tributaries as apportioned...

  3. Savannah River Site Footprint Reduction Results under the American Recovery and Reinvestment Act - 13302

    SciTech Connect (OSTI)

    Flora, Mary [Savannah River Nuclear Solutions Bldg. 730-4B, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions Bldg. 730-4B, Aiken, SC 29808 (United States); Adams, Angelia [United States Department of Energy Bldg. 730-B, Aiken, SC 29808 (United States)] [United States Department of Energy Bldg. 730-B, Aiken, SC 29808 (United States); Pope, Robert [United States Environmental Protection Agency Region IV Atlanta, GA 30303 (United States)] [United States Environmental Protection Agency Region IV Atlanta, GA 30303 (United States)

    2013-07-01T23:59:59.000Z

    The Savannah River Site (SRS) is an 802 square-kilometer United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina, managed and operated by Savannah River Nuclear Solutions. Construction of SRS began in the early 1950's to enhance the nation's nuclear weapons capability. Nuclear weapons material production began in the early 1950's, eventually utilizing five production reactors constructed to support the national defense mission. Past operations have resulted in releases of hazardous constituents and substances to soil and groundwater, resulting in 515 waste sites with contamination exceeding regulatory thresholds. More than 1,000 facilities were constructed onsite with approximately 300 of them considered radiological, nuclear or industrial in nature. In 2003, SRS entered into a Memorandum of Agreement with its regulators to accelerate the cleanup using an Area Completion strategy. The strategy was designed to focus cleanup efforts on the 14 large industrial areas of the site to realize efficiencies of scale in the characterization, assessment, and remediation activities. This strategy focuses on addressing the contaminated surface units and the vadose zone and addressing groundwater plumes subsequently. This approach streamlines characterization and remediation efforts as well as the required regulatory documentation, while enhancing the ability to make large-scale cleanup decisions. In February 2009, Congress approved the American Reinvestment and Recovery Act (ARRA) to create jobs and promote economic recovery. At SRS, ARRA funding was established in part to accelerate the completion of environmental remediation and facility deactivation and decommissioning (D and D). By late 2012, SRS achieved 85 percent footprint reduction utilizing ARRA funding by accelerating and coupling waste unit remediation with D and D of remnant facilities. Facility D and D activities were sequenced and permitted with waste unit remediation activities to streamline regulatory approval and execution. Achieving footprint reduction fulfills the Government's responsibility to address legacy contamination; allows earlier completion of legally enforceable compliance agreement milestones; and enables future potential reuse of DOE resources, including land and infrastructure for other missions. Over the last 3.5 years significant achievements were met that contributed to footprint reduction, including the closure of 41 waste units (including 20 miles of radiologically contaminated stream) and decommissioning of 30 facilities (including the precedent setting in situ closure of two former production reactors, the first in the DOE Complex). Other notable achievements included the removal of over 39,750 cubic meters of debris and 68,810 cubic meters of contaminated soils, including 9175 cubic meters of lead-contaminated soil from a former site small arms testing range and treatment of 1,262 cubic meters of tritium-laden soils and concrete using a thermal treatment system. (authors)

  4. River Edge Redevelopment Zone (Illinois)

    Broader source: Energy.gov [DOE]

    The purpose of the River Edge Redevelopment Program is to revive and redevelop environmentally challenged properties adjacent to rivers in Illinois.

  5. Solvent wash solution

    DOE Patents [OSTI]

    Neace, J.C.

    1984-03-13T23:59:59.000Z

    A process is claimed for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 vol % of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  6. Solvent wash solution

    DOE Patents [OSTI]

    Neace, James C. (Blackville, SC)

    1986-01-01T23:59:59.000Z

    Process for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 volume percent of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  7. EIS-0108: L-Reactor Operation, Savannah River Plant, Aiken, South Carolina

    Broader source: Energy.gov [DOE]

    This Environmental Impact Statement (EIS) was prepared to provide environmental input into the proposed decision to restart L-Reactor operation at the Savannah River Plant (SRP). The Savannah River Plant is a major U.S. Department of Energy (DOE) installation for the production of defense nuclear materials. The proposed restart of L–Reactor would provide defense nuclear materials (i.e. , plutonium) to wet current and near-term needs for national defense purposes.

  8. Mesoscopic structuring and dynamics of alcohol/water solutions probed by Terahertz Time-Domain Spectroscopy and Pulsed Field Gradient Nuclear Magnetic Resonance

    E-Print Network [OSTI]

    Li, Ruoyu; D'Agostino, Carmine; McGregor, James; Mantle, Michael D.; Zeitler, J. Axel; Gladden, Lynn F.

    2014-08-12T23:59:59.000Z

    , and engineering applications; examples include protein folding, membrane self-assembly, electron transfer reactions, heterogeneous catalysis, and fuel cell technology.1?4 Despite this, however, the influence of the solute molecules upon the structure of water... -Domain Spectroscopy. The THz-TDS transmission setup used in this study has been described previously.32 The liquid samples were contained within a liquid cell (PIKE Technologies, Madison U.S.A.) contained between 3 mm thick z-cut quartz windows, which are transparent...

  9. Columbia River Treaty History and 2014/2024 Review

    SciTech Connect (OSTI)

    None

    2009-02-01T23:59:59.000Z

    The Columbia River, the fourth largest river on the continent as measured by average annual ?ow, generates more power than any other river in North America. While its headwaters originate in British Columbia, only about 15 percent of the 259,500 square miles of the Columbia River Basin is actually located in Canada. Yet the Canadian waters account for about 38 percent of the average annual volume, and up to 50 percent of the peak ?ood waters, that ?ow by The Dalles Dam on the Columbia River between Oregon and Washington. In the 1940s, of?cials from the United States and Canada began a long process to seek a joint solution to the ?ooding caused by the unregulated Columbia River and to the postwar demand for greater energy resources. That effort culminated in the Columbia River Treaty, an international agreement between Canada and the United States for the cooperative development of water resources regulation in the upper Columbia River Basin. It was signed in 1961 and implemented in 1964.

  10. Use of Savannah River Site facilities for blend down of highly enriched uranium

    SciTech Connect (OSTI)

    Bickford, W.E.; McKibben, J.M.

    1994-02-01T23:59:59.000Z

    Westinghouse Savannah River Company was asked to assess the use of existing Savannah River Site (SRS) facilities for the conversion of highly enriched uranium (HEU) to low enriched uranium (LEU). The purpose was to eliminate the weapons potential for such material. Blending HEU with existing supplies of depleted uranium (DU) would produce material with less than 5% U-235 content for use in commercial nuclear reactors. The request indicated that as much as 500 to 1,000 MT of HEU would be available for conversion over a 20-year period. Existing facilities at the SRS are capable of producing LEU in the form of uranium trioxide (UO{sub 3}) powder, uranyl nitrate [UO{sub 2}(NO{sub 3}){sub 2}] solution, or metal. Additional processing, and additional facilities, would be required to convert the LEU to uranium dioxide (UO{sub 2}) or uranium hexafluoride (UF{sub 3}), the normal inputs for commercial fuel fabrication. This study`s scope does not include the cost for new conversion facilities. However, the low estimated cost per kilogram of blending HEU to LEU in SRS facilities indicates that even with fees for any additional conversion to UO{sub 2} or UF{sub 6}, blend-down would still provide a product significantly below the spot market price for LEU from traditional enrichment services. The body of the report develops a number of possible facility/process combinations for SRS. The primary conclusion of this study is that SRS has facilities available that are capable of satisfying the goals of a national program to blend HEU to below 5% U-235. This preliminary assessment concludes that several facility/process options appear cost-effective. Finally, SRS is a secure DOE site with all requisite security and safeguard programs, personnel skills, nuclear criticality safety controls, accountability programs, and supporting infrastructure to handle large quantities of special nuclear materials (SNM).

  11. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    of Con- trolled Nuclear Fusion, CONF-760975-P3, pages 1061–more effective solution, nuclear fusion. Fission Energy Thethe development of nuclear fusion weapons, humankind has

  12. Nuclear Magnetic Resonance Studies on Vanadium(IV) Electrolyte...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Resonance Studies on Vanadium(IV) Electrolyte Solutions for Vanadium Redox Flow Battery . Nuclear Magnetic Resonance Studies on Vanadium(IV) Electrolyte Solutions for...

  13. Integration of Environmental Compliance at the Savannah River Site - 13024

    SciTech Connect (OSTI)

    Hoel, David [United States Department of Energy - Savannah River Operations Office (United States)] [United States Department of Energy - Savannah River Operations Office (United States); Griffith, Michael [Savannah River Nuclear Solutions, LLC (United States)] [Savannah River Nuclear Solutions, LLC (United States)

    2013-07-01T23:59:59.000Z

    The Savannah River Site (SRS) is a large federal installation hosting diverse missions and multiple organizations with competing regulatory needs. Accordingly, there was a need to integrate environmental compliance strategies to ensure the consistent flow of information between Department of Energy-Savannah River (DOE-SR), the regulatory agencies and other interested parties. In order to meet this objective, DOE and major SRS contractors and tenants have committed to a strategy of collaboratively working together to ensure that a consistent, integrated, and fully coordinated approach to environmental compliance and regulator relationships is maintained. DOE-SR and Savannah River Nuclear Solutions, LLC, the SRS management and operations contractor, have established an environmental compliance integration process that provides for the consistent flow down of requirements to projects, facilities, SRS contractors, and subcontractors as well as the upward flow of information to assist in the early identification and resolution of environmental regulatory issues and enhancement of compliance opportunities. In addition, this process strongly fosters teamwork to collaboratively resolve complex regulatory challenges, promote pollution prevention and waste minimization opportunities to advance site missions in a manner that balances near-term actions with the long-term site vision, while being protective of human health and the environment. Communication tools are being utilized, some with enhancements, to ensure appropriate information is communicated to all levels with environmental responsibility at SRS. SRS internal regulatory integration is accomplished through a variety of informational exchange forums (e.g., Challenges, Opportunities and Resolution (COR) Team, DOE's Joint Site Regulatory Integration Team, and the Senior Environmental Managers Council (SEMC)). SRS communications and problem-solving with the regulatory agencies have been enhanced through formation of an interagency 'SRS Regulatory Integration Team (SRIT)'. The SRIT is a partnership comprised of representatives from DOE-SR (with contractor support), EPA Region 4 and the South Carolina Department of Health and Environmental Control (SCDHEC) and is chartered to develop a consensus understanding of SRS regulatory issues and activities. These forums and a formal environmental compliance integration process improve timely cross-functional decision making, problem solving, information sharing, and issue resolution. The SRS internal process has been formally documented in an Environmental Regulatory Integration Program Description, which is linked to the SRS Environmental Policy and agreed upon by all major contractors, subcontractors and tenants. (authors)

  14. On tropospheric rivers

    E-Print Network [OSTI]

    Hu, Yuanlong, 1964-

    2002-01-01T23:59:59.000Z

    In this thesis, we investigate atmospheric water vapor transport through a distinct synoptic phenomenon, namely, the Tropospheric River (TR), which is a local filamentary structure on a daily map of vertically integrated ...

  15. Alternate Solutions to Water Resource Development -- A Case Study 

    E-Print Network [OSTI]

    Basco, D. R.; Rahman, K. M. A.

    1974-01-01T23:59:59.000Z

    . Selected solutions for water resources development problems in the Navasota River watershed were analyzed. The cost of water supply by desalination in the service area of the proposed Millican reservoir was computed following the procedure recommended...

  16. Nuclear Engineering Nuclear Criticality Safety

    E-Print Network [OSTI]

    Kemner, Ken

    development, Nuclear Operations Division (NOD) waste management and storage activities and other laboratoryNuclear Engineering Nuclear Criticality Safety The Nuclear Engineering Division (NE) of Argonne National Laboratory is experienced in performing criticality safety and shielding evaluations for nuclear

  17. Use of Electronic Hand-held Devices for Collection of Savannah River Site Environmental Data - 13329

    SciTech Connect (OSTI)

    Marberry, Hugh [SRNS Savannah River Site 730-4B Room 3043 Aiken, SC 29808 (United States)] [SRNS Savannah River Site 730-4B Room 3043 Aiken, SC 29808 (United States); Moore, Winston [SRNS Savannah River Site 735B Room 116 Aiken, SC 29808 (United States)] [SRNS Savannah River Site 735B Room 116 Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    Savannah River Nuclear Solutions has begun using Xplore Tablet PC's to collect data in the field for soil samples, groundwater samples, air samples and round sheets at the Savannah River Site (SRS). EPA guidelines for groundwater sampling are incorporated into the application to ensure the sample technician follows the proper protocol. The sample technician is guided through the process for sampling and round sheet data collection by a series of menus and input boxes. Field measurements and well stabilization information are entered into the tablet for uploading into Environmental Restoration Data Management System (ERDMS). The process helps to eliminate input errors and provides data integrity. A soil sample technician has the ability to collect information about location of sample, field parameter, describe the soil sample, print bottle labels, and print chain of custody for the sample that they have collected. An air sample technician has the ability to provide flow, pressure, hours of operation, print bottle labels and chain of custody for samples they collect. Round sheets are collected using the information provided in the various procedures. The data are collected and uploaded into ERDMS. The equipment used is weather proof and hardened for the field use. Global Positioning System (GPS) capabilities are integrated into the applications to provide the location where samples were collected and to help sample technicians locate wells that are not visited often. (authors)

  18. Dynamic simulation of nuclear hydrogen production systems

    E-Print Network [OSTI]

    Ramírez Muñoz, Patricio D. (Patricio Dario)

    2011-01-01T23:59:59.000Z

    Nuclear hydrogen production processes have been proposed as a solution to rising CO 2 emissions and low fuel yields in the production of liquid transportation fuels. In these processes, the heat of a nuclear reactor is ...

  19. Savannah River Site

    Broader source: Energy.gov [DOE]

    HISTORYDuring the early 1950s, SRS began to produce materials used in nuclear weapons, primarily tritium and plutonium-239. Five reactors were built to produce nuclear materials. Support facilities...

  20. Behavior-Based Safety- The Next Generation

    Broader source: Energy.gov [DOE]

    Presenters: Roger Staten, Hazel Darby, Frank Cannon, Savannah River Remediation, LLC, Savannah River Remediation, Savannah River Nuclear Solutions, LLC Track 2-6

  1. Regional Nuclear Workforce Development in the Central Savannah...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Workforce Development in the Central Savannah River Area Dr. Susan A. Winsor Aiken Technical College President: P.O. Box 696, Aiken, SC 29802, winsors@atc.edu Mindy Mets...

  2. Rivanna River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

  3. Yellowstone River Compact (North Dakota)

    Broader source: Energy.gov [DOE]

    The Yellowstone River Compact, agreed to by the States of Montana, North Dakota, and Wyoming, provides for an equitable division and apportionment of the waters of the Yellowstone River, as well as...

  4. P. Julien S. Ikeda River Engineering and

    E-Print Network [OSTI]

    Julien, Pierre Y.

    1 P. Julien S. Ikeda River Engineering and Stream Restoration Pierre Y. Julien Hong Kong - December 2004 River Engineering and Stream Restoration I - Stream Restoration Objectives Brief overview of River Engineering and Stream Restoration with focus on : 1. River Equilibrium; 2. River Dynamics; 3. River

  5. Pecos River Ecosystem Monitoring Project

    E-Print Network [OSTI]

    McDonald, A.; Hart, C.

    2004-01-01T23:59:59.000Z

    TR- 272 2004 Pecos River Ecosystem Monitoring Project C. Hart A. McDonald Texas Water Resources Institute Texas A&M University - 146 - 2003 Pecos River Ecosystem Monitoring Project... Charles R. Hart, Extension Range Specialist, Fort Stockton Alyson McDonald, Extension Assistant – Hydrology, Fort Stockton SUMMARY The Pecos River Ecosystem Project is attempting to minimize the negative impacts of saltcedar on the river ecosystem...

  6. Rio Grande River

    E-Print Network [OSTI]

    Hills Photo Shop

    2011-09-05T23:59:59.000Z

    FORKS BIRDBEAR-NISKU JEFFERSON GROUP DUPEROW O (IJ o BEAVER HILL LAKE GR UP ELK POINT GROUP SOURIS RIVER Ist. RED BED DAWSON BAY 2ll(IRED BED PRAIRIE EVAP WI NI ASHERN INTERLAKE STONY MOUNTAIN RED RIVER WINN IP EG Figure 3... and is bounded by the Sioux Arch, the Black Hills Uplift, the Miles City Arch, and the Bowdoin Dome. The structural trends within the basin parallel the major structural trends of the Rocky Mountain Belt. The Williston Basin is characterized by gently...

  7. Home Office Expenses Submitted by Fluor Federal Services, Inc., on Savannah River Nuclear Solutions, LLC's U.S. Department of Energy Management & Operating (M&O) Contract No. DE-AC09-08SR22470

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 at IowaSecretary Chu Secretary ChuCertiofSmallHere are

  8. Muddy River Restoration Project Begins

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Muddy River Restoration Project Begins Page 5 #12;2 YANKEE ENGINEER February 2013 Yankee Voices of the Muddy River Restoration project. Inset photo: Flooding at the Muddy River. Materials provided by Mike Project Manager, on the passing of his father in law, Francis James (Jim) Murray, Jan. 9. ... to Laura

  9. FLOOD WARNING SYSTEM JOHNSTONE RIVER

    E-Print Network [OSTI]

    Greenslade, Diana

    Warning Centre in Brisbane. The system provides early warning of heavy rainfall and river risesFLOOD WARNING SYSTEM for the JOHNSTONE RIVER This brochure describes the flood warning system ALERT System Flood Warnings and Bulletins Interpreting Flood Warnings and River Height Bulletins Flood

  10. FLOOD WARNING SYSTEM NERANG RIVER

    E-Print Network [OSTI]

    Greenslade, Diana

    ALERT System The Nerang River ALERT flood warning system was completed in the early 1990's as a coFLOOD WARNING SYSTEM for the NERANG RIVER This brochure describes the flood warning system operated Nerang ALERT System Flood Warnings and Bulletins Interpreting Flood Warnings and River Height Bulletins

  11. Waste reduction at the Savannah River Site

    SciTech Connect (OSTI)

    Stevens, W.E.; Lee, R.A.; Reynolds, R.W.

    1990-01-01T23:59:59.000Z

    The Savannah River Site (SRS) is a key installation for the production and research of nuclear materials for national defense and peace time applications and has been operating a full nuclear fuel cycle since the early 1950s. Wastes generated include high level radioactive, transuranic, low level radioactive, hazardous, mixed, sanitary, and aqueous wastes. Much progress has been made during the last several years to reduce these wastes including management systems, characterization, and technology programs. The reduction of wastes generated and the proper handling of the wastes have always been a part of the Site's operation. This paper summarizes the current status and future plans with respect to waste reduction to waste reduction and reviews some specific examples of successful activities.

  12. Waste reduction at the Savannah River Site

    SciTech Connect (OSTI)

    Stevens, W.E.; Lee, R.A.; Reynolds, R.W.

    1990-12-31T23:59:59.000Z

    The Savannah River Site (SRS) is a key installation for the production and research of nuclear materials for national defense and peace time applications and has been operating a full nuclear fuel cycle since the early 1950s. Wastes generated include high level radioactive, transuranic, low level radioactive, hazardous, mixed, sanitary, and aqueous wastes. Much progress has been made during the last several years to reduce these wastes including management systems, characterization, and technology programs. The reduction of wastes generated and the proper handling of the wastes have always been a part of the Site`s operation. This paper summarizes the current status and future plans with respect to waste reduction to waste reduction and reviews some specific examples of successful activities.

  13. Savannah River Site generic data base development

    SciTech Connect (OSTI)

    Blanton, C.H.; Eide, S.A.

    1993-06-30T23:59:59.000Z

    This report describes the results of a project to improve the generic component failure data base for the Savannah River Site (SRS). A representative list of components and failure modes for SRS risk models was generated by reviewing existing safety analyses and component failure data bases and from suggestions from SRS safety analysts. Then sources of data or failure rate estimates were identified and reviewed for applicability. A major source of information was the Nuclear Computerized Library for Assessing Reactor Reliability, or NUCLARR. This source includes an extensive collection of failure data and failure rate estimates for commercial nuclear power plants. A recent Idaho National Engineering Laboratory report on failure data from the Idaho Chemical Processing Plant was also reviewed. From these and other recent sources, failure data and failure rate estimates were collected for the components and failure modes of interest. This information was aggregated to obtain a recommended generic failure rate distribution (mean and error factor) for each component failure mode.

  14. Kampung Capacity Local Solutions for Sustainable

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Kampung Capacity Local Solutions for Sustainable Rural Energy in the Baram River Basin, Sarawak and social opportunities of up to 1.5 billion people worldwide. As a critical case in point, most rural of service provision based on large-scale regional electrification. A range of different renewable energy

  15. Savannah River Site Robotics

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  16. Savannah River Site Robotics

    ScienceCinema (OSTI)

    None

    2012-06-14T23:59:59.000Z

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  17. Rainfall-River Forecasting

    E-Print Network [OSTI]

    US Army Corps of Engineers

    ;2Rainfall-River Forecasting Joint Summit II NOAA Integrated Water Forecasting Program · Minimize losses due management and enhance America's coastal assets · Expand information for managing America's Water Resources, Precipitation and Water Quality Observations · USACE Reservoir Operation Information, Streamflow, Snowpack

  18. Optimization Online - Guaranteed Minimum-Rank Solutions of ...

    E-Print Network [OSTI]

    Benjamin Recht

    2007-06-28T23:59:59.000Z

    Jun 28, 2007 ... Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization. Benjamin Recht(brecht ***at*** caltech.edu)

  19. Nuclear Resonance Fluorescence for Nuclear Materials Assay

    E-Print Network [OSTI]

    Quiter, Brian Joseph

    2010-01-01T23:59:59.000Z

    Potential of Nuclear Resonance Fluorescence . . . . . . . .2.9.1 Nuclear ThomsonSections . . . . . . . . . . . . . . . Nuclear Resonance

  20. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, D.

    2013-03-01T23:59:59.000Z

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

  1. Compositions and methods for treating nuclear fuel

    DOE Patents [OSTI]

    Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

    2013-08-13T23:59:59.000Z

    Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

  2. Compositions and methods for treating nuclear fuel

    DOE Patents [OSTI]

    Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

    2014-01-28T23:59:59.000Z

    Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

  3. Westinghouse independent safety review of Savannah River production reactors

    SciTech Connect (OSTI)

    Leggett, W.D.; McShane, W.J. (Westinghouse Hanford Co., Richland, WA (USA)); Liparulo, N.J.; McAdoo, J.D.; Strawbridge, L.E. (Westinghouse Electric Corp., Pittsburgh, PA (USA). Nuclear and Advanced Technology Div.); Toto, G. (Westinghouse Electric Corp., Pittsburgh, PA (USA). Nuclear Services Div.); Fauske, H.K. (Fauske and Associates, Inc., Burr Ridge, IL (USA)); Call, D.W. (Westinghouse Savannah R

    1989-04-01T23:59:59.000Z

    Westinghouse Electric Corporation has performed a safety assessment of the Savannah River production reactors (K,L, and P) as requested by the US Department of Energy. This assessment was performed between November 1, 1988, and April 1, 1989, under the transition contract for the Westinghouse Savannah River Company's preparations to succeed E.I. du Pont de Nemours Company as the US Department of Energy contractor for the Savannah River Project. The reviewers were drawn from several Westinghouse nuclear energy organizations, embody a combination of commercial and government reactor experience, and have backgrounds covering the range of technologies relevant to assessing nuclear safety. The report presents the rationale from which the overall judgment was drawn and the basis for the committee's opinion on the phased restart strategy proposed by E.I. du Pont de Nemours Company, Westinghouse, and the US Department of Energy-Savannah River. The committee concluded that it could recommend restart of one reactor at partial power upon completion of a list of recommended upgrades both to systems and their supporting analyses and after demonstration that the organization had assimilated the massive changes it will have undergone.

  4. Energy and Society Week 4 Section Solution

    E-Print Network [OSTI]

    Kammen, Daniel M.

    was the largest source of primary energy consumption for the world in 2013: A. Coal B. Natural gas C. Nuclear D of world energy. Oil, coal, natural gas, nuclear, hydro, and renewable contributed to the world's 20131 9/17/2014 Energy and Society Week 4 Section Solution TOPIC 1: Energy & Development: [iClicker]-1

  5. Multiobjective Optimization of the Colorado River By Gilmore, A. (1), Magee, T., (2) Fulp, T. (3), and Strzepek, K. (4)

    E-Print Network [OSTI]

    that replicated the 24 Month Study. Using this solution as a base, the hydro- power value of selectively relaxingMultiobjective Optimization of the Colorado River By Gilmore, A. (1), Magee, T., (2) Fulp, T. (3. The application of optimization to policy analysis on the Colorado River has been limited by the ability

  6. Alan Roback Policy Implications of Nuclear Winter

    E-Print Network [OSTI]

    Robock, Alan

    Alan Roback Policy Implications of Nuclear Winter and Ideas for Solutions The 5 May 1988 United Nations report clearly states that the nuclear winter theory is supported by current scientific evidence the political will to work on this problem, they would still not prevent nuclear winter when fully implemented

  7. Rappahannock River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rappahannock River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the...

  8. Susquehanna River Basin Compact (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

  9. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underground Research Facility in South Dakota, which will search for neutrinoless double-beta decay. Strong Los Alamos programs in nuclear data and nuclear theory supports...

  10. South Carolina Scenic Rivers Act (South Carolina)

    Broader source: Energy.gov [DOE]

    The goal of the Scenic Rivers Act is to protect selected rivers or river segments of the State with outstanding scenic, recreational, geologic, botanical, fish, wildlife, historic, or cultural...

  11. Ohio River Greenway Development Commission (Indiana)

    Broader source: Energy.gov [DOE]

    The Ohio River Greenway Development Commission administers the Ohio River Greenway Project, which is a park along a 7-mile stretch of the Ohio River. The Commission developed a master plan for the...

  12. Enhanced safeguards via solution monitoring

    SciTech Connect (OSTI)

    Burr, T.; Wangen, L.

    1996-09-01T23:59:59.000Z

    Solution monitoring is defined as the essentially continuous monitoring of solution level, density, and temperature in all tanks in the process that contain, or could contain, safeguards-significant quantities of nuclear material. This report describes some of the enhancements that solution monitoring could make to international safeguards. The focus is on the quantifiable benefits of solution monitoring, but qualitatively, solution monitoring can be viewed as a form of surveillance. Quantitatively, solution monitoring can in some cases improve diversion detection probability. For example, the authors show that under certain assumptions, solution monitoring can be used to reduce the standard deviation of the annual material balance, {sigma}{sub MB}, from approximately 17 kg to approximately 4 kg. Such reduction in {sigma}{sub MB} will not always be possible, as they discuss. However, in all cases, solution monitoring would provide assurance that the measurement error models are adequate so that one has confidence in his estimate of {sigma}{sub MB}. Some of the results in this report were generated using data that were simulated with prototype solution monitoring software that they are developing. An accompanying document describes that software.

  13. Environmental Stewardship at the Savannah River Site: Generations of Success - 13212

    SciTech Connect (OSTI)

    Looney, Brian B.; Bergren, Christopher L.; Gaughan, Thomas F.; Aylward, Robert S.; Guevara, Karen C.; Whitaker, Wade C.; Hennessey, Brian T.; Mills, Gary L.; Blake, John I. [Savannah River Site, Aiken SC 29808, 773-42A (United States)] [Savannah River Site, Aiken SC 29808, 773-42A (United States)

    2013-07-01T23:59:59.000Z

    Approximately sixty years ago, the Savannah River Site (SRS) was built to produce nuclear materials. SRS production operations impacted air, soil, groundwater, ecology, and the local environment. Throughout its history, SRS has addressed these contamination issues directly and has maintained a commitment to environmental stewardship. The Site boasts many environmental firsts. Notably, SRS was the first major Department of Energy (DOE) facility to perform a baseline ecological assessment. This pioneering effort, by Ruth Patrick and the Philadelphia Academy of Sciences, was performed during SRS planning and construction in the early 1950's. This unique early generation of work set the stage for subsequent efforts. Since that time, the scientists and engineers at SRS pro-actively identified environmental problems and developed and implemented effective and efficient environmental management and remediation solutions. This second generation, spanning the 1980's through the 2000's, is exemplified by numerous large and small cleanup actions to address metals and radionuclides, solvents and hydrocarbons, facility and area decommissioning, and ecological restoration. Recently, a third generation of environmental management was initiated as part of Enterprise SRS. This initiative to 'Develop and Deploy Next Generation Cleanup Technologies' formalizes and organizes the major technology matching, development, and implementation processes associated with historical SRS cleanup success as a resource to support future environmental management missions throughout DOE. The four elements of the current, third generation, effort relate to: 1) transition from active to passive cleanup, 2) in situ decommissioning of large nuclear facilities, 3) new long term monitoring paradigms, and 4) a major case study related to support for recovery and restoration of the Japanese Fukushima-Daiichi nuclear power plant and surrounding environment. (authors)

  14. Nuclear weapons and nuclear war

    SciTech Connect (OSTI)

    Cassel, C.; McCally, M.; Abraham, H.

    1984-01-01T23:59:59.000Z

    This book examines the potential radiation hazards and environmental impacts of nuclear weapons. Topics considered include medical responsibility and thermonuclear war, the threat of nuclear war, nuclear weaponry, biological effects, radiation injury, decontamination, long-term effects, ecological effects, psychological aspects, the economic implications of nuclear weapons and war, ethics, civil defense, arms control, nuclear winter, and long-term biological consequences of nuclear war.

  15. Bubblers Speed Nuclear Waste Processing at SRS

    SciTech Connect (OSTI)

    None

    2010-11-14T23:59:59.000Z

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  16. Bubblers Speed Nuclear Waste Processing at SRS

    ScienceCinema (OSTI)

    None

    2014-08-06T23:59:59.000Z

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  17. DOE Selects Washington River Protection Solutions, LLC for Tank...

    Broader source: Energy.gov (indexed) [DOE]

    Management and the Hanford site. Media contact(s): Joann Wardrip, (202) 586-4940 Carrie Meyer, (509) 376-2048 Addthis Related Articles Retrieval of the Tenth Single-Shell Tank...

  18. DOE Selects Washington River Protection Solutions, LLC for Tank Operations

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »DepartmentLaboratory | Department oftheWaste

  19. Award Fee Determination Scorecard Contractor: Washington River Protection Solutions, LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugust AugustInstruments on the Site Contract: Tank

  20. DOE Selects Washington River Protection Solutions, LLC for Tank Operations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions andDefinition ofthe Nation's

  1. Materials System Inventory Management Practices at Washington River Protection Solutions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122 DOE Technologies

  2. EIS-0147: Continued Operation of the K-,L-, and P- Reactors, Savannah River Site, Aiken, South Carolina

    Broader source: Energy.gov [DOE]

    This environmental impact statement (EIS) analyzes the environmental impacts of the proposed action, which is to continue operation of K-, L-, and P-Reactors at the Savannah River Site (SRS) to ensure the capability to produce nuclear materials, and to produce nuclear materials as necessary for United States defense and nondefense programs.

  3. Nuclear Matter and Nuclear Dynamics

    E-Print Network [OSTI]

    M Colonna

    2009-02-26T23:59:59.000Z

    Highlights on the recent research activity, carried out by the Italian Community involved in the "Nuclear Matter and Nuclear Dynamics" field, will be presented.

  4. Savannah River National Laboratory (SRNL) Environmental Sciences...

    Office of Environmental Management (EM)

    Savannah River National Laboratory (SRNL) Environmental Sciences and Biotechnology Support of Waste Isolation Pilot Plant (WIPP) Savannah River National Laboratory (SRNL)...

  5. Independent Oversight Activity Report, Savannah River Site -...

    Office of Environmental Management (EM)

    Activity Report, Savannah River Site - February 2014 February 2014 Operational Awareness Visit of the Savannah River Site HIAR-SRS-2014-02-25 This Independent Activity...

  6. Independent Oversight Inspection, Savannah River Site - January...

    Energy Savers [EERE]

    2010 More Documents & Publications Independent Oversight Review, Savannah River Site Tritium Facilities - December 2012 Enterprise Assessments Review, Savannah River Site 2014...

  7. Great River (1973)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey(SC)Graphite Reactor 'In the- EnergyGreat-River

  8. RIVER PROTECTION PROJECT SYSTEM PLAN

    SciTech Connect (OSTI)

    CERTA PJ

    2008-07-10T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste management and treatment facilities, (8) Developing and implementing technical solutions to mitigate the impact from substantial1y increased estimates of Na added during the pretreatment of the tank waste solids, This involves a combination of: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, or (4) accepting an increase in mission duration, ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks, Key elements of the implementation of this strategy are included within the scope of the Tank Operations Contract, currently in procurement Since 2003, the ORP has conducted over 30 design oversight assessments of the Waste Treatment and Immobilization Plant (WTP). The estimated cost at completion has increased and the schedule for construction and commissioning of the WTP has extended, The DOE, Office of Environmental Management (EM), sanctioned a comprehensive review of the WTP flowsheet, focusing on throughput. In 2005, the TFC completed interim stabilization of the SSTs and as of March 2007, has completed the retrieval of seven selected SSTs. Demonstration of supplemental treatment technologies continues. The ongoing tank waste retrieval experience, progress with supplemental treatment technologies, and changes in WTP schedule led to the FY 2007 TFC baseline submittal in November 2006. The TFC baseline submittal was developed before the WTP schedule was fully understood and approved by ORP, and therefore reflects an earlier start date for the WTP facilities. This System Plan is aligned with the current WTP schedule with hot commissioning beginning in 2018 and full operations beginning in 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of

  9. Recommendations for Amendments--Mainstem Columbia/Snake Rivers Elements of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program

    E-Print Network [OSTI]

    to operate the FCRPS to maximize energy revenue so Bonneville can pay its nuclear power plant gambling debtsRecommendations for Amendments--Mainstem Columbia/Snake Rivers Elements of the Northwest Power to the Northwest Power Planning Council's March 14, 2001 request for recommended amendments to the mainstem

  10. FLOOD WARNING SYSTEM HAUGHTON RIVER

    E-Print Network [OSTI]

    Greenslade, Diana

    . The system provides early warning of heavy rainfall and river rises in the catchment and enables moreFLOOD WARNING SYSTEM for the HAUGHTON RIVER This brochure describes the flood warning system Flooding Flood Forecasting Local Information Haughton ALERT System Flood Warnings and Bulletins

  11. FLOOD WARNING SYSTEM BURDEKIN RIVER

    E-Print Network [OSTI]

    Greenslade, Diana

    . The system provides early warning of heavy rainfall and river rises in the catchment below the DamFLOOD WARNING SYSTEM for the BURDEKIN RIVER This brochure describes the flood warning system Local Information Burdekin ALERT System Flood Warnings and Bulletins Interpreting Flood Warnings

  12. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, D.

    2014-01-01T23:59:59.000Z

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  13. ELECTRONICS UPGRADE TO THE SAVANNAH RIVER NATIONAL LABORATORY COULOMETER FOR PLUTONIUM AND NEPTUNIUM ASSAY

    SciTech Connect (OSTI)

    Cordaro, J.; Holland, M.; Reeves, G.; Nichols, S.; Kruzner, A.

    2011-07-08T23:59:59.000Z

    The Savannah River Site (SRS) has the analytical measurement capability to perform high-precision plutonium concentration measurements by controlled-potential coulometry. State-of-the-art controlled-potential coulometers were designed and fabricated by the Savannah River National Laboratory and installed in the Analytical Laboratories process control laboratory. The Analytical Laboratories uses coulometry for routine accountability measurements of and for verification of standard preparations used to calibrate other plutonium measurement systems routinely applied to process control, nuclear safety, and other accountability applications. The SRNL Coulometer has a demonstrated measurement reliability of {approx}0.05% for 10 mg samples. The system has also been applied to the characterization of neptunium standard solutions with a comparable reliability. The SRNL coulometer features: a patented current integration system; continuous electrical calibration versus Faraday's Constants and Ohm's Law; the control-potential adjustment technique for enhanced application of the Nernst Equation; a wide operating room temperature range; and a fully automated instrument control and data acquisition capability. Systems have been supplied to the International Atomic Energy Agency (IAEA), Russia, Japanese Atomic Energy Agency (JAEA) and the New Brunswick Laboratory (NBL). The most recent vintage of electronics was based on early 1990's integrated circuits. Many of the components are no longer available. At the request of the IAEA and the Department of State, SRNL has completed an electronics upgrade of their controlled-potential coulometer design. Three systems have built with the new design, one for the IAEA which was installed at SAL in May 2011, one system for Los Alamos National Laboratory, (LANL) and one for the SRS Analytical Laboratory. The LANL and SRS systems are undergoing startup testing with installation scheduled for this summer.

  14. Savannah River site environmental report for 1996

    SciTech Connect (OSTI)

    Arnett, M.; Mamatey, A. [eds.

    1998-12-31T23:59:59.000Z

    The mission at the Savannah River Site (SRS) has changed from the production of nuclear weapons materials for national defense to the management of site-generated waste, restoration of the surrounding environment, and the development of industry in and around the site. However, SRS-through its prime operating contractor, Westinghouse Savannah River Company (WSRC)-continues to maintain a comprehensive environmental monitoring program. In 1996, effluent monitoring and environmental surveillance were conducted within a 31,000-square-mile area in and around SRS that includes neighboring cities, towns, and counties in Georgia and South Carolina and extends up to 100 miles from the site. Though the environmental monitoring program was streamlined in 1996-to improve its cost-effectiveness without compromising data quality or reducing its overall ability to produce critical information-thousands of samples of air, surface water, groundwater, food products, drinking water, wildlife, rainwater, soil, sediment, and vegetation were collected and analyzed for radioactive and nonradioactive contaminants.

  15. Savannah River Site Environmental Report for 1994

    SciTech Connect (OSTI)

    Arnett, M.W.; Mamatey, A.; Spitzer, D.

    1994-12-16T23:59:59.000Z

    The mission at the Savannah River Site has changed from producing nuclear weapons materials for national defense to managing the waste it has generated, restoring the environment, and enhancing industrial development in and around the site. But no matter what the site`s mission is, it will continue to maintain its comprehensive environmental monitoring and surveillance program. In 1994, effluent monitoring and environmental surveillance were conducted within a 30,000-square-mile area in and around SRS that includes neighboring cities, towns, and counties in Georgia and South Carolina and extends up to 100 miles from the site. Thousands of samples of air, surface water, groundwater, foodstuffs, drinking water, wildlife, rainwater, soil, sediment, and vegetation were collected and analyzed for radioactive and nonradioactive contaminants.

  16. Savannah River Site generic data base development

    SciTech Connect (OSTI)

    Blanchard , A.

    2000-01-04T23:59:59.000Z

    This report describes the results of a project to improve the generic component failure database for the Savannah River Site (SRS). Additionally, guidelines were developed further for more advanced applications of database values. A representative list of components and failure modes for SRS risk models was generated by reviewing existing safety analyses and component failure data bases and from suggestions from SRS safety analysts. Then sources of data or failure rate estimates were identified and reviewed for applicability. A major source of information was the Nuclear Computerized Library for Assessing Reactor Reliability, or NUCLARR. This source includes an extensive collection of failure data and failure rate estimates for commercial nuclear power plants. A recent Idaho National Engineering Laboratory report on failure data from the Idaho Chemical Processing Plant was also reviewed. From these and other recent sources, failure data and failure rate estimates were collected for the components and failure modes of interest. For each component failure mode, this information was aggregated to obtain a recommended generic failure rate distribution (mean and error factor based on a lognormal distribution). Results are presented in a table in this report. A major difference between generic database and previous efforts is that this effort estimates failure rates based on actual data (failure events) rather than on existing failure rate estimates. This effort was successful in that over 75% of the results are now based on actual data. Also included is a section on guidelines for more advanced applications of failure rate data. This report describes the results of a project to improve the generic component failure database for the Savannah River site (SRS). Additionally, guidelines were developed further for more advanced applications of database values.

  17. agip nucleare: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shadowing in high-energy nuclear collisions are presented. N. Armesto 2006-07-05 3 Nuclear Power CiteSeer Summary: this report does not contain recommendations or solutions...

  18. The Office of River Protection (ORP) and Washington River Protection Solutions (

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth's LowerFacility |The Take a Tour!

  19. Nuclear Resonance Fluorescence for Nuclear Materials Assay

    E-Print Network [OSTI]

    Quiter, Brian Joseph

    2010-01-01T23:59:59.000Z

    to Journal of Nuclear Technology. [46] C.J. Hagmann and J.Library for Nuclear Science and Technology,” Nuclear Dataof Standards and Technology daughter nuclear data processing

  20. SAVANNAH RIVER SITE A PUIIUCATION OF THE SAVANNAII RIVER ECOI"OGY LAIIORATORY

    E-Print Network [OSTI]

    Georgia, University of

    OF THE SAVANNAH RIVER SITE A PUIIUCATION OF THE SAVANNAII RIVER ECOI"OGY LAIIORATORY NATIONAL of the Savannah River Site National Environmental Research Park Program Publication number: SRO-NERP-2S Printed OF THE SAVANNAH RIVER SITE BY CHARLES E. DAVIS AND LAURA L. JANECEK A PUBLICATION OF THE SAVANNAH RIVER SITE

  1. The Pecos River Ecosystem Project Progress Report

    E-Print Network [OSTI]

    Hart, C.

    planting saltcedar for stream bank erosion control along such rivers as the Pecos River in New Mexico. The plant has spread down the Pecos River into Texas and is now known to occur along the river south of Interstate 10. More recently the plant has become...

  2. SRS Completes Annual Examinations to Verify Safe Storage of Nuclear Materials

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – The EM program at the Savannah River Site (SRS) recently completed an annual process in K Area that validates the site’s ongoing commitment to maintaining the safety and security of nuclear materials stored there.

  3. Nuclear Engineer

    Broader source: Energy.gov [DOE]

    This position is located in the Nuclear Safety Division which has specific responsibility for managing the development, analysis, review, and approval of non-reactor nuclear facility safety bases...

  4. Nuclear Navy

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    This video tells the story of the Navy's development of nuclear power and its application in long-range submarines and the growing nuclear surface force. Narrated by Frank Blair.

  5. Nuclear Navy

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This video tells the story of the Navy`s development of nuclear power and its application in long-range submarines and the growing nuclear surface force. Narrated by Frank Blair.

  6. Nuclear Engineer

    Broader source: Energy.gov [DOE]

    This position is located in the Nuclear Safety Division (NSD) which has specific responsibility for managing the development, analysis, review, and approval of non-reactor nuclear facility safety...

  7. Aquatic Supplement Hood River Subbasin

    E-Print Network [OSTI]

    of Oregon and Washington stream temperature data Figure 4 and 5. Herman Creek (Oxbow Hatchery): 7-Day Moving.7 (10 cfs) 50 powerhouse discharge river mile 4.51 (20 cfs) Upper Lenz or Odell cr no info Davis water

  8. Massachusetts Rivers Protection Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    The law creates a 200-foot riverfront area that extends on both sides of rivers and streams. The riverfront area is 25 feet in the following municipalities: Boston, Brockton, Cambridge, Chelsea,...

  9. Case Studies in River Management

    E-Print Network [OSTI]

    Julien, Pierre Y.

    of the Middle Rio Grande --Discharge Analysis --Reservoir Level Analysis Site Description and Background --History of the Middle Rio Grande --Discharge Analysis --Reservoir Level Analysis Aggradation of Abandoned Channels Cheongmi Stream and Mangyeong River Cheongmi Stream South Korea In Collaboration

  10. Niobrara Scenic River Act (Nebraska)

    Broader source: Energy.gov [DOE]

    This act establishes the Niobrara Council, to assist in all aspects of the management of the Niobrara scenic river corridor and promulgate rules and regulations related to the preservation of the...

  11. CRAD, Conduct of Operations- Office of River Protection K Basin Sludge Waste System

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Conduct of Operations program at the Office of River Protection, K Basin Sludge Waste System.

  12. CRAD, Management- Office of River Protection K Basin Sludge Waste System

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Management at the Office of River Protection K Basin Sludge Waste System.

  13. CRAD, Occupational Safety & Health- Office of River Protection K Basin Sludge Waste System

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Environment, Safety and Health program at the Office of River Protection K Basin Sludge Waste System.

  14. Dayao County Yupao River BasDayao County Yupao River Basin Hydro...

    Open Energy Info (EERE)

    Dayao County Yupao River BasDayao County Yupao River Basin Hydro electricity Development Co Ltd in Jump to: navigation, search Name: Dayao County Yupao River BasDayao County Yupao...

  15. EA-1692: Red River Environmental Products, LLC Activated Carbon...

    Office of Environmental Management (EM)

    2: Red River Environmental Products, LLC Activated Carbon Manufacturing Facility, Red River Parish, LA EA-1692: Red River Environmental Products, LLC Activated Carbon Manufacturing...

  16. Nuclear weapons, nuclear effects, nuclear war

    SciTech Connect (OSTI)

    Bing, G.F.

    1991-08-20T23:59:59.000Z

    This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``

  17. Deep drilling data, Raft River geothermal area, Idaho-Raft River...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well...

  18. Sediment transport and topographic evolution of a coupled river and river plume system

    E-Print Network [OSTI]

    Sediment transport and topographic evolution of a coupled river and river plume system inundation from storms, hurricanes, and tsunamis [Tornqvist et al., 2007; Blum and Roberts, 2009; Jerolmack

  19. Trace Analytical Techniques for Nuclear Forensics

    SciTech Connect (OSTI)

    Halverson, J.E.

    1999-04-28T23:59:59.000Z

    Over the history of the Savannah River Site, the Savannah River Technology Center (SRTC) has developed high sensitivity analytical capabilities in support of the Site's Environmental Monitoring Program and nuclear material protection process. Many of these techniques are applicable to the developing need for nuclear forensic analysis capabilities. Radiological and critically control procedures are in place at the SRTC, as well as clean room practices, to minimize the potential for a radiological evidentiary sample to contaminate personnel and the facility, as well as to minimize contaminating the sample thus rendering it useless by law enforcement agencies. Some of the trace analytical techniques available at the SRTC include ultra-low-level gamma and alpha spectrometry, high-sensitivity thermal ionization mass spectrometry, time-of-flight secondary ion mass spectrometry and trace organic analyses. These techniques have been tested during a planned domestic smuggling exercise and in the analysis of an unknown sample.In the event of an interdiction involving the illegal use or movement of radioactive material by U.S. law enforcement agencies (local, state or federal) forensic analyses will be used in developing and building a legal case against the perpetrators. The Savannah River Technology Center (SRTC) at the U.S. Department of Energy's Savannah River Site, a former nuclear production site currently conducting nuclear material stabilization missions, located in Aiken South Carolina, has a long history of performing trace analytical analyses for environmental monitoring. Many of these techniques are also applicable to nuclear forensic analyses. A summary of the trace analytical techniques used at the SRTC, which are applicable to Nuclear Forensics, is presented in this paper.Contamination control, of facilities and personnel involved in the analytical analyses, as well as preventing contamination of the sample, is a unique challenge for nuclear forensic analyses. A discussion of sample handling and contamination control procedures is included in this paper. Some of the applicable analytical techniques available at the SRTC for nuclear forensic analyses include: ultra-low-level gamma and alpha spectroscopy, high-sensitivity thermal-ionization mass spectrometry (TIMS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and trace organic analyses. Results from analyses of special nuclear material (SNM) standards, materials from nuclear smuggling exercises, and materials of unknown origin will be presented.

  20. A Perspective on Coupled Multiscale Simulation and Validation in Nuclear Materials

    SciTech Connect (OSTI)

    M. P. Short; D. Gaston; C. R. Stanek; S. Yip

    2014-01-01T23:59:59.000Z

    The field of nuclear materials encompasses numerous opportunities to address and ultimately solve longstanding industrial problems by improving the fundamental understanding of materials through the integration of experiments with multiscale modeling and high-performance simulation. A particularly noteworthy example is an ongoing study of axial power distortions in a nuclear reactor induced by corrosion deposits, known as CRUD (Chalk River unidentified deposits). We describe how progress is being made toward achieving scientific advances and technological solutions on two fronts. Specifically, the study of thermal conductivity of CRUD phases has augmented missing data as well as revealed new mechanisms. Additionally, the development of a multiscale simulation framework shows potential for the validation of a new capability to predict the power distribution of a reactor, in effect direct evidence of technological impact. The material- and system-level challenges identified in the study of CRUD are similar to other well-known vexing problems in nuclear materials, such as irradiation accelerated corrosion, stress corrosion cracking, and void swelling; they all involve connecting materials science fundamentals at the atomistic- and mesoscales to technology challenges at the macroscale.

  1. Enterprise SRS: Leveraging Ongoing Operations To Advance Nuclear Fuel Cycles Research And Development Programs

    SciTech Connect (OSTI)

    Murray, Alice M.; Marra, John E.; Wilmarth, William R.; Mcguire, Patrick W.; Wheeler, Vickie B.

    2013-07-03T23:59:59.000Z

    The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ''all things nuclear'' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scale-technology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). Thus, the demonstration can be accomplished by leveraging the incremental cost of performing demonstrations without needing to cover the full operational cost of the facility. Current Center activities have been focused on integrating advanced safeguards monitoring technologies demonstrations into the SRS H-Canyon and advanced location technologies demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and customers as well as providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (as well as to offsite venues) so that future demonstrations can be done more efficiently and provide an opportunity to utilize these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future demonstrations is the use of H-Canyon to demonstrate new nuclear materials separations technologies critical for advancing the mission needs DOE-Nuclear Energy (DOE-NE) to advance the research for next generation fuel cycle technologies. The concept is to install processing equipment on frames. The frames are then positioned into an H-Canyon cell and testing in a relevant radiological environment involving prototypic radioactive materials can be performed.

  2. OFFICE OF RIVER PROTECTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecoveryNuclearLifeMeals &

  3. The corrosion of aluminum in boric acid solutions

    E-Print Network [OSTI]

    Bass, Henry Kinsolving

    1956-01-01T23:59:59.000Z

    by corrosion of equipment Such is the case with many nuclear reactor installations, Because of the high neutron absorbtivity of boron, boron and 1ts compounds are used in the control of nuclear reactors. Boric acid 1n solution is a convenient means... to convey the boric acid solutions into the nuclear reactor. The damage to the nuclear reactor resulting from a failure in the aluminum tubing within the reactor would' of course, be very great. Mere the tubing to fa11 outside the reactor efforts...

  4. Decommissioning an Active Historical Reactor Facility at the Savannah River Site - 13453

    SciTech Connect (OSTI)

    Bergren, Christopher L.; Long, J. Tony; Blankenship, John K. [Savannah River Nuclear Solutions, LLC, Bldg. 730-4B, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, LLC, Bldg. 730-4B, Aiken, SC 29808 (United States); Adams, Karen M. [United States Department of Energy, Bldg. 730-B, Aiken, SC 29808 (United States)] [United States Department of Energy, Bldg. 730-B, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    The Savannah River Site (SRS) is an 802 square-kilometer United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina, where Management and Operations are performed by Savannah River Nuclear Solutions (SRNS). In 2004, DOE recognized SRS as structure within the Cold War Historic District of national, state and local significance composed of the first generation of facilities constructed and operated from 1950 through 1989 to produce plutonium and tritium for our nation's defense. DOE agreed to manage the SRS 105-C Reactor Facility as a potentially historic property due to its significance in supporting the U.S. Cold War Mission and for potential for future interpretation. This reactor has five primary areas within it, including a Disassembly Basin (DB) that received irradiated materials from the reactor, cooled them and prepared the components for loading and transport to a Separation Canyon for processing. The 6,317 square meter area was divided into numerous work/storage areas. The walls between the individual basin compartments have narrow vertical openings called 'slots' that permit the transfer of material from one section to another. Data indicated there was over 830 curies of radioactivity associated with the basin sediments and approximately 9.1 M liters of contaminated water, not including a large quantity of activated reactor equipment, scrap metal, and debris on the basin floor. The need for an action was identified in 2010 to reduce risks to personnel in the facility and to eliminate the possible release of contaminants into the environment. The release of DB water could potentially migrate to the aquifer and contaminate groundwater. DOE, its regulators [U. S. Environmental Protection Agency (USEPA)-Region 4 and the South Carolina Department of Health and Environmental Control (SCDHEC)] and the SC Historical Preservation Office (SHPO) agreed/concurred to perform a non-time critical removal action for the In Situ Decommissioning (ISD) of the 105-C Disassembly Basin. ISD consisted of stabilization/isolation of remaining contaminated water, sediment, activated reactor equipment, and scrap metal by filling the DB with underwater non-structural grout to the appropriate (-4.877 meter) grade-level, thence with dry area non-structural grout to the final -10 centimeter level. The roof over the DB was preserved due to its potential historical significance and to prevent the infiltration of precipitation. Forced evaporation was the form of treatment implemented to remove the approximately 9.1 M liters of contaminated basin water. Using specially formulated grouts, irradiated materials and sediment were treated by solidification/isolation thus reducing their mobility, reducing radiation exposure and creating an engineered barrier thereby preventing access to the contaminants. Grouting provided a low permeability barrier to minimize any potential transport of contaminants to the aquifer. Efforts were made to preserve the historical significance of the Reactor in accordance with the National Historic Preservation Act. ISD provides a cost effective means to isolate and contain residual radioactivity from past nuclear operations allowing natural radioactive decay to reduce hazards to manageable levels. This method limits release of radiological contamination to the environment, minimizes radiation exposure to workers, prevents human/animal access to the hazardous substances, and allows for ongoing monitoring of the decommissioned facility. Field construction was initiated in August 2011; evaporator operations commenced January 2012 and ended July 2012 with over 9 M liters of water treated/removed. Over 8,525 cubic meters of grout were placed, completing in August 2012. The project completed with an excellent safety record, on schedule and under budget. (authors)

  5. Interim activities report. [Westinghouse Savannah River Company

    SciTech Connect (OSTI)

    Majzlik, E.H. Jr.

    1992-01-01T23:59:59.000Z

    Several developments have occurred since the 32nd WANTO Meeting that effect the status of the Savannah River Site. A request to restart K-Reactor was issued after nearly three years of intensive engineering analysis, procedure revisions and enhanced operator training to upgrade all aspects of reactor operation. In early December 1991, the Westinghouse Savannah River Company requested permission from DOE to start the K-Reactor. In mid-December the DOE and the Defense Nuclear Facility Safety Board concurred with readiness to operate and a Federal Circuit Court of Appeals ruled against a lawsuit to delay restart until a cooling tower is completed. The K-Reactor was restarted and has been in an evaluation and testing mode. Full power operation at thirty percent of maximum capacity is projected for March 1992 after which actual tritium generation will begin. Operation will continue until October when the cooling tower will be tied into the reactor cooling system. In conjunction with the restart of K-Reactor, the P-Reactor has been placed in permanent shutdown status and the L-Reactor has been placed in warm stand-by. In another reactor related situation, the DOE will delay the decision on construction of the New Production Reactor (NPR) until 1993. The choice of reactor type and location of the NPR will be integrated into the overall programmatic decision on Reconfiguration of the Weapons Complex. Finally, construction of the Replacement Tritium Facility (RTF) was resumed in December 1991 after several months stoppage for evaluation and revision of project funding procedures.

  6. Enterprise Assessments Review, Savannah River Site 2014 Site...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Independent Oversight Inspection, Savannah River Site - January 2010 Independent Oversight Review, Savannah River Site Tritium Facilities - December...

  7. Elm Fork of the Trinity River Floodplain Management Study

    E-Print Network [OSTI]

    Tickle, Greg; Clary, Melinda

    2001-01-01T23:59:59.000Z

    ELM FORK OF THE TRINITY RIVER FLOODPLAIN MANAGEMENT STUDYof the Elm Fork of the Trinity River, Dallas County, Dallas,

  8. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Workforce Development Day Tuesday, October 22, 2013 Nuclear Medicine Topics: Pathways of Practice in Nuclear Medicine Radiopharmacy Patient Care ...

  9. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-08-26T23:59:59.000Z

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information.) Appendices A and B are Official Use Only. Point of contact is Adam Boyd (NA-82), 202-586-0010. Cancels DOE O 457.1 and DOE M 457.1-1.

  10. Nuclear Power

    E-Print Network [OSTI]

    Vilhena and Bardo E.J. Bodmann Carbon-#1;? in Terrestrial and Aquatic Environment of Ignalina Nuclear Power Plant: Sources of Production, Releases and Dose Estimates #3;?? Jonas Mazeika Impact of radionuclide discharges from Temel?n Nuclear Power... (chapter 5), ? Instrumentation and control (chapter 6), ? Diagnostics (chapter 7), ? Safety evaluation methods (chapters 6, 8, 9 and 10), ? Environment and nuclear power plants (chapters 11 - 15), ? Human factors (chapter 16), ? Software development...

  11. Preliminary Notice of Violation, Westinghouse Savannah River...

    Broader source: Energy.gov (indexed) [DOE]

    March 19, 2002 Issued to Westinghouse Savannah River Company related to Safety Basis and Radiation Protection Violations at the Savannah River Site, On March 19, 2002, the U.S....

  12. Lakes and Rivers Improvement Act (Ontario, Canada)

    Broader source: Energy.gov [DOE]

    The Lakes and Rivers Improvement Act proscribes the management, protection, preservation and use of the waters of the lakes and rivers of Ontario and the land under them. The Act also details...

  13. An Inside Look at River Corridor

    Broader source: Energy.gov [DOE]

    In the seventh chapter of The Handford Story, the Energy Department takes a look at the River Corridor -- a 50-mile stretch of the Columbia River that flows through the Hanford site in southeast...

  14. Preliminary Notice of Violation, Westinghouse Savannah River...

    Broader source: Energy.gov (indexed) [DOE]

    December 5, 1997 Issued to Westinghouse Savannah River Company, related to an Unplanned Radioactive Material Intake at the Savannah River Site, (EA-97-12) On December 5, 1997, the...

  15. Belle Fourche River Compact (South Dakota)

    Broader source: Energy.gov [DOE]

    The Belle Fourche River Compact, agreed to by South Dakota and Wyoming, seeks to provide for the most efficient use of the waters of the Belle Fourche River Basin for multiple purposes, and to...

  16. Youghiogheny Wild and Scenic River (Maryland)

    Broader source: Energy.gov [DOE]

    Portions of the Youghiogheny River are protected under the Scenic and Wild Rivers Act, and development on or near these areas is restricted. COMAR section 08.15.02 addresses permitted uses and...

  17. Lempke visits Savannah River Site | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.govSecurity Administration Leader, Los

  18. Madelyn Creedon visits Savannah River Site | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.govSecurity

  19. Savannah River Site hosts regional Lean Alliance event | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART

  20. Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -Energy Proposed1-E WholesaleStuderand|

  1. Savannah River Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andBHoneywell9/%2ARequest| Nationalgrew

  2. River System Hydrology in Texas

    E-Print Network [OSTI]

    Wurbs, R.; Zhang, Y.

    2014-01-01T23:59:59.000Z

    ,700 86,700 Proctor Leon River USACE 1963 59,400 54,702 310,100 Belton Leon River USACE 1954 457,600 432,978 640,000 Stillhouse Hollow Lampasas River USACE 1968 235,700 224,279 390,660 Georgetown San Gabriel R USACE 1980 37,100 36,980 87,600 Granger... San Gabriel R USACE 1980 65,500 50,540 162,200 Somerville Yequa Creek USACE 1967 160,110 154,254 337,700 Hubbard Creek Hubbard Creek WCTMWD 1962 317,750 317,750 í Post NF Double Mt WRMWD proposed 57,420 í í Alan Henry SF Double Mt Lubbock 1993 115...

  3. Grays River Watershed Geomorphic Analysis

    SciTech Connect (OSTI)

    Geist, David R.

    2005-04-30T23:59:59.000Z

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: 􀂃 The effects of historical and current land use practices on erosion and sedimentation within the channel network 􀂃 The ways in which these effects have influenced the sediment budget of the upper watershed 􀂃 The resulting responses in the main stem Grays River upstream of State Highway 4 􀂃 The past and future implications for salmon habi

  4. South Platte River Compact and U.S. Supreme Court Decree for North Platte River

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    1 South Platte River Compact and U.S. Supreme Court Decree for North Platte River J. Michael Jess Platte, and Arkansas rivers, for example, have been resolved through litigation brought before the U and Kansas are examples. In the Platte River watershed the State of Nebraska has experience allocating water

  5. Prepared in cooperation with the Platte River Recovery Implementation Program River Channel Topographic Surveys Collected Prior

    E-Print Network [OSTI]

    Prepared in cooperation with the Platte River Recovery Implementation Program River Channel Topographic Surveys Collected Prior to and Following Elevated Flows in the Central Platte River, Spring 2008 Flows in the Central Platte River, Nebraska, Spring 2008 By Paul J. Kinzel Prepared in cooperation

  6. Effect of spill on adult salmon passage delay at Columbia River and Snake River dams

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Effect of spill on adult salmon passage delay at Columbia River and Snake River dams W. Nicholas dams in the Columbia/Snake River hydrosystem may delay the upstream passage of the adults. To evaluate-to-day variations of spill and upstream fish passage at the eight dams of the Columbia/Snake river hydrosystem

  7. Historical Ecology of the lower santa clara river, Ventura river, and oxnard Plain

    E-Print Network [OSTI]

    Historical Ecology of the lower santa clara river, Ventura river, and oxnard Plain: an analysis. Historical ecology of the lower Santa Clara River,Ventura River, and Oxnard Plain: an analysis of terrestrial layers are available on SFEI's website, at www.sfei.org/projects/VenturaHE. Permissions rights for images

  8. Bayer Material Science (TRL 1 2 3 System)- River Devices to Recover Energy with Advanced Materials(River DREAM)

    Broader source: Energy.gov [DOE]

    Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM)

  9. The river model of black holes

    E-Print Network [OSTI]

    Andrew J. S. Hamilton; Jason P. Lisle

    2006-08-31T23:59:59.000Z

    This paper presents an under-appreciated way to conceptualize stationary black holes, which we call the river model. The river model is mathematically sound, yet simple enough that the basic picture can be understood by non-experts. %that can by understood by non-experts. In the river model, space itself flows like a river through a flat background, while objects move through the river according to the rules of special relativity. In a spherical black hole, the river of space falls into the black hole at the Newtonian escape velocity, hitting the speed of light at the horizon. Inside the horizon, the river flows inward faster than light, carrying everything with it. We show that the river model works also for rotating (Kerr-Newman) black holes, though with a surprising twist. As in the spherical case, the river of space can be regarded as moving through a flat background. However, the river does not spiral inward, as one might have anticipated, but rather falls inward with no azimuthal swirl at all. Instead, the river has at each point not only a velocity but also a rotation, or twist. That is, the river has a Lorentz structure, characterized by six numbers (velocity and rotation), not just three (velocity). As an object moves through the river, it changes its velocity and rotation in response to tidal changes in the velocity and twist of the river along its path. An explicit expression is given for the river field, a six-component bivector field that encodes the velocity and twist of the river at each point, and that encapsulates all the properties of a stationary rotating black hole.

  10. Columbia River Component Data Evaluation Summary Report

    SciTech Connect (OSTI)

    C.S. Cearlock

    2006-08-02T23:59:59.000Z

    The purpose of the Columbia River Component Data Compilation and Evaluation task was to compile, review, and evaluate existing information for constituents that may have been released to the Columbia River due to Hanford Site operations. Through this effort an extensive compilation of information pertaining to Hanford Site-related contaminants released to the Columbia River has been completed for almost 965 km of the river.

  11. PROBING DENSE NUCLEAR MATTER VIA NUCLEAR COLLISIONS

    E-Print Network [OSTI]

    Stocker, H.

    2012-01-01T23:59:59.000Z

    University of California. LBL-12095 Probing Dense NuclearMatter Nuclear Collisions* v~a H. Stocker, M.Gyulassy and J. Boguta Nuclear Science Division Lawrence

  12. The Columbia River Estuary the Columbia River Basin

    E-Print Network [OSTI]

    River estuary was a high-energy environment dominated by physical forces, with extensive sand Riddell November 28, 2000 ISAB 2000-5 #12;ISAB 2000-5 Estuary Report i EXECUTIVE SUMMARY The Northwest to an informed response to the Council. Consequently, this report has been prepared as a preliminary reply

  13. FLOOD WARNING SYSTEM LOGAN & ALBERT RIVERS

    E-Print Network [OSTI]

    Greenslade, Diana

    . The system provides early warning of heavy rainfalls and river rises throughout the catchment and enablesFLOOD WARNING SYSTEM for the LOGAN & ALBERT RIVERS This brochure describes the flood warning system of Meteorology operates a flood warning system for the Logan and Albert River catchments based on a rainfall

  14. SRO -NERP-1 THE SAVANNAH RIVER PLANT

    E-Print Network [OSTI]

    Georgia, University of

    AND TREATMENT by Whit Gibbons Savannah River Ecology Laboratory Aiken , South Carolina A PUBLICATION OF EROA 'S SAVANNAH RIVER NATIONAL ENVIRONMENTAL RESEARCH PARK -SEPTEMBER 1977 COPIES MAY BE OBTAINEO FROM SAVANNAHSRO -NERP-1 SNAKES OF THE SAVANNAH RIVER PLANT WITH INFORMATION ABOUT SNAKEBITE PREVENTION

  15. Validation of ANS-5. 1 as the decay heat standard at the Savannah River Plant

    SciTech Connect (OSTI)

    Apperson, Jr, C E

    1982-01-01T23:59:59.000Z

    The Savannah River Laboratory (SRL) is upgrading the methods used to predict the post shutdown decay heat of the Savannah River reactors by implementing procedures based on the ANS Decay Heat Power in Light Water Reactors standard. This approach takes advantage of the large volume of research used in developing the standard and establishes compatibility with the nuclear industry. To qualify the decay heat standard for use, a series of comparisons were made between detailed decay heat calculations performed using the SHIELD code system and results obtained from the standard.

  16. Romania: Brand-New Engineering Solutions

    SciTech Connect (OSTI)

    Ken Allen; Lucian Biro; Nicolae Zamfir; Madalina Budu

    2011-01-01T23:59:59.000Z

    The HEU spent nuclear fuel transport from Romania was a pilot project in the framework of the Russian Research Reactor Fuel Return Program (RRRFR), being the first fully certified spent nuclear fuel shipment by air. The successful implementation of the Romanian shipment also brought various new technology in the program, further used by other participating countries. Until 2009, the RRRFR program repatriated to the Russian Federation HEU spent nuclear fuel of Russian origin from many countries, like Uzbekistan, Czech Republic, Latvia, Hungary, Kazakhstan and Bulgaria. The means of transport used were various; from specialized TK-5 train for the carriage of Russian TUK-19 transport casks, to platform trains for 20 ft freight ISO containers carrying Czech Skoda VPVR/M casks; from river barge on the Danube, to vessel on the Mediterranean Sea and Atlantic Ocean. Initially, in 2005, the transport plan of the HEU spent nuclear fuel from the National Institute for R&D in Nuclear Physics and Nuclear Engineering 'Horia Hulubei' in Magurele, Romania considered a similar scheme, using the specialized TK-5 train transiting Ukraine to the destination point in the Russian Federation, or, as an alternative, using the means and route of the spent nuclear fuel periodically shipped from the Bulgarian nuclear power plant Kosloduy (by barge on the Danube, and by train through Ukraine to the Russian Federation). Due to impossibility to reach an agreement in due time with the transit country, in February 2007 the US, Russian and Romanian project partners decided to adopt the air shipment of the spent nuclear fuel as prime option, eliminating the need for agreements with any transit countries. By this time the spent nuclear fuel inspections were completed, proving the compliance of the burn-up parameters with the international requirements for air shipments of radioactive materials. The short air route avoiding overflying of any other countries except the country of origin and the country of destination also contributed to the decision making in this issue. The efficient project management and cooperation between the three countries (Russia, Romania and USA) made possible, after two and a half years of preparation work, for the first fully certified spent nuclear fuel air shipment to take place on 29th of June 2009, from Romanian airport 'Henri Coanda' to the Russian airport 'Koltsovo' near Yekaterinburg. One day before that, after a record period of 3 weeks of preparation, another HEU cargo was shipped by air from Romanian Institute for Nuclear Research in Pitesti to Russia, containing fresh pellets and therefore making Romania the third HEU-free country in the RRRFR program.

  17. G. A. Antaki Westinghouse Savannah River Company Savannah River...

    Office of Scientific and Technical Information (OSTI)

    configurations. Recognizing the excessive costs and the limited value added of wholesale analysis, the nuclear industry, through EPRI, has developed rules for the seismic...

  18. Rational Ligand Design for U(VI) and Pu(IV)

    E-Print Network [OSTI]

    Szigethy, Geza

    2010-01-01T23:59:59.000Z

    solutions into appropriate fractions and physical forms can be illustrated by the nuclear waste forms found at the Savannah River

  19. National Nuclear Security Administration | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  20. Nuclear war, nuclear proliferation, and their consequences

    SciTech Connect (OSTI)

    Aga Khan, S.

    1986-01-01T23:59:59.000Z

    This book presents papers on nuclear weapons proliferation. Topics considered include the Nuclear Non-Proliferation Treaty and its future, the spread of nuclear weapons among nations, the link between horizontal and vertical proliferation, national security, nuclear disarmament, the impact of nuclear weapons on Third World regional conflicts, the global effects of a nuclear war, medical effects on human populations, the nuclear winter, the nuclear arms race, and arms control.

  1. HANFORD SITE RIVER CORRIDOR CLEANUP

    SciTech Connect (OSTI)

    BAZZELL, K.D.

    2006-02-01T23:59:59.000Z

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.

  2. NUCLEAR PLANT OPERATIONS AND

    E-Print Network [OSTI]

    Pázsit, Imre

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: neutron flux, cur- rent noise, vibration diagnostics: Swedish Nuclear Powe

  3. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-02-07T23:59:59.000Z

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information. The Manual is Official Use Only, and is not available on the Directives Portal. The point of contact for the Manual is Randall Weidman, NA-121.2, 202-586-4582.) Canceled by DOE O 457.1A

  4. Fissile solution dynamics: Student research

    SciTech Connect (OSTI)

    Hetrick, D.L.

    1994-09-01T23:59:59.000Z

    There are two research projects in criticality safety at the University of Arizona: one in dynamic simulation of hypothetical criticality accidents in fissile solutions, and one in criticality benchmarks using transport theory. We have used the data from nuclear excursions in KEWB, CRAC, and SILENE to help in building models for solution excursions. An equation of state for liquids containing gas bubbles has been developed and coupled to point-reactor dynamics in an attempt to predict fission rate, yield, pressure, and kinetic energy. It appears that radiolytic gas is unimportant until after the first peak, but that it does strongly affect the shape of the subsequent power decrease and also the dynamic pressure.

  5. Waste certification review program at the Savannah River Site

    SciTech Connect (OSTI)

    Faulk, G.W.; Kinney, J.C. [Westinghouse Savannah River Co., Aiken, SC (United States); Knapp, D.C. [Bechtel Savannah River Inc., Aiken, SC (United States); Burdette, T.E. [Science Applications International Corp., Oak Ridge, TN (United States)

    1996-02-01T23:59:59.000Z

    After approving the waste certification programs for 45 generators of low-level radioactive and mixed waste, Westinghouse Savannah River Company (WSRC) moved forward to implement a performance-based approach for assuring that approved waste generators maintain their waste certification programs. WSRC implemented the Waste Certification Review Program, which is comprised of two sitewide programs, waste generator self-assessments and Facility Evaluation Board reviews, integrated with the WSRC Solid Waste Management Department Waste Verification Program Evaluations. The waste generator self-assessments ensure compliance with waste certification requirements, and Facility Evaluation Board reviews provide independent oversight of generators` waste certification programs. Waste verification evaluations by the TSD facilities serve as the foundation of the program by confirming that waste contents and generator performance continue to meet waste acceptance criteria (WSRC 1994) prior to shipment to treatment, storage, and disposal facilities. Construction of the Savannah River Site (SRS) was started by the US Government in 1950. The site covers approximately 300 square miles located along the Savannah River near Aiken, South Carolina. It is operated by the US Department of Energy (DOE). Operations are conducted by managing and operating contractors, including the Westinghouse Savannah River Company (WSRC). Historically, the primary purpose of the SRS was to produce special nuclear materials, primarily plutonium and tritium. In general, low-level radioactive and mixed waste is generated through activities in operations. Presently, 47 SRS facilities generate low-level radioactive and mixed waste. The policies, guidelines, and requirements for managing these wastes are determined by DOE and are reflected in DOE Order 5820.2A (US DOE 1988).

  6. Nuclear Celebrations

    E-Print Network [OSTI]

    Hacker, Randi; Tsutsui, William

    2006-11-01T23:59:59.000Z

    Broadcast Transcript: The North Korean situation is frightening for many reasons but none, perhaps, more eerily disturbing than images of North Koreans celebrating in brightly colored costumes just days after the nation's underground nuclear test...

  7. Nuclear Nonproliferation

    SciTech Connect (OSTI)

    Atkins-Duffin, C E

    2008-12-10T23:59:59.000Z

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  8. Nuclear Science/Nuclear Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One of the greatNuclear Science/Nuclear

  9. Nuclear shadowing in the light-cone dipole approach

    E-Print Network [OSTI]

    Jan Nemchik

    2008-03-12T23:59:59.000Z

    We study nuclear shadowing at small Bjorken x nuclear shadowing for the barq-q Fock component of the photon is calculated using exact numerical solution of the evolution equation for the Green function. At x nuclear shadowing becomes effective. Numerical results for nuclear shadowing are compared with available data from the E665 and NMC collaborations. Model calculations are finally tested with the results obtained from other models.

  10. Improved method for extracting lanthanides and actinides from acid solutions

    DOE Patents [OSTI]

    Horwitz, E.P.; Kalina, D.G.; Kaplan, L.; Mason, G.W.

    1983-07-26T23:59:59.000Z

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions uses a new series of neutral bi-functional extractants, the alkyl(phenyl)-N,N-dialkylcarbamoylmethylphosphine oxides. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high-level nuclear reprocessing waste solutions.

  11. Impacts of a Nuclear War in South Asia on Rice Production in Mainland China

    E-Print Network [OSTI]

    Robock, Alan

    for Agrotechnology Transfer agricultural simulation model to simulate regional nuclear war impacts on rice yield limitations. The best solution to avoid nuclear war impacts on agriculture is to avoid nuclear war, those climate changes due a small regional nuclear war could significantly influence agricultural

  12. Geological Constraints on High-Level Nuclear Waste Disposal and their Relationship to Possible

    E-Print Network [OSTI]

    Polly, David

    nuclear energy. The U.S. government has recognized geologic disposal as a solution since the mid-1950s of plants produces about 20% of the United States' total energy consumption [EPA website, Nuclear Energy radioactivity produced in the process of electricity generation by nuclear fission [World Nuclear Association

  13. Land and water use characteristics in the vicinity of the Savannah River Site

    SciTech Connect (OSTI)

    Hamby, D.M.

    1991-03-01T23:59:59.000Z

    Routine operations at the Savannah River Site (SRS) result in the release of small amounts of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the offsite maximum individual and the offsite population within 50 miles of the SRS are estimated on a yearly basis. These estimates are generated using dose models prescribed for the commercial nuclear power industry by the Nuclear Regulatory Commission (NRC). The NRC provides default values for dose model parameters for facilities not having enough data to develop site-specific values. A survey of land and water use characteristics for the Savannah River area has been conducted to determine as many site-specific values as possible for inclusion in the dose models used at the SRS. These site parameters include local characteristics of meat, milk, and vegetable production; river recreational activities; and meat, milk, and vegetable consumption rates. The report that follows describes the origin of the NRC default values, the methodology for deriving regional data, the results of the study, and the derivations of region-specific usage and consumption rates. 33 refs., 3 figs., 8 tabs.

  14. SAVANNAH RIVER NATIONAL LABORATORY HYDROGEN TECHNOLOGY RESEARCH

    SciTech Connect (OSTI)

    Danko, E

    2008-02-08T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

  15. The River Campus Libraries comprised of the Annex Storage Library; the Carlson Science and Engineering Library; the Laboratory for Laser Energetics Library; the Physics-Optics-Astronomy Library; and the Rush Rhees

    E-Print Network [OSTI]

    , Collaborative Solutions, and Digital Capabilities. Through these priorities, the River Campus Libraries aimsThe River Campus Libraries ­ comprised of the Annex Storage Library; the Carlson Science and Engineering Library; the Laboratory for Laser Energetics Library; the Physics-Optics-Astronomy Library

  16. The River Runs Dry: Examining Water Shortages in the Yellow River Basin

    E-Print Network [OSTI]

    Zusman, Eric

    2000-01-01T23:59:59.000Z

    Runs Dry: Examining Water Shortages in the Yellow Riverof the severity of water shortages in the river’s basin. Ina median level of runoff water shortages in the basin would

  17. Aquatic impacts from operation of three midwestern nuclear power stations: Cooper Nuclear Station environmental appraisal report

    SciTech Connect (OSTI)

    Brice, J.R.

    1981-10-01T23:59:59.000Z

    Cooper Nuclear Station is located on the Nebraska side of the Missouri River in Nemaha County. The station utilizes a boiling water reactor and steam turbine generator to produce 778 MW (net) of electrical power. The cooling system is a once-through design that withdraws water from, and discharges to, the Missouri River. No significant adverse impacts to the biota of the Missouri River from the Cooper Nuclear Station discharge were detected. Localized effects in the vicinity of the discharge have been observed. These include changes in the diversity and productivity of phytoplankton, periphyton, and benthic invertebrates at certain times of the year. The station appears to entrain large numbers of catostomid larvae, but this loss is not reflected in the available commercial fisheries statistics. Large numbers of gizzard shad and freshwater drum are impinged annually by Cooper Nuclear Station, but neither of these species seem to be adversely affected. Bigmouth buffalo populations could potentially suffer losses, but as was the case with the other catostomids, commercial catches of bigmouth buffalo did not seem to be affected by station operation.

  18. Restart of K-Reactor, Savannah River Site: Safety evaluation report

    SciTech Connect (OSTI)

    Not Available

    1991-04-01T23:59:59.000Z

    This Safety Evaluation Report (SER) focuses on those issues required to support the restart of the K-Reactor at the Savannah River Plant. This SER provides the safety criteria for restart and documents the results of the staff reviews of the DOE and operating contractor activities to meet these criteria. To develop the restart criteria for the issues discussed in this SER, the Savannah River Restart Office and Savannah River Special Projects Office staffs relied, when possible, on commercial industry codes and standards and on NRC requirements and guidelines for the commercial nuclear industry. However, because of the age and uniqueness of the Savannah River reactors, criteria for the commercial plants were not always applicable. In these cases, alternate criteria were developed. The restart criteria applicable to each of the issues are identified in the safety evaluations for each issue. The restart criteria identified in this report are intended to apply only to restart of the Savannah River reactors. Following the development of the acceptance criteria, the DOE staff and their support contractors evaluated the results of the DOE and operating contractor (WSRC) activities to meet these criteria. The results of those evaluations are documented in this report. Deviations or failures to meet the requirements are either justified in the report or carried as open or confirmatory items to be completed and evaluated in supplements to this report before restart. 62 refs., 1 fig.

  19. NUCLEAR PROXIMITY FORCES

    E-Print Network [OSTI]

    Randrup, J.

    2011-01-01T23:59:59.000Z

    One might summarize of nuclear potential energy has beendegree of freedom) for the nuclear interaction between anyUniversity of California. Nuclear Proximity Forces 'I< at

  20. Nuclear scales

    SciTech Connect (OSTI)

    Friar, J.L.

    1998-12-01T23:59:59.000Z

    Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the {pi}-{gamma} force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted.

  1. Nuclear winter

    SciTech Connect (OSTI)

    Ehrlich, A.

    1984-04-01T23:59:59.000Z

    The 13 speakers at the October 1983 Conference on the World After Nuclear War each contributed specialized knowledge to the climatic and biological effects of nuclear war. The author highlights the findings of the TTAPS (named for its authors) study and confirmation by Soviet scientists on the nuclear winter. Atmospheric consequences would come from debris blocking sunlight and creating conditions of cold and darkness that could preclude the continued existence of life. The biological consequences of cold and darkness would be reduced photosynthesis, devastating losses of food, damage and death from ionizing radiation, and a breakdown of ecosystems. Impacts on the human population would be intensified by a breakdown in social services. The author summarizes points of discussion during the conference. 4 references.

  2. New Columbia River Estuary purchases benefit salmon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the mouth of the Columbia River to permanently protect riverside habitat for Northwest fish and wildlife, including threatened and endangered salmon and steelhead. The...

  3. Savannah River Laboratory monthly report, July 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. [comp.

    1991-12-31T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  4. Savannah River Laboratory monthly report, July 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. (comp.)

    1991-01-01T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  5. Lumbee River EMC- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Lumbee River EMC (LREMC) offers rebates to its residential customers who purchase and install qualified energy efficient products or services. Rebates are available for water heaters, refrigerator...

  6. The Columbia River System Inside Story

    SciTech Connect (OSTI)

    none,

    2001-04-01T23:59:59.000Z

    The Columbia River is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Pacific Northwest—from fostering world-famous Pacific salmon to supplying clean natural fuel for 50 to 65 percent of the region’s electrical generation. Since early in the 20th century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system.

  7. Savannah River Laboratory monthly report, August 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. [comp.

    1991-12-31T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  8. Savannah River Laboratory monthly report, August 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. (comp.)

    1991-01-01T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  9. South River EMC- Energy Efficient Rebate Program

    Broader source: Energy.gov [DOE]

    South River EMC offers a variety of rebates encouragings its members to invest in energy efficient appliances, equipment, and home upgrades. Incentives are available for clothes washers,...

  10. Wild and Scenic Rivers Act (Maryland)

    Broader source: Energy.gov [DOE]

    It is state policy to protect the outstanding scenic, geologic, ecologic, historic, recreational, agricultural, fish, wildlife, cultural, and other similar values of certain rivers and adjacent...

  11. Savannah River Laboratory monthly report, September 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. (comp.)

    1991-01-01T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  12. Savannah River Laboratory monthly report, September 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. [comp.

    1991-12-31T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  13. Preliminary Notice of Violation, Westinghouse Savannah River...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notice of Violation, Westinghouse Savannah River Company - EA-2000-08 Type B Accident Investigation Board Report on the September 1, 1999, Plutonium Intakes at the...

  14. Preliminary Notice of Violation, Westinghouse Savannah River...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Westinghouse Savannah River Company - EA-2000-08 More Documents & Publications Type B Accident Investigation Board Report on the September 1, 1999, Plutonium Intakes at the...

  15. Sandia National Laboratories: river current energy converters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  16. Application of a 2-D particle tracking model to simulate entrainment of winter flounder larvae at the Millstone Nuclear Power Station

    E-Print Network [OSTI]

    Dimou, Nadia K.

    1989-01-01T23:59:59.000Z

    A 2-D random walk model, developed by Dimou (1989) as part of this research project, was used to simulate entrainment at the Millstone Nuclear Power Station of winter flounder larvae hatched within Niantic River.

  17. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecovery NuclearSensor NodesNuclear

  18. Comparative Evaluation of Generalized River/Reservoir System Models

    E-Print Network [OSTI]

    Wurbs, Ralph A.

    This report reviews user-oriented generalized reservoir/river system models. The terms reservoir/river system, reservoir system, reservoir operation, or river basin management "model" or "modeling system" are used synonymously to refer to computer...

  19. Technical solutions to nonproliferation challenges

    SciTech Connect (OSTI)

    Satkowiak, Lawrence [Director, Nonproliferation, Safeguards and Security Programs, Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)

    2014-05-09T23:59:59.000Z

    The threat of nuclear terrorism is real and poses a significant challenge to both U.S. and global security. For terrorists, the challenge is not so much the actual design of an improvised nuclear device (IND) but more the acquisition of the special nuclear material (SNM), either highly enriched uranium (HEU) or plutonium, to make the fission weapon. This paper provides two examples of technical solutions that were developed in support of the nonproliferation objective of reducing the opportunity for acquisition of HEU. The first example reviews technologies used to monitor centrifuge enrichment plants to determine if there is any diversion of uranium materials or misuse of facilities to produce undeclared product. The discussion begins with a brief overview of the basics of uranium processing and enrichment. The role of the International Atomic Energy Agency (IAEA), its safeguard objectives and how the technology evolved to meet those objectives will be described. The second example focuses on technologies developed and deployed to monitor the blend down of 500 metric tons of HEU from Russia's dismantled nuclear weapons to reactor fuel or low enriched uranium (LEU) under the U.S.-Russia HEU Purchase Agreement. This reactor fuel was then purchased by U.S. fuel fabricators and provided about half the fuel for the domestic power reactors. The Department of Energy established the HEU Transparency Program to provide confidence that weapons usable HEU was being blended down and thus removed from any potential theft scenario. Two measurement technologies, an enrichment meter and a flow monitor, were combined into an automated blend down monitoring system (BDMS) and were deployed to four sites in Russia to provide 24/7 monitoring of the blend down. Data was downloaded and analyzed periodically by inspectors to provide the assurances required.

  20. Lesson Learned by Savannah River Site Activity-level Work Planning and Control

    Broader source: Energy.gov [DOE]

    Slide Presentation by Bonnie Barnes, Savannah River Remediation. Work Planning and Control at Savannah River Remediation.

  1. Nuclear Golf

    E-Print Network [OSTI]

    Hacker, Randi; Tsutsui, William

    2006-12-06T23:59:59.000Z

    Broadcast Transcript: Pay no attention to that nuclear warhead behind the 18th hole; just shout "Fore!" and drive your Titleist down the fairway. In a development that is bizarre even by North Korean standards, the country is making a move to sell...

  2. Hood River Passive House, Hood River, Oregon (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50%" (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  3. CRAD, Emergency Management - Office of River Protection K Basin...

    Energy Savers [EERE]

    CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A...

  4. alligator rivers region: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by meandering rivers Geosciences Websites Summary: Numerical simulations of bedrock valley evolution by meandering rivers with variable bank material of many landscapes, and...

  5. aliakmon river greece: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by meandering rivers Geosciences Websites Summary: Numerical simulations of bedrock valley evolution by meandering rivers with variable bank material of many landscapes, and...

  6. allegheny river: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by meandering rivers Geosciences Websites Summary: Numerical simulations of bedrock valley evolution by meandering rivers with variable bank material of many landscapes, and...

  7. almendares river havana: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by meandering rivers Geosciences Websites Summary: Numerical simulations of bedrock valley evolution by meandering rivers with variable bank material of many landscapes, and...

  8. amu dar river: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by meandering rivers Geosciences Websites Summary: Numerical simulations of bedrock valley evolution by meandering rivers with variable bank material of many landscapes, and...

  9. amazon river system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Land Use in indigenous and Colonist Communities of the Palcazu Basin, Peruvian Amazon McClain, Michael 159 Charlotte, Manatee River, Sarasota, Hardee, and Peace River Soil Biology...

  10. Ventilation System to Improve Savannah River Site's Liquid Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System to Improve Savannah River Site's Liquid Waste Operations Ventilation System to Improve Savannah River Site's Liquid Waste Operations August 28, 2014 - 12:00pm...

  11. Enterprise Assessments Review of the Savannah River Site Salt...

    Energy Savers [EERE]

    the Savannah River Site Salt Waste Processing Facility Construction Quality and Startup Test Plans - June 2015 Enterprise Assessments Review of the Savannah River Site Salt Waste...

  12. Letter from Commonwealth to Mirant Potomac River Concerning Serious...

    Energy Savers [EERE]

    to Mirant Potomac River Concerning Serious Violations of the National Ambient Air Quality Standards for Sulfur Dioxide Letter from Commonwealth to Mirant Potomac River Concerning...

  13. Savannah River National Laboratory Meets with Historically Black...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savannah River National Laboratory Meets with Historically Black Colleges and Universities Savannah River National Laboratory Meets with Historically Black Colleges and...

  14. Independent Oversight Follow-up Review, Savannah River National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savannah River National Laboratory - January 2012 Independent Oversight Follow-up Review, Savannah River National Laboratory - January 2012 January 2012 Follow-up Review of...

  15. assessment columbia river: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and disturbances may be ineffective are being spent in the United States on river and stream restoration projects. In the Columbia River basin Montgomery, David R. 311 A...

  16. GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL...

    Open Energy Info (EERE)

    RIVER GEOTHERMAL SYSTEM, IDAHO Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER...

  17. The investigation of anomalous magnetization in the Raft River...

    Open Energy Info (EERE)

    River valley, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: The investigation of anomalous magnetization in the Raft River...

  18. Savannah River Site's Liquid Waste Operations Adds Multi-Functional...

    Office of Environmental Management (EM)

    Savannah River Site's Liquid Waste Operations Adds Multi-Functional Laboratory Savannah River Site's Liquid Waste Operations Adds Multi-Functional Laboratory January 28, 2015 -...

  19. Independent Oversight Review, Savannah River Site Tritium Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 2012 Independent Oversight Review, Savannah River Site Tritium Facilities - June 2012 June 2012 Review of the Savannah River Site Tritium Facilities Implementation...

  20. Independent Oversight Review, Savannah River Site Tritium Facilities...

    Energy Savers [EERE]

    Savannah River Site Tritium Facilities - December 2012 Independent Oversight Review, Savannah River Site Tritium Facilities - December 2012 December 2012 Review of Site...

  1. Nuclear Forensics | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forensics | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  2. Nuclear Incident Team | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Incident Team | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

  3. Ecotoxicology | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:research community -- hostedEconomicSavannah River

  4. Caney River | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8thCalwind IICaney River Jump to: navigation,

  5. WORKSHOP ON NUCLEAR DYNAMICS

    E-Print Network [OSTI]

    Myers, W.D.

    2010-01-01T23:59:59.000Z

    L. Wilets, "Theories of Nuclear Fission", Clarendon Press,of the nuclear force, result in lower calculated fission

  6. National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FROM: SUBJECT: USIUK Memorandum of Understanding between National Nuclear Security Administration's (NNSA) Associate Administrator for Defense Nuclear Security (AADNS)...

  7. The State of the Columbia River Basin

    E-Print Network [OSTI]

    the Council to serve as a comprehensive planning agency for energy policy and fish and wildlife policy in the Columbia River Basin and to inform the public about energy and fish and wildlife issues and involve Energy, Fish, Wildlife: The State of the Columbia River Basin, 2013

  8. FLOOD WARNING SYSTEM BREMER RIVER TO IPSWICH

    E-Print Network [OSTI]

    Greenslade, Diana

    . The system provides early warning of heavy rainfalls and river rises throughout the catchment and enables. Flood ALERT System The initial Ipswich Creeks ALERT flood warning system was completed in the earlyFLOOD WARNING SYSTEM for the BREMER RIVER TO IPSWICH This brochure describes the flood warning

  9. RiverFalls,Wisconsin SolarinSmall

    E-Print Network [OSTI]

    ), which services approximately 5,800 customers, the largest being UW-RF.ii Together, the utility are solar (most are biogas and wind), the program has helped to raise awareness and interest in renewable energy within the community.v Bringing Solar to River Falls The success of the River Falls Renewable

  10. Pecos River Watershed Protection Plan Update

    E-Print Network [OSTI]

    Gregory, L.; Hauck, L.; Blumenthal, B.; Brown, M.; Porter, A.

    2013-01-01T23:59:59.000Z

    Implementation of the Pecos River Watershed Protection Plan (WPP) began in November 2009 upon acceptance of the WPP by EPA. The primary goals of implementing the plan are to improve the health of the Pecos River watershed and instream water quality...

  11. Restoring our Rivers By Bridget Avila

    E-Print Network [OSTI]

    Palmer, Margaret A.

    , the first-ever comprehensive database of more than 37,000 stream and restoration projects nationwideRestoring our Rivers By Bridget Avila Maryland has the largest number of river restoration projects restoration and conservation. On a sweltering July afternoon, an assortment of men and women clad in T

  12. California's Russian River: A Conservation Partnership

    E-Print Network [OSTI]

    . Improve weather and river flow forecasting to maximize water captured for reservoirs and fisheries support forecast-based reservoir operations and allow for improved water management. It may also provide's Russian River Habitat Blueprint #12;Restore floodplain habitat through reclamation of abandoned gravel

  13. Prospective Climate Change Impact on Large Rivers

    E-Print Network [OSTI]

    Julien, Pierre Y.

    1 Prospective Climate Change Impact on Large Rivers in the US and South Korea Pierre Y. Julien Dept. of Civil and Environ. Eng. Colorado State University Seoul, South Korea August 11, 2009 Climate Change and Large Rivers 1. Climatic changes have been on-going for some time; 2. Climate changes usually predict

  14. Savannah River Site Environmental Report for 1998

    SciTech Connect (OSTI)

    Arnett, M.

    1999-06-09T23:59:59.000Z

    The mission at the Savannah River Site (SRS) is focused primarily on support of the national defense, nonproliferation, and environmental cleanup. SRS-through its prime operating contractor, Westinghouse Savannah River Company-continues to maintain a comprehensive environmental monitoring program.

  15. INSTRUCTIONS FOR SUBMITTING NUCLEAR

    E-Print Network [OSTI]

    waste management proceedings. Keywords Nuclear, nuclear power plant, spent fuel, nuclear waste, data of Submitted Data 3 NUCLEAR POWER PLANT DATA REQUESTS 6 A. Environmental Impacts 6 B. Spent Fuel Generation 8 C. Spent Nuclear Fuel Storage 9 D. Spent Nuclear Fuel Transport and Disposal Issues 10 E. Interim Spent

  16. Regional Transmission Projects: Finding Solutions

    SciTech Connect (OSTI)

    The Keystone Center

    2005-06-15T23:59:59.000Z

    The Keystone Center convened and facilitated a year-long Dialogue on "Regional Transmission Projects: Finding Solutions" to develop recommendations that will help address the difficult and contentious issues related to expansions of regional electric transmission systems that are needed for reliable and economic transmission of power within and across regions. This effort brought together a cross-section of affected stakeholders and thought leaders to address the problem with the collective wisdom of their experience and interests. Transmission owners sat at the table with consumer advocates and environmental organizations. Representatives from regional transmission organizations exchanged ideas with state and federal regulators. Generation developers explored common interests with public power suppliers. Together, the Dialogue participants developed consensus solutions about how to begin unraveling some of the more intractable issues surrounding identification of need, allocation of costs, and reaching consensus on siting issues that can frustrate the development of regional transmission infrastructure. The recommendations fall into three broad categories: 1. Recommendations on appropriate institutional arrangements and processes for achieving regional consensus on the need for new or expanded transmission infrastructure 2. Recommendations on the process for siting of transmission lines 3. Recommendations on the tools needed to support regional planning, cost allocation, and siting efforts. List of Dialogue participants: List of Dialogue Participants: American Electric Power American Transmission Company American Wind Energy Association California ISO Calpine Corporation Cinergy Edison Electric Institute Environmental Defense Federal Energy Regulatory Commission Great River Energy International Transmission Company ISO-New England Iowa Public Utility Board Kanner & Associates Midwest ISO National Association of Regulatory Utility Commissioners National Association of State Utility Consumer Advocates National Grid Northeast Utilities PA Office of Consumer Advocates Pacific Gas & Electric Corporation Pennsylvania Public Utility Commission PJM Interconnection The Electricity Consumers Resource Council U.S. Department of Energy US Department of the Interior Van Ness Feldman Western Interstate Energy Board Wind on the Wires Wisconsin Public Service Commission Xcel Energy

  17. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    SciTech Connect (OSTI)

    Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul E.

    2013-09-30T23:59:59.000Z

    This report fulfills the M2 milestone M2FT-13PN0912022, “Stranded Sites De-Inventorying Report.” In January 2013, the U.S. Department of Energy (DOE) issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013). Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. This focus is consistent with the recommendations of the Blue Ribbon Commission on America’s Nuclear Future, which identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses (BRC 2012). Shutdown sites are defined as those commercial nuclear power reactor sites where the nuclear power reactors have been shut down and the site has been decommissioned or is undergoing decommissioning. In this report, a preliminary evaluation of removing used nuclear fuel from 12 shutdown sites was conducted. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. These sites have no other operating nuclear power reactors at their sites and have also notified the U.S. Nuclear Regulatory Commission that their reactors have permanently ceased power operations and that nuclear fuel has been permanently removed from their reactor vessels. Shutdown reactors at sites having other operating reactors are not included in this evaluation.

  18. Exact Solutions of Einstein's Field Equations

    E-Print Network [OSTI]

    P. S. Negi

    2004-01-08T23:59:59.000Z

    We examine various well known exact solutions available in the literature to investigate the recent criterion obtained in ref. [20] which should be fulfilled by any static and spherically symmetric solution in the state of hydrostatic equilibrium. It is seen that this criterion is fulfilled only by (i) the regular solutions having a vanishing surface density together with the pressure, and (ii) the singular solutions corresponding to a non-vanishing density at the surface of the configuration . On the other hand, the regular solutions corresponding to a non-vanishing surface density do not fulfill this criterion. Based upon this investigation, we point out that the exterior Schwarzschild solution itself provides necessary conditions for the types of the density distributions to be considered inside the mass, in order to obtain exact solutions or equations of state compatible with the structure of general relativity. The regular solutions with finite centre and non-zero surface densities which do not fulfill the criterion [20], in fact, can not meet the requirement of the `actual mass' set up by exterior Schwarzschild solution. The only regular solution which could be possible in this regard is represented by uniform (homogeneous) density distribution. The criterion [20] provides a necessary and sufficient condition for any static and spherical configuration (including core-envelope models) to be compatible with the structure of general relativity. Thus, it may find application to construct the appropriate core-envelope models of stellar objects like neutron stars and may be used to test various equations of state for dense nuclear matter and the models of relativistic stellar structures like star clusters.

  19. INFORMATION: Management Alert on Environmental Management's Select Strategy for Disposition of Savannah River Site Depleted Uranium Oxides

    SciTech Connect (OSTI)

    None

    2010-04-01T23:59:59.000Z

    The Administration and the Congress, through policy statements and passage of the American Recovery and Reinvestment Act of 2009 (Recovery Act), have signaled that they hope that proactive actions by agency Inspectors General will help ensure that Federal Recovery Act activities are transparent, effective and efficient. In that context, the purpose of this management alert is to share with you concerns that have been raised to the Office of Inspector General regarding the planned disposition of the Savannah River Site's (SRS) inventory of Depleted Uranium (DU) oxides. This inventory, generated as a by-product of the nuclear weapons production process and amounting to approximately 15,600 drums of DU oxides, has been stored at SRS for decades. A Department source we deem reliable and credible recently came to the Office of Inspector General expressing concern that imminent actions are planned that may not provide for the most cost effective disposition of these materials. During April 2009, the Department chose to use funds provided under the Recovery Act to accelerate final disposition of the SRS inventory of DU oxides. After coordination with State of Utah regulators, elected officials and the U.S. Nuclear Regulatory Commission, the Department initiated a campaign to ship the material to a facility operated by EnergySolutions in Clive, Utah. Although one shipment of a portion of the material has already been sent to the EnergySolutions facility, the majority of the product remains at SRS. As had been planned, both for the shipment already made and those planned in the near term, the EnergySolutions facility was to have been the final disposal location for the material. Recently, a member of Congress and various Utah State officials raised questions regarding the radioactive and other constituents present in the DU oxides to be disposed of at the Clive, Utah, facility. These concerns revolved around the characterization of the material and its acceptability under existing licensing criteria. As a consequence, the Governor of Utah met with Department officials to voice concerns regarding further shipments of the material and to seek return of the initial shipment of DU oxides to SRS. Utah's objections and the Department's agreement to accede to the State's demands effectively prohibit the transfer of the remaining material from South Carolina to Utah. In response, the Department evaluated its options and issued a draft decision paper on March 1, 2010, which outlined an alternative for temporary storage until the final disposition issue could be resolved. Under the terms of the proposed option, the remaining shipments from SRS are to be sent on an interim basis to a facility owned by Waste Control Specialists (WCS) in Andrews, Texas. Clearly, this choice carries with it a number of significant logistical burdens, including substantial additional costs for, among several items, repackaging at SRS, transportation to Texas, storage at the interim site, and, repackaging and transportation to the yet-to-be-determined final disposition point. The Department source expressed the concern that the proposal to store the material on an interim basis in Texas was inefficient and unnecessary, asserting: (1) that the materials could remain at SRS until a final disposition path is identified, and that this could be done safely, securely and cost effectively; and, (2) that the nature of the material was not subject to existing compliance agreements with the State of South Carolina, suggesting the viability of keeping the material in storage at SRS until a permanent disposal site is definitively established. We noted that, while the Department's decision paper referred to 'numerous project and programmatic factors that make it impractical to retain the remaining inventory at Savannah River,' it did not outline the specific issues involved nor did it provide any substantive economic or environmental analysis supporting the need for the planned interim storage action. The only apparent driver in this case was a Recovery Act-related goal esta

  20. March 2015 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    solutions Maimoni, A. (1980) 101 Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 87 One-dimensional drift-flux model and constitutive...

  1. Process for recovery of palladium from nuclear fuel reprocessing wastes

    DOE Patents [OSTI]

    Campbell, D.O.; Buxton, S.R.

    1980-06-16T23:59:59.000Z

    Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M; (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound; (c) heating the solution at reflux temperature until precipitation is complete; and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.

  2. Simple Waste Solutions for Complex Facilities - 12433

    SciTech Connect (OSTI)

    King, Terry I. [Washington Closure Hanford, Richland, Washington 99352 (United States); Stephan, Clifford J. [Lucas Engineering and Management Services, Richland Washington 99352 (United States)

    2012-07-01T23:59:59.000Z

    The buildings in the 300 Area, including several Category 3 nuclear facilities are undergoing deactivation, decommissioning, decontamination and demolition (D4) by Washington Closure Hanford (WCH) as part of the River Corridor Closure Contract (RCCC). The D4 process has generated a wide variety of low-level radioactive and low-level radioactive mixed waste as well as TRU. The Hanford Site-wide Transportation Safety Document (TSD) has been successfully utilized to transport waste streams that otherwise would not be able to be shipped. The TSD accomplished this by establishing a comprehensive set of onsite transportation and packaging performance standards and risk-based standards. The requirements and standards presented are equivalent to DOT and NRC standards (10 CFR 71). (authors)

  3. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company

    SciTech Connect (OSTI)

    Paller, M. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-03-26T23:59:59.000Z

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70[degrees]C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.

  4. Data for the screening assessment. Volume 1: Text, Columbia River Comprehensive Impact Assessment

    SciTech Connect (OSTI)

    Miley, T.B.; O`Neil, T.K.; Gilbert, R.O.; Klevgard, L.A.; Walters, T.B.

    1996-06-01T23:59:59.000Z

    The Columbia River is a critical resource for residents of the Pacific Northwest. This resource drew the Manhattan Project`s planners to the site now called Hanford to produce nuclear weapon materials. Production of those materials has left behind a legacy of chemical and radioactive contamination and materials that have, are, and will continue to pose a threat to the Columbia river for the foreseeable future. To evaluate the impact to the river from this Hanford-derived contamination, the US Department of Energy, US Environmental Protection Agency, and State of Washington Department of Ecology (the Tri-Party agencies) initiated a study referred to as the Columbia River Comprehensive Impact Assessment (CRCIA). To address concerns about the scope and direction of CRCIA as well as enhance regulator, stakeholder, tribal, and public involvement, the CRCIA Management Team was formed in August 1995. A major CRCIA Team decision was to organize CRCIA into phases, with additional phases to be identified as warranted after completion of the initial phase. The initial phase is comprised of two parts: (1) a screening assessment to evaluate the current impact to the river resulting from Hanford-derived contamination and (2) identification of requirements considered necessary by the CRCIA Management Team for a comprehensive assessment of impact to the river. The purpose of the screening assessment is to support cleanup decisions. The scope of the screening assessment is to evaluate the current risk to humans and the environment resulting from Hanford-derived contaminants. The screening assessment has the primary components of: identifying contaminants to be assessed; identifying a variety of exposure scenarios to evaluate human contaminant exposure; identifying a variety of other species to evaluate ecological contaminant exposure; and assessing risks posed by exposure of humans and other species to the contaminants.

  5. Nuclear photonics

    SciTech Connect (OSTI)

    Habs, D.; Guenther, M. M.; Jentschel, M.; Thirolf, P. G. [Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany); Max Planck Institut fuer Quantenoptik, D-85748 Garching (Germany); Institut Laue-Langevin, F-38042 Grenoble (Germany); Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany)

    2012-07-09T23:59:59.000Z

    With the planned new {gamma}-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 10{sup 13}{gamma}/s and a band width of {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -3}, a new era of {gamma} beams with energies up to 20MeV comes into operation, compared to the present world-leading HI{gamma}S facility at Duke University (USA) with 10{sup 8}{gamma}/s and {Delta}E{gamma}/E{gamma} Almost-Equal-To 3 Dot-Operator 10{sup -2}. In the long run even a seeded quantum FEL for {gamma} beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused {gamma} beams. Here we describe a new experiment at the {gamma} beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for {gamma} beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for {gamma} beams are being developed. Thus, we have to optimize the total system: the {gamma}-beam facility, the {gamma}-beam optics and {gamma} detectors. We can trade {gamma} intensity for band width, going down to {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -6} and address individual nuclear levels. The term 'nuclear photonics' stresses the importance of nuclear applications. We can address with {gamma}-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, {gamma} beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to {mu}m resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

  6. Extraction of cesium and strontium from nuclear waste

    DOE Patents [OSTI]

    Davis, Jr., Milton W. (Lexington, SC); Bowers, Jr., Charles B. (Columbia, SC)

    1988-01-01T23:59:59.000Z

    Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5') [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution.

  7. Extraction of cesium and strontium from nuclear waste

    DOE Patents [OSTI]

    Davis, M.W. Jr.; Bowers, C.B. Jr.

    1988-06-07T23:59:59.000Z

    Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5[prime]) [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution. 3 figs.

  8. Annual Tour Ready to Explore New Mexico's Lower Pecos River

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Annual Tour Ready to Explore New Mexico's Lower Pecos River By Steve Ress The itinerary is set and the seats have been filled for an early June bus tour to New Mexico's lower Pecos River basin compacts on Nebraska's Republican River and New Mexico's Pecos River to see what can be learned from

  9. Independent Oversight Inspection, Savannah River Site, Summary Report- February 2004

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Management and Emergency Management at the Savannah River Site

  10. Energy development and water options in the Yellowstone River Basin

    SciTech Connect (OSTI)

    Narayanan, R.; MacIntyre, D.D.; Torpy, M.F.

    1980-08-01T23:59:59.000Z

    Using a mixed-integer programming model, the impacts of institutional constraints on the marginal capacity for energy development in the Yellowstone River Basin and consequent hydrologic changes were examined. Under average annual flow conditions, energy outputs in the Yellowstone Basin can increase roughly nine times by 1985 and 12 to 18 times by 2000. In contrast, water availability is limiting energy development in the Tongue and Powder River Basins in Wyoming. Variability in hydrologic regime causes model solutions to change drastically. If flows decrease to 80 and 60% of average annual levels, the energy production is decreased by 17 and 95%, respectively. If development strategies in the basin are followed on the basis of 80% average annual flows, the Buffalo Bill enlargement (271,300 acre-ft), Tongue River Modification (58,000 acre-ft), and the two reservoirs at Sweetgrass Creek (each 27,000 acre-ft) will be necessary, in addition to several small storage facilities, to best meet the instream flow needs in Montana and to deliver the waters apportioned by compact between Wyoming and Montana. Furthermore, the results indicate that relaxing the instream flow requirements from recommended levels by 10% could increase regional energy output by 19% in 1985 and 35% in 2000. This model illustrates that modifications in institutional restrictions to achieve greater water mobility between users in a given state, as well as flexible practices for transferring water between states, can assist economic growth. Thus, the probability for restricted energy development at this juncture appears to be affected to a greater degree by institutional constraints than by water availability constraints.

  11. Security and Use Control of Nuclear Explosives and Nuclear Weapons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4C, Security and Use Control of Nuclear Explosives and Nuclear Weapons by LtCol Karl Basham Functional areas: Nuclear Explosives, Nuclear Weapons, Security The Order establishes...

  12. River Data Package for Hanford Assessments

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Guensch, Gregory R.; Patton, Gregory W.

    2006-08-01T23:59:59.000Z

    This data package documents the technical basis for selecting physical and hydraulic parameters and input values that will be used in river modeling for Hanford assessments. This work was originally conducted as part of the Characterization of Systems Task of the Groundwater Remediation Project managed by Fluor Hanford, Inc. and revised as part of the Characterization of Systems Project managed by PNNL for DOE. The river data package provides calculations of flow and transport in the Columbia River system. The module is based on the legacy code for the Modular Aquatic Simulation System II (MASS2), which is a two-dimensional, depth-averaged model that provides the capability to simulate the lateral (bank-to-bank) variation of flow and contaminants. It simulates river hydrodynamics (water velocities and surface elevations), sediment transport, contaminant transport, biotic transport, and sediment-contaminant interaction, including both suspended sediments and bed sediments. This document presents the data assembled to run the river module components for the section of the Columbia River from Vernita Bridge to the confluence with the Yakima River. MASS2 requires data on the river flow rate, downstream water surface elevation, groundwater influx and contaminants flux, background concentrations of contaminants, channel bathymetry, and the bed and suspended sediment properties. Stochastic variability for some input parameters such as partition coefficient (kd) values and background radionuclide concentrations is generated by the Environmental Stochastic Preprocessor. River flow is randomized on a yearly basis. At this time, the conceptual model does not incorporate extreme flooding (for example, 50 to 100 years) or dam removal scenarios.

  13. Corrosion Control Measures For Liquid Radioactive Waste Storage Tanks At The Savannah River Site

    SciTech Connect (OSTI)

    Wiersma, B. J.; Subramanian, K. H.

    2012-11-27T23:59:59.000Z

    The Savannah River Site has stored radioactive wastes in large, underground, carbon steel tanks for approximately 60 years. An assessment of potential degradation mechanisms determined that the tanks may be vulnerable to nitrate- induced pitting corrosion and stress corrosion cracking. Controls on the solution chemistry and temperature of the wastes are in place to mitigate these mechanisms. These controls are based upon a series of experiments performed using simulated solutions on materials used for construction of the tanks. The technical bases and evolution of these controls is presented in this paper.

  14. EXPERIMENTAL METHODS TO ESTIMATE ACCUMULATED SOLIDS IN NUCLEAR WASTE TANKS

    SciTech Connect (OSTI)

    Duignan, M.; Steeper, T.; Steimke, J.

    2012-12-10T23:59:59.000Z

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream; Magnetic wand used to manually remove stainless steel solids from samples and the tank heel; Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas; Laser rangefinders to determine the volume and shape of the solids mounds; Core sampler to determine the stainless steel solids distribution within the solids mounds; Computer driven positioner that placed the laser rangefinders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These devices and techniques were very effective to estimate the movement, location, and concentrations of the solids representing plutonium and are expected to perform well at a larger scale. The operation of the techniques and their measurement accuracies will be discussed as well as the overall results of the accumulated solids test.

  15. Refining 31 P nuclear magnetic resonance spectroscopy for marine

    E-Print Network [OSTI]

    Paytan, Adina

    Refining 31 P nuclear magnetic resonance spectroscopy for marine particulate samples: Storage 31 P nuclear magnetic resonance (NMR) spectroscopy has recently been used to characterize phosphorus.e., no storage, refrigeration, freezing, and oven-drying and grinding) prior to extraction for solution 31 P

  16. Nuclear Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One of the great scientific challenges is

  17. Nuclear Forensics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One of the great scientific

  18. Nuclear Energy!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOE Directives,838Nuclear Detectionmore

  19. Nuclear Nonproliferation,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecovery NuclearSensor Nodes for

  20. NUCLEAR ENERGY

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment of Energyof Energy NREL:Education &NTSF NUCLEAR

  1. The Navruz Project: Transboundary Monitoring for Radionuclides and Metals in Central Asia Rivers

    SciTech Connect (OSTI)

    PASSELL, HOWARD D.; BARBER, DAVID S.; BETSILL, J. DAVID; LITTLEFIELD, ADRIANE C.; MOHAGHEGHI, AMIR H.; SHANKS, SONOYA T.; YULDASHEV, BEKHZAD; SALIKHBAEV, UMAR; RADYUK, RAISA; DJURAEV, AKRAM; DJURAEV, ANWAR; VASILIEV, IVAN; TOLONGUTOV,BAJGABYL; VALENTINA,ALEKHINA; SOLODUKHIN,VLADIMIR; POZNIAK,VICTOR

    2002-04-02T23:59:59.000Z

    The transboundary nature of water resources demands a transboundary approach to their monitoring and management. However, transboundary water projects raise a challenging set of problems related to communication issues, and standardization of sampling, analysis and data management methods. This manual addresses those challenges and provides the information and guidance needed to perform the Navruz Project, a cooperative, transboundary, river monitoring project involving rivers and institutions in Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan facilitated by Sandia National Laboratories in the U.S. The Navruz Project focuses on waterborne radionuclides and metals because of their importance to public health and nuclear materials proliferation concerns in the region. This manual provides guidelines for participants on sample and data collection, field equipment operations and procedures, sample handling, laboratory analysis, and data management. Also included are descriptions of rivers, sampling sites and parameters on which data are collected. Data obtained in this project are shared among all participating countries and the public through an internet web site and are available for use in further studies and in regional transboundary water resource management efforts. Overall, the project addresses three main goals: to help increase capabilities in Central Asian nations for sustainable water resources management; to provide a scientific basis for supporting nuclear transparency and non-proliferation in the region; and to help reduce the threat of conflict in Central Asia over water resources, proliferation concerns, or other factors.

  2. Proliferation Resistant Nuclear Reactor Fuel

    SciTech Connect (OSTI)

    Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

    2011-02-18T23:59:59.000Z

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and we posit that the exploration, development, and implementation of intrinsic mechanisms such as discussed here are part of a balanced approach aimed at preventing the misuse of nuclear material for nuclear-energy applications.

  3. EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River Counties, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration (BPA) is preparing an EA to assess potential environmental impacts of a proposal to rebuild its 24-mile long, 115 kilovolt Bonneville-Hood River transmission line. The existing line runs between the Bonneville Powerhouse at Bonneville Dam in Multnomah County, Oregon, and BPA's existing Hood River Substation in Hood River County, Oregon. The project would include replacing structures and conductor wires, improving access roads, and constructing new access roads or trails where needed.

  4. River Data Package for the 2004 Composite Analysis

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Guensch, Gregory R.; Patton, Gregory W.

    2004-08-01T23:59:59.000Z

    Beginning in fiscal year 2003, the DOE Richland Operations Office initiated activities, including the development of data packages, to support the 2004 Composite Analysis. The river data package provides calculations of flow and transport in the Columbia River system. This document presents the data assembled to run the river module components for the section of the Columbia River from Vernita Bridge to the confluence with the Yakima River.

  5. Nuclear reactor engineering

    SciTech Connect (OSTI)

    Glasstone, S.; Sesonske, A.

    1981-01-01T23:59:59.000Z

    Chapters are presented concerning energy from nuclear fission; nuclear reactions and radiations; diffusion and slowing-down of neutrons; principles of reactor analysis; nuclear reactor kinetics and control; energy removal; non-fuel reactor materials; the reactor fuel system; radiation protection and environmental effects; nuclear reactor shielding; nuclear reactor safety; and power reactor systems.

  6. Comment and response document for the ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The US Department of Energy (DOE) responses to comments from both the US Nuclear Regulatory Commission (NRC) and the state of Utah are provided in this document. The Proposed Ground Water Protection Strategy for the Uranium Mill Tailings Site at Green River, Utah, presents the proposed (modified) ground water protection strategy for the disposal cell at the Green River disposal site for compliance with Subpart A of 40 CFR Part 192. Before the disposal cell was constructed, site characterization was conducted at the Green River Uranium Mill Tailings Remedial Action (UMTRA) Project site to determine an acceptable compliance strategy. Results of the investigation are reported in detail in the final remedial action plan (RAP) (DOE, 1991a). The NRC and the state of Utah have accepted the final RAP. The changes in this document relate only to a modification of the compliance strategy for ground water protection.

  7. Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Act (Minnesota)

    Broader source: Energy.gov [DOE]

    The State aims to preserve and protect Minnesota rivers and adjacent lands with outstanding scenic, recreational, natural, historical, scientific and similar values. Chapter 103F defines...

  8. Solution deposition assembly

    DOE Patents [OSTI]

    Roussillon, Yann; Scholz, Jeremy H; Shelton, Addison; Green, Geoff T; Utthachoo, Piyaphant

    2014-01-21T23:59:59.000Z

    Methods and devices are provided for improved deposition systems. In one embodiment of the present invention, a deposition system is provided for use with a solution and a substrate. The system comprises of a solution deposition apparatus; at least one heating chamber, at least one assembly for holding a solution over the substrate; and a substrate curling apparatus for curling at least one edge of the substrate to define a zone capable of containing a volume of the solution over the substrate. In another embodiment of the present invention, a deposition system for use with a substrate, the system comprising a solution deposition apparatus; at heating chamber; and at least assembly for holding solution over the substrate to allow for a depth of at least about 0.5 microns to 10 mm.

  9. The Ecology of the Navasota River, Texas

    E-Print Network [OSTI]

    Clark, W. J.

    COLLEGE OF AGRICULTURE AND LIFE SCIENCES TR-44 1973 The Ecology of the Navasota River, Texas By: William J. Clark Texas Water Resources Institute Technical Report No. 44 Texas A&M University System...

  10. Math 360 Sample Project: River Crossing

    E-Print Network [OSTI]

    Linner, Anders

    corresponding to the east-west difference between the entry and the exit points at the river. Assume the crossing is from north to south, so g is positive if the exit point is east of the entry point

  11. Think water : reconditioning the Malden River

    E-Print Network [OSTI]

    Oda, Kazuyo, 1969-

    2003-01-01T23:59:59.000Z

    The purpose of this thesis is to link water, history and culture through architectural and urban design by researching the potential for the rejuvenation of a neglected industrial site at the edge of a river. The Malden ...

  12. The Ecohydrology of South American Rivers

    E-Print Network [OSTI]

    McClain, Michael

    The Ecohydrology of South American Rivers and Wetlands edited by Michael E. McClain Department research integrating the physical processes of hydrology with the biological processes of ecology. Together

  13. River Basins Advisory Commissions (South Carolina)

    Broader source: Energy.gov [DOE]

    The Catawba/Wateree and Yadkin/Pee Dee River Basins Advisory Commissions are permanent public bodies jointly established by North and South Carolina. The commissions are responsible for assessing...

  14. Delaware River Basin Commission (Multiple States)

    Broader source: Energy.gov [DOE]

    The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states...

  15. River Falls Municipal Utilities- Distributed Solar Tariff

    Broader source: Energy.gov [DOE]

    River Falls Municipal Utilities (RFMU), a member of WPPI Energy, offers a special energy purchase rate to its customers that generate electricity using solar photovoltaic (PV) systems. The special...

  16. Microsoft Word - CX_Okanogan_River.docx

    Broader source: Energy.gov (indexed) [DOE]

    Confederated Tribes for the purchase of two parcels of land along the Okanogan River. Fish and Wildlife Project No.: 2007-224-00 Categorical Exclusion Applied (from Subpart D, 10...

  17. Lower Columbia River Estuary Partnership. The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of land on the north side of the Columbia River in Cowlitz County, Wash., to protect fish habitat. An additional 75 acres of land will be donated by the Port of Longview. BPA...

  18. Clinch River MRS Task Force Recommendations

    Broader source: Energy.gov [DOE]

    The Clinch River HRS Task Force was appointed in July 1985 by the Roane County Executive and the Oak Ridge City Council to evaluate the Monitored Retrievable Storage (MRS) facility proposed by the...

  19. Radionuclide transport in the Yenisei River

    E-Print Network [OSTI]

    S. M. Vakulovsky; E. G. Tertyshnik; A. I. Kabanov

    2012-11-15T23:59:59.000Z

    Data characterizing the pollution of the Yenisei River (water and bottom sediment) by radionuclide resulting from the use of the river water for cooling industrial reactors in the Mining-Chemical Complex are presented. Studies have been made of the contamination of the river during the period when reactors with direct flow cooling were used and after these were shut down. Distinctive features of the migration of radionuclide in the Yenisei are noted, in particular, their distribution between the solid and liquid phases. The amounts of 137Cs, 65Zn, 60Co, 54Mn, and 152Eu in the channel are determined from the effluent discharge site to Dudinka port. The rate of continuous self removal of 137Cs is estimated to be 0.19 1/year, corresponding to a half purification time of 3.6 years for a 600 km long segment of the river bed.

  20. Savannah River Site environmental data for 1995

    SciTech Connect (OSTI)

    Arnett, M.W. [ed.

    1995-12-31T23:59:59.000Z

    This document presents data from Savannah River Site routine environmental monitoring and surveillance programs. An attempt also has been made to include all available data from environmental research programs.

  1. Flint River Drought Protection Act (Georgia)

    Broader source: Energy.gov [DOE]

    The purpose of the Flint River Drought Protection Act is to maintain in-stream flow in times of drought by providing incentives for farmers to take acres out of irrigation. It allows Environmental...

  2. Lumbee River EMC- Residential Weatherization Loan Program

    Broader source: Energy.gov [DOE]

    Lumbee River Electric Membership Corporation (LREMC) offers low interest loans to help its residential members increase the energy efficiency of their homes. Loans up to $10,000 are available for...

  3. Physics 129 Nuclear and Particle Physics

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    , homework solutions, handouts and announcements will be posted at my course web site: http://scipp.ucsc.edu/daw/phys129/enrolled This web site is password protected. The username and password will be announced materials will be distributed on the web site above. Nine texts on nuclear and particle physics, all

  4. Solution to Quiz 5

    E-Print Network [OSTI]

    jeffb_000

    2013-12-02T23:59:59.000Z

    Nov 19, 2013 ... Calculate the total transaction costs incurred by Patrick and Eric combined. Solution: Ask Price = 30. Bid Ask Spread = 0.50 = Ask Price - Bid ...

  5. Mixed oxide solid solutions

    DOE Patents [OSTI]

    Magno, Scott (Dublin, CA); Wang, Ruiping (Fremont, CA); Derouane, Eric (Liverpool, GB)

    2003-01-01T23:59:59.000Z

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  6. HEAT TRANSFER ANALYSIS FOR NUCLEAR WASTE SOLIDIFICATION CONTAINER

    SciTech Connect (OSTI)

    Lee, S.

    2009-06-01T23:59:59.000Z

    The Nuclear Nonproliferation Programs Design Authority is in the design stage of the Waste Solidification Building (WSB) for the treatment and solidification of the radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility (PDCF) and Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The waste streams will be mixed with a cementitious dry mix in a 55-gallon waste container. Savannah River National Laboratory (SRNL) has been performing the testing and evaluations to support technical decisions for the WSB. Engineering Modeling & Simulation Group was requested to evaluate the thermal performance of the 55-gallon drum containing hydration heat source associated with the current baseline cement waste form. A transient axi-symmetric heat transfer model for the drum partially filled with waste form cement has been developed and heat transfer calculations performed for the baseline design configurations. For this case, 65 percent of the drum volume was assumed to be filled with the waste form, which has transient hydration heat source, as one of the baseline conditions. A series of modeling calculations has been performed using a computational heat transfer approach. The baseline modeling results show that the time to reach the maximum temperature of the 65 percent filled drum is about 32 hours when a 43 C initial cement temperature is assumed to be cooled by natural convection with 27 C external air. In addition, the results computed by the present model were compared with analytical solutions. The modeling results will be benchmarked against the prototypic test results. The verified model will be used for the evaluation of the thermal performance for the WSB drum. Detailed results and the cases considered in the calculations will be discussed here.

  7. Characterization of the Nuclear Barge Sturgis

    SciTech Connect (OSTI)

    Honerlah, H. B.; Hearty, B. P.

    2002-02-27T23:59:59.000Z

    The Department of the Army is authorized to build and operate nuclear reactors for defense purposes under Paragraph 91b of the Atomic Energy Act of 1954 (1). As part of the Army Reactor Program, the United States Army Corps of Engineers (Corps) is responsible for nuclear reactor engineering and design, reactor construction, and decommissioning design and implementation (2). The Corps is currently focused on ensuring the safety and security of the Army's three deactivated power reactors and planning for their final decommissioning. To support decommissioning cost projections, the Corps is gathering information on the residual radiological and chemical hazards associated with each reactor, starting with the MH-1A reactor on the Sturgis Barge (3). Because the Sturgis Barge is moored in the James River Reserve Fleet, there were unique challenges that had to be overcome during the characterization survey and others that will become a concern when final decommissioning is to be per formed.

  8. Seismic interpretation of the Wind River Mountains

    E-Print Network [OSTI]

    Van Voorhis, David

    1982-01-01T23:59:59.000Z

    SEISMIC INTERPBETATICN OF THE BIND RIVER MOUNTAINS A Thesis DAVID VAN VOORHIS Submitted to the Graduate College of Texas ACM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE Auqust 'l982 Majcr Subject...: Geophysics SEISNIC INTERFRETATION OF THE HIND RIVER NOUNTAINS A Thes is by DAVID VAN VOORBIS Approved as to style and content by: (Chairman cf. Committee) (N em ber } m (Head of Department) August l 982 ABSTRACT Seismic Interpretation of the Wind...

  9. Salmon River Habitat Enhancement, 1990 Annual Report.

    SciTech Connect (OSTI)

    Rowe, Mike

    1991-12-01T23:59:59.000Z

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  10. Columbia River Component Data Gap Analysis

    SciTech Connect (OSTI)

    L. C. Hulstrom

    2007-10-23T23:59:59.000Z

    This Data Gap Analysis report documents the results of a study conducted by Washington Closure Hanford (WCH) to compile and reivew the currently available surface water and sediment data for the Columbia River near and downstream of the Hanford Site. This Data Gap Analysis study was conducted to review the adequacy of the existing surface water and sediment data set from the Columbia River, with specific reference to the use of the data in future site characterization and screening level risk assessments.

  11. Hanford`s spent nuclear fuel retrieval: an agressive agenda

    SciTech Connect (OSTI)

    Shen, E.J., Westinghouse Hanford

    1996-12-06T23:59:59.000Z

    Starting December 1997, spent nuclear fuel that has been stored in the K Reactor Fuel Storage Basins will be retrieved over a two year period and repackaged for long term dry storage. The aging and sometimes corroding fuel elements will be recovered and processed using log handled tools and teleoperated manipulator technology. The U.S. Department of Energy (DOE) is committed to this urgent schedule because of the environmental threats to the groundwater and nearby the Columbia River.

  12. NUCLEAR DEFORMATION ENERGIES

    E-Print Network [OSTI]

    Blocki, J.

    2009-01-01T23:59:59.000Z

    J.R. Nix, Theory of Nuclear Fission and Superheavy Nuclei,energy maps relevant for nuclear fission and nucleus-nucleusin connection with nuclear fission. The need for a better

  13. Office of Nuclear Safety

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety establishes nuclear safety requirements and expectations for the Department to ensure protection of workers and the public from the hazards associated with nuclear operations with all Department operations.

  14. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26T23:59:59.000Z

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs).

  15. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-07-10T23:59:59.000Z

    The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

  16. NUCLEAR STRUCTURE DATABASE

    E-Print Network [OSTI]

    Firestone, R.B.

    2010-01-01T23:59:59.000Z

    CALIFORNIA NUCLEAR STRUCTURE DATABASE R. B. Firestone and E.11089 NUCLEAR STRUCTURE DATABASE by R.B. Firestone and E.iii- NUCLEAR STRUCTURE DATABASE R.B Firestone and E. Browne

  17. RELATIVISTIC NUCLEAR COLLISIONS: THEORY

    E-Print Network [OSTI]

    Gyulassy, M.

    2010-01-01T23:59:59.000Z

    Effects in Relativistic Nuclear Collisions", Preprint LBL-Pion Interferometry of Nuclear Collisions. 18.1 M.Gyulassy,was supported by the Office of Nuclear Physics of the U.S.

  18. Nuclear Safety (Pennsylvania)

    Broader source: Energy.gov [DOE]

    The Nuclear Safety Division conducts a comprehensive nuclear power plant oversight review program of the nine reactors at the five nuclear power sites in Pennsylvania. It also monitors the...

  19. RIVER PROTECTION PROJECT SYSTEM PLAN

    SciTech Connect (OSTI)

    CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

    2009-09-15T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. (6) Deploying interim storage capacity for the immobilized high-level waste (IHLW) pending determination of the final disposal pathway. (7) Closing the SST and DST tank farms, ancillary facilities, and all associated waste management and treatment facilities. (8) Optimizing the overall mission by resolution of technical and programmatic uncertainties, configuring the tank farms to provide a steady, well-balanced feed to the WTP, and performing trade-offs of the required amount and type of supplemental treatment and of the amount of HLW glass versus LAW glass. ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks. Key elements needed to implement the strategy described above are included within the scope of the Tank Operations Contract (TOC). Interim stabilization of the SSTs was completed in March 2004. As of April 2009, retrieval of seven SSTs has been completed and retrieval of four additional SSTs has been completed to the limits of technology. Demonstration of supplemental LAW treatment technologies has stopped temporarily pending revision of mission need requirements. Award of a new contract for tank operations (TOC), the ongoing tank waste retrieval experience, HLW disposal issues, and uncertainties in waste feed delivery and waste treatment led to the revision of the Performance Measurement Baseline (PM B), which is currently under review prior to approval. 6 This System Plan is aligned with the current WTP schedule, with hot commissioning beginning in 2018, and full operations beginning in late 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of these decisions will be to provide a second LAW vitrification facility. No final implementation decisions regarding supplemental technology can be made until the Tank Closure and

  20. Method for gettering organic, inorganic and elemental iodine in aqueous solutions

    DOE Patents [OSTI]

    Beahm, Edward C. (Oak Ridge, TN); Shockley, William E. (Oak Ridge, TN)

    1990-01-01T23:59:59.000Z

    A process for the removal of iodine from aqueous solutions, particularly the trapping of radioactive iodine to mitigate damage resulting from accidents or spills associated with nuclear reactors, by exposing the solution to well dispersed silver carbonate which reacts with the iodine and iodides, thereby gettering iodine and iodine compounds from solution. The iodine is not only removed from solution but also from the contiguous vapor.

  1. NUCLEAR FORENSICS ANALYSIS CENTER FORENSIC ANALYSIS TO DATA INTERPRETATION

    SciTech Connect (OSTI)

    Nichols, T.

    2011-02-07T23:59:59.000Z

    The Nuclear Forensics Analysis Center (NFAC) is part of Savannah River National Laboratory (SRNL) and is one of only two USG National Laboratories accredited to perform nuclear forensic analyses to the requirements of ISO 17025. SRNL NFAC is capable of analyzing nuclear and radiological samples from bulk material to ultra-trace samples. NFAC provides analytical support to the FBI's Radiological Evidence Examination Facility (REEF), which is located within SRNL. REEF gives the FBI the capability to perform traditional forensics on material that is radiological and/or is contaminated. SRNL is engaged in research and development efforts to improve the USG technical nuclear forensics capabilities. Research includes improving predictive signatures and developing a database containing comparative samples.

  2. Accelerator Driven Nuclear Energy: The Thorium Option

    SciTech Connect (OSTI)

    Raja, Rajendran

    2009-03-18T23:59:59.000Z

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years. At the current rate of use, existing sources of Uranium will last for 50-100 years. We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy. Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem. Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.

  3. Accelerator Driven Nuclear Energy - The Thorium Option

    SciTech Connect (OSTI)

    Rajendran Raja

    2009-03-18T23:59:59.000Z

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

  4. Accelerator Driven Nuclear Energy - The Thorium Option

    ScienceCinema (OSTI)

    Rajendran Raja

    2010-01-08T23:59:59.000Z

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

  5. Dispersant solutions for dispersing hydrocarbons

    DOE Patents [OSTI]

    Tyndall, Richard L. (Clinton, TN)

    1997-01-01T23:59:59.000Z

    A dispersant solution includes a hydrocarbon dispersing solution derived from a bacterium from ATCC 75527, ATCC 75529, or ATCC 55638.

  6. Dispersant solutions for dispersing hydrocarbons

    DOE Patents [OSTI]

    Tyndall, R.L.

    1997-03-11T23:59:59.000Z

    A dispersant solution includes a hydrocarbon dispersing solution derived from a bacterium from ATCC 75527, ATCC 75529, or ATCC 55638.

  7. ADVANCES IN SE-79 ANALYSES ON SAVANNAH RIVER SITE RADIOACTIVE WASTE MATRICES

    SciTech Connect (OSTI)

    Diprete, D; C Diprete, C; Ned Bibler, N; Cj Bannochie, C; Michael Hay, M

    2009-03-16T23:59:59.000Z

    Waste cleanup efforts underway at the United States Department of Energy's (DOE) Savannah River Site (SRS) in South Carolina, as well as other DOE nuclear sites, have created a need to characterize {sup 79}Se in radioactive waste inventories. Successful analysis of {sup 79}Se in high activity waste matrices is challenging for a variety of reasons. As a result of these unique challenges, the successful quantification of {sup 79}Se in the types of matrices present at SRS requires an extremely efficient and selective separation of {sup 79}Se from high levels of interfering radionuclides. A robust {sup 79}Se radiochemical separation method has been developed at the Savannah River National Laboratory (SRNL) which is routinely capable of successfully purifying {sup 79}Se from a wide range of interfering radioactive species. In addition to a dramatic improvements in the Kd, ease, and reproducibility of the analysis, the laboratory time has been reduced from several days to only 6 hours.

  8. Nuclear Fuel Cycle & Vulnerabilities

    SciTech Connect (OSTI)

    Boyer, Brian D. [Los Alamos National Laboratory

    2012-06-18T23:59:59.000Z

    The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. The safeguards system should be designed to provide credible assurances that there has been no diversion of declared nuclear material and no undeclared nuclear material and activities.

  9. Nuclear Physics: Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser (FEL) Medical Imaging Physics Topics Campaigns The Structure of the Nuclear Building Blocks The Structure of Nuclei Symmetry Tests in Nuclear Physics Meetings...

  10. Nuclear Power Overview

    Broader source: Energy.gov (indexed) [DOE]

    San Onofre Nuclear Generating Station San Onofre Nuclear Generating Station Bob Ashe-Everest Southern California Edison 10 Incoming New Fuel Inspecting New Fuel SONGS Unit 1 Fuel...

  11. Nuclear weapons modernizations

    SciTech Connect (OSTI)

    Kristensen, Hans M. [Federation of American Scientists, Washington, DC (United States)

    2014-05-09T23:59:59.000Z

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  12. Advancing Global Nuclear Security

    Broader source: Energy.gov [DOE]

    Today world leaders gathered at The Hague for the Nuclear Security Summit, a meeting to measure progress and take action to secure sensitive nuclear materials.

  13. Nuclear / Radiological Advisory Team | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Radiological Advisory Team | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering...

  14. Nuclear Security Summit | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  15. Nuclear Safeguards | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  16. Assessment of plutonium in the Savannah River Site environment. Revision 1

    SciTech Connect (OSTI)

    Carlton, W.H.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-12-31T23:59:59.000Z

    Plutonium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fifth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. These are living documents, each to be revised and updated on a two-year schedule. This document describes the sources of plutonium in the environment, its release from SRS, environmental transport and ecological concentration of plutonium, and the radiological impact of SRS releases to the environment. Plutonium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite SNAP 9-A, plane crashes involving nuclear weapons, and small releases from reactors and reprocessing plants. Plutonium has been produced at SRS during the operation of five production reactors and released in small quantities during the processing of fuel and targets in chemical separations facilities. Approximately 0.6 Ci of plutonium was released into streams and about 12 Ci was released to seepage basins, where it was tightly bound by clay in the soil. A smaller quantity, about 3.8 Ci, was released to the atmosphere. Virtually all releases have occurred in F- and H-Area separation facilities. Plutonium concentration and transport mechanisms for the atmosphere, surface water, and ground water releases have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases to the offsite maximum individual can be characterized by a total dose of 15 mrem (atmospheric) and 0.18 mrem (liquid), compared with the dose of 12,960 mrem from non-SRS sources during the same period of time (1954--1989). Plutonium releases from SRS facilities have resulted in a negligible impact to the environment and the population it supports.

  17. Audit Report The Procurement of Safety Class/Safety-Significant Items at the Savannah River Site

    SciTech Connect (OSTI)

    None

    2009-04-01T23:59:59.000Z

    The Department of Energy operates several nuclear facilities at its Savannah River Site, and several additional facilities are under construction. This includes the National Nuclear Security Administration's Tritium Extraction Facility (TEF) which is designated to help maintain the reliability of the U.S. nuclear stockpile. The Mixed Oxide Fuel Fabrication Facility (MOX Facility) is being constructed to manufacture commercial nuclear reactor fuel assemblies from weapon-grade plutonium oxide and depleted uranium. The Interim Salt Processing (ISP) project, managed by the Office of Environmental Management, will treat radioactive waste. The Department has committed to procuring products and services for nuclear-related activities that meet or exceed recognized quality assurance standards. Such standards help to ensure the safety and performance of these facilities. To that end, it issued Departmental Order 414.1C, Quality Assurance (QA Order). The QA Order requires the application of Quality Assurance Requirements for Nuclear Facility Applications (NQA-1) for nuclear-related activities. The NQA-1 standard provides requirements and guidelines for the establishment and execution of quality assurance programs during the siting, design, construction, operation, and decommissioning of nuclear facilities. These requirements, promulgated by the American Society of Mechanical Engineers, must be applied to 'safety-class' and 'safety-significant' structures, systems and components (SSCs). Safety-class SSCs are defined as those necessary to prevent exposure off site and to protect the public. Safety-significant SSCs are those whose failure could irreversibly impact worker safety such as a fatality, serious injury, or significant radiological or chemical exposure. Due to the importance of protecting the public, workers, and environment, we initiated an audit to determine whether the Department of Energy procured safety-class and safety-significant SSCs that met NQA-1 standards at the Savannah River Site. Our review disclosed that the Department had procured and installed safety-class and safety-significant SSCs that did not meet NQA-1 quality standards. Specifically, we identified multiple instances in which critical components did not meet required quality and safety standards. For example: (1) Three structural components were procured and installed by the prime contractor at Savannah River during construction of the MOX Facility that did not meet the technical specifications for items relied on for safety. These substandard items necessitated costly and time consuming remedial action to, among other things, ensure that nonconforming materials and equipment would function within safety margins; (2) In six instances, items used in the construction of TEF failed to satisfy quality standards. In one of these situations, operating procedures had to be modified to ensure that the problem item did not compromise safety; and (3) Finally, at the ISP, one component that did not meet quality standards was procured. The failure of the item could have resulted in a spill of up to 15,000 gallons of high-level radioactive waste. Based on an extensive examination of relevant internal controls and procurement practices, we concluded that these failures were attributable to inadequate attention to quality assurance at Savannah River. Simply put, Departmental controls were not adequate to prevent and/or detect quality assurance problems. For example, Federal and prime contractor officials did not expressly require that subcontractors or lower-tiered vendors comply with quality assurance requirements. Additionally, management did not effectively communicate quality assurance concerns between the several Departmental program elements operating at Savannah River. The procurement and installation of these nonconforming components resulted in cost increases. For example, as of October 2008, the MOX Facility had incurred costs of more than $680,000 due to problems associated with the procurement of $11 million of nonconforming safety-class reinforcing steel.

  18. E.2. Electronic Appendix -Food Web Elements of the Fraser River Upper River (above rkm 210)

    E-Print Network [OSTI]

    1 E.2. Electronic Appendix - Food Web Elements of the Fraser River Basin Upper River (above rkm 210) Food webs: Microbenthic algae (periphyton), detritus from riparian vegetation and littoral insects tributaries. Collector-gatherers (invertebrates feeding on fine particulate organic material) are the most

  19. Hydropower production and river rehabilitation: A case study on an alpine river

    E-Print Network [OSTI]

    Hydropower production and river rehabilitation: A case study on an alpine river M. Fette & C. Weber # Springer Science + Business Media B.V. 2006 Abstract Despite the numerous benefits of hydropower production. Hydropeaks, caused by short-term changes in hydropower operation, result in a negative impact on both habitat

  20. Entrainment sampling at the Savannah River Site (SRS) Savannah River water intakes (1991)

    SciTech Connect (OSTI)

    Paller, M.

    1990-11-01T23:59:59.000Z

    Cooling water for the Westinghouse Savannah River Company (WSRC) L-Reactor, K-Reactor, and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pumphouses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water. They are passed through the reactor heat exchangers where temperatures may reach 70{degree}C during full power operation. Ichthyoplankton mortality under such conditions is presumably 100%. Apart from a small pilot study conducted in 1989, ichthyoplankton samples have not been collected from the vicinity of the SRS intake canals since 1985. The Department of Energy (DOE) has requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory (SRL) resume ichthyoplankton sampling for the purpose of assessing entrainment at the SRS Savannah River intakes. This request is due to the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River. The following scope of work presents a sampling plan that will collect information on the spatial and temporal distribution of fish eggs and larvae near the SRS intake canal mouths. This data will be combined with information on water movement patterns near the canal mouths in order to determine the percentage of ichthyoplankton that are removed from the Savannah River by the SRS intakes. The following sampling plan incorporates improvements in experimental design that resulted from the findings of the 1989 pilot study. 1 fig.