Sample records for river inter-tribal watershed

  1. COLUMBIA RIVER INTER-TRIBAL FISH COMMISSION 700 NE Multnomah Street, Suite 1200

    E-Print Network [OSTI]

    COLUMBIA RIVER INTER-TRIBAL FISH COMMISSION 700 NE Multnomah Street, Suite 1200 Portland, Oregon 97232 F (503) 235-4228 (503) 238-0667 F (503) 235-4228 www.critfc.org Putting fish back in the rivers and protecting the watersheds where fish live September 17, 2013 Bill Bradbury, Chairman Northwest Power

  2. Grays River Watershed Geomorphic Analysis

    SciTech Connect (OSTI)

    Geist, David R.

    2005-04-30T23:59:59.000Z

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: 􀂃 The effects of historical and current land use practices on erosion and sedimentation within the channel network 􀂃 The ways in which these effects have influenced the sediment budget of the upper watershed 􀂃 The resulting responses in the main stem Grays River upstream of State Highway 4 􀂃 The past and future implications for salmon habi

  3. Pecos River Watershed Protection Plan Update

    E-Print Network [OSTI]

    Gregory, L.; Hauck, L.; Blumenthal, B.; Brown, M.; Porter, A.

    2013-01-01T23:59:59.000Z

    Implementation of the Pecos River Watershed Protection Plan (WPP) began in November 2009 upon acceptance of the WPP by EPA. The primary goals of implementing the plan are to improve the health of the Pecos River watershed and instream water quality...

  4. Washoe Tribe Nevada Inter-Tribal Energy Consortium Energy Organization Enhancement Project Final Report

    SciTech Connect (OSTI)

    Johnson, Jennifer [Washoe Tribe of NV and Ca

    2014-11-06T23:59:59.000Z

    The Washoe Tribe of Nevada and California was awarded funding from the Department of Energy to complete the Nevada Inter-Tribal Energy Consortium Energy Organization Enhancement Project. The main goal of the project was to enhance the capacity of the Nevada Inter-Tribal Energy Consortium (NITEC) to effectively assist tribes within Nevada to technically manage tribal energy resources and implement tribal energy projects.

  5. Wind River Watershed Restoration: 1999 Annual Report.

    SciTech Connect (OSTI)

    Connolly, Patrick J.

    2001-09-01T23:59:59.000Z

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey--Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination--Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring--Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment--Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration--Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education--Objective 8: Promote watershed stewardship among students, the community, private landowners, and local governments. Progress towards six of eight of these objectives is described within nine separate reports included in a four-volume document.

  6. Jocko River Watershed conservation easement protects trout habitat...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6.25 acre habitat acquisition in Montana's Jocko River Watershed for fish habitat mitigation (see map). Located in Lake County in northwestern Montana, this property was selected...

  7. Woody vegetation of the lower Navasota River watershed

    E-Print Network [OSTI]

    Allen, Harriet Louise Gell

    1974-01-01T23:59:59.000Z

    WOODY VEGETATION OF THE LOWER NAVASOTA RIVER WATERSHED A Thesis by DIl 5~ HARRIET ?GELL ALLEN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December... 1974 Major Subject: Range Science WOODY VEGETATION OF THE LOWER NAVASOTA RIVER WATERSHED A Thesis by HARRIET GELL ALLEN Approved as to style and content by: (Chairman of Committee) (Head of Department) (Member) (Member) December 1974...

  8. Kootenai River Focus Watershed Coordination, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Munson, Bob; Munson, Vicki (Kootenai River Network, Libby, MT); Rogers, Rox (US Fish and Wildlife Service, Libby, MT)

    2003-10-01T23:59:59.000Z

    The Kootenai River Network Inc. (KRN) was incorporated in Montana in early 1995 with a mission ''to involve stakeholders in the protection and restoration of the chemical, physical and biological integrity of the Kootenai River Basin waters''. The KRN operates with funding from donations, membership dues, private, state and federal grants, and with funding through the Bonneville Power Administration (BPA) for a Focus Watershed Coordinator Program. The Focus Watershed Program is administered to KRN as of October 2001, through a Memorandum of Understanding. Katie Randall resigned her position as Watershed Coordinator in late January 2003 and Munson Consulting was contracted to fill that position through the BPA contract period ending May 30, 2003. To improve communications with in the Kootenai River watershed, the board and staff engaged watershed stakeholders in a full day KRN watershed conference on May 15 and 16 in Bonners Ferry, Idaho. This Annual General Meeting was a tremendous success with over 75 participants representing over 40 citizen groups, tribes and state/provincial/federal agencies from throughout northern Montana and Idaho as well as British Columbia and Alberta. Membership in the KRN increased during the course of the BPA 02/03 grant period. The board of directors grew in numbers during this same time frame and an Advisory Council was formed to assist in transboundary efforts while developing two reorganized KRN committees (Habitat/Restoration/Monitoring (HRM) and Communication/Education/Outreach (CEO)). These committees will serve pivotal roles in communications, outreach, and education about watershed issues, as well as habitat restoration work being accomplished throughout the entire watershed. During this BPA grant period, the KRN has capitalized on the transboundary interest in the Kootenai River watershed. Jim and Laura Duncan of Kimberley, British Columbia, have been instrumental volunteers who have acted as Canadian liaisons to the KRN. As a result, restoration work is in the planning stages for Canadian tributaries that flow into the Moyie River in northern Idaho and the Yaak River in northwest Montana.

  9. Grays River Watershed and Biological Assessment Final Report 2006.

    SciTech Connect (OSTI)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04T23:59:59.000Z

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat-forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within

  10. Grays River Watershed and Biological Assessment, 2006 Final Report.

    SciTech Connect (OSTI)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01T23:59:59.000Z

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within

  11. Potential impacts of global climate change on Tijuana River Watershed hydrology - An initial analysis

    E-Print Network [OSTI]

    Das, Tapash; Dettinger, Michael D; Cayan, Daniel R

    2010-01-01T23:59:59.000Z

    on Tijuana River Watershed hydrology - An initial analysis Achanges may impact the hydrology of the Tijuana Riverclimate changes might impact hydrology in the Tijuana River

  12. Kootenai River Focus Watershed Coordination, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Kootenai River Network, (Kootenai River Network, Libby, MT)

    2006-02-01T23:59:59.000Z

    The Kootenai River Network (KRN) was contracted by the Bonneville Power Administration; PPA Project Number 96087200 for the period June 1, 2003 to May 31, 2004 to provide Kootenai River basin watershed coordination services. The prime focus of the KRN is coordinating activities and disseminating information related to watershed improvement and education and outreach with other interest groups in the Kootenai River basin. To this end, the KRN primarily focuses on maintaining communication networks among private and public watershed improvement groups in the Columbia River Basin. The KRN willing shares its resources with these groups. The 2003-2004 BPA contract extended the original Montana Fish, Wildlife and Parks contract, which was transferred to the Kootenai River Network through a Memorandum of Understanding in November 2001. The KRN objectives of this contract were carried out through Watershed Coordinator position. The highly successful Kootenai River Network Annual General Meeting in Bonners Ferry in May 2003 demonstrated the tremendous gains that the Kootenai River Network has made in trans-boundary networking of watershed issues and accomplishments. The Annual General Meeting included seventy five participants representing more than forty US and Canadian citizen groups, tribes, first nations, agencies, ministries, businesses and private land owners from Montana, British Columbia, Idaho and Alberta. The International Restoration Tour in July 2004 featured the Grave Creek and Therriault Wetlands restoration projects in Montana and the Sand Creek and Wolf Creek restoration projects in British Columbia. The tour was attended by more than thirty people representing US and Canadian Federal and State/Provincial agencies, schools, colleges, conservation groups, private land owners, consultants, tribes, first nations, and politicians. These exciting trans-boundary successes encouraged the KRN to establish half-time Watershed Coordinator positions in both the United States and Canada. In September 2004 Kim Laub was hired as US-Watershed Coordinator and Jim and Laura Duncan were hired as Canadian Watershed Coordinators. To rejuvenate and revitalize the KRN, the Board conducted a strategic thinking and planning meeting in November 2004. All Board, staff and Advisory members participated in a combined effort to clearly define the goals of the KRN and to design ways of achieving those goals. Affirming and integrating board policy was a primary focus and it included writing accurate job descriptions for all KRN positions. KRN committee goals, the BPA contract and the Statement of Work plan were reviewed to establish future directions for a complex organization.

  13. Appalachian Rivers II Conference: Technology for Monitoring, Assessing, and Restoring Streams, Rivers, and Watersheds

    SciTech Connect (OSTI)

    None available

    1999-07-29T23:59:59.000Z

    On July 28-29, 1999, the Federal Energy Technology Center (FETC) and the WMAC Foundation co-sponsored the Appalachian Rivers II Conference in Morgantown, West Virginia. This meeting brought together over 100 manufacturers, researchers, academicians, government agency representatives, watershed stewards, and administrators to examine technologies related to watershed assessment, monitoring, and restoration. Sessions included presentations and panel discussions concerning watershed analysis and modeling, decision-making considerations, and emerging technologies. The final session examined remediation and mitigation technologies to expedite the preservation of watershed ecosystems.

  14. Reducing Agricultural Nitrate Losses in the Embarras River Watershed through Bioreactors, Constructed Wetlands, and Outreach

    E-Print Network [OSTI]

    David, Mark B.

    Reducing Agricultural Nitrate Losses in the Embarras River Watershed through Bioreactors chip tile bioreactors to reduce nitrate losses in the upper Embarras River watershed in east. Three tile bioreactors will be installed in various locations in the watershed, again for determining

  15. Bacterial Source Tracking to Support the Development and Implementation of Watershed Protection Plans for the Lampasas and Leon Rivers: Lampasas River Watershed Final Report

    E-Print Network [OSTI]

    Gregory, L.; Casarez, E.; Truesdale, J.; Di Giovanni, G.; Owen, T; Wolfe, J.

    2013-04-25T23:59:59.000Z

    and implementation of watershed protection plans for each watershed. The Leon River is listed as an impaired water body for elevated levels of E. coli and does not support its designated contact recreation use. The Lampasas River was also considered impaired...

  16. Flathead River Focus Watershed Coordinator, 2005-2006 Annual Report.

    SciTech Connect (OSTI)

    DuCharme, Lynn (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

    2006-05-01T23:59:59.000Z

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerr dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.

  17. Flathead River Focus Watershed Coordinator, 2002 Annual Report.

    SciTech Connect (OSTI)

    DuCharme, Lynn (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

    2003-04-01T23:59:59.000Z

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NPPC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerr dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.

  18. Flathead River Focus Watershed Coordinator, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    DuCharme, Lynn (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

    2006-06-26T23:59:59.000Z

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerr dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.

  19. Flathead River Focus Watershed Coordinator, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    DuCharme, Lynn (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

    2004-06-01T23:59:59.000Z

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerr dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.

  20. Quantification of glacier melt volume in the Indus River watershed Maria Nicole Asay

    E-Print Network [OSTI]

    Seamons, Kent E.

    Quantification of glacier melt volume in the Indus River watershed Maria Nicole Asay A thesis;ABSTRACT Quantification of glacier melt volume in the Indus River watershed Maria N. Asay Department of Geological Sciences, BYU Master of Science Quantifying the contribution of glaciers to water resources

  1. Kootenai River Focus Watershed Coordination, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Kruse, Gretchen (Kootenai River Network, Libby, MT)

    2002-07-01T23:59:59.000Z

    The 2001-2002 Kootenai River Network Annual Report reflects the organization's defined set of goals and objectives, and how by accomplishing these goals, we continue to meet the needs of communities and landowners throughout the Kootenai River Basin by protecting the resource. Our completed and ongoing projects throughout the watershed reflect the cooperation and support received and needed to accomplish the rehabilitation and restoration of critical habitat. They show that our mission of facilitation through collaboration with public and private interests can lead to improved resource management, the restoration of water quality and the preservation of pristine aquatic resources. Our vision to empower local citizens and groups from two states, one province, two countries and affected tribal nations to collaborate in natural resource management within the basin is largely successful due to the engagement of the basin's residents--the landowners, town government, local interest groups, businesses and agency representatives who live and work here. We are proof that forging these types of cooperative relationships, such as those exhibited by the Kootenai River subbasin planning process, leads to a sense of entitlement--that the quality of the river and its resources enriches our quality of life. Communication is essential in maintaining these relationships. Allowing ourselves to network and receive ideas and information, as well as to produce quality, accessible research data such as KRIS, shared with like organizations and individuals, is the hallmark of this facilitative organization. We are fortunate in the ability to contribute such information, and continue to strive to meet the standards and the needs of those who seek us out as a model for watershed rehabilitative planning and restoration. Sharing includes maintaining active, ongoing lines of communication with the public we serve--through our web site, quarterly newsletter, public presentations and stream table education--at every opportunity. We continue to seek ideas to guide us as we grow. We want to enlarge that sense of ownership that the river does indeed run through it, and belongs to us all. Through a continued and common effort, we hope to carry forward the good work and the momentum that underscores our intent. We are proud to report our accomplishments of this past year because they reflect our renewed sense of purpose. In alliance with diverse citizen groups, individuals, business, industry and tribal and government water resource management agencies, we strive to continue to protect and restore the beauty and integrity that is the Kootenai River watershed.

  2. Urbanizing Watersheds and Changing River Flood Dynamics: Implications for Urban Wetland Restoration

    E-Print Network [OSTI]

    Simmons, M.

    2003-01-01T23:59:59.000Z

    Urbanization alters river hydrology, morphology, water quality, and habitat and ecology. Most of these associated changes are due to an increase in impervious surface cover (ISC) throughout the watershed. But the spatial location of urban areas...

  3. Bacterial Source Tracking to Support the Development and Implementation of Watershed Protection Plans for the Lampasas and Leon Rivers: Lampasas River Watershed Final Report

    E-Print Network [OSTI]

    Gregory, L.; Casarez, E.; Truesdale, J.; Di Giovanni, G.; Owen, T.; Wolfe, J.

    2013-04-25T23:59:59.000Z

    Texas Water Resources Institute TR 441 April 2013 Bacterial Source Tracking to Support the Development and Implementation of Watershed Protection Plans for the Lampasas and Leon Rivers L. Gregory, E. Casarez, J. Truesdale, G. Di Giovanni, R... Oxygen E. coli Escherichia coli EPA Environmental Protection Agency ERIC-PCR Enterobacterial Repetitive Intergenic Consensus Sequence Polymerase Chain Reaction ERIC-RP ERIC-PCR and RiboPrinting Composite DNA Fingerprints LRW Leon River...

  4. COLUMBIA RIVER INTER-TRIBAL FISH COMMISSION 729 N.E. Oregon, Suite 200, Portland, Oregon 97232

    E-Print Network [OSTI]

    ..................................................................... 12 IV. ANALYSIS OF COLUMBIA BASIN SALMON AND NORTHWEST ENERGY SYSTEM MEASURES.......................................................................................... 25 a) Distributed Generation.................................................................................. 25 b) Conventional Generation Strategically Placed within the Grid.................... 26 5. Trading

  5. COLUMBIA RIVER INTER-TRIBAL FISH COMMISSION 729 NE Oregon, Suite 200 Portland, OR 97232 Phone: 503/238-0667

    E-Print Network [OSTI]

    containers necessary for a full factorial mating design (discussed below), we propose to decrease the number of stocks from six to four. Originally, our study design would have allowed for a comparison (within both. As modified our design will allow a comparison (within both spring and fall chinook salmon life history types

  6. Corbicula Active (ABM) Biomonitoring and Passive (POM) Chlordane Monitoring in the Anacostia River Watershed (MD).

    E-Print Network [OSTI]

    District of Columbia, University of the

    in the Anacostia River Watershed (MD). Final Report to the DC Water Resources Research Center Dr. Harriette L hydrocarbons (PAHs), 28 polychlorinated biphenyl congeners (PCBs), 6 Aroclors, 21 pesticides, and five metals (Cd, Cr, Cu, Fe, Pb) plus technical chlordane, percent water and percent lipid. This ABM study

  7. Evaluation of shrub encroachment and brush control on water availability in the Upper Guadalupe River watershed

    E-Print Network [OSTI]

    Afinowicz, Jason David

    2004-09-30T23:59:59.000Z

    ............................................................................................... 99 VITA ........................................................................................................... 102 x LIST OF FIGURES FIGURE Page 2-1 A comparison of the same area as viewed from (a) a 30-m spatial resolution..., and light brush in the Upper Guadalupe River watershed as determined by remote sensing shown by dark regions?.. ................................................................................... 21 3-1 The location and stream network...

  8. SOURCE AND EFFECT OF ACID ROCK DRAINAGE IN THE SNAKE RIVER WATERSHED, SUMMIT COUNTY, COLORADO

    E-Print Network [OSTI]

    SOURCE AND EFFECT OF ACID ROCK DRAINAGE IN THE SNAKE RIVER WATERSHED, SUMMIT COUNTY, COLORADO Belanger, Laura (M.S., Civil, Environmental and Architectural Engineering) Source and Effect of Acid Rock (the weathering of disseminated pyrite) sources of acid rock drainage (ARD). Stream waters

  9. Development of a Decision Support Geographic Information System for land restoration programs in the Leon, Lampasas, and Bosque River Watersheds

    E-Print Network [OSTI]

    Jones, Jason Samuel

    2006-10-30T23:59:59.000Z

    conditions, and geologic characteristics. This study describes the development, accuracy, and application of a decision support geographic information system (DSGIS) for land restoration programs in the Leon, Lampasas, and Bosque River watersheds...

  10. Montana contains the headwaters for three continental watersheds-the St. Mary's River, the Columbia River, and the Missouri River. The St. Mary's

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    -the largest in Montana-drains more than one half of the state's land area, but yields less than one, wind-sailing, and wildlife watching. You can float 207 miles from Montana Power Company's Morony Dam of the state. The major watersheds of Montana are those carved by the Columbia River's tributaries

  11. Implementing the Pecos River Watershed Protection Plan through a Heliborne Electromagnetic (EM) Survey: Final Report

    E-Print Network [OSTI]

    Gregory, L.; Sheng, Z.; Hassan, A.; McDonald, A.; Porter, A.

    2014-01-01T23:59:59.000Z

    , completing financial status reports, hosting the program website, developing the project final report, facilitating the acceptance of bids from companies capable of collecting heliborne electromagnetic (HEM) data, awarding the HEM contract, and ultimately..., and the contract was awarded in May 2013. SkyTEM was the company that provided the bid with the best value and met data collection requirements. As a part of the Pecos River WPP Implementation Project (TSSWCB 08-08), public meetings were held in the watershed...

  12. Wind River Watershed Restoration, 2005-2006 Annual Report.

    SciTech Connect (OSTI)

    Jezorek, Ian G.; Connolly, Patrick J.; Munz, Carrie [U.S. Geological Survey

    2008-11-10T23:59:59.000Z

    This report summarizes work completed by U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period April 2005 through March 2006 under Bonneville Power Administration (BPA) contract 22095. During this period, we collected temperature, flow, and habitat data to characterize habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. We also conducted electrofishing and snorkeling surveys to determine juvenile salmonid populations within select study areas throughout the subbasin. Portions of this work were completed with additional funding from U.S. Fish and Wildlife Service (USFWS) and the Lower Columbia Fish Enhancement Group (LCFEG). A statement of work (SOW) was submitted to BPA in March 2005 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.

  13. South Fork Salmon River Watershed Restoration, 2008-2009 Annual Report.

    SciTech Connect (OSTI)

    Reaney, Mark D. [Nez Perce Tribe Department of Fisheries Resource Management

    2009-04-15T23:59:59.000Z

    The watershed restoration work elements within the project area, the South Fork Salmon River Watershed, follow the watershed restoration approach adopted by the Nez Perce Tribe Department of Fisheries Resource Management (DFRM) - Watershed Division. The vision of the Nez Perce Tribe DFRM-Watershed Division focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects and strategies that rely on natural fish production and healthy river ecosystems. The Nez Perce Tribe DFRM-Watershed Division strives towards maximizing historic ecosystem productivity and health for the restoration of anadromous and resident fish populations and the habitat on which all depend on for future generations Originally, this project was funded to create a step/pool stream channel that was appropriate to restore fish passage where the 'Glory Hole Cascade' is currently located at the Stibnite Mine. Due to unforeseen circumstances at the time, the project is unable to move forward as planned and a request for a change in scope of the project and an expansion of the geographic area in which to complete project work was submitted. No additional funds were being requested. The ultimate goal of this project is to work with the holistic, ridge top to ridge top approach to protect and restore the ecological and biological functions of the South Fork Salmon River Watershed to assist in the recovery of threatened and endangered anadromous and resident fish species. FY 2008 Work Elements included two aquatic organism passage (AOP) projects to restore habitat connectivity to two fish-bearing tributaries to the East Fork South Fork Salmon River, Salt and Profile Creeks. The Work Elements also included road survey and assessment activities that move toward road decommissioning to reduce sediment delivery to spawning gravels and rearing habitats by reducing sedimentation from road related, man-made sources. For FY08, the project included the design and implementation of two fish barrier replacement structures mentioned above, the Salt and Profile Creek Bridges. These work elements were to be implemented on Valley County easements within the Payette National Forest. The existing culverts are full or partial barriers to most aquatic life species and all juvenile anadromous and resident fish species. Implementation will reconnect 9.34 miles of habitat, and provide natural stream channels to facilitate complete passage for all aquatic life forms. All designs were completed and a construction subcontract was awarded to construct free span, pre-cast concrete bridges. For 2008, the project statement of work also included all the necessary work elements to manage, coordinate, plan, and develop continuing strategies for restoration and protection activities.

  14. Wind River Watershed Restoration, 2006-2007 Annual Report.

    SciTech Connect (OSTI)

    Connolly, Patrick J.; Jezorek, Ian G.; Munz, Carrie S. [U.S. Geological Survey

    2008-11-04T23:59:59.000Z

    This report summarizes work completed by U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period April 2006 through March 2007 under Bonneville Power Administration (BPA) contract 26922. During this period, we collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. We also conducted electrofishing and snorkeling surveys to determine juvenile salmonid populations within select study areas throughout the subbasin. Portions of this work were completed with additional funding from U.S. Fish and Wildlife Service (USFWS) and the Lower Columbia Fish Enhancement Group (LCFEG). Funding from USFWS was for work to contribute to a study of potential interactions between introduced Chinook salmon Oncorhynchus tshawytscha and wild steelhead O. mykiss. Funding from LCFEG was for work to evaluate the effects of nutrient enrichment in small streams. A statement of work (SOW) was submitted to BPA in March 2006 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.

  15. Restoration in the Anacostia river watershed: An ecosystem management case study

    SciTech Connect (OSTI)

    Martin, L.R.

    1995-12-01T23:59:59.000Z

    This paper discusses various aspects of an ecosystem approach to watershed restoration as illustrated by the Anacostia River Watershed Restoration initiative. This information was derived from a case study conducted as part of the Interagency Ecosystem Management Initiative (IEMI), an outgrowth of a recommendation in the National Performance Review. The purpose of this study was to identify components of the ecosystem approach used in the Anacostia initiative that may be useful to other ecosystem restoration and management initiatives in the future. Water quality and ecological conditions within the Anacostia River watershed have become degraded due to urban and suburban development and other activities in the watershed over the last two centuries. An intergovernmental partnership has been formed to cooperatively assess the specific problems in the basin and to direct and implement restoration efforts. The Anacostia initiative includes a number of cooperative efforts that cross political boundaries, and involves numerous states, local agencies, civic groups, and private individuals in addition to the Federal players. In contrast with some of the other case studies in the IEMI, the Anacostia restoration effort is primarily driven by state and local governments. There has, however, been Federal involvement in the restoration and use of Federal grants. In addition, the establishment of a forum for setting goals, priorities and resolving differences was viewed as essential. Closer relationships between planning and regulatory functions can help advance the restoration goals. Public participation, including education, outreach and involvement, is essential to viable ecosystem initiatives. Comprehensive planning and modeling must be balanced with continuous visible results in order to sustain administrative and public support for the initiative.

  16. Watershed Modeling for Biofuels | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Watershed Modeling for Biofuels Argonne's watershed modeling research addresses water quality in tributary basins of the Mississippi River Basin Argonne's watershed modeling...

  17. The efficacy of salmon carcass analogs for enhancing stream and fish production in the Wind River watershed

    E-Print Network [OSTI]

    The efficacy of salmon carcass analogs for enhancing stream and fish production in the Wind River watershed, Washington, to evaluate the effects of nutrient enhancement on measures of stream and fish production. We compared low level water chemistry, water quality, and periphyton, insect, and fish production

  18. Quantification of Water Quality Improvement in Sandy Creek, A Tributary Watershed of Jordan Lake in the Cape Fear River Basin,

    E-Print Network [OSTI]

    in the Cape Fear River Basin, After Stream and Riparian Restoration and Wetland Treatment Cell Creation: Final to restoration. The Duke Forest Stream and Wetlands Restoration was established to rectify these problems delivery following watershed development, a three-phase stream and floodplain restoration was planned

  19. EFFECT OF CLIMATE CHANGE ON WATERSHED RUNOFF FLOW - UPPER COOSA RIVER BASIN UPSTREAM FROM PLANT HAMMOND

    SciTech Connect (OSTI)

    Chen, K.

    2011-10-24T23:59:59.000Z

    The ability of water managers to maintain adequate supplies in the coming decades depends on future weather conditions, as climate change has the potential to reduce stream flows from their current values due to potentially less precipitation and higher temperatures, and possibly rendering them unable to meet demand. The upper Coosa River basin, located in northwest Georgia, plays an important role in supplying water for industry and domestic use in northern Georgia, and has been involved in water disputes in recent times. The seven-day ten-year low flow (7Q10 flow) is the lowest average flow for seven consecutive days that has an average recurrence interval of 10 years. The 7Q10 flow is statistically derived from the observed historical flow data, and represents the low flow (drought) condition for a basin. The upper Coosa River basin also supplies cooling water for the 935MW coal-fired Hammond plant, which draws about 65% of the 7Q10 flow of the upper Coosa River to dissipate waste heat. The water is drawn through once and returned to the river directly from the generator (i.e., no cooling tower is used). Record low flows in 2007 led to use of portable cooling towers to meet temperature limits. Disruption of the Plant Hammond operation may trigger closure of area industrial facilities (e.g. paper mill). The population in Georgia is expected to double from 9 million to 18 million residents in the next 25 years, mostly in the metropolitan Atlanta area. Therefore, there will be an even greater demand for potable water and for waste assimilation. Climate change in the form of persistent droughts (causing low flows) and high ambient temperatures create regulatory compliance challenges for Plant Hammond operating with a once-through cooling system. Therefore, the Upper Coosa River basin was selected to study the effect of potential future weather change on the watershed runoff flow.

  20. The Texas Watershed Steward Program

    E-Print Network [OSTI]

    San Antonio Bay Other April 2011 Victoria Victoria Urban Watersheds in City of Temple Other May 2011 Pecos River 1 WPP August 2011 Pecos Reeves Pecos River 2 WPP August 2011 Sheffield Pecos Concho River

  1. Community Perceptions and Priorities for Managing Water and Environmental Resources in the River Njoro Watershed in Kenya

    E-Print Network [OSTI]

    Richner, Heinz

    Njoro Watershed in Kenya M. W. Jenkins1 , F. K. Lelo2 , L.W. Chiuri2 , W. A. Shivoga2 and S. N. Miller3, respectively, in Environmental Science, Egerton University, Njoro, Kenya; Tel (+254) 51 62085, emails: lelo@uwyo.edu Abstract The Njoro Watershed, typical of the semi-arid basins in the Rift Valley of Kenya, is undergoing

  2. Water quality improvements in the Upper North Bosque River watershed due to phosphorous export through turfgrass sod

    E-Print Network [OSTI]

    Stewart, George Russell

    2005-02-17T23:59:59.000Z

    these problems, Texas A&M University researchers have developed a turfgrass sod Best Management Practice (BMP) to remove excess nutrients from impaired watersheds. Turfgrass harvest of manure fertilized sod removes a thin layer of topsoil with most... of the manure applied P. Plot and field scale research has demonstrated the effectiveness of turfgrass to remove manure phosphorus (P). In order to assess the impact of the turfgrass BMP on a watershed scale, the Soil and Water Assessment Tool (SWAT) was used...

  3. Role of snow and glacier melt in controlling river hydrology in Liddar watershed (western Himalaya) under current and future climate

    E-Print Network [OSTI]

    Jeelani, G.; Feddema, Johannes J.; van der Veen, Cornelis J.; Stearns, Leigh

    2012-12-12T23:59:59.000Z

    [1] Snowmelt and icemelt are believed to be important regulators of seasonal discharge of Himalayan rivers. To analyze the long term contribution of snowmelt and glacier/icemelt to river hydrology we apply a water budget model to simulate hydrology...

  4. Flathead River Watershed conservation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    proposing to fund the acquisition of several parcels of land in northwest Montana for fish habitat mitigation (see map). These parcels total about 95 acres and are located within...

  5. WATERSHED EDUCATION PROGRAM The Watershed Education Program (WEP)

    E-Print Network [OSTI]

    Netoff, Theoden

    of watershed hydrology Lake and river systems Urban and rural runoff Best management practices Aquatic leaders, citizens, and natural resource professionals with knowledge and tools to make informed water and land use decisions to protect and restore the integrity of Minnesota's lakes, rivers, streams

  6. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; Annual Progress Report, April 2007 - March 2008.

    SciTech Connect (OSTI)

    Mallette, Christine [Oregon Department of Fish and Wildlife

    2009-07-28T23:59:59.000Z

    We report on our progress from April 2007 through March 2008 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), Columbia River Inter-Tribal Fish Commission (CRITFC; Report C), and Montana State University (MSU; Report D). This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported.

  7. Implementing the Pecos River Watershed Protection Plan through Invasive Species Control and by Providing Technical and Financial Assistance to Reduce Agricultural Nonpoint Source Pollution

    E-Print Network [OSTI]

    Gregory, L.; Porter, A.; Knutson, A.; Muegge, M.

    2013-01-01T23:59:59.000Z

    landowners. It included the development and establishment of water quality management plans (WQMPs) on riparian and upland grazing lands, extending chemical treatment of saltcedar to previously unsprayed stands along the river and its tributaries, expanding...

  8. Fourth report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect (OSTI)

    Loar, J.M. [ed.] [ed.

    1994-04-01T23:59:59.000Z

    In response to a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC) and selected tributaries. BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake. The ecological characterization of the WOC watershed will provide baseline data that can be used to document the ecological effects of the water pollution control program and the remedial action program. The long-term nature of BMAP ensures that the effectiveness of remedial measures will be properly evaluated.

  9. Fact Sheet - Federal agencies announce agreements to benefit...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Confederated Tribes and Bands of the Yakama Nation Columbia River Inter-Tribal Fish Commission 2) MOA with Confederated Tribes of the Colville Indian Reservation and...

  10. Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect (OSTI)

    Loar, J.M. [ed.] [ed.; Adams, S.M.; Bailey, R.D.; Blaylock, B.G.; Boston, H.L.; Cox, D.K.; Huston, M.A.; Kimmel, B.L.; Loar, J.M.; Olsen, C.R.; Ryon, M.G.; Shugart, L.R.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Talmage, S.S.; Murphy, J.B.; Valentine, C.K. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States); Appellanis, S.M.; Jimenez, B.D. [Puerto Rico Univ., San Juan (Puerto Rico)] [Puerto Rico Univ., San Juan (Puerto Rico); Huq, M.V. [Connecticut Dept. of Environmental Protection, Hamden, CT (United States)] [Connecticut Dept. of Environmental Protection, Hamden, CT (United States); Meyers-Schone, L.J. [Frankfurter, Gross-Gerau (Germany)] [Frankfurter, Gross-Gerau (Germany); Mohrbacher, D.A. [Automated Sciences Group, Inc., Oak Ridge, TN (United States)] [Automated Sciences Group, Inc., Oak Ridge, TN (United States); Olsen, C.R. [USDOE Office of Energy Research, Washington, DC (United States). Environmental Sciences Div.] [USDOE Office of Energy Research, Washington, DC (United States). Environmental Sciences Div.; Stout, J.G. [Cincinnati Univ., OH (United States)] [Cincinnati Univ., OH (United States)

    1992-12-01T23:59:59.000Z

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987.

  11. Third report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect (OSTI)

    Loar, J.M. [ed.] [ed.; Adams, S.M.; Bailey, R.D. [and others] [and others

    1994-03-01T23:59:59.000Z

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. The BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs at ORNL. These are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake (WOL). The investigation of contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system was originally a task of the BMAP but, in 1988, was incorporated into the Resource Conservation and Recovery Act Facility Investigation for the Clinch River, a separate study to assess offsite contamination from all three Department of Energy facilities in Oak Ridge.

  12. South Platte River Compact and U.S. Supreme Court Decree for North Platte River

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    1 South Platte River Compact and U.S. Supreme Court Decree for North Platte River J. Michael Jess Platte, and Arkansas rivers, for example, have been resolved through litigation brought before the U and Kansas are examples. In the Platte River watershed the State of Nebraska has experience allocating water

  13. Rehabilitate Newsome Creek Watershed, 2007-2008 Annual Report.

    SciTech Connect (OSTI)

    Bransford, Stephanie [Nez Perce Tribe Fisheries/Watershed Program

    2009-05-01T23:59:59.000Z

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridgetop approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Newsome Creek watershed of the South Fork Clearwater River in 1997. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. Starting in FY 2001 and continuing into the present, a major stream restoration effort on the mainstem of Newsome Creek has been pursued. From completing a watershed assessment to a feasibility study of 4 miles of mainstem rehabilitation to carrying that forward into NEPA and a final design, we will begin the effort of restoring the mainstem channel of Newsome Creek to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed.

  14. Using Trends and Geochemical Analysis to Assess Salinity Sources along the Pecos River, Texas

    E-Print Network [OSTI]

    Hoff, Aaron

    2012-07-16T23:59:59.000Z

    Increasing salinity has been a growing concern for users of waters from the Pecos River and the reservoirs it feeds in the Texas portion of the River's watershed. Irrigation water diverted from the river in the northern reach of this watershed...

  15. Cooperator Report: Habitat Requirements of Steelhead in the Upper Salinas River

    E-Print Network [OSTI]

    Thompson, Lisa C.

    Cooperator Report: Habitat Requirements of Steelhead in the Upper Salinas River Watershed Jenna L the abundance, distribution, and habitat requirements of steelhead in the upper Salinas River watershed. We, and reproduce (Thompson & Larsen 2004). The Salinas River and its tributaries have been designated

  16. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2000-2001 Annual Report.

    SciTech Connect (OSTI)

    Kern, J. Chris; Ward, David L.; Farr, Ruth A. (Oregon Department of Fish and Wildlife)

    2002-02-01T23:59:59.000Z

    We report on our progress from April 2000 through March 2001 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), Columbia River Inter-Tribal Fish Commission (CRITFC; Report D), the U.S. Fish and Wildlife Service (USFWS; Report E), and Oregon State University (OSU; Report F). This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of our work from April 2000 through March 2001 are listed.

  17. The Texas Watershed Steward Program

    E-Print Network [OSTI]

    WATERSHED PROTECTION AND MANAGEMENT · Importance of Local Watershed Involvement · Forming and Sustaining: ­ 7 AICP CM hours (planners) ­ 7 TBPE CPEs (engineers) ­ 7 CCA CEUs (soil & water management) ­ 7Life Extension Service Watershed Protection Planning Short Course January 1216, 2009 WATERSHED MANAGEMENT · Local

  18. APPLICATION OF CARBOHYDRATES AND PHENOLS AS BIOMARKERS TO STUDY DISSOLVED ORGANIC MATTER RESERVOIRS IN ARCTIC RIVERS.

    E-Print Network [OSTI]

    McMahon, Rachel

    2014-01-22T23:59:59.000Z

    Arctic rivers are the dominant pathways for the transport of terrestrial dissolved organic carbon to the Arctic Ocean, but knowledge of sources, transformations and transfer of organic carbon and nitrogen in Arctic river watersheds is extremely...

  19. Natural Salt Pollution and Water Supply Reliability in the Brazos River Basin

    E-Print Network [OSTI]

    Wurbs, Ralph A.; Karama, Awes S.; Saleh, Ishtiaque; Ganze, C. Keith

    The Brazos River Basin is representative of several major river basins in the Southwestern United States in regard to natural salt pollution. Geologic formations underlying portions of the upper watersheds of the Brazos, Colorado, Pecos, Canadian...

  20. Course helps professionals develop watershed protection plans: Texas water resources professionals gather

    E-Print Network [OSTI]

    Jensen, Ric

    2008-01-01T23:59:59.000Z

    tx H2O | pg. 6 Story by Ric Jensen Course helps professionals develop watershed protection plans | pg. 6 tx H2O | pg. 7 W ater resources professionals wanting training on watershed protection plan development are benefiting from a course... Casebolt of Texas State Soil and Water Conservation Board, Lucas Gregory of Texas Water Resources Institute, Vanessa Escobar of the Texas Water Development Board, and Ernest Moran of the San Antonio River Author- ity calculate load duration curves...

  1. OkanoganRiver Summer/FallChinookSalmon

    E-Print Network [OSTI]

    AND GENETIC MANAGEMENT PLAN (HGMP) Hatchery Program: Species or Hatchery Stock: Agency/Operator: Watershed B.5 Tribal Incidental Take Thresholds for ESA-Listed 98 Upper Columbia River Steelhead Table B.6

  2. Microsoft Word - NEPA18_Final.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    River Exhibition of History, Science and Technology CRITFC Columbia River Inter-Tribal Fish Commission CWA Clean Water Act dB Decibels dBA A-weighted sound level DCG Derived...

  3. A Comparison of AMSR-E/Aqua Snow Products with in situ Observations and MODIS Snow Cover Products in the Mackenzie River Basin, Canada

    E-Print Network [OSTI]

    Tong, Jinjun; Velicogna, Isabella

    2010-01-01T23:59:59.000Z

    alpine watershed of western Canada inferred from spatially-Basin, British Columbia, Canada. Hydrol. Earth Syst. Sci.Mackenzie River Basin, Canada. Adv. Water Resour. Derksen,

  4. Emerald Lake Watershed study: Introduction and site description

    SciTech Connect (OSTI)

    Tonnessen, K.A. (California Air Resources Board, Sacramento (United States))

    1991-07-01T23:59:59.000Z

    The Emerald Lake Watershed study was organized to investigate the effects of acidic deposition on high-elevation watersheds and surface waters of the Sierra Nevada, California. Some of the results of this comprehensive study of aquatic and terrestrial ecosystems at a small, headwater basin are presented in four papers in this series. The watershed study site is in Sequoia National Park, on the western slope of the Sierra Nevada. This glacial cirque is located in the upper Marble Fork of the Kaweah River. This 120-ha watershed ranges from Alta Peak (3,416 m) down to Emerald Lake (2,400 m). Most of the watershed surface area is exposed granite and granodiorite rocks, with limited coverage (about 20%) by thin, acidic soils. The hydrology of the basin is dominated by snowmelt runoff during March-June. Emerald Lake, a glacial tarn, is 2.72 ha in area, with a maximum depth of 10.5 m. Surface waters are poorly buffered and dominated by calcium and bicarbonate. Most of the yearly precipitation falls as dilute snow (pH5.2-5.4), with acidic rain storms sampled during May-October.

  5. Iskuulpa Watershed Management Plan : A Five-Year Plan for Protecting and Enhancing Fish and Wildlife Habitats in the Iskuulpa Watershed.

    SciTech Connect (OSTI)

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    2003-01-01T23:59:59.000Z

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to protect, enhance, and mitigate wildlife and wildlife habitat and watershed resources in the Iskuulpa Watershed. The Iskuulpa Watershed Project was approved as a Columbia River Basin Wildlife Fish and Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1998. Iskuulpa will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the John Day and McNary Hydroelectric facilities on the Columbia River. By funding the enhancement and operation and maintenance of the Iskuulpa Watershed, BPA will receive credit towards their mitigation debt. The purpose of the Iskuulpa Watershed management plan update is to provide programmatic and site-specific standards and guidelines on how the Iskuulpa Watershed will be managed over the next three years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management.

  6. Asotin Creek Model Watershed Plan: Asotin County, Washington, 1995.

    SciTech Connect (OSTI)

    Browne, Dave

    1995-04-01T23:59:59.000Z

    The Northwest Power Planning Council completed its ``Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ``four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity.

  7. Active Biomonitoring for PCB, PAH and Chlordane Sources in the Anacostia Watershed

    E-Print Network [OSTI]

    District of Columbia, University of the

    1 Active Biomonitoring for PCB, PAH and Chlordane Sources in the Anacostia Watershed Final Report to the DC Water Resources Research Center Dr. Harriette L. Phelps June 1, 2008 ABSTRACT In 2007, active's Anacostia River upper tributaries. The contaminated tributaries included Indian Creek (PAHs), Lower

  8. Calibration of Watershed Models using Cloud Computing Marty Humphrey, Norm Beekwilder

    E-Print Network [OSTI]

    Humphrey, Marty

    .e. runoff from agricultural and urban lands to water bodies. This difference in scope introduces-- Understanding hydrologic systems at the scale of large watersheds and river basins is critically important to society when faced with extreme events, such as floods and droughts, or with concerns about water quality

  9. Coupling upland watershed and downstream waterbody hydrodynamic and water quality models

    E-Print Network [OSTI]

    . Such models lack the capacity to simulate the hydrodynamics and water quality processes of larger waterCoupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins B. Debele & R. Srinivasan

  10. Risk assessment of watershed erosion at Naesung Stream, South Korea Un Ji a,*, Mark Velleux b

    E-Print Network [OSTI]

    Julien, Pierre Y.

    simulated runoff, channel flow, soil erosion, and stream sediment transport in the Naesung Stream watershed is a significant river management issue and critical environmental problem (Kane and Julien, 2007). Typically, land for analysis of precipitation, overland runoff, channel flow, soil erosion, and stream sediment transport

  11. Supplement Analysis for the Watershed Management Program EIS - John Day Watershed Restoration Program

    SciTech Connect (OSTI)

    N /A

    2004-08-04T23:59:59.000Z

    The Bonneville Power Administration (BPA) is proposing to fund the John Day Watershed Restoration Program, which includes projects to improve watershed conditions, resulting in improved fish and wildlife habitat. The project was planned and coordinated by the Confederated Tribes of the Warm Springs through the John Day Basin Office in Prairie City, Oregon. A variety of activities will be implemented, described below. The project will involve the installation of four permanent lay flat diversions (structures) to replace temporary diversions. Two structures would be constructed in Beech Creek, one in Little Beech Creek and one in the John Day River. The structures will replace temporary pushup dams, which were constructed annually of various materials. Installation of the permanent diversion structures eliminates the stream-disturbing activities associated with annual installation of temporary structures. They also will enable fish passage in all flow conditions, an improvement over the temporary structures which can obstruct fish passage under some conditions. Five scour chains will be installed in six sites within the John Day River. The chains will be 3 feet long and consist of 1/4 inch chain. They will be buried within the streambed to monitor the movement of material in the streambed. Other activities that will be implemented include: Installation of off-site water systems in areas where fencing and revegetation projects are implemented, in order to restrict livestock access to waterways; construction of facilities to return irrigation flows to the Johns Day River, including the installation of pipe to replace failing drains or return ditches; installation of pumps to replace temporary diversions; and removal of junipers from approximately 500 acres per year by hand felling.

  12. Microsoft Word - Doc1.docx

    Broader source: Energy.gov (indexed) [DOE]

    ICC',ICIIIM SCREENING FORM DOECX-00033 I. Project Title: Col;mbia River Inter-Tribal Fish Commission Use of White Bluffs Boat Launch and Hanford Town Boat Ramp for Tagging...

  13. Historical narratives of Big Chico Creek Watershed Alliance and Butte Creek Watershed Conservancy

    E-Print Network [OSTI]

    King, Mary Ann; Matz, Mike

    2003-01-01T23:59:59.000Z

    Passage on Upper Butte Creek: An Assessment of the NaturalHistorical Narratives of Big Chico Creek Watershed Allianceand Butte Creek Watershed Conservancy Mary Ann King and Mike

  14. Southern Region Watershed Management Project

    E-Print Network [OSTI]

    Coordinators and the organization, management and activities of the Southern Region Water Quality Planning1 Southern Region Watershed Management Project September 15, 2000 to September 14, 2005 Terminal responding to water quality and conservation issues with educational assistance, technology development

  15. OkanoganRiver SpringChinookSalmon

    E-Print Network [OSTI]

    : Species or Hatchery Stock: Agency/Operator: Watershed and Region: Date Submitted: Date Last Updated: NOTE Chinook Above Wells Dam Table 3. Tribal Incidental Take Thresholds for ESA-Listed 44 Upper Columbia River Steelhead Table 4. Tribal & Recreational Incidental Take Thresholds 45 for Unmarked Spring Chinook Table 5

  16. Managing the Yellowstone River System with Place-based Cultural Data

    E-Print Network [OSTI]

    Hall, Damon M.

    2011-10-21T23:59:59.000Z

    resource management (NRM) and planning (e.g., community-based planning, watershed-based and collaborative management, others). By examining one decentralized riparian management planning effort along the Yellowstone River (Montana), this study finds...

  17. The Development of a Coordinated Database for Water Resources and Flow Model in the Paso Del Norte Watershed (Phase III) Part I Lower Rio Grande Flood Control Model [LRGFCM] RiverWare Model Development

    E-Print Network [OSTI]

    Tillery, Sue; Sheng, Zhuping; King, J. Phillip; Creel, Bobby; Brown, Christopher; Michelsen, Ari; Srinivasan, Raghavan; Granados, Alfredo

    2009-01-01T23:59:59.000Z

    ) 1985-1999 (d), 2000 (n), 2001-6/2003 (d) Santo Tomas River Drain 1985-1990 (d) 1 d - daily data, m - monthly data, n ? no data C o n c e p t u a l M o d e l o f R i o G r a n d e P r o j e c... t F l o w 8 Site Available Data Since 1975 1 WW #25 (Santo Tomas Lateral) 1985-1999 (d), 2000 (n), 2001 (d) WW #26 (Upper Chamberino Lateral) 1979-1999 (d), 2000-5/2001(n), 6/2001-5/2005 (d) WW #18 (Eastside Canal) 1985-1999 (d), 2000 (n), 2001...

  18. Habitat Projects Completed within the Asotin Creek Watershed, 1999 Completion Report.

    SciTech Connect (OSTI)

    Johnson, Bradley J.

    2000-01-01T23:59:59.000Z

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in WRIA 35. According to WDFW's Priority WRIA's by At-Risk Stock Significance Map, it is the highest priority in southeastern WA. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred seventy-six projects have been implemented through the ACMWP as of 1999. Twenty of these projects were funded in part through Bonneville Power Administration's 1999 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; thirty-eight were created with these structures. Three miles of stream benefited from riparian improvements such as vegetative plantings (17,000 trees and shrubs) and noxious weed control. Two sediment basin constructions, 67 acres of grass seeding, and seven hundred forty-five acres of minimum till were implemented to reduce sediment production and delivery to streams in the watershed.

  19. Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach

    SciTech Connect (OSTI)

    Klaus, Julian [Luxembourg Institute of Science and Technology (LIST), Dept. Environmental Research and Innovation, Belvaux (Luxembourg)

    2015-01-01T23:59:59.000Z

    The time and geographic sources of streamwater in low-relief watersheds are poorly understood. This is partly due to the difficult combination of low runoff coefficients and often damped streamwater isotopic signals precluding traditional hydrograph separation and convolution integral approaches. Here we present a dual-isotope approach involving 18O and 2H of water in a low-angle forested watershed to determine streamwater source components and then build a conceptual model of streamflow generation. We focus on three headwater lowland sub-catchments draining the Savannah River Site in South Carolina, USA.

  20. Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Klaus, Julian

    2015-01-01T23:59:59.000Z

    The time and geographic sources of streamwater in low-relief watersheds are poorly understood. This is partly due to the difficult combination of low runoff coefficients and often damped streamwater isotopic signals precluding traditional hydrograph separation and convolution integral approaches. Here we present a dual-isotope approach involving 18O and 2H of water in a low-angle forested watershed to determine streamwater source components and then build a conceptual model of streamflow generation. We focus on three headwater lowland sub-catchments draining the Savannah River Site in South Carolina, USA.

  1. Couse/Tenmile Creeks Watershed Project Implementation : 2007 Conservtion Projects. [2007 Habitat Projects Completed].

    SciTech Connect (OSTI)

    Asotin County Conservation District

    2008-12-10T23:59:59.000Z

    The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on private lands within Asotin County watersheds. The Tenmile Creek watershed is a 42 square mile tributary to the Snake River, located between Asotin Creek and the Grande Ronde River. Couse Creek watershed is a 24 square mile tributary to the Snake River, located between Tenmile Creek and the Grande Ronde River. Both watersheds are almost exclusively under private ownership. The Washington Department of Fish and Wildlife has documented wild steelhead and rainbow/redband trout spawning and rearing in Tenmile Creek and Couse Creek. The project also provides Best Management Practice (BMP) implementation throughout Asotin County, but the primary focus is for the Couse and Tenmile Creek watersheds. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Farm Service Agency (FSA), Salmon Recovery Funding Board (SRFB), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe (NPT), Washington Department of Ecology (DOE), National Marine Fisheries Service (NOAA Fisheries), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. The Asotin Subbasin Plan identified priority areas and actions for ESA listed streams within Asotin County. Couse Creek and Tenmile Creek are identified as protection areas in the plan. The Conservation Reserve Enhancement Program (CREP) has been successful in working with landowners to protect riparian areas throughout Asotin County. Funding from BPA and other agencies has also been instrumental in protecting streams throughout Asotin County by utilizing the ridge top to ridge top approach.

  2. Walker Branch Watershed Ecosystems Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    These projects have all contributed to a more complete understanding of how forest watersheds function and have provided insights into the solution of energy-related problems associated with air pollution, contaminant transport, and forest nutrient dynamics. This is one of a few sites in the world characterized by long-term, intensive environmental studies. The Walker Branch Watershed website at http://walkerbranch.ornl.gov/ provides maps, photographs, and data on climate, precipitation, atmospheric deposition, stream discharge and runoff, stream chemistry, and vegetation. [Taken from http://walkerbranch.ornl.gov/ABOUTAAA.HTM

  3. Water Use in Agricultural Watersheds Derrel Martin, Professor, Irrigation and Water Resources Engineer, Dept. of Biological Systems

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Water Use in Agricultural Watersheds Derrel Martin, Professor, Irrigation and Water Resources Engineer, Dept. of Biological Systems Engineering, UNL Background Concerns about water use have intensified and Republican River Basins, and the implementation of LB 962. To understand water use it is helpful to consider

  4. SWAT TO IDENTIFY WATERSHED MANAGEMENT OPTIONS: (ANJENI WATERSHED, BLUE NILE BASIN, ETHIOPIA)

    E-Print Network [OSTI]

    Walter, M.Todd

    SWAT TO IDENTIFY WATERSHED MANAGEMENT OPTIONS: (ANJENI WATERSHED, BLUE NILE BASIN, ETHIOPIA Biniam Biruk Ashagre #12;ABSTRACT Ethiopia is known for its wealth of natural resources. These result Basin, Ethiopia) #12;iv This study is dedicated to my

  5. Developing a Methodology to Prioritize Texas Watersheds for Environmental Restoration Efforts

    E-Print Network [OSTI]

    Srinivasan, R.; Jacobs, Jennifer H.; Jones, C. Allan; Harris, B.L.; Jensen, Ricard W.

    and terrestrial portfolios developed by the Nature Conservancy, major rivers, aquifer recharge zones, major reservoirs, and critical stream segments. At the same time, watershed threats were identified by assessing data on such factors as water and wind... by TPWD. The presence of Texas Nature Conservancy (TNC) Aquatic, Terrestrial and Marine Portfolios Finally, for each HUC the percentage of riparian cropland was determined. Those HUCs within the top 20% were determined to be significant...

  6. Biological Survey of the Upper Purgatoire Watershed

    E-Print Network [OSTI]

    Biological Survey of the Upper Purgatoire Watershed Las Animas County, CO John Carney Colorado ...............................................................................................................9 Management Urgency Ranks ........................................................................................................10 POTENTIAL CONSERVATION SITE PLANNING BOUNDARIES........................................12 Off

  7. John Day Watershed Restoration Projects, annual report 2003.

    SciTech Connect (OSTI)

    Brown, Linda (Confederated Tribes of the Warm Springs Reservation of Oregon, John Day Basin Office, John Day, OR)

    2004-01-01T23:59:59.000Z

    The John Day is the nation's second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, Oregon's fourth largest drainage basin, and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, westslope cutthroat, and redband and bull trout, the John Day system is truly a basin with national significance. The majority of the John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), which contracts the majority of the construction implementation activities for these projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2003, the JDBO and GSWCD proposed continuation of their successful partnership between the two agencies and basin landowners to implement an additional twelve (12) watershed conservation projects. The types of projects include off channel water developments, juniper control, permanent diversions, pump stations, and return-flow cooling systems. Due to funding issues and delays, permitting delays, fire closures and landowner contracting problems, 2 projects were canceled and 7 projects were rescheduled to the 2004 construction season. Project costs in 2003 totaled $115,554.00 with a total amount of $64,981.00 (56%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources such as the Bureau of Reclamation (BOR), Oregon Watershed Enhancement Board, the U.S. Fish & Wildlife Service Partners in Wildlife Program and individual landowners.

  8. Watershed Science/Hydrology Graduate Schools

    E-Print Network [OSTI]

    Watershed Science/Hydrology Graduate Schools University of Arizona Tucson, Arizona 95721://www.ag.arizona.edu/srnr/academicprograms/watershedresources/graduatestudies.html University of California, Davis Davis, California 95616 Program: Hydrologic Sciences http://www.warnercnr.colostate.edu/frws/watershed/graduate/index.html University of Florida Gainesville, Florida 326118140 Programs: Hydrologic Science http

  9. Agriculture and Natural Resources Arkansas Watersheds

    E-Print Network [OSTI]

    provide the natural catchment boundaries for isolating geographical areas with similar hydrological Environmental Protection Agency (EPA) defines a watershed as "the area of land where all of the waterAgriculture and Natural Resources FSA9521 Arkansas Watersheds Mike Daniels Professor

  10. Woody vegetation of the lower Navasota River watershed

    E-Print Network [OSTI]

    Allen, Harriet Louise Gell

    1974-01-01T23:59:59.000Z

    characteristics: Upland, Transition, Bottomland and Ephemeral Stream. Within these habitat types, stands were grouped into dominance types based on the leading dominant(s). Nine dominance types were found: Post Oak, Post Oak-Hickory, Winged Elm, Cedar Elm..., Overcup Oak, Hackberry-Cedar Elm, Swamp Privet and Water Elm. Post oak was the most widespread upland dominant, while cedar elm dominated the bottomlands. The woody vegetation is best viewed as dominance types along a iv community continuum...

  11. Watershed Management And Modeling Development and Application of

    E-Print Network [OSTI]

    Sukop, Mike

    30% of ponds, lakes and reservoirs 40% of estuaries #12;Watershed Management And Modeling Sources-transpiration Elemental responses are integrated to determine system response #12;Watershed Management And ModelingWatershed Management And Modeling Development and Application of Watershed Models for Simulation

  12. Urban Retrofit: A Whole-Watershed Approach to Urban Stormwater Management

    E-Print Network [OSTI]

    Lithander, Becky

    2012-01-01T23:59:59.000Z

    rely impervious Derby/Po)er Creek Watershed: Urban cisterns Derby/Po)er Creek Watershed: Urban of impermeability Derby/Po)er Creek Watershed: Urban

  13. Supplement Analysis for the Watershed Management Program EIS --Idaho Model Watershed Habitat Projects - Pahsimeroi Fence Crossing

    SciTech Connect (OSTI)

    N /A

    2004-08-11T23:59:59.000Z

    The Bonneville Power Administration is proposing to fund the installation of a fenced stream crossing over the Pahsimeroi River to enhance a livestock riparian enclosure. This structure would include up to four wood fence posts and two deadman anchors buried in the ground. The goal of this project is to enhance salmon and steelhead rearing and migration habitat by preventing livestock from entering the riparian area via the river. The NEPA compliance checklist for this project was completed by Carl Rudeen with the Custer Soil and Water Conservation District (August 4, 2004) and meets the standards and guidelines for the Watershed Management Program Environmental Impact Statement (EIS) and Record of Decision (ROD). The Endangered Species Act (ESA) listed species that may occur in the general vicinity of the project area are gray wolf, Canada lynx, bald eagle, Ute ladies'Tresses, Snake River chinook salmon, Snake River steelhead trout, and Columbia River Basin bull trout. It was determined that the proposed fence crossing construction project would have no effect on these species. Bald eagle, gray wolf and Canada lynx are not known to occur in the immediate project vicinity. Since the site is used primarily as livestock pasture it does not lend itself to the presence of Ute ladies'Tresses. ESA listed fish may be present in the project vicinity but will not be affected because the project does not involve instream work. Soil disturbance will be limited to the livestock pasture and to two holes that will be used to bury anchors for the suspended portion of the fence. Required river crossings will be made on foot. Requirements associated with Section 106 of the National Historic Preservation Act were handled by the Natural Resource Conservation Service (NRCS), in cooperation with staff from the U.S. Forest Service (Boise National Forest), under their existing Programmatic Agreement with the Idaho State Historic Preservation Office (SHPO). A description of the Pahsimeroi Fence Crossing project and site information was reviewed by a qualified archaeologist and it was determined that an archaeological survey was needed. Bruce Blackmere with NRCS conducted an intensive-complete survey of the project site and cultural resources were not identified (July 30, 2004). Based on these findings, it was recommended that the project proceed as planned. All survey findings were provided to the Idaho SHPO. In the unlikely event that archaeological material is discovered during project implementation, an archaeologist should be notified immediately and work halted in the vicinity of the finds until they can be inspected and assessed. Standard water quality protection procedures and Best Management Practices should be followed during the implementation of the Pahsimeroi Fence Crossing project. No construction is authorized to begin until the proponent has obtained all applicable local, state, and federal permits and approvals. Public involvement has occurred as part of the Pahsimeroi Fence Crossing project. This project was coordinated through the Upper Salmon Basin Technical Team and Advisory Committee composed of representatives from U.S. Fish and Wildlife Service, NOAA Fisheries, Shoshone Bannock Tribe, and Idaho Department of Fish and Game. In addition, the Custer Soil and Water Conservation District holds monthly meetings that are open to the public in which this project was discussed.

  14. Techniques for remotely sensing watershed runoff potential

    E-Print Network [OSTI]

    Walker, Jerry Don

    1978-01-01T23:59:59.000Z

    Techniques for Remotely Sensing Watershed Runoff Potential. (August 1978) Jerry Don Walker, B. S. , Texas ASM University Directed by: Dr. Bruce J. Blanchard The Soil Conservation Service runoff equation is widely used for predicting the watershed runoff... cases, no outflow occurs through the spillway of an overdes1gned structure. Since evaporation losses are high 1n these areas, the salinity of the water stored in the structure gradually increases with time. With insufficient flow through...

  15. Bacterial Monitoring for the Buck Creek Watershed

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    aquifer drawdown from vegetation and irrigation often reduce stream flow; however, several large pools and stretches of the stream retain water throughout the year, except during extreme drought. Base flow in the stream is typically sustained by small... map of the Buck Creek watershed 7 Major aquifers in Texas (Source: Texas Water Development Board) Groundwater Two aquifers, the Seymour and Blaine, underlie the Buck Creek watershed and supply the bulk of available groundwater. The Seymour...

  16. McKenzie River Subbasin Assessment, Summary Report 2000.

    SciTech Connect (OSTI)

    Alsea Geospatial, Inc.

    2000-02-01T23:59:59.000Z

    This document summarizes the findings of the McKenzie River Subbasin Assessment: Technical Report. The subbasin assessment tells a story about the McKenzie River watershed. What is the McKenzie's ecological history, how is the McKenzie doing today, and where is the McKenzie watershed headed ecologically? Knowledge is a good foundation for action. The more we know, the better prepared we are to make decisions about the future. These decisions involve both protecting good remaining habitat and repairing some of the parts that are broken in the McKenzie River watershed. The subbasin assessment is the foundation for conservation strategy and actions. It provides a detailed ecological assessment of the lower McKenzie River and floodplain, identifies conservation and restoration opportunities, and discusses the influence of some upstream actions and processes on the study area. The assessment identifies restoration opportunities at the reach level. In this study, a reach is a river segment from 0.7 to 2.7 miles long and is defined by changes in land forms, land use, stream junctions, and/or cultural features. The assessment also provides flexible tools for setting priorities and planning projects. The goal of this summary is to clearly and concisely extract the key issues, findings, and recommendations from the full-length Technical Report. The high priority recommended action items highlight areas that the McKenzie Watershed Council can significantly influence, and that will likely yield the greatest ecological benefit. People are encouraged to read the full Technical Report if they are interested in the detailed methods, findings, and references used in this study.

  17. Optimal Operation of Large Agricultural Watersheds with Water Quality Restraints

    E-Print Network [OSTI]

    Williams, J. R.; Hann, R. W.

    . Nonpoint-source pollution (watersheds) is widely dispersed and not easily measured. Mathematical models are needed to predict nonpoint-source pollution as affected by watershed characteristics, land use, conservation practices, chemical fertilizers...

  18. area watershed management: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which is defi ned as a coordinated environmental management framework that focuses public and private efforts on a watershed?s highest- priority problems. In the past, such an...

  19. Comparative analyses for the prediction of streamflow from small watershed by use of digitized radar data

    E-Print Network [OSTI]

    Braatz, Dean Thomas

    1973-01-01T23:59:59.000Z

    in this study. (Source: ARS, USDA, Chickasha, Oklahoma) N 149 Cy ril 147 154 125 ~ q q ~ ~l. t 124 130 \\ 522 l g 131' ~ 132 $ 133 Ninnekah if l, 134 135 VCement 151 ~+ f 150 14'e 181 144 153 182 r 156 Fletcher 161 160 f59 0 5 Rush Springs Scale..., Agriculture Research Service (ARS), United States Department of Agriculture (USDA), Chickasha, Oklahoma, for two small sub-basins within the larger experimen- tal watershed of the Washita River basin. The actual rainfall values collected by the ARS network...

  20. Bringing science into river systems cumulative effects assessment practice

    SciTech Connect (OSTI)

    Seitz, Nicole E. [Centre for Hydrology, Department of Geography and Planning, University of Saskatchewan. 117 Science Place, Saskatoon, SK. S7N 5C8 (Canada); Westbrook, Cherie J., E-mail: cherie.westbrook@usask.c [Centre for Hydrology, Department of Geography and Planning, University of Saskatchewan. 117 Science Place, Saskatoon, SK. S7N 5C8 (Canada); Noble, Bram F. [Department of Geography and Planning, School for the Environment and Sustainability, University of Saskatchewan. 117 Science Place, Saskatoon, SK. S7N 5C8 (Canada)

    2011-04-15T23:59:59.000Z

    Fast-paced watershed change, driven by anthropogenic development, is threatening the sustainability of freshwater resources across the globe. Developments within watersheds interact in a manner that is additive and synergistic over space and time. Such cumulative environmental effects are defined as the results of actions that are individually minor but collectively significant when added to other past, present, and reasonably foreseeable future actions. Cumulative effects assessment (CEA) then is broadly defined as the process of evaluating the potential impacts of such collective actions on the environment and is a requirement in many countries, including in Canada at the federal level under the Canadian Environmental Assessment Act. However, current approaches to CEA for river systems are proving to be ineffective, which is largely attributed to the disconnect between CEA science and practice. We highlight this gap herein by discussing contradictions in the CEA literature, challenges in quantifying cumulative interactions, including overcoming spatiotemporal scale issues, multiple hydrologic and ecological pathways, and lack of predictive analysis. Our analysis shows there is a need for improved CEA for river systems, and in responding to this need we propose a conceptual framework for better integrating science and practice for improved CEA for river systems using one of the most adversely affected rivers basins in Canada, the Athabasca River, as our model. We conclude by addressing the challenges inherent to CEA with the intent of providing scientists with ways to help improve CEA of river systems.

  1. Persisting impact of historical mining activity to metal (Pb, Zn, Cd, Tl, Hg) and metalloid (As, Sb) enrichment in sediments of the Gardon River,

    E-Print Network [OSTI]

    Demouchy, Sylvie

    ) enrichment in sediments of the Gardon River, Southern France Elonore Resongles a, , Corinne Casiot a , Rmi in sediments was investigated in multi-source context. Metal(loid) enrichment during the 19th century of ancient mining activity on metal(loid) enrichment in sediments of a former mining watershed (Gardon River

  2. Correlation of measures of ambient toxicity and fish community diversity in Chesapeake Bay, USA, tributaries -- urbanizing watersheds

    SciTech Connect (OSTI)

    Hartwell, S.I.; Dawson, C.E.; Durell, E.Q. [Maryland Dept. of Natural Resources, Annapolis, MD (United States). Chesapeake Bay Research and Monitoring Div.] [and others

    1997-12-01T23:59:59.000Z

    This study was performed to evaluate ambient toxicity conditions in Chesapeake Bay tidal tributaries whose watersheds are impacted by urban development and to further evaluate an existing toxicological risk ranking model. A battery of water-column and sediment bioassays were employed with animals and plants. Tests were conducted at five sample sites in each of four tidal tributaries. Mortality, reproduction, and growth rates in the water-column assays did not consistently indicate chemical contamination in any system. Chemical analyses did not indicate elevated levels of contaminants in the water column. Sediment bioassays demonstrated greater responses than water-column assays. Sediment in the upstream reaches of the South River demonstrated significant toxicity. Toxicity was also observed at the uppermost Severn River station and the middle Patuxent River station. Chemical analyses of composite sediment samples indicated elevated metals levels in the South River. Some metals were above threshold values in the Patuxent and Wicomico rivers. Organic analyses demonstrated low level polycyclicaromatic hydrocarbon contamination in all four systems. The toxicological risk ranking model ranked the South River as the most contaminated-impacted site. The ranking model identified specific locations in the Severn and Patuxent rivers that indicate sediment contamination. The Wicomico River had the lowest overall risk score. The toxicological risk ranking results for sediment were significantly correlated with species diversity for fish communities sampled by bottom trawl. Results were consistent with data from previous years. Regression analysis of 2 years of data indicate that fish community impairment can be predicted with ambient toxicity results.

  3. Bridge Creek Watershed Volunteer Lake Secchi Disk Monitoring Program

    E-Print Network [OSTI]

    #12;Bridge Creek Watershed Volunteer Lake Secchi Disk Monitoring Program 1996 DOE FRAP 1996-13 Ryan Creek Watershed Volunteer Lake Monitoring Program. Using a Secchi disk, volunteers collected water transparency data from 22 lakes in the Bridge Creek watershed. Secchi depth readings were collected between May

  4. State of the Watershed: Water Quality of Boulder Creek, Colorado

    E-Print Network [OSTI]

    State of the Watershed: Water Quality of Boulder Creek, Colorado By Sheila F. Murphy Prepared of the watershed : water quality of Boulder Creek, Colorado / by Sheila Murphy. p. cm. (USGS Circular ; 1284) Includes bibliographic references. 1. Water quality -- Colorado -- Boulder Creek Watershed (Boulder

  5. Assistant Professor of Wildland Watershed Hydrology University of California, Berkeley

    E-Print Network [OSTI]

    Silver, Whendee

    Assistant Professor of Wildland Watershed Hydrology University of California, Berkeley The faculty invites applications for a tenure-track, academic year appointment in Wildland Watershed Hydrology recognized research program in landscape-scale watershed hydrology related to the fields of climatology

  6. Hydrologic Impacts of Saltcedar Control Along a Regulated Dryland River

    E-Print Network [OSTI]

    McDonald, Alyson Kay

    2012-02-14T23:59:59.000Z

    of saltcedar transpiration (sap flux) and evapotranspiration April ? June 2004 at Site B within the PREP study area along the Pecos River, Texas ..................................... 38 3.6 Comparison of saltcedar transpiration (sap flux... by saltcedar has been measured at a number of scales from that of individual plants to that of watersheds (Nagler et al., 2009; Shafroth et al., 2005) (Wilcox et al., 2006). Plant-scale measurements rely on sap flow (Sala et al., 1996; Devitt et al., 1997...

  7. The development of an aquatic spill model for the White Oak Creek watershed, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Johnson, R.O.

    1996-05-01T23:59:59.000Z

    This study develops an aquatic spill model applicable to the White Oak Creek watershed draining the Oak Ridge National Laboratory. Hazardous, toxic, and radioactive chemicals are handled and stored on the laboratory reservation. An accidental spill into the White Oak Creek watershed could contaminate downstream water supplies if insufficient dilution did not occur. White Oak Creek empties into the Clinch River, which flows into the Tennessee River. Both rivers serve as municipal water supplies. The aquatic spill model provides estimates of the dilution at sequential downstream locations along White Oak creek and the Clinch River after an accidental spill of a liquid containing a radioactively decaying constituent. The location of the spill on the laboratory is arbitrary, while hydrologic conditions range from drought to extreme flood are simulated. The aquatic spill model provides quantitative estimates with which to assess water quality downstream from the site of the accidental spill, allowing an informed decision to be made whether to perform mitigating measures so that the integrity of affected water supplies is not jeopardized.

  8. Pennsylvania Scenic Rivers Program

    Broader source: Energy.gov [DOE]

    Rivers included in the Scenic Rivers System will be classified, designated and administered as Wild, Scenic, Pastoral, Recreational and Modified Recreational Rivers (Sections 4; (a) (1) of the...

  9. Subtask 1.18 - A Decision Tool for Watershed-Based Effluent Trading

    SciTech Connect (OSTI)

    Xixi Wang; Bethany A. Kurz; Marc D. Kurz

    2006-11-30T23:59:59.000Z

    Handling produced water in an economical and environmentally sound manner is vital to coalbed methane (CBM) development, which is expected to increase up to 60% in the next 10-15 years as the demand for natural gas increases. Current produced water-handling methods (e.g., shallow reinjection and infiltration impoundments) are too costly when implemented on a well-by-well basis. A watershed-based effluent credit trading approach may be a means of managing produced water at reduced cost while meeting or surpassing water quality regulations. This market-based approach allows for improved water quality management by enabling industrial, agricultural, and municipal discharge facilities to meet water quality permit requirements by purchasing pollutant reduction credits from other entities within the same watershed. An evaluation of this concept was conducted for the Powder River Basin (PRB) of Montana and Wyoming by the Energy & Environmental Research Center (EERC). To conduct this assessment, the EERC collected and evaluated existing water quality information and developed the appropriate tools needed to assess the environmental and economic feasibility of specific trading scenarios. The accomplishments of this study include (1) an exploration of the available PRB water quantity and quality data using advanced statistical techniques, (2) development of an integrated water quality model that predicts the impacts of CBM produced water on stream salinity and sodicity, (3) development of an economic model that estimates costs and benefits from implementing potential trading options, (4) evaluation of hypothetical trading scenarios between select watersheds of the PRB, and (5) communication of the project concept and results to key state and federal agencies, industry representatives, and stakeholders of the PRB. The preliminary results of a basinwide assessment indicate that up to $684 million could be saved basinwide without compromising water quality as a result of implementing a watershed-based credit-trading approach.

  10. Bacterial Monitoring for the Buck Creek Watershed

    E-Print Network [OSTI]

    The Bacterial Monitoring for the Buck Creek Watershed project was developed in response to the creeks listing on the Texas Water Quality Inventory and 303(d) List due to a bacterial impairment and subsequent total maximum daily load (TMDL...

  11. The Regional Watershed Spreadsheet Model (RWSM)

    E-Print Network [OSTI]

    ) Metals Recycling 11) Auto Recycling 12) Old Industrial Areas 13) Power Plants Land Use Mean Concentration of watershed concentrations Output: *Land use specific runoff concentrations Optimization #12;3. Simple User of this plan... Hydro Sed Cu Hg PCB Se Diox PBDE OC Pest Hydro Sed Cu Hg PCB Se Diox PBDE OC PestStep 1 2 3 4 5

  12. Acquisition of Wildlife Habitat in the Calispell Creek Watershed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Calispell Creek watershed in Pend Oreille County, Wash. BPA funds the Albeni Falls Wildlife Mitigation Program, which is tasked with the acquisition and restoration of key...

  13. Watershed Scale Evaluation of the Sustainability and Productivity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Crop Production: Watershed Scale Evaluation of the Sustainability and Productivity of Dedicated Energy Crop and Woody Biomass Operations DOE Bioenergy Technologies...

  14. Understanding Nutrient Loading to the Coastal Zone from Urban Watersheds

    E-Print Network [OSTI]

    Robinson, Timothy H.

    2005-01-01T23:59:59.000Z

    with Land Use in the Carpinteria Valley, California.TIONS: Speaker: Carpinteria Creek Watershed Coalition annualand Forecasts for Carpinteria Creek", Lions' Club,

  15. Yakima River Spring Chinook Enhancement Study, 1985 Annual Report.

    SciTech Connect (OSTI)

    Fast, David E.

    1986-02-01T23:59:59.000Z

    The purpose was to evaluate enhancement methodologies that can be used to rebuild runs of spring chinook salmon in the Yakima River basin. The objectives were to: (1) determine the abundance, distribution and survival of naturally produced fry and smolts in the Yakima River; (2) evaluate different methods of fry and smolt supplementation into the natural rearing environment while maintaining as much as possible the gentic integrity of naturally produced stocks; (3) locate and define areas in the watershed which may be used for the rearing of spring chinook; (4) define strategies for enhancing natural production of spring chinook in the Yakima River; and (5) determine physical and biological limitations for production within the system.

  16. Rangeland Watershed Management for Texans: Know Your Plants to Protect Your Watershed

    E-Print Network [OSTI]

    Rector, Barron S.

    2000-10-30T23:59:59.000Z

    Plants are the foundation of the range ecosystem. The plant species growing on a property can indicate the health of the watershed and the success of the land manager. Learn how to "read your plants to understand the effect of your management....

  17. Rangeland Watershed Management for Texans: Increasing Bare Ground Indicates Poor Watershed Health

    E-Print Network [OSTI]

    Hays, K. Brian

    2000-10-30T23:59:59.000Z

    ; the more variable the landscape within a unit, the more tran- sects are needed. There will be obvious seasonal changes in vegetative cover because of plant growth and death Increasing Bare Ground Indicates Poor Watershed Health K. Brian Hays, Barron S...

  18. ENVIRONMENTAL QUALITY OF WILMINGTON AND NEW HANOVER COUNTY WATERSHEDS

    E-Print Network [OSTI]

    Mallin, Michael

    , total nitrogen, orthophosphate and total phosphorus. Several water quality parameters indicatedENVIRONMENTAL QUALITY OF WILMINGTON AND NEW HANOVER COUNTY WATERSHEDS 2004-2005 by Michael A Hanover County Tidal Creeks Project and Year 7 of the Wilmington Watersheds Project. Water quality data

  19. Sources and transport of nitrogen in arid urban watersheds

    SciTech Connect (OSTI)

    Hale, Rebecca L.; Turnbull, Laura; Earl, Stevan; Grimm, Nancy B.; Riha, Krystin M.; Michalski, Greg; Lohse, Kathleen; Childers, Daniel L.

    2014-06-03T23:59:59.000Z

    Urban watersheds are often sources of nitrogen (N) to downstream systems, contributing to poor water quality. However, it is unknown which components (e.g., land cover and stormwater infrastructure type) of urban watersheds contribute to N export and which may be sites of retention. In this study we investigated which watershed characteristics control N sourcing, biogeochemical processing of nitrate (NO3) during storms, and the amount of rainfall N that is retained within urban watersheds. We used triple isotopes of NO3 (?15N, ?18O, and ?17O) to identify sources and transformations of NO3 during storms from 10 nested arid urban watersheds that varied in stormwater infrastructure type and drainage area. Stormwater infrastructure and land coverretention basins, pipes, and grass coverdictated the sourcing of NO3 in runoff. Urban watersheds can be strong sinks or sources of N to stormwater depending on the proportion of rainfall that leaves the watershed as runoff, but we found no evidence that denitrification occurred during storms. Our results suggest that watershed characteristics control the sources and transport of inorganic N in urban stormwater but that retention of inorganic N at the timescale of individual runoff events is controlled by hydrologic, rather than biogeochemical, mechanisms.

  20. Independent Scientific Advisory Board for the Northwest Power and Conservation Council,

    E-Print Network [OSTI]

    1 Independent Scientific Advisory Board for the Northwest Power and Conservation Council, Columbia, Northwest Power and Conservation Council Paul Lumley, Executive Director, Columbia River Inter-Tribal Fish. Communication and understanding of the role that biological diversity plays for people is key to the choices

  1. Low-impact development in the Assabet River Watershed : site hydrologic design and watershed-scal implications

    E-Print Network [OSTI]

    Friedlich, Brian J. (Brian Joseph), 1982-

    2005-01-01T23:59:59.000Z

    Low-Impact Development (LID) is a relatively new approach to stormwater management. It aims to mimic natural hydrology through increased recharge and decreased runoff. LID technologies focus on distributed treatment of ...

  2. Red River Compact (Texas)

    Broader source: Energy.gov [DOE]

    The Red River Compact Commission administers the Red River Compact to ensure that Texas receives its equitable share of quality water from the Red River and its tributaries as apportioned by the...

  3. River Basin Commissions (Indiana)

    Broader source: Energy.gov [DOE]

    This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

  4. Maine Rivers Policy (Maine)

    Broader source: Energy.gov [DOE]

    The Maine Rivers Policy accompanies the Maine Waterway Development and Conservation Act and provides additional protection for some river and stream segments, which are designated as outstanding...

  5. Wabash River Heritage Corridor (Indiana)

    Broader source: Energy.gov [DOE]

    The Wabash River Heritage Corridor, consisting of the Wabash River, the Little River, and the portage between the Little River and the Maumee River, is considered a protected area, where...

  6. Proceedings of the Conference on Coastal Watersheds:The Caspar Creek Story

    E-Print Network [OSTI]

    Standiford, Richard B.

    Proceedings of the Conference on Coastal Watersheds:The Caspar Creek Story May 6, 1998 Ukiah. 1998. Proceedings of the conference on coastal watersheds: theProceedings of the conference on coastal watersheds: theProceedings of the conference on coastal watersheds: theProceedings of the conference

  7. Trout Creek, Oregon Watershed Assessment; Findings, Condition Evaluation and Action Opportunities, 2002 Technical Report.

    SciTech Connect (OSTI)

    Runyon, John

    2002-08-01T23:59:59.000Z

    The purpose of the assessment is to characterize historical and current watershed conditions in the Trout Creek Watershed. Information from the assessment is used to evaluate opportunities for improvements in watershed conditions, with particular reference to improvements in the aquatic environment. Existing information was used, to the extent practicable, to complete this work. The assessment will aid the Trout Creek Watershed Council in identifying opportunities and priorities for watershed restoration projects.

  8. Identification and characterization of wetlands in the Bear Creek watershed

    SciTech Connect (OSTI)

    Rosensteel, B.A. [JAYCOR, Oak Ridge, TN (United States); Trettin, C.C. [Oak Ridge National Lab., TN (United States)

    1993-10-01T23:59:59.000Z

    The primary objective of this study was to identify, characterize, and map the wetlands in the Bear Creek watershed. A preliminary wetland categorization system based on the Cowardin classification system (Cowardin et al. 1979) with additional site-specific topographic, vegetation, and disturbance characteristic modifiers was developed to characterize the type of wetlands that exist in the Bear Creek watershed. An additional objective was to detect possible relationships among site soils, hydrology, and the occurrence of wetlands in the watershed through a comparison of existing data with the field survey. Research needs are discussed in the context of wetland functions and values and regulatory requirements for wetland impact assessment and compensatory mitigation.

  9. Assessment of Water Resources in A Humid Watershed and A Semi-arid Watershed; Neches River Basin, TX and Canadian River Basin, NM

    E-Print Network [OSTI]

    Heo, Joonghyeok

    2013-07-16T23:59:59.000Z

    Water is the most important resource on Earth. Climate and land cover changes are two important factors that directly influenced water resources. This research provides important information for water resources management and contributes...

  10. The Complexity of Rivers in Triangulated Terrains Pankaj Agarwal 1 Mark de Berg 2 Prosenjit Bose 3 Katrin Dobrint 2 Marc van Kreveld 2

    E-Print Network [OSTI]

    Bose, Prosenjit

    The Complexity of Rivers in Triangulated Terrains Pankaj Agarwal 1 Mark de Berg 2 Prosenjit Bose 3 \\Theta(n 3 ) worstcase complexity, where complexity is measured in the number of line segments that make into the stream. Road building, logging, or other activities carried out in a watershed all have the potential

  11. Estimation of Loads of Mercury, Selenium, PCBs, PAHs, PBDEs, Dioxins, and1 Organochlorine Pesticides from the Sacramento-San Joaquin River Delta to San2

    E-Print Network [OSTI]

    1 Estimation of Loads of Mercury, Selenium, PCBs, PAHs, PBDEs, Dioxins, and1 Organochlorine concentrations from the Sacramento- San Joaquin River watershed were9 determined in water samples during flood 1.6 and 6.1%, respectively. Also monitored were PAHs, PBDEs (two years of19 data), and dioxins

  12. Lesson 1: Data Types and Watershed Populations In this first lesson, you will discover some information about each of the two watersheds

    E-Print Network [OSTI]

    of people per block. This is a good summary of how many people are in the watershed and where they live the condition of the watersheds regarding how people are currently living on and using the land. We will use Arc watershed (2000 census), the population density (average number of people per hectare), and to visualize how

  13. A unifying framework for watershed thermodynamics: balance equations for mass,

    E-Print Network [OSTI]

    Hassanizadeh, S. Majid

    A unifying framework for watershed thermodynamics: balance equations for mass, momentum, energy Hassanizadehb a Centre for Water Research, Department of Environmental Engineering, The University of Western Australia, 6907 Nedlands, Australia b Department of Water Management, Environmental and Sanitary Engineering

  14. Modeling Onsite Wastewater Treatment Systems in the Dickinson Bayou Watershed

    E-Print Network [OSTI]

    Forbis-Stokes, Aaron

    2012-10-19T23:59:59.000Z

    Onsite wastewater treatment systems (OWTSs) are a commonly used means of wastewater treatment in the Dickinson Bayou watershed which is located between Houston and Galveston. The Dickinson Bayou is classified as "impaired" by the Texas Commission...

  15. Public Service Announcements for the Arroyo Colorado Watershed

    E-Print Network [OSTI]

    Berthold, Allen

    COLLEGE OF AGRICULTURE AND LIFE SCIENCES TR-396 2011 Public Service Announcements for the Arroyo Colorado Watershed Final Report By T. Allen Berthold Texas Water Resources Institute Prepared... for Texas General Land Office March 2011 Texas Water Resources Institute Technical Report No. 396 Texas A&M University System College Station, Texas 77843-2118 Public Service Announcements for the Arroyo Colorado Watershed By T...

  16. Arroyo Colorado Watershed Protection Plan Implementation Project Final Report

    E-Print Network [OSTI]

    Berthold, T. Allen; Flores, Jaime

    2011-01-01T23:59:59.000Z

    Arroyo Colorado Watershed Protection Plan Implementation Project Final Report August 2011 By T. Allen Berthold and Jaime Flores Texas Water Resources Institute Texas Water Resources Institute Technical Report No. 411 Texas A&M University... System College Station, Texas 77843-2118 COLLEGE OF AGRICULTURE AND LIFE SCIENCES TR-411 2011 Arroyo Colorado Watershed Protection Plan Implementation Project Final Report By T. Allen Berthold and Jaime Flores Texas Water Resources...

  17. Rainwater Wildlife Area, Watershed Management Plan, A Columbia Basin Wildlife Mitigation Project, 2002.

    SciTech Connect (OSTI)

    Childs, Allen B.

    2002-03-01T23:59:59.000Z

    This Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary. The purpose of the project is to protect, enhance, and mitigate fish and wildlife resources impacted by Columbia River Basin hydroelectric development. The effort is one of several wildlife mitigation projects in the region developed to compensate for terrestrial habitat losses resulting from the construction of McNary and John Day Hydroelectric facilities located on the mainstem Columbia River. While this project is driven primarily by the purpose and need to mitigate for wildlife habitat losses, it is also recognized that management strategies will also benefit many other non-target fish and wildlife species and associated natural resources. The Rainwater project is much more than a wildlife project--it is a watershed project with potential to benefit resources at the watershed scale. Goals and objectives presented in the following sections include both mitigation and non-mitigation related goals and objectives.

  18. Pecos River Compact (Texas)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the state's entrance into the Pecos River Compact, a joint agreement between the states of New Mexico and Texas. The compact is administered by the Pecos River Compact...

  19. Canadian River Compact (Texas)

    Broader source: Energy.gov [DOE]

    The Canadian River Commission administers the Canadian River Compact which includes the states of New Mexico, Oklahoma, and Texas. Signed in 1950 by the member states, the Compact was subsequently...

  20. Platte River Cooperative Agreement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agreement Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Platte River Cooperative Agreement PEIS, NE, WY, CO, DOE...

  1. Risk assessment of runoff on a range watershed in Brazos County, Texas

    E-Print Network [OSTI]

    Gwaltney, Tracy Marie

    2004-09-30T23:59:59.000Z

    A drip type rainfall simulator and an existing watershed study were used to assess relationships between runoff, infiltration, erosion and associated risk thresholds on a range watershed in Brazos County, Texas. The focus ...

  2. An Economic Analysis of Erosion and Sedimentation in Lavon Reservoir Watershed

    E-Print Network [OSTI]

    Taylor, C. R.; Reneau, D. R.; Harris, B. L.

    potential agricultural NPS pollution controls in the watershed above Lavon Reservoir. The study focuses on: (a) effects of erosion controls on farm income, (b) off-side sediment damages in the watersheds; (c) costs of administering and enforcing alternative...

  3. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    SciTech Connect (OSTI)

    Coty, J

    2009-03-16T23:59:59.000Z

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site is largely developed yet its surface water system encompasses two arroyos, an engineered detention basin (Lake Haussmann), storm channels, and wetlands. Conversely, the more rural Site 300 includes approximately 7,000 acres of largely undeveloped land with many natural tributaries, riparian habitats, and wetland areas. These wetlands include vernal pools, perennial seeps, and emergent wetlands. The watersheds within which the Laboratory's sites lie provide local and community ecological functions and services which require protection. These functions and services include water supply, flood attenuation, groundwater recharge, water quality improvement, wildlife and aquatic habitats, erosion control, and (downstream) recreational opportunities. The Laboratory employs a watershed approach to protect these surface water systems. The intent of this approach, presented in this document, is to provide an integrated effort to eliminate or minimize any adverse environmental impacts of the Laboratory's operations and enhance the attributes of these surface water systems, as possible and when reasonable, to protect their value to the community and watershed. The Laboratory's watershed approach to surface water protection will use the U.S. Environmental Protection Agency's Watershed Framework and guiding principles of geographic focus, scientifically based management and partnerships1 as a foundation. While the Laboratory's unique site characteristics result in objectives and priorities that may differ from other industrial sites, these underlying guiding principles provide a structure for surface water protection to ensure the Laboratory's role in environmental stewardship and as a community partner in watershed protection. The approach includes pollution prevention, continual environmental improvement, and supporting, as possible, community objectives (e.g., protection of the San Francisco Bay watershed).

  4. Investigation of Coupled Hydrologic and Geochemical Impacts of Wildfire on Southern California Watersheds

    E-Print Network [OSTI]

    Burke, Megan Patricia

    2012-01-01T23:59:59.000Z

    Water is routed through the reach network to the watershed outlet using storage routing, or kinematic wave

  5. Habitat Evaluation Procedures (HEP) Report; Iskuulpa Wildlife Mitigation and Watershed Project, Technical Report 1998-2003.

    SciTech Connect (OSTI)

    Quaempts, Eric

    2003-01-01T23:59:59.000Z

    U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to evaluate lands acquired and leased in Eskuulpa Watershed, a Confederated Tribes of the Umatilla Indian Reservation watershed and wildlife mitigation project. The project is designed to partially credit habitat losses incurred by BPA for the construction of the John Day and McNary hydroelectric facilities on the Columbia River. Upland and riparian forest, upland and riparian shrub, and grasslands cover types were included in the evaluation. Indicator species included downy woodpecker (Picuides puhescens), black-capped chickadee (Pams atricopillus), blue grouse (Beadragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petschia), mink (Mustela vison), and Western meadowlark (Sturnello neglects). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 55,500 feet of transects, 678 m2 plots, and 243 one-tenth-acre plots. Between 123.9 and f 0,794.4 acres were evaluated for each indicator species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total habitat units credited to BPA for the Iskuulpa Watershed Project and its seven indicator species is 4,567.8 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest, which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing or implementation of restoration grazing schemes, road de-commissioning, reforestation, large woody debris additions to floodplains, control of competing and unwanted vegetation, reestablishing displaced or reduced native vegetation species, and the allowance of normative processes such as fire occurrence. Implementation of these alternatives could generate an estimated minimum of 393 enhancement credits in 10 years. Longer-term benefits of protection and enhancement activities include increases in native species diversity and structural complexity in all cover types. While such benefits are not readily recognized by HEP models and reflected in the number of habitat units generated, they also provide dual benefits for fisheries resources. Implementation of the alternatives will require long-term commitments from managers to increase probabilities of success and meet the goals and objectives of the Northwest Power Planning Council's Fish and Wildlife Mitigation Program.

  6. Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.

    SciTech Connect (OSTI)

    Hillson, Todd D. [Washington Department of Fish and Wildlife

    2009-06-12T23:59:59.000Z

    The National Marine Fisheries Service (NMFS) listed Lower Columbia River (LCR) chum salmon as threatened under the Endangered Species Act (ESA) in March, 1999 (64 FR 14508, March 25, 1999). The listing was in response to the reduction in abundance from historical levels of more than one-half million returning adults to fewer than 10,000 present-day spawners. Harvest, habitat degradation, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for this decline. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of this species. This is especially true of the population located directly below Bonneville Dam, where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Prior to 1997, only two chum salmon populations were recognized as genetically distinct in the Columbia River, although spawning had been documented in many Lower Columbia River tributaries. The first population was in the Grays River (RKm 34), a tributary of the Columbia River, and the second was a group of spawners utilizing the mainstem Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks. Using additional DNA samples, Small et al. (2006) grouped chum salmon spawning in the mainstem Columbia River and the Washington State tributaries into three groups: the Coastal, the Cascade and the Gorge. The Coastal group comprises those spawning in the Grays River, Skamokawa Creek and the broodstock used at the Sea Resources facility on the Chinook River. The Cascade group comprises those spawning in the Cowlitz (both summer and fall stocks), Kalama, Lewis, and East Fork Lewis rivers, with most supporting unique populations. The Gorge group comprises those spawning in the mainstem Columbia River from the I-205 Bridge up to Bonneville Dam and those spawning in Hamilton and Hardy creeks. Response to the federal ESA listing has been primarily through direct-recovery actions: reducing harvest, hatchery supplementation using local broodstock for populations at catastrophic risk, habitat restoration (including construction of spawning channels) and flow agreements to protect spawning and rearing areas. Both state and federal agencies have built controlled spawning areas. In 1998, the Washington Department of Fish and Wildlife (WDFW) began a chum salmon supplementation program using native stock on the Grays River. This program was expanded during 1999 - 2001 to include reintroduction into the Chinook River using eggs from the Grays River Supplementation Program. These eggs are incubated at the Grays River Hatchery, reared to release size at the Sea Resources Hatchery on the Chinook River, and the fry are released at the mouth of the Chinook River. Native steelhead, chum, and coho salmon are present in Duncan Creek, and are recognized as subpopulations of the Lower Gorge population, and are focal species in the Lower Columbia Fish Recovery Board (LCFRB) plan. Steelhead, chum and coho salmon that spawn in Duncan Creek are listed as Threatened under the ESA. Duncan Creek is classified by the LCFRB plan as a watershed for intensive monitoring (LCFRB 2004). This project was identified in the 2004 Federal Columbia River Power System (FCRPS) revised Biological Opinion (revised BiOp) to increase survival of chum salmon, 'BPA will continue to fund the program to re-introduce Columbia River chum salmon into Duncan Creek as long as NOAA Fisheries determines it to be an essential and effective contribution to reducing the risk of extinction for this ESU'. (USACE et al. 2004, page 85-86). The Governors Forum on Monitoring and Salmon Recovery and Watershed Health recommends one major population from each ESU have adult and juvenile monitoring. Duncan Creek chum salmon are identified in this plan to be intensively monitored. Planners recommended that a combination of natural and hatchery production

  7. WATERSHED RESTORATION PLAN Big Creek, North Fork of the Flathead River

    E-Print Network [OSTI]

    .............................................................................................................. 26 2.5 NONPOINT POLLUTION SOURCE INVENTORY AND THE PROPOSED RESTORATION ACTIVITIES .. 27 SECTION 4 4.1 POLLUTANT REDUCTION: The average monthly air temperatures and average monthly precipitation at Glacier International Airport

  8. Potential impacts of global climate change on Tijuana River Watershed hydrology - An initial analysis

    E-Print Network [OSTI]

    Das, Tapash; Dettinger, Michael D; Cayan, Daniel R

    2010-01-01T23:59:59.000Z

    run at a daily time step in water balance mode at a 1/8 byBased Model of Land Surface Water and Energy Fluxes forwere obtained from the Surface Water Modeling Group at the

  9. An economic analysis of a large scale ashe juniper clearing project in the Leon River watershed

    E-Print Network [OSTI]

    Flack, Rebecca Lynn

    2009-05-15T23:59:59.000Z

    ...............................................................................6 Study Objectives .......................................................................................7 Study Area ................................................................................................7 II LITERATURE REVIEW.......................................................................40 6 Distribution for pasture size (ha) represented by LRRP participants.. ..... 40 7 Percentage of total area for each land use category represented by the LRRP...

  10. Effect of a Rainfall Event on Contaminant Levels in the Brunette River Watershed

    E-Print Network [OSTI]

    , les chlorophnols, le 4-nonylphnol et les hydrocarbures aromatiques polycycliques (HAP), les mtaux

  11. A Watershed Approach to Urban River Restoration: A Conceptual Restoration Plan for Sausal Creek

    E-Print Network [OSTI]

    Ippolito, Teresa; Podolak, Kristen

    2008-01-01T23:59:59.000Z

    appraisal of the Sausal Creek restoration project, Oakland,Assessment of Sausal Creek: Physical Setting, Habitatmorphology of Sausal Creek, Oakland, California. Water

  12. Descriptions and Expectations of Recommended BMPs for Improving the Bosque River Watershed

    E-Print Network [OSTI]

    Meier, Megan; Gregory, Lucas

    - (Al) and iron- (Fe) based compounds to bind P in animal manure. Chemical agents are typically incorporated into the manure or lagoon effluent prior to application, but can also be applied directly to the field. Aluminum sulfate (alum) is one... manure. Zvomuya et al. (2006) demonstrated that alum may be an effective amendment for immobilizing P and reducing P leaching in coarse-textured soils with a long history of waste application. When incorporated with poultry litter, alum is typically...

  13. A Watershed Approach to Urban River Restoration: A Conceptual Restoration Plan for Sausal Creek

    E-Print Network [OSTI]

    Ippolito, Teresa; Podolak, Kristen

    2008-01-01T23:59:59.000Z

    Forum: Evaluating Stream Restoration Projects. EnvironmentalR. Ladson. 2005. Stream restoration in urban catchmentsECONOMICS OF LID COMPARED TO IN- STREAM RESTORATION

  14. A generalized land use study of the San Jacinto River watershed of Texas

    E-Print Network [OSTI]

    Buckley, Frank A.

    1951-01-01T23:59:59.000Z

    Pi ? ? ft o ] 00 I to jco jco j ? co 03 ? 5 ^ O aS ?? ?? ?p U Pi ? ? ft O 4? CQ ? U O aS ?? ?* 43 U Pi ? ? ft O BG uo CM n CM c> o 2 0 t - cr... ?P = Q ?* ^ft ? = -p ? c3 ^ O > T i ? n3 *H ? <35 J i JL, DO * CQ CJ -PCO O ciJ o CO ft O 4= P i ? O O o CO ? Q

  15. Habitat relationships of seven breeding bird species in the Leon River Watershed investigated at local scales

    E-Print Network [OSTI]

    Juarez Berrios, Edwin Alfredo

    2005-02-17T23:59:59.000Z

    Over the past 100?150 years Texas rangelands have dramatically changed from native open savannahs to dense woodlands. On the Edwards plateau, a major management concern is the increasing encroachment of Ashe juniper (Juniperus ashei). Preceding...

  16. Brush types of the Nueces River watershed as related to soil, climatic and geological factors

    E-Print Network [OSTI]

    Huss, Donald Lee

    1959-01-01T23:59:59.000Z

    Savanna . 21 3. Mesquite-Chaparral 23 4. Mesquite Woodland 28 5. Switch Mesquite 29 6. Running Mesquite 30 7. Scrub Mesquite 31 Communities with Live oak dominant 32 8. Live oak-Mesquite Savanna 32 9. Mesquite-Live oak-Chaparral 33 10. Live oak...-Guajillo Chaparral 34 11. Live oak-Post oak-Mesquite Woodland 35 Communities with Post oak dominant 35 12. Post oak-Blackjack oak Woodland 37 CHAPARRAL SHRUB COMMUNITIES 37 13. Guajillo Chaparral 39 14. Blackbrush Chaparral 39 SUFFRUTESCENT VEGETATIONAL TYPES...

  17. Evaluation of shrub encroachment and brush control on water availability in the Upper Guadalupe River watershed

    E-Print Network [OSTI]

    Afinowicz, Jason David

    2004-09-30T23:59:59.000Z

    lesser effects on hydrology than other criteria. Large quantities of deep recharge simulated by the model raise questions concerning measurement of ET in the Edwards Plateau region and the extent of deep water recharge to the Trinity Aquifer....

  18. Habitat relationships of seven breeding bird species in the Leon River Watershed investigated at local scales

    E-Print Network [OSTI]

    Juarez Berrios, Edwin Alfredo

    2005-02-17T23:59:59.000Z

    chrysoparia), northern bobwhite (Colinus virginianus), white-eyed vireo (Vireo griseus), Bell?s vireo (Vireo bellii), painted bunting (Passerina ciris), and brown-headed cowbird (Molothrus ater). Vegetation characteristics were compared between sites occupied...

  19. Brush types of the Nueces River watershed as related to soil, climatic and geological factors

    E-Print Network [OSTI]

    Huss, Donald Lee

    1959-01-01T23:59:59.000Z

    Savanna . 21 3. Mesquite-Chaparral 23 4. Mesquite Woodland 28 5. Switch Mesquite 29 6. Running Mesquite 30 7. Scrub Mesquite 31 Communities with Live oak dominant 32 8. Live oak-Mesquite Savanna 32 9. Mesquite-Live oak-Chaparral 33 10. Live oak...-Guajillo Chaparral 34 11. Live oak-Post oak-Mesquite Woodland 35 Communities with Post oak dominant 35 12. Post oak-Blackjack oak Woodland 37 CHAPARRAL SHRUB COMMUNITIES 37 13. Guajillo Chaparral 39 14. Blackbrush Chaparral 39 SUFFRUTESCENT VEGETATIONAL TYPES...

  20. A Multivariate Water Quality Investigation of Select Drainage Ditches in the Arroyo Colorado River Watershed, Texas

    E-Print Network [OSTI]

    Uddameri, V.; Singaraju, S.

    Agricultural Nonpoint Source Assessment project funded by the United States Environmental Protection Agency through a Clean Water Act ?319(h) grant administered by the Texas State Soil and Water Conservation Board (TSSWCB). Arroyo Colorado Agricultural... and sediments. Therefore, the upper portions of the ditch are hypothesized to be under oxidizing conditions conducive to nitrification reactions, while the deeper sections may be under reduced conditions facilitating denitrification reactions (Jetten et al...

  1. Pathways Toward Sustainable Bioenergy Feedstock Production in the Mississippi River Watershed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 Termoelectrica U.SPRESSHeavy-dutyDepartmentPath toPathways Toward

  2. Saving a Dwindling River

    E-Print Network [OSTI]

    Wythe, Kathy

    2007-01-01T23:59:59.000Z

    information on this research is available by downloading TWRI Technical Report 291, ?Reconnaissance Survey of Salt Sources and Loading into the Pecos River,? at http://twri.tamu.edu/reports.php. The research team has also compared flow and salinity data from... Water Act, Section 319 from the U.S. Environmental Protection Agency. ?The river?s importance?historically, biologically, hydrologically and economically?to the future of the entire Pecos River Basin and the Rio Grande is huge,? said Will Hatler, project...

  3. Watershed Management: An Evaluation of the Mullen Slough Capital Improvement

    E-Print Network [OSTI]

    Watershed Management: An Evaluation of the Mullen Slough Capital Improvement Project Study MANAGEMENT in the School of Resource and Environmental Management Report No. 321 © Fiona Murray McNair 2003 SIMON FRASER UNIVERSITY July 2003 All rights reserved. This work may not be reproduced in whole

  4. ENVIRONMENTAL QUALITY OF WILMINGTON AND NEW HANOVER COUNTY WATERSHEDS

    E-Print Network [OSTI]

    Mallin, Michael

    to a significant increase in total phosphorus. Several water quality parameters indicated a subsequent worseningENVIRONMENTAL QUALITY OF WILMINGTON AND NEW HANOVER COUNTY WATERSHEDS 2005-2006 by Michael A: The City of Wilmington, New Hanover County and the US EPA 319 Program (through NC Division of Water quality

  5. University of Tennessee Institute of Agriculture Tennessee Watershed

    E-Print Network [OSTI]

    .state.tn.us/environment/wpc/wshed1.htm Watts Bar Watershed McMinn Monroe Pond Creek #12;University of Tennessee Institute of Agriculture Water Quality in Pond Creek 35.6 miles of Mud Creek, Greasy Branch and Pond Creek listed on 2002? #12;University of Tennessee Institute of Agriculture Pond Creek · Pasture based beef and dairy

  6. CAN INTEGRATED WATERSHED MANAGEMENT BRING GREATER FOOD SECURITY IN ETHIOPIA?

    E-Print Network [OSTI]

    Walter, M.Todd

    CAN INTEGRATED WATERSHED MANAGEMENT BRING GREATER FOOD SECURITY IN ETHIOPIA? Oloro V. McHugh, Amy S, Ethiopia Gete Zeleke ARARI, Bahir Dar, Ethiopia Abstract: In the food insecure regions, short annual. Ethiopia's agricultural sector is driven by the subsistence strategies of smallholder farmers

  7. Nine Elements of Watershed Based Plans for EPA Section 319

    E-Print Network [OSTI]

    Watershed Protection Plan Feb 2008 #12;a.) Identify sources and causes for impairment (load duration curve of concern Uhland sub-area Confidence intervals from regression analysis of load duration curve Management knowledge of: the nature and source of the WQ problem, the pollutant load reductions needed to meet WQS

  8. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    SciTech Connect (OSTI)

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01T23:59:59.000Z

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  9. Sabine River Compact (Multiple States)

    Broader source: Energy.gov [DOE]

    The Sabine River Compact Commission administers the Sabine River Compact to ensure that Texas receives its equitable share of quality water from the Sabine River and its tributaries as apportioned...

  10. Trace element chemistry of coal bed natural gas produced water in the Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    Richard E. Jackson; K.J. Reddy [University of Wyoming, Laramie, WY (United States). Department of Renewable Resources

    2007-09-15T23:59:59.000Z

    Coal bed natural gas (CBNG) produced water is usually disposed into nearby constructed disposal ponds. Geochemistry of produced water, particularly trace elements interacting with a semiarid environment, is not clearly understood. The objective of this study was to collect produced water samples at outfalls and corresponding disposal ponds and monitor pH, iron (Fe), aluminum (Al), chromium (Cr), manganese (Mn), lead (Pb), copper (Cu), zinc (Zn), arsenic (As), boron (B), selenium (Se), molybdenum (Mo), cadmium (Cd), and barium (Ba). Outfalls and corresponding disposal ponds were sampled from five different watersheds including Cheyenne River (CHR), Belle Fourche River (BFR), Little Powder River (LPR), Powder River (PR), and Tongue River (TR) within the Powder River Basin (PRB), Wyoming from 2003 to 2005. Paired tests were conducted between CBNG outfalls and corresponding disposal ponds for each watershed. Results suggest that produced water from CBNG outfalls is chemically different from the produced water from corresponding disposal ponds. Most trace metal concentrations in the produced water increased from outfall to disposal pond except for Ba. In disposal ponds, Ba, As, and B concentrations increased from 2003 to 2005. Geochemical modeling predicted precipitation and dissolution reactions as controlling processes for Al, Cu, and Ba concentrations in CBNG produced water. Adsorption and desorption reactions appear to control As, Mo, and B concentrations in CBNG water in disposal ponds. Overall, results of this study will be important to determine beneficial uses (e.g., irrigation, livestock/wildlife water, and aquatic life) for CBNG produced water in the PRB, Wyoming. 18 refs., 4 figs., 3 tabs.

  11. River Edge Redevelopment Zone (Illinois)

    Broader source: Energy.gov [DOE]

    The purpose of the River Edge Redevelopment Program is to revive and redevelop environmentally challenged properties adjacent to rivers in Illinois.

  12. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office: FY 1999 Watershed Restoration Projects : Annual Report 1999.

    SciTech Connect (OSTI)

    Robertson, Shawn W.

    2001-03-01T23:59:59.000Z

    The John Day River is the second longest free-flowing river in the contiguous United States and one of the few major subbasins in the Columbia River basin containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, the fourth largest drainage area in Oregon. With its beginning in the Strawberry Mountains near the town of Prairie City, the John Day flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring chinook salmon and summer steelhead, red band, westslope cutthroat, and redband trout, the John Day system is truly one of national significance. The entire John Day basin was granted to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) initiated contracting the majority of its construction implementation actions with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of the projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 1999, the JDBO and GSWCD proposed continuation of a successful partnership between the two agencies and basin landowners to implement an additional eleven (11) watershed conservation projects. The types of projects implemented included installation of infiltration galleries, permanent diversions, pumping stations, and irrigation efficiency upgrades. Project costs in 1999 totaled $284,514.00 with a total amount of $141,628.00 (50%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources such as the Bureau of Reclamation (BOR), Confederated Tribes of Warm Springs, Oregon Watershed Enhancement Board, and individual landowners.

  13. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : Annual Report, 2001.

    SciTech Connect (OSTI)

    Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

    2002-12-01T23:59:59.000Z

    The John Day River is the nation's second longest free-flowing river in the contiguous United States, which is entirely unsupplemented for it's runs of anadromous fish. Located in eastern Oregon, the John Day Basin drains over 8,000 square miles, is Oregon's fourth largest drainage basin, and the basin incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the mainstem John Day River flows 284 miles in a northwesterly direction entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon, summer steelhead, westslope cutthroat, and redband and bull trout, the John Day system is truly a basin with national significance. The Majority of the John Day Basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in John Day to coordinate basin restoration projects, monitoring, planning, and other watershed restoration activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), also located in John Day, who subcontracts the majority of the construction implementation activities for these restoration projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2001, the JDBO and GSWCD continued their successful partnership between the two agencies and basin landowners to implement an additional ten (10) watershed conservation projects. The project types include permanent lay flat diversions, pump stations, and return-flow cooling systems. Project costs in 2001 totaled $572,766.00 with $361,966.00 (67%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources, such as the Bureau of Reclamation (BOR), Oregon Watershed Enhancement Board (OWEB), and individual landowners.

  14. A Multiple Watershed Approach to Assessing the Effects of Habitat Restoration Actions on Anadromous and Resident Fish Populations, Technical Report 2003-2004.

    SciTech Connect (OSTI)

    Marmorek, David

    2004-03-01T23:59:59.000Z

    Habitat protection and restoration is a cornerstone of current strategies to restore ecosystems, recover endangered fish species, and rebuild fish stocks within the Columbia River Basin. Strategies featuring habitat restoration include the 2000 Biological Opinion on operation of the Federal Columbia River Power System (FCRPS BiOp) developed by the National Marine Fisheries Service (NMFS), the 2000 Biological Opinion on Bull Trout developed by the US Fish and Wildlife Service (USFWS), and Sub-Basin Plans developed under the Fish and Wildlife Program of the Northwest Power and Conservation Council (NWPCC). There is however little quantitative information about the effectiveness of different habitat restoration techniques. Such information is crucial for helping scientists and program managers allocate limited funds towards the greatest benefits for fish populations. Therefore, it is critical to systematically test the hypotheses underlying habitat restoration actions for both anadromous and resident fish populations. This pilot project was developed through a proposal to the Innovative Projects fund of the NWPCC (ESSA 2002). It was funded by the Bonneville Power Administration (BPA) following reviews by the Independent Scientific Review Panel (ISRP 2002), the Columbia Basin Fish and Wildlife Authority (CBFWA 2002), the NWPCC and BPA. The study was designed to respond directly to the above described needs for information on the effectiveness of habitat restoration actions, including legal measures specified in the 2000 FCRPS BiOp (RPA 183, pg. 9-133, NMFS 2000). Due to the urgency of addressing these measures, the timeline of the project was accelerated from a duration of 18 months to 14 months. The purpose of this pilot project was to explore methods for evaluating past habitat restoration actions and their effects on fish populations. By doing so, the project will provide a foundation of retrospective analyses, on which to build prospective, multi-watershed designs for future habitat restoration actions. Such designs are being developed concurrently with this project by several other groups in the Columbia Basin (RME Workgroup 2003, NMFS 2003, Hillman and Paulsen 2002, Hillman 2003). By addressing questions about habitat restoration and monitoring (in coordination with other related efforts), we hope that this project will catalyze a shift in the Basin's paradigm of habitat restoration, moving from implementation of individual watershed projects towards rigorously designed and monitored, multiwatershed, adaptive management experiments. The project involved three phases of work, which were closely integrated with various related and ongoing efforts in the region: (1) Scoping - We met with a Core Group of habitat experts and managers to scope out a set of testable habitat restoration hypotheses, identify candidate watersheds and recommend participants for a data evaluation workshop. (2) Data Assembly - We contacted over 80 scientists and managers to help evaluate the suitability of each candidate watershed's historical data for assessing the effectiveness of past restoration actions. We eventually settled on the Yakima, Wenatchee, Clearwater, and Salmon subbasins, and began gathering relevant data for these watersheds at a workshop with habitat experts and managers. Data assembly continued for several months after the workshop. (3) Data Analysis and Synthesis - We explored statistical approaches towards retrospectively analyzing the effects of restoration 'treatments' at nested spatial scales across multiple watersheds (Chapters 2-5 of this report). These analyses provided a foundation for identifying existing constraints to testing restoration hypotheses, and opportunities to overcome these constraints through improved experimental designs, monitoring protocols and project selection strategies (Chapters 6 and 7 of this report). Finally, we developed a set of recommendations to improve the design, implementation, and monitoring of prospective habitat restoration programs in the Columbia River Basin (Chapter 8).

  15. Paso del Norte Watershed Council Coordinated Water Resources Database Project

    E-Print Network [OSTI]

    Brown, Christopher; Sheng, Zhuping; Rich, Matt

    data elements/variables Heavy metals Source(s) of data Field Study Spatial extent El Paso, Cd. Juarez Data gathered or updated 2002-2003 Frequency of data One Time Format of digital file Excel spreadsheet Restrictions on use None...@infolnk.net Contact address 4145 Benjamin Franklin and 4158 Estocolmo Pronaf circuit Cd. Juarez, Chihuahua Contact FAX number (656) 611-1270 Paso del Norte Watershed Council PDNWC Contact: Alfredo Granados Ph.D. Metadata form for USACE and EPWU Coordinated...

  16. Assessment of Water Resources and Watershed Conditions in Moores Creek National Battlefield, North Carolina

    E-Print Network [OSTI]

    Mallin, Michael

    Assessment of Water Resources and Watershed Conditions in Moores Creek National Battlefield, North Assessment of Park Water Resources.......................................................................25 resources........................................................................15 Biological resources

  17. Interpretation of Geological Correlation Borings 1, 2, 3 in the A/M Area of the Savannah River Site, South Carolina

    SciTech Connect (OSTI)

    Wyatt, D.E. [Westinghouse Savannah River Company, AIKEN, SC (United States); Cumbest, R.J.; Aadland, R.K.; Syms, F.H.; Stephenson, D.E.; Sherrill, J.C.

    1997-06-01T23:59:59.000Z

    The Geophysical Correlation Boring (GCB) Program was organized to provide a comprehensive correlation capability between geological core and advanced borehole geophysical data, surface high resolution reflection seismic information and, when available, borehole geochemical and cone penetrometer data. This report provides results and initial geological interpretations of borings one, two, and three (GCB-1, GCB-2, GCB-3) located within the Upper Three Runs Watershed (A/M Area) of the Savannah River Site.

  18. On tropospheric rivers

    E-Print Network [OSTI]

    Hu, Yuanlong, 1964-

    2002-01-01T23:59:59.000Z

    In this thesis, we investigate atmospheric water vapor transport through a distinct synoptic phenomenon, namely, the Tropospheric River (TR), which is a local filamentary structure on a daily map of vertically integrated ...

  19. Lower Klickitat Riparian and In-channel Habitat Restoration Project; Klickitat Watershed Enhancement, Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Conley, Will

    2004-01-01T23:59:59.000Z

    The overall goal of the Klickitat Watershed Enhancement Project (KWEP) is to restore watershed health to aid recovery of salmonid stocks in the Klickitat subbasin. An emphasis is placed on restoration and protection of stream reaches and watersheds supporting native anadromous fish production, particularly steelhead (Oncorhyncus mykiss; ESA- listed as 'Threatened' within the Mid-Columbia ESU) and spring Chinook (O. tshawytscha). Habitat restoration activities in the Klickitat subbasin augment goals and objectives of the Yakima Klickitat Fisheries Project (YKFP), NPPC Fish and Wildlife Program, Klickitat Subbasin Summary and the NMFS Biological Opinion (All-H paper). Work is conducted to enhance instream and contributing upland habitat to facilitate increased natural production potential for native salmonid stocks. Efforts in the Klickitat Subbasin fall into two main categories: (1) identification and prioritization of sites for protection and restoration activities, (2) implementation of protection and restoration measures. KWEP personnel also assist monitoring efforts of the YKFP Monitoring & Evaluation Project. During the September 2002-August 2003 reporting period, KWEP personnel continued efforts to address feedback from the August 2000 Provincial Review that indicated a need for better information management and development of geographic priorities by: (1) Assisting development of the Strategic Habitat Plan for the Klickitat Lead Entity (Task A3.1) and Klickitat steelhead EDT model (Task A4.1); (2) Improving the functionality of reference point, habitat unit, and large woody debris modules of the habitat database as well as addition of a temperature module (Tasks A1.1-1.2); (3) Continuing development and acquisition of GIS data (Task A1.3); (4) Ongoing data collection efforts to fill information gaps including streamflow, habitat, and temperature (Objectives C1 and C2); and (5) Completion of planning, field work, and hydrologic modeling associated with roads assessment in the White Creek watershed (Task A4.2). Significant milestones associated with restoration projects during the reporting period included: (1) Completion of the Surveyors Fish Creek Passage Enhancement project (Task B2.3); (2) Completion of interagency agreements for the Klickitat Meadows (Task B2.4) and Klickitat Mill (Task B2.10) projects; (3) Completion of topographic surveys for the Klickitat Meadows (Task B2.4), Klickitat River Meadows (Task B2.5), Trout Creek and Bear Creek culvert replacements (Task B2.7), and Snyder Swale II (Task B2.13) projects; (4) Completion of the Snyder Swale II - Phase 1 project (Task B2.13); (5) Completion of design, planning, and permitting for the Klickitat Mill project (Task B2.10) and initiation of construction; (6) Design for the Trout and Bear Creek culverts (B2.7) were brought to the 60% level; and (7) Completion of design work for the for the Klickitat Meadows (Task B2.4) and Klickitat River Meadows (Task B2.5) projects.

  20. A Probabilistic Water Resources Assessment of the Paradise Creek Watershed Presented in Partial Fulfillment of the Requirements for the

    E-Print Network [OSTI]

    Fiedler, Fritz R.

    A Probabilistic Water Resources Assessment of the Paradise Creek Watershed A Thesis Presented Probabilistic Water Resources Assessment of the Paradise Creek Watershed," has been reviewed in final form ____________________________________Date____________ Margrit von Braun #12;iii iii A Probabilistic Water Resources Assessment

  1. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : 2003 Annual Report.

    SciTech Connect (OSTI)

    Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

    2004-02-27T23:59:59.000Z

    The John Day is the nation's second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, Oregon's fourth largest drainage basin, and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, westslope cutthroat, and redband and bull trout, the John Day system is truly a basin with national significance. The majority of the John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), which contracts the majority of the construction implementation activities for these projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2003, the JDBO and GSWCD proposed continuation of their successful partnership between the two agencies and basin landowners to implement an additional twelve (12) watershed conservation projects. The types of projects include off channel water developments, juniper control, permanent diversions, pump stations, and return-flow cooling systems. Due to funding issues and delays, permitting delays, fire closures and landowner contracting problems, 2 projects were canceled and 7 projects were rescheduled to the 2004 construction season. Project costs in 2003 totaled $115,554.00 with a total amount of $64,981.00 (56%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources such as the Bureau of Reclamation (BOR), Oregon Watershed Enhancement Board, the U.S. Fish & Wildlife Service Partners in Wildlife Program and individual landowners.

  2. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : Annual Report, 2000.

    SciTech Connect (OSTI)

    Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

    2001-03-01T23:59:59.000Z

    The John Day is the second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles--Oregon's third largest drainage basin--and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, red band, westslope cutthroat, and redband trout, the John Day system is truly a basin with national significance. Most all of the entire John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the Basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Using funding from the Bonneville Power Administration, Bureau of Reclamation, and others, the John Day Basin Office (JDBO) subcontracts the majority of its construction implementation activities with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/review, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2000, the JDBO and GSWCD proposed continuation of a successful partnership between the two agencies and basin landowners to implement an additional six watershed conservation projects funded by the BPA. The types of projects include permanent diversions, pump stations, and return-flow cooling systems. Project costs in 2000 totaled $533,196.00 with a total amount of $354,932.00 (67%) provided by the Bonneville Power Administration and the remainder coming from other sources such as the BOR, Oregon Watershed Enhancement Board, and individual landowners.

  3. Estimating basin-wide hydraulic parameters of a semi-arid mountainous watershed by recession-flow analysis

    E-Print Network [OSTI]

    Walter, M.Todd

    Estimating basin-wide hydraulic parameters of a semi-arid mountainous watershed by recession 2002; accepted 23 April 2003 Abstract Insufficient sub-surface hydraulic data from watersheds often and in watersheds with low population densities because well-drilling to obtain the hydraulic data is expensive

  4. The Relative Importance of Road Density and Physical Watershed Features in Determining Coastal Marsh Water

    E-Print Network [OSTI]

    McMaster University

    with overall Water Quality Index scores. Road density also showed positive correlations with total nitrate Marsh Water Quality in Georgian Bay Rachel DeCatanzaro ? Maja Cvetkovic ? Patricia Chow-Fraser Received and physical watershed features (watershed size, wetland cover, and bedrock type) on water quality in coastal

  5. Final Independent External Peer Review Report Cattaraugus Creek Watershed Ecosystem Restoration

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Final Independent External Peer Review Report Cattaraugus Creek Watershed Ecosystem Restoration of Expertise for Ecosystem Restoration Mississippi Valley Division Contract No. W912HQ-10-D-0002 Task Order Watershed Ecosystem Restoration at Springville Dam, Draft Detailed Project Report/Environmental Assessment

  6. Course helps professionals develop watershed protection plans: Texas water resources professionals gather

    E-Print Network [OSTI]

    Jensen, Ric

    2008-01-01T23:59:59.000Z

    tx H2O | pg. 6 Story by Ric Jensen Course helps professionals develop watershed protection plans | pg. 6 tx H2O | pg. 7 W ater resources professionals wanting training on watershed protection plan development are benefiting from a course...

  7. Exploring the Environmental Effects of Shale Gas Development in the Chesapeake Bay Watershed

    E-Print Network [OSTI]

    Exploring the Environmental Effects of Shale Gas Development in the Chesapeake Bay Watershed STAC Committee). 2013. Exploring the environmental effects of shale gas development in the Chesapeake Bay of shale gas development in the Chesapeake Bay Watershed. The purpose of this workshop was to engage

  8. Modeling Harry's Brook Watershed Alexandra Konings, REU 2006 Tracing the Water

    E-Print Network [OSTI]

    Petta, Jason

    for Undergraduates, 2006 #12;Modeling Harry's Brook Watershed Alexandra Konings, REU 2006 Urban Hydrology Water's Storm Water Management Model (SWMM) Solves differential and algebraic equations involved in calculatingModeling Harry's Brook Watershed Alexandra Konings, REU 2006 Tracing the Water: Detailed Modeling

  9. Rivanna River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

  10. Yellowstone River Compact (North Dakota)

    Broader source: Energy.gov [DOE]

    The Yellowstone River Compact, agreed to by the States of Montana, North Dakota, and Wyoming, provides for an equitable division and apportionment of the waters of the Yellowstone River, as well as...

  11. P. Julien S. Ikeda River Engineering and

    E-Print Network [OSTI]

    Julien, Pierre Y.

    1 P. Julien S. Ikeda River Engineering and Stream Restoration Pierre Y. Julien Hong Kong - December 2004 River Engineering and Stream Restoration I - Stream Restoration Objectives Brief overview of River Engineering and Stream Restoration with focus on : 1. River Equilibrium; 2. River Dynamics; 3. River

  12. Relative importance of multiple factors on terrestrial loading of DOC to Arctic river networks

    SciTech Connect (OSTI)

    Kicklighter, David W. [Ecosystem Center, The] [Ecosystem Center, The; Hayes, Daniel J [ORNL] [ORNL; Mcclelland, James W [University of Texas] [University of Texas; Peterson, Bruce [Marine Biological Laboratory] [Marine Biological Laboratory; Mcguire, David [University of Alaska] [University of Alaska; Melillo, Jerry [Marine Biological Laboratory] [Marine Biological Laboratory

    2014-01-01T23:59:59.000Z

    Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to controlling carbon fluxes between the land surface and the atmosphere. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that the pan-arctic watershed has contributed, on average, 32 Tg C/yr of DOC to the Arctic Ocean over the 20th century with most coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate of terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of increases in air temperatures and precipitation. These increases have been partially compensated by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both compensated and enhanced concurrent effects on hydrology to influence terrestrial DOC loading. Future increases in riverine DOC concentrations and export may occur from warming-induced increases in terrestrial DOC production associated with enhanced microbial metabolism and the exposure of additional organic matter from permafrost degradation along with decreases in water yield associated with warming-induced increases in evapotranspiration. Improvements in simulating terrestrial DOC loading to pan-arctic rivers in the future will require better information on the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in western Russia.

  13. Image segmentation and analysis via multiscale gradient watershed hierarchies

    E-Print Network [OSTI]

    Gauch, John M.

    1999-01-01T23:59:59.000Z

    . Machine Intell., vol. 9, pp. 726741, Nov. 1987. [3] S. Buecher, Watersheds of functions and picture segmentation, in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Paris, France, May 1982, pp. 19281931. [4] S. Beucher and F. Meyer... based on morphological filtering, IEEE Trans.Pattern Anal.Machine Intell., vol. 11, pp. 649700, 1989. [11] J. J. Clark, Singularities of contrast functions in scale space, in Proc. 1st Int. Conf. Computer Vision, London, U.K., 1987, pp. 491495. [12...

  14. Modeling nitrogen cycling in forested watersheds of Chesapeake Bay

    SciTech Connect (OSTI)

    Hunsaker, C.T.; Garten, C.T.; Mulholland, P.J.

    1995-03-01T23:59:59.000Z

    The Chesapeake Bay Agreement calls for a 40% reduction of controllable phosphorus and nitrogen to the tidal Bay by the year 2000. To accomplish this goal the Chesapeake Bay Program needs accurate estimates of nutrient loadings, including atmospheric deposition, from various land uses. The literature was reviewed on forest nitrogen pools and fluxes, and nitrogen data from research catchments in the Chesapeake Basin were identified. The structure of a nitrogen module for forests is recommended for the Chesapeake Bay Watershed Model along with the possible functional forms for fluxes.

  15. Education of Best Management Practices in the Arroyo Colorado Watershed

    E-Print Network [OSTI]

    .S. Enviro n me n t a l Protec t i o n Agency (EPA). Since the progra m? s incept i o n in 2005, Extens i o n educat e d agricu l t u r a l produc e r s on proper nutrien t manageme n t and product i o n techniq u e s , pr omot e d progra ms associ a t e... and mercury and PCBs in edible fish tissue. Figure 3. Land use in the Arroyo Colorado Watershed. In 1998 the Texas Commission on Environmental Quality (TCEQ) initiated an effort to develop a Total Maximum Daily Load (TMDL) for pollutants causing low...

  16. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demands

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02ReportWaste-to-Energy andAprilWater andWatershed Scale

  17. Pecos River Ecosystem Monitoring Project

    E-Print Network [OSTI]

    McDonald, A.; Hart, C.

    2004-01-01T23:59:59.000Z

    TR- 272 2004 Pecos River Ecosystem Monitoring Project C. Hart A. McDonald Texas Water Resources Institute Texas A&M University - 146 - 2003 Pecos River Ecosystem Monitoring Project... Charles R. Hart, Extension Range Specialist, Fort Stockton Alyson McDonald, Extension Assistant Hydrology, Fort Stockton SUMMARY The Pecos River Ecosystem Project is attempting to minimize the negative impacts of saltcedar on the river ecosystem...

  18. Rio Grande River 4

    E-Print Network [OSTI]

    Hills Photo Shop

    2011-09-05T23:59:59.000Z

    FORKS BIRDBEAR-NISKU JEFFERSON GROUP DUPEROW O (IJ o BEAVER HILL LAKE GR UP ELK POINT GROUP SOURIS RIVER Ist. RED BED DAWSON BAY 2ll(IRED BED PRAIRIE EVAP WI NI ASHERN INTERLAKE STONY MOUNTAIN RED RIVER WINN IP EG Figure 3... and is bounded by the Sioux Arch, the Black Hills Uplift, the Miles City Arch, and the Bowdoin Dome. The structural trends within the basin parallel the major structural trends of the Rocky Mountain Belt. The Williston Basin is characterized by gently...

  19. Muddy River Restoration Project Begins

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Muddy River Restoration Project Begins Page 5 #12;2 YANKEE ENGINEER February 2013 Yankee Voices of the Muddy River Restoration project. Inset photo: Flooding at the Muddy River. Materials provided by Mike Project Manager, on the passing of his father in law, Francis James (Jim) Murray, Jan. 9. ... to Laura

  20. FLOOD WARNING SYSTEM JOHNSTONE RIVER

    E-Print Network [OSTI]

    Greenslade, Diana

    Warning Centre in Brisbane. The system provides early warning of heavy rainfall and river risesFLOOD WARNING SYSTEM for the JOHNSTONE RIVER This brochure describes the flood warning system ALERT System Flood Warnings and Bulletins Interpreting Flood Warnings and River Height Bulletins Flood

  1. FLOOD WARNING SYSTEM NERANG RIVER

    E-Print Network [OSTI]

    Greenslade, Diana

    ALERT System The Nerang River ALERT flood warning system was completed in the early 1990's as a coFLOOD WARNING SYSTEM for the NERANG RIVER This brochure describes the flood warning system operated Nerang ALERT System Flood Warnings and Bulletins Interpreting Flood Warnings and River Height Bulletins

  2. Savannah River Site Robotics

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  3. Savannah River Site Robotics

    ScienceCinema (OSTI)

    None

    2012-06-14T23:59:59.000Z

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  4. Rainfall-River Forecasting

    E-Print Network [OSTI]

    US Army Corps of Engineers

    ;2Rainfall-River Forecasting Joint Summit II NOAA Integrated Water Forecasting Program · Minimize losses due management and enhance America's coastal assets · Expand information for managing America's Water Resources, Precipitation and Water Quality Observations · USACE Reservoir Operation Information, Streamflow, Snowpack

  5. Biomonitoring of fish communities, using the index of Biotic Integrity, as an indicator of the success of soil conservation measures in the Rabbit Creek and Middle Creek watersheds, Macon County, North Carolina

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    Fish communities in two upper Little Tennessee River tributaries, Rabbit Creek and Middle Creek, both located in Macon County, North Carolina, were monitored using IBI methods in 1990 and again in 1992. A single site, each on the lower reaches of its respective creek, was chosen to reflect the influence of conditions throughout the watershed and to provide a measure of water quality exiting the watershed. The Rabbit Creek watershed (Holly Springs community) has a long history of settlement and agricultural use. Dominant land uses today are pasture in the bottom lands and residential development at higher elevations. Much of the upper portion of the Middle Creek watershed on the slopes of Scaly Mountain is devoted to cabbage farming, often on steep slopes and highly erodible soils. From the cabbage growing area, the creek drops 400 feet to the lower valley. Other common land uses include residential, livestock, and forest. Both streams are characterized by heavy sedimentation and frequent high turbidity. Both streams showed marked improvement between 1990 and 1992. In 1990, Rabbit Creek`s IBI score was 31.0, for a bioclass rating of ``poor.`` In 1992, the IBI score was 42.1 for a bioclass rating of ``fair.`` For Middle Creek, the corresponding figures and ratings are 42.1 (fair) and 54.5 (good). Examination of the data for Rabbit Creek shows a reduction in the proportion of pollution-tolerant species, a higher proportion of specialized insectivores, a higher catch rate (reflecting higher total numbers of fish), and an additional intolerant species. In both cases, the data (supported by visual observation) suggests the causative factor is reduced sedimentation.

  6. Baseline for Climate Change: Modeling Watershed Aquatic Biodiversity Relative to Environmental and Anthropogenic Factors

    SciTech Connect (OSTI)

    Maurakis, Eugene G

    2010-10-01T23:59:59.000Z

    Objectives of the two-year study were to (1) establish baselines for fish and macroinvertebrate community structures in two mid-Atlantic lower Piedmont watersheds (Quantico Creek, a pristine forest watershed; and Cameron Run, an urban watershed, Virginia) that can be used to monitor changes relative to the impacts related to climate change in the future; (2) create mathematical expressions to model fish species richness and diversity, and macroinvertebrate taxa and macroinvertebrate functional feeding group taxa richness and diversity that can serve as a baseline for future comparisons in these and other watersheds in the mid-Atlantic region; and (3) heighten peoples awareness, knowledge and understanding of climate change and impacts on watersheds in a laboratory experience and interactive exhibits, through internship opportunities for undergraduate and graduate students, a week-long teacher workshop, and a website about climate change and watersheds. Mathematical expressions modeled fish and macroinvertebrate richness and diversity accurately well during most of the six thermal seasons where sample sizes were robust. Additionally, hydrologic models provide the basis for estimating flows under varying meteorological conditions and landscape changes. Continuations of long-term studies are requisite for accurately teasing local human influences (e.g. urbanization and watershed alteration) from global anthropogenic impacts (e.g. climate change) on watersheds. Effective and skillful translations (e.g. annual potential exposure of 750,000 people to our inquiry-based laboratory activities and interactive exhibits in Virginia) of results of scientific investigations are valuable ways of communicating information to the general public to enhance their understanding of climate change and its effects in watersheds.

  7. Feasibility Study of Carbon Sequestration Through Reforestation in the Chesapeake Bay Watershed of Virginia

    SciTech Connect (OSTI)

    Andy Lacatell; David Shoch; Bill Stanley; Zoe Kant

    2007-03-01T23:59:59.000Z

    The Chesapeake Rivers conservation area encompasses approximately 2,000 square miles of agricultural and forest lands in four Virginia watersheds that drain to the Chesapeake Bay. Consulting a time series of classified Landsat imagery for the Chesapeake Rivers conservation area, the project team developed a GIS-based protocol for identifying agricultural lands that could be reforested, specifically agricultural lands that had been without forest since 1990. Subsequent filters were applied to the initial candidate reforestation sites, including individual sites > 100 acres and sites falling within TNC priority conservation areas. The same data were also used to produce an analysis of baseline changes in forest cover within the study period. The Nature Conservancy and the Virginia Department of Forestry identified three reforestation/management models: (1) hardwood planting to establish old-growth forest, (2) loblolly pine planting to establish working forest buffer with hardwood planting to establish an old-growth core, and (3) loblolly pine planting to establish a working forest. To assess the relative carbon sequestration potential of these different strategies, an accounting of carbon and total project costs was completed for each model. Reforestation/management models produced from 151 to 171 tons carbon dioxide equivalent per acre over 100 years, with present value costs of from $2.61 to $13.28 per ton carbon dioxide equivalent. The outcome of the financial analysis was especially sensitive to the land acquisition/conservation easement cost, which represented the most significant, and also most highly variable, single cost involved. The reforestation/management models explored all require a substantial upfront investment prior to the generation of carbon benefits. Specifically, high land values represent a significant barrier to reforestation projects in the study area, and it is precisely these economic constraints that demonstrate the economic additionality of any carbon benefits produced via reforestation--these are outcomes over and above what is currently possible given existing market opportunities. This is reflected and further substantiated in the results of the forest cover change analysis, which demonstrated a decline in area of land in forest use in the study area for the 1987/88-2001 period. The project team collected data necessary to identify sites for reforestation in the study area, environmental data for the determining site suitability for a range of reforestation alternatives and has identified and addressed potential leakage and additionality issues associated with implementing a carbon sequestration project in the Chesapeake Rivers Conservation Area. Furthermore, carbon emissions reductions generated would have strong potential for recognition in existing reporting systems such as the U.S. Department of Energy 1605(b) voluntary reporting requirements and the Chicago Climate Exchange. The study identified 384,398 acres on which reforestation activities could potentially be sited. Of these candidate sites, sites totaling 26,105 acres are an appropriate size for management (> 100 acres) and located in priority conservation areas identified by The Nature Conservancy. Total carbon sequestration potential of reforestation in the study area, realized over a 100 year timeframe, ranges from 58 to 66 million tons of carbon dioxide equivalent, and on the priority sites alone, potential for carbon sequestration approaches or exceeds 4 million tons of carbon dioxide equivalent. In the absence of concerted reforestation efforts, coupled with policy strategies, the region will likely face continued declines in forest land.

  8. Supplement Analysis for the Watershed Management Program EIS--Tapteal Bend Riparian Corridor Restoration Project

    SciTech Connect (OSTI)

    N /A

    2004-08-11T23:59:59.000Z

    The Bonneville Power Administration is proposing to fund the restoration of approximately 500 feet of streambank along the Yakima River at river mile 8, upstream of the Van Giesen Bridge on SR 224, in and between Richland and West Richland, Washington. This project will also result in the acquisition of Fox Island, a 12-acre island directly across the river from the restoration area. There is no development planned for the island. The proposed project includes: The installation of a bio-engineered streambank that incorporates barbs to capture silt and deflect flow, roughened rock or log toes, a riparian buffer, soil reinforcement, and bank grading. Long-term photo-point and plot sampling will also be implemented to evaluate the effectiveness and success of the restoration project. The NEPA compliance checklist for this project was completed by Darrel Sunday, a contractor with Sunday and Associates, Inc. (April 4, 2004), and meets the standards and guidelines for the Watershed Management Program Environmental Impact Statement (EIS) and Record of Decision (ROD). The Endangered Species Act (ESA) listed species that may occur in the general vicinity of the project area are the pygmy rabbit, bald eagle, bull trout, Ute ladies'-tresses, and mid-Columbia Steelhead. The pygmy rabbit, bald eagle, and Ute ladies'Tresses are not known to occur in the immediate project vicinity, and it was determined that the proposed restoration project would have no effect on these species. It is difficult to determine if bull trout occur within the Tapteal project area and Dave Carl of the Washington Department of Fish & Wildlife was contacted and concurred with this assumption. It was determined that the project may affect, but is not likely to adversely affect bull trout, and the U.S. Fish & Wildlife Service has concurred with that determination (July 28, 2004). For the mid-Columbia Steelhead, an anadromous fish species, BPA has determined that if conducted in accordance with the applicable terms and conditions identified in the ESA Consultation Biological Opinion (BO) and Magnuson-Stevens Fishery Conservation and Management Act Essential Fish Habitat Consultation, for BPA's Habitat Improvement Program (HIP), the Tapteal Bend Restoration Project meets the requirements of consistency and no further consultation is required. ESA listed fish may be present in the project vicinity but will not be affected because the project does not involve instream work. In complying with the requirements of Section 106 of the National Historic Preservation Act, BPA contracted with the Cultural Resources Protection Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) for cultural resource survey work. Shawn Steinmetz prepared a report (December 15, 2002) concluding that there were only two isolated finds in the project area. BPA and the Washington Office of Archaeology and Historic Preservation have concurred with the conclusions and recommendations set out in the report and the determination that no historic properties will be affected by the current project as proposed (January 31, 2003). It was recommended that a cultural resource monitor be present during ground disturbing activities. In the unlikely event that archaeological material is discovered during project implementation, an archaeologist should be notified immediately and work halted in the vicinity of the finds until they can be inspected and assessed. Standard water quality protection procedures and Best Management Practices should be followed during the implementation of the Tapteal Bend Restoration project. No construction is authorized to begin until the proponent has obtained all applicable local, state, and federal permits and approvals.

  9. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, D.

    2013-03-01T23:59:59.000Z

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

  10. Simulated watershed responses to land cover changes using the Regional Hydro-Ecological Simulation System

    E-Print Network [OSTI]

    Tarboton, David

    Simulated watershed responses to land cover changes using the Regional Hydro-Ecological Simulation Old Main Hill, Logan, UT, 84322-8200, USA Abstract: In this work, we used the Regional Hydro

  11. Minimization of Cost, Sediment Load, and Sensitivity to Climate Change in a Watershed Management Application

    E-Print Network [OSTI]

    Eppstein, Margaret J.

    caused by non-point source impacts from developed lands, structural Best Management Practices (BMPs management practice (BMP) plans for entire watersheds. Each of these alternative BMP configurations are non: multiobjective, differential evolution, robustness to uncertainty, stormwater management, best management

  12. Non point source pollution modelling in the watershed managed by Integrated Conctructed Wetlands: A GIS approach.

    E-Print Network [OSTI]

    Vyavahare, Nilesh

    2008-12-05T23:59:59.000Z

    The non-point source pollution has been recognised as main cause of eutrophication in Ireland (EPA Ireland, 2001). Integrated Constructed Wetland (ICW) is a management practice adopted in Annestown stream watershed, located in the south county...

  13. NIFA Agriculture and Food Research Initiative (formerly NRI): Water and Watershed Competitive Grants

    E-Print Network [OSTI]

    Tracking to Identify Nonpoint Fecal Pollution in Agricultural Watersheds Principal Investigator: Nachabe, M of Award: Grant 2002-35102-12383; $204,862; 3 Years Title of Award: Variable-Frequency Acoustic Profiling

  14. Hydro-Ecologic Responses to Land Use in Small Urbanizing Watersheds Within the Chesapeake Bay

    E-Print Network [OSTI]

    Palmer, Margaret A.

    Hydro-Ecologic Responses to Land Use in Small Urbanizing Watersheds Within the Chesapeake Bay. The consequences for both the hydrology and 41 #12;42 HYDRO-ECOLOGIC RESPONSES TO LAND USE IN SMALL URBANIZING

  15. An Economic Analysis of Erosion and Sediment Damage in the Lower Running Draw Watershed

    E-Print Network [OSTI]

    Reneau, D. R.; Taylor, C. R.; Harris, B. L.; Lacewell, R. D.; Mueller, P. E.

    of a study on the economic impact of implementing potential agricultural NPS pollution controls in Lower Running Water Draw watershed. The study focuses on: (a) the effects of erosion control on farm income, (b) off-site sediment damages...

  16. Nitrogen and Phosphorus Biogeochemistry of Watersheds Along the Western Slope of the Sierra Nevada

    E-Print Network [OSTI]

    Homyak, Peter Michael

    2012-01-01T23:59:59.000Z

    both EML and Pear Lake (PRL) (J. Sickman, unpublished data),hypolimnetic O 2 concentrations. PRL is a 8.0 ha 591,000 m 3hypolimnetic anoxia. The PRL watershed is 142 ha of which

  17. Lower Red River Meadow Restoration Project : Biennial Report 1996-97.

    SciTech Connect (OSTI)

    LRK Communications; Wildlife Habitat Institute; Pocket Water, Inc.

    2003-07-01T23:59:59.000Z

    The Red River has been straightened and the riparian vegetation corridor eliminated in several reaches within the watershed. The river responded by incision resulting in over-steepened banks, increased sedimentation, elevated water temperatures, depressed groundwater levels, reduced floodplain function, and degraded fish habitat. The Lower Red River Meadow Restoration Project is a multi-phase ecosystem enhancement effort that restores natural physical and biological processes and functions to stabilize the stream channel and establish high quality habitats for fish and wildlife. A natural channel restoration philosophy guides the design and on the ground activities, allowing the channel to evolve into a state of dynamic equilibrium. Two years of planning, two years of restoration in Phases I and II, and one year post-restoration monitoring are complete. By excavating new bends and reconnecting historic meanders, Phase I and II channel realignment increased channel length by 3,060 feet, decreased channel gradient by 25 percent, and increased sinuosity from 1.7 to 2.3. Cross-sectional shapes and point bars were modified to maintain deep pool habitat at low flow and to reconnect the meadow floodplain. Improved soil moisture conditions will help sustain the 31,500 native riparian plantings reestablished within these two phases. Overall, short-term restoration performance was successful. Analyses of long-term parameters document either post-restoration baseline conditions or early stages of evolution toward desired conditions. An adaptive management strategy has helped to improve restoration designs, methods, and monitoring. Lessons learned are being transferred to a variety of audiences to advance the knowledge of ecological restoration and wise management of watersheds.

  18. Christina River Basin CZO Spatial and temporal integration

    E-Print Network [OSTI]

    Sparks, Donald L.

    watershed approach to quantifying anthropogenic modification of critical zone carbon sequestration Anthony K Hypothesis Processes that mix minerals and carbon are rate limiting to watershed-scale carbon sequestration & Preservation 4. Watershed Integration of Erosion-Driven Carbon Sequestration Spa$al Scaling #12;Physically

  19. Louisiana Nuclear Profile - River Bend

    U.S. Energy Information Administration (EIA) Indexed Site

    River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  20. Florida Nuclear Profile - Crystal River

    U.S. Energy Information Administration (EIA) Indexed Site

    Crystal River1" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  1. Rappahannock River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rappahannock River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the...

  2. Susquehanna River Basin Compact (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

  3. South Carolina Scenic Rivers Act (South Carolina)

    Broader source: Energy.gov [DOE]

    The goal of the Scenic Rivers Act is to protect selected rivers or river segments of the State with outstanding scenic, recreational, geologic, botanical, fish, wildlife, historic, or cultural...

  4. Ohio River Greenway Development Commission (Indiana)

    Broader source: Energy.gov [DOE]

    The Ohio River Greenway Development Commission administers the Ohio River Greenway Project, which is a park along a 7-mile stretch of the Ohio River. The Commission developed a master plan for the...

  5. Savannah River National Laboratory (SRNL) Environmental Sciences...

    Office of Environmental Management (EM)

    Savannah River National Laboratory (SRNL) Environmental Sciences and Biotechnology Support of Waste Isolation Pilot Plant (WIPP) Savannah River National Laboratory (SRNL)...

  6. Independent Activity Report, Washington River Protection Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington River Protection Solutions, LLC - October 2011 October 2011 Industrial Hygiene Surveillance of the Washington River Protection Solutions, LLC Industrial Hygiene...

  7. Enforcement Letter, Westinghouse Savannah River Company - November...

    Broader source: Energy.gov (indexed) [DOE]

    Savannah River Site On November 14, 2003, the U.S. Department of Energy (DOE) issued a nuclear safety Enforcement Letter to Westinghouse Savannah River Company related to...

  8. Independent Oversight Activity Report, Savannah River Site -...

    Office of Environmental Management (EM)

    Activity Report, Savannah River Site - February 2014 February 2014 Operational Awareness Visit of the Savannah River Site HIAR-SRS-2014-02-25 This Independent Activity...

  9. Independent Oversight Inspection, Savannah River Site - January...

    Energy Savers [EERE]

    2010 More Documents & Publications Independent Oversight Review, Savannah River Site Tritium Facilities - December 2012 Enterprise Assessments Review, Savannah River Site 2014...

  10. Great River (1973)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey(SC)Graphite Reactor 'In the- EnergyGreat-River

  11. FLOOD WARNING SYSTEM HAUGHTON RIVER

    E-Print Network [OSTI]

    Greenslade, Diana

    . The system provides early warning of heavy rainfall and river rises in the catchment and enables moreFLOOD WARNING SYSTEM for the HAUGHTON RIVER This brochure describes the flood warning system Flooding Flood Forecasting Local Information Haughton ALERT System Flood Warnings and Bulletins

  12. FLOOD WARNING SYSTEM BURDEKIN RIVER

    E-Print Network [OSTI]

    Greenslade, Diana

    . The system provides early warning of heavy rainfall and river rises in the catchment below the DamFLOOD WARNING SYSTEM for the BURDEKIN RIVER This brochure describes the flood warning system Local Information Burdekin ALERT System Flood Warnings and Bulletins Interpreting Flood Warnings

  13. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, D.

    2014-01-01T23:59:59.000Z

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  14. Dispersion of Metals from Abandoned Mines and their Effects on Biota in the Methow River, Okanogan County, Washington : Annual Report 3/15/00-3/14/01.

    SciTech Connect (OSTI)

    Peplow, Dan; Edmonds, Robert

    2001-06-01T23:59:59.000Z

    The University of Washington, College of Forest Resources and the Center for Streamside Studies in Seattle, Washington, is being funded by the Bonneville Power Administration to conduct a three-year research project to measure the watershed scale response of stream habitat to abandoned mine waste, the dispersion of metals, and their effects on biota in the Methow River basin. The purpose of this project is to determine if there are processes and pathways that result in the dispersion of metals from their source at abandoned mines to biological receptors in the Methow River. The objectives of this study are the following: (1) Assess ecological risk due to metal contamination from mines near the Methow; (2) Measure impact of metals from mines on groundwater and sediments in Methow River; (3) Measure response of organisms in the Methow River to excess metals in the sediments of the Methow River; (4) Recommend restoration guidelines and biological goals that target identified pathways and processes of metal pollution affecting salmon habitat in the Methow basin; and (5) Submit peer review journal publications. When concluded, this study will contribute to the advancement of current best management practices by describing the processes responsible for the release of metals from small abandoned mine sites in an arid environment, their dispersal pathways, and their chemical and biological impacts on the Methow River. Based on these processes and pathways, specific remediation recommendations will be proposed.

  15. Evaluation of Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2006 Project Completion Summary.

    SciTech Connect (OSTI)

    Faler, Michael P. [U.S. Fish and Wildlife Service; Mendel, Glen; Fulton, Carl [Washington Department of Fish and Wildlife

    2008-11-20T23:59:59.000Z

    The Columbia River Distinct Population Segment of bull trout (Salvelinus confluentus) was listed as threatened under the Endangered Species Act in 1998. One of the identified major threats to the species is fragmentation resulting from dams on over-wintering habitats of migratory subpopulations. A migratory subgroup in the Tucannon River appeared to utilize the Snake River reservoirs for adult rearing on a seasonal basis. As a result, a radio telemetry study was conducted on this subgroup from 2002-2006, to help meet Reasonable and Prudent Measures, and Conservation Recommendations associated with the lower Snake River dams in the FCRPS Biological Opinion, and to increase understanding of bull trout movements within the Tucannon River drainage. We sampled 1,109 bull trout in the Tucannon River; 124 of these were surgically implanted with radio tags and PIT tagged, and 681 were only PIT tagged. The remaining 304 fish were either recaptures, or released unmarked. Bull trout seasonal movements within the Tucannon River were similar to those described for other migratory bull trout populations. Bull trout migrated upstream in spring and early summer to the spawning areas in upper portions of the Tucannon River watershed. They quickly moved off the spawning areas in the fall, and either held or continued a slower migration downstream through the winter until early the following spring. During late fall and winter, bull trout were distributed in the lower half of the Tucannon River basin, down to and including the mainstem Snake River below Little Goose Dam. We were unable to adequately radio track bull trout in the Snake River and evaluate their movements or interactions with the federal hydroelectric dams for the following reasons: (1) none of our radio-tagged fish were detected attempting to pass a Snake River dam, (2) our radio tags had poor transmission capability at depths greater than 12.2 m, and (3) the sample size of fish that actually entered the Snake River was small (n=6). In spite of this project's shortcomings, bull trout continue to be observed in low numbers at Snake River dam fish facilities. It is highly possible that bull trout observed at the Snake River dam fish facilities are originating from sources other than the Tucannon River. We suggest that these fish might come from upstream sources like the Clearwater or Salmon rivers in Idaho, and are simply following the outmigration of juvenile anadromous fish (a food supply) as they emigrate toward the Pacific Ocean. Based on our study results, we recommend abandoning radio telemetry as a tool to monitor bull trout movements in the mainstem Snake River. We do recommend continuing PIT tagging and tag interrogation activities to help determine the origin of bull trout using the Snake River hydropower facilities. As a complementary approach, we also suggest the use of genetic assignment tests to help determine the origin of these fish. Lastly, several recommendations are included in the report to help manage and recover bull trout in the Tucannon subbasin.

  16. Food chain dynamics and potential ecological risks of mercury at the Carson River site

    SciTech Connect (OSTI)

    Peterson, S.C. [Ecology and Environment, Inc., Lancaster, NY (United States)

    1995-12-31T23:59:59.000Z

    The USEPA is conducting a remedial investigation of mercury contamination in the Carson River watershed, located near Carson City in central west Nevada. As a component of this investigation, water, sediment, and tissue samples were collected for mercury speciation and other analyses. Tissues analyses from the seven site-investigation areas and four background areas include: whole-body and fillet analyses of five species of fish, composite and individual analyses of three species of benthic macroinvertebrates, blood, feather and liver analyses of two bird species, composite analyses of zooplankton, and whole-body analyses of lizards. The data are used to develop site-specific estimates of mercury bioaccumulation in aquatic food chains of riverine/riparian, open-water, and mudflat habitats at the Carson River site. Because the behavior and food chain dynamics of mercury in semi-arid ecosystems of the southwestern US is poorly understood, these data can be compared and contrasted with bioaccumulation estimates derived from well-studied ecosystems such as northern temperate lakes. Potential ecological risks of mercury exposure through the food chain and through ingestion of and contact with contaminated media are evaluated for important wildlife receptors occurring at the Carson River site.

  17. Hood River and Pelton Ladder Evaluation Studies, Annual Report 2000-2001.

    SciTech Connect (OSTI)

    Olsen, Erik

    2009-09-01T23:59:59.000Z

    The Bonneville Power Administration (BPA) funded the development of two master plans which outline the rationale, and general approach, for implementing a defined group of projects that are an integral part of a comprehensive watershed goal to 'Protect, enhance and restore wild and natural populations of anadromous and resident fish within the Hood River Subbasin'. The Hood River Production Master Plan and the Pelton Ladder Master Plan were completed in 1991 and subsequently approved by the Northwest Power Planning Council in 1992. Action items identified in the two master plans, as well as in a later document entitled 'Hood River/Pelton Ladder Master Agreement' (ODFW and CTWSRO Undated), are designed to achieve two biological fish objectives: (1) to increase production of wild summer and winter steelhead (Oncorhynchus mykiss) to levels commensurate with the subbasins current carrying capacity and (2) re-establishing a self-sustaining population of spring chinook salmon (Oncorhynchus tshawytscha). Numerical fish objectives for subbasin escapement, spawner escapement, and subbasin harvest are defined for each of these species in Coccoli (2000). Several projects are presently funded by the BPA to achieve the Hood River subbasin's numerical fish objectives for summer and winter steelhead and spring chinook salmon. They include BPA project numbers 1998-021-00 (Hood River Fish Habitat), 1998-053-03 (Hood River Production Program - CTWSRO: M&E), 1998-053-07 (Parkdale Fish Facility), 1998-053-08 (Powerdale/Oak Springs O&M), and 1998-053-12 (Hood River Steelhead Genetics Study). Collectively, they are implemented under the umbrella of what has come to be defined as the Hood River Production Program (HRPP). The HRPP is jointly implemented by the Oregon Department of Fish and Wildlife (ODFW) and The Confederated Tribes of the Warm Springs Reservation of Oregon (CTWSRO). Strategies for achieving the HRPP's biological fish objectives for the Hood River subbasin were initially devised based on various assumptions about (1) subbasin carrying capacity, (2) survival rates for selected life history stages, and (3) historic and current escapements of wild, natural, and hatchery stocks of anadromous salmonids to the Hood River subbasin. The Oregon Department of Fish and Wildlife began funding a monitoring and evaluation (M&E) project in December 1991 to collect the quantitative biological information needed to (1) more accurately assess the validity of these assumptions and (2) evaluate the proposed hatchery supplementation component of the HRPP. Bonneville Power Administration assumed funding of the M&E project in August 1992. The M&E project was initially confined to sampling anadromous salmonids escaping to an adult trapping facility operated at Powerdale Dam; which is located at River Mile (RM) 4.5 on the mainstem of the Hood River. Stock specific life history and biological data was collected to (1) monitor subbasin spawner escapements and (2) collect pre-implementation data critical to evaluating the newly proposed HRPP's potential biological impact on indigenous populations of resident fish. The scope of the M&E project was expanded in 1994 to collect the data needed to quantify (1) subbasin smolt production and carrying capacity, (2) smolt to adult survival rates, and (3) the spatial distribution of indigenous populations of summer and winter steelhead, spring and fall chinook salmon, and coho salmon. A creel was incorporated into the M&E project in December 1996 to evaluate the HRPP with respect to its defined subbasin and spawner escapement objectives for Hood River stocks of wild and hatchery summer and winter steelhead and for natural and Deschutes stock hatchery spring chinook salmon. In 1996, the M&E project also began monitoring streamflow at various locations in the Hood River subbasin. Streamflow data will be used to correlate subbasin smolt production with summer streamflows. Data collected from 1991-1999 is reported in the following annual progress reports: Olsen et al. (1994), Olsen et al

  18. SAVANNAH RIVER SITE A PUIIUCATION OF THE SAVANNAII RIVER ECOI"OGY LAIIORATORY

    E-Print Network [OSTI]

    Georgia, University of

    OF THE SAVANNAH RIVER SITE A PUIIUCATION OF THE SAVANNAII RIVER ECOI"OGY LAIIORATORY NATIONAL of the Savannah River Site National Environmental Research Park Program Publication number: SRO-NERP-2S Printed OF THE SAVANNAH RIVER SITE BY CHARLES E. DAVIS AND LAURA L. JANECEK A PUBLICATION OF THE SAVANNAH RIVER SITE

  19. Curve Number and Peakflow Responses Following the Cerro Grande Fire on a Small Watershed.

    SciTech Connect (OSTI)

    Springer, E. P.; Hawkins, Richard H.

    2005-01-01T23:59:59.000Z

    The Curve Number (CN) method is routinely used to estimate runoff and peakflows following forest fires, but there has been essentially no literature on the estimated value and temporal variation of CNs following wildland fires. In May 2000, the Cerro Grande Fire burned the headwaters of the major watersheds that cross Los Alamos National Laboratory, and a stream gauging network presented an opportunity to assess CNs following the fire. Analysis of rainfall-runoff events indicated that the pre-fire watershed response was complacent or limited watershed area contributed to runoff. The post-fire response indicated that the complacent behavior continued so the watershed response was not dramatically changed. Peakflows did increase by 2 orders of magnitude following the fire, and this was hypothesized to be a function of increase in runoff volume and changes in watershed network allowing more efficient delivery of runoff. More observations and analyses following fires are needed to support definition of CNs for post-fire response and mitigation efforts.

  20. The Pecos River Ecosystem Project Progress Report

    E-Print Network [OSTI]

    Hart, C.

    planting saltcedar for stream bank erosion control along such rivers as the Pecos River in New Mexico. The plant has spread down the Pecos River into Texas and is now known to occur along the river south of Interstate 10. More recently the plant has become...

  1. Associations of watershed and instream environmental factors with aquatic macrofauna in tributaries of the Pedernales River, Texas

    E-Print Network [OSTI]

    Birnbaum, Jenny Sue

    2005-08-29T23:59:59.000Z

    ) with species assemblages containing mosquitofish (Gambusia affinis) and longear 22 sunfish (Lepomis megalotis) (Table 1, Fig. 2). The second axis (modeling an additional 21.9% of variation) contrasted species assemblages with abundant crayfish and tetras....9 Astyanax mexicanus 4.462 1.405 Campostoma anomalum 1.962 -2.750 Cyprinella lutrensis 2.252 -3.421 Cyprinella venusta 1.716 -3.047 Dionda episcopa 0.477 -3.048 Fundulus zebrinus 1.848 -3.481 Gambusia affinis -2.744 0.878 Lepomis cyanellus...

  2. Understanding wood-pool dynamics using long-term monitoring data from the Gualala River Watershed: What can we learn?

    E-Print Network [OSTI]

    Church, Tamara

    2012-01-01T23:59:59.000Z

    of riparian and stream restoration in the western UnitedA. Grant. 2010. Do in-stream restoration structures enhanceuse of large wood in stream restoration: experiences from 50

  3. Encouraging low-impact-development stormwater-management practices / Assabet River Watershed sub-basin case study

    E-Print Network [OSTI]

    Brown, James E. (James Edward), 1969-

    2005-01-01T23:59:59.000Z

    Regulatory codes and ordinances create a framework that guide stormwater management decision processes. These regulations are designed to protect the health and safety of the public and to preserve the natural integrity ...

  4. Hood River Fish Habitat Project; Confederated Tribes of the Warm Springs Reservation of Oregon, Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Vaivoda, Alexis

    2004-02-01T23:59:59.000Z

    This report summarizes the project implementation and monitoring of all habitat activities in the Hood River basin that occurred over the October 1, 2002 to September 30, 2003 period (FY 03). Some of the objectives in the corresponding statement of work for this contract were not completed within FY 03. A description of the progress during FY 03 and reasoning for deviation from the original tasks and timeline are provided. OBJECTIVE 1 - Provide coordination of all activities, administrative oversight and assist in project implementation and monitoring activities. Administrative oversight and coordination of the habitat statement of work, budget, subcontracts, personnel, implementation, and monitoring was provided. OBJECTIVE 2 - Continue to coordinate, implement, and revise, as needed, the Hood River Fish Habitat Protection, Restoration, and Monitoring Plan. The Hood River Fish Habitat Protection, Restoration, and Monitoring Plan was completed in 2000 (Coccoli et al., 2000). This document was utilized for many purposes including: drafting the Watershed Action Plan (Coccoli, 2002), ranking projects for funding, and prioritizing projects to target in the future. This document has been reviewed by many, including stakeholders, agencies, and interested parties. The Hood River Watershed Group Coordinator and author of the Hood River Fish Habitat Protection, Restoration, and Monitoring Plan, Holly Coccoli, has updated and revised the plan. Changes will be reflected in the Hood River Subbasin Plan, and after submission of the Subbasin Plan, a formally revised version of the Monitoring Plan will be put out for review. This will more specifically address changes in the Hood River subbasin since 2000, and reflect changes to fish habitat and needs in the Hood River subbasin regarding monitoring. OBJECTIVE 3 - Evaluate and monitor the habitat, accessibility, and presence of winter steelhead, coho salmon, and resident trout upstream of the Middle Fork Irrigation District water sources on Evans Creek. Through this project, BPA funded the Middle Fork Irrigation District (MFID) a total of $194,000 in FY 03 for the Glacier Ditch- Evans Creek project. BPA funds accounted for approximately 30% of the project while the remaining 70% was cost-shared by the MFID, the US Forest Service, and the Oregon Watershed Enhancement Board. The MFID operated irrigation diversions on Evans Creek (Hutson pond RM 4.0 and the Evans Creek diversion RM 5.5), a tributary to the East Fork Hood River. Both diversions had inadequate upstream fish passage, and utilized Evans Creek to transport Eliot Branch water to distribute irrigation water lower in the basin. This project consisted of: piping a portion of the Glacier ditch to create a pressurized irrigation pipeline system, piping the Hutson extension, removing the culvert on Evans Creek near the Glacier ditch, removing the culvert above the Hutson pond, revegetating the disturbed areas, and providing adequate and approved fish passage on Evans Creek. Prior to any work, Brian Connors with MFID completed a NEPA checklist. Some of the key regulatory points of this project included wetland delineations, a cultural resources survey, and consultations with NOAA Fisheries, U.S. Fish and Wildlife, Oregon Department of Fish and Wildlife (ODFW), and the U.S. Army Corps of Engineers. This project will eliminate the overflow of silty water into Evans Creek and West Fork Evans Creek. Upon completion of this project, access to 2.5 miles of winter steelhead, coho salmon, and resident trout habitat will be restored. Elimination of the interbasin transfer of water will discontinue the conveyance of silty Eliot Branch water into clear East Fork tributaries. Additionally, less water taken from Coe Branch, Eliot Branch, and Laurance Lake which will benefit listed steelhead and bull trout. The Glacier Ditch provided irrigation water from the Eliot Branch to upper valley orchards and agriculture for more than 100 years. The Glacier Ditch served approximately 1,438 acres with 18 cfs of water. The Glacier Ditch portion of this project

  5. Idaho Model Watershed Project : Annual Report to the Bonneville Power Administration January 1, 1997 - December 31, 1997.

    SciTech Connect (OSTI)

    Bradbury, Allen; Slavin, Katie

    1998-10-28T23:59:59.000Z

    The Model Watershed Project was initiated in the fall of 1992 with a grant from Bonneville Power Administration. The objective of this project is to protect, enhance and restore anadromous and resident fish habitat and achieve and maintain a balance between resource protection and resource use on a holistic watershed basis.

  6. What is the effect of LiDAR-derived DEM resolution on large-scale watershed model results?

    SciTech Connect (OSTI)

    Ping Yang; Daniel B. Ames; Andre Fonseca; Danny Anderson; Rupesh Shrestha; Nancy F. Glenn; Yang Cao

    2014-08-01T23:59:59.000Z

    This paper examines the effect of raster cell size on hydrographic feature extraction and hydrological modeling using LiDAR derived DEMs. LiDAR datasets for three experimental watersheds were converted to DEMs at various cell sizes. Watershed boundaries and stream networks were delineated from each DEM and were compared to reference data. Hydrological simulations were conducted and the outputs were compared. Smaller cell size DEMs consistently resulted in less difference between DEM-delineated features and reference data. However, minor differences been found between streamflow simulations resulted for a lumped watershed model run at daily simulations aggregated at an annual average. These findings indicate that while higher resolution DEM grids may result in more accurate representation of terrain characteristics, such variations do not necessarily improve watershed scale simulation modeling. Hence the additional expense of generating high resolution DEM's for the purpose of watershed modeling at daily or longer time steps may not be warranted.

  7. Aquatic Supplement Hood River Subbasin

    E-Print Network [OSTI]

    of Oregon and Washington stream temperature data Figure 4 and 5. Herman Creek (Oxbow Hatchery): 7-Day Moving.7 (10 cfs) 50 powerhouse discharge river mile 4.51 (20 cfs) Upper Lenz or Odell cr no info Davis water

  8. Massachusetts Rivers Protection Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    The law creates a 200-foot riverfront area that extends on both sides of rivers and streams. The riverfront area is 25 feet in the following municipalities: Boston, Brockton, Cambridge, Chelsea,...

  9. Case Studies in River Management

    E-Print Network [OSTI]

    Julien, Pierre Y.

    of the Middle Rio Grande --Discharge Analysis --Reservoir Level Analysis Site Description and Background --History of the Middle Rio Grande --Discharge Analysis --Reservoir Level Analysis Aggradation of Abandoned Channels Cheongmi Stream and Mangyeong River Cheongmi Stream South Korea In Collaboration

  10. Niobrara Scenic River Act (Nebraska)

    Broader source: Energy.gov [DOE]

    This act establishes the Niobrara Council, to assist in all aspects of the management of the Niobrara scenic river corridor and promulgate rules and regulations related to the preservation of the...

  11. Dayao County Yupao River BasDayao County Yupao River Basin Hydro...

    Open Energy Info (EERE)

    Dayao County Yupao River BasDayao County Yupao River Basin Hydro electricity Development Co Ltd in Jump to: navigation, search Name: Dayao County Yupao River BasDayao County Yupao...

  12. Characterization of coastal urban watershed bacterial communities leads to alternative community-based indicators

    SciTech Connect (OSTI)

    Wu, C.H.; Sercu, B.; Van De Werhorst, L.C.; Wong, J.; DeSantis, T.Z.; Brodie, E.L.; Hazen, T.C.; Holden, P.A.; Andersen, G.L.

    2010-03-01T23:59:59.000Z

    Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomic units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and a-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC:A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies. This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health.

  13. EA-1692: Red River Environmental Products, LLC Activated Carbon...

    Office of Environmental Management (EM)

    2: Red River Environmental Products, LLC Activated Carbon Manufacturing Facility, Red River Parish, LA EA-1692: Red River Environmental Products, LLC Activated Carbon Manufacturing...

  14. Evaluation of Fish Passage Sites in the Walla Walla River Basin, 2008

    SciTech Connect (OSTI)

    Chamness, Mickie A. [Pacific Northwest National Laboratory

    2008-08-29T23:59:59.000Z

    In 2008, Pacific Northwest National Laboratory evaluated the Hofer Dam fish screen and provided technical assistance at two other fish passage sites as requested by the Bonneville Power Administration, the Walla Walla Watershed Council, or the Confederated Tribes of the Umatilla Indian Reservation. Evaluation of new sites such as Hofer Dam focuses on their design, construction, operation, and maintenance to determine if they effectively provide juvenile salmonids with safe passage through irrigation diversions. There were two requests for technical assistance in 2008. In the first, the Confederated Tribes of the Umatilla Indian Reservation requested an evaluation of the Nursery Bridge fish screens associated with the fish ladder on the east side of the Walla Walla River. One set of brushes that clean the screens was broken for an extended period. Underwater videography and water velocity measurements were used to determine there were no potential adverse effects on juvenile salmonids when the west set of screens was clean enough to pass water normally. A second request, received from the National Marine Fisheries Service and the Walla Walla Watershed Council, asked for evaluation of water velocities through relatively new head gates above and adjacent to the Eastside Ditch fish screens on the Walla Walla River. Water moving through the head gates and not taken for irrigation is diverted to provide water for the Nursery Bridge fish ladder on the east side of the river. Elevations used in the design of the head gates were incorrect, causing excessive flow through the head gates that closely approached or exceeded the maximum swimming burst speed of juvenile salmonids. Hofer Dam was evaluated in June 2008. PNNL researchers found that conditions at Hofer Dam will not cause impingement or entrainment of juvenile salmonids but may provide habitat for predators and lack strong sweeping flows to encourage juvenile salmonid passage downstream. Further evaluation of velocities at the Eastside Ditch and wasteway gates should occur as changes are made to compensate for the design problems. These evaluations will help determine whether further changes are required. Hofer Dam also should be evaluated again under more normal operating conditions when the river levels are typical of those when fish are emigrating and the metal plate is not affecting flows.

  15. Deep drilling data, Raft River geothermal area, Idaho-Raft River...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well...

  16. Sediment transport and topographic evolution of a coupled river and river plume system

    E-Print Network [OSTI]

    Sediment transport and topographic evolution of a coupled river and river plume system inundation from storms, hurricanes, and tsunamis [Tornqvist et al., 2007; Blum and Roberts, 2009; Jerolmack

  17. Evaluating Cumulative Ecosystem Response to Restoration Projects in the Columbia River Estuary, Annual Report 2005

    SciTech Connect (OSTI)

    Diefenderfer, Heida L.; Thom, Ronald M.; Borde, Amy B.; Roegner, G. C.; Whiting, Allan H.; Johnson, Gary E.; Dawley, Earl; Skalski, John R.; Vavrinec, John; Ebberts, Blaine D.

    2006-12-20T23:59:59.000Z

    This report is the second annual report of a six-year project to evaluate the cumulative effects of habitat restoration projects in the Columbia River Estuary, conducted by Pacific Northwest National Laboratory's Marine Sciences Laboratory, NOAA's National Marine Fisheries Service Pt. Adams Biological Field Station, and the Columbia River Estuary Study Taskforce for the US Army Corps of Engineers. In 2005, baseline data were collected on two restoration sites and two associated reference sites in the Columbia River estuary. The sites represent two habitat types of the estuary--brackish marsh and freshwater swamp--that have sustained substantial losses in area and that may play important roles for salmonids. Baseline data collected included vegetation and elevation surveys, above and below-ground biomass, water depth and temperature, nutrient flux, fish species composition, and channel geometry. Following baseline data collection, three kinds of restoration actions for hydrological reconnection were implemented in several locations on the sites: tidegate replacements (2) at Vera Slough, near the city of Astoria in Oregon State, and culvert replacements (2) and dike breaches (3) at Kandoll Farm in the Grays River watershed in Washington State. Limited post-restoration data were collected: photo points, nutrient flux, water depth and temperature, and channel cross-sections. In subsequent work, this and additional post-restoration data will be used in conjunction with data from other sites to estimate net effects of hydrological reconnection restoration projects throughout the estuary. This project is establishing methods for evaluating the effectiveness of individual projects and a framework for assessing estuary-wide cumulative effects including a protocol manual for monitoring restoration and reference sites.

  18. Sediment storage and yield in an urbanized karst watershed Evan A. Harta,*, Stephen G. Schurgerb

    E-Print Network [OSTI]

    Hart, Evan

    Sediment storage and yield in an urbanized karst watershed Evan A. Harta,*, Stephen G. Schurgerb, sinkholes and other drainage features control the temporal and spatial pattern of sediment storage across storage function of sinkholes and caves has not been investigated using a sediment budget approach

  19. Success of the Melton Valley Watershed Remediation at the ORNL - 12351

    SciTech Connect (OSTI)

    Adler, David; Wilkerson, Laura [DOE, Oak Ridge Operations (United States); Sims, Lynn; Ketelle, Richard; Garland, Sid [Oak Ridge/Restoration Service, Inc. - UCOR/RSI (United States)

    2012-07-01T23:59:59.000Z

    The source remediation of the Melton Valley (MV) Watershed at the U.S. Department of Energy's (DOE's) Oak Ridge National Laboratory was completed 5 years ago (September 2006). Historic operations at the laboratory had resulted in chemical and radionuclide contaminant releases and potential risks or hazards within 175 contaminated units scattered across an area of 430 hectares (1062 acres) within the watershed. Contaminated areas included burial grounds, landfills, underground tanks, surface impoundments, liquid disposal pit/trenches, hydrofracture wells, leak and spill spites, inactive surface structures, and contaminated soil and sediments. The remediation of the watershed was detailed in the MV Interim Action Record of Decision (ROD) and included a combination of actions encompassing containment, isolation, stabilization, removal, and treatment of sources within the watershed and established the monitoring and land use controls that would result in protection of human health. The actions would take place over 5 years with an expenditure of over $340 M. The MV remedial actions left hazardous wastes in-place (e.g., buried wastes beneath hydraulic isolation caps) and cleanup at levels that do not allow for unrestricted access and unlimited exposure. The cleanup with the resultant land use would result in a comprehensive monitoring plan for groundwater, surface water, and biological media, as well as the tracking of the land use controls to assure their completion. This paper includes an overview of select performance measures and monitoring results, as detailed in the annual Remediation Effectiveness Report and the Five-Year Report. (authors)

  20. Fine Sediment Sources in Coastal Watersheds with Uplifted Marine Terraces in

    E-Print Network [OSTI]

    Standiford, Richard B.

    County, California Stephen Sungnome Madrone1 and Andrew P. Stubblefield1 Abstract Erosion in the Mill and Luffenholtz Creek watersheds in Humboldt County, California, with their extensive clay soils, can lead to high) there is still the potential for creation of a dangerous by-product, chloro-tri- halomethanes that can remain

  1. An Analysis of Microbial Pollution in the Sinclair-Dyes Inlet Watershed

    SciTech Connect (OSTI)

    May, Christopher W.; Cullinan, Valerie I.

    2005-09-21T23:59:59.000Z

    This assessment of fecal coliform sources and pathways in Sinclair and Dyes Inlets is part of the Project ENVironmental InVESTment (ENVVEST) being conducted by the Navy's Puget Sound Naval Shipyard and Intermediate Maintenance Facility in cooperation with the US Environmental Protection Agency, Washington State Department of Ecology, the Suquamish Tribe, Kitsap County, the City of Bremerton, the City of Port Orchard, and other local stakeholders. The goal of this study was to identify microbial pollution problems within the Sinclair-Dyes Inlet watershed and to provide a comprehensive assessment of fecal coliform (FC) contamination from all identifiable sources in the watershed. This study quantifies levels of contamination and estimated loadings from known sources within the watersheds and describes pollutant transport mechanisms found in the study area. In addition, the effectiveness of pollution prevention and mitigation measures currently in place within the Sinclair-Dyes Inlet watershed are discussed. This comprehensive study relies on historical data collected by several cooperating agencies, in addition to data collected during the study period from spring 2001 through summer 2005. This report is intended to provide the technical information needed to continue current water quality cleanup efforts and to help implement future efforts.

  2. The British Columbia Watershed Restoration Program: Summary of the Experimental Design, Monitoring and

    E-Print Network [OSTI]

    Keeley, Ernest R.

    hillslopes to stream channels are restored, a also low-level treatment, where only hillslope restoration work a restoration program would be over a 4-8 year period, using 8-16 experimental stream triplets. AppropriateThe British Columbia Watershed Restoration Program: Summary of the Experimental Design, Monitoring

  3. Corbicula Biomonitoring in the Anacostia Watershed Final Report to the DC Water Resources Research Center

    E-Print Network [OSTI]

    District of Columbia, University of the

    1 Corbicula Biomonitoring in the Anacostia Watershed Final Report to the DC Water Resources and estuary sites for eight weeks and tissues analyzed for 21 pesticides, 28 PCB congenors, 18 PAHs and 6 tPAHs were significently increased. Clams placed just above tide in three of five main tributaries

  4. Urban Stormwater and Watershed Management: A Case Study James P. Heaney, Len Wright, and David Sample

    E-Print Network [OSTI]

    Pitt, Robert E.

    classified as Decision Support Systems (DSS) (Loucks 1995). Contemporary DSS's contain a mixture9-1 Chapter 9 Urban Stormwater and Watershed Management: A Case Study James P. Heaney, Len Wright. The concept of integrated water and land management was first articulated in the western U.S. by John Wesley

  5. Environmental Assessment for the Rathbun Lake Watershed: Sampling Design, Methods and Results

    E-Print Network [OSTI]

    Opsomer, Jean

    Environmental Assessment for the Rathbun Lake Watershed: Sampling Design, Methods and Results by J Association June 11, 2001 Iowa State University Ames, Iowa #12;2 Environmental Assessment for the Rathbun Lake health assessment, are briefly described in the article. All the selected plots and stream locations were

  6. TOWARDS OBJECTIVE DESIGN OF DRY DAMS AT WATERSHED SCALE: HOW TO TAKE INTO ACCOUNT THE SPATIAL

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    21 TOWARDS OBJECTIVE DESIGN OF DRY DAMS AT WATERSHED SCALE: HOW TO TAKE INTO ACCOUNT THE SPATIAL, the best location for 1 or 3 dry dams). To take into account the spatial variability of the rainfall, we, following subcatchments delineation. A dry dam can be placed at the outlet of any unit. Such a simple model

  7. NAME: Salt Creek Estuary Restoration LOCATION: Salt Creek Watershed, Clallam County, Washington

    E-Print Network [OSTI]

    US Army Corps of Engineers

    NAME: Salt Creek Estuary Restoration LOCATION: Salt Creek Watershed, Clallam County, Washington Federal funds $0 PROJECT DESCRIPTION: The Salt Creek Estuary Reconnection project will significantly enhance tidal and fluvial hydrology to 22.5 acres of salt marsh, which will return the salt marsh to its

  8. REMOTE SENSING TECHNIQUES FOR LAND USE CLASSIFICATION OF RIO JAUCA WATERSHED USING IKONOS IMAGES

    E-Print Network [OSTI]

    Gilbes, Fernando

    REMOTE SENSING TECHNIQUES FOR LAND USE CLASSIFICATION OF RIO JAUCA WATERSHED USING IKONOS IMAGES-Mayagez E-mail: edwinmm80@yahoo.com Key words: GIS, remote sensing, land use, supervised classification resource and supplies water to the metropolitan area. Remote sensing techniques can be used to assess

  9. Hydrologic Modeling of a Canal-Irrigated Agricultural Watershed with Irrigation Best Management

    E-Print Network [OSTI]

    a hydrologic perspective. In this study, an approach is developed to model canal irrigation systems understanding of irrigation systems and a proper represen- tation of them in watershed models are required it for modeling purposes. Therefore, the next alternative is to use a model to simulate irrigation systems

  10. Better understanding of bacterial fate and transport in watersheds is necessary for improved regulatory management

    E-Print Network [OSTI]

    Perfect, Ed

    bacterial survival in hydro- environmental systems such as sunlight, temperature, soil moisture conditions1559 Better understanding of bacterial fate and transport in watersheds is necessary for improved regulatory management of impaired streams. Novel statistical time series analyses of coliform data can

  11. Report on the Watershed Monitoring Program at the Paducah Site January-December 1998

    SciTech Connect (OSTI)

    Kszos, L.A.; Peterson, M.J.; Ryon, M.G.; Southworth, G.R.

    1999-03-01T23:59:59.000Z

    Watershed Monitoring of Big Bayou and Little Bayou creeks has been conducted since 1987. The monitoring was conducted by the University of Kentucky between 1987 and 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 to present. The goals of monitoring are to (1) demonstrate that the effluent limitations established for DOE protect and maintain the use of Little Bayour and Big Bayou creeks for frowth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, and (3) document the effects of pollution abatement facilities on stream biota. The watershed (biological) monitoring discussed in this report was conducted under DOE Order 5400.1, General Environmental Protection Program. Future monitoring will be conducted as required by the Kentucky Pollutant Discharge Elimination System (KPDES) permit issued to the Department of Energy (DOE) in March 1998. A draft Watershed Monitoring Program plan was approved by the Kentucky Division of Water and will be finalized in 1999. The DOE permit also requires toxicity monitoring of one continuous outfall and of three intermittent outfalls on a quarterly basis. The Watershed Monitoring Program for the Paducah Site during calendar year 1998 consisted of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of fish communities. This report focuses on ESD activities occurring from january 1998 to December 1998, although activities conducted outside this time period are included as appropriate.

  12. Enterprise Assessments Review, Savannah River Site 2014 Site...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Independent Oversight Inspection, Savannah River Site - January 2010 Independent Oversight Review, Savannah River Site Tritium Facilities - December...

  13. Elm Fork of the Trinity River Floodplain Management Study

    E-Print Network [OSTI]

    Tickle, Greg; Clary, Melinda

    2001-01-01T23:59:59.000Z

    ELM FORK OF THE TRINITY RIVER FLOODPLAIN MANAGEMENT STUDYof the Elm Fork of the Trinity River, Dallas County, Dallas,

  14. Preliminary Notice of Violation, Westinghouse Savannah River...

    Broader source: Energy.gov (indexed) [DOE]

    March 19, 2002 Issued to Westinghouse Savannah River Company related to Safety Basis and Radiation Protection Violations at the Savannah River Site, On March 19, 2002, the U.S....

  15. Lakes and Rivers Improvement Act (Ontario, Canada)

    Broader source: Energy.gov [DOE]

    The Lakes and Rivers Improvement Act proscribes the management, protection, preservation and use of the waters of the lakes and rivers of Ontario and the land under them. The Act also details...

  16. An Inside Look at River Corridor

    Broader source: Energy.gov [DOE]

    In the seventh chapter ofThe Handford Story, the Energy Department takes a look at the River Corridor -- a 50-mile stretch of the Columbia River that flows through the Hanford site in southeast...

  17. Preliminary Notice of Violation, Westinghouse Savannah River...

    Broader source: Energy.gov (indexed) [DOE]

    December 5, 1997 Issued to Westinghouse Savannah River Company, related to an Unplanned Radioactive Material Intake at the Savannah River Site, (EA-97-12) On December 5, 1997, the...

  18. Belle Fourche River Compact (South Dakota)

    Broader source: Energy.gov [DOE]

    The Belle Fourche River Compact, agreed to by South Dakota and Wyoming, seeks to provide for the most efficient use of the waters of the Belle Fourche River Basin for multiple purposes, and to...

  19. Youghiogheny Wild and Scenic River (Maryland)

    Broader source: Energy.gov [DOE]

    Portions of the Youghiogheny River are protected under the Scenic and Wild Rivers Act, and development on or near these areas is restricted. COMAR section 08.15.02 addresses permitted uses and...

  20. River System Hydrology in Texas

    E-Print Network [OSTI]

    Wurbs, R.; Zhang, Y.

    2014-01-01T23:59:59.000Z

    ,700 86,700 Proctor Leon River USACE 1963 59,400 54,702 310,100 Belton Leon River USACE 1954 457,600 432,978 640,000 Stillhouse Hollow Lampasas River USACE 1968 235,700 224,279 390,660 Georgetown San Gabriel R USACE 1980 37,100 36,980 87,600 Granger... San Gabriel R USACE 1980 65,500 50,540 162,200 Somerville Yequa Creek USACE 1967 160,110 154,254 337,700 Hubbard Creek Hubbard Creek WCTMWD 1962 317,750 317,750 Post NF Double Mt WRMWD proposed 57,420 Alan Henry SF Double Mt Lubbock 1993 115...

  1. Prepared in cooperation with the Platte River Recovery Implementation Program River Channel Topographic Surveys Collected Prior

    E-Print Network [OSTI]

    Prepared in cooperation with the Platte River Recovery Implementation Program River Channel Topographic Surveys Collected Prior to and Following Elevated Flows in the Central Platte River, Spring 2008 Flows in the Central Platte River, Nebraska, Spring 2008 By Paul J. Kinzel Prepared in cooperation

  2. Effect of spill on adult salmon passage delay at Columbia River and Snake River dams

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Effect of spill on adult salmon passage delay at Columbia River and Snake River dams W. Nicholas dams in the Columbia/Snake River hydrosystem may delay the upstream passage of the adults. To evaluate-to-day variations of spill and upstream fish passage at the eight dams of the Columbia/Snake river hydrosystem

  3. Historical Ecology of the lower santa clara river, Ventura river, and oxnard Plain

    E-Print Network [OSTI]

    Historical Ecology of the lower santa clara river, Ventura river, and oxnard Plain: an analysis. Historical ecology of the lower Santa Clara River,Ventura River, and Oxnard Plain: an analysis of terrestrial layers are available on SFEI's website, at www.sfei.org/projects/VenturaHE. Permissions rights for images

  4. BIOTIC INTEGRITY OF STREAMS IN THE SAVANNAH RIVER SITE INTEGRATOR OPERABLE UNITS, 1996 TO 2003

    SciTech Connect (OSTI)

    Paller, M; Susan Dyer, S

    2004-11-08T23:59:59.000Z

    The Savannah River Site (SRS) has been divided into six Integrator Operable Units (IOUs) that correspond to the watersheds of the five major streams on the SRS (Upper Three Runs, Fourmile Branch, Pen Branch, Steel Creek, and Lower Three Runs) and the portions of the Savannah River and Savannah River Swamp associated with the SRS. The streams are the primary integrators within each IOU because they potentially receive, through surface or subsurface drainage, soluble contaminants from all waste sites within their watersheds. If these contaminants reach biologically significant levels, they would be expected to effect the numbers, types, and health of stream organisms. In this study, biological sampling was conducted within each IOU as a measure of the cumulative ecological effects of the waste sites within the IOUs. The use of information from biological sampling to assess environmental quality is often termed bioassessment. The IOU bioassessment program included 38 sites in SRS streams and nine sites in the Savannah River. Sampling was conducted in 1996 to 1998, 2000, and 2003. Four bioassessment methods were used to evaluate ecological conditions in the IOU streams: the Index of Biotic Integrity, the Fish Health Assessment Index, measurement of fish tissue contaminant levels, and two benthic macroinvertebrate indices. The Index of Biotic Integrity (IBI) is an EPA supported method based on comparison of ecologically important and sensitive fish assemblage variables between potentially disturbed and reference (i.e., undisturbed) sites. It is designed to assess the ability of a stream to support a self-sustaining biological community and ecological processes typical of undisturbed, natural conditions. Since many types of contaminants can bioaccumulate, fish tissue contaminant data were used to determine the types of chemicals fish were exposed to and their relative magnitudes among IOUs. The Fish Health Assessment Index (HAI) is an EPA supported method for assessing the health and condition of individual fish based on dissection and internal examination. It helped to determine whether contaminant concentrations were high enough to adversely affect the health of individual fish. The benthic macroinvertebrate multimetric index (HDMI), used in 1997 to 2000, is a method for assessing stream health based on macroinvertebrate data collected with Hester-Dendy artificial substrates. In 2003 it was replaced with the Multiple Habitat Sampling protocol, a SCDHEC method for collecting and analyzing benthic macroinvertebrate data from natural substrate. These two macroinvertebrate based methods were used in conjunction with the fish based IBI to provide a more comprehensive assessment of ecological conditions. Lastly, habitat data were collected from each stream to assist in determining whether ecological integrity was compromised by physical factors (e.g., erosion) or chemical factors (e.g., discharge of toxic materials). Fish from many SRS streams exhibited evidence of contamination as a result of current or former SRS operations. The most prevalent radiological contaminants were cesium-137 (highest in fish from Lower Three Runs followed by Steel Creek and Fourmile Branch), tritium (highest in fish from Fourmile Branch followed by Pen Branch, and the Savannah River swamp), and strontium (highest in fish from Fourmile Branch followed by Pen Branch). Radiological contaminants were also found in fish collected from the Savannah River near the mouths of contaminated SRS streams; however, contaminant levels were substantially lower than in fish from the streams themselves. Mercury levels were moderately elevated in fish from some streams, particularly Lower Three Runs, and in fish from the Savannah River. Despite the occurrence of contaminants, most SRS streams exhibited comparatively high biotic integrity (based on IBI, HDMI, and MHSP scores) and minimal levels of pathology among individual fish (e.g., presence of tumors or extreme thinness), indicating that contaminant levels were generally insufficient to cause significant ecological de

  5. Bayer Material Science (TRL 1 2 3 System)- River Devices to Recover Energy with Advanced Materials(River DREAM)

    Broader source: Energy.gov [DOE]

    Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM)

  6. The river model of black holes

    E-Print Network [OSTI]

    Andrew J. S. Hamilton; Jason P. Lisle

    2006-08-31T23:59:59.000Z

    This paper presents an under-appreciated way to conceptualize stationary black holes, which we call the river model. The river model is mathematically sound, yet simple enough that the basic picture can be understood by non-experts. %that can by understood by non-experts. In the river model, space itself flows like a river through a flat background, while objects move through the river according to the rules of special relativity. In a spherical black hole, the river of space falls into the black hole at the Newtonian escape velocity, hitting the speed of light at the horizon. Inside the horizon, the river flows inward faster than light, carrying everything with it. We show that the river model works also for rotating (Kerr-Newman) black holes, though with a surprising twist. As in the spherical case, the river of space can be regarded as moving through a flat background. However, the river does not spiral inward, as one might have anticipated, but rather falls inward with no azimuthal swirl at all. Instead, the river has at each point not only a velocity but also a rotation, or twist. That is, the river has a Lorentz structure, characterized by six numbers (velocity and rotation), not just three (velocity). As an object moves through the river, it changes its velocity and rotation in response to tidal changes in the velocity and twist of the river along its path. An explicit expression is given for the river field, a six-component bivector field that encodes the velocity and twist of the river at each point, and that encapsulates all the properties of a stationary rotating black hole.

  7. Columbia River Component Data Evaluation Summary Report

    SciTech Connect (OSTI)

    C.S. Cearlock

    2006-08-02T23:59:59.000Z

    The purpose of the Columbia River Component Data Compilation and Evaluation task was to compile, review, and evaluate existing information for constituents that may have been released to the Columbia River due to Hanford Site operations. Through this effort an extensive compilation of information pertaining to Hanford Site-related contaminants released to the Columbia River has been completed for almost 965 km of the river.

  8. Waste area grouping 2 Phase I task data report: Ecological risk assessment and White Oak Creek watershed screening ecological risk assessment

    SciTech Connect (OSTI)

    Efroymson, R.A.; Jackson, B.L.; Jones, D.S. [and others] [and others

    1996-05-01T23:59:59.000Z

    This report presents an ecological risk assessment for Waste Area Grouping (WAG) 2 based on the data collected in the Phase I remedial investigation (RI). It serves as an update to the WAG 2 screening ecological risk assessment that was performed using historic data. In addition to identifying potential ecological risks in WAG 2 that may require additional data collection, this report serves to determine whether there are ecological risks of sufficient magnitude to require a removal action or some other expedited remedial process. WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the Oak Ridge National Laboratory (ORNL) main plant area, White Oak Lake (WOL), the White Oak Creek Embayment of the Clinch River, associated flood plains, and the associated groundwater. The WOC system drains the WOC watershed, an area of approximately 16.8 km{sup 2} that includes ORNL and associated WAGs. The WOC system has been exposed to contaminants released from ORNL and associated operations since 1943 and continues to receive contaminants from adjacent WAGs.

  9. The Columbia River Estuary the Columbia River Basin

    E-Print Network [OSTI]

    River estuary was a high-energy environment dominated by physical forces, with extensive sand Riddell November 28, 2000 ISAB 2000-5 #12;ISAB 2000-5 Estuary Report i EXECUTIVE SUMMARY The Northwest to an informed response to the Council. Consequently, this report has been prepared as a preliminary reply

  10. FLOOD WARNING SYSTEM LOGAN & ALBERT RIVERS

    E-Print Network [OSTI]

    Greenslade, Diana

    . The system provides early warning of heavy rainfalls and river rises throughout the catchment and enablesFLOOD WARNING SYSTEM for the LOGAN & ALBERT RIVERS This brochure describes the flood warning system of Meteorology operates a flood warning system for the Logan and Albert River catchments based on a rainfall

  11. SRO -NERP-1 THE SAVANNAH RIVER PLANT

    E-Print Network [OSTI]

    Georgia, University of

    AND TREATMENT by Whit Gibbons Savannah River Ecology Laboratory Aiken , South Carolina A PUBLICATION OF EROA 'S SAVANNAH RIVER NATIONAL ENVIRONMENTAL RESEARCH PARK -SEPTEMBER 1977 COPIES MAY BE OBTAINEO FROM SAVANNAHSRO -NERP-1 SNAKES OF THE SAVANNAH RIVER PLANT WITH INFORMATION ABOUT SNAKEBITE PREVENTION

  12. Anadronous Fish Habitat Enhancement for the Middle Fork and Upper Salmon River, 1988 Annual Report.

    SciTech Connect (OSTI)

    Andrews, John ( US Forest Service, Intermountain Region, Boise, ID)

    1990-01-01T23:59:59.000Z

    The wild and natural salmon and steelhead populations in the Middle Fork and Upper Salmon River are at a critical low. Habitat enhancement through decreasing sediment loads, increasing vegetative cover, removing passage barriers, and providing habitat diversity is imperative to the survival of these specially adapted fish, until passage problems over the Columbia River dams are solved. Personnel from the Boise and Sawtooth National Forests completed all construction work planned for 1988. In Bear Valley, 1573 feet of juniper revetment was constructed at eleven sites, cattle were excluded from 1291 feet of streambanks to prevent bank breakdown, and a small ephemeral gully was filled with juniper trees. Work in the Upper Salmon Drainage consisted of constructing nine rock sills/weirs, two rock deflectors, placing riprap along forty feet of streambank, construction of 2.1 miles of fence on private lands, and opening up the original Valley Creek channel to provide spring chinook passage to the upper watershed. A detailed stream survey of anadromous fish habitat covering 72.0 miles of streams in the Middle Fork Sub-basin was completed.

  13. A water quality assessment of the import of turfgrass sod grown with composted dairy manure into a suburban watershed

    E-Print Network [OSTI]

    Richards, Chad Edward

    2005-02-17T23:59:59.000Z

    Concentrated animal feeding operations (CAFOs) have caused water quality concerns in many rural watersheds, sometimes forcing the State of Texas to conduct Total Maximum Daily Load (TMDL) assessments of stream nutrients ...

  14. Microbial Risk Perspective on the Temporal and Spatial Variability of Indicator Bacteria in Texas Urban and Rural Watersheds

    E-Print Network [OSTI]

    Srinivasan Ravichandran, Sriambharrish

    2012-07-16T23:59:59.000Z

    contaminated waters as indicated by ingestion of Escherichia coli found in surface water for contact recreation scenarios. The watersheds were chosen because many segments were previously placed on the 303 (d) list (published by the TCEQ) for failing...

  15. Changes in ecosystem services and runoff due to land use change in the watersheds of San Antonio, Texas

    E-Print Network [OSTI]

    Harris, Heather Grace

    2000-01-01T23:59:59.000Z

    service valuation model to each of the land use classes over the discreet time periods. Hydrologic peak flow models using the Soil Conservation Service Curve Number Method were developed and applied to each watershed for each discreet time period...

  16. Runoff sources and land cover change in the Amazon: an end-member mixing analysis from small watersheds

    E-Print Network [OSTI]

    watersheds Christopher Neill · Joaquin E. Chaves · Trent Biggs · Linda A. Deegan · Helmut Elsenbeer · Ricardo 02543, USA e-mail: cneill@mbl.edu T. Biggs Department of Geography, San Diego State University, San

  17. Spatially explicit load enrichment calculation tool and cluster analysis for identification of E. coli sources in Plum Creek Watershed, Texas

    E-Print Network [OSTI]

    Teague, Aarin Elizabeth

    2009-06-02T23:59:59.000Z

    According to the 2004 303(d) List, 192 segments are impaired by bacteria in the State of Texas. Impairment of streams due to bacteria is of major concern in several urban watersheds in Texas. In order to assess, monitor ...

  18. Note to Teachers : A Tale of Two Watersheds: Land Use, Topography, and the Potential for Urban Expansion

    E-Print Network [OSTI]

    Note to Teachers : A Tale of Two Watersheds: Land Use, Topography, and the Potential for Urban the upward limit of geographical features such as pediments, fans and depositional features of ice and wind

  19. Using HEM surveys to evaluate disposal of by-product water from CBNG development in the Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    Lipinski, B.A.; Sams, J.I.; Smith, B.D. (USGS, Denver, CO); Harbert, W.P.

    2008-05-01T23:59:59.000Z

    Production of methane from thick, extensive coal beds in the Powder River Basin ofWyoming has created water management issues. Since development began in 1997, more than 650 billion liters of water have been produced from approximately 22,000 wells. Infiltration impoundments are used widely to dispose of by-product water from coal bed natural gas (CBNG) production, but their hydrogeologic effects are poorly understood. Helicopter electromagnetic surveys (HEM) were completed in July 2003 and July 2004 to characterize the hydrogeology of an alluvial aquifer along the Powder River. The aquifer is receiving CBNG produced water discharge from infiltration impoundments. HEM data were subjected to Occams inversion algorithms to determine the aquifer bulk conductivity, which was then correlated to water salinity using site-specific sampling results. The HEM data provided high-resolution images of salinity levels in the aquifer, a result not attainable using traditional sampling methods. Interpretation of these images reveals clearly the produced water influence on aquifer water quality. Potential shortfalls to this method occur where there is no significant contrast in aquifer salinity and infiltrating produced water salinity and where there might be significant changes in aquifer lithology. Despite these limitations, airborne geophysical methods can provide a broadscale (watershed-scale) tool to evaluate CBNG water disposal, especially in areas where field-based investigations are logistically prohibitive. This research has implications for design and location strategies of future CBNG water surface disposal facilities within the Powder River Basin.

  20. Watershed characteristics contributing to the 1983-84 debris flows in the Wasatch Range, Davis County, Utah

    E-Print Network [OSTI]

    Coleman, William Kevin

    1991-01-01T23:59:59.000Z

    WATERSHED CHARACTERISTICS CONTRIBUTING TO THE 3. 983-84 DEBRIS FLOWS IN THE WASATCH RANGE, DAVIS COUNTY ?UTAH A Thesis by WILLIAM KEVIN COLEMAN Submitted to Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1991 Major Subject: Geology WATERSHED CHARACTERISTICS CONTRIBUTING TO THE 1. 983 ? 84 DEBRIS FLOWS IN THE WASATCH RANGE, DAVIS COUNTY, UTAH A Thesis by WILLIAM KEVIN COLEMAN Approved...

  1. A water quality assessment of the import of turfgrass sod grown with composted dairy manure into a suburban watershed

    E-Print Network [OSTI]

    Richards, Chad Edward

    2005-02-17T23:59:59.000Z

    A WATER QUALITY ASSESSMENT OF THE IMPORT OF TURFGRASS SOD GROWN WITH COMPOSTED DAIRY MANURE INTO A SUBURBAN WATERSHED A Thesis by CHAD EDWARD RICHARDS Submitted to the Office of Graduate Studies of Texas A... OF TURFGRASS SOD GROWN WITH COMPOSTED DAIRY MANURE INTO A SUBURBAN WATERSHED A Thesis by CHAD EDWARD RICHARDS Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE...

  2. HANFORD SITE RIVER CORRIDOR CLEANUP

    SciTech Connect (OSTI)

    BAZZELL, K.D.

    2006-02-01T23:59:59.000Z

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.

  3. Savannah River Plant/Savannah River Laboratory radiation exposure report

    SciTech Connect (OSTI)

    Rogers, C.D.; Hyman, S.D.; Keisler, L.L. (Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Plant); Reeder, D.F.; Jolly, L.; Spoerner, M.T.; Schramm, G.R. (Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Lab.)

    1989-01-01T23:59:59.000Z

    The protection of worker health and safety is of paramount concern at the Savannah River Site. Since the site is one of the largest nuclear sites in the nation, radiation safety is a key element in the protection program. This report is a compendium of the results in 1988 of the programs at the Savannah River Plant and the Savannah River Laboratory to protect the radiological health of employees. By any measure, the radiation protection performance at this site in 1988 was the best since the beginning of operations. This accomplishment was made possible by the commitment and support at all levels of the organizations to reduce radiation exposures to ALARA (As Low As Reasonably Achievable). The report provides detailed information about the radiation doses received by departments and work groups within these organizations. It also includes exposure data for recent years to allow Plant and Laboratory units to track the effectiveness of their ALARA efforts. Many of the successful practices and methods that reduced radiation exposure are described. A new goal for personnel contamination cases has been established for 1989. Only through continual and innovative efforts to minimize exposures can the goals be met. The radiation protection goals for 1989 and previous years are included in the report. 27 figs., 58 tabs.

  4. Simulating and Optimizing Storm Water Management Strategies in an Urban Watershed

    E-Print Network [OSTI]

    Damodaram, Chandana

    2011-02-22T23:59:59.000Z

    watershed scenarios are described based on land use coverage characteristics and implementation of a detention pond ............................ 23 4 No. of Parking Lots and Rooftops being retrofit based on the percentage of area... ecosystems (USEPA 2000; Coffman 2000). Low Impact Development (LID) practices are an alternative approach for controlling storm water at the source like rooftops, parking lots and sidewalks. LID technologies include permeable pavements, rainwater...

  5. A watershed blueprint: partners work together to restore Arroyo Colorado's health

    E-Print Network [OSTI]

    Wythe, K.

    2010-01-01T23:59:59.000Z

    txH2O | pg. 18 A watershed blueprint Partners work together to restore Arroyo Colorado?s health In 2002 the Texas Commission on Environmental Quality (TCEQ) set a target of 90 percent reduction of nutrients and biochemical oxygen demand... for the Arroyo Colorado to regain its healthy condition. Eight years later, the Arroyo Colorado, an ancient channel of the Rio Grande in the Lower Rio Grande Valley, has been the focus of multiple projects; educational and outreach efforts...

  6. A watershed blueprint: Partners work together to restore Arroyo Colorado's health

    E-Print Network [OSTI]

    Wythe, Kathy

    2010-01-01T23:59:59.000Z

    txH2O | pg. 18 A watershed blueprint Partners work together to restore Arroyo Colorado?s health In 2002 the Texas Commission on Environmental Quality (TCEQ) set a target of 90 percent reduction of nutrients and biochemical oxygen demand... for the Arroyo Colorado to regain its healthy condition. Eight years later, the Arroyo Colorado, an ancient channel of the Rio Grande in the Lower Rio Grande Valley, has been the focus of multiple projects; educational and outreach efforts...

  7. Field studies of streamflow generation using natural and injected tracers on Bickford and Walker Branch Watersheds

    SciTech Connect (OSTI)

    Genereux, D.; Hemond, H. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Civil Engineering; Mulholland, P. [Oak Ridge National Lab., TN (United States)

    1992-05-01T23:59:59.000Z

    Field studies of streamflow generation were undertaken on two forested watersheds, the West Road subcatchment of Bickford Watershed in central Massachusetts and the West Fork of Walker Branch Watershed in eastern Tennessee. A major component of the research was development of a two-stage methodology for the use of naturally-occurring {sup 222}Rn as a tracer. The first of the two stages was solving a mass-balance equation for {sup 222}Rn around a stream reach of interest in order to calculate Rn{sub q}, the {sup 222}Rn content of the lateral inflow to the reach; a conservative tracer (chloride) and a volatile tracer (propane) were injected into the study stream to account for lateral inflow to, and volatilization from, the study reach. The second stage involved quantitative comparison of Rn{sub q} to the measured {sup 222}Rn concentrations of different subsurface waters in order to assess how important these waters were in contributing lateral inflow to the stream reach.

  8. Remediation of the Melton Valley Watershed at Oak Ridge National Lab: An Accelerated Closure Success Story

    SciTech Connect (OSTI)

    Johnson, Ch.; Cange, J. [Bechtel Jacobs Company, LLC, Oak Ridge, TN (United States); Skinner, R. [U.S. DOE, Oak Ridge Operations Office, Oak Ridge, TN (United States); Adams, V. [U.S. DOE, Office of Groundwater and Soil Remediation, Washington, DC (United States)

    2008-07-01T23:59:59.000Z

    The Melton Valley (MV) Watershed at the U. S. Department of Energy's (DOE's) Oak Ridge National Laboratory (ORNL) encompasses approximately 430 hectares (1062 acres). Historic operations at ORNL produced a diverse legacy of contaminated facilities and waste disposal areas in the valley. In addition, from 1955 to 1963, ORNL served as a major disposal site for wastes from over 50 off-site government-sponsored installations, research institutions, and other isotope users. Contaminated areas in the watershed included burial grounds, landfills, underground tanks, surface impoundments, liquid disposal pits/trenches, hydro-fracture wells, leak and spill sites, inactive surface structures, and contaminated soil and sediment. Remediation of the watershed in accordance with the requirements specified in the Melton Valley Record of Decision (ROD) for Interim Actions in Melton Valley, which estimated that remedial actions specified in the ROD would occur over a period of 14 years, with completion by FY 2014. Under the terms of the Accelerated Closure Contract between DOE and its contractor, Bechtel Jacobs Company, LLC, the work was subdivided into 14 separate sub-projects which were completed between August 2001 and September 2006, 8 years ahead of the original schedule. (authors)

  9. northeastern Washington's Okanogan County. The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7.31 acre habitat acquisition in Washington's Okanogan River Watershed for fish habitat mitigation (see map). The Okanogan River Watershed was selected as a focus for restoration...

  10. Development of An Empirical Water Quality Model for Stormwater Based on Watershed Land Use in Puget Sound

    SciTech Connect (OSTI)

    Cullinan, Valerie I.; May, Christopher W.; Brandenberger, Jill M.; Judd, Chaeli; Johnston, Robert K.

    2007-03-29T23:59:59.000Z

    The Sinclair and Dyes Inlet watershed is located on the west side of Puget Sound in Kitsap County, Washington, U.S.A. (Figure 1). The Puget Sound Naval Shipyard (PSNS), U.S Environmental Protection Agency (USEPA), the Washington State Department of Ecology (WA-DOE), Kitsap County, City of Bremerton, City of Bainbridge Island, City of Port Orchard, and the Suquamish Tribe have joined in a cooperative effort to evaluate water-quality conditions in the Sinclair-Dyes Inlet watershed and correct identified problems. A major focus of this project, known as Project ENVVEST, is to develop Water Clean-up (TMDL) Plans for constituents listed on the 303(d) list within the Sinclair and Dyes Inlet watershed. Segments within the Sinclair and Dyes Inlet watershed were listed on the State of Washingtons 1998 303(d) because of fecal coliform contamination in marine water, metals in sediment and fish tissue, and organics in sediment and fish tissue (WA-DOE 2003). Stormwater loading was identified by ENVVEST as one potential source of sediment contamination, which lacked sufficient data for a contaminant mass balance calculation for the watershed. This paper summarizes the development of an empirical model for estimating contaminant concentrations in all streams discharging into Sinclair and Dyes Inlets based on watershed land use, 18 storm events, and wet/dry season baseflow conditions between November 2002 and May 2005. Stream pollutant concentrations along with estimates for outfalls and surface runoff will be used in estimating the loading and ultimately in establishing a Water Cleanup Plan (TMDL) for the Sinclair-Dyes Inlet watershed.

  11. The River Runs Dry: Examining Water Shortages in the Yellow River Basin

    E-Print Network [OSTI]

    Zusman, Eric

    2000-01-01T23:59:59.000Z

    Runs Dry: Examining Water Shortages in the Yellow Riverof the severity of water shortages in the rivers basin. Ina median level of runoff water shortages in the basin would

  12. New Columbia River Estuary purchases benefit salmon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the mouth of the Columbia River to permanently protect riverside habitat for Northwest fish and wildlife, including threatened and endangered salmon and steelhead. The...

  13. Project Management Institute Highlights Savannah River Nuclear...

    Office of Environmental Management (EM)

    employee Matthew Gay uses critical electronic rounds to take a reading at the Savannah River National Laboratory. In one Continuous Improvement initiative, SRNS switched to...

  14. Savannah River Laboratory monthly report, July 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. [comp.

    1991-12-31T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  15. Savannah River Laboratory monthly report, July 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. (comp.)

    1991-01-01T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  16. PIA - Savannah River Nuclear Solutions Electronic Safeguards...

    Energy Savers [EERE]

    System (E3S) PIA - Savannah River Nuclear Solutions Electronic Safeguards Security System (E3S) More Documents & Publications PIA - 10th International Nuclear Graphite...

  17. Lumbee River EMC- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Lumbee River EMC (LREMC) offers rebates to its residential customers who purchase and install qualified energy efficient products or services. Rebates are available for water heaters, refrigerator...

  18. The Columbia River System Inside Story

    SciTech Connect (OSTI)

    none,

    2001-04-01T23:59:59.000Z

    The Columbia River is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Pacific Northwestfrom fostering world-famous Pacific salmon to supplying clean natural fuel for 50 to 65 percent of the regions electrical generation. Since early in the 20th century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system.

  19. Savannah River Laboratory monthly report, August 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. [comp.

    1991-12-31T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  20. Savannah River Laboratory monthly report, August 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. (comp.)

    1991-01-01T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  1. South River EMC- Energy Efficient Rebate Program

    Broader source: Energy.gov [DOE]

    South River EMC offers a variety of rebates encouragings its members to invest in energy efficient appliances, equipment, and home upgrades. Incentives are available for clothes washers,...

  2. Wild and Scenic Rivers Act (Maryland)

    Broader source: Energy.gov [DOE]

    It is state policy to protect the outstanding scenic, geologic, ecologic, historic, recreational, agricultural, fish, wildlife, cultural, and other similar values of certain rivers and adjacent...

  3. Savannah River Laboratory monthly report, September 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. (comp.)

    1991-01-01T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  4. Savannah River Laboratory monthly report, September 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. [comp.

    1991-12-31T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  5. Preliminary Notice of Violation, Westinghouse Savannah River...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notice of Violation, Westinghouse Savannah River Company - EA-2000-08 Type B Accident Investigation Board Report on the September 1, 1999, Plutonium Intakes at the...

  6. Preliminary Notice of Violation, Westinghouse Savannah River...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Westinghouse Savannah River Company - EA-2000-08 More Documents & Publications Type B Accident Investigation Board Report on the September 1, 1999, Plutonium Intakes at the...

  7. Sandia National Laboratories: river current energy converters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  8. Discriminating between west-side sources of nutrients and organiccarbon contributing to algal growth and oxygen demand in the San JoaquinRiver

    SciTech Connect (OSTI)

    Wstringfellow@lbl.gov

    2002-07-24T23:59:59.000Z

    The purpose of this study was to investigate the Salt and Mud Slough tributaries as sources of oxygen demanding materials entering the San Joaquin River (SJR). Mud Slough and Salt Slough are the main drainage arteries of the Grasslands Watershed, a 370,000-acre area west of the SJR, covering portions of Merced and Fresno Counties. Although these tributaries of the SJR are typically classified as agricultural, they are also heavily influenced by Federal, State and private wetlands. The majority of the surface water used for both irrigation and wetland management in the Grassland Watershed is imported from the Sacramento-San Joaquin Delta through the Delta-Mendota Canal. In this study, they measured algal biomass (as chlorophyll a), organic carbon, ammonia, biochemical oxygen demand (BOD), and other measures of water quality in drainage from both agricultural and wetland sources at key points in the Salt Slough and Mud Slough tributaries. This report includes the data collected between June 16th and October 4th, 2001. The objective of the study was to compare agricultural and wetland drainage in the Grasslands Watershed and to determine the relative importance of each return flow source to the concentration and mass loading of oxygen demanding materials entering the SJR. Additionally, they compared the quality of water exiting our study area to water entering our study area. This study has demonstrated that Salt and Mud Sloughs both contribute significant amounts of oxygen demand to the SJR. Together, these tributaries could account for 35% of the oxygen demand observed below their confluence with the SJR. This study has characterized the sources of oxygen demanding materials entering Mud Slough and evaluated the oxygen demand conditions in Salt Slough. Salt Slough was found to be the dominant source of oxygen demand load in the study area, because of the higher flows in this tributary. The origins of oxygen demand in Salt Slough still remain largely uninvestigated and the seasonal oxygen demand loading pattern remains unexplained. An expanded investigation of the Salt Slough watershed is warranted, because of the importance of this watershed to the oxygen demand load entering the SJR.

  9. Comparative Evaluation of Generalized River/Reservoir System Models

    E-Print Network [OSTI]

    Wurbs, Ralph A.

    This report reviews user-oriented generalized reservoir/river system models. The terms reservoir/river system, reservoir system, reservoir operation, or river basin management "model" or "modeling system" are used synonymously to refer to computer...

  10. Lesson Learned by Savannah River Site Activity-level Work Planning and Control

    Broader source: Energy.gov [DOE]

    Slide Presentation by Bonnie Barnes, Savannah River Remediation. Work Planning and Control at Savannah River Remediation.

  11. Hood River Passive House, Hood River, Oregon (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50%" (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  12. Savannah River Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Savannah River Field Office Savannah River Field Office FY15 Semi Annual Report...

  13. CRAD, Emergency Management - Office of River Protection K Basin...

    Energy Savers [EERE]

    CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A...

  14. alligator rivers region: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by meandering rivers Geosciences Websites Summary: Numerical simulations of bedrock valley evolution by meandering rivers with variable bank material of many landscapes, and...

  15. aliakmon river greece: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by meandering rivers Geosciences Websites Summary: Numerical simulations of bedrock valley evolution by meandering rivers with variable bank material of many landscapes, and...

  16. allegheny river: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by meandering rivers Geosciences Websites Summary: Numerical simulations of bedrock valley evolution by meandering rivers with variable bank material of many landscapes, and...

  17. almendares river havana: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by meandering rivers Geosciences Websites Summary: Numerical simulations of bedrock valley evolution by meandering rivers with variable bank material of many landscapes, and...

  18. amu dar river: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by meandering rivers Geosciences Websites Summary: Numerical simulations of bedrock valley evolution by meandering rivers with variable bank material of many landscapes, and...

  19. amazon river system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Land Use in indigenous and Colonist Communities of the Palcazu Basin, Peruvian Amazon McClain, Michael 159 Charlotte, Manatee River, Sarasota, Hardee, and Peace River Soil Biology...

  20. Ventilation System to Improve Savannah River Site's Liquid Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System to Improve Savannah River Site's Liquid Waste Operations Ventilation System to Improve Savannah River Site's Liquid Waste Operations August 28, 2014 - 12:00pm...

  1. Preliminary Notice of Violation,Savannah River Nuclear Solutions...

    Office of Environmental Management (EM)

    Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC - WEA-2012-04 Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC - WEA-2010-05...

  2. PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IBARS Srs Site Apps. Accreditation Boundary PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation Boundary PIA - Savannah River Nuclear Solution IBARS Srs Site...

  3. John C. Barnes of Savannah River Operations named 2012 Facility...

    Office of Environmental Management (EM)

    right, discusses a transuranic (TRU) waste container with Charles Fairburn of Savannah River Nuclear Solutions. The TRU waste container was repackaged in the Savannah River Site...

  4. PIA - Savannah River Nuclear Solution SRNS ProRad Environment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management...

  5. Independent Oversight Review, Savannah River Field Office Tritium...

    Broader source: Energy.gov (indexed) [DOE]

    River Site (SRS) tritium facilities implemented at the activity-level by Savannah River Nuclear Solutions, LLC and its subcontractors. The review was performed by the...

  6. Enterprise Assessments Review of the Savannah River Site Salt...

    Energy Savers [EERE]

    the Savannah River Site Salt Waste Processing Facility Construction Quality and Startup Test Plans - June 2015 Enterprise Assessments Review of the Savannah River Site Salt Waste...

  7. PIA - Savannah River Nuclear Solutions Training Records and Informatio...

    Office of Environmental Management (EM)

    Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River...

  8. Savannah River Remediation Donates $10,000 to South Carolina...

    Broader source: Energy.gov (indexed) [DOE]

    Savannah River Remediation Donates 10,000 to South Carolina State Nuclear Engineering Program Savannah River Remediation Donates 10,000 to South Carolina State Nuclear...

  9. Letter from Commonwealth to Mirant Potomac River Concerning Serious...

    Energy Savers [EERE]

    to Mirant Potomac River Concerning Serious Violations of the National Ambient Air Quality Standards for Sulfur Dioxide Letter from Commonwealth to Mirant Potomac River Concerning...

  10. Savannah River National Laboratory Meets with Historically Black...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savannah River National Laboratory Meets with Historically Black Colleges and Universities Savannah River National Laboratory Meets with Historically Black Colleges and...

  11. Independent Oversight Follow-up Review, Savannah River National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savannah River National Laboratory - January 2012 Independent Oversight Follow-up Review, Savannah River National Laboratory - January 2012 January 2012 Follow-up Review of...

  12. assessment columbia river: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and disturbances may be ineffective are being spent in the United States on river and stream restoration projects. In the Columbia River basin Montgomery, David R. 311 A...

  13. GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL...

    Open Energy Info (EERE)

    RIVER GEOTHERMAL SYSTEM, IDAHO Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER...

  14. The investigation of anomalous magnetization in the Raft River...

    Open Energy Info (EERE)

    River valley, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: The investigation of anomalous magnetization in the Raft River...

  15. Savannah River Site's Liquid Waste Operations Adds Multi-Functional...

    Office of Environmental Management (EM)

    Savannah River Site's Liquid Waste Operations Adds Multi-Functional Laboratory Savannah River Site's Liquid Waste Operations Adds Multi-Functional Laboratory January 28, 2015 -...

  16. Independent Oversight Review, Savannah River Site Tritium Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 2012 Independent Oversight Review, Savannah River Site Tritium Facilities - June 2012 June 2012 Review of the Savannah River Site Tritium Facilities Implementation...

  17. Independent Oversight Review, Savannah River Site Tritium Facilities...

    Energy Savers [EERE]

    Savannah River Site Tritium Facilities - December 2012 Independent Oversight Review, Savannah River Site Tritium Facilities - December 2012 December 2012 Review of Site...

  18. PIA - Savannah River Nuclear Solutions Badge Request and Site...

    Office of Environmental Management (EM)

    Solutions Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear Solutions Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear...

  19. This document is the result of a major interdisciplinary effort to synthesize our understanding of the cumulative watershed effects of fuel management. This

    E-Print Network [OSTI]

    understanding of the cumulative watershed effects of fuel management. This document is the product of more thanForeword This document is the result of a major interdisciplinary effort to synthesize our topics include overviews of the effects of fuel management on both terrestrial and aquatic watershed

  20. The Pumpkin Creek Watershed Limited Irrigation and No-Till Demonstration Gary L. Stone, Gary W. Hergert, Dean Yonts, Jim Schild, Rex A. Nielson and James Margheim

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    in the Panhandle can fit into limited irrigation cropping systems in the Pumpkin Creek Watershed. The NPNRD allowsThe Pumpkin Creek Watershed Limited Irrigation and No-Till Demonstration Gary L. Stone, Gary W irrigation applies less water than is required to meet full evapotranspiration (ET) or irrigation demand

  1. Ecotoxicology | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:research community -- hostedEconomicSavannah River

  2. Louisiana Nuclear Profile - River Bend

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet)FuelDecade Year-0InputYear Jan FebtotalRiver

  3. Caney River | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8thCalwind IICaney River Jump to: navigation,

  4. The State of the Columbia River Basin

    E-Print Network [OSTI]

    the Council to serve as a comprehensive planning agency for energy policy and fish and wildlife policy in the Columbia River Basin and to inform the public about energy and fish and wildlife issues and involve Energy, Fish, Wildlife: The State of the Columbia River Basin, 2013

  5. FLOOD WARNING SYSTEM BREMER RIVER TO IPSWICH

    E-Print Network [OSTI]

    Greenslade, Diana

    . The system provides early warning of heavy rainfalls and river rises throughout the catchment and enables. Flood ALERT System The initial Ipswich Creeks ALERT flood warning system was completed in the earlyFLOOD WARNING SYSTEM for the BREMER RIVER TO IPSWICH This brochure describes the flood warning

  6. The Kootenai Tribe's Kootenai River Ecosystem

    E-Print Network [OSTI]

    The Kootenai Tribe's Kootenai River Ecosystem Restoration Project 1994-2012 Project # 199404900 PURPOSE: TO ADDRESS FISHERIES RELATED PROBLEMS AT AN ECOSYSTEM LEVEL AND PROVIDE RESTORATION SOLUTIONS Kootenai River OBJ-2: Restore Ecosystem Productivity OBJ-3: Restore Ecosystem Productivity to Kootenay Lake

  7. RiverFalls,Wisconsin SolarinSmall

    E-Print Network [OSTI]

    ), which services approximately 5,800 customers, the largest being UW-RF.ii Together, the utility are solar (most are biogas and wind), the program has helped to raise awareness and interest in renewable energy within the community.v Bringing Solar to River Falls The success of the River Falls Renewable

  8. Restoring our Rivers By Bridget Avila

    E-Print Network [OSTI]

    Palmer, Margaret A.

    , the first-ever comprehensive database of more than 37,000 stream and restoration projects nationwideRestoring our Rivers By Bridget Avila Maryland has the largest number of river restoration projects restoration and conservation. On a sweltering July afternoon, an assortment of men and women clad in T

  9. California's Russian River: A Conservation Partnership

    E-Print Network [OSTI]

    . Improve weather and river flow forecasting to maximize water captured for reservoirs and fisheries support forecast-based reservoir operations and allow for improved water management. It may also provide's Russian River Habitat Blueprint #12;Restore floodplain habitat through reclamation of abandoned gravel

  10. Prospective Climate Change Impact on Large Rivers

    E-Print Network [OSTI]

    Julien, Pierre Y.

    1 Prospective Climate Change Impact on Large Rivers in the US and South Korea Pierre Y. Julien Dept. of Civil and Environ. Eng. Colorado State University Seoul, South Korea August 11, 2009 Climate Change and Large Rivers 1. Climatic changes have been on-going for some time; 2. Climate changes usually predict

  11. Savannah River Site Environmental Report for 1998

    SciTech Connect (OSTI)

    Arnett, M.

    1999-06-09T23:59:59.000Z

    The mission at the Savannah River Site (SRS) is focused primarily on support of the national defense, nonproliferation, and environmental cleanup. SRS-through its prime operating contractor, Westinghouse Savannah River Company-continues to maintain a comprehensive environmental monitoring program.

  12. Flood forecasting with the A&M watershed model: a hydrometeorological study

    E-Print Network [OSTI]

    Robinson, Cedric Glynn

    1990-01-01T23:59:59.000Z

    'c 219R'? 67. 6R ' "' 66. 5R'w 204Rc o 205R' " ) 3PPR~? 450R' '" j 184R' '" 278R"'" 240R'""' 176R'" 15 I R "' 179R'" 227n'o 17 8R "c 150R"" 137R' "" 330R'? 298R''" ) 520Rwo 730Rcn ) 255R' " 426R' 'c Sal'man (1957) Shupiatskii (1957... procedure. The rain gage locations reporting valid data within or near the watershed boundary are identified. The rainfall measured by each gage is compared to the amount measured by the radar at the gage location. If the measured rainfall exceeds a...

  13. Managing Rangeland Watersheds for Agricultural Production, Water Quality, and Food Safety

    E-Print Network [OSTI]

    Tate, Kenneth

    raw food always safe Salinas River riparian corridors wildlife habitat water quality Juxtaposition of plant agriculture and grazed rangeland Salinas Valley example Chaparral wildlife habitat Year Food flows, retention basins, constructed wetlands, etc. 2012 technical reports on waterborne pathogens

  14. From waterfront to watershed : mapping a big idea in the Greater Toronto Region

    E-Print Network [OSTI]

    Ciesielski, Linda C. (Linda Claire)

    2011-01-01T23:59:59.000Z

    Today, Toronto is revered among Great Lakes' and waterfront cities for its environmental planning: its massive re-investment in water and stormwater infrastructure; protected headwaters of the region's rivers; realized ...

  15. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company

    SciTech Connect (OSTI)

    Paller, M. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-03-26T23:59:59.000Z

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70[degrees]C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.

  16. Annual Tour Ready to Explore New Mexico's Lower Pecos River

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Annual Tour Ready to Explore New Mexico's Lower Pecos River By Steve Ress The itinerary is set and the seats have been filled for an early June bus tour to New Mexico's lower Pecos River basin compacts on Nebraska's Republican River and New Mexico's Pecos River to see what can be learned from

  17. Independent Oversight Inspection, Savannah River Site, Summary Report- February 2004

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Management and Emergency Management at the Savannah River Site

  18. River Data Package for Hanford Assessments

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Guensch, Gregory R.; Patton, Gregory W.

    2006-08-01T23:59:59.000Z

    This data package documents the technical basis for selecting physical and hydraulic parameters and input values that will be used in river modeling for Hanford assessments. This work was originally conducted as part of the Characterization of Systems Task of the Groundwater Remediation Project managed by Fluor Hanford, Inc. and revised as part of the Characterization of Systems Project managed by PNNL for DOE. The river data package provides calculations of flow and transport in the Columbia River system. The module is based on the legacy code for the Modular Aquatic Simulation System II (MASS2), which is a two-dimensional, depth-averaged model that provides the capability to simulate the lateral (bank-to-bank) variation of flow and contaminants. It simulates river hydrodynamics (water velocities and surface elevations), sediment transport, contaminant transport, biotic transport, and sediment-contaminant interaction, including both suspended sediments and bed sediments. This document presents the data assembled to run the river module components for the section of the Columbia River from Vernita Bridge to the confluence with the Yakima River. MASS2 requires data on the river flow rate, downstream water surface elevation, groundwater influx and contaminants flux, background concentrations of contaminants, channel bathymetry, and the bed and suspended sediment properties. Stochastic variability for some input parameters such as partition coefficient (kd) values and background radionuclide concentrations is generated by the Environmental Stochastic Preprocessor. River flow is randomized on a yearly basis. At this time, the conceptual model does not incorporate extreme flooding (for example, 50 to 100 years) or dam removal scenarios.

  19. EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River Counties, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration (BPA) is preparing an EA to assess potential environmental impacts of a proposal to rebuild its 24-mile long, 115 kilovolt Bonneville-Hood River transmission line. The existing line runs between the Bonneville Powerhouse at Bonneville Dam in Multnomah County, Oregon, and BPA's existing Hood River Substation in Hood River County, Oregon. The project would include replacing structures and conductor wires, improving access roads, and constructing new access roads or trails where needed.

  20. PROGRESS TOWARD DEVELOPMENT OF A GIS BASED WATER QUALITY MANAGEMENT TOOL FOR SMALL RURAL WATERSHEDS: MODIFICATION AND

    E-Print Network [OSTI]

    Walter, M.Todd

    for the Palouse Region of the Pacific Northwest. We apply and modify the Soil Moisture Routing (SMR) model which in the Palouse Region provided that saturated hydraulic conductivities determined in the laboratory are adjusted University are developing a GIS-based problem-solving tool for small rural watersheds in the Palouse Region

  1. Erosion and Sediment Damages and Economic Impacts of Potential 208 Controls: A Summary of Five Watershed Studies in Texas

    E-Print Network [OSTI]

    Taylor, C. R.; Reneau, D. R.; Harris, B. L.

    and enforcement costs associated with each policy. The major conclusion of this social benefit and cost analysis is that off-site damages are not large enough to warrant controls on agricultural activities in any of the watersheds; that is, the costs to society...

  2. NAME: Green Gulch Creek Stream Restoration Project LOCATION: Redwood Creek Watershed in Marin County, CA (closest town is Muir Beach)

    E-Print Network [OSTI]

    US Army Corps of Engineers

    NAME: Green Gulch Creek Stream Restoration Project LOCATION: Redwood Creek Watershed in Marin County, CA (closest town is Muir Beach) ACRES: 1.5 acres riparian habitat; 0.3 miles of stream channel-modified, straightened, and downcut channel; relocate the farm road and fences paralleling the stream to provide

  3. Design of dry dams at watershed scale : lessons learnt from sensitivity analyses using a simple but consistent rainfall-runoff

    E-Print Network [OSTI]

    Boyer, Edmond

    Design of dry dams at watershed scale : lessons learnt from sensitivity analyses using a simple Lyon, FRANCE Abstract We investigate the assessment of the overall efficiency of a set of dry dams of the best locations for a set of dams was previously studied using a simplistic rainfall-runoff model

  4. chApter 1. Introduction to Synthesis of Current Science 1 Regarding Cumulative Watershed Effects of Fuel

    E-Print Network [OSTI]

    Watershed Effects of Fuel Reduction Treatments Douglas F. Ryan chApter 2. Fire Regimes and Ecoregions 7 Robert G. Bailey chApter 3. Fuel Management in Forests of the Inland West 19 Russell T. Graham, Theresa B. Jain, Susan Matthews chApter 4. Tools for Fuel Management 69 Bob Rummer chApter 5. Fuel Management

  5. Deep groundwater flow as the main pathway for chemical outputs in a small headwater watershed (Mule Hole, South India)

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Deep groundwater flow as the main pathway for chemical outputs in a small headwater watershed (Mule of a groundwater baseflow located into the active zone of the crystalline aquifer, below the weir. These findings indicate that groundwater contributes to a large part of chemical outputs at the catchment scale

  6. Haiti Soil Fertility Analysis and Crop Interpretations for Principal Crops in the Five WINNER Watershed Zones of Intervention

    E-Print Network [OSTI]

    Ma, Lena

    1 Haiti Soil Fertility Analysis and Crop Interpretations for Principal Crops in the Five WINNER degradation dominate the landscape in Haiti and there is little accurate soil-fertility research available in five major watershed regions of Haiti: Gonaives, Archaie/Cabaret, Cul-de-Sac, Kenscoff, and Mirebalais

  7. The watershed depositon tool : a tool for incorporating atmospheric deposition in water-quality analyses {sup 1}.

    SciTech Connect (OSTI)

    Schwede, D. B.; Dennis, R. L.; Bitz, M. A.; Decision and Information Sciences; NOAA; EPA

    2009-08-01T23:59:59.000Z

    A tool for providing the linkage between air and water-quality modeling needed for determining the Total Maximum Daily Load (TMDL) and for analyzing related nonpoint-source impacts on watersheds has been developed. Using gridded output of atmospheric deposition from the Community Multiscale Air Quality (CMAQ) model, the Watershed Deposition Tool (WDT) calculates average per unit area and total deposition to selected watersheds and subwatersheds. CMAQ estimates the wet and dry deposition for all of its gaseous and particulate chemical species, including ozone, sulfur species, nitrogen species, secondary organic aerosols, and hazardous air pollutants at grid scale sizes ranging from 4 to 36 km. An overview of the CMAQ model is provided. The somewhat specialized format of the CMAQ files is not easily imported into standard spatial analysis tools. The WDT provides a graphical user interface that allows users to visualize CMAQ gridded data and perform further analyses on selected watersheds or simply convert CMAQ gridded data to a shapefile for use in other programs. Shapefiles for the 8-digit (cataloging unit) hydrologic unit code polygons for the United States are provided with the WDT; however, other user-supplied closed polygons may be used. An example application of the WDT for assessing the contributions of different source categories to deposition estimates, the contributions of wet and dry deposition to total deposition, and the potential reductions in total nitrogen deposition to the Albemarle-Pamlico basin stemming from future air emissions reductions is used to illustrate the WDT capabilities.

  8. River Data Package for the 2004 Composite Analysis

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Guensch, Gregory R.; Patton, Gregory W.

    2004-08-01T23:59:59.000Z

    Beginning in fiscal year 2003, the DOE Richland Operations Office initiated activities, including the development of data packages, to support the 2004 Composite Analysis. The river data package provides calculations of flow and transport in the Columbia River system. This document presents the data assembled to run the river module components for the section of the Columbia River from Vernita Bridge to the confluence with the Yakima River.

  9. Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Act (Minnesota)

    Broader source: Energy.gov [DOE]

    The State aims to preserve and protect Minnesota rivers and adjacent lands with outstanding scenic, recreational, natural, historical, scientific and similar values. Chapter 103F defines...

  10. The Ecology of the Navasota River, Texas

    E-Print Network [OSTI]

    Clark, W. J.

    COLLEGE OF AGRICULTURE AND LIFE SCIENCES TR-44 1973 The Ecology of the Navasota River, Texas By: William J. Clark Texas Water Resources Institute Technical Report No. 44 Texas A&M University System...

  11. Math 360 Sample Project: River Crossing

    E-Print Network [OSTI]

    Linner, Anders

    corresponding to the east-west difference between the entry and the exit points at the river. Assume the crossing is from north to south, so g is positive if the exit point is east of the entry point

  12. Think water : reconditioning the Malden River

    E-Print Network [OSTI]

    Oda, Kazuyo, 1969-

    2003-01-01T23:59:59.000Z

    The purpose of this thesis is to link water, history and culture through architectural and urban design by researching the potential for the rejuvenation of a neglected industrial site at the edge of a river. The Malden ...

  13. The Ecohydrology of South American Rivers

    E-Print Network [OSTI]

    McClain, Michael

    The Ecohydrology of South American Rivers and Wetlands edited by Michael E. McClain Department research integrating the physical processes of hydrology with the biological processes of ecology. Together

  14. Savannah River Site Environmental Report for 1997

    SciTech Connect (OSTI)

    Arnett, M.W.; Mamatey, A.R. [eds.

    1998-08-01T23:59:59.000Z

    The mission at the Savannah River Site has changed from the production of nuclear weapons materials for national defense to the management of waste, restoration of the environment, and the development of industry in and around the site.

  15. River Basins Advisory Commissions (South Carolina)

    Broader source: Energy.gov [DOE]

    The Catawba/Wateree and Yadkin/Pee Dee River Basins Advisory Commissions are permanent public bodies jointly established by North and South Carolina. The commissions are responsible for assessing...

  16. Delaware River Basin Commission (Multiple States)

    Broader source: Energy.gov [DOE]

    The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states...

  17. River Falls Municipal Utilities- Distributed Solar Tariff

    Broader source: Energy.gov [DOE]

    River Falls Municipal Utilities (RFMU), a member of WPPI Energy, offers a special energy purchase rate to its customers that generate electricity using solar photovoltaic (PV) systems. The special...

  18. Microsoft Word - CX_Okanogan_River.docx

    Broader source: Energy.gov (indexed) [DOE]

    Confederated Tribes for the purchase of two parcels of land along the Okanogan River. Fish and Wildlife Project No.: 2007-224-00 Categorical Exclusion Applied (from Subpart D, 10...

  19. Lower Columbia River Estuary Partnership. The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of land on the north side of the Columbia River in Cowlitz County, Wash., to protect fish habitat. An additional 75 acres of land will be donated by the Port of Longview. BPA...

  20. Clinch River MRS Task Force Recommendations

    Broader source: Energy.gov [DOE]

    The Clinch River HRS Task Force was appointed in July 1985 by the Roane County Executive and the Oak Ridge City Council to evaluate the Monitored Retrievable Storage (MRS) facility proposed by the...

  1. Radionuclide transport in the Yenisei River

    E-Print Network [OSTI]

    S. M. Vakulovsky; E. G. Tertyshnik; A. I. Kabanov

    2012-11-15T23:59:59.000Z

    Data characterizing the pollution of the Yenisei River (water and bottom sediment) by radionuclide resulting from the use of the river water for cooling industrial reactors in the Mining-Chemical Complex are presented. Studies have been made of the contamination of the river during the period when reactors with direct flow cooling were used and after these were shut down. Distinctive features of the migration of radionuclide in the Yenisei are noted, in particular, their distribution between the solid and liquid phases. The amounts of 137Cs, 65Zn, 60Co, 54Mn, and 152Eu in the channel are determined from the effluent discharge site to Dudinka port. The rate of continuous self removal of 137Cs is estimated to be 0.19 1/year, corresponding to a half purification time of 3.6 years for a 600 km long segment of the river bed.

  2. Savannah River Site environmental data for 1995

    SciTech Connect (OSTI)

    Arnett, M.W. [ed.

    1995-12-31T23:59:59.000Z

    This document presents data from Savannah River Site routine environmental monitoring and surveillance programs. An attempt also has been made to include all available data from environmental research programs.

  3. Flint River Drought Protection Act (Georgia)

    Broader source: Energy.gov [DOE]

    The purpose of the Flint River Drought Protection Act is to maintain in-stream flow in times of drought by providing incentives for farmers to take acres out of irrigation. It allows Environmental...

  4. Lumbee River EMC- Residential Weatherization Loan Program

    Broader source: Energy.gov [DOE]

    Lumbee River Electric Membership Corporation (LREMC) offers low interest loans to help its residential members increase the energy efficiency of their homes. Loans up to $10,000 are available for...

  5. Application of a spatially referenced water quality model to predict E. coli flux in two Texas river basins

    E-Print Network [OSTI]

    , Deepti

    2009-05-15T23:59:59.000Z

    Water quality models are applied to assess the various processes affecting the concentrations of contaminants in a watershed. SPAtially Referenced Regression On Watershed attributes (SPARROW) is a nonlinear regression based approach to predict...

  6. Seismic interpretation of the Wind River Mountains

    E-Print Network [OSTI]

    Van Voorhis, David

    1982-01-01T23:59:59.000Z

    SEISMIC INTERPBETATICN OF THE BIND RIVER MOUNTAINS A Thesis DAVID VAN VOORHIS Submitted to the Graduate College of Texas ACM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE Auqust 'l982 Majcr Subject...: Geophysics SEISNIC INTERFRETATION OF THE HIND RIVER NOUNTAINS A Thes is by DAVID VAN VOORBIS Approved as to style and content by: (Chairman cf. Committee) (N em ber } m (Head of Department) August l 982 ABSTRACT Seismic Interpretation of the Wind...

  7. Salmon River Habitat Enhancement, 1990 Annual Report.

    SciTech Connect (OSTI)

    Rowe, Mike

    1991-12-01T23:59:59.000Z

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  8. Columbia River Component Data Gap Analysis

    SciTech Connect (OSTI)

    L. C. Hulstrom

    2007-10-23T23:59:59.000Z

    This Data Gap Analysis report documents the results of a study conducted by Washington Closure Hanford (WCH) to compile and reivew the currently available surface water and sediment data for the Columbia River near and downstream of the Hanford Site. This Data Gap Analysis study was conducted to review the adequacy of the existing surface water and sediment data set from the Columbia River, with specific reference to the use of the data in future site characterization and screening level risk assessments.

  9. RIVER PROTECTION PROJECT SYSTEM PLAN

    SciTech Connect (OSTI)

    CERTA PJ

    2008-07-10T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste management and treatment facilities, (8) Developing and implementing technical solutions to mitigate the impact from substantial1y increased estimates of Na added during the pretreatment of the tank waste solids, This involves a combination of: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, or (4) accepting an increase in mission duration, ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks, Key elements of the implementation of this strategy are included within the scope of the Tank Operations Contract, currently in procurement Since 2003, the ORP has conducted over 30 design oversight assessments of the Waste Treatment and Immobilization Plant (WTP). The estimated cost at completion has increased and the schedule for construction and commissioning of the WTP has extended, The DOE, Office of Environmental Management (EM), sanctioned a comprehensive review of the WTP flowsheet, focusing on throughput. In 2005, the TFC completed interim stabilization of the SSTs and as of March 2007, has completed the retrieval of seven selected SSTs. Demonstration of supplemental treatment technologies continues. The ongoing tank waste retrieval experience, progress with supplemental treatment technologies, and changes in WTP schedule led to the FY 2007 TFC baseline submittal in November 2006. The TFC baseline submittal was developed before the WTP schedule was fully understood and approved by ORP, and therefore reflects an earlier start date for the WTP facilities. This System Plan is aligned with the current WTP schedule with hot commissioning beginning in 2018 and full operations beginning in 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of

  10. RIVER PROTECTION PROJECT SYSTEM PLAN

    SciTech Connect (OSTI)

    CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

    2009-09-15T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. (6) Deploying interim storage capacity for the immobilized high-level waste (IHLW) pending determination of the final disposal pathway. (7) Closing the SST and DST tank farms, ancillary facilities, and all associated waste management and treatment facilities. (8) Optimizing the overall mission by resolution of technical and programmatic uncertainties, configuring the tank farms to provide a steady, well-balanced feed to the WTP, and performing trade-offs of the required amount and type of supplemental treatment and of the amount of HLW glass versus LAW glass. ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks. Key elements needed to implement the strategy described above are included within the scope of the Tank Operations Contract (TOC). Interim stabilization of the SSTs was completed in March 2004. As of April 2009, retrieval of seven SSTs has been completed and retrieval of four additional SSTs has been completed to the limits of technology. Demonstration of supplemental LAW treatment technologies has stopped temporarily pending revision of mission need requirements. Award of a new contract for tank operations (TOC), the ongoing tank waste retrieval experience, HLW disposal issues, and uncertainties in waste feed delivery and waste treatment led to the revision of the Performance Measurement Baseline (PM B), which is currently under review prior to approval. 6 This System Plan is aligned with the current WTP schedule, with hot commissioning beginning in 2018, and full operations beginning in late 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of these decisions will be to provide a second LAW vitrification facility. No final implementation decisions regarding supplemental technology can be made until the Tank Closure and

  11. E.2. Electronic Appendix -Food Web Elements of the Fraser River Upper River (above rkm 210)

    E-Print Network [OSTI]

    1 E.2. Electronic Appendix - Food Web Elements of the Fraser River Basin Upper River (above rkm 210) Food webs: Microbenthic algae (periphyton), detritus from riparian vegetation and littoral insects tributaries. Collector-gatherers (invertebrates feeding on fine particulate organic material) are the most

  12. Hydropower production and river rehabilitation: A case study on an alpine river

    E-Print Network [OSTI]

    Hydropower production and river rehabilitation: A case study on an alpine river M. Fette & C. Weber # Springer Science + Business Media B.V. 2006 Abstract Despite the numerous benefits of hydropower production. Hydropeaks, caused by short-term changes in hydropower operation, result in a negative impact on both habitat

  13. Entrainment sampling at the Savannah River Site (SRS) Savannah River water intakes (1991)

    SciTech Connect (OSTI)

    Paller, M.

    1990-11-01T23:59:59.000Z

    Cooling water for the Westinghouse Savannah River Company (WSRC) L-Reactor, K-Reactor, and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pumphouses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water. They are passed through the reactor heat exchangers where temperatures may reach 70{degree}C during full power operation. Ichthyoplankton mortality under such conditions is presumably 100%. Apart from a small pilot study conducted in 1989, ichthyoplankton samples have not been collected from the vicinity of the SRS intake canals since 1985. The Department of Energy (DOE) has requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory (SRL) resume ichthyoplankton sampling for the purpose of assessing entrainment at the SRS Savannah River intakes. This request is due to the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River. The following scope of work presents a sampling plan that will collect information on the spatial and temporal distribution of fish eggs and larvae near the SRS intake canal mouths. This data will be combined with information on water movement patterns near the canal mouths in order to determine the percentage of ichthyoplankton that are removed from the Savannah River by the SRS intakes. The following sampling plan incorporates improvements in experimental design that resulted from the findings of the 1989 pilot study. 1 fig.

  14. Brush Management/Water Yield Feasibility Study for Four Watersheds In Texas

    E-Print Network [OSTI]

    Bednarz, Steven T.; Dybala, Tim; Amonett, Carl; Muttiah, Ranjan S.; Rosenthal, Wes; Srinivasan, Raghavan; Arnold, Jeff G.

    2003-01-01T23:59:59.000Z

    ,942,859.17 2,013.01 15,704.92 11.31 18 166,110.60 556,785,852.99 1,708.71 13,330.85 12.46 19 1,029,797.78 2,823,542,988.67 8,665.14 67,602.72 15.23 20 886,216.09 2,440,216,220.39 7,488.75 58,424.91 15.17 21 364,992.01 1,015,478,003.63 3,116.39 24,313.10 15... for Arrowhead (Figure 1-4) was likely due to the higher percentage of hydrologic group D soils in this watershed (54 percent vs. 39, 21, 38 for Brownwood, Phantom Hill, and Palo Pinto, respectively) that produced a greater difference in annual runoff volume...

  15. In: Management of Wet-Weather Flow in the Watershed (Edited by Dan Sullivan and Richard Field). CRC Press, Boca Raton. Publication in 2002.

    E-Print Network [OSTI]

    Pitt, Robert E.

    1 In: Management of Wet-Weather Flow in the Watershed (Edited by Dan Sullivan and Richard Field...........................................................................................................................................................................14 Prevention of Dry-Weather Pollutant Entries into Sewerage Systems

  16. Watershed Coordinator Roundtable Meeting Attendees January 27, 2010 First Last Organization Email

    E-Print Network [OSTI]

    @ag.tamu.edu Mike Bira EPA Bira.Mike@epamail.epa.gov Diane Boellstorff Texas AgriLife Extension Service dboellstorff.henry@epa.gov Chuck Brown Upper Colorado River Authority chuckb@ucratx.org Gary Bryant Texas Water Resources Institute

  17. Clam Active Biomonitoring and POM Passive Monitoring for Anacostia Watershed Contaminant Point Sources.

    E-Print Network [OSTI]

    District of Columbia, University of the

    Sources. Final Report to the DC Water Resources Research Center Dr. Harriette L. Phelps June 1 2010) Wells Run had polycyclic aromatic hydrocarbons (PAH) from combustion and chlordane exceeding reference not exceed other tidal river sites except for 2X PAHs, (4) the Baltimore Washington Parkway median stream

  18. Modified Streamflows 1990 Level of Irrigation : Missouri, Colorado, Peace and Slave River Basin, 1928-1989.

    SciTech Connect (OSTI)

    A.G. Crook Company; United States. Bonneville Power Administration

    1993-07-01T23:59:59.000Z

    This report presents data for monthly mean streamflows adjusted for storage change, evaporation, and irrigation, for the years 1928-1990, for the Colorado River Basin, the Missouri River Basin, the Peace River Basin, and the Slave River Basin.

  19. The Impact of Geologic and Geomorphic Characteristics on Drainage Efficiency and Discharge; Uncompahgre, San Miguel, and Animas River Watersheds, Colorado, USA

    E-Print Network [OSTI]

    Gamache, Garrett

    2014-08-05T23:59:59.000Z

    . Unfortunately, montane water resources are delicate and highly dependent upon persistent weather and climatic conditions. With current research indicating dramatic changes resulting from climate warming, water resources in montane areas are approaching excessive...

  20. The Impact of Geologic and Geomorphic Characteristics on Drainage Efficiency and Discharge; Uncompahgre, San Miguel, and Animas River Watersheds, Colorado, USA

    E-Print Network [OSTI]

    Gamache, Garrett

    2014-08-05T23:59:59.000Z

    . Unfortunately, montane water resources are delicate and highly dependent upon persistent weather and climatic conditions. With current research indicating dramatic changes resulting from climate warming, water resources in montane areas are approaching excessive...

  1. Changes in Flood Management along the Pajaro River: A Transition to Watershed Management Approaches and Lessons from the Water Framework Directive and Flood Directive

    E-Print Network [OSTI]

    Jagger, Stacie

    2009-01-01T23:59:59.000Z

    human actions causing environmental damage and the full-costand include the environmental damage and recovery costs (

  2. Coho Salmon Master Plan, Clearwater River Basin.

    SciTech Connect (OSTI)

    Nez Perce Tribe; FishPro

    2004-10-01T23:59:59.000Z

    The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these uncertainties, the Nez Perce Tribe proposes to utilize a phased approach for coho reintroductions. This Master Plan seeks authorization and funding to move forward to Step 2 in the Northwest Power and Conservation Council 3-Step review process to further evaluate Phase I of the coho reintroduction program, which would focus on the establishment of a localized coho salmon stock capable of enduring the migration to the Clearwater River subbasin. To achieve this goal, the Nez Perce Tribe proposes to utilize space at existing Clearwater River subbasin hatchery facilities in concert with the construction of two low-tech acclimation facilities, to capitalize on the higher survival observed for acclimated versus direct stream released coho. In addition, Phase I would document the natural productivity of localized coho salmon released in two targeted tributaries within the Clearwater River subbasin. If Phase I is successful at establishing a localized coho salmon stock in an abundance capable of filling existing hatchery space, the rates of natural productivity are promising, and the interspecific interactions between coho and sympatric resident and anadromous salmonids are deemed acceptable, then Phase II would be triggered. Phase II of the coho reintroduction plan would focus on establishing natural production in a number of Clearwater River subbasin tributaries. To accomplish this goal, Phase II would utilize existing Clearwater River subbasin hatchery facilities, and expand facilities at the Nez Perce Tribal Hatchery Site 1705 facility to rear approximately 687,700 smolts annually for use in a rotating supplementation schedule. In short, this document identifies a proposed alternative (Phase I), complete with estimates of capital, operations and maintenance, monitoring and evaluation, and permitting that is anticipated to raise average smolt replacement rates from 0.73 (current) to 1.14 using primarily existing facilities, with a limited capital investment for low-tech acclimation facilities. This increase in survival is expected to provide the opportunity for the establishm

  3. Hydrologic assessment, Eastern Coal Province, Area 23, Alabama: Black Warrior River; Buttahatchee River; Cahaba River; Sipsey River

    SciTech Connect (OSTI)

    Harkins, J.R.

    1980-06-01T23:59:59.000Z

    Area 23 is located at the southern end of the Eastern Coal Province, in the Mobile River basin, includes the Warrior, Cahaba, and edges of the Plateau coal fields in Alabama, and covers an area of 4716 square miles. This report is designed to be useful to mine owners and operators and consulting engineers by presenting information about existing hydrologic conditions and identification of sources of hydrologic information. General hydrologic information is presented in a brief text and illustrations on a single water-resources related topic. Area 23 is underlain by the Coker and Pottsville Formations and the pre-Pennsylvanian rocks. Area 23 has a moist temperate climate with an annual average rainfall of 54 inches and the majority of the area is covered by forest. The soils have a high erosion potential when the vegetative cover is removed. Use of water is primarily from surface-water sources as ground-water supplies generally are not sufficient for public supplies. The US Geological Survey operates a network of hydrologic data collection stations to monitor the streamflow and ground-water conditions. This network includes data for 180 surface-water stations and 49 ground-water observation wells. These data include rate of flow, water levels, and water-quality parameters. Hydrologic problems relating to surface mining are (1) erosion and sedimentation, (2) decline in ground-water levels, and (3) degradation of water quality. Decline in ground-water levels can occur in and near surface-mining areas when excavation extends below the static water level in the aquifer. This can cause nearby wells and springs to go dry. Acid mine drainage is a problem only adjacent to the mined area.

  4. Columbia River impact evaluation plan

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    As a result of past practices, four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency`s (EPA`s) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980. To accomplish the timely cleanup of the past-practice units, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), was signed by the Washington State Department of Ecology (Ecology), EPA, and the US Department of Energy (DOE). To support the Tri-Party Agreement, milestones were adopted. These milestones represent the actions needed to ensure acceptable progress toward Hanford Site compliance with CERCLA, RCRA, and the Washington State Hazardous Waste Management Act of 1976. This report was prepared to fulfill the requirement of Tri-Party Agreement Milestone M-30-02, which requires a plan to determine cumulative health and environmental impacts to the Columbia River. This plan supplements the CERCLA remedial investigations/feasibility studies (RI/FS) and RCRA facility investigations/corrective measures studies (RFI/CMSs) that will be undertaken in the 100 Area. To support the plan development process, existing information was reviewed and a preliminary impact evaluation based on this information was performed. The purpose of the preliminary impact evaluation was to assess the adequacy of existing data and proposed data collection activities. Based on the results of the evaluation, a plan is proposed to collect additional data or make changes to existing or proposed data collection activities.

  5. New River Geothermal Exploration (Ram Power Inc.)

    SciTech Connect (OSTI)

    Miller, Clay

    2013-11-15T23:59:59.000Z

    The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

  6. New River Geothermal Exploration (Ram Power Inc.)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Miller, Clay

    The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

  7. Evaluate Status of Pacific Lamprey in the Clearwater River and Salmon River Drainages, Idaho, 2009 Technical Report.

    SciTech Connect (OSTI)

    Cochnauer, Tim; Claire, Christopher [Idaho Department of Fish and Game

    2009-05-07T23:59:59.000Z

    Pacific lamprey Lampetra tridentata have received little attention in fishery science until recently, even though abundance has declined significantly along with other anadromous fish species in Idaho. Pacific lamprey in Idaho have to navigate over eight lower Snake River and Columbia River hydroelectric facilities for migration downstream as juveniles to the Pacific Ocean and again as adults migrating upstream to their freshwater spawning grounds in Idaho. The number of adult Pacific lamprey annually entering the Snake River basin at Ice Harbor Dam has declined from an average of over 18,000 during 1962-1969 to fewer than 600 during 1998-2006. Based on potential accessible streams and adult escapement over Lower Granite Dam on the lower Snake River, we estimate that no more than 200 Pacific lamprey adult spawners annually utilize the Clearwater River drainage in Idaho for spawning. We utilized electrofishing in 2000-2006 to capture, enumerate, and obtain biological information regarding rearing Pacific lamprey ammocoetes and macropthalmia to determine the distribution and status of the species in the Clearwater River drainage, Idaho. Present distribution in the Clearwater River drainage is limited to the lower sections of the Lochsa and Selway rivers, the Middle Fork Clearwater River, the mainstem Clearwater River, the South Fork Clearwater River, and the lower 7.5 km of the Red River. In 2006, younger age classes were absent from the Red River.

  8. Savannah River Ecology Laboratory FY2006 Annual Technical Progress Report

    SciTech Connect (OSTI)

    Paul M. Bertsch

    2006-10-23T23:59:59.000Z

    FY2006 annual report of research conducted by the Savannah River Ecology Laboratory, a research unit of the University of Georgia operating on the Savannah River Site in Aiken, County, SC.

  9. RETURN OF THE RIVER -2000 Chapter 5 Freshwater Habitats131

    E-Print Network [OSTI]

    rivers of the world and also one of the most developed with ten major hydroelectric dams on the main the major hydroelectric projects and the owner-operator of each project. #12;RETURN OF THE RIVER - 2000

  10. Preliminary Notice of Violation, Savannah River Nuclear Solutions...

    Office of Environmental Management (EM)

    River Nuclear Solutions (SRNS), LLC, related to a Worker Fall from a Scaffold in the K-Area Complex at the Savannah River Site On November 9, 2012, the U.S. Department of...

  11. Savannah River Ecology Laboratory 2004 Annual Technical Progress Report

    SciTech Connect (OSTI)

    Paul M. Bertsch

    2004-07-29T23:59:59.000Z

    2004 annual report of research conducted by the Savannah River Ecology Laboratory, a research unit of The University of Georgia operating on the Savannah River Site in Aiken, South Carolina

  12. Savannah River Ecology Laboratory 2005 Annual Technical Progress Report

    SciTech Connect (OSTI)

    Paul M. Bertsch

    2005-07-19T23:59:59.000Z

    2005 annual report of research conducted by the Savannah River Ecology Laboratory, a research unit of The University of Georgia operating on the Savannah River Site, Aiken, South Carolina

  13. african ephemeral rivers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of this course, we have seen that certain aspects of the morphological behaviour of sand and gravel bed rivers, especially of the river bed in the main channel, can be...

  14. Ohio River Valley Water Sanitation Commission (Multiple States)

    Broader source: Energy.gov [DOE]

    The Ohio River Valley Water Sanitation Commission (ORSANCO), was established on June 30, 1948 to control and abate pollution in the Ohio River Basin. ORSANCO is an interstate commission...

  15. CRAD, Engineering - Office of River Protection K Basin Sludge...

    Broader source: Energy.gov (indexed) [DOE]

    Office of River Protection K Basin Sludge Waste System CRAD, Engineering - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix C to DOE G 226.1-2...

  16. Interstate Commission on the Potomac River Basin (Multiple States)

    Broader source: Energy.gov [DOE]

    The Interstate Commission on the Potomac River Basin's (ICPRB) mission is to enhance, protect, and conserve the water and associated land resources of the Potomac River and its tributaries through...

  17. Power benefits of the lower Snake River dams - FACT SHEET

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I n the 1960s and early 1970s, the federal government built four large dams on the Snake River. This is the last set of major dams to have been built in the Federal Columbia River...

  18. Fact Sheet - Myths & Facts about the lower Snake River dams ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Myths and facts about the lower Snake River dams MYTH: The four lower Snake River dams are low value. FACT: It costs about 5 per megawatt-hour to produce power at the dams. The...

  19. Type B Accident Investigation Board Report of the Savannah River...

    Office of Environmental Management (EM)

    Savannah River Site Hand Injury at the Salt Waste Processing Facility on October 6, 2009 Type B Accident Investigation Board Report of the Savannah River Site Hand Injury at the...

  20. Wild and Scenic River Acts (Lower St. Croix Riverway)

    Broader source: Energy.gov [DOE]

    The lower portion of the St. Croix River in Minnesota and Wisconsin is regulated under the National Wild and Scenic Rivers Program. Most new residential, commercial, and industrial uses are...

  1. Floodplain River Foodwebs in the Lower Mekong Basin

    E-Print Network [OSTI]

    Ou, Chouly

    2013-11-15T23:59:59.000Z

    dynamics in tropical rivers undergo significant seasonal shifts and emphasizes that river food webs are altered by dams and flow regulation. Seston and benthic algae were the most important production sources supporting fish biomass during the dry season...

  2. Wekiva River and Wekiva Parkway Protection Acts (Florida)

    Broader source: Energy.gov [DOE]

    The Wekiva River Protection Act directs the Orange, Lake, and Seminole Counties to emphasize the Wekiva River Protection Area in their planning efforts and regulations. Each countys local...

  3. SAVANNAH RIVER TECHNOLOGY CENTER MONTHLY REPORT AUGUST 1992

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1999-06-21T23:59:59.000Z

    'This monthly report summarizes Programs and Accomplishments of the Savannah River Technology Center in support of activities at the Savannah River Site. The following categories are addressed: Reactor, Tritium, Separations, Environmental, Waste Management, General, and Items of Interest.'

  4. Little Big Horn River Water Quality Project

    SciTech Connect (OSTI)

    Bad Bear, D.J.; Hooker, D. [Little Big Horn Coll., Crow Agency, MT (United States)

    1995-10-01T23:59:59.000Z

    This report summarizes the accomplishments of the Water Quality Project on the Little Big horn River during the summer of 1995. The majority of the summer was spent collecting data on the Little Big Horn River, then testing the water samples for a number of different tests which was done at the Little Big Horn College in Crow Agency, Montana. The intention of this study is to preform stream quality analysis to gain an understanding of the quality of selected portion of the river, to assess any impact that the existing developments may be causing to the environment and to gather base-line data which will serve to provide information concerning the proposed development. Citizens of the reservation have expressed a concern of the quality of the water on the reservation; surface waters, ground water, and well waters.

  5. Historical river flow rates for dose calculations

    SciTech Connect (OSTI)

    Carlton, W.H.

    1991-06-10T23:59:59.000Z

    Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS`s, EID`S, SAR`S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants.

  6. Snake and Columbia Rivers Sediment Sampling Project

    SciTech Connect (OSTI)

    Pinza, M. R.; Word, J. Q.; Barrows, E. S.; Mayhew, H. L.; Clark, D. R. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1992-12-01T23:59:59.000Z

    The disposal of dredged material in water is defined as a discharge under Section 404 of the Clean Water Act and must be evaluated in accordance with US Environmental Protection Agency regulation 40 CFR 230. Because contaminant loads in the dredged sediment or resuspended sediment may affect water quality or contaminant loading, the US Army Corps of Engineers (USACE), Walla Walla District, has requested Battelle/Marine Sciences Laboratory to collect and chemically analyze sediment samples from areas that may be dredged near the Port Authority piers on the Snake and Columbia rivers. Sediment samples were also collected at River Mile (RM) stations along the Snake River that may undergo resuspension of sediment as a result of the drawdown. Chemical analysis included grain size, total organic carbon, total volatile solids, ammonia, phosphorus, sulfides, oil and grease, total petroleum hydrocarbons, metals, polynuclear aromatic hydrocarbons, pesticides, polychlorinated biphenyls, and 21 congeners of polychlorinated dibenzodioxins and dibenzofurans.

  7. Remedial investigation report on the Melton Valley watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3: Appendix C

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions. The industrial and recreational exposure scenarios are used to provide a risk assessment reference context to evaluate levels of contamination in surface water, groundwater, soil, and sediment within each subbasin of the Melton Valley watershed. All available analytical results for the media of interest that could be qualified for use in the risk assessment were screened to determine carcinogenic risk values and noncarcinogenic hazard indexes and to identify the chemicals of concern (COCs) for each evaluated media in each subbasin.

  8. River Protection Project (RPP) Dangerous Waste Training Plan

    SciTech Connect (OSTI)

    POHTO, R.E.

    1999-09-28T23:59:59.000Z

    This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units.

  9. Independent Oversight Review, Savannah River Site- August 2011

    Broader source: Energy.gov [DOE]

    Review of Commercial Grade Dedication Plans for the Safety Instrumented System at the Savannah River Site Waste Solidification Building Project

  10. Terrestrial Carbon Inventory at the Savannah River Site, 1951 2001.

    SciTech Connect (OSTI)

    US Forest Service - Annonymous,

    2012-02-01T23:59:59.000Z

    A Power Point slide presentation/report on the terestrial carbon inventory at the Savannah River Site.

  11. DOE Selects Savannah River Remediation, LLC for Liquid Waste...

    Broader source: Energy.gov (indexed) [DOE]

    awarded SRS management and operating contract includes operation of the Savannah River National Laboratory (SRNL), National Nuclear Security Administration (NNSA)...

  12. Lynnhaven River Basin Ecosystem Restoration Project Virginia Beach, Virginia

    E-Print Network [OSTI]

    US Army Corps of Engineers

    150 miles of shoreline and hundreds of acres of marsh, mudflat, and shallow water habitats. The river

  13. Independent Oversight Review, Savannah River Site- July 2011

    Broader source: Energy.gov [DOE]

    Review of Electrical System Configuration Management and Design Change Control at the Savannah River Site, Waste Solidification Building Project

  14. Washington Gas meets Patuxent River construction challenges

    SciTech Connect (OSTI)

    Myers, C.A. (Washington Gas Light Co., Springfield, VA (United States))

    1993-12-01T23:59:59.000Z

    This paper describes the installation of a new natural gas pipeline under the Patuxent River in Maryland. The installation process required the use of directional drilling technology to minimize environmental concerns. The paper describes the processes involved in selecting a crossing site, performing background archaeological and other environmental studies, and easement acquisition procedures. With regards to the actual construction, the paper discusses the welding and staging methods, design methods for the actual drilling, drilling equipment involved, and methods for pulling the pipelines back under the river.

  15. Linking ecosystem services, rehabilitation, and river hydrogeomorphology

    E-Print Network [OSTI]

    Thorp, James H.

    2010-01-01T23:59:59.000Z

    of all services for all FPZs combined. Table 1 includes only 5 of the 14 to 15 variables used to delineate FPZs in our river-typing methods, but these are sufficient to illustrate why ecosystem services should vary among FPZs. The first three.... Ecological Applications 13: 17621772. Loomis J, Kent P, Strange L, Fausch K, Covich A. 2000. Measuring the total economic value of restoring ecosystem services in an impaired river basin: Results from contingent valuation survey. Ecological Economics 33: 103...

  16. Radioiodine in the Savannah River Site environment

    SciTech Connect (OSTI)

    Kantelo, M.V.; Bauer, L.R.; Marter, W.L.; Murphy, C.E. Jr.; Zeigler, C.C.

    1993-01-15T23:59:59.000Z

    Radioiodine, which is the collective term for all radioactive isotopes of the element iodine, is formed at the Savannah River Site (SRS) principally as a by-product of nuclear reactor operations. Part of the radioiodine is released to the environment during reactor and reprocessing operations at the site. The purpose of this report is to provide an introduction to radioiodine production and disposition, its status in the environment, and the radiation dose and health risks as a consequence of its release to the environment around the Savannah River Plant. A rigorous dose reconstruction study is to be completed by thee Center for Disease Control during the 1990s.

  17. Hydrologic data summary for the White Oak Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, October 1990--December 1991

    SciTech Connect (OSTI)

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Watts, J.A.

    1992-06-01T23:59:59.000Z

    This report summarizes for the 15-month period of October 1990-- December 1991 the available dynamic hydrologic data collected, primarily on the White Oak Creek (WOC) watershed, along with information collected on the surface flow systems that affect the quality or quantity of surface water. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to: (1) characterize the quantity and quality of water in the flow systems; (2) assist with the planning and assessment of remedial action activities; and, (3) provide long-term availability of data and quality assurance. Characterization of the hydrology of the WOC watershed is critical for understanding the processes that drive contaminant transport in the watershed. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data activities that contribute to the Site Investigations component of the ERP. (White Oak Creek is also referred to as Whiteoak'' Creek).

  18. Hydrologic data summary for the White Oak Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, October 1990--December 1991

    SciTech Connect (OSTI)

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Watts, J.A.

    1992-06-01T23:59:59.000Z

    This report summarizes for the 15-month period of October 1990-- December 1991 the available dynamic hydrologic data collected, primarily on the White Oak Creek (WOC) watershed, along with information collected on the surface flow systems that affect the quality or quantity of surface water. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to: (1) characterize the quantity and quality of water in the flow systems; (2) assist with the planning and assessment of remedial action activities; and, (3) provide long-term availability of data and quality assurance. Characterization of the hydrology of the WOC watershed is critical for understanding the processes that drive contaminant transport in the watershed. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data activities that contribute to the Site Investigations component of the ERP. (White Oak Creek is also referred to as ``Whiteoak`` Creek).

  19. Ecological Responses to Hydrogeomorphic Fluctuations in a Sand Bed Prairie River: River Complexity, Habitat Availability, and Benthic Invertebrates

    E-Print Network [OSTI]

    O'Neill, Brian James

    2010-04-02T23:59:59.000Z

    Rivers with stochastic precipitation have fauna that overcome unique challenges. Organisms surmount these challenges by using refugia. Research was conducted on the sand bed Kansas River (Kaw). I (a) quantified how the hydrology affects the Kaw...

  20. CREEL CENSUS AND EXPENDITURE STUDY, NORTH FORK SUN RIVER,

    E-Print Network [OSTI]

    CREEL CENSUS AND EXPENDITURE STUDY, NORTH FORK SUN RIVER, MONTANA, 1951 Marine Biological STUDY, NORTH FORK SUN RIVER, MONTANA, 1951 Marine Biological Laboratory JUN16 1954 WOODS HOLE, MASS MAP CREEL CENSUS SUN RIVER MONTANA DRAWN i*^ ^ TRACED- _2£jLt:l SUBMITTED . 1 V N 01 1 VN ei

  1. Platte River Basin Flow Information Web-based Resources

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Platte River Basin Flow Information Web-based Resources Gary Stone, Extension Educator, University://www.wrds.uwyo.edu/wrds/nrcs/snowprec/snowprec.html - the University of Wyoming Water Resources Data System - scroll down to the Upper and Lower North Platte River. Seminoe is the first reservoir on the North Platte River in central Wyoming. Glendo is the second

  2. Fraser River Hydro and Fisheries Research Project fonds

    E-Print Network [OSTI]

    Handy, Todd C.

    Fraser River Hydro and Fisheries Research Project fonds Revised by Erwin Wodarczak (1998 Fraser River Hydro and Fisheries Research Project fonds. ­ 19561961. 13 cm of textual records. Administrative History The Fraser River Hydro and Fisheries Research Project was established in 1956, financed

  3. EFFECTS OF NAVAL ORDNANCE TESTS ON THE PATUXENT RIVER FISHERY

    E-Print Network [OSTI]

    EFFECTS OF NAVAL ORDNANCE TESTS ON THE PATUXENT RIVER FISHERY Marine Biological Laboratory t, T "B and Wildlife Service, John L. Farley, Director EFFECTS OF NAVAL ORDNANCE TESTS ON THE PATUXENT RIVER FISHERY of Medicine, Univ. of Puerto Rico. #12;#12;EFFECTS OF NAVAL ORDNANCE TESTS ON THE PATUXENT RIVER FISHERY

  4. Trinity River Initiative Building partnerships for cooperative conservation

    E-Print Network [OSTI]

    Trinity River Initiative Building partnerships for cooperative conservation More people in Texas use the water, wildlife and recreational resources from the Trinity River Basin than from any other in the Trinity River Basin--the ecological resources along much of the Trinity are in poor condition. Despite

  5. A study of Texas rivers with attention to river access and recreational fisheries

    E-Print Network [OSTI]

    Baker, Troy L

    2013-02-22T23:59:59.000Z

    Any angler can legally use a navigable Texas river or stream for recreational fishing. Often, however, the very definition of what navigability means is in question and private property boundaries are unclear. Over 98% of property adjacent to Texas...

  6. Coal River Mountain Action Several people asked for more information about the 23 June civil disobedience near Coal River

    E-Print Network [OSTI]

    Hansen, James E.

    Coal River Mountain Action Several people asked for more information about the 23 June civil disobedience near Coal River Mountain. We need Dickens to describe the local situation, but you can glean the practice of mountaintop removal. Vernon Haltom vernoncrmw@gmail.com, head of Coal River Mountain Watch

  7. Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky

    E-Print Network [OSTI]

    US Army Corps of Engineers

    until 1981 when it was closed due to declining boat traffic. Since the failure of Green River Dam 4 by the dams and the impacts if the pool were to be lost, either by demolition or failure of the lock andGreen River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky 16

  8. EIS-0351: Operation of Flaming Gorge Dam, Colorado River Storage Project, Colorado River, UT

    Broader source: Energy.gov [DOE]

    The Secretary of the United States Department of the Interior (Secretary), acting through the Bureau of Reclamation (Reclamation), is considering whether to implement a proposed action under which Flaming Gorge Dam would be operated to achieve the flow and temperature regimes recommended in the September 2000 report Flow and Temperature Recommendations for Endangered Fishes in the Green River Downstream of Flaming Gorge Dam (2000 Flow and Temperature Recommendations), published by the Upper Colorado River Endangered Fish Recovery Program (Recovery Program).

  9. Savannah River Technology Center. Monthly report

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    This document contains information about the research programs being conducted at the Savannah River Plant. Topics of discussion include: thermal cycling absorption process, development of new alloys, ion exchange, oxalate precipitation, calcination, environmental research, remedial action, ecological risk assessments, chemical analysis of salt cakes, natural phenomena hazards assessment, and sampling of soils and groundwater.

  10. How We Got Started Sheyenne River

    E-Print Network [OSTI]

    for Riparian Ecosystems · Field Tours · Rancher Meetings · Educational Materials #12;Project Collaborators Source Program #12;· The goals of this project is to improve and strengthen the ability of resource Project #12;· 6 New Riparian ESDs · MLRA 54 · Knife River · Spring Creek · MLRA 55B · Baldhill Creek

  11. Carolina bays of the Savannah River Plant

    SciTech Connect (OSTI)

    Schalles, J.F. (Creighton Univ., Omaha, NE (USA)); Sharitz, R.R.; Gibbons, J.W.; Leversee, G.J.; Knox, J.N. (Savannah River Ecology Lab., Aiken, SC (USA))

    1989-01-01T23:59:59.000Z

    Much of the research to date on the Carolina bays of the Savannah River Plant and elsewhere has focused on certain species or on environmental features. Different levels of detail exist for different groups of organisms and reflect the diverse interests of previous investigators. This report summarizes aspects of research to date and presents data from numerous studies. 70 refs., 14 figs., 12 tabs.

  12. Environmental concerns in Kern River Project

    SciTech Connect (OSTI)

    Hargis, D. (Dames and Moore, Los Angeles, CA (US))

    1991-10-01T23:59:59.000Z

    This paper reports that the US natural gas transmission network will soon gain an important and much-needed link---the Kern River Pipeline. The project is the culmination of a massive 6-year planning, permitting and design effort of kern River Gas Transmission Co., a joint venture of Tenneco Inc. and Williams Western Pipeline Co. The Kern River Pipeline will have an initial capacity of 700 MMcfd. Total construction costs are estimated at $925 million, with completion set by the end of the year. The pipeline extends 904 miles from Opal, Wyo., to oil fields in the San Joaquin Valley, Kern Country, Calif. A 230-mile segment from Daggett, Calif., to its terminus at Kern County is shared with, and being built by, Mojave Pipeline Co. Extending across four states -- Wyoming, Utah, Nevada and California -- the Kern River Pipeline is the largest gas pipeline to be built in the US for more than 10 years. it will link the high energy demand areas of Southern California with the natural gas-rich territories of the Rocky Mountains.

  13. Fast Facts About the Columbia River Basin

    E-Print Network [OSTI]

    Administration, the federal agency that markets the electricity generated at federal dams in the Columbia River Energy Regulatory Commission; electric utilities; and state energy regulatory agencies. State, tribal directs more than $220 million annually in federal electricity revenues to implement more than 400

  14. The Savannah River Site's groundwater monitoring program

    SciTech Connect (OSTI)

    Not Available

    1991-10-18T23:59:59.000Z

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results.

  15. Powder River 0 20 40 KILOMETERS

    E-Print Network [OSTI]

    .S. coal basins. The Powder River Basin (PRB) in northeastern Wyoming and southeastern Montana (fig. 1 tons (MST), some 42 percent of the total coal pro- duction in the United States, making the PRB the single most important coal-producing basin in the Nation. About 426 MST (92 percent of total PRB coal

  16. 2008 Peconic River Monitoring Report Highlights

    E-Print Network [OSTI]

    Homes, Christopher C.

    ?? Fish Identification (Area - Age (years)) Mercury(mg/kg) Largemouth bass tissue mercury (mg/kg) EPA Criterion (0.3 mg/kg) Average largemouth bass tissue mercury (0.41 mg/kg) ?? Fish large for age 5 #12;6 2008 Pickerel Largemouth Bass Pumpkinseed 6 #12;8 Fish 2008 Peconic River Average Fish Tissue Mercury by Area 0

  17. Council's Columbia River Fish and Wildlife Program

    E-Print Network [OSTI]

    Walleye Smallmouth bass Northern pike Others 5 Native and Non-native Fish Predators #12; At dams#12;#12;#12;#12;#12;#12;#12;Council's Columbia River Fish and Wildlife Program Summary of Predation Event Center #12;Council's 2009 Fish and Wildlife Program Piscivorous Predator Control Implement

  18. Peconic River Update Environmental Protection Division

    E-Print Network [OSTI]

    Homes, Christopher C.

    largemouth bass from Donahue's Pond Fish age and Hg content 5-year old brown bullhead from Area C had 0 Fish 5-Year Review update and recommendations for changes to the Peconic River monitoring program Sediment Water Fish 2 #12;Refresher - The Clean-up ROD Goals Mercury in Sediment Onsite Average

  19. 3. Hydrogeomorphic Variability and River Restoration

    E-Print Network [OSTI]

    Montgomery, David R.

    . It is difficult to design effective stream and channel restoration measures, or evaluate project performance expansion of efforts in and expenditures for stream restoration. Increasingly, resto- ration efforts focus39 3. Hydrogeomorphic Variability and River Restoration D. R. MONTGOMERY1 AND S. M. BOLTON2

  20. BITTERROOT RIVER SUBBASIN INVENTORY FOR FISH AND

    E-Print Network [OSTI]

    BITTERROOT RIVER SUBBASIN INVENTORY FOR FISH AND WILDLIFE CONSERVATION AUGUST 2009 A report prepared for the Northwest Power and Conservation Council #12;#12;Bitterroot Subbasin Inventory for Fish (Inventory Volume), and Part III (Management Plan Volume), its appendices, and electronically linked

  1. Land Use Baseline Report Savannah River Site

    SciTech Connect (OSTI)

    Noah, J.C.

    1995-06-29T23:59:59.000Z

    This document is to serve as a resource for Savannah River Site managers, planners, and SRS stakeholders by providing a general description of the site and land-use factors important to future use decisions and plans. The intent of this document is to be comprehensive in its review of SRS and the surrounding area.

  2. Savannah River Technology Center. Monthly report

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    This is a monthly progress report from the Savannah River Laboratory for the month of January 1993. It has sections with work in the areas of reactor safety, tritium processes and absorption, separations programs and wastes, environmental concerns and responses, waste management practices, and general concerns.

  3. Salmon River Habitat Enhancement, 1989 Annual Report.

    SciTech Connect (OSTI)

    Rowe, Mike

    1989-04-01T23:59:59.000Z

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  4. Savannah River Technology Center monthly report

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This document contains information about the research programs being conducted at the Savannah River Plant. Topics of discussion include: Acorn Cleaning Study, tritium, separation processes, bioremediation programs, environmental remediation, environmental sampling, waste management, statistical design, phase I array experiments, and, Monte Carlo Neutron Photon input files.

  5. Mathematical formulations for contaminant partitioning in rivers

    SciTech Connect (OSTI)

    Fowler, K.M.; Whelan, G.; Onishi, Y.

    1997-09-01T23:59:59.000Z

    This mathematical model for contaminant transport in rivers provides a preliminary assessment of the contaminant mass and concentration using environmental partitioning. First, the model uses the advection-dispersion equation to model the river flow and contaminant transport in the water. Second, the model uses compartment modeling to partition the contaminant mass into water, sediment, bed sediment, air, fish, vegetation and free product environmental compartments. Finally, the model calculates contaminant concentration in each environmental compartment. As long as this approach is applied with an understanding of its assumptions and limitations, it can be very useful as a preliminary assessment model for contaminant transport in rivers. The purpose of developing this approach was to provide a simple mathematical model that accounts for the time-varying partitioning of contaminant concentration at a given location along the river. This approach is intended to be used as part of the Multimedia Environmental Pollutant Assessment System (MEPAS). Currently MEPAS, and other multimedia contaminant environmental transport and exposure risk assessment methodologies, assumes that once the contaminant enters the water, it is instantaneously and completely dissolved. This assumption, that the contaminant is only present in the dissolved phase tends to over predict water contaminant levels. This approach is intended to address the partitioning of contaminants into environmental compartments in addition to the water column.

  6. Navasota river crossings in a selected area

    E-Print Network [OSTI]

    Andrews, George Thomas

    1994-01-01T23:59:59.000Z

    disappears with the passing of each generation of the population. The need for study in areas of historical and cultural information is primary. This is a study of crossings on the Navasota River between Brazos County, Texas and the adjacent counties...

  7. Flathead River Creel Report, 1992-1993. Final Report.

    SciTech Connect (OSTI)

    Hanzel, Delano

    1995-09-01T23:59:59.000Z

    A roving creel survey was conducted on the Flathead River system, May 1992 through May 1993, as part of Hungry Horse Dam Fisheries Mitigation, funded by Bonneville Power Administration. The Flathead River system is a tributary to the Clarks Fork of the Columbia River originating in northwest Montana and southern British Columbia. The river creel survey was conducted in conjunction with a Flathead Lake creel survey. This document summarizes the creel survey on the river system. The purpose of these creel surveys was to quantify fishery status prior to mitigation efforts and provide replicative survey methodology to measure success of future mitigation activities. 4 figs., 21 tabs.

  8. ISRP Response Willamette River Program page 1 July 21, 2010

    E-Print Network [OSTI]

    by the legislature in 1997, calling for the development of basin scale water quality management plans and water quality plans for farms. In addition to these efforts, the Oregon Plan led to the creation of 25 watershed, a series of lawsuits led to the completion of Total Maximum Daily Load (TMDL) plans in the basin

  9. SOIL MOISTURE CHARACTERISTICS IN UPPER PART OF HINDON RIVER CATCHMENT

    E-Print Network [OSTI]

    Kumar, C.P.

    of the contribution of various parts of a watershed to the ground water storage. Convenient and reliable techniques for the water demand of the vegetation, as well as for the recharge of the ground water storage. A fair into ground water aquifers. For analytical studies on soil moisture regime, critical review and accurate

  10. Persistence of Hydrologic Variables and Reactive Stream Solute Concentrations in an East Tennessee Watershed

    SciTech Connect (OSTI)

    Koirala, Shesh R [ORNL; Gentry, Randall W [ORNL; Mulholland, Patrick J [ORNL; Perfect, Edmund [ORNL; Schwartz, John S [ORNL; Sayler, Gary Steven [ORNL

    2011-01-01T23:59:59.000Z

    Time and frequency domain analyses were conducted on weekly time series of water chemistry (nitrate, sulfate and calcium concentrations) collected from November 1995 to December 2005 at the West Fork of Walker Branch in Oak Ridge, Tennessee to evaluate the extent of their persistence and the relationship of this persistence to discharge and rainfall. In this study, spectral and wavelet analyses provided a theoretical basis for insights into long-term water chemistry behavior. All water chemistry parameters showed some level of persistence that was influenced by rainfall and/or discharge. Short-term persistence (less than a year) was related to the persistence of rainfall and discharge, whereas long-term persistence (more than a year) was related to the persistence of discharge. The Walker Branch conceptual hydrology model is augmented by these results that relate characteristic periodicities with flowpaths through different zones: the vadose zone (< 20 week period), saturated zone (20-50 week period) and bedrock zone (> 50 week period) with implications for reactive chemistries within the watershed. (C) 2011 Elsevier B.V. All rights reserved.

  11. Trace metal and ancillary data in the watersheds and urban embayments of Puget Sound. Data report

    SciTech Connect (OSTI)

    Paulson, A.J.; Curl, H.C.; Feely, R.A.; Massoth, G.J.; Krogslund, K.A.

    1991-04-01T23:59:59.000Z

    This is the first of three data reports encompassing trace metal and ancillary data obtained by the Pacific Marine Environmental Laboratory (PMEL) of NOAA in Puget Sound, Washington, between 1979 and 1986. The report includes the complete data set from two urban embayments (Elliott and Commencement Bays) and the watersheds discharging into Puget Sound. Building on research then underway at PMEL on estuarine circulation, laboratory scientists began a coordinated study that began with the description of the distribution of properties (salinity, temperature, trace metals and trace organics) in the water column and underlying sediments. The objectives of the Marine Environmental Quality trace metal program were (1) to quantify the sources and sinks of selected trace metals for Puget Sound, (2) to determine geochemical mechanisms that transform trace metals between the dissolved and particulate phases and (3) to determine to what extent these geochemical mechanisms alter the fate of trace metals entering Puget Sound. The text of the data report consists of the sampling and analytical methods with the accompanying quality control/quality assurance data. The text of the data sections are a summary of the data and published literature in which the data are interpreted along with a catalogue of the data available on microfiche located in the back pocket of the data report.

  12. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-68)

    SciTech Connect (OSTI)

    N /A

    2001-10-12T23:59:59.000Z

    BPA provides funds to the Grande Ronde Model Watershed Program which cooperates with local agencies and landowners to plan, fund, and implement anadromous fish habitat restoration projects in the Grande Ronde Basin. The GRMWP has agreed to partially fund three bridge replacement projects with the Union County Public Works Department. This Supplement Analysis covers those bridge replacement activities that will take place at the Mill Creek crossing and the Little Creek crossing. The Union County Public Works Department is responsible for replacing structurally deficient bridges with structures able to pass 50-year peak flow events. The UCPWD replacement structures of choice, due to budget limitations, are large 8-10 foot corrugated metal pipes. These pipes would meet peak flow requirements but would be less than ideal for fish passage. The GRMWP proposes to provide funding assistance to UCPWD to upgrade replacement structures to full-channel spanning stringer bridges. These full-channel spanning structures will provide the best possible conditions for fish passage, water quality, and accommodation of peak flows.

  13. Impact of Resolution on Simulation of Closed Mesoscale Cellular Convection Identified by Dynamically Guided Watershed Segmentation

    SciTech Connect (OSTI)

    Martini, Matus; Gustafson, William I.; Yang, Qing; Xiao, Heng

    2014-11-27T23:59:59.000Z

    Organized mesoscale cellular convection (MCC) is a common feature of marine stratocumulus that forms in response to a balance between mesoscale dynamics and smaller scale processes such as cloud radiative cooling and microphysics. We use the Weather Research and Forecasting model with chemistry (WRF-Chem) and fully coupled cloud-aerosol interactions to simulate marine low clouds during the VOCALS-REx campaign over the southeast Pacific. A suite of experiments with 3- and 9-km grid spacing indicates resolution-dependent behavior. The simulations with finer grid spacing have smaller liquid water paths and cloud fractions, while cloud tops are higher. The observed diurnal cycle is reasonably well simulated. To isolate organized MCC characteristics we develop a new automated method, which uses a variation of the watershed segmentation technique that combines the detection of cloud boundaries with a test for coincident vertical velocity characteristics. This ensures that the detected cloud fields are dynamically consistent for closed MCC, the most common MCC type over the VOCALS-REx region. We demonstrate that the 3-km simulation is able to reproduce the scaling between horizontal cell size and boundary layer height seen in satellite observations. However, the 9-km simulation is unable to resolve smaller circulations corresponding to shallower boundary layers, instead producing invariant MCC horizontal scale for all simulated boundary layers depths. The results imply that climate models with grid spacing of roughly 3 km or smaller may be needed to properly simulate the MCC structure in the marine stratocumulus regions.

  14. factsheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    92-acre conservation easement in the Jocko River watershed in northwestern Montana for fish habitat mitigation. Located in Sanders County, this property is part of a watershed...

  15. River Protection Project (RPP) Project Management Plan

    SciTech Connect (OSTI)

    SEEMAN, S.E.

    2000-04-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), in accordance with the Strom Thurmond National Defense Authorization Act for Fiscal Year 1999, established the Office of River Protection (ORP) to successfully execute and manage the River Protection Project (RPP), formerly known as the Tank Waste Remediation System (TWRS). The mission of the RPP is to store, retrieve, treat, and dispose of the highly radioactive Hanford tank waste in an environmentally sound, safe, and cost-effective manner. The team shown in Figure 1-1 is accomplishing the project. The ORP is providing the management and integration of the project; the Tank Farm Contractor (TFC) is responsible for providing tank waste storage, retrieval, and disposal; and the Privatization Contractor (PC) is responsible for providing tank waste treatment.

  16. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  17. 1. INTRODUCTION

    Office of Environmental Management (EM)

    ter-Tribal Organization (Alaska Inter Tribal Council), three representative from Alaska health care or- ganizations, one representative from BIA, one representative from EPA, two...

  18. Annual hydrologic data summary for the White Oak Creek Watershed: Water Year 1990 (October 1989--September 1990)

    SciTech Connect (OSTI)

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Moore, G.K.; Watts, J.A.; Broders, C.C.; Bednarek, A.T.

    1991-09-01T23:59:59.000Z

    This report summarizes, for the Water Year 1990 (October 1989-- September 1990), the dynamic hydrologic data collected on the Whiteoak Creek (WOC) Watershed's surface and subsurface flow systems. These systems affect the quality or quantity of surface water and groundwater. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to 1. characterize the quantity and quality of water in the flow system, 2. plan and assess remedial action activities, and 3. provide long-term availability of data and assure quality. Characterizing the hydrology of the WOC watershed provides a better understanding of the processes which drive contaminant transport in the watershed. Identifying of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. Hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping boundaries and ultimately to the off-site environment. The majority of the data summarized in this report are available from the Remedial Action Programs Data and Information Management System data base. Surface water data available within the WOC flow system include discharge and runoff, surface water quality, radiological and chemical contamination of sediments, and descriptions of the outfalls to the WOC flow system. Climatological data available for the Oak Ridge area include precipitation, temperature, humidity, wind speed, and wind direction. Information on groundwater levels, aquifer characteristics, and groundwater quality are presented. Anomalies in the data and problems with monitoring and accuracy are discussed. 58 refs., 54 figs., 15 tabs.

  19. Natural Recharge to the Unconfined Aquifer System on the Hanford Site from the Greater Cold Creek Watershed: Progress Report 2004

    SciTech Connect (OSTI)

    Waichler, Scott R.; Wigmosta, Mark S.; Coleman, Andre M.

    2004-09-14T23:59:59.000Z

    Movement of contaminants in groundwater at the Hanford Site is heavily dependent on recharge to the unconfined aquifer. As the effects of past artificial discharges dissipate, the water table is expected to return to more natural conditions, and natural recharge will become the driving force when evaluating future groundwater flow conditions and related contaminant transport. Previous work on the relationship of natural recharge to groundwater movement at the Hanford Site has focused on direct recharge from infiltrating rainfall and snowmelt within the area represented by the Sitewide Groundwater Model (SGM) domain. However, part of the groundwater recharge at Hanford is provided by flow from Greater Cold Creek watershed (GCC), a large drainage area on the western boundary of the Hanford Site that includes Cold Creek Valley, Dry Creek Valley, and the Hanford side of Rattlesnake Mountain. This study was undertaken to estimate the recharge from GCC, which is believed to enter the unconfined aquifer as both infiltrating streamflow and shallow subsurface flow. To estimate recharge, the Distributed Hydrology-Soil-Vegetation Model (DHSVM) was used to simulate a detailed water balance of GCC from 1956 to 2001 at a spatial resolution of 200~m and a temporal resolution of one hour. For estimating natural recharge to Hanford from watersheds along its western and southwestern boundaries, the most important aspects that need to be considered are 1)~distribution and relative magnitude of precipitation and evapotranspiration over the watershed, 2)~streamflow generation at upper elevations and infiltration at lower elevations during rare runoff events, and 3)~permeability of the basalt bedrock surface underlying the soil mantle.

  20. Mercury in shallow Savannah River Plant soil

    SciTech Connect (OSTI)

    Carlton, W.H.; Price, V.; Cook, J.R.

    1988-10-01T23:59:59.000Z

    Soil concentrations of adsorbed mercury at 999 sites at the Savannah River Plant (SRP) were determined by Microseeps Limited of Indianola, PA. The sites were in and around the 643-C Burial Ground, at the Savannah River Swamp adjacent to TNX Area, and at a background area. The Burial Ground was chosen as a test site because of a history of disposal of radioactive mercury there prior to 1968. Extremely low traces of mercury have been detected in the water table beneath the Burial Ground. Although the mercury concentrations at the majority of these sites are at background levels, several areas appear to be anomalously high. In particular, an area of large magnitude anomaly was found in the northwest part of the Burial Ground. Three other single point anomalies and several other areas of more subtle but consistently high values were also found. Several sites with anomalous mercury levels were found in an area of the Savannah River flood plain adjacent to TNX Area.