Powered by Deep Web Technologies
Note: This page contains sample records for the topic "river inter-tribal watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Grays River Watershed Geomorphic Analysis  

SciTech Connect

This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: The effects of historical and current land use practices on erosion and sedimentation within the channel network The ways in which these effects have influenced the sediment budget of the upper watershed The resulting responses in the main stem Grays River upstream of State Highway 4 The past and future implications for salmon habi

Geist, David R.

2005-04-30T23:59:59.000Z

2

Potlatch River Watershed Restoration, Annual Report 2002-2003.  

DOE Green Energy (OSTI)

The project's goal is to improve instream fish habitat in the Potlatch River and the lower Clearwater River through comprehensive watershed planning, implementation of best management practices and expanded water quality and fish habitat monitoring. This proposal has two primary objectives: (1) complete the Potlatch River watershed implementation plan; and, (2) augment existing monitoring efforts in the Potlatch River to broaden the water quality and fish resource data baseline.

Stinson, Kenneth

2003-09-01T23:59:59.000Z

3

Kootenai River Focus Watershed Coordination, 2002-2003 Annual Report.  

SciTech Connect

The Kootenai River Network Inc. (KRN) was incorporated in Montana in early 1995 with a mission ''to involve stakeholders in the protection and restoration of the chemical, physical and biological integrity of the Kootenai River Basin waters''. The KRN operates with funding from donations, membership dues, private, state and federal grants, and with funding through the Bonneville Power Administration (BPA) for a Focus Watershed Coordinator Program. The Focus Watershed Program is administered to KRN as of October 2001, through a Memorandum of Understanding. Katie Randall resigned her position as Watershed Coordinator in late January 2003 and Munson Consulting was contracted to fill that position through the BPA contract period ending May 30, 2003. To improve communications with in the Kootenai River watershed, the board and staff engaged watershed stakeholders in a full day KRN watershed conference on May 15 and 16 in Bonners Ferry, Idaho. This Annual General Meeting was a tremendous success with over 75 participants representing over 40 citizen groups, tribes and state/provincial/federal agencies from throughout northern Montana and Idaho as well as British Columbia and Alberta. Membership in the KRN increased during the course of the BPA 02/03 grant period. The board of directors grew in numbers during this same time frame and an Advisory Council was formed to assist in transboundary efforts while developing two reorganized KRN committees (Habitat/Restoration/Monitoring (HRM) and Communication/Education/Outreach (CEO)). These committees will serve pivotal roles in communications, outreach, and education about watershed issues, as well as habitat restoration work being accomplished throughout the entire watershed. During this BPA grant period, the KRN has capitalized on the transboundary interest in the Kootenai River watershed. Jim and Laura Duncan of Kimberley, British Columbia, have been instrumental volunteers who have acted as Canadian liaisons to the KRN. As a result, restoration work is in the planning stages for Canadian tributaries that flow into the Moyie River in northern Idaho and the Yaak River in northwest Montana.

Munson, Bob; Munson, Vicki (Kootenai River Network, Libby, MT); Rogers, Rox (US Fish and Wildlife Service, Libby, MT)

2003-10-01T23:59:59.000Z

4

Grays River Watershed and Biological Assessment Final Report 2006.  

DOE Green Energy (OSTI)

The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat-forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within

May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

2008-02-04T23:59:59.000Z

5

Grays River Watershed and Biological Assessment, 2006 Final Report.  

DOE Green Energy (OSTI)

The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within

May, Christopher; Geist, David [Pacific Northwest National Laboratory

2007-04-01T23:59:59.000Z

6

Implementation of the Watershed Analysis Risk Management Framework (WARMF) Watershed Model for Nutrient Trading in the Ohio River Ba sin  

Science Conference Proceedings (OSTI)

As part of the Ohio River Water Quality Trading Program, the Scioto, Muskingum, and Allegheny watersheds were analyzed, using the Watershed Analysis Risk Management Framework (WARMF) model, to determine their capacity for nutrient trading. For consistency across the Ohio River Basin, the watershed models were implemented using the hydrological unit code (HUC) 10 delineation available from the United States Geological Survey. Data from the Ohio Environmental Protection Agency, Pennsylvania Department ...

2012-07-20T23:59:59.000Z

7

Grays River Watershed and Biological Assessment, Annual Report 2005.  

DOE Green Energy (OSTI)

The goal of this project is to enhance and restore the ecological integrity and ecosystem function of the Grays River watershed. The recommended restoration and enhancement efforts developed in this project should incorporate local community stakeholder interests and needs. The objectives of this project are (1) to perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessment; (2) to develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) to gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River sub-basin.

McGrath, Kathleen E. [Pacific Northwest National Laboratory

2008-02-04T23:59:59.000Z

8

Appalachian Rivers II Conference: Technology for Monitoring, Assessing, and Restoring Streams, Rivers, and Watersheds  

SciTech Connect

On July 28-29, 1999, the Federal Energy Technology Center (FETC) and the WMAC Foundation co-sponsored the Appalachian Rivers II Conference in Morgantown, West Virginia. This meeting brought together over 100 manufacturers, researchers, academicians, government agency representatives, watershed stewards, and administrators to examine technologies related to watershed assessment, monitoring, and restoration. Sessions included presentations and panel discussions concerning watershed analysis and modeling, decision-making considerations, and emerging technologies. The final session examined remediation and mitigation technologies to expedite the preservation of watershed ecosystems.

None available

1999-07-29T23:59:59.000Z

9

Numerical Prediction of Precipitation and River Flow over the Russian River Watershed during the January 1995 California Storms  

Science Conference Proceedings (OSTI)

Precipitation and river flow during a January 1995 flood event over the Russian River watershed in the northern Coastal Range of California were simulated using the University of California Lawrence Livermore National Laboratory's Coupled ...

Norman L. Miller; Jinwon Kim

1996-01-01T23:59:59.000Z

10

Assessing the Potential Impacts of Climate Change on Mountain Snowpack in the St. Mary River Watershed, Montana  

Science Conference Proceedings (OSTI)

The St. Mary River watershed is an important international watershed that supplies irrigation water to large portions of southern Alberta, Canada, and northern Montana. The St. Mary River is fully allocated and users on both sides of the border ...

Ryan J. MacDonald; James M. Byrne; Stefan W. Kienzle; Robert P. Larson

2011-04-01T23:59:59.000Z

11

Flathead River Focus Watershed Coordinator, 2005-2006 Annual Report.  

Science Conference Proceedings (OSTI)

The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerr dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.

DuCharme, Lynn (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

2006-05-01T23:59:59.000Z

12

Flathead River Focus Watershed Coordinator, 2004-2005 Annual Report.  

Science Conference Proceedings (OSTI)

The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerr dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.

DuCharme, Lynn (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

2006-06-26T23:59:59.000Z

13

Protect and Restore Red River Watershed, 2007-2008 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Red River Watershed of the South Fork Clearwater River in 2001. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. From completing a watershed assessment to two NEPA efforts and a final stream restoration design, we will begin the effort of restoring the mainstem channel of Red River to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed. Another major, and extremely, important component of this project is the Red River Meadow Conservation Easement. We have begun the process of pursuing a conservation easement on approximately 270 acres of prime meadow habitat (Red River runs through this meadow and is prime spawning and rearing habitat).

Bransford, Stephanie [Nez Perce Tribe Fisheries/Watershed Program

2009-05-04T23:59:59.000Z

14

Wind River Watershed Restoration 2004-2005 Annual Report.  

DOE Green Energy (OSTI)

During 2004, researchers from U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. Juvenile salmonid population surveys were conducted within select study areas throughout the subbasin. We expanded our survey coverage of the mainstem Wind River to a reach in the vicinity of Carson National Fish Hatchery to assess effects of non-indigenous Chinook on native steelhead. These efforts add to a database of habitat and fish data collected in the Wind River since 1996. This research contributes to the Wind River Restoration Project, which includes active stream habitat restoration and monitoring of adult and juvenile steelhead populations. We maintained a network of 32 thermographs in the Wind River subbasin during 2004. Additionally, Underwood Conservation District provided us with data from seven thermographs that they maintained during 2004. Thermograph data are identifying areas with chronic high water temperatures and stream sections where high rates of warming are occurring. During 2004, water temperatures at 26 thermograph sites exceeded the 16 C limit for surface waters set by the Washington Department of Ecology. Water temperatures exceeded 20 C at five sites in the Trout Creek watershed. Our thermograph dataset includes information from as early as 1996 at some sites and has become a valuable long-term dataset, which will be crucial in determining bioenergetic relationships with habitat and life-histories. We have monitored salmonid populations throughout the Wind River subbasin by electrofishing and snorkeling. We electrofished four stream sections for population estimates during 2004. In these sections, and others where we simply collected fish without a population estimate, we tagged juvenile steelhead and Chinook salmon with Passive Integrated Transponder (PIT) tags to track growth and movement of individuals. We snorkeled nine stream sections during 2004. Juvenile steelhead populations have varied greatly between streams and between years. Numbers of age-0 steelhead have increased substantially since 2000 within the MINE reach (rkm 35.0-40.0) section of the upper Wind River. Because of potential negative interactions with steelhead, naturally spawned populations of introduced juvenile Chinook salmon are of concern in the mainstem of the Wind River. During 2004, we deployed over 3,000 PIT tags in the Wind River subbasin, primarily in juvenile steelhead, but also in juvenile Chinook. We are compiling a dataset of recapture information on these tagged fish as well as interrogation information from Bonneville Dam and other sites. The habitat and fish data collected have been used in Ecosystem Diagnosis and Treatment modeling efforts, the Wind River Subbasin Plan, and the Total Maximum Daily Load report from Washington Department of Ecology. Continued monitoring of changes in habitat, combined with data on fish populations, will help guide planning efforts of land and fish managers. As long-term active and passive restoration actions are implemented in the Wind River and its tributaries, these data will provide the ability to measure change. Because the Wind River subbasin has no steelhead hatchery or supplementation, these data will be useful to compare population trends in subbasins with hatchery or supplementation management.

Connolly, Patrick J.; Jezorek, Ian G. [U.S. Geological Survey

2008-11-10T23:59:59.000Z

15

SWAT-Based Streamflow Estimation and Its Responses to Climate Change in the Kadongjia River Watershed, Southern Tibet  

Science Conference Proceedings (OSTI)

Runoff estimation and its response to climate change in ungauged or poorly gauged basins based on hydrological models are frontier research issues of the hydrological cycle. For the Kadongjia River watershed (KRW), a poorly gauged watershed ...

Rui Sun; Xueqin Zhang; Yang Sun; Du Zheng; Klaus Fraedrich

2013-10-01T23:59:59.000Z

16

SWAT-based streamflow estimation and its responses to climate change in Kadongjia River Watershed, South Tibet, China  

Science Conference Proceedings (OSTI)

Runoff estimation and its response to climate change in ungauged or poorly gauged basins based on hydrological models are frontier research issues of the hydrological cycle. For Kadongjia River Watershed (KRW), a poorly gauged watershed located in ...

Rui Sun; Xueqin Zhang; Yang Sun; Du Zheng; Klaus Fraedrich

17

Discharge Characteristics and Changes over the Ob River Watershed in Siberia  

Science Conference Proceedings (OSTI)

This study analyzes long-term (1936–90) monthly streamflow records for the major subbasins within the Ob River watershed in order to examine discharge changes induced by human activities (particularly reservoirs and agricultural activities) and ...

Daqing Yang; Baisheng Ye; Alexander Shiklomanov

2004-08-01T23:59:59.000Z

18

Wind River Watershed Project; Volume I of III Reports A thru E, 1998 Annual Report.  

DOE Green Energy (OSTI)

This report describes the ongoing efforts to document life history strategies of steelhead in the Wind River watershed and to formulate criteria for ranking restoration needs and proposed projects.

Connolly, Patrick J.

1999-11-01T23:59:59.000Z

19

Wind River Watershed Restoration Project; Underwood Conservation District, Annual Report 2002-2003.  

DOE Green Energy (OSTI)

The goal of the Wind River project is to preserve, protect and restore Wind River steelhead. In March, 1998, the National Marine Fisheries Service listed the steelhead of the lower Columbia as 'threatened' under the Endangered Species Act. In 1997, the Washington Department of Fish and Wildlife rated the status of the Wind River summer run steelhead as critical. Due to the status of this stock, the Wind River summer steelhead have the highest priority for recovery and restoration in the state of Washington's Lower Columbia Steelhead Conservation Initiative. The Wind River Project includes four cooperating agencies. Those are the Underwood Conservation District (UCD), United States Geological Service (USGS), US Forest Service (USFS), and Washington State Department of Fish & Wildlife (WDFW). Tasks include monitoring steelhead populations (USGS and WDFW), Coordinating a Watershed Committee and Technical Advisory Group (UCD), evaluating physical habitat conditions (USFS and UCD), assessing watershed health (all), reducing road sediments sources (USFS), rehabilitating riparian corridors, floodplains, and channel geometry (UCD, USFS), evaluate removal of Hemlock Dam (USFS), and promote local watershed stewardship (UCD, USFS). UCD's major efforts have included coordination of the Wind River Watershed Committee and Technical Advisory Committee (TAC), water temperature and water chemistry monitoring, riparian habitat improvement projects, and educational activities. Our coordination work enables the local Watershed Committee and TAC to function and provide essential input to Agencies, and our habitat improvement work focuses on riparian revegetation. Water chemistry and temperature data collection provide information for monitoring watershed conditions and fish habitat, and are comparable with data gathered in previous years. Water chemistry information collected on Trout Creek should, with 2 years data, determine whether pH levels make conditions favorable for a fish parasite, Heteropolaria lwoffi. Educational activities further the likelihood that future generations will continue to understand and enjoy the presence of native fish stocks in the Wind River basin.

White, Jim

2004-02-01T23:59:59.000Z

20

Wind River Watershed Restoration Project, Segment II, 2000-2002 Annual Report.  

DOE Green Energy (OSTI)

This document represents work conducted as part of the Wind River Watershed Restoration Project during its second year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey - Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW).

Bair, Brian; Olegario, Anthony; Powers, Paul

2002-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "river inter-tribal watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Vegetation Control in the Long-Term Self-Stabilization of the Liangzhou Oasis of the Upper Shiyang River Watershed of West-Central Gansu, Northwest China  

Science Conference Proceedings (OSTI)

This paper explores the relationship between vegetation in the Liangzhou Oasis in the Upper Shiyang River watershed (USRW) of west-central Gansu, China, and within-watershed precipitation, soil water storage, and oasis self-support. Oases along ...

Charles P-A. Bourque; Quazi K. Hassan

2009-12-01T23:59:59.000Z

22

Grays River Watershed Restoration Status Report 2007, May 1, 2007 - October 30, 2008.  

DOE Green Energy (OSTI)

The Bonneville Power Administration (BPA) Project 2003-013-00, 'Grays River Watershed Restoration', began in FY04 and continues into FY09. This status report is intended to summarize accomplishments during the period 1 May 2007 through 30 October 2008. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). The Pacific Northwest National Laboratory (PNNL) is collaborating with the Columbia River Estuary Task Force (CREST) on implementation of the Grays River Restoration Project. The Grays River is vitally important to the recovery of Lower Columbia River (LCR) chum salmon because it currently has the most viable population remaining in the LCR region. The Grays River watershed is also important to the recovery of salmon and steelhead in the LCR ecosystem. Today, numbers of naturally spawning salmon and steelhead have declined to levels far below historical numbers because of habitat limiting factors that include but are not limited to the lack of habitat connectivity, diversity, channel stability, riparian function and altered stream flow conditions. The objective of this project is to restore habitat-forming processes to enhance salmon and steelhead populations in the Grays River, following recommendations developed during the FY04-06 BPA-sponsored Grays River Watershed Assessment (BPA Project No. 2003-013-00). Specifically, this project will be the first step in restoring channel structure and function that will increase instream habitat diversity, channel stability, and riparian integrity in the critical response reach upstream and adjacent to critical salmon spawning areas of the Grays River. The major component of this strategy is the planning, design, installation, and monitoring of engineered logjams (ELJ) that will rejuvenate historic channel and floodplain processes. Additional restoration measures include reforesting the riparian corridor to enhance future large woody debris recruitment and investigation of conservation activities within ecologically critical areas. These activities include land acquisition and levee removal to protect critical areas and reconnect floodplain areas. Finally, monitoring integrated with restoration activities is proposed to evaluate restoration effectiveness and allow for adaptive management of future restoration treatments in the project area as well as other degraded watersheds in the Lower Columbia River.

Hanrahan, Tim [Pacific Northwest National Laboratory

2008-10-20T23:59:59.000Z

23

Descriptions and Expectations of Recommended BMPs for Improving the Bosque River Watershed  

E-Print Network (OSTI)

The Bosque River and its watershed face complex water quality problems that are not easy to solve. Attempts have been made to improve the quality of the water moving through this watershed, but have had little success due to the broad scope of work that is needed to positively impact water quality in the Bosque River. This document is part of a multi-faceted project that aims to improve the environmental infrastructure in the watershed in a manner that focuses on existing pollution issues. The project’s first phase, which included the development of an environmental infrastructure improvement plan, has been completed. This plan outlined a methodology for determining likely areas that would contribute the most significant source of pollution to the watershed and developed a tool for determining the priority in which all sub-watersheds in the basins should be evaluated for needed pollution abatement measures. The Phase I report also established a list of feasible best management practices (BMPs) and ranked them based on the recommendations of a scientific advisory committee. Six steps were identified as an effective process to choose the proper BMPs for each sub-watershed in the basin. If these steps are followed, the best BMPs for each location should be effectively identified. This document expands on the Phase I report by providing an in-depth physical description of each BMP along with an overview of potential costs and applicable areas, situations, and locations where these practices should be implemented. The BMPs are organized into five groups based on applicable location(s): on-farm BMPs, between field and creek BMPs, in-stream or gully BMPs, universal BMPs, and city BMPs. The majority of these BMPs target the excessive amount of nutrients, especially phosphorus (P), entering surface water supplies. Several BMPs also focus on sediment control, as some of the soils in the watershed are highly erosive and pose the threat of transporting nutrients with them when they erode. Some BMPs also address ecosystem health and habitat issues in the watershed. Collectively, the recommended BMPs aim to improve the overall quality and productivity of the entire watershed. Many of these BMPs involve simple, inexpensive adjustments of current practices while others require more significant changes that may require technical and financial assistance. The last section of this document highlights potential sources of technical information and methods for disseminating educational materials to landowners and other interested parties. Potential federal and state sources of funding are also listed in this section for the use of parties considering the installation of multiple or more expensive BMPs on their land. This document serves as a source of general information about BMPs that would benefit landowners and agency personnel assisting landowners in the Bosque River watershed. This information can help guide interested parties to BMPs that are most feasible for their needs as well as provide a general overview of how to implement the selected practice(s) to yield the best results for their location. Successful BMP implementation will reduce the impact of human activities and lead to environmental improvement in the Bosque watershed.

Meier, Megan; Gregory, Lucas

2008-02-01T23:59:59.000Z

24

Wind River Watershed Restoration, 2005-2006 Annual Report.  

DOE Green Energy (OSTI)

This report summarizes work completed by U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period April 2005 through March 2006 under Bonneville Power Administration (BPA) contract 22095. During this period, we collected temperature, flow, and habitat data to characterize habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. We also conducted electrofishing and snorkeling surveys to determine juvenile salmonid populations within select study areas throughout the subbasin. Portions of this work were completed with additional funding from U.S. Fish and Wildlife Service (USFWS) and the Lower Columbia Fish Enhancement Group (LCFEG). A statement of work (SOW) was submitted to BPA in March 2005 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.

Jezorek, Ian G.; Connolly, Patrick J.; Munz, Carrie [U.S. Geological Survey

2008-11-10T23:59:59.000Z

25

South Fork Salmon River Watershed Restoration, 2008-2009 Annual Report.  

DOE Green Energy (OSTI)

The watershed restoration work elements within the project area, the South Fork Salmon River Watershed, follow the watershed restoration approach adopted by the Nez Perce Tribe Department of Fisheries Resource Management (DFRM) - Watershed Division. The vision of the Nez Perce Tribe DFRM-Watershed Division focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects and strategies that rely on natural fish production and healthy river ecosystems. The Nez Perce Tribe DFRM-Watershed Division strives towards maximizing historic ecosystem productivity and health for the restoration of anadromous and resident fish populations and the habitat on which all depend on for future generations Originally, this project was funded to create a step/pool stream channel that was appropriate to restore fish passage where the 'Glory Hole Cascade' is currently located at the Stibnite Mine. Due to unforeseen circumstances at the time, the project is unable to move forward as planned and a request for a change in scope of the project and an expansion of the geographic area in which to complete project work was submitted. No additional funds were being requested. The ultimate goal of this project is to work with the holistic, ridge top to ridge top approach to protect and restore the ecological and biological functions of the South Fork Salmon River Watershed to assist in the recovery of threatened and endangered anadromous and resident fish species. FY 2008 Work Elements included two aquatic organism passage (AOP) projects to restore habitat connectivity to two fish-bearing tributaries to the East Fork South Fork Salmon River, Salt and Profile Creeks. The Work Elements also included road survey and assessment activities that move toward road decommissioning to reduce sediment delivery to spawning gravels and rearing habitats by reducing sedimentation from road related, man-made sources. For FY08, the project included the design and implementation of two fish barrier replacement structures mentioned above, the Salt and Profile Creek Bridges. These work elements were to be implemented on Valley County easements within the Payette National Forest. The existing culverts are full or partial barriers to most aquatic life species and all juvenile anadromous and resident fish species. Implementation will reconnect 9.34 miles of habitat, and provide natural stream channels to facilitate complete passage for all aquatic life forms. All designs were completed and a construction subcontract was awarded to construct free span, pre-cast concrete bridges. For 2008, the project statement of work also included all the necessary work elements to manage, coordinate, plan, and develop continuing strategies for restoration and protection activities.

Reaney, Mark D. [Nez Perce Tribe Department of Fisheries Resource Management

2009-04-15T23:59:59.000Z

26

Wind River Watershed Restoration, 2006-2007 Annual Report.  

DOE Green Energy (OSTI)

This report summarizes work completed by U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period April 2006 through March 2007 under Bonneville Power Administration (BPA) contract 26922. During this period, we collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. We also conducted electrofishing and snorkeling surveys to determine juvenile salmonid populations within select study areas throughout the subbasin. Portions of this work were completed with additional funding from U.S. Fish and Wildlife Service (USFWS) and the Lower Columbia Fish Enhancement Group (LCFEG). Funding from USFWS was for work to contribute to a study of potential interactions between introduced Chinook salmon Oncorhynchus tshawytscha and wild steelhead O. mykiss. Funding from LCFEG was for work to evaluate the effects of nutrient enrichment in small streams. A statement of work (SOW) was submitted to BPA in March 2006 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.

Connolly, Patrick J.; Jezorek, Ian G.; Munz, Carrie S. [U.S. Geological Survey

2008-11-04T23:59:59.000Z

27

U.S. Department of Energy NEPA Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AK AK Program or Field Office: TRIBAL ENERGY PROGRAM Project Title AK-TEP-YUKON RIVER INTER-TRIBAL WATERSHED COUNCIL Location: Tribal YUKON RIVER INTER-TRIBAL WATERSHED COUNCIL American Recovery and Reinvestment Act: Proposed Action or Project Descriptio The Yukon River Inter-Tribal Watershed Council (YRITWC) proposes to conduct energy efficiency upgrades to four buildings (Nunamiut Village Store, Nunamiut Corporation Office, Nunamiut Village Restaurant, and Nunamiut Corporation Manager's Dwelling) located in Anaktuvuk Pass, Alaska. The YRITWC proposes to conduct 7 energy efficiency activities. Task 1 is to educate the local community members, elders, and youth on the environmental and economic benefits of energy efficiency. Task 2 is to

28

EFFECT OF CLIMATE CHANGE ON WATERSHED RUNOFF FLOW - UPPER COOSA RIVER BASIN UPSTREAM FROM PLANT HAMMOND  

Science Conference Proceedings (OSTI)

The ability of water managers to maintain adequate supplies in the coming decades depends on future weather conditions, as climate change has the potential to reduce stream flows from their current values due to potentially less precipitation and higher temperatures, and possibly rendering them unable to meet demand. The upper Coosa River basin, located in northwest Georgia, plays an important role in supplying water for industry and domestic use in northern Georgia, and has been involved in water disputes in recent times. The seven-day ten-year low flow (7Q10 flow) is the lowest average flow for seven consecutive days that has an average recurrence interval of 10 years. The 7Q10 flow is statistically derived from the observed historical flow data, and represents the low flow (drought) condition for a basin. The upper Coosa River basin also supplies cooling water for the 935MW coal-fired Hammond plant, which draws about 65% of the 7Q10 flow of the upper Coosa River to dissipate waste heat. The water is drawn through once and returned to the river directly from the generator (i.e., no cooling tower is used). Record low flows in 2007 led to use of portable cooling towers to meet temperature limits. Disruption of the Plant Hammond operation may trigger closure of area industrial facilities (e.g. paper mill). The population in Georgia is expected to double from 9 million to 18 million residents in the next 25 years, mostly in the metropolitan Atlanta area. Therefore, there will be an even greater demand for potable water and for waste assimilation. Climate change in the form of persistent droughts (causing low flows) and high ambient temperatures create regulatory compliance challenges for Plant Hammond operating with a once-through cooling system. Therefore, the Upper Coosa River basin was selected to study the effect of potential future weather change on the watershed runoff flow.

Chen, K.

2011-10-24T23:59:59.000Z

29

Model Watershed Plan; Lemhi, Pahsimeroi, and East Fork of the Salmon River Management Plan, 1995 Technical Report.  

DOE Green Energy (OSTI)

Idaho`s Model Watershed Project was established as part of the Northwest Power Planning Council`s plan for salmon recovery in the Columbia River Basin. The Council`s charge was simply stated and came without strings. The tasks were to identify actions within the watershed that are planned or needed for salmon habitat, and establish a procedure for implementing habitat-improvement measures. The Council gave the responsibility of developing this project to the Idaho Soil Conservation Commission. This Model Watershed Plan is intended to be a dynamic plan that helps address these two tasks. It is not intended to be the final say on either. It is also not meant to establish laws, policies, or regulations for the agencies, groups, or individuals who participated in the plan development.

Swift, Ralph

1995-11-01T23:59:59.000Z

30

Wind River Watershed Project; Volume II of III Reports F and G, 1998 Annual Report.  

DOE Green Energy (OSTI)

The authors report here their on-ground restoration actions. Part 1 describes work conducted by the Underwood Conservation District (UCD) on private lands. This work involves the Stabler Cut-Bank project. Part 2 describes work conducted by the U.S. Forest Service. The Stabler Cut-Bank Project is a cooperative stream restoration effort between Bonneville Power Administration (BPA), the UCD, private landowners, the U.S. Forest Service (USFS), and the U.S. Fish and Wildlife Service (USFWS). The Stabler site was identified by UCD during stream surveys conducted in 1996 as part of a USFWS funded project aimed at initiating water quality and habitat restoration efforts on private lands in the basin. In 1997 the Wind River Watershed Council selected the project as a top priority demonstration project. The landowners were approached by the UCD and a partnership developed. Due to their expertise in channel rehabilitation, the Forest Service was consulted for the design and assisted with the implementation of the project. A portion of the initial phase of the project was funded by USFWS. However, the majority of funding (approximately 80%) has been provided by BPA and it is anticipated that additional work that is planned for the site will be conducted with BPA funds.

Connolly, Patrick J.

1999-11-01T23:59:59.000Z

31

McKenzie River Focus Watershed Coordination, 2002-2003 Annual Report.  

DOE Green Energy (OSTI)

BPA funding, in conjunction with contributions from numerous partners organizations, supports the McKenzie Watershed Council's efforts to coordinate restoration and monitoring programs of federal, state, local government, and residents within the watershed. A primary goal of the Council's program is to improve resource stewardship and conserve fish, wildlife, and water quality resources. The MWC will always have a baseline program centered on relationship building and information sharing. This watershed program is strengthened by the completion of the BPA funded Sub-basin Assessment, Conservation Strategy and the establishment of a Benchmarks system, thus, providing the MWC a prioritized framework for restoration efforts. Objectives for FY03 included: (1) Continued coordination of McKenzie Watershed activities among diverse groups that restore fish and wildlife habitat in the watershed, with a focus on the lower McKenzie, including private lands and the McKenzie-Willamette confluence area; (2) Influence behavior of watershed residents to benefit watershed function though a strategic and comprehensive outreach and education program, utilizing Assessment and Conservation Strategy information to provide a context for prioritized action; (3) Continue to maintain and sustain a highly functional watershed council; (4) Maintain and improve water quality concerns through the continuation of Council-sponsored monitoring and evaluation programs; and (5) Continue to secure other funding for watershed restoration and protection projects and council operations.

Thrailkil, Jim

2003-12-01T23:59:59.000Z

32

McKenzie River Watershed Coordination, Annual Report 2001-2002.  

DOE Green Energy (OSTI)

BPA funding, in conjunction with contributions from numerous partners organizations and grant funds supports the McKenzie Watershed Council's (MWC) efforts to coordinate restoration and monitoring programs of federal, state, local government, and residents within the watershed. Primary goals of the MWC are to improve resource stewardship and conserve fish, wildlife, and water quality resources. Underpinning the goals is the MWC's baseline program centered on relationship building and information sharing. Objectives for FY02 included: (1) Continue to coordinate McKenzie Watershed activities among diverse groups to restore fish and wildlife habitat in the watershed, with a focus on the middle to lower McKenzie, including private lands and the McKenzie-Willamette confluence area; (2) Influence behavior of watershed residents to benefit watershed function though an outreach and education program, utilizing (BPA funded) Assessment and Conservation Strategy information to provide a context for prioritized action; (3) Continue to maintain and sustain a highly functional watershed council; (4) Maintain and improve water quality concerns through the continuation of Council-sponsored monitoring and evaluation programs; and (5) Continue to secure other funding for watershed restoration and protection projects and Council operations.

Thrailkil, Jim

2003-11-01T23:59:59.000Z

33

Tucannon River Temperature Study, Prepared for : Watershed Resource Inventory Area (WRIA) 35.  

DOE Green Energy (OSTI)

This report presents the results of a temperature analysis of the Tucannon River completed for the WRIA 35 Planning Unit. The Tucannon River is located in southeastern Washington and flows approximately 100 kilometers (km) (62 miles) from the Blue Mountains to the Snake River. High water temperature in the Tucannon River has been identified as a limiting factor for salmonid fish habitat (Columbia Conservation District, 2004). Several segments of the Tucannon River are included on Washington State Department of Ecology (Ecology) 303(d) list of impaired waterbodies due to temperature. Ecology is currently conducting scoping for a temperature Total Maximum Daily Load (TMDL) study of the Tucannon River. The WRIA 35 Planning Unit retained HDR Engineering to evaluate water temperature in the Tucannon River. The project objectives are: (1) Review recent and historic data and studies to characterize temperature conditions in the river; (2) Perform field studies and analyses to identify and quantify heating and cooling processes in the river; (3) Develop and calibrate a computer temperature model to determine the sources of heat to the Tucannon River and to predict the temperature of the river that would occur with increased natural riparian shading assuming the current river morphology; (4) Evaluate differences in river temperatures between current and improved riparian shading during the 'critical' period - low river flows and high temperatures; and (5) Determine the potential benefits of riparian shading as a mechanism to decrease river temperature.

HDR Engineering.

2006-06-30T23:59:59.000Z

34

Ensemble Evaluation of Hydrologically Enhanced Noah-LSM: Partitioning of the Water Balance in High-Resolution Simulations over the Little Washita River Experimental Watershed  

Science Conference Proceedings (OSTI)

The ability of two versions of the Noah land surface model (LSM) to simulate the water cycle of the Little Washita River experimental watershed is evaluated. One version that uses the standard hydrological parameterizations of Noah 2.7 (STD) is ...

Enrique Rosero; Lindsey E. Gulden; Zong-Liang Yang; Luis G. De Goncalves; Guo-Yue Niu; Yasir H. Kaheil

2011-02-01T23:59:59.000Z

35

Water quality trends in the Blackwater River watershed Canaan Valley, West Virginia.  

E-Print Network (OSTI)

??The Blackwater River, historically an excellent brook trout (Salvelinus fontinalis) fishery, has been affected by logging, fires, coal mining, acid rain, and land development. Trends… (more)

Smith, Jessica M., M.S.

2004-01-01T23:59:59.000Z

36

Quantitative Precipitation Forecasting for the Tennessee and Cumberland River Watersheds Using the NCEP Regional Spectral Model  

Science Conference Proceedings (OSTI)

A limited-area spectral model—the Regional Spectral Model—developed at the National Centers for Environmental Prediction is used to prepare daily quantitative precipitation forecasts out to 48 h for the Tennessee and Cumberland River basins in ...

Qi Mao; Stephen F. Mueller; Hann-Ming Henry Juang

2000-02-01T23:59:59.000Z

37

Supplement Analysis for the Watershed Management Program EIS and the Hood River Fisheries Project Final EIS(DOE/EIS-0241) (DOE/EIS-0265/SA-62) (9/14/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2001 4, 2001 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-62) and the Hood River Fisheries Project Final EIS (DOE/EIS-0241). Thomas Morse Fish and Wildlife Project Manager Proposed Action: Hood River Fish Habitat Project Project No: 1998-021-00 Watershed Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Watershed Management Program EIS): 1.16 and 1.17 Spawning and rearing habitat enhancements; 2.1 Maintain healthy riparian plant communities; 4.9 Water conveyance: ditch and canal lining; 4.23 Intake and return diversion screens; 1.13 Culvert removal and replacement. Location: Odell, Hood River County, Oregon Proposed by: Bonneville Power Administration (BPA), Confederated Tribes of the Warms

38

Hydroclimatic Response of Watersheds to Urban Intensity: An Observational and Modeling-Based Analysis for the White River Basin, Indiana  

Science Conference Proceedings (OSTI)

Impervious surface area (ISA) has different surface characteristics from the natural land cover and has great influence on watershed hydrology. To assess the urbanization effects on streamflow regimes, the authors analyzed the U.S. Geological ...

Guoxiang Yang; Laura C. Bowling; Keith A. Cherkauer; Bryan C. Pijanowski; Dev Niyogi

2010-02-01T23:59:59.000Z

39

An economic analysis of a large scale ashe juniper clearing project in the Leon River watershed  

E-Print Network (OSTI)

Ashe Juniper (Juniperus ashei) is native to the Edwards Plateau in central Texas. In the past 150 years, however, this species has rapidly increased in abundance within its range. Reduced fire frequency and increased livestock grazing, are two factors attributed to the rapid rate of juniper encroachment. While the losses associated with brush encroachment are recognized, many ranchers lack the funds necessary to implement management practices to reduce juniper densities on their property. The high cost associated with clearing brush has led to the creation of cost-share programs, which help offset the expenses incurred by participating landowners. The Leon River Restoration Project (LRRP), implemented on private lands within Coryell and Hamilton Counties, Texas, is one such cost-share program. Funding for the LRRP is received through non-programmatic sources, in the form of grants, from various state and federal organizations and agencies. The Natural Resources Conservation Service (NRCS) provides a second source of funding through the Environmental Quality Incentives Program (EQIP). Participants contracted through LRRP funds receive 85% cost-share benefits, up to a maximum of $15,000. Landowners participating in the LRRP under EQIP funds receive 50% cost-share incentives, up to a maximum of $250,000. The purpose of this study was to record changes that occurred on land enrolled in the LRRP, following juniper removal, and the economic benefits recognized by this work. Thirty landowners scheduled to participate in the LRRP were interviewed in 2003, prior to juniper control work. In 2006, 23 of the original 30 landowners participated in a second interview, following their completion of brush removal work. Changes attributed to juniper removal were recorded during these post-clearing interviews. Stocking rate changes were used as the basis for measuring economic benefits recognized by the clearing efforts. Changes in hunting or grazing lease rates resulting from juniper clearing were also used to monitor economic benefits of the brushwork. A second component of the study tested for differences in landowner satisfaction between LRRP participants enrolled under LRRP funds, and those contracted under EQIP funds. Importanceperformance matrixes were created to display satisfaction differences.

Flack, Rebecca Lynn

2007-05-01T23:59:59.000Z

40

Ninety-Nine-Year Sediment Yield Record of the Middle Cuyahoga River Watershed Contained Within the Ohio Edison Dam Pool.  

E-Print Network (OSTI)

??The 17.4 m tall Ohio Edison Dam was constructed in 1912 on the Cuyahoga River near the city of Akron, Ohio. The dam was installed… (more)

Mann, Kristofer Clayton

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "river inter-tribal watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Understanding wood-pool dynamics using long-term monitoring data from the Gualala River Watershed: What can we learn?  

E-Print Network (OSTI)

and D. R. Montgomery. 2003. Wood in river rehabilitation andPatterns and process of wood debris accumulation in theand S. V. Gregory. 2002. Large wood and fluvial processes.

Church, Tamara

2012-01-01T23:59:59.000Z

42

Watershed Management Policy (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Watershed Management Policy (Minnesota) Watershed Management Policy (Minnesota) Watershed Management Policy (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting It is state policy to manage groundwater and surface water resources from the perspective of aquifers, watersheds, and river basins to achieve

43

Asotin Creek Model Watershed Plan  

DOE Green Energy (OSTI)

The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

1995-04-01T23:59:59.000Z

44

Protect and Restore Mill Creek Watershed : Annual Report CY 2005.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and one high priority culvert was replaced in 2004. Maintenance to the previously built fence was also completed.

McRoberts, Heidi

2006-03-01T23:59:59.000Z

45

Unpaving the Way to Creek Restoration in Lower Sausal Creek Watershed: Applying the EU Water Framework Directive to a US Urban Watershed  

E-Print Network (OSTI)

European Water Framework Directive to the Russian River. UCthe EU Water Framework Directive to a US Urban Watershed byUnion Water Framework Directive (WFD) provides a strategy

Li, Hong; Wardani, Jane

2008-01-01T23:59:59.000Z

46

Protect and Restore Lolo Creek Watershed : Annual Report CY 2005.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Lolo Creek watershed are coordinated with the Clearwater National Forest and Potlatch Corporation. The Nez Perce Tribe began watershed restoration projects within the Lolo Creek watershed of the Clearwater River in 1996. Fencing to exclude cattle for stream banks, stream bank stabilization, decommissioning roads, and upgrading culverts are the primary focuses of this effort. The successful completion of the replacement and removal of several passage blocking culverts represent a major improvement to the watershed. These projects, coupled with other recently completed projects and those anticipated in the future, are a significant step in improving habitat conditions in Lolo Creek.

McRoberts, Heidi

2006-03-01T23:59:59.000Z

47

White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; Annual Progress Report, April 2007 - March 2008.  

DOE Green Energy (OSTI)

We report on our progress from April 2007 through March 2008 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), Columbia River Inter-Tribal Fish Commission (CRITFC; Report C), and Montana State University (MSU; Report D). This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported.

Mallette, Christine [Oregon Department of Fish and Wildlife

2009-07-28T23:59:59.000Z

48

CX-006883: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

83: Categorical Exclusion Determination 83: Categorical Exclusion Determination CX-006883: Categorical Exclusion Determination Tribal Energy Program-Yukon River Inter-Tribal Watershed Council CX(s) Applied: A9, A11, B2.5, B5.1 Date: 09/15/2011 Location(s): Anaktuvuk Pass, Alaska, Alaska Office(s): Energy Efficiency and Renewable Energy The Yukon River Inter-Tribal Watershed Council (YRITWC) proposes to conduct energy efficiency upgrades to four buildings (Nunamiut Village Store, Nunamiut Corporation Office, Nunamiut Village Restaurant, and Nunamiut Corporation Manager?s Dwelling) located in Anaktuvuk Pass, Alaska. CX-006883.pdf More Documents & Publications DOE Alaska Native Village Renewable Energy Workshop Agenda CX-005394: Categorical Exclusion Determination CleanEnergyProjectsonTribalLands_Project_Descriptions_072011.pdf

49

Protect and Restore Mill Creek Watershed; Annual Report 2002-2003.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Mill Creek watershed are coordinated with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. During the FY 2002, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed. Maintenance to the previously built fence was also completed.

McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2004-01-01T23:59:59.000Z

50

An integrated media, integrated processes watershed model Gour-Tsyh Yeh a,  

E-Print Network (OSTI)

An integrated media, integrated processes watershed model Gour-Tsyh Yeh a, , Don-Sin Shih b , Jing modelling Groundwater and surface water coupling High performance parallel computing River hydraulics of a numerical model simulating fluid flow in WAterSHed Systems of 1D Stream-River Networks, 2D Overland Regime

Central Florida, University of

51

Uganda Manafwa River early flood warning system development hydrologic watershed modeling using HEC-HMS, HEC-RAS, ArcGIS  

E-Print Network (OSTI)

The Manafwa River basin spans several districts in Eastern Uganda. Over the years, frequent floods have constantly posed a great threat to the local communities in these districts. The Uganda Red Cross Society (URCS) intends ...

Ma, Yan, M. Eng. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

52

Protect and Restore Mill Creek Watershed; Annual Report 2004-2005.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and one high priority culvert was replaced in 2004. Maintenance to the previously built fence was also completed.

McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2005-12-01T23:59:59.000Z

53

Protect and Restore Mill Creek Watershed; Annual Report 2003-2004.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and designs completed on two of the high priority culverts. Maintenance to the previously built fence was also completed.

McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2004-06-01T23:59:59.000Z

54

Rehabilitate Newsome Creek Watershed, 2007-2008 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridgetop approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Newsome Creek watershed of the South Fork Clearwater River in 1997. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. Starting in FY 2001 and continuing into the present, a major stream restoration effort on the mainstem of Newsome Creek has been pursued. From completing a watershed assessment to a feasibility study of 4 miles of mainstem rehabilitation to carrying that forward into NEPA and a final design, we will begin the effort of restoring the mainstem channel of Newsome Creek to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed.

Bransford, Stephanie [Nez Perce Tribe Fisheries/Watershed Program

2009-05-01T23:59:59.000Z

55

Watershed Mercury Loading Framework  

Science Conference Proceedings (OSTI)

This report explains and illustrates a simplified stochastic framework, the Watershed Mercury Loading Framework, for organizing and framing site-specific knowledge and information on mercury loading to waterbodies. The framework permits explicit treatment of data uncertainties. This report will be useful to EPRI members, state and federal regulatory agencies, and watershed stakeholders concerned with mercury-related human and ecological health risk.

2003-05-23T23:59:59.000Z

56

Watershed Restoration Project  

DOE Green Energy (OSTI)

In 2003, the U.S. Department of Energy issued the Eastern Nevada Landscape Coalition (ENLC) funding to implement ecological restoration in Gleason Creek and Smith Valley Watersheds. This project was made possible by congressionally directed funding that was provided through the US Department of Energy, Energy Efficiency and Renewable Energy, Office of the Biomass Program. The Ely District Bureau of Land Management (Ely BLM) manages these watersheds and considers them priority areas within the Ely BLM district. These three entities collaborated to address the issues and concerns of Gleason Creek and Smith Valley and prepared a restoration plan to improve the watersheds’ ecological health and resiliency. The restoration process began with watershed-scale vegetation assessments and state and transition models to focus on restoration sites. Design and implementation of restoration treatments ensued and were completed in January 2007. This report describes the restoration process ENLC undertook from planning to implementation of two watersheds in semi-arid Eastern Nevada.

Julie Thompson; Betsy Macfarlan

2007-09-27T23:59:59.000Z

57

Groundwater protection EIS: Existing environment: Savannah River  

SciTech Connect

Per Groundwater Protection EIS commitments, a baseline of surface water hydrology and chemistry of each onsite stream is needed to define the existing environment of each watershed so that environmental impacts associated with the various waste site closure options can be assessed. This report summarizes the existing water quality of the Savannah River; lists the various waste sites encompassing this watershed; and summarizes the availability of surface water and floodplain sediment monitoring data, both radiochemical and physiochemical, collected from this watershed.

Stejskal, G.F.

1985-10-25T23:59:59.000Z

58

Texas Watershed Coordinator Roundtable Blackland Research Extension Center Temple, Texas  

E-Print Network (OSTI)

Texas Watershed Coordinator Roundtable Blackland Research Extension Center Temple, Texas January 25, 2011 Robert Adams Alan Plummer Associates, Inc. radams@apaienv.com Ashley Alexander Texas State Soil Station, Texas Tech University tom.arsuffi@ttu.edu Jenna Barrett Brazos River Authority jbarrett

59

DOE/EIS-0265-SA-169: Supplement Analysis for the Watershed Management Program EIS --Idaho Model Watershed Habitat Projects - Pahsimeroi Fence Crossing (08/11/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-169) Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-169) Mickey Carter Fish and Wildlife Project Manager - KEWU-4 Proposed Action: Idaho Model Watershed Habitat Projects - Pahsimeroi Fence Crossing Project No: 1994-017-00 Watershed Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Watershed Management Program EIS): 2.1 Maintain Healthy Riparian Plant Communities, 2.15 Acquisition of Sensitive Riparian Resources, 6.10 Access Fencing Location: Lemhi County, Idaho Proposed by: Bonneville Power Administration (BPA) and the Custer Soil and Water Conservation District Description of the Proposed Action: The Bonneville Power Administration is proposing to fund the installation of a fenced stream crossing over the Pahsimeroi River to enhance a livestock riparian exclosure.

60

Pataha Creek Model Watershed : 1999 Habitat Conservation Projects.  

Science Conference Proceedings (OSTI)

The projects outlined in detail on the attached project reports are a summary of the many projects implemented in the Pataha Creek Model Watershed since it was selected as a model in 1993. Up until last year, demonstration sites using riparian fencing, off site watering facilities, tree and shrub plantings and upland conservation practices were used for information and education and was the main focus of the implementation phase of the watershed plan. These practices are the main focus of the watershed plan to reduce the majority of the sediment entering the stream. However, the watershed stream evaluation team used in the watershed analysis determined that there were problems along the Pataha Creek that needed to be addressed that would add further protection to the banks and therefore a further reduction of sedimentation into the stream. 1999 was a year where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek. Over 95% of the sediment entering the stream can be tied directly to the upland and riparian areas of the watershed. In stream work was not addressed this year because of the costs associated with these projects and the low impact of the sediment issue concerning Pataha Creeks impact on Chinook Salmon in the Tucannon River.

Bartels, Duane G.

2000-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "river inter-tribal watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fish Passage Assessment: Big Canyon Creek Watershed, Technical Report 2004.  

DOE Green Energy (OSTI)

This report presents the results of the fish passage assessment as outlined as part of the Protect and Restore the Big Canyon Creek Watershed project as detailed in the CY2003 Statement of Work (SOW). As part of the Northwest Power Planning Council's Columbia Basin Fish and Wildlife Program (FWP), this project is one of Bonneville Power Administration's (BPA) many efforts at off-site mitigation for damage to salmon and steelhead runs, their migration, and wildlife habitat caused by the construction and operation of federal hydroelectric dams on the Columbia River and its tributaries. The proposed restoration activities within the Big Canyon Creek watershed follow the watershed restoration approach mandated by the Fisheries and Watershed Program. Nez Perce Tribal Fisheries/Watershed Program vision focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects. We strive toward maximizing historic ecosystem productive health, for the restoration of anadromous and resident fish populations. The Nez Perce Tribal Fisheries/Watershed Program (NPTFWP) sponsors the Protect and Restore the Big Canyon Creek Watershed project. The NPTFWP has the authority to allocate funds under the provisions set forth in their contract with BPA. In the state of Idaho vast numbers of relatively small obstructions, such as road culverts, block thousands of miles of habitat suitable for a variety of fish species. To date, most agencies and land managers have not had sufficient, quantifiable data to adequately address these barrier sites. The ultimate objective of this comprehensive inventory and assessment was to identify all barrier crossings within the watershed. The barriers were then prioritized according to the amount of habitat blocked at each site and the fish life history stages impacted. This assessment protocol will hopefully prove useful to other agencies and become a model for use in other watersheds.

Christian, Richard

2004-02-01T23:59:59.000Z

62

White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 1998-1999 Annual Report.  

DOE Green Energy (OSTI)

The authors report on their progress from April 1998 through March 1999 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), U.S. Fish and Wildlife Service (USFWS; Report D), Columbia River Inter-Tribal Fish Commission (CRITFC; Report E), and the University of Idaho (UI; Report F). This is a multi-year study with many objectives requiring more than one year to complete. Therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of our work from April 1998 through March 1999 are given.

Ward, David L.

2000-12-01T23:59:59.000Z

63

White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2000-2001 Annual Report.  

DOE Green Energy (OSTI)

We report on our progress from April 2000 through March 2001 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), Columbia River Inter-Tribal Fish Commission (CRITFC; Report D), the U.S. Fish and Wildlife Service (USFWS; Report E), and Oregon State University (OSU; Report F). This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of our work from April 2000 through March 2001 are listed.

Kern, J. Chris; Ward, David L.; Farr, Ruth A. (Oregon Department of Fish and Wildlife)

2002-02-01T23:59:59.000Z

64

River Flow Response to Precipitation and Snow Budget in California during the 1994/95 Winter  

Science Conference Proceedings (OSTI)

A numerical study of precipitation and river flow from November 1994 to May 1995 at two California basins is presented. The Hopland watershed of the Russian River in the northern California Coastal Range and the headwater of the North Fork ...

Jinwon Kim; Norman L. Miller; Alexander K. Guetter; Konstantine P. Georgakakos

1998-09-01T23:59:59.000Z

65

Iskuulpa Watershed Management Plan : A Five-Year Plan for Protecting and Enhancing Fish and Wildlife Habitats in the Iskuulpa Watershed.  

DOE Green Energy (OSTI)

The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to protect, enhance, and mitigate wildlife and wildlife habitat and watershed resources in the Iskuulpa Watershed. The Iskuulpa Watershed Project was approved as a Columbia River Basin Wildlife Fish and Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1998. Iskuulpa will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the John Day and McNary Hydroelectric facilities on the Columbia River. By funding the enhancement and operation and maintenance of the Iskuulpa Watershed, BPA will receive credit towards their mitigation debt. The purpose of the Iskuulpa Watershed management plan update is to provide programmatic and site-specific standards and guidelines on how the Iskuulpa Watershed will be managed over the next three years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management.

Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

2003-01-01T23:59:59.000Z

66

Forecasting the Anomalous Discharge of the Caroní River, Venezuela  

Science Conference Proceedings (OSTI)

This study develops methods for the extended-range forecasting of the February–March minimum of water discharge of the Caroní River in eastern Venezuela, a watershed providing more than 70% of the hydroelectric power for the country. The ...

Stefan Hastenrath; Lawrence Greischar; Esperanza Colón; Alfredo Gil

1999-08-01T23:59:59.000Z

67

Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam: Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1997-1998 Annual Report.  

DOE Green Energy (OSTI)

The authors report on their progress from April 1997 through March 1998 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), National Marine Fisheries Service (NMFS; Report D), U.S. Fish and Wildlife Service (USFWS; Report E), and Columbia River Inter-Tribal Fish Commission (CRITFC; Report F). This is a multi-year study with many objectives requiring more than one year to complete. Therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of the work from April 1997 through March 1998 listed.

Ward, David L. (Oregon Department of Fish and Wildlife, Portland, OR)

1999-02-01T23:59:59.000Z

68

South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program (DOE/EIS-0353) (05/01/06)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Fork Flathead Watershed South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program RECORD OF DECISION Summary The Bonneville Power Administration (BPA) has decided to fund Montana Fish, Wildlife, and Parks Department's (MFWP) South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program. This program is the Proposed Action in the South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program EIS (DOE/EIS- 0353, July 2005). BPA will fund the program pursuant to its authority under the Pacific Northwest Electric Power Planning and Conservation Act (Northwest Power Act) to protect, mitigate, and enhance fish affected by the Federal Columbia River Power System (FCRPS) in the Columbia River Basin. The project constitutes a portion of the Hungry

69

Asotin Creek Model Watershed Plan: Asotin County, Washington, 1995.  

DOE Green Energy (OSTI)

The Northwest Power Planning Council completed its ``Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ``four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity.

Browne, Dave

1995-04-01T23:59:59.000Z

70

Optimal Operation of Large Agricultural Watersheds with Water Quality Restraints  

E-Print Network (OSTI)

Improved technology is needed for use in properly managing large agricultural watersheds. Proper watershed management means selecting land uses that are appropriate for each subarea, using erosion control measures where necessary, and applying fertilizers at rates that maximize agricultural production without polluting the environment. Watershed runoff and industrial and municipal effluents pollute streams and reservoirs. Point source pollution (industries and municipalities) can be monitored. Nonpoint-source pollution (watersheds) is widely dispersed and not easily measured. Mathematical models are needed to predict nonpoint-source pollution as affected by watershed characteristics, land use, conservation practices, chemical fertilizers, and climatic variables. Routing models are needed to determine the quality of water as it flows from nonpoint sources through streams and valleys to rivers and large reservoirs. Models are also needed to determine optimal strategies for planning land use, conservation practices, and fertilizer application to maximize agricultural production subject to water quality constraints. Three of the most important agricultural pollutants are suspended sediment, phosphorus, and nitrogen. Robinson [1971] pointed out that sediment is the greatest pollutant of water in terms of volume. Sediment also transports other pollutants, like phosphorus and nitrogen. These two elements are principally involved in lake eutrophication. Frequently algae blooms develop in nutrient-laden water and cause it to have an off-taste and an unpleasant odor. The odor of decaying plants becomes offensive; fish are killed because of reduced dissolved oxygen in the water, and recreation is deterred. The objective of this research was to develop models for use in managing large agricultural watersheds to obtain maximum agricultural production and to maintain water quality standards. The models were designed to: 1. Simulate daily runoff, and sediment, phosphorus, and nitrogen yields from small watersheds (areas land owners and operators) for planning land use, fertilizer application, and conservation practices on subwatersheds. 4. Determine the optimal strategy for each subwatershed to maximize agricultural production for the entire watershed subject to water quality constraints. Generally, water-quality models are developed by adding chemical modeling components to existing runoff and sediment models because runoff and sediment provide transportation for chemicals. Several conceptual models for predicting chemical yields from small watersheds have been presented [Crawford and Donigian, 1973; Donigian and Crawford, 1976; Frere, et al., 1975; Hagin and Amberger, 1974; Kling, 1974; Johnson and Straub, 1971]. However, these models are not applicable to large watersheds because they have no routing mechanism. For this reason, runoff, sediment, and nutrient models were refined and developed here for application to large watersheds. Probably, the most widely used and accepted model for predicting runoff volume is the Soil Conservation Service (SCS) curve number system [U.S. Soil Conservation Service, 1972]. The SCS model was modified by adding a soil-moisture-index accounting procedure [Williams and Laseur, 1976]. The modified water yield model is considerably more accurate than the original SCS model. On a watershed near Riesel, Texas, the modified model explained 95% of the variation in monthly runoff as compared with 65% for the original model. The water-yield model was refined here by replacing the climatic index (lake evaporation) with daily consumptive water use for individual crops.

Williams, J. R.; Hann, R. W.

1978-04-01T23:59:59.000Z

71

Supplement Analysis for the Watershed Management Program EIS - John Day Watershed Restoration Program  

DOE Green Energy (OSTI)

The Bonneville Power Administration (BPA) is proposing to fund the John Day Watershed Restoration Program, which includes projects to improve watershed conditions, resulting in improved fish and wildlife habitat. The project was planned and coordinated by the Confederated Tribes of the Warm Springs through the John Day Basin Office in Prairie City, Oregon. A variety of activities will be implemented, described below. The project will involve the installation of four permanent lay flat diversions (structures) to replace temporary diversions. Two structures would be constructed in Beech Creek, one in Little Beech Creek and one in the John Day River. The structures will replace temporary pushup dams, which were constructed annually of various materials. Installation of the permanent diversion structures eliminates the stream-disturbing activities associated with annual installation of temporary structures. They also will enable fish passage in all flow conditions, an improvement over the temporary structures which can obstruct fish passage under some conditions. Five scour chains will be installed in six sites within the John Day River. The chains will be 3 feet long and consist of 1/4 inch chain. They will be buried within the streambed to monitor the movement of material in the streambed. Other activities that will be implemented include: Installation of off-site water systems in areas where fencing and revegetation projects are implemented, in order to restrict livestock access to waterways; construction of facilities to return irrigation flows to the Johns Day River, including the installation of pipe to replace failing drains or return ditches; installation of pumps to replace temporary diversions; and removal of junipers from approximately 500 acres per year by hand felling.

N /A

2004-08-04T23:59:59.000Z

72

Texas Watershed Coordinator Roundtable Participants July 27, 2011 First Last Organization Email  

E-Print Network (OSTI)

Texas Watershed Coordinator Roundtable Participants July 27, 2011 Austin First Last Organization Email Robert Adams Alan Plummer Associates, Inc. radams@apaienv.com Jacqueline Aitkenhead-Peterson Texas@tsswcb.state.tx.us Blake Alldredge Texas AgriLife Extension balldredge@tamu.edu Beth Almaraz Nueces River Authority

73

TATE OF CALIFORNI NERGY COMMISSION  

E-Print Network (OSTI)

and Wildlife), Blaine Parker (Columbia River Inter-Tribal Fish Commission) and Brad James (Washington and on sturgeon passage at Columbia River hydroelectric dams. The presentation will review progress

74

Watershed Evaluation and Habitat Response to Recent Storms : Annual Report for 1999.  

DOE Green Energy (OSTI)

Large and powerful storm systems moved through the Pacific Northwest during the wet season of 1995--96, triggering flooding, mass erosion, and, alteration of salmon habitats in affected watersheds. This project study was initiated to assess whether watershed conditions are causing damage, triggered by storm events, to salmon habitat on public lands in the Snake River basin. The storms and flooding in 1995--96 provide a prime opportunity to examine whether habitat conditions are improving, because the effects of land management activities on streams and salmon habitat are often not fully expressed until triggered by storms and floods. To address these issues, they are studying the recent storm responses of watersheds and salmon habitat in systematically selected subbasins and watersheds within the Snake River system. The study watersheds include several in the Wenaha and Tucannon subbasins in Washington and Oregon, and the watersheds of Squaw Creek (roaded) and Weir Creek (unroaded) in the Lochsa River subbasin, Idaho. The study was designed to examine possible differences in the effects of the storms in broadly comparable watersheds with differing magnitudes or types of disturbance. Watershed response is examined by comparing storm response mechanisms, such as rates of mass failure, among watersheds with similar attributes, but different levels of land management. The response of salmon habitat conditions is being examined by comparing habitat conditions before and after the storms in a stream and among streams in watersheds with similar attributes but different levels of land management. If appropriate to the results, the study will identify priority measures for reducing the severity of storm responses in watersheds within the Snake River Basin with habitat for at-risk salmon. This annual report describes the attributes of the study watersheds and the criteria and methods used to select them. The report also describes the watershed and fish habitat attributes evaluated and the methods used to evaluate them. Watershed responses and attributes evaluated include mass failures, historic soil loss, the integration of roads with the drainage network, estimated flood recurrence intervals, and headwater channel morphology. Habitat attributes evaluated include large woody debris, pool frequency and depth, substrate conditions, and bank stability. Multiple analyses of habitat data in the Tucannon and Wenaha subbasins remain to be completed due to difficulties stemming from data characteristics that indicated that some of the pre-existing data may have be of questionable accuracy. Diagnostic attributes of the questionable data included a change in monitoring protocols during the pre- to post-flood analysis period, physically implausible temporal trends in some habitat attributes at some sites, and conflicting results for the same attribute at the same locations from different data sources. Since unreliable data can lead to spurious results, criteria were developed to screen the data for analysis, as described in this report. It is anticipated that while the data screening will prevent spurious results, it will also truncate some of the planned analysis in the Tucannon and Wenaha systems.

Rhodes, Jonathan J.; Huntington, Charles W.

2000-02-01T23:59:59.000Z

75

Habitat Projects Completed within the Asotin Creek Watershed, 1999 Completion Report.  

DOE Green Energy (OSTI)

The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in WRIA 35. According to WDFW's Priority WRIA's by At-Risk Stock Significance Map, it is the highest priority in southeastern WA. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred seventy-six projects have been implemented through the ACMWP as of 1999. Twenty of these projects were funded in part through Bonneville Power Administration's 1999 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; thirty-eight were created with these structures. Three miles of stream benefited from riparian improvements such as vegetative plantings (17,000 trees and shrubs) and noxious weed control. Two sediment basin constructions, 67 acres of grass seeding, and seven hundred forty-five acres of minimum till were implemented to reduce sediment production and delivery to streams in the watershed.

Johnson, Bradley J.

2000-01-01T23:59:59.000Z

76

Habitat Projects Completed within the Asotin Creek Watershed, 1998 Completion Report.  

DOE Green Energy (OSTI)

The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred forty-six projects have been implemented through the ACMWP as of 1998. Fifty-nine of these projects were funded in part through Bonneville Power Administration's 1998 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; one hundred thirty-nine pools were created with these structures. Three miles of stream benefited from riparian improvements such as fencing, vegetative plantings, and noxious weed control. Two alternative water developments were completed, providing off-stream-watering sources for livestock. 20,500 ft of upland terrace construction, seven sediment basin construction, one hundred eighty-seven acres of grass seeding, eight hundred fifty acres of direct seeding and eighteen sediment basin cleanouts were implemented to reduce sediment production and delivery to streams in the watershed.

Johnson, Bradley J.

1999-11-01T23:59:59.000Z

77

Prescribed Burning in the Kings River Ecosystems Project Area: Lessons  

E-Print Network (OSTI)

Prescribed Burning in the Kings River Ecosystems Project Area: Lessons Learned1 David S. Mc burning was initiated in 1994 in two 32,000-acre watersheds in the Kings River District of the Sierra various effects of these fires. Approximately 11,900 acres of prescription burns were completed by the end

Standiford, Richard B.

78

Walker Branch Watershed Ecosystems Data  

DOE Data Explorer (OSTI)

These projects have all contributed to a more complete understanding of how forest watersheds function and have provided insights into the solution of energy-related problems associated with air pollution, contaminant transport, and forest nutrient dynamics. This is one of a few sites in the world characterized by long-term, intensive environmental studies. The Walker Branch Watershed website at http://walkerbranch.ornl.gov/ provides maps, photographs, and data on climate, precipitation, atmospheric deposition, stream discharge and runoff, stream chemistry, and vegetation. [Taken from http://walkerbranch.ornl.gov/ABOUTAAA.HTM

79

Couse/Tenmile Creeks Watershed Project Implementation : 2007 Conservtion Projects. [2007 Habitat Projects Completed].  

DOE Green Energy (OSTI)

The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on private lands within Asotin County watersheds. The Tenmile Creek watershed is a 42 square mile tributary to the Snake River, located between Asotin Creek and the Grande Ronde River. Couse Creek watershed is a 24 square mile tributary to the Snake River, located between Tenmile Creek and the Grande Ronde River. Both watersheds are almost exclusively under private ownership. The Washington Department of Fish and Wildlife has documented wild steelhead and rainbow/redband trout spawning and rearing in Tenmile Creek and Couse Creek. The project also provides Best Management Practice (BMP) implementation throughout Asotin County, but the primary focus is for the Couse and Tenmile Creek watersheds. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Farm Service Agency (FSA), Salmon Recovery Funding Board (SRFB), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe (NPT), Washington Department of Ecology (DOE), National Marine Fisheries Service (NOAA Fisheries), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. The Asotin Subbasin Plan identified priority areas and actions for ESA listed streams within Asotin County. Couse Creek and Tenmile Creek are identified as protection areas in the plan. The Conservation Reserve Enhancement Program (CREP) has been successful in working with landowners to protect riparian areas throughout Asotin County. Funding from BPA and other agencies has also been instrumental in protecting streams throughout Asotin County by utilizing the ridge top to ridge top approach.

Asotin County Conservation District

2008-12-10T23:59:59.000Z

80

Ohio River Basin Trading Project Listening Workshops  

Science Conference Proceedings (OSTI)

In March 2010, American Farmland Trust held two listening workshops in the Wabash River Watershed to provide information and collect feedback on the Ohio River Basin Trading Project. Each session began with a basic primer on water quality trading given by Jim Klang of Kieser Associates. The presentations were followed by facilitated discussions. Participants were prompted with several questions, developed from earlier listening sessions, addressing issues that producers will likely face in water quality ...

2010-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "river inter-tribal watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-91)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2002 , 2002 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-91) Tom Morse, KEWL-4 TO: Fish and Wildlife Project Manager Proposed Action: Hood River Fish Habitat (Evans Creek Culvert Replacement) Project No: 1998-021-00 Watershed Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Watershed Management Program EIS): 1.13 Culvert removal/replacement to improve fish passage, 2.1 Maintain healthy riparian plant communities, 2.4 Provide filter strips to catch sediment and other pollutants, 2.6 Native seeds inventory, 2.7 Avoid exotic species, 7.2 Install hydraulic structures at low streamflows, 7.3 Minimize erosion

82

Clearwater Focus Watershed; Nez Perce Tribe, 2003-2004 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division, approaches watershed restoration with a goal to protect, restore, and enhance a connected network of functioning habitat types capable of supporting all fish life stages. Its goal is also to re-establish normal patterns of production, dispersal, and exchange of genetic information within the 1855 Treaty Area. The Nez Perce Tribe began watershed restoration projects within the Clearwater River Subbasin in 1996. Progress has been made in restoring the sub-basin by excluding cattle from critical riparian areas through fencing, stabilizing stream banks, decommissioning roads, and upgrading culverts. Coordination of these projects is critical to the success of the restoration of the sub-basin. Coordination activities also includes: inter and intra-department coordination, sub-basin assessment and planning, involving government and private organizations, and treaty area coordination.

Jones, Ira (Nez Perce Tribe, Lapwai, ID)

2004-06-01T23:59:59.000Z

83

Clearwater Focus Watershed; Nez Perce Tribe, 2002-2003 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division, approaches watershed restoration with a goal to protect, restore, and enhance a connected network of functioning habitat types capable of supporting all fish life stages. Its goal is also to re-establish normal patters of production, dispersal, and exchange of genetic information within the 1855 Treaty Area. The Nez Perce Tribe began watershed restoration projects within the Clearwater River Subbasin in 1996. Progress has been made in restoring the sub-basin by excluding cattle from critical riparian areas through fencing, stabilizing streambanks, decommissioning roads, and upgrading culverts. Coordination of these projects is critical to the success of the restoration of the sub-basin. Coordination includes: within department coordination, sub-basin assessment and planning, and treaty area coordination.

Jones, Ira (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2004-01-01T23:59:59.000Z

84

River Thames River Thames  

E-Print Network (OSTI)

C BD A River Thames River Thames Waterloo & City Southwark Northwood Northwood Hills North Harrow Oaks South Croydon East Croydon Streatham Common West Norwood Gipsy Hill Crystal Palace Birkbeck Penge

Delmotte, Nausicaa

85

Evaluating the SWAT Model for Hydrological Modeling in the Xixian Watershed and A Comparison with the XAJ Model  

Science Conference Proceedings (OSTI)

Already declining water availability in Huaihe River, the 6th largest river in China, is further stressed by climate change and intense human activities. There is a pressing need for a watershed model to better understand the interaction between land use activities and hydrologic processes and to support sustainable water use planning. In this study, we evaluated the performance of SWAT for hydrologic modeling in the Xixian River Basin, located at the headwaters of the Huaihe River, and compared its performance with the Xinanjiang (XAJ) model that has been widely used in China

Shi, Peng; Chen, Chao; Srinivasan, Raghavan; Zhang, Xuesong; Cai, Tao; Fang, Xiuqin; Qu, Simin; Chen, Xi; Li, Qiongfang

2011-09-10T23:59:59.000Z

86

Montana Watershed Coordination Council | Open Energy Information  

Open Energy Info (EERE)

Watershed Coordination Council Watershed Coordination Council Jump to: navigation, search Logo: Montana Watershed Coordination Council Name Montana Watershed Coordination Council Place Helena, Montana Zip 59604-6873 Website http://mtwatersheds.org/index. References MWCC Website[1] This article is a stub. You can help OpenEI by expanding it. Montana Watershed Coordination Council is an organization based in Helena, Montana. MWCC has been cultivating broad-based support for community driven approaches to managing complex land and water issues for over eighteen years as the statewide organization representing each of more than 60 watershed groups. The MWCC mission is to enhance, conserve, and protect natural resources and sustain the high quality of life in Montana for present and future

87

Scenario development for water resources planning and watershed management: Methodology and semi-arid region case study  

Science Conference Proceedings (OSTI)

Utilizing the scenario development framework from Mahmoud et al. (2009), a set of scenarios were developed for and applied in the Verde River Watershed in Arizona, USA. Through a scenario definition exercise, three dimensions of future change with respective ... Keywords: Scenario development, Scenario planning, Scenarios, Water resources management, Water resources planning

Mohammed I. Mahmoud; Hoshin V. Gupta; Seshadri Rajagopal

2011-07-01T23:59:59.000Z

88

The Walker Branch Watershed on the Oak Ridge Reservation  

NLE Websites -- All DOE Office Websites (Extended Search)

Watershed History Prior to World War II, the Walker Branch Watershed was a typical rural area with a mix of forest, sustenance agriculture, and open woodland grazing. After...

89

John Day Watershed Restoration Projects, annual report 2003.  

DOE Green Energy (OSTI)

The John Day is the nation's second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, Oregon's fourth largest drainage basin, and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, westslope cutthroat, and redband and bull trout, the John Day system is truly a basin with national significance. The majority of the John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), which contracts the majority of the construction implementation activities for these projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2003, the JDBO and GSWCD proposed continuation of their successful partnership between the two agencies and basin landowners to implement an additional twelve (12) watershed conservation projects. The types of projects include off channel water developments, juniper control, permanent diversions, pump stations, and return-flow cooling systems. Due to funding issues and delays, permitting delays, fire closures and landowner contracting problems, 2 projects were canceled and 7 projects were rescheduled to the 2004 construction season. Project costs in 2003 totaled $115,554.00 with a total amount of $64,981.00 (56%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources such as the Bureau of Reclamation (BOR), Oregon Watershed Enhancement Board, the U.S. Fish & Wildlife Service Partners in Wildlife Program and individual landowners.

Brown, Linda (Confederated Tribes of the Warm Springs Reservation of Oregon, John Day Basin Office, John Day, OR)

2004-01-01T23:59:59.000Z

90

Water Quality and Stormwater Contaminants in the Brunette River Watershed,  

E-Print Network (OSTI)

Disability access Accessible versions of this document in Microsoft Word are available at www For accessible (word, pdf and html) versions of this document, see: www Research Areas 152Applying for admission to Honours 152Bioinformatics 152First Year 152Second Year 152Third

91

Hood River Watershed Action Plan Updated Publication: April 22, 2008  

E-Print Network (OSTI)

would be the application of some form of automated mitigation procedures (AMP). These measures apply

92

Fresno River Watershed Assessment Project Draft Final Report  

E-Print Network (OSTI)

Basin has a temperate semiarid climate characterized by cool wet winters and warm dry summers. Soils Lewis Creek, Nelder Creek (including Redwood Creek), China Creek, Miami Creek (including Petersen and Hensley Lake, the Madera County Engineering Department, the Fresno office of the California Regional Water

Wang, Zhi

93

Shale Gas Development in the Susquehanna River Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Water Resource Challenges Water Resource Challenges From Energy Production Major Types of Power Generation in SRB - Total 15,300 Megawatts - 37.5% 4.0% 12.0% 15.5% 31.0% Nuclear Coal Natural Gas Hydroelectric Other Marcellus Shale Gas Development in the Susquehanna River Basin The Basin: * 27,510-square-mile watershed * Comprises 43 percent of the Chesapeake Bay watershed * 4.2 million population * 60 percent forested * 32,000+ miles of waterways The Susquehanna River: * 444 miles, largest tributary to the Chesapeake Bay * Supplies 18 million gallons a minute to the Bay Susquehanna River Basin Geographic Location of Marcellus Shale within Susq. River Basin 72% of Basin (20,000 Sq. Miles) Underlain by Marcellus Shale Approximate Amount of Natural Gas in Marcellus Shale * U.S. currently produces approx. 30 trillion

94

Clearwater Focus Watershed; Nez Perce Tribe, 2005-2006 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division, approaches watershed restoration with a goal to protect, restore, and enhance a connected network of functioning habitat types capable of supporting all fish life stages. The key objective of the Nez Perce Tribe Focus Coordinator position is to overcome fragmentation within the basin by managing communications with the subbasin, providing an overall framework and process for coordinated fisheries restoration and managing the planning, assessment, implementation, and monitoring and evaluation process. The Nez Perce Tribe began watershed restoration projects within the Clearwater River Subbasin in 1996. Progress has been made in restoring the sub-basin by excluding cattle from critical riparian areas through fencing, stabilizing stream banks, decommissioning roads, restoring fish passage, as well as other watershed restoration projects. Coordination of these projects is critical to the success of the restoration of the sub-basin. Coordination activities also includes: inter and intra-department coordination, sub-basin assessment and planning, involving government and private organizations, and treaty area coordination.

Jones, Ira; McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2006-12-01T23:59:59.000Z

95

Clearwater Focus Watershed; Nez Perce Tribe, 2004-2005 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division, approaches watershed restoration with a goal to protect, restore, and enhance a connected network of functioning habitat types capable of supporting all fish life stages. The key objective of the Nez Perce Tribe Focus Coordinator position is to overcome fragmentation within the basin by managing communications with the subbasin, providing an overall framework and process for coordinated fisheries restoration and managing the planning, assessment, implementation, and monitoring and evaluation process. The Nez Perce Tribe began watershed restoration projects within the Clearwater River Subbasin in 1996. Progress has been made in restoring the sub-basin by excluding cattle from critical riparian areas through fencing, stabilizing stream banks, decommissioning roads, restoring fish passage, as well as other watershed restoration projects. Coordination of these projects is critical to the success of the restoration of the sub-basin. Coordination activities also includes: inter and intra-department coordination, sub-basin assessment and planning, involving government and private organizations, and treaty area coordination.

Jones, Ira (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2006-02-01T23:59:59.000Z

96

Supplement Anlalysis for the Watershed Program EIS (DOE/EIS-0265/SA-58) (8/7/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2001 7, 2001 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-58) Mark Shaw - KEWN-4 Fish and Wildlife Project Manager Proposed Action: Asotin Creek Channel, Floodplain and Riparian Restoration (2001) Project Number: 2000-067-00 Watershed Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Watershed Management Program EIS): 1.3 Restoration of Channelized River and Stream Reaches, 1.6 Install Large Woody Debris Structures, 1.7 Install Other Habitat Complexity Structures, 1.8 Bank Protection through Vegetation Management, 1.9 Structural Bank Protection Using Bioengineering Methods, 1.16 Spawning Habitat Enhancements, 1.17 Rearing Habitat Enhancements, 2.1

97

DOE/EIS-0265-SA-163: Supplement Analysis for the Watershed Management Program EIS (8/04/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-163) John Baugher TO: Fish and Wildlife Project Manager, KEWL-4 Proposed Action: John Day Watershed Restoration Program Project No: 1998-018-00 Wildlife Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Wildlife Mitigation Program EIS): 4.2 Water Measuring Devices 4.10 Water Conveyance Pipeline, 4.25 Consolidate/Replace Irrigation Diversion Dams, 6.5 Water Supply: Pipeline, 6.10 Access: Fencing; 8.13 Stand Thinning; 8.15 Manage Stands to Enhance Snowpack Location: Sites within the John Day River Watershed, in Wheeler County and Grant County, Oregon Proposed by: Bonneville Power Administration (BPA) and the Confederated Tribes of the Warm

98

Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-78) (5/9/02)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 9, 2002 May 9, 2002 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-78) David Byrnes - KEWL-4 Fish and Wildlife Project Manager Proposed Action: Yakima Basin Side Channels Project, Scatter Creek/Plum Creek Land Acquisition Phase II (modification to DOE/EIS-0265/SA-72). Project No: 1997-051-00 Watershed Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Watershed Management Program EIS): 2.15 Acquisition of Sensitive Riparian Resources. Location: Yakima River Basin, Kittitas County, Washington Proposed by: Bonneville Power Administration (BPA) and The Yakama Nation Description of the Proposed Action: BPA proposes to purchase approximately 310 acres of privately-owned

99

The Ecology of the Navasota River, Texas  

E-Print Network (OSTI)

A general Limnological Survey was made of the Navasota River, Texas, a tributary of the Brazos River, between February, 1968 and March, 1970. Five stations on the main channel were visited twice monthly from February, 1968 to January, 1970, and three major tributaries were visited twice monthly from April, 1969 to March, 1970, at a station near the mouth of each. In addition, collections of fishes and benthos were made from 144 sites distributed throughout the watershed. Data provided include, discharge, temperature, pH, specific conductance, chloride, sulfate, nitrate, hardness, organics, trace elements, bacteria, zooplankton, macro-drift, algae, benthos and fishes (with distribution maps of fish species).

Clark, W. J.

1973-12-01T23:59:59.000Z

100

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 - 2970 of 28,905 results. 61 - 2970 of 28,905 results. Download CX-006882: Categorical Exclusion Determination Tribal Energy Program-Alaska Native Tribal Health Consortium (Selawik) CX(s) Applied: A9, A11, B2.5, B5.1 Date: 09/15/2011 Location(s): Alaska Office(s): Energy Efficiency and Renewable Energy http://energy.gov/nepa/downloads/cx-006882-categorical-exclusion-determination Download CX-006883: Categorical Exclusion Determination Tribal Energy Program-Yukon River Inter-Tribal Watershed Council CX(s) Applied: A9, A11, B2.5, B5.1 Date: 09/15/2011 Location(s): Anaktuvuk Pass, Alaska, Alaska Office(s): Energy Efficiency and Renewable Energy http://energy.gov/nepa/downloads/cx-006883-categorical-exclusion-determination Download CX-005248: Categorical Exclusion Determination Florida-City-Cape Coral

Note: This page contains sample records for the topic "river inter-tribal watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Pataha Creek Model Watershed : January 2000-December 2002 Habitat Conservation Projects.  

Science Conference Proceedings (OSTI)

The projects outlined in detail on the attached project reports were implemented from calendar year 2000 through 2002 in the Pataha Creek Watershed. The Pataha Creek Watershed was selected in 1993, along with the Tucannon and Asotin Creeks, as model watersheds by NPPC. In previous years, demonstration sites using riparian fencing, off site watering facilities, tree and shrub plantings and upland conservation practices were used for information and education and were the main focus of the implementation phase of the watershed plan. These practices were the main focus of the watershed plan to reduce the majority of the sediment entering the stream. Prior to 2000, several bank stabilization projects were installed but the installation costs became prohibitive and these types of projects were reduced in numbers over the following years. The years 2000 through 2002 were years where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek. Over 95% of the sediment entering the stream can be tied directly to the upland and riparian areas of the watershed. The Pataha Creek has steelhead in the upper reaches and native and planted rainbow trout in the mid to upper portion. Suckers, pikeminow and shiners inhabit the lower portion because of the higher water temperatures and lack of vegetation. The improvement of riparian habitat will improve habitat for the desired fish species. The lower portion of the Pataha Creek could eventually develop into spawning and rearing habitat for chinook salmon if some migration barriers are removed and habitat is restored. The upland projects completed during 2000 through 2002 were practices that reduce erosion from the cropland. Three-year continuous no-till projects were finishing up and the monitoring of this particular practice is ongoing. Its direct impact on soil erosion along with the economical aspects is being studied. Other practices such as terrace, waterway, sediment basin construction and the installation of strip systems are also taking place. The years 2000 through 2002 were productive years for the Pataha Creek Model Watershed but due to the fact that most of the cooperators in the watershed have reached their limitation allowed for no-till and direct seed/ two pass of 3 years with each practice, the cost share for these practices is lower than the years of the late 90's. All the upland practices that were implemented have helped to further reduce erosion from the cropland. This has resulted in a reduction of sedimentation into the spawning and rearing area of the fall chinook salmon located in the lower portion of the Tucannon River. The tree planting projects have helped in reducing sedimentation and have also improved the riparian zone of desired locations inside the Pataha Creek Watershed. The CREP (Conservation Reserve Enhancement Program) along with the CCRP (Continuous Conservation Reserve Program) are becoming more prevalent in the watershed and are protecting the riparian areas along the Pataha Creek at an increasing level every year. Currently roughly 197 acres of riparian has been enrolled along the Pataha Creek in the CREP program.

Bartels, Duane G.

2003-04-01T23:59:59.000Z

102

Watershed Management Program Record of Decision; 28Aug1997  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Watershed Management Program Watershed Management Program Record of Decision SUMMARY Bonneville Power Administration (BPA) has decided to adopt a set of prescriptions (goals, strategies, and procedural requirements) that apply to future BPA-funded watershed management projects. Various sources-including Indian tribes, state agencies, property owners, private conservation groups, or other Federal agencies-propose watershed management projects to the Northwest Power Planning Council (Council) for BPA funding. Following independent scientific and public reviews, the Council then selects projects to recommend for BPA funding. BPA adopts this set of prescriptions to standardize the planning and implementation of individual watershed management programs and projects. This decision is based on consideration of

103

WATERSHED SCIENCE Watershed Science is the study of the natural processes and human  

E-Print Network (OSTI)

consumption, agriculture, energy production, transportation, and recreation. Management of fresh water.colostate.edu/career-services/ Sample Watershed Science Employers State of Colorado State of Wyoming Telesto URS US Geological Survey US

104

Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed, Technical Report 2003-2006.  

DOE Green Energy (OSTI)

The Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed is a multi-phase project to enhance steelhead trout in the Lapwai Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District (District). Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period December 1, 2003 through February 28, 2004 include; seven grade stabilization structures, 0.67 acres of wetland plantings, ten acres tree planting, 500 linear feet streambank erosion control, two acres grass seeding, and 120 acres weed control.

Rasmussen, Lynn

2007-02-01T23:59:59.000Z

105

Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed, 2004-2005 Annual Report.  

DOE Green Energy (OSTI)

The ''Restoring Anadromous Fish Habitat in the Big Canyon Creek Watershed'' is a multi-phase project to enhance steelhead trout in the Big Canyon Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District. Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period September 1, 2004 through October 31, 2005 include; 2.7 riparian miles treated, 3.0 wetland acres treated, 5,263.3 upland acres treated, 106.5 riparian acres treated, 76,285 general public reached, 3,000 students reached, 40 teachers reached, 18 maintenance plans completed, temperature data collected at 6 sites, 8 landowner applications received and processed, 14 land inventories completed, 58 habitat improvement project designs completed, 5 newsletters published, 6 habitat plans completed, 34 projects installed, 2 educational workshops, 6 displays, 1 television segment, 2 public service announcements, a noxious weed GIS coverage, and completion of NEPA, ESA, and cultural resources requirements.

Rasmussen, Lynn (Nez Perce Soil and Conservation District, Lewiston, ID)

2006-07-01T23:59:59.000Z

106

Kootenai River Biological Baseline Status Report : Annual Report, 1996.  

DOE Green Energy (OSTI)

The Kootenai River ecosystem in Idaho, Montana and British Columbia (B.C.) Canada has been severely degraded during the past 50 years. This aquatic ecosystem has changed from one that was culturally eutrophic, to one that is oligotrophic due to channelization, diking, impoundment (construction and operation of Libby Dam), and pollution abatement measures in the watershed. As a result of these influences, flow regimes, temperature patterns, and water quality were altered, resulting in changes in primary production and aquatic insect and fish populations. Construction of Libby Dam (creation of Lake Koocanusa) and closure of Cominco`s fertilizer plant resulted in decreased phosphorus load to the Kootenai River to below historical levels. Dissolved orthophosphorus concentrations averaged 0.383 mg/L in 1970 as compared to 0.039 mg/L in 1979. Total phosphorus concentrations followed a similar pattern. Both total phosphorus and soluble reactive phosphorus concentrations remained below 0.05 mg/L from 1976 to 1994, characterizing the river as oligotrophic. Post Libby Dam primary productivity levels in the river represent an ultra-oligotrophic to mesotrophic system. Since the construction and operation of Libby Dam, invertebrate densities immediately downstream from the dam increased, but species diversity decreased. Insect diversity increased with increasing distance from the dam, but overall species diversity was lower than would be expected in a free-flowing river. Fish species composition and abundance has also changed as a result of the changes in the river and its watershed.

Richards, Diana [Kootenai Tribe of Idaho, Bonners Ferry, ID (United States)

1997-02-01T23:59:59.000Z

107

South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Fork Flathead Watershed South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program Draft Environmental Impact Statement Responsible Agency: U.S. Department of Energy (DOE), Bonneville Power Administration (BPA) Cooperating Agencies: U.S. Department of Agriculture, Forest Service (FS) and State of Montana Fish, Wildlife, and Parks (MFWP) Department Title of Proposed Project: South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program State Involved: Montana Abstract: In cooperation with MFWP, BPA is proposing to implement a conservation program to preserve the genetic purity of the westslope cutthroat trout populations in the South Fork of the Flathead drainage. The South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program constitutes a

108

Texas connects watershed protection and erosion through compost  

E-Print Network (OSTI)

TEXAS CONNECTS WATERSHED PROTECTION AND EROSION THROUGHLandscape Architect, Texas Department of Transportation, 125E. 11 th Street Austin, Texas 78701, Fax: 512-416-3098 Scott

Cogburn, Barrie; McCoy, Scott

2003-01-01T23:59:59.000Z

109

Our River  

NLE Websites -- All DOE Office Websites (Extended Search)

River River Nature Bulletin No. 22 July 7, 1945 Forest Preserve District of Cook County Clayton F. Smith, President Roberts Mann, Superintendent of Conservation OUR RIVER The people of Cook County are missing a bet. They are not using their DesPlaines River. The other day we took a boat trip down that river from Lake County to Lawndale Avenue in Summit. It being a week day, we saw few people other than an occasional fisherman or pairs of strolling boys. Except for a bridge now and then, there were no signs or sounds of civilization. Chicago might have been a thousand miles away. We rested. There was isolation. There was peace. Once in a while a heron flew ahead of us; or a squirrel scampered up a tree; once we saw a family of young muskrats playing around the entrance to their den in the bank; twice we saw and heard a wood duck; again and again big fish plowed ripples surging ahead of us. It was shady and cool and still beneath the arching trees. We thought of the centuries this river had traveled. We were babes nuzzling again at the breast of Mother Nature.

110

Comparative Evaluation of Generalized River/Reservoir System Models  

E-Print Network (OSTI)

This report reviews user-oriented generalized reservoir/river system models. The terms reservoir/river system, reservoir system, reservoir operation, or river basin management "model" or "modeling system" are used synonymously to refer to computer modeling systems that simulate the storage, flow, and diversion of water in a system of reservoirs and river reaches. Generalized means that a computer modeling system is designed for application to a range of concerns dealing with river basin systems of various configurations and locations, rather than being site-specific customized to a particular system. User-oriented implies the modeling system is designed for use by professional practitioners (model-users) other than the original model developers and is thoroughly tested and well documented. User-oriented generalized modeling systems should be convenient to obtain, understand, and use and should work correctly, completely, and efficiently. Modeling applications often involve a system of several simulation models, utility software products, and databases used in combination. A reservoir/river system model is itself a modeling system, which often serves as a component of a larger modeling system that may include watershed hydrology and river hydraulics models, water quality models, databases and various software tools for managing time series, spatial, and other types of data. Reservoir/river system models are based on volume-balance accounting procedures for tracking the movement of water through a system of reservoirs and river reaches. The model computes reservoir storage contents, evaporation, water supply withdrawals, hydroelectric energy generation, and river flows for specified system operating rules and input sequences of stream inflows and net evaporation rates. The hydrologic period-of-analysis and computational time step may vary greatly depending on the application. Storage and flow hydrograph ordinates for a flood event occurring over a few days may be determined at intervals of an hour or less. Water supply capabilities may be modeled with a monthly time step and several decade long period-of-analysis capturing the full range of fluctuating wet and dry periods including extended drought. Stream inflows are usually generated outside of the reservoir/river system model and provided as input to the model. However, reservoir/river system models may also include capabilities for modeling watershed precipitation-runoff processes to generate inflows to the river/reservoir system. Some reservoir/river system models simulate water quality constituents along with water quantities. Some models include features for economic evaluation of system performance based on cost and benefit functions expressed as a function of flow and storage.

Wurbs, Ralph A.

2005-04-01T23:59:59.000Z

111

Savannah River Site  

NLE Websites -- All DOE Office Websites (Extended Search)

River Site Savannah River Site Savannah River Site (SRS) has mission responsibilities in nuclear weapons stockpile stewardship by ensuring the safe and reliable management of...

112

Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 2001 Annual Report.  

SciTech Connect

The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2001 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla Subbasin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Projects continued to be maintained on 49 private properties, one 25-year Non-Exclusive Bureau of Indian Affairs' Easement was secured, six new projects implemented and two existing project areas improved to enhance anadromous fish habitat. New project locations included sites on the mid Umatilla River, upper Umatilla River, Mission Creek, Cottonwood Creek and Buckaroo Creek. New enhancements included: (1) construction of 11,264 feet of fencing between River Mile 43.0 and 46.5 on the Umatilla River, (2) a stream bank stabilization project implemented at approximately River Mile 63.5 Umatilla River to stabilize 330 feet of eroding stream bank and improve instream habitat diversity, included construction of eight root wad revetments and three boulder J-vanes, (3) drilling a 358-foot well for off-stream livestock watering at approximately River Mile 46.0 Umatilla River, (4) installing a 50-foot bottomless arch replacement culvert at approximately River Mile 3.0 Mission Creek, (5) installing a Geoweb stream ford crossing on Mission Creek (6) installing a 22-foot bottomless arch culvert at approximately River Mile 0.5 Cottonwood Creek, and (7) providing fence materials for construction of 21,300 feet of livestock exclusion fencing in the Buckaroo Creek Drainage. An approximate total of 3,800 native willow cuttings and 350 pounds of native grass seed was planted at new upper Umatilla River, Mission Creek and Cottonwood Creek project sites. Habitat improvements implemented at existing project sites included development of a 105-foot well for off-stream livestock watering at approximately River Mile 12.0 Wildhorse Creek and construction of an engineered stream ford at approximately River Mile 3.0 Mission Creek. A total of $277,848 in financial cost share assistance was provided by the Confederated Tribes of the Umatilla Indian Reservation, U.S. Bureau of Indian Affairs, U.S. Environmental Protection Agency, U.S. Department of Agriculture, National Oceanic and Atmospheric Administration, U.S. Workforce Investment Act, Oregon Watershed Enhancement Board, Umatilla County and Pheasants Forever for planning efforts and habitat enhancements. Monitoring continued to quantify baseline conditions and the effects of habitat enhancements in the upper basin. Daily stream temperatures were collected from June through September at 22 sites. Suspended sediment samples were obtained at three gage stations to arrive at daily sediment load estimates. Photographs were taken at 96 existing and three newly established photo points to document habitat recovery and pre-project conditions. Transects were measured at three stream channel cross sections to assist with engineering and design and to obtain baseline data regarding channel morphology. Biological inventories were conducted at River Mile 3.0 Mission Creek to determine pre-project fish utilization above and below the passage barrier. Post-project inventories were also conducted at River Mile 85.0 of the Umatilla River at a project site completed in 1999. Umatilla Subbasin Watershed Assessment efforts were continued under a subcontract with Eco-Pacific. This watershed assessment document and working databases will be completed in fiscal year 2002 and made available to assist project personnel with sub-watershed prioritization of habitat needs. Water Works Consulting, Duck Creek Associates and Ed Salminen Consulting were subcontracted for watershed assessment and restoration planning in the Meacham Creek Subwatershed. A document detailing current conditions in the Meacham Creek Subwatershed and necessary restoration actions will be availa

Shaw, R. Todd; Sexton, Amy D.

2003-02-01T23:59:59.000Z

113

River Steamboats  

NLE Websites -- All DOE Office Websites (Extended Search)

River Steamboats River Steamboats Nature Bulletin No. 628-A February 12, 1977 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation RIVER STEAMBOATS The westward migration of the pioneer settlers and the rapid growth of agriculture, commerce and industry in the Middle West is in large part the story of water transportation on our inland waterways. The two main water routes were the chain of Great Lakes on the north and the Ohio River on the south. Sailing vessels carrying hundreds of tons were able to navigate on the Great Lakes almost as freely as on the ocean. Also, on the Ohio and Mississippi rivers heavy loads could be floated downstream from Pittsburgh to New Orleans -- almost 2000 miles. But boats had to be hauled back upstream by manpower -- grueling labor, stretching over weeks or months to move a few tons a few hundred miles. The coming of the steamboat a century and a half ago changed all this.

114

Low-impact development in the Assabet River Watershed : site hydrologic design and watershed-scal implications  

E-Print Network (OSTI)

Low-Impact Development (LID) is a relatively new approach to stormwater management. It aims to mimic natural hydrology through increased recharge and decreased runoff. LID technologies focus on distributed treatment of ...

Friedlich, Brian J. (Brian Joseph), 1982-

2005-01-01T23:59:59.000Z

115

Ohio River Basin Trading Project Soil and Water Conservation District (SWCD) Informational Meeting: Ohio Department of Natural Resou rces  

Science Conference Proceedings (OSTI)

The Ohio River Basin Trading Project is a first-of-a-kind interstate nutrient trading program that represents a comprehensive approach to designing and developing credit markets for nitrogen and phosphorus discharges. The intent of this trading program is to allow exchanges of water quality credits for nitrogen and phosphorus aimed at protecting and improving watersheds at lower overall costs in the Ohio River Basin. The Electric Power Research Institute (EPRI) is coordinating this project with support f...

2010-09-08T23:59:59.000Z

116

Analysis Using Aerial Photography and Ground Survey Data " (Watershed  

E-Print Network (OSTI)

As you are aware, the Watershed Analysis study which we are conducting will require additional time for completion. We are submitting this interim report on the project for your review and comment. The report is intended to: i. 2. Describe the status of the project and projected timeline for completion; Present our conceptual approach to watershed analysis in the context of cumulative effects; 3. Describe the past use of remote sensing for stream, riparian, and watershed studies and some critical issues which must be addressed in any watershed or stream analysis system; 4. Describe our study methods; 5. Present a preliminary analysis of changes in stream habitat in Taneum creek as determined from physical stream surveys conducted for this project and historical stream survey data. Since the aerial photograph analysis is not completed, we do not believe that a

Dave Somers; Jeanette Smith; Robert Wissmar; Nancy Sturnham Dnr; Tim Beechie; Dave Somers; Jeanette Smith; Robert Wissmar

1991-01-01T23:59:59.000Z

117

Yakima River Spring Chinook Enhancement Study, 1985 Annual Report.  

DOE Green Energy (OSTI)

The purpose was to evaluate enhancement methodologies that can be used to rebuild runs of spring chinook salmon in the Yakima River basin. The objectives were to: (1) determine the abundance, distribution and survival of naturally produced fry and smolts in the Yakima River; (2) evaluate different methods of fry and smolt supplementation into the natural rearing environment while maintaining as much as possible the gentic integrity of naturally produced stocks; (3) locate and define areas in the watershed which may be used for the rearing of spring chinook; (4) define strategies for enhancing natural production of spring chinook in the Yakima River; and (5) determine physical and biological limitations for production within the system.

Fast, David E.

1986-02-01T23:59:59.000Z

118

Dissolved organic matter discharge in the six largest arctic rivers-chemical composition and seasonal variability  

E-Print Network (OSTI)

The vulnerability of the Arctic to climate change has been realized due to disproportionately large increases in surface air temperatures which are not uniformly distributed over the seasonal cycle. Effects of this temperature shift are widespread in the Arctic but likely include changes to the hydrological cycle and permafrost thaw, which have implications for the mobilization of organic carbon into rivers. The focus of this research was to describe the seasonal variability of the chemical composition of dissolved organic matter (DOM) in the six largest Arctic rivers (Yukon, Mackenzie, Ob, Yenisei, Lena and Kolyma) using optical properties (UV-Vis Absorbance and Fluorescence) and lignin phenol analysis. We also investigated differences between rivers and how watershed characteristics influence DOM composition. Dissolved organic carbon (DOC) concentrations followed the hydrograph with highest concentrations measured during peak river flow. The chemical composition of peak-flow DOM indicates a dominance of freshly leached material with elevated aromaticity, larger molecular weight, and elevated lignin yields relative to base-flow DOM. During peak flow, soils in the watershed are still frozen and snowmelt water follows a lateral flow path to the river channels. As the soils thaw, surface water penetrates deeper into the soil horizons leading to lower DOC concentrations and likely altered composition of DOM due to sorption and microbial degradation processes. The six rivers studied here shared a similar seasonal pattern and chemical composition. There were, however, large differences between rivers in terms of total carbon discharge reflecting the differences in watershed characteristics such as climate, catchment size, river discharge, soil types, and permafrost distribution. The large rivers (Lena, Yenisei), with a greater proportion of permafrost, exported the greatest amount of carbon. The Kolyma and Mackenzie exported the smallest amount of carbon annually, however, the discharge weighted mean DOC concentration was almost 2-fold higher in the Kolyma, again, indicating the importance of continuous permafrost. The quality and quantity of DOM mobilized into Arctic rivers appears to depend on the relative importance of surface run-off and extent of soil percolation. The relative importance of these is ultimately determined by watershed characteristics.

Rinehart, Amanda J.

2007-08-01T23:59:59.000Z

119

Rainwater Wildlife Area, Watershed Management Plan, A Columbia Basin Wildlife Mitigation Project, 2002.  

DOE Green Energy (OSTI)

This Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary. The purpose of the project is to protect, enhance, and mitigate fish and wildlife resources impacted by Columbia River Basin hydroelectric development. The effort is one of several wildlife mitigation projects in the region developed to compensate for terrestrial habitat losses resulting from the construction of McNary and John Day Hydroelectric facilities located on the mainstem Columbia River. While this project is driven primarily by the purpose and need to mitigate for wildlife habitat losses, it is also recognized that management strategies will also benefit many other non-target fish and wildlife species and associated natural resources. The Rainwater project is much more than a wildlife project--it is a watershed project with potential to benefit resources at the watershed scale. Goals and objectives presented in the following sections include both mitigation and non-mitigation related goals and objectives.

Childs, Allen B.

2002-03-01T23:59:59.000Z

120

Red River Compact (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The Red River Compact Commission administers the Red River Compact to ensure that Texas receives its equitable share of quality water from the Red River and its tributaries as apportioned by the...

Note: This page contains sample records for the topic "river inter-tribal watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach  

Science Conference Proceedings (OSTI)

This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site is largely developed yet its surface water system encompasses two arroyos, an engineered detention basin (Lake Haussmann), storm channels, and wetlands. Conversely, the more rural Site 300 includes approximately 7,000 acres of largely undeveloped land with many natural tributaries, riparian habitats, and wetland areas. These wetlands include vernal pools, perennial seeps, and emergent wetlands. The watersheds within which the Laboratory's sites lie provide local and community ecological functions and services which require protection. These functions and services include water supply, flood attenuation, groundwater recharge, water quality improvement, wildlife and aquatic habitats, erosion control, and (downstream) recreational opportunities. The Laboratory employs a watershed approach to protect these surface water systems. The intent of this approach, presented in this document, is to provide an integrated effort to eliminate or minimize any adverse environmental impacts of the Laboratory's operations and enhance the attributes of these surface water systems, as possible and when reasonable, to protect their value to the community and watershed. The Laboratory's watershed approach to surface water protection will use the U.S. Environmental Protection Agency's Watershed Framework and guiding principles of geographic focus, scientifically based management and partnerships1 as a foundation. While the Laboratory's unique site characteristics result in objectives and priorities that may differ from other industrial sites, these underlying guiding principles provide a structure for surface water protection to ensure the Laboratory's role in environmental stewardship and as a community partner in watershed protection. The approach includes pollution prevention, continual environmental improvement, and supporting, as possible, community objectives (e.g., protection of the San Francisco Bay watershed).

Coty, J

2009-03-16T23:59:59.000Z

122

River Basin Commissions (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

123

Maine Rivers Policy (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Maine Rivers Policy accompanies the Maine Waterway Development and Conservation Act and provides additional protection for some river and stream segments, which are designated as “outstanding...

124

Short communication: Estimation of stream channel geometry in Idaho using GIS-derived watershed characteristics  

Science Conference Proceedings (OSTI)

This paper describes estimation of stream channel geometry with multiple regression analysis of GIS-derived watershed characteristics including drainage area, catchment-averaged precipitation, mean watershed slope, elevation, forest cover, percent area ... Keywords: Cross-sections, GIS, Modeling, Stream channels, Streamstats, Watersheds

Daniel P. Ames; Eric B. Rafn; Robert Van Kirk; Benjamin Crosby

2009-03-01T23:59:59.000Z

125

NETL: IEP - Water-Energy Interface: In-House Watershed Science & Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

In-House Watershed Science & Technology R&D In-House Watershed Science & Technology R&D The Geosciences Division of the NETL Office of Science and Technology conducts ongoing in-house research and development pertaining to water issues related to energy production. The division provides skill, expertise, and technical support for NETL programs in areas of environmental and energy technologies that are consistent with the mission of the NETL. Geophysical Investigations NETL is continuously developing new geophysical technologies that address environmental issues associated with the extraction and utilization of fossil fuels. Specifically, NETL has used helicopter electromagnetic and night-time thermal infrared surveys to detect and map contaminated groundwater at abandoned coal mines in north-central Pennsylvania and at an abandoned mercury mine in California. Also, NETL has used helicopter electromagnetic surveys to identify potentially hazardous conditions (unconsolidated slurry pockets, high phreatic zones, and shallow underground mines) at 14 coal waste impoundments in southern West Virginia with a moderate to high hazard potential. In the Powder River Basin of Wyoming, helicopter electromagnetic surveys were flown to determine the best management strategy for water co-produced with coalbed natural gas. Hazards posed by abandoned wells has prompted NETL to develop airborne and ground-based well finding strategies for surveying both large, open areas and small, highly developed areas. The intent of this research is to develop cost-effective airborne geophysical technologies that rapidly gather needed information from large areas, especially areas that might otherwise be inaccessible. Ground surveys from mobile platforms have been developed for use where airborne surveys are not possible or practical.

126

Habitat Evaluation Procedures (HEP) Report; Iskuulpa Wildlife Mitigation and Watershed Project, Technical Report 1998-2003.  

DOE Green Energy (OSTI)

U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to evaluate lands acquired and leased in Eskuulpa Watershed, a Confederated Tribes of the Umatilla Indian Reservation watershed and wildlife mitigation project. The project is designed to partially credit habitat losses incurred by BPA for the construction of the John Day and McNary hydroelectric facilities on the Columbia River. Upland and riparian forest, upland and riparian shrub, and grasslands cover types were included in the evaluation. Indicator species included downy woodpecker (Picuides puhescens), black-capped chickadee (Pams atricopillus), blue grouse (Beadragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petschia), mink (Mustela vison), and Western meadowlark (Sturnello neglects). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 55,500 feet of transects, 678 m2 plots, and 243 one-tenth-acre plots. Between 123.9 and f 0,794.4 acres were evaluated for each indicator species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total habitat units credited to BPA for the Iskuulpa Watershed Project and its seven indicator species is 4,567.8 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest, which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing or implementation of restoration grazing schemes, road de-commissioning, reforestation, large woody debris additions to floodplains, control of competing and unwanted vegetation, reestablishing displaced or reduced native vegetation species, and the allowance of normative processes such as fire occurrence. Implementation of these alternatives could generate an estimated minimum of 393 enhancement credits in 10 years. Longer-term benefits of protection and enhancement activities include increases in native species diversity and structural complexity in all cover types. While such benefits are not readily recognized by HEP models and reflected in the number of habitat units generated, they also provide dual benefits for fisheries resources. Implementation of the alternatives will require long-term commitments from managers to increase probabilities of success and meet the goals and objectives of the Northwest Power Planning Council's Fish and Wildlife Mitigation Program.

Quaempts, Eric

2003-01-01T23:59:59.000Z

127

Umatilla River Basin Anadromus Fish Habitat Enhancement Project : 1994 Annual Report.  

DOE Green Energy (OSTI)

The Umatilla Basin Anadromous Fish Habitat Enhancement Project is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program, Section 7.6-7.8 and targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing cooperative instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation (hereafter referred to as Reservation) from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower l/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River in the vicinity of Gibbon, Oregon. In 1993, the project shifted emphasis to a comprehensive watershed approach, consistent with other basin efforts, and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. During the 1994-95 project period, a one river mile demonstration project was implemented on two privately owned properties on Wildhorse Creek. This was the first watershed improvement project to be implemented by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) off of the Reservation. Four 15 year riparian easements and two right-of-way agreements were secured for enhancement of one river mile on Wildhorse Creek and l/2 river mile on Meacham Creek. Enhancements implemented between river mile (RM) 9.5 and RM 10.5 Wildhorse Creek included: (1) installation of 1.43 miles of smooth wire high tensile fence line and placement of 0.43 miles of fence posts and structures to restrict livestock from the riparian corridor, (2) construction of eighteen sediment retention structures in the stream channel to speed riparian recovery by elevating the stream grade, slowing water velocities and depositing sediments onto streambanks to provide substrate for revegetation, and (3) revegetation of the stream corridor, terraces and adjacent pasture areas with 644 pounds of native grass seed (when commercially available) or close species equivalents and 4,000 native riparian shrub/tree species to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. Three hundred pounds of native grass/legume seed (including other grasses/legumes exhibiting native species characteristics) were broadcast in existing Boston Canyon Creek, Meacham Creek and Umatilla River project areas. The addition of two properties into the project area between RM 4.25 and RM 4.75 Meacham Creek during the 1995-96 work period will provide nearly complete project coverage of lower Meacham Creek corridor areas on the Reservation. Water quality monitoring continued for temperature and turbidity throughout the upper Umatilla River Watershed. Survey of cross sections and photo documentation of riparian recovery within the project areas provided additional baseline data. Physical habitat surveys continued to be conducted to characterize habitat quality and to quantify various habitat types by area. This information will be utilized to assist in identification of habitat deficient areas within the watershed in which to focus habitat restoration efforts. These efforts were coordinated with the CTUIR Umatilla Basin Natural Production Monitoring and Evaluation (UBNPME) Project. Poor land use practices, which have altered natural floodplain dynamics and significantly reduced or eliminated fisheries habitat, continued to be identified in the Mission Creek Subbasin. Complied data is currently being incorporated into a data layer for a Geographic Information System (GIS) data base. This effort is being coordinated with the Natural Resource Conservation Service (NRCS). Community outreach efforts and public education opportunities continued during the reporting period. CTUIR cooperatively sponsored a bioengineering workshop on February 23, 1995 with the Oregon De

Shaw, R. Todd

1994-05-01T23:59:59.000Z

128

Application of the soil and water assessment tool in a tropical agricultural catchment of the Panama Canal watershed implications for its use in watershed management activities.  

E-Print Network (OSTI)

??The Panama Canal Watershed (PCW) provides water to operate the Canal, generate hydroelectricity, and supply water provisions to the local and metropolitan populations. With a… (more)

Oestreicher, Jordan

2008-01-01T23:59:59.000Z

129

Pataha Creek Model Watershed : 1998 Habitat Conservation Projects.  

Science Conference Proceedings (OSTI)

The projects outlined in detail on the attached project reports are a few of the many projects implemented in the Pataha Creek Model Watershed since it was selected as a model in 1993. 1998 was a year where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek.

Bartels, Duane G.

1999-12-01T23:59:59.000Z

130

Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program  

SciTech Connect

Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

1999-03-01T23:59:59.000Z

131

Towards Sustainable Watershed Dvelopment: A Geographic Information Systems based Approach  

Science Conference Proceedings (OSTI)

With an unprecedented projection of population and urban growth in the coming decades, assessment of the long-term hydrologic impacts of land use change is crucial for optimizing management practices to control runoff and non-point source (NPS) pollution associated with sustainable watershed development. Land use change, dominated by an increase in urban/impervious areas, can have a significant impact on water resources. Non-point source (NPS) pollution is the leading cause of degraded water quality in the US and urban areas are an important source of NPS pollution. Most planners, government agencies, and consultants lack access to simple impact-assessment tools despite widespread concern over the environmental impacts of watershed development. Before investing in complex analyses and customized data collection, it is often useful to utilize simple screening analyses using data that are already available. In this paper, we discuss such a technique for long-term hydrologic impact assessment (L-THIA) that makes use of basic land use, soils and long-term rainfall data to compare the hydrologic impacts of past, present and any future land use change. Long-term daily rainfall records are used in combination with soils and land use information to calculate average annual runoff and NPS pollution at a watershed scale. Because of the geospatial nature of land use and soils data, and the increasingly widespread use of GIS by planners, government agencies and consultants, the model is integrated with a Geographic Information System (GIS) that allows convenient generation and management of model input and output data, and provides advanced visualization of the model results. An application of the L-THIA/NPS model on the Little Eagle Creek (LEC) watershed near Indianapolis, Indiana is illustrated in this paper. Three historical land use scenarios for 1973, 1984, and 1991 were analyzed to track land use change in the watershed and to assess the impacts of land use change on annual average runoff and NPS pollution from the watershed and its five sub-basins. Results highlight the effectiveness of the L-THIA approach in assessing the long-term hydrologic impact of urban sprawl. The L-THIA/NPS GIS model is a powerful tool for identifying environmentally sensitive areas in terms of NPS pollution potential and for evaluating alternative land use scenarios to enhance NPS pollution management. Access to the model via the INTERNET enhances the usability and effectiveness of the technique significantly. Recommendations can be made to community decision makers, based on this analysis, concerning how development can be controlled within the watershed to minimize the long-term impacts of increased stormwater runoff and NPS pollution for better management of water resources.

Bhaduri, Budhendra L [ORNL

2006-01-01T23:59:59.000Z

132

Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-72)(12/3/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 3, 2001 December 3, 2001 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-72) David Byrnes - KEWL-4 Fish and Wildlife Project Manager Proposed Action: Yakima Basin Side Channels Project, Scatter Creek/Plum Creek Land Acquisition Phase II. Project No: 1997-051-00 Wildlife Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Wildlife Mitigation Program EIS): 2.15 Acquisition of Sensitive Riparian Resources. Location: Yakima River Basin, Kittitas County, Washington Proposed by: Bonneville Power Administration (BPA) and The Yakama Nation Description of the Proposed Action: BPA proposes to purchase 2 privately owned parcels

133

Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-67) (10/4/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2001 4, 2001 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-67) Jay Marcotte Fish and Wildlife Project Manager Proposed Action: Install Fish Screens to Protect ESA Listed Steelhead and Bull Trout in the Walla Walla Basin. Project No: 2001-039-00 Wildlife Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Wildlife Mitigation Program EIS): 1.15 Fish Passage Enhancement - Fishways. Location: Various Walla Walla River Basin Irrigation Diversions, Washington Proposed by: Bonneville Power Administration (BPA), the Walla Walla County Conservation District. Description of the Proposed Action: BPA is proposing to provide cost share for a program that

134

Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-70) (10/23/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23, 2001 23, 2001 REPLY TO ATTN OF: KECN-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-70) David Byrnes - KEWL-4 Fish and Wildlife Project Manager Proposed Action: Yakima Basin Side Channels Project, Scatter Creek/Plum Creek Land Acquisition Phase I. Project No: 1997-051-00 Wildlife Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Wildlife Mitigation Program EIS): 2.15 Acquisition of Sensitive Riparian Resources. Location: Yakima River Basin, Kittitas County, Washington Proposed by: Bonneville Power Administration (BPA) and the Yakama Nation Description of the Proposed Action: BPA proposes to purchase 4 privately owned parcels totaling

135

Enhancement of Watershed Analysis Risk Management Framework (WARMF) for Mercury Watershed Management and Total Maximum Daily Loads (TMDLs)  

Science Conference Proceedings (OSTI)

This report documents the enhancement of EPRI's Watershed Analysis Risk Management Framework (WARMF) to enable it to simulate the biogeochemical cycling and fish accumulation of mercury in the environment. This report should be of value to the power sector, industry, environmental organizations, government, and public agencies concerned about environmental mercury.

2006-03-13T23:59:59.000Z

136

Bosque River Environmental Infrastructure Improvement Plan: Phase II BMP Modeling Report  

E-Print Network (OSTI)

The Bosque River Watershed is located in the Brazos River Basin in central Texas and is facing a suite of water quality issues resulting in sediment, nutrient and bacteria loading. These loadings are potentially derived from improperly managed cropland and grazing land, land-applied dairy waste, and effluent discharge from eight wastewater treatment plants. The first phase of the project developed an effective methodology for determining priority areas in the watershed where best management practice (BMP) implementation would likely yield the greatest improvements in water quality. The objectives of this project (Phase II) are to apply the Soil and Watershed Assessment Tool (SWAT) model to simulate and evaluate the impacts of implementing several best management practices (a) in the entire watershed, and (b) at incremental levels in high, medium, and low priority areas of the watershed, identified using three different impact indices. Initially, the SWAT model was calibrated for long-term annual and monthly flow at a USGS gaging station located in the lower portion of the watershed for the period from 1980 through 2005 and was validated at the same location for the period 1960 through 1979. The model was also calibrated, at a monthly time step, for water quality parameters including sediment, organic and mineral nitrogen, and phosphorus at two locations, Hico and Valley Mills. Model performance statistics (coefficient of determination and Nash-Sutcliffe modeling efficiency) indicated that model performance was satisfactory and could be used for evaluating the impacts of alternative management scenarios to reduce nonpoint source pollution. BMPs including streambank stabilization, gully plugs, recharge structures, conservation tillage, terraces, contour farming, grazing management, manure incorporation, edge-of-field filter strips, and PL-566 reservoirs were simulated as being implemented in the watershed areas that met the respective practice’s specific criteria for implementation. These BMPs were simulated individually and the resulting farm level (HRU level), subwatershed level, and watershed outlet level impacts were quantified for each BMP. Reductions in sediment load at the watershed outlet, as a result of implementing these BMPs individually, was as much as 37 percent while reductions in total nitrogen (TN) ranged from 1 percent to 24 percent and total phosphorus (TP) varied from a 3 percent increase to a 30 percent decrease. The 3 percent increase is indicative of conservation tillage and is likely caused by the lack of soil inversion and mixing, which yields an accumulation of dissolved (mineral) phosphorus in the soil’s surface layer. At subwatershed levels, reductions brought about by implementing the BMPs were relatively greater as compared to the watershed outlet reductions. Reductions in sediment were as high as 47 percent and reductions in TN and TP were 37 percent and 32 percent, respectively. Subwatersheds were categorized into “high,” “medium,” and “low” priority based on calibrated simulation results. Considering sediment, TN, and TP (as pollutants), three types of total impact indices were estimated. The “Concentration Impact Index” is based on pollutant concentrations (SWAT output values extracted from the ‘reach output file’), considers contributions from the subwatershed as well as the entire upstream watershed, and is effective in determining priority areas for addressing localized pollution problems in low and high flow conditions. The “Load Per Unit Area Impact Index” is based on the total pollutant load coming from a specific area (SWAT output values extracted from the ‘subbasin output file’), considers contributions from an individual subwatershed, and is used to effectively assign a priority to each subwatershed. The “Load Impact Index” is based on pollutant loads from subwatersheds and upstream areas (SWAT output values extracted from the ‘reach output file’) and portrays the cumulative effects of pollutant loading throug

Tuppad, Pushpa; Srinivasan, Raghavan

2008-03-01T23:59:59.000Z

137

Pesticide Education in the Coastal Zone of the Arroyo Colorado Watershed Final Report  

E-Print Network (OSTI)

The Arroyo Colorado is an ancient channel of the Rio Grande River that extends eastward for about 90 miles from near the city of Mission, Texas through southern Hidalgo County to the city of Harlingen in Cameron County, eventually discharging into the Laguna Madre near the Cameron-Willacy County line. The tidal segment of the Arroyo Colorado, as classified by the Texas Commission on Environmental Quality (TCEQ), is between the confluence with Laguna Madre in Cameron/Willacy County to a point 100 meters (110 yards) downstream of Cemetery Road, south of Port Harlingen in Cameron County. This part of the river is also defined as a coastal natural resource area (CNRA) and a coastal wetland in the Coastal Coordination Act. Water quality monitoring over the past decade has confirmed low oxygen levels and escalated ammonia and nitrate concentrations that have contributed to multiple fish kills in the tidal segment. These sub-optimal aquatic conditions resulted in this portion of the Arroyo Colorado being placed on the Texas Water Quality Inventory and 303(d) List for high aquatic life use impairment in 2002. Numerous urban sources, such as point source wastewater discharges, have contributed to this impairment; however, according to the Arroyo Colorado Watershed Protection Plan (ACWPP), nonpoint source agricultural runoff accounts for much of the water quality issues in the tidal segment. These coastal issues and other water quality issues in the watershed have been addressed by the more than 715-member Arroyo Colorado Watershed Partnership in the ACWPP. The plan identifies needs specific to water quality protection and improvement for the agricultural community as well as addressing nonpoint source pollution from the urban environment such as landscapes. In response to the ACWPP, Texas Water Resources Institute (TWRI) proposed to work with the Texas AgriLife Extension Service to implement an educational program aimed at agricultural producers, which included turfgrass producers and local independent school districts that manage athletic fields. The agricultural effort was an integrated farm management program focused on pesticide education and proper nutrient management for Cameron and Willacy counties to address water quality issues related to agricultural production in the tidal segment of the Arroyo Colorado. While the turfgrass and athletic field managers were invited to the educational programs provided through the agricultural effort, a separate educational workshop was held for turf producers and managers to increase awareness of how nutrient, pesticide and irrigation management can reduce the amount of nonpoint source pollution. This education plan helps fulfill two goals of the Texas Coastal Management Program. First, agricultural and turfgrass producers and managers in Cameron and Willacy county were educated on water quality issues and how the proper application of pesticides meets current laws and regulations, and can improve the water quality and fish community in the Arroyo Coastal Natural Resources Area (CNRA). Second, the producers and managers were taught that implementing proper pesticide application practices will reduce the potential for nonpoint source pollution, which will improve the water quality in the Arroyo CNRA. This project also enhances the area's ability to continue to support valuable aquatic life and meet water quality goals outlined in the ACWPP. An additional environmental success for this area, given the over-allocation and availability of clean surface waters, will be the added water savings attributed to the irrigation management educational program provided through this effort.

Berthold, Allen

2011-03-01T23:59:59.000Z

138

Pecos River Compact (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation authorizes the state's entrance into the Pecos River Compact, a joint agreement between the states of New Mexico and Texas. The compact is administered by the Pecos River Compact...

139

Response Requested via ISRP regarding Proposed Scope Expansion of the Project Restore Potlatch River Watershed (#200206100)  

E-Print Network (OSTI)

) Riparian plantings and/or channel restoration on pasture and rangelands (Objective B, page 23) Coordinate are driven primarily by air temperature, solar insolation, pool depth, and geographic aspect. Waters

140

Wind River Watershed Project; Volume III of III Report H, 1998 Annual Report.  

DOE Green Energy (OSTI)

The objective of this study was to assess fish passage at Trout Creek's Hemlock Dam and prescribe options for restoring fish passage.

Wieman, Kenneth

1999-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "river inter-tribal watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Savannah River National Laboratory  

At a glance Remote Electrical Throw Device Engineers at the Savannah River National Laboratory ... sufficient manufacturing capacity, established dist ...

142

Integrated Status and Effectiveness Monitoring Program - Entiat River Snorkel Surveys and Rotary Screw Trap, 2007.  

DOE Green Energy (OSTI)

The USFWS Mid-Columbia River Fishery Resource Office conducted snorkel surveys at 24 sites during the summer and fall periods of 2006 survey periods as part of the Integrated Status and Effectiveness Monitoring Program in the Entiat River. A total of 37,938 fish from 15 species/genera and an unknown category were enumerated. Chinook salmon were the overall most common fish observed and comprised 15% of fish enumerated followed by rainbow trout (10%) and mountain whitefish (7%). Day surveys were conducted during the summer period 2007 (August), while night surveys were conducted during the fall 2007 (October) surveys. The USFWS Mid-Columbia River Fishery Resource Office (MCFRO) operated two rotary screw traps on the Entiat River as part of the Integrated Status and Effectiveness Monitoring Program (ISEMP) program from August through November of 2007. Along with the smolt traps, juvenile emigrants were also captured at remote locations throughout the Entiat watershed and its major tributary, the Mad River. A total of 999 wild Oncorhynchus mykiss and 5,107 wild run O. tshawytscha were PIT tagged during the study period. Rotary screw trap efficiencies averaged 22.3% for juvenile O. tshawytscha and 9.0% for juvenile O. mykiss. Rotary screw traps operated 7 days a week and remote capture operations were conducted when flow and temperature regimes permitted. This is third annual progress report to Bonneville Power Administration for the snorkel surveys conducted in the Entiat River as related to long-term effectiveness monitoring of restoration programs in this watershed. The objective of this study is to monitor the fish habitat utilization of planned in-stream restoration efforts in the Entiat River by conducting pre- and post-construction snorkel surveys at selected treatment and control sites.

Nelle, R.D.

2008-01-01T23:59:59.000Z

143

Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir; White River Bull Trout Enumeration Project Summary, Progress Report 2003.  

DOE Green Energy (OSTI)

This report summarizes the first year of a three-year bull trout (Salvelinus confluentus) enumeration project on the White River and is a co-operative initiative of the British Columbia Ministry of Water, Land, and Air Protection and Bonneville Power Administration. The White River has been identified as an important bull trout spawning tributary of the upper Kootenay River in southeastern British Columbia. The objective was to collect information on the returning adult spawning population to the White River through the use of a fish fence and traps, and to conduct redd surveys at the conclusion of spawning to provide an index of spawning escapement and distribution. The fence was installed on September 9th, 2003 and was operated continuously (i.e. no high-water or breaching events) until the fence was removed on October 9th, 2003. Estimation of the spawning population of White River bull trout was incomplete. This was due to a larger and more protracted out-migration than expected. As a result, the bull trout spawning population of the White River was estimated to be somewhere above 899 fish. In comparison, this represents approximately one third the population estimate of the 2003 Wigwam River bull trout spawning population. Based on redd index data, the number of bull trout per redd was over twice that of the Wigwam River or Skookumchuck Creek. This was expected as the index sites on the Wigwam River and Skookumchuck Creek cover the majority of the spawning area. This is not true on the White River. From previous redd counts, it is known that there are approximately twice as many redds in Blackfoot Creek as there are in the index site. Additionally, given the large size of the White River watershed and in particular, the large number of tributaries, there is a high likelihood that important bull trout spawning areas remain unidentified. Both floy tag and radio-telemetry data for the White River bull trout have identified extensive life history migrations. Similar data for the Wigwam River and Skookumchuck Creek populations illustrate there is considerable overlap and mixing among these three local populations within their over-wintering and feeding habitat. The upper Kootenay River, Lake Koocanusa and the lower Bull River provide overwintering and feeding habitat for the White River, Skookumchuck Creek and Wigwam River bull trout. Recommendations to improve escapement estimates and spawning distribution are provided. An accurate population estimate is especially important to provide baseline for any potential impacts due to wildfire and subsequent salvage logging that is currently underway immediately adjacent to and upstream of important spawning and rearing habitat in the Middlefork of the White River. Identification of important spawning habitat is important to meet management objectives for the White River.

Cope, R.

2004-02-01T23:59:59.000Z

144

DOE/EIS-0353; South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Fork Flathead Watershed South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program Final Environmental Impact Statement Bonneville Power Administration July 2005 South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program Final Environmental Impact Statement Responsible Agency: U.S. Department of Energy (DOE), Bonneville Power Administration (BPA) Cooperating Agencies: U.S. Department of Agriculture, Forest Service (FS) and State of Montana Fish, Wildlife, and Parks (MFWP) Department Title of Proposed Project: South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program State Involved: Montana Abstract: In cooperation with MFWP, BPA is proposing to implement a conservation program to preserve the genetic

145

(DOE/EIS-0265/SA-99): Supplement Analysis for the Watershed Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Watershed Management Program EIS, (DOEEIS-0265SA-99) Dorothy Welch (KEWU - 4) TO: Fish and Wildlife Project Manager, COTR Proposed Action: Longley Meadows Restoration Project...

146

The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : Annual Report, 2001.  

DOE Green Energy (OSTI)

The John Day River is the nation's second longest free-flowing river in the contiguous United States, which is entirely unsupplemented for it's runs of anadromous fish. Located in eastern Oregon, the John Day Basin drains over 8,000 square miles, is Oregon's fourth largest drainage basin, and the basin incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the mainstem John Day River flows 284 miles in a northwesterly direction entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon, summer steelhead, westslope cutthroat, and redband and bull trout, the John Day system is truly a basin with national significance. The Majority of the John Day Basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in John Day to coordinate basin restoration projects, monitoring, planning, and other watershed restoration activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), also located in John Day, who subcontracts the majority of the construction implementation activities for these restoration projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2001, the JDBO and GSWCD continued their successful partnership between the two agencies and basin landowners to implement an additional ten (10) watershed conservation projects. The project types include permanent lay flat diversions, pump stations, and return-flow cooling systems. Project costs in 2001 totaled $572,766.00 with $361,966.00 (67%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources, such as the Bureau of Reclamation (BOR), Oregon Watershed Enhancement Board (OWEB), and individual landowners.

Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

2002-12-01T23:59:59.000Z

147

A Multiple Watershed Approach to Assessing the Effects of Habitat Restoration Actions on Anadromous and Resident Fish Populations, Technical Report 2003-2004.  

DOE Green Energy (OSTI)

Habitat protection and restoration is a cornerstone of current strategies to restore ecosystems, recover endangered fish species, and rebuild fish stocks within the Columbia River Basin. Strategies featuring habitat restoration include the 2000 Biological Opinion on operation of the Federal Columbia River Power System (FCRPS BiOp) developed by the National Marine Fisheries Service (NMFS), the 2000 Biological Opinion on Bull Trout developed by the US Fish and Wildlife Service (USFWS), and Sub-Basin Plans developed under the Fish and Wildlife Program of the Northwest Power and Conservation Council (NWPCC). There is however little quantitative information about the effectiveness of different habitat restoration techniques. Such information is crucial for helping scientists and program managers allocate limited funds towards the greatest benefits for fish populations. Therefore, it is critical to systematically test the hypotheses underlying habitat restoration actions for both anadromous and resident fish populations. This pilot project was developed through a proposal to the Innovative Projects fund of the NWPCC (ESSA 2002). It was funded by the Bonneville Power Administration (BPA) following reviews by the Independent Scientific Review Panel (ISRP 2002), the Columbia Basin Fish and Wildlife Authority (CBFWA 2002), the NWPCC and BPA. The study was designed to respond directly to the above described needs for information on the effectiveness of habitat restoration actions, including legal measures specified in the 2000 FCRPS BiOp (RPA 183, pg. 9-133, NMFS 2000). Due to the urgency of addressing these measures, the timeline of the project was accelerated from a duration of 18 months to 14 months. The purpose of this pilot project was to explore methods for evaluating past habitat restoration actions and their effects on fish populations. By doing so, the project will provide a foundation of retrospective analyses, on which to build prospective, multi-watershed designs for future habitat restoration actions. Such designs are being developed concurrently with this project by several other groups in the Columbia Basin (RME Workgroup 2003, NMFS 2003, Hillman and Paulsen 2002, Hillman 2003). By addressing questions about habitat restoration and monitoring (in coordination with other related efforts), we hope that this project will catalyze a shift in the Basin's paradigm of habitat restoration, moving from implementation of individual watershed projects towards rigorously designed and monitored, multiwatershed, adaptive management experiments. The project involved three phases of work, which were closely integrated with various related and ongoing efforts in the region: (1) Scoping - We met with a Core Group of habitat experts and managers to scope out a set of testable habitat restoration hypotheses, identify candidate watersheds and recommend participants for a data evaluation workshop. (2) Data Assembly - We contacted over 80 scientists and managers to help evaluate the suitability of each candidate watershed's historical data for assessing the effectiveness of past restoration actions. We eventually settled on the Yakima, Wenatchee, Clearwater, and Salmon subbasins, and began gathering relevant data for these watersheds at a workshop with habitat experts and managers. Data assembly continued for several months after the workshop. (3) Data Analysis and Synthesis - We explored statistical approaches towards retrospectively analyzing the effects of restoration 'treatments' at nested spatial scales across multiple watersheds (Chapters 2-5 of this report). These analyses provided a foundation for identifying existing constraints to testing restoration hypotheses, and opportunities to overcome these constraints through improved experimental designs, monitoring protocols and project selection strategies (Chapters 6 and 7 of this report). Finally, we developed a set of recommendations to improve the design, implementation, and monitoring of prospective habitat restoration programs in the Columbia River Basin (Chapter 8).

Marmorek, David

2004-03-01T23:59:59.000Z

148

Watershed Councils East and West: Advocacy, Consensus and Environmental Progress  

E-Print Network (OSTI)

RIVERS: A DIRECTORY OF CITIZEN-BASED ORGANIZATIONS WORKINGorganization trends sweeping the United States in the 1990s. According to the 2001 directory

Lavigne, Peter

2004-01-01T23:59:59.000Z

149

BPA Riparian Fencing and Alternative Water Development Projects Completed within Asotin Creek Watershed, 2000 and 2001 Asotin Creek Fencing Final Report of Accomplishments.  

DOE Green Energy (OSTI)

The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in Water Resource Inventory Area (WRIA) 35. According to Washington Department of Fish and Wildlife's (WDFW) Priority WRIA's by ''At-Risk Stock Significance Map'', it is the highest priority WRIA in southeastern Washington. Summer steelhead, bull trout, and Snake River spring chinook salmon which are listed under the Endangered Species Act (ESA), are present in the watershed. WDFW manages it as a Wild Steelhead Reserve; no hatchery fish have been released here since 1997. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe, Washington Department of Ecology (DOE), National Marine Fisheries Service (NMFS), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. Local students, volunteers and Salmon Corps members from the Nez Perce Tribe have been instrumental in the success of the Model Watershed Program on Asotin Creek. ACCD began coordinating habitat projects in 1995 with the help of BPA funding. Approximately two hundred and seventy-six projects have been implemented as of 1999. The Washington State Legislature was successful in securing funding for endangered salmon and steelhead recovery throughout the State in 1998. While these issues were new to most of the State, the ACCD has been securing and administering funding for endangered salmonids since 1994. The ''Asotin Creek Riparian Planting 2000-053-00 and Asotin Creek Riparian Fencing 2000-054-00'' teamed BPA and the Governor's Salmon Recovery Funding to plant approximately 84,191 trees and shrubs in the Asotin Creek Watershed. In addition BPA and private cost-share dollars were utilized to drill 3 wells, provide 15 off-site alternative water developments (troughs), 5 spring developments, and 9,100 feet of riparian fencing. The trees will provide shade and long-term LWD recruitment to the stream. The wells, alternative water developments, springs and fencing will reduce direct animal impacts on the stream. In one area alone, a well, 3,000 ft of riparian fence with 5 alternative water developments will exclude 300 head of cattle from using the stream as a source of drinking water during the winter months.

Johnson, B.J. (Bradley J.)

2002-01-01T23:59:59.000Z

150

Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.  

DOE Green Energy (OSTI)

The National Marine Fisheries Service (NMFS) listed Lower Columbia River (LCR) chum salmon as threatened under the Endangered Species Act (ESA) in March, 1999 (64 FR 14508, March 25, 1999). The listing was in response to the reduction in abundance from historical levels of more than one-half million returning adults to fewer than 10,000 present-day spawners. Harvest, habitat degradation, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for this decline. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of this species. This is especially true of the population located directly below Bonneville Dam, where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Prior to 1997, only two chum salmon populations were recognized as genetically distinct in the Columbia River, although spawning had been documented in many Lower Columbia River tributaries. The first population was in the Grays River (RKm 34), a tributary of the Columbia River, and the second was a group of spawners utilizing the mainstem Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks. Using additional DNA samples, Small et al. (2006) grouped chum salmon spawning in the mainstem Columbia River and the Washington State tributaries into three groups: the Coastal, the Cascade and the Gorge. The Coastal group comprises those spawning in the Grays River, Skamokawa Creek and the broodstock used at the Sea Resources facility on the Chinook River. The Cascade group comprises those spawning in the Cowlitz (both summer and fall stocks), Kalama, Lewis, and East Fork Lewis rivers, with most supporting unique populations. The Gorge group comprises those spawning in the mainstem Columbia River from the I-205 Bridge up to Bonneville Dam and those spawning in Hamilton and Hardy creeks. Response to the federal ESA listing has been primarily through direct-recovery actions: reducing harvest, hatchery supplementation using local broodstock for populations at catastrophic risk, habitat restoration (including construction of spawning channels) and flow agreements to protect spawning and rearing areas. Both state and federal agencies have built controlled spawning areas. In 1998, the Washington Department of Fish and Wildlife (WDFW) began a chum salmon supplementation program using native stock on the Grays River. This program was expanded during 1999 - 2001 to include reintroduction into the Chinook River using eggs from the Grays River Supplementation Program. These eggs are incubated at the Grays River Hatchery, reared to release size at the Sea Resources Hatchery on the Chinook River, and the fry are released at the mouth of the Chinook River. Native steelhead, chum, and coho salmon are present in Duncan Creek, and are recognized as subpopulations of the Lower Gorge population, and are focal species in the Lower Columbia Fish Recovery Board (LCFRB) plan. Steelhead, chum and coho salmon that spawn in Duncan Creek are listed as Threatened under the ESA. Duncan Creek is classified by the LCFRB plan as a watershed for intensive monitoring (LCFRB 2004). This project was identified in the 2004 Federal Columbia River Power System (FCRPS) revised Biological Opinion (revised BiOp) to increase survival of chum salmon, 'BPA will continue to fund the program to re-introduce Columbia River chum salmon into Duncan Creek as long as NOAA Fisheries determines it to be an essential and effective contribution to reducing the risk of extinction for this ESU'. (USACE et al. 2004, page 85-86). The Governors Forum on Monitoring and Salmon Recovery and Watershed Health recommends one major population from each ESU have adult and juvenile monitoring. Duncan Creek chum salmon are identified in this plan to be intensively monitored. Planners recommended that a combination of natural and hatchery production

Hillson, Todd D. [Washington Department of Fish and Wildlife

2009-06-12T23:59:59.000Z

151

Savannah River Site - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Reports Savannah River Site Review Reports 2013 Independent Oversight Review of the Savannah River Field Office Tritium Facilities Radiological Controls Activity-Level Implementation, November 2013 Independent Oversight Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development, August 2013 Independent Oversight Review of the Employee Concerns Program at the Savannah River Operations Office, July 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project, January 2013 Review of the Savannah River Site, Waste Solidification Building, Construction Quality of Mechanical Systems Installation and Selected Aspects of Fire Protection System Design, January 2013 Activity Reports 2013 Savannah River Site Waste Solidification Building Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design, May 2013

152

Lower Klickitat Riparian and In-channel Habitat Restoration Project; Klickitat Watershed Enhancement, Annual Report 2002-2003.  

DOE Green Energy (OSTI)

The overall goal of the Klickitat Watershed Enhancement Project (KWEP) is to restore watershed health to aid recovery of salmonid stocks in the Klickitat subbasin. An emphasis is placed on restoration and protection of stream reaches and watersheds supporting native anadromous fish production, particularly steelhead (Oncorhyncus mykiss; ESA- listed as 'Threatened' within the Mid-Columbia ESU) and spring Chinook (O. tshawytscha). Habitat restoration activities in the Klickitat subbasin augment goals and objectives of the Yakima Klickitat Fisheries Project (YKFP), NPPC Fish and Wildlife Program, Klickitat Subbasin Summary and the NMFS Biological Opinion (All-H paper). Work is conducted to enhance instream and contributing upland habitat to facilitate increased natural production potential for native salmonid stocks. Efforts in the Klickitat Subbasin fall into two main categories: (1) identification and prioritization of sites for protection and restoration activities, (2) implementation of protection and restoration measures. KWEP personnel also assist monitoring efforts of the YKFP Monitoring & Evaluation Project. During the September 2002-August 2003 reporting period, KWEP personnel continued efforts to address feedback from the August 2000 Provincial Review that indicated a need for better information management and development of geographic priorities by: (1) Assisting development of the Strategic Habitat Plan for the Klickitat Lead Entity (Task A3.1) and Klickitat steelhead EDT model (Task A4.1); (2) Improving the functionality of reference point, habitat unit, and large woody debris modules of the habitat database as well as addition of a temperature module (Tasks A1.1-1.2); (3) Continuing development and acquisition of GIS data (Task A1.3); (4) Ongoing data collection efforts to fill information gaps including streamflow, habitat, and temperature (Objectives C1 and C2); and (5) Completion of planning, field work, and hydrologic modeling associated with roads assessment in the White Creek watershed (Task A4.2). Significant milestones associated with restoration projects during the reporting period included: (1) Completion of the Surveyors Fish Creek Passage Enhancement project (Task B2.3); (2) Completion of interagency agreements for the Klickitat Meadows (Task B2.4) and Klickitat Mill (Task B2.10) projects; (3) Completion of topographic surveys for the Klickitat Meadows (Task B2.4), Klickitat River Meadows (Task B2.5), Trout Creek and Bear Creek culvert replacements (Task B2.7), and Snyder Swale II (Task B2.13) projects; (4) Completion of the Snyder Swale II - Phase 1 project (Task B2.13); (5) Completion of design, planning, and permitting for the Klickitat Mill project (Task B2.10) and initiation of construction; (6) Design for the Trout and Bear Creek culverts (B2.7) were brought to the 60% level; and (7) Completion of design work for the for the Klickitat Meadows (Task B2.4) and Klickitat River Meadows (Task B2.5) projects.

Conley, Will

2004-01-01T23:59:59.000Z

153

Office of River Protection (ORP) and Washingotn River Protection Solutions,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of River Protection (ORP) and Washingotn River Protection Office of River Protection (ORP) and Washingotn River Protection Solutions, LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project Office of River Protection (ORP) and Washingotn River Protection Solutions, LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project The Mission of the Office of River Protection is to safely retrieve and treat Hanford's tank waste and close the Tank Farms to protect the Columbia River. Office of River Protection (ORP) and Washingotn River Protection Solutions, LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project More Documents & Publications 2011 Annual Workforce Analysis and Staffing Plan Report - Office of River Protection Consent Order, Washington River Protection Solutions, LLC - NCO-2011-01

154

Exploring the Environmental Effects of Shale Gas Development in the Chesapeake Bay Watershed  

E-Print Network (OSTI)

Exploring the Environmental Effects of Shale Gas Development in the Chesapeake Bay Watershed STAC Committee). 2013. Exploring the environmental effects of shale gas development in the Chesapeake Bay of shale gas development in the Chesapeake Bay Watershed. The purpose of this workshop was to engage

155

An Efficient Hillclimbing-based Watershed Algorithm and its Prototype Hardware Architecture  

Science Conference Proceedings (OSTI)

Image segmentation is the process of isolating objects in an input image, that is, partitioning the image into disjoint regions, such that each region is homogeneous with respect to some property, such as gray value or texture. Watershed-based image ... Keywords: FGPA implementation, hillclimbing technique, image segmentation, watershed transformation

C. Rambabu; I. Chakrabarti

2008-09-01T23:59:59.000Z

156

Savannah River National Laboratory  

located in every town and city have the potential to be used as environmental ... Savannah River Nuclear Solutions, LLC. SRNS is responsible for

157

Savannah River Remediation Procurement  

NLE Websites -- All DOE Office Websites (Extended Search)

and procedures, rules and regulations, terms and conditions and the orders and directives under which Savannah River Remediation LLC (SRR) develops, issues, administers and...

158

Savannah River Ecology Laboratory  

NLE Websites -- All DOE Office Websites

Field Sites SREL is supported largely by external funding. Major sources include DOE Environmental Management, Savannah River Nuclear Solutions, USGS, US Department of the...

159

Savannah River National Laboratory  

The coupling also provided excellent response to impact. ... used as a means of remote camera and equipment, ... Savannah River Nuclear Solutions, ...

160

Savannah River National Laboratory  

Savannah River Nuclear Solutions, LLC. SRNS is responsible for transferring its technologies to the private sector so that these technologies may have ...

Note: This page contains sample records for the topic "river inter-tribal watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DOE/EIS-0265-SA-167: Supplement Analysis for the Watershed Program EIS - Klickitat Watershed Enhancement Project - Klickitat Meadows Restoration (08/09/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2004 9, 2004 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-167) David Byrnes Fish and Wildlife Project Manager - KEWL-4 Proposed Action: Klickitat Watershed Enhancement Project - Klickitat Meadows Restoration Project No: 1997-056-00 Watershed Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Watershed Management Program EIS): 1.5 Install Grade Control Structures and Check Dams, 1.6 Install Large Woody Debris Structures, 1.8 Bank Protection through Vegetation Management, 1.9 Structural Bank Protection Using Bioengineering Methods, 1.17 Rearing Habitat Enhancements, 2.1 Maintain Healthy Riparian Plant Communities, 7.18 Road Closures, 8.10 Stream Channel Protection

162

Schlumberger soundings in the Upper Raft River and Raft River...  

Open Energy Info (EERE)

soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Schlumberger soundings in the Upper...

163

Savannah River | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River River Savannah River Following are compliance agreements for the Savannah River Site. Also included are short summaries of the agreements. Natural Resources Defense Council Consent Decree, May 26, 1988 Natural Resources Defense Council Consent Decree, May 26, 1988 Summary Savannah River Site Consent Order 99-155-W, October 11, 1999 Savannah River Site Consent Order 99-155-W, October 11, 1999 Summary Savannah River Site Consent Order 85-70-SW, November 7, 1985 Savannah River Site Consent Order 85-70-SW, November 7, 1985 Summary Savannah River Site Consent Order 95-22-HW, September 29, 1995 Savannah River Site Consent Order 95-22-HW, September 29, 1995 Summary Savannah River Site Consent Order 99-21-HW, July 13, 1999 Savannah River Site Consent Order 99-21-HW, July 13, 1999 Summary

164

Savannah River | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Savannah River Savannah River Following are compliance agreements for the Savannah River Site. Also included are short summaries of the agreements. Natural Resources Defense Council Consent Decree, May 26, 1988 Natural Resources Defense Council Consent Decree, May 26, 1988 Summary Savannah River Site Consent Order 99-155-W, October 11, 1999 Savannah River Site Consent Order 99-155-W, October 11, 1999 Summary Savannah River Site Consent Order 85-70-SW, November 7, 1985 Savannah River Site Consent Order 85-70-SW, November 7, 1985 Summary Savannah River Site Consent Order 95-22-HW, September 29, 1995 Savannah River Site Consent Order 95-22-HW, September 29, 1995 Summary Savannah River Site Consent Order 99-21-HW, July 13, 1999 Savannah River Site Consent Order 99-21-HW, July 13, 1999 Summary

165

about Savannah River National Laboratory  

S R N The Savannah River Site and the Savannah River National Laboratory are owned by the U.S. Department of Energy, and are managed and operated by Savannah River ...

166

Montana contains the headwaters for three continental watersheds-the St. Mary's River, the Columbia River, and the Missouri River. The St. Mary's  

E-Print Network (OSTI)

, Kansas #12;Konza Tallgrass Prairie Preserve, Kansas #12;Agricultural Research Service ­ Wind Erosion endless stories about the Blackfeet. We heard firsthand about how the Blackfeet used to live on the land the Blackfeet and how the co!ege is educating their people with history and information for today." Simon Chavez

Dratz, Edward A.

167

Modeling nitrogen cycling in forested watersheds of Chesapeake Bay  

Science Conference Proceedings (OSTI)

The Chesapeake Bay Agreement calls for a 40% reduction of controllable phosphorus and nitrogen to the tidal Bay by the year 2000. To accomplish this goal the Chesapeake Bay Program needs accurate estimates of nutrient loadings, including atmospheric deposition, from various land uses. The literature was reviewed on forest nitrogen pools and fluxes, and nitrogen data from research catchments in the Chesapeake Basin were identified. The structure of a nitrogen module for forests is recommended for the Chesapeake Bay Watershed Model along with the possible functional forms for fluxes.

Hunsaker, C.T.; Garten, C.T.; Mulholland, P.J.

1995-03-01T23:59:59.000Z

168

The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : 2002 Annual Report.  

DOE Green Energy (OSTI)

The John Day is the nation's second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, Oregon's fourth largest drainage basin, and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, westslope cutthroat, and redband and bull trout, the John Day system is truly a basin with national significance. The majority of the John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day, who contracts the majority of the construction implementation activities for these projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2002, the JDBO and GSWCD proposed continuation of their successful partnership between the two agencies and basin landowners to implement an additional twelve (12) watershed conservation projects. The types of projects include off channel water developments, riparian fencing, juniper control, permanent diversions, pump stations, infiltration galleries and return-flow cooling systems. Project costs in 2002 totaled $423,198.00 with a total amount of $345,752.00 (81%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources such as the Bureau of Reclamation (BOR), Oregon Watershed Enhancement Board, the U.S. Fish & Wildlife Service Partners in Wildlife Program and individual landowners.

Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

2003-06-30T23:59:59.000Z

169

The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : 2003 Annual Report.  

DOE Green Energy (OSTI)

The John Day is the nation's second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, Oregon's fourth largest drainage basin, and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, westslope cutthroat, and redband and bull trout, the John Day system is truly a basin with national significance. The majority of the John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), which contracts the majority of the construction implementation activities for these projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2003, the JDBO and GSWCD proposed continuation of their successful partnership between the two agencies and basin landowners to implement an additional twelve (12) watershed conservation projects. The types of projects include off channel water developments, juniper control, permanent diversions, pump stations, and return-flow cooling systems. Due to funding issues and delays, permitting delays, fire closures and landowner contracting problems, 2 projects were canceled and 7 projects were rescheduled to the 2004 construction season. Project costs in 2003 totaled $115,554.00 with a total amount of $64,981.00 (56%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources such as the Bureau of Reclamation (BOR), Oregon Watershed Enhancement Board, the U.S. Fish & Wildlife Service Partners in Wildlife Program and individual landowners.

Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

2004-02-27T23:59:59.000Z

170

The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : Annual Report, 2000.  

DOE Green Energy (OSTI)

The John Day is the second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles--Oregon's third largest drainage basin--and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, red band, westslope cutthroat, and redband trout, the John Day system is truly a basin with national significance. Most all of the entire John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the Basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Using funding from the Bonneville Power Administration, Bureau of Reclamation, and others, the John Day Basin Office (JDBO) subcontracts the majority of its construction implementation activities with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/review, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2000, the JDBO and GSWCD proposed continuation of a successful partnership between the two agencies and basin landowners to implement an additional six watershed conservation projects funded by the BPA. The types of projects include permanent diversions, pump stations, and return-flow cooling systems. Project costs in 2000 totaled $533,196.00 with a total amount of $354,932.00 (67%) provided by the Bonneville Power Administration and the remainder coming from other sources such as the BOR, Oregon Watershed Enhancement Board, and individual landowners.

Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

2001-03-01T23:59:59.000Z

171

Genetics of Central Valley O. mykiss populations: drainage and watershed scale analyses  

E-Print Network (OSTI)

USFWS Crystal Hatchery strain JLN Feather River HatcheryAverage Crystal Hatchery strain (2 loci only) Feather River

Nielsen, Jennifer L; Pavey, Scott A; Wiacek, Talia; Williams, Ian

2005-01-01T23:59:59.000Z

172

Yakima River Spring Chinook Enhancement Study, 1991 Final Report.  

DOE Green Energy (OSTI)

The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 to 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indian Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system. 47 refs., 89 figs., 67 tabs.

Fast, David E.

1991-05-01T23:59:59.000Z

173

Yakima River Spring Chinook Enhancement Study Appendices, 1991 Final Report.  

DOE Green Energy (OSTI)

This document consists of the appendices for annual report DOE/BP/39461--9 which is summarized as follows. The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 to 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indian Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system.

Fast, David E.

1991-05-01T23:59:59.000Z

174

River Edge Redevelopment Zone (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of the River Edge Redevelopment Program is to revive and redevelop environmentally challenged properties adjacent to rivers in Illinois.

175

from Savannah River National Laboratory  

operated by Savannah River Nuclear Solutions. SRNL offers innovative solutions ... The decommissioning of F Area at the Savannah River Site involves long-term management

176

Assessment of a multi-objective decision support system generated land use plan on forest fodder dependency in a Himalayan watershed  

Science Conference Proceedings (OSTI)

This paper analyzes the impact of integrated watershed land use plans generated through multi-objective optimization techniques in a Central Himalayan watershed on forest fodder dependency for meeting fodder requirements of livestock in the watershed. ... Keywords: Forest fodder dependency, Himalayas, Integrated watershed development, Multi-objective decision support system

A. Raizada; Pradeep Dogra; B. L. Dhyani

2008-09-01T23:59:59.000Z

177

Multimetric spatial optimization of switchgrass plantings across a watershed  

SciTech Connect

The increasing demand for bioenergy crops presents our society with the opportunity to design more sustainable landscapes. We have created a Biomass Location for Optimal Sustainability Model (BLOSM) to test the hypothesis that landscape design of cellulosic bioenergy crop plantings may simultaneously improve water quality (i.e., decrease concentrations of sediment, total phosphorus, and total nitrogen) and increase profits for farmer-producers while achieving a feedstock-production goal. BLOSM was run using six scenarios to identify switchgrass (Panicum virgatum) planting locations that might supply a commercial-scale biorefinery planned for the Lower Little Tennessee (LLT) watershed. Each scenario sought to achieve different sustainability goals: improving water quality through reduced nitrogen, phosphorus, or sediment concentrations; maximizing profit; a balance of these conditions; or a balance of these conditions with the additional constraint of converting no more than 25% of agricultural land. Scenario results were compared to a baseline case of no land-use conversion. BLOSM results indicate that a combined economic and environmental optimization approach can achieve multiple objectives simultaneously when a small proportion (1.3%) of the LLT watershed is planted with perennial switchgrass. The multimetric optimization approach described here can be used as a research tool to consider bioenergy plantings for other feedstocks, sustainability criteria, and regions.

Hilliard, Michael R [ORNL; Baskaran, Latha Malar [ORNL; Dale, Virginia H [ORNL; Griffiths, Natalie A [ORNL; Parish, Esther S [ORNL; Mulholland, Patrick J [ORNL; Sorokine, Alexandre [ORNL; Downing, Mark [ORNL; Middleton, Richard [Los Alamos National Laboratory (LANL); Thomas, Neil [ORNL

2012-01-01T23:59:59.000Z

178

Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1995 Annual Report.  

DOE Green Energy (OSTI)

During the 1995 - 96 project period, four new habitat enhancement projects were implemented under the Umatilla River Basin Anadromous Fish Habitat Enhancement Project by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) in the upper Umatilla River Basin. A total of 38,644 feet of high tensile smooth wire fencing was constructed along 3.6 miles of riparian corridor in the Meacham Creek, Wildhorse Creek, Greasewood Creek, West Fork of Greasewood Creek and Mission Creek watersheds. Additional enhancements on Wildhorse Creek and the lower Greasewood Creek System included: (1) installation of 0.43 miles of smooth wire between river mile (RM) 10.25 and RM 10.5 Wildhorse Creek (fence posts and structures had been previously placed on this property during the 1994 - 95 project period), (2) construction of 46 sediment retention structures in stream channels and maintenance to 18 existing sediment retention structures between RM 9.5 and RM 10.25 Wildhorse Creek, and (3) revegetation of stream corridor areas and adjacent terraces with 500 pounds of native grass seed or close species equivalents and 5,000 native riparian shrub/tree species to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. U.S. Fish and Wildlife Service (USFWS), Bureau of Indian Affairs (BIA) and Environmental Protection Agency (EPA) funds were cost shared with Bonneville Power Administration (BPA) funds, provided under this project, to accomplish habitat enhancements. Water quality monitoring continued and was expanded for temperature and turbidity throughout the upper Umatilla River Watershed. Physical habitat surveys were conducted on the lower 13 river miles of Wildhorse Creek and within the Greasewood Creek Project Area to characterize habitat quality and to quantify various habitat types by area.

Shaw, R.Todd

1996-05-01T23:59:59.000Z

179

Savannah River National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Savannah River National Laboratory Savannah River National Laboratory srnl.doe.gov SRNL is a DOE National Laboratory operated by Savannah River Nuclear Solutions. At a glance Additive Manufacturing (3D Printing): Selectively Printed Conductive Pathways Researchers at the Savannah River National Laboratory (SRNL) have developed a rapid prototype conductive material that can be used for electrical shielding or circuit fabrication. Background Several rapid prototype technologies currently exist. A few of the technologies produce metallic parts, but the majority produce nonconductive parts made from various grades of plastic. In all of these technologies however, only conductive material or nonconductive material can be used within one part created. There is no known option for 3D printing conductive material for

180

Simulating Typhoon Floods with Gauge Data and Mesoscale-Modeled Rainfall in a Mountainous Watershed  

Science Conference Proceedings (OSTI)

A physically based distributed hydrological model was applied to simulate typhoon floods over a mountainous watershed in Taiwan. The meteorological forcings include the observed gauge rainfall data and the predicted rainfall data from a mesoscale ...

Ming-Hsu Li; Ming-Jen Yang; Ruitang Soong; Hsiao-Ling Huang

2005-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "river inter-tribal watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Topographic and Atmospheric Influences on Precipitation Variability over a Mountainous Watershed  

Science Conference Proceedings (OSTI)

Using rotated principal component analysis (PCA), unique, orthogonal spatial patterns of daily and monthlyprecipitation on a well-instrumented, mountainous watershed in Idaho are examined for their relationship totopography, geographic location, ...

Gregory L. Johnson; Clayton L. Hanson

1995-01-01T23:59:59.000Z

182

Rainfall Amount, Intensity, Duration, and Frequency Relationships in the Mae Chaem Watershed in Southeast Asia  

Science Conference Proceedings (OSTI)

A dense tipping-bucket rain gauge network was established in the Mae Chaem watershed in the mountains of northwestern Thailand as part of the Global Energy and Water Cycle Experiment (GEWEX) Asian Monsoon Experiment-Tropics (GAME-T). ...

Koji Dairaku; Seita Emori; Taikan Oki

2004-06-01T23:59:59.000Z

183

Sioux River Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

River Ethanol LLC Jump to: navigation, search Name Sioux River Ethanol LLC Place Hudson, South Dakota Zip 57034 Product Farmer owned ethanol producer, Sioux River Ethanol is...

184

Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Act  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Act (Minnesota) Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Act (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting

185

River Protection.PDF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

cc: cc: DOE/IG-0506 I N S P E C T I O N R E P O R T U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF INSPECTIONS I N S P E C T I O N O F SELECTED ASPECTS OF THE OFFICE OF RIVER PROTECTION PERFORMANCE-BASED INCENTIVE PROGRAM JUNE 2001 U.S. DEPARTMENT OF ENERGY Washington, DC 20585 June 14, 2001 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman /s/ Inspector General SUBJECT: INFORMATION: Report on "Inspection of Selected Aspects of the Office of River Protection Performance-Based Incentive Program" BACKGROUND The Office of River Protection (ORP), which reports to the Office of Environmental Management, is responsible for remediation of the radioactive waste stored in tanks at the Hanford Site in the State of Washington. For Fiscal Year (FY) 2000, ORP established 26 performance-based contract

186

Rivanna River Basin Commission (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

187

from Savannah River National Laboratory  

Operated by Savannah River Nuclear Solutions for the U.S. Department of Energy near Aiken, S.C. E from Savannah River National Laboratory PAGE 2 OF 2 ...

188

Flooding in Western Washington: The Connection to Atmospheric Rivers  

Science Conference Proceedings (OSTI)

This study utilizes multiple decades of daily streamflow data gathered in four major watersheds in western Washington to determine the meteorological conditions most likely to cause flooding in those watersheds. Two are located in the Olympic ...

Paul J. Neiman; Lawrence J. Schick; F. Martin Ralph; Mimi Hughes; Gary A. Wick

2011-12-01T23:59:59.000Z

189

Savannah River Nuclear Solutions LLC  

Savannah River Nuclear Solutions LLC Permission to Publish KNOW ALL MEN BY THESE PRESENTS, that the undersigned (hereinafter referred to

190

Aquatic Supplement Hood River Subbasin  

E-Print Network (OSTI)

crystal springs 4 Crystal Sp WD bypass reach to overflow? ? 4 dog river 3 City of TD none 3 no infoAppendix B Aquatic Supplement Contents Hood River Subbasin Tables and Figures: Table 1. Current estimated peak summer withdrawals from the Hood River Table 2. Historic lake stocking and fish introductions

191

Spatially Distributed Sensible Heat Flux over a Semiarid Watershed. Part II: Use of a Variable Resistance Approach with Radiometric Surface Temperatures  

Science Conference Proceedings (OSTI)

Radiometric surface temperature images from aircraft observations over the Walnut Gulch Experimental Watershed, a semiarid rangeland watershed, were used with ground-based meteorological data at a reference site for extrapolating estimates of ...

William P. Kustas; Karen S. Humes

1997-04-01T23:59:59.000Z

192

Integrated Status and Effectiveness Monitoring Program - Entiat River Snorkel Surveys, 2006-2007.  

DOE Green Energy (OSTI)

The USFWS Mid-Columbia River Fishery Resource Office conducted snorkel surveys at 11 sites during the summer 2006 survey period and at 15 sites during fall 2006 and winter 2007 survey periods as part of the Integrated Status and Effectiveness Monitoring Program in the Entiat River. A total of 39,898 fish from 14 species/genera and an unknown category were enumerated. Chinook salmon were the overall most common fish observed and comprised 19% of fish enumerated followed by mountain whitefish (18%) and rainbow trout (14%). Day and night surveys were conducted during the summer 2006 period (August), while night surveys were conducted during the fall 2006 (October) and winter 2007 (February/March) surveys. This is second annual progress report to Bonneville Power Administration for the snorkel surveys conducted in the Entiat River as related to long-term effectiveness monitoring of restoration programs in this watershed. The objective of this study is to monitor the fish habitat utilization of planned in-stream restoration efforts in the Entiat River by conducting pre- and post-construction snorkel surveys at selected treatment and control sites.

Nelle, R.D.

2007-10-01T23:59:59.000Z

193

Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-57)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 12, 2001 July 12, 2001 REPLY TO ATTN OF: KECN-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-57) Allyn Meuleman - KEWU Fish and Wildlife Project Manager Proposed Action: Idaho Fish Screening Improvement (Champion, Iron, Fourth of July, Goat Creeks) Project No: 1994-015-00 Watershed Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Watershed Management Program EIS): 1.15 Fish passage enhancement - fishways; 4.25 Consolidate/Replace irrigation diversion dams; 4.10 Water Conveyance: pipeline. Location: Stanley, Custer County, Idaho. Proposed by: Bonneville Power Administration (BPA) and the Idaho Department of Fish and Game. Description of the Proposed Action: BPA proposes to fund a project that will enhance in-stream

194

DOE/EIS-0265-SA-165: Supplement Analysis for the Watershed Management Program EIS (8/4/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-165) Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-165) Mickey Carter TO: Fish and Wildlife Project Manager - KEWU-4 Proposed Action: Idaho Model Watershed Habitat Projects - Welp Riparian Enhancement Fence Project No: 1994-017-00 Watershed Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Watershed Management Program EIS): 2.1 Maintain Healthy Riparian Plant Communities, 4.12 Filter Strips, 6.1 Differed Grazing, 6.10 Access Fencing Location: Custer County, Idaho Proposed by: Bonneville Power Administration (BPA) and the Custer Soil and Water Conservation District Description of the Proposed Action: The Bonneville Power Administration is proposing to fund the

195

Characterization of coastal urban watershed bacterial communities leads to alternative community-based indicators  

SciTech Connect

Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomic units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and a-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC:A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies. This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health.

Wu, C.H.; Sercu, B.; Van De Werhorst, L.C.; Wong, J.; DeSantis, T.Z.; Brodie, E.L.; Hazen, T.C.; Holden, P.A.; Andersen, G.L.

2010-03-01T23:59:59.000Z

196

Hood River Passive House  

Science Conference Proceedings (OSTI)

The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

Hales, D.

2013-03-01T23:59:59.000Z

197

Integrated Status and Effectiveness Monitoring Program - Entiat River Rotary Screw Traps,Snorkel Surveys, and Steelhead Redd Surveys, 2008.  

DOE Green Energy (OSTI)

The USFWS Mid-Columbia River Fishery Resource Office (MCRFRO) operated two rotary screw traps on the Entiat River as part of the Integrated Status and Effectiveness Monitoring Program from March through November of 2008. Along with the smolt traps, juvenile emigrants were also captured at remote locations throughout the Entiat watershed and its major tributary, the Mad River. A total of 16,782 wild salmonids were PIT tagged during the study period. Of this, 3,961(23.6%) were wild Oncorhynchus mykiss, 6,987 (41.6%) were wild spring run O. tshawytscha, and 5,591 (33.3%) were identified as wild O. tshawytscha of unknown run. Rotary screw trap efficiencies averaged 40.3% at the upper (Rkm 11.0) trap and 7.8% for the lower (Rkm 2.0) trap. These efficiencies were pooled for emigrant O. tshawytscha and O. mykiss. The MCRFRO conducted effectiveness monitoring snorkel surveys at 24 sites during the winter period and 30 sites during the summer and fall periods of 2008 as part of the Integrated Status and Effectiveness Monitoring Program in the Entiat River. The 2008 steelhead spawning grounds surveys were conducted weekly in the main Entiat River from rkm 1.1 to 44.2. A total of 222 steelhead redds were identified over the period from February 28 to June 16 2008 with April being the peak spawning month. Approximately 80% of the steelhead redds were located downstream of the rkm 26.

Nelle, R.D.; Desgroseiller, Tom; Cotter, Michael (U.S. Fish and Wildlife Service)

2009-02-17T23:59:59.000Z

198

Integrated Status and Effectiveness Monitoring Program - Entiat River Rotary Screw Traps, Snorkel Surveys, and Steelhead Redd Surveys, 2008-2009.  

DOE Green Energy (OSTI)

The USFWS Mid-Columbia River Fishery Resource Office (MCRFRO) operated two rotary screw traps on the Entiat River as part of the Integrated Status and Effectiveness Monitoring Program from March through November of 2008. Along with the smolt traps, juvenile emigrants were also captured at remote locations throughout the Entiat watershed and its major tributary, the Mad River. A total of 16,782 wild salmonids were PIT tagged during the study period. Of this, 3,961(23.6%) were wild Oncorhynchus mykiss, 6,987 (41.6%) were wild spring run O. tshawytscha, and 5,591 (33.3%) were identified as wild O. tshawytscha of unknown run. Rotary screw trap efficiencies averaged 40.3% at the upper (Rkm 11.0) trap and 7.8% for the lower (Rkm 2.0) trap. These efficiencies were pooled for emigrant O. tshawytscha and O. mykiss. The MCRFRO conducted effectiveness monitoring snorkel surveys at 24 sites during the winter period and 30 sites during the summer and fall periods of 2008 as part of the Integrated Status and Effectiveness Monitoring Program in the Entiat River. The 2008 steelhead spawning grounds surveys were conducted weekly in the main Entiat River from rkm 1.1 to 44.2. A total of 222 steelhead redds were identified over the period from February 28 to June 16 2008 with April being the peak spawning month. Approximately 80% of the steelhead redds were located downstream of the rkm 26.

Nelle, R.D.; Desgroseillier, Tom; Cotter, Michael [U.S. Fish and Wildlife Service

2009-04-14T23:59:59.000Z

199

North Woods River: The St. Croix River in Upper Midwest History  

E-Print Network (OSTI)

Review: North Woods River: The St. Croix River in Upperand Karamanski, Theodore J. North Woods River: The St. Croixbeauty and splendor. In North Woods River, Eileen M. McMahon

Karalus, Daniel E

2011-01-01T23:59:59.000Z

200

Linking farmer, forest and watershed: Understanding forestry and soil resource management along the upper Njoro River, Kenya  

E-Print Network (OSTI)

Kenya is generally considered to be poor, and that in the UCRN, because of the cold and overcast weather,

Krupnik, Timothy J.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "river inter-tribal watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Linking Farmer, Forest and Watershed: Agricultural Systems and Natural Resources Management Along the Upper Njoro River, Kenya  

E-Print Network (OSTI)

Crop Maize, UCRN Maize, Kenya Drybeans, UCRN Drybeans, SubSaharan Africa Pyrethrum, UCRN Pyrethrum, Kenya Potato,UCRN Potato, Kenya 9 M ' #H H # H H 6:? B # H H # H H

Krupnik, Timothy J.; Jenkins, Marion W.

2006-01-01T23:59:59.000Z

202

Linking farmer, forest and watershed: Understanding forestry and soil resource management along the upper Njoro River, Kenya  

E-Print Network (OSTI)

of Soil Analysis. Nairobi, Kenya. , Ministry of Agriculture,P. 702. Ogot, B. A. 1978. Kenya Before 1990. Nairobi: EastLake NakuruNational Park, Kenya. The Professional Geographer

Krupnik, Timothy J.

2004-01-01T23:59:59.000Z

203

Encouraging low-impact-development stormwater-management practices / Assabet River Watershed sub-basin case study  

E-Print Network (OSTI)

Regulatory codes and ordinances create a framework that guide stormwater management decision processes. These regulations are designed to protect the health and safety of the public and to preserve the natural integrity ...

Brown, James E. (James Edward), 1969-

2005-01-01T23:59:59.000Z

204

Linking Farmer, Forest and Watershed: Agricultural Systems and Natural Resources Management Along the Upper Njoro River, Kenya  

E-Print Network (OSTI)

Number Texture density pH (PPM) (meg/100g) (%) Sandy SiltLoam Sandy SiltLoam Sandy Silt Loam Sandy Silt Loam Sandy Silt Loam Clay

Krupnik, Timothy J.; Jenkins, Marion W.

2006-01-01T23:59:59.000Z

205

Savannah River Site - Enforcement Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Enforcement Documents Enforcement Documents Savannah River Site Preliminary Notice of Violation issued to Savannah River Nuclear Solutions, LLC related to a Puncture Wound Injury resulting in a Radiological Uptake at the Savannah River Site, July 22, 2011 (NEA-2011-02) Consent Order issued to Parsons Infrastructure & Technology Group, Inc., related to Nuclear Facility Construction Deficiencies and Subcontractor Oversight at the Salt Waste Processing Facility at the Savannah River Site, April 13, 2010 Enforcement Letter issued to Amer Industrial Technologies, Inc. related to Weld Deficiencies at the Salt Waste Processing Facility at the Savannah River Site, April 13, 2010 Enforcement Letter issued to Parsons Technology Development & Fabrication Complex related to Deficiencies in the Fabrication of Safety Significant Embed Plates at the Salt Waste Processing Facility at the Savannah River Site, April 13, 2010

206

Florida Nuclear Profile - Crystal River  

U.S. Energy Information Administration (EIA) Indexed Site

Crystal River1" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

207

Louisiana Nuclear Profile - River Bend  

U.S. Energy Information Administration (EIA) Indexed Site

River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

208

about Savannah River National Laboratory  

Savannah River Nuclear Solutions ... Office of Environmental Management Applied research ... in the areas of national security, clean energy and environmental stewardship

209

Susquehanna River Basin Compact (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

210

from Savannah River National Laoratory  

of Energy’s Savannah River Site near Aiken, South Carolina ... guidance for understanding natural complexity and heterogeneity in the environment. Impact

211

about Savannah River National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Tritium Effects on Materials In an effort to ensure the safety of the nation's nuclear weapons stockpile, the Savannah River National Laboratory (SRNL) maintains an active role in...

212

A water quality assessment of the import of turfgrass sod grown with composted dairy manure into a suburban watershed  

E-Print Network (OSTI)

Concentrated animal feeding operations (CAFOs) have caused water quality concerns in many rural watersheds, sometimes forcing the State of Texas to conduct Total Maximum Daily Load (TMDL) assessments of stream nutrients such as nitrogen (N) and phosphorus (P). One suggested Best Management Practice (BMP) is the export of phosphorus (P) through turfgrass sod produced with composted dairy manure from an impaired rural watershed to an urban watershed. The manure-grown sod releases P slowly and would not require additional P fertilizer for up to 20 years in the receiving watershed. This would eliminate P application to the sod and improve the water quality of urban streams. The Soil and Water Assessment Tool (SWAT) was used to model a typical suburban watershed that would receive the transplanted sod. The objective of the modeling was to determine the water quality changes due to the import of sod transplanted from turf fields and grown with composted dairy manure. The SWAT model was calibrated to simulate historical flow and sediment and nutrient loading to Mary's Creek. The total P stream loading to Mary's Creek was lower when manure-grown sod was imported instead of commercial sod grown with inorganic fertilizers. Yet, flow, sediment yield, and total N yield increased equally for both cases at the watershed outlet. The SWAT simulations indicate that a turfgrass BMP can be used effectively to import manure P into an urban watershed and reduce in-stream P levels when compared to sod grown with inorganic fertilizers.

Richards, Chad Edward

2004-12-01T23:59:59.000Z

213

A Watershed Perspective on Bioenergy Sustainability: A Workshop to be held at Oak Ridge National Laboratory  

E-Print Network (OSTI)

A Watershed Perspective on Bioenergy Sustainability: A Workshop to be held at Oak Ridge National-scale perspective of cellulosic bioenergy feedstock sustainability will be held at Oak Ridge National Laboratory bioenergy feedstock production (particularly hydrology and water quality). Overall goals for the workshop

214

An Analysis of Microbial Pollution in the Sinclair-Dyes Inlet Watershed  

Science Conference Proceedings (OSTI)

This assessment of fecal coliform sources and pathways in Sinclair and Dyes Inlets is part of the Project ENVironmental InVESTment (ENVVEST) being conducted by the Navy's Puget Sound Naval Shipyard and Intermediate Maintenance Facility in cooperation with the US Environmental Protection Agency, Washington State Department of Ecology, the Suquamish Tribe, Kitsap County, the City of Bremerton, the City of Port Orchard, and other local stakeholders. The goal of this study was to identify microbial pollution problems within the Sinclair-Dyes Inlet watershed and to provide a comprehensive assessment of fecal coliform (FC) contamination from all identifiable sources in the watershed. This study quantifies levels of contamination and estimated loadings from known sources within the watersheds and describes pollutant transport mechanisms found in the study area. In addition, the effectiveness of pollution prevention and mitigation measures currently in place within the Sinclair-Dyes Inlet watershed are discussed. This comprehensive study relies on historical data collected by several cooperating agencies, in addition to data collected during the study period from spring 2001 through summer 2005. This report is intended to provide the technical information needed to continue current water quality cleanup efforts and to help implement future efforts.

May, Christopher W.; Cullinan, Valerie I.

2005-09-21T23:59:59.000Z

215

Texas Watershed Coordinator Roundtable Dallas, Texas July 27, 2010 First Last Organization Email  

E-Print Network (OSTI)

Texas Watershed Coordinator Roundtable Dallas, Texas July 27, 2010 First Last Organization Email Texas Water Resources Institute glbryant@ag.tamu.edu Ruben Camacho EPA SRF Camacho.Ruben@epamail.epa.gov Jody Carton Trinity Basin Conservation Foundation jcarton@trinitybasin.org Pamela Casebolt Texas State

216

Texas Watershed Coordinator Roundtable January 25, 2012 # First Last Organization Email  

E-Print Network (OSTI)

Texas Watershed Coordinator Roundtable January 25, 2012 # First Last Organization Email 1 Robert Adams Alan Plummer Assoc., Inc. radams@apaienv.com 2 Ashley Alexander Texas State Soil and Water Conservation Board aalexander@tsswcb.texas.gov 3 Blake Alldredge Texas AgriLife Extension Service balldredge

217

Re: BPA FY 07-09 Project Proposal #200711200 Teanaway Watershed Protection and Restoration  

E-Print Network (OSTI)

Re: BPA FY 07-09 Project Proposal #200711200 Teanaway Watershed Protection and Restoration Kittitas draft province recommendations). The conservation easements acquisition costs qualify for funding by BPA as a Capital investment, as indicated in the Project Narrative on page 8. Proposed Project Funding Allocation

218

REMOTE SENSING TECHNIQUES FOR LAND USE CLASSIFICATION OF RIO JAUCA WATERSHED USING IKONOS IMAGES  

E-Print Network (OSTI)

REMOTE SENSING TECHNIQUES FOR LAND USE CLASSIFICATION OF RIO JAUCA WATERSHED USING IKONOS IMAGES-Mayagüez E-mail: edwinmm80@yahoo.com Key words: GIS, remote sensing, land use, supervised classification resource and supplies water to the metropolitan area. Remote sensing techniques can be used to assess

Gilbes, Fernando

219

Extraordinary Flood Response of a Small Urban Watershed to Short-Duration Convective Rainfall  

Science Conference Proceedings (OSTI)

The 9.1 km2 Moores Run watershed in Baltimore, Maryland, experiences floods with unit discharge peaks exceeding 1 m3 s?1 km?2 12 times yr?1, on average. Few, if any, drainage basins in the continental United States have a higher frequency. A ...

James A. Smith; Andrew J. Miller; Mary Lynn Baeck; Peter A. Nelson; Gary T. Fisher; Katherine L. Meierdiercks

2005-10-01T23:59:59.000Z

220

Watershed Transformation Based Identification of the Combustion Region in an Oxy-coal Flame Image  

Science Conference Proceedings (OSTI)

To meet the increasingly stringent standards on pollutant emissions, oxy-coal combustion technologies are being proposed for both existing and new coal-fired power plants. However, there is lack of research to characterize this new type of combustion ... Keywords: edge detection, image enhancement, wavelet transformation, oxy-coal flame, watershed transformation, image segmentation

Tian Qiu; Yong Yan; Gang Lu

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "river inter-tribal watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Mercury contamination in fish-eating birds from a polluted watershed  

SciTech Connect

The mercury contents of selected fish-eating birds in the watershed affected by the Homestake gold mine in Lead, South Dakota are reported. The mine had used the mercury amalgamation process to recover gold, and had discharged 12 to 40 pounds of mercury per day. Elevated mercury levels were found in the birds.

Hesse, L.W.

1972-01-01T23:59:59.000Z

222

Pennsylvania Scenic Rivers Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pennsylvania Scenic Rivers Program Pennsylvania Scenic Rivers Program Pennsylvania Scenic Rivers Program < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Transportation Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Pennsylvania Program Type Environmental Regulations Siting and Permitting Provider Pennsylvania Department of Conservation and Natural Resources Rivers included in the Scenic Rivers System will be classified, designated and administered as Wild, Scenic, Pastoral, Recreational and Modified Recreational Rivers (Sections 4; (a) (1) of the Pennsylvania Scenic Rivers Act). Low dams are permitted on Modified Recreational Rivers, but are not

223

Wisconsin River Power Company | Open Energy Information  

Open Energy Info (EERE)

River Power Company Jump to: navigation, search Name Wisconsin River Power Company Place Wisconsin Utility Id 20863 Utility Location Yes Ownership I NERC Location RFC NERC MRO Yes...

224

Canadian River Compact (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Savings Canadian River Compact (Texas) Canadian River Compact (Texas) Eligibility Utility Fed. Government Commercial...

225

Hydrologic Variability of the Cosumnes River Floodplain  

E-Print Network (OSTI)

Preserve (CRP) floodplain, Michigan Bar streamflow gage,and mean monthly streamflow streamflow at River at Michiganat Michigan Bar. at Cosumnes Cosumnes River Bar. SAN

Booth, Eric; Mount, Jeff; Viers, Joshua H.

2006-01-01T23:59:59.000Z

226

Big River Resources LLC | Open Energy Information  

Open Energy Info (EERE)

Name Big River Resources LLC Place West Burlington, Iowa Zip 52655 Product Dry-mill bioethanol producer with a cooperative structure. References Big River Resources LLC1...

227

Ohio River Ecological Research Program  

Science Conference Proceedings (OSTI)

This report presents the results of the 2009 Ohio River Ecological Research Program (ORERP) fish community sampling near 14 Ohio River power plants. The sampling program consisted of adult/juvenile fish, habitat, and water quality field studies conducted upstream and downstream of the participating power plants.

2012-02-28T23:59:59.000Z

228

Evaluation of Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2006 Project Completion Summary.  

DOE Green Energy (OSTI)

The Columbia River Distinct Population Segment of bull trout (Salvelinus confluentus) was listed as threatened under the Endangered Species Act in 1998. One of the identified major threats to the species is fragmentation resulting from dams on over-wintering habitats of migratory subpopulations. A migratory subgroup in the Tucannon River appeared to utilize the Snake River reservoirs for adult rearing on a seasonal basis. As a result, a radio telemetry study was conducted on this subgroup from 2002-2006, to help meet Reasonable and Prudent Measures, and Conservation Recommendations associated with the lower Snake River dams in the FCRPS Biological Opinion, and to increase understanding of bull trout movements within the Tucannon River drainage. We sampled 1,109 bull trout in the Tucannon River; 124 of these were surgically implanted with radio tags and PIT tagged, and 681 were only PIT tagged. The remaining 304 fish were either recaptures, or released unmarked. Bull trout seasonal movements within the Tucannon River were similar to those described for other migratory bull trout populations. Bull trout migrated upstream in spring and early summer to the spawning areas in upper portions of the Tucannon River watershed. They quickly moved off the spawning areas in the fall, and either held or continued a slower migration downstream through the winter until early the following spring. During late fall and winter, bull trout were distributed in the lower half of the Tucannon River basin, down to and including the mainstem Snake River below Little Goose Dam. We were unable to adequately radio track bull trout in the Snake River and evaluate their movements or interactions with the federal hydroelectric dams for the following reasons: (1) none of our radio-tagged fish were detected attempting to pass a Snake River dam, (2) our radio tags had poor transmission capability at depths greater than 12.2 m, and (3) the sample size of fish that actually entered the Snake River was small (n=6). In spite of this project's shortcomings, bull trout continue to be observed in low numbers at Snake River dam fish facilities. It is highly possible that bull trout observed at the Snake River dam fish facilities are originating from sources other than the Tucannon River. We suggest that these fish might come from upstream sources like the Clearwater or Salmon rivers in Idaho, and are simply following the outmigration of juvenile anadromous fish (a food supply) as they emigrate toward the Pacific Ocean. Based on our study results, we recommend abandoning radio telemetry as a tool to monitor bull trout movements in the mainstem Snake River. We do recommend continuing PIT tagging and tag interrogation activities to help determine the origin of bull trout using the Snake River hydropower facilities. As a complementary approach, we also suggest the use of genetic assignment tests to help determine the origin of these fish. Lastly, several recommendations are included in the report to help manage and recover bull trout in the Tucannon subbasin.

Faler, Michael P. [U.S. Fish and Wildlife Service; Mendel, Glen; Fulton, Carl [Washington Department of Fish and Wildlife

2008-11-20T23:59:59.000Z

229

Information summary, Area of Concern: Grand Calumet River, Indiana. Final report  

Science Conference Proceedings (OSTI)

A 5-year study and demonstration project, Assessment and Remediation of Contaminated Sediment (ARCS), emphasizes the removal of toxic pollutants from bottom sediments. Information from the ARCS program is to be used to guide the development of Remedial Action Plans (RAPs) for 42 identified Great Lakes Areas of Concern (AOCs) as well as resource management plans. The AOCs are areas where serious impairment of beneficial uses of water or biota (drinking, swimming, fishing, navigation, etc) is known to exist, or where environmental quality criteria are exceeded to the point that such impairment is likely. Among the hazardous materials detected from sampling of sediments are heavy metals, pesticides, various chemicals and industrial wastes. Industrial land use, runoff from watersheds, landfills, waste disposal practices and ground water flow contributed to pollutants found in bottom sediments of rivers and waterways channels.

Simmers, J.W.; Lee, C.R.; Brandon, D.L.; Tatem, H.E.; Skogerboe, J.G.

1991-03-01T23:59:59.000Z

230

Bull Trout Population and Habitat Surveys in the Middle Fork Willamette and McKenzie Rivers, Annual Report 2002.  

DOE Green Energy (OSTI)

Bull trout in the Willamette River Basin were historically distributed throughout major tributaries including the Middle Fork Willamette and McKenzie rivers. Habitat degradation, over-harvest, passage barriers, fish removal by rotenone, and hybridization and competition with non-native brook trout are all likely factors that have led to the decline of bull trout in the Willamette Basin (Ratliff and Howell 1992). The U.S. Fish and Wildlife Service listed the Columbia River bull trout population segment as Threatened under the federal Endangered Species Act in 1998. Four bull trout populations were isolated in the upper Willamette River following the construction of flood control dams on the South Fork McKenzie River, McKenzie River, and Middle Fork Willamette River that created Cougar, Trail Bridge, and Hills Creek reservoirs. Buchanan et al. (1997) described the population in the main stem McKenzie as 'of special concern', the South Fork McKenzie population as 'high risk of extinction', the population above Trail Bridge Reservoir as 'high risk of extinction', and bull trout in the Middle Fork Willamette as 'probably extinct'. Various management efforts such as strict angling regulations and passage improvement projects have been implemented to stabilize and rehabilitate bull trout habitat and populations in the McKenzie River over the past 10 years. Since 1997, bull trout fry from Anderson Creek on the upper McKenzie River have been transferred to the Middle Fork Willamette basin above Hills Creek Reservoir in an attempt to re-establish a reproducing bull trout population. This project was developed in response to concerns over the population status and management of bull trout in the McKenzie and Middle Fork Willamette Rivers by the Oregon Department of Fish and Wildlife during the early 1990s. The project was conducted under measure 9.3G(2) of the Columbia Basin Fish and Wildlife Program to monitor the status, life history, habitat needs, and limiting factors for bull trout within sub basins of the Columbia River. Also, this project provides information to develop native fish recovery plans such as the Oregon Plan for Salmon and Watersheds and the U.S. Fish and Wildlife Bull Trout Recovery Plan.

Seals, Jason; Reis, Kelly

2003-10-01T23:59:59.000Z

231

Hood River Fish Habitat Project; Confederated Tribes of the Warm Springs Reservation of Oregon, Annual Report 2002-2003.  

DOE Green Energy (OSTI)

This report summarizes the project implementation and monitoring of all habitat activities in the Hood River basin that occurred over the October 1, 2002 to September 30, 2003 period (FY 03). Some of the objectives in the corresponding statement of work for this contract were not completed within FY 03. A description of the progress during FY 03 and reasoning for deviation from the original tasks and timeline are provided. OBJECTIVE 1 - Provide coordination of all activities, administrative oversight and assist in project implementation and monitoring activities. Administrative oversight and coordination of the habitat statement of work, budget, subcontracts, personnel, implementation, and monitoring was provided. OBJECTIVE 2 - Continue to coordinate, implement, and revise, as needed, the Hood River Fish Habitat Protection, Restoration, and Monitoring Plan. The Hood River Fish Habitat Protection, Restoration, and Monitoring Plan was completed in 2000 (Coccoli et al., 2000). This document was utilized for many purposes including: drafting the Watershed Action Plan (Coccoli, 2002), ranking projects for funding, and prioritizing projects to target in the future. This document has been reviewed by many, including stakeholders, agencies, and interested parties. The Hood River Watershed Group Coordinator and author of the Hood River Fish Habitat Protection, Restoration, and Monitoring Plan, Holly Coccoli, has updated and revised the plan. Changes will be reflected in the Hood River Subbasin Plan, and after submission of the Subbasin Plan, a formally revised version of the Monitoring Plan will be put out for review. This will more specifically address changes in the Hood River subbasin since 2000, and reflect changes to fish habitat and needs in the Hood River subbasin regarding monitoring. OBJECTIVE 3 - Evaluate and monitor the habitat, accessibility, and presence of winter steelhead, coho salmon, and resident trout upstream of the Middle Fork Irrigation District water sources on Evans Creek. Through this project, BPA funded the Middle Fork Irrigation District (MFID) a total of $194,000 in FY 03 for the Glacier Ditch- Evans Creek project. BPA funds accounted for approximately 30% of the project while the remaining 70% was cost-shared by the MFID, the US Forest Service, and the Oregon Watershed Enhancement Board. The MFID operated irrigation diversions on Evans Creek (Hutson pond RM 4.0 and the Evans Creek diversion RM 5.5), a tributary to the East Fork Hood River. Both diversions had inadequate upstream fish passage, and utilized Evans Creek to transport Eliot Branch water to distribute irrigation water lower in the basin. This project consisted of: piping a portion of the Glacier ditch to create a pressurized irrigation pipeline system, piping the Hutson extension, removing the culvert on Evans Creek near the Glacier ditch, removing the culvert above the Hutson pond, revegetating the disturbed areas, and providing adequate and approved fish passage on Evans Creek. Prior to any work, Brian Connors with MFID completed a NEPA checklist. Some of the key regulatory points of this project included wetland delineations, a cultural resources survey, and consultations with NOAA Fisheries, U.S. Fish and Wildlife, Oregon Department of Fish and Wildlife (ODFW), and the U.S. Army Corps of Engineers. This project will eliminate the overflow of silty water into Evans Creek and West Fork Evans Creek. Upon completion of this project, access to 2.5 miles of winter steelhead, coho salmon, and resident trout habitat will be restored. Elimination of the interbasin transfer of water will discontinue the conveyance of silty Eliot Branch water into clear East Fork tributaries. Additionally, less water taken from Coe Branch, Eliot Branch, and Laurance Lake which will benefit listed steelhead and bull trout. The Glacier Ditch provided irrigation water from the Eliot Branch to upper valley orchards and agriculture for more than 100 years. The Glacier Ditch served approximately 1,438 acres with 18 cfs of water. The Glacier Ditch portion of this project

Vaivoda, Alexis

2004-02-01T23:59:59.000Z

232

Hood River and Pelton Ladder Evaluation Studies, Annual Report 2000-2001.  

DOE Green Energy (OSTI)

The Bonneville Power Administration (BPA) funded the development of two master plans which outline the rationale, and general approach, for implementing a defined group of projects that are an integral part of a comprehensive watershed goal to 'Protect, enhance and restore wild and natural populations of anadromous and resident fish within the Hood River Subbasin'. The Hood River Production Master Plan and the Pelton Ladder Master Plan were completed in 1991 and subsequently approved by the Northwest Power Planning Council in 1992. Action items identified in the two master plans, as well as in a later document entitled 'Hood River/Pelton Ladder Master Agreement' (ODFW and CTWSRO Undated), are designed to achieve two biological fish objectives: (1) to increase production of wild summer and winter steelhead (Oncorhynchus mykiss) to levels commensurate with the subbasins current carrying capacity and (2) re-establishing a self-sustaining population of spring chinook salmon (Oncorhynchus tshawytscha). Numerical fish objectives for subbasin escapement, spawner escapement, and subbasin harvest are defined for each of these species in Coccoli (2000). Several projects are presently funded by the BPA to achieve the Hood River subbasin's numerical fish objectives for summer and winter steelhead and spring chinook salmon. They include BPA project numbers 1998-021-00 (Hood River Fish Habitat), 1998-053-03 (Hood River Production Program - CTWSRO: M&E), 1998-053-07 (Parkdale Fish Facility), 1998-053-08 (Powerdale/Oak Springs O&M), and 1998-053-12 (Hood River Steelhead Genetics Study). Collectively, they are implemented under the umbrella of what has come to be defined as the Hood River Production Program (HRPP). The HRPP is jointly implemented by the Oregon Department of Fish and Wildlife (ODFW) and The Confederated Tribes of the Warm Springs Reservation of Oregon (CTWSRO). Strategies for achieving the HRPP's biological fish objectives for the Hood River subbasin were initially devised based on various assumptions about (1) subbasin carrying capacity, (2) survival rates for selected life history stages, and (3) historic and current escapements of wild, natural, and hatchery stocks of anadromous salmonids to the Hood River subbasin. The Oregon Department of Fish and Wildlife began funding a monitoring and evaluation (M&E) project in December 1991 to collect the quantitative biological information needed to (1) more accurately assess the validity of these assumptions and (2) evaluate the proposed hatchery supplementation component of the HRPP. Bonneville Power Administration assumed funding of the M&E project in August 1992. The M&E project was initially confined to sampling anadromous salmonids escaping to an adult trapping facility operated at Powerdale Dam; which is located at River Mile (RM) 4.5 on the mainstem of the Hood River. Stock specific life history and biological data was collected to (1) monitor subbasin spawner escapements and (2) collect pre-implementation data critical to evaluating the newly proposed HRPP's potential biological impact on indigenous populations of resident fish. The scope of the M&E project was expanded in 1994 to collect the data needed to quantify (1) subbasin smolt production and carrying capacity, (2) smolt to adult survival rates, and (3) the spatial distribution of indigenous populations of summer and winter steelhead, spring and fall chinook salmon, and coho salmon. A creel was incorporated into the M&E project in December 1996 to evaluate the HRPP with respect to its defined subbasin and spawner escapement objectives for Hood River stocks of wild and hatchery summer and winter steelhead and for natural and Deschutes stock hatchery spring chinook salmon. In 1996, the M&E project also began monitoring streamflow at various locations in the Hood River subbasin. Streamflow data will be used to correlate subbasin smolt production with summer streamflows. Data collected from 1991-1999 is reported in the following annual progress reports: Olsen et al. (1994), Olsen et al

Olsen, Erik

2009-09-01T23:59:59.000Z

233

DOE/EIS-0265-SA-164: Supplement Analysis for the Watershed Management Program EIS (8/2/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2004 , 2004 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-164) Mickey Carter TO: Fish and Wildlife Project Manager - KEWU-4 Proposed Action: Idaho Model Watershed Habitat Projects - L-9 Irrigation Diversion Modification Project No: 1994-017-00 Watershed Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Watershed Management Program EIS): 1.15 Fish Passage Enhancement - Fishways, 4.1 Irrigation Water Management, 4.2 Water Measuring Devices, 4.23 Intake and Return Diversion Screens, 4.25 Consolidation/Replace Irrigation Diversion Dams Location: Lemhi County, Idaho Proposed by: Bonneville Power Administration (BPA) and the Lemhi Soil and Water Conservation District

234

Statistical Comparisons of Watershed-Scale Response to Climate Change in Selected Basins across the United States  

Science Conference Proceedings (OSTI)

In an earlier global climate-change study, air temperature and precipitation data for the entire twenty-first century simulated from five general circulation models were used as input to precalibrated watershed models for 14 selected basins across ...

John Risley; Hamid Moradkhani; Lauren Hay; Steve Markstrom

2011-05-01T23:59:59.000Z

235

DOE/EIS-0265-SA-166: Supplement Analysis for the Watershed Management Program EIS (8/6/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2004 6, 2004 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-166) Jay Marcotte Fish and Wildlife Project Manager - KEWL-4 Proposed Action: Idaho Model Watershed Habitat Projects - Coleman Creek Fish Passage Restoration Project No: 2002-025-00 Watershed Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Watershed Management Program EIS): 1.8 Bank Protection through Vegetation Management, 1.9 Structural Bank Protection Using Bioengineering Methods, 1.13 Culvert Removal/Replacement to Improve Fish Passage, 1.16 Spawning Habitat Enhancements, 2.6 Native Seed Inventories, 2.7 Avoid Exotic Species, 2.9 Mechanical Vegetation Removal, 4.2 Water Measuring

236

(DOE/EIS-0265/SA-88): Supplement Analysis for the Watershed Management Program EIS (08/26/02)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2002 6, 2002 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-88) John Baugher, KEWL-4 TO: Fish and Wildlife Project Manager Proposed Action: John Day Watershed Restoration (2002-2003) Project No: 1998-018-00 Watershed Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Watershed Management Program EIS): 4.2 Water Measuring Devices; 4.10 Water Conveyance Pipeline; 4.25 Consolidate / Replace Irrigation Diversion Dams; 6.5 Water Supply: Pipeline. Location: Canyon City, Grant County, Oregon Proposed by: Bonneville Power Administration (BPA) and the Confederated Tribes of the Warm Springs Reservation of Oregon.

237

Savannah River Site Homepage  

NLE Websites -- All DOE Office Websites (Extended Search)

7/2014 7/2014 SEARCH GO News Releases Video Releases Upcoming Events 12.31.13 Dr. Sam Fink Earns Donald Orth Lifetime Achievement Award 12.31.13 Savannah River Remediation Issues Fiscal Year 2013 Annual Report 12.18.13 Prototype System Brings Advantages of Wireless Technology to Secure Environment CLICK HERE FOR ADDITIONAL NEWS RELEASES CLICK HERE for our email news service, govDELIVERY 2013 PMI Project of the Year Award - Click to play on YouTube 2013 PMI Project of the Year Award Finalist: SRS Recovery Act Project PLAY VIDEO CLICK HERE FOR ADDITIONAL VIDEO RELEASES Enterprise.SRS - Safety and Security begin with me! SRS Status & Emergency Information * Cold War Patriot's Resource Fair - Aiken, SC (04.25.13) * 3rd Annual Small Modular Reactor Conference - Columbia, SC (04.16-17.13)

238

Waste area grouping 2 Phase I task data report: Ecological risk assessment and White Oak Creek watershed screening ecological risk assessment  

Science Conference Proceedings (OSTI)

This report presents an ecological risk assessment for Waste Area Grouping (WAG) 2 based on the data collected in the Phase I remedial investigation (RI). It serves as an update to the WAG 2 screening ecological risk assessment that was performed using historic data. In addition to identifying potential ecological risks in WAG 2 that may require additional data collection, this report serves to determine whether there are ecological risks of sufficient magnitude to require a removal action or some other expedited remedial process. WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the Oak Ridge National Laboratory (ORNL) main plant area, White Oak Lake (WOL), the White Oak Creek Embayment of the Clinch River, associated flood plains, and the associated groundwater. The WOC system drains the WOC watershed, an area of approximately 16.8 km{sup 2} that includes ORNL and associated WAGs. The WOC system has been exposed to contaminants released from ORNL and associated operations since 1943 and continues to receive contaminants from adjacent WAGs.

Efroymson, R.A.; Jackson, B.L.; Jones, D.S. [and others] [and others

1996-05-01T23:59:59.000Z

239

Identification of sediment sources in forested watersheds with surface coal mining disturbance using carbon and nitrogen isotopes  

SciTech Connect

Sediments and soils were analyzed using stable carbon and nitrogen isotope ratio mass spectrometry and carbon and nitrogen elemental analyses to evaluate the their ability to indicate land-use and land management disturbance and pinpoint loading from sediment transport sources in forested watersheds disturbed by surface coal mining. Samples of transported sediment particulate organic matter were collected from four watersheds in the Southern Appalachian forest in Kentucky. The four watersheds had different surface coal mining history that were classified as undisturbed, active mining, and reclaimed conditions. Soil samples were analyzed including reclaimed grassland soils, undisturbed forest soils, geogenic organic matter associated with coal fragments in mining spoil, and soil organic matter from un-mined grassland soils. Statistically significant differences were found for all biogeochemical signatures when comparing transported sediments from undisturbed watersheds and surface coal mining disturbed watersheds and the results were attributed to differences in erosion sources and the presence of geogenic organic matter. Sediment transport sources in the surface coal mining watersheds analyzed using Monte Carlo mass balance un-mixing found that: {delta}{sup 15}N showed the ability to differentiate streambank erosion and surface soil erosion; and {delta} {sup 13}C showed the ability to differentiate soil organic matter and geogenic organic matter. This suggests that streambank erosion downstream of surface coal mining sites is a significant source of sediment in coal mining disturbed watersheds. The results suggest that the sediment transport processes governing streambank erosion loads are taking longer to reach geomorphologic equilibrium in the watershed as compared with the surface erosion processes.

Fox, J.F. [University of Kentucky, Lexington, KY (United States). Dept. of Civil Engineering

2009-10-15T23:59:59.000Z

240

Evaluation of Fish Passage Sites in the Walla Walla River Basin, 2008  

DOE Green Energy (OSTI)

In 2008, Pacific Northwest National Laboratory evaluated the Hofer Dam fish screen and provided technical assistance at two other fish passage sites as requested by the Bonneville Power Administration, the Walla Walla Watershed Council, or the Confederated Tribes of the Umatilla Indian Reservation. Evaluation of new sites such as Hofer Dam focuses on their design, construction, operation, and maintenance to determine if they effectively provide juvenile salmonids with safe passage through irrigation diversions. There were two requests for technical assistance in 2008. In the first, the Confederated Tribes of the Umatilla Indian Reservation requested an evaluation of the Nursery Bridge fish screens associated with the fish ladder on the east side of the Walla Walla River. One set of brushes that clean the screens was broken for an extended period. Underwater videography and water velocity measurements were used to determine there were no potential adverse effects on juvenile salmonids when the west set of screens was clean enough to pass water normally. A second request, received from the National Marine Fisheries Service and the Walla Walla Watershed Council, asked for evaluation of water velocities through relatively new head gates above and adjacent to the Eastside Ditch fish screens on the Walla Walla River. Water moving through the head gates and not taken for irrigation is diverted to provide water for the Nursery Bridge fish ladder on the east side of the river. Elevations used in the design of the head gates were incorrect, causing excessive flow through the head gates that closely approached or exceeded the maximum swimming burst speed of juvenile salmonids. Hofer Dam was evaluated in June 2008. PNNL researchers found that conditions at Hofer Dam will not cause impingement or entrainment of juvenile salmonids but may provide habitat for predators and lack strong sweeping flows to encourage juvenile salmonid passage downstream. Further evaluation of velocities at the Eastside Ditch and wasteway gates should occur as changes are made to compensate for the design problems. These evaluations will help determine whether further changes are required. Hofer Dam also should be evaluated again under more normal operating conditions when the river levels are typical of those when fish are emigrating and the metal plate is not affecting flows.

Chamness, Mickie A. [Pacific Northwest National Laboratory

2008-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "river inter-tribal watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Marble River | Open Energy Information  

Open Energy Info (EERE)

River River Jump to: navigation, search Name Marble River Facility Marble River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EDP Renewables North America LLC Developer EDP Renewables North America LLC Energy Purchaser Merchant Location Churubusco NY Coordinates 44.9406848°, -73.9303307° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9406848,"lon":-73.9303307,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

242

Black Hawk Lake Fresno River  

E-Print Network (OSTI)

Black Hawk Lake Fresno River R D 4 0 0 RD 415 HWY41 RD 207 REVISRD YO SEM ITE SP RINGS P KY LILLEY County Rosedale Ranch Revis Mountain Daulton Spring Red Top Lookout Buford Mountain Black Hawk Lake

Wang, Zhi

243

Caney River | Open Energy Information  

Open Energy Info (EERE)

River River Jump to: navigation, search Name Caney River Facility Caney River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Enel Green Power North America Inc. Developer Tradewind Energy LLC Energy Purchaser Tennessee Valley Authority Location Elk County KS Coordinates 37.448424°, -96.425027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.448424,"lon":-96.425027,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

244

River-Forced Estuarine Plumes  

Science Conference Proceedings (OSTI)

The development, maintenance, and dissipation of river-forced estuarine plumes with and without seaward sloping bottom are studied by use of a three-dimensional, primitive-equation model. Inside the estuary, discussion is focused on how the ...

Shenn-Yu Chao

1988-01-01T23:59:59.000Z

245

Savannah River Operations Office Homepage  

NLE Websites -- All DOE Office Websites

Savannah River Operations banner art and link to DOE Link to Energy.gov Link to Energy.gov National Day of Remembrance NOTICE TO USERS Use of this system constitutes consent to...

246

Colorado River Basin Hydroclimatic Variability  

Science Conference Proceedings (OSTI)

An analysis of annual hydroclimatic variability in the Upper Colorado River basin (UCRB) for the period of 1906–2006 was performed to understand the dominant modes of multidecadal variability. First, wavelet-based spectral analysis was employed ...

Kenneth Nowak; Martin Hoerling; Balaji Rajagopalan; Edith Zagona

2012-06-01T23:59:59.000Z

247

Variation in foliar 15N abundance and the availability of soil nitrogen on Walker Branch Watershed  

Science Conference Proceedings (OSTI)

Spatial patterns in natural {sup 15}N abundance ({sup o}{sup 15}N) in soil, soil solutions, and non-N{sub 2}-fixing plants were studied in the deciduous forest on Walker Branch Watershed near Oak Ridge, Tennessee. This study was undertaken to test the hypothesis that foliar {sup o}{sup 15}N values are related to the availability of inorganic nitrogen in mineral soil. Soils collected in or near valley bottoms on the watershed had higher levels of net nitrogen mineralization and net nitrification potential than those sampled from ridges and slopes. More positive foliar {sup o}{sup 15}N values occurred in valley bottoms, which, relative to other positions on the watershed, were characterized by greater availability of soil nitrogen and lower C-to-N ratios in the O{sub i}-horizon, in the surface mineral soil, and in autumn leaf fall. Although leaf nitrogen concentrations changed significantly over the course of the growing season, there was little seasonal variation in foliar {sup o}{sup 15}N values. A hypothesis about the relative importance of different sources of nitrogen to the forest and how nitrogen cycling varies with topography in this nitrogen-deficient ecosystem was derived, in part, from spatial patterns in natural {sup 15}N abundance. There appear to be two processes affecting the topographic patterns in foliar {sup 15}N abundance on this watershed: (1) greater uptake from isotopically heavy pools of inorganic soil nitrogen by plants in valley bottoms, and (2) uptake of isotopically light ammonium-N in atmospheric deposition by plants on ridges and slopes (where the availability of inorganic soil nitrogen to plant roots is more limited). Results from this study indicate that foliar {sup o}{sup 15}N values are positively correlated with net nitrification potential in surface soil.

Garten Jr, Charles T [ORNL

1993-10-01T23:59:59.000Z

248

An Economic Analysis of Erosion and Sedimentation in Lavon Reservoir Watershed  

E-Print Network (OSTI)

Public Law 92-500 - the 1972 Federal Water Pollution Control Act Amendments - mandates the analysis of agricultural non-point source (NPS) pollution controls. This report presents the results of a study of the economic impact of implementing potential agricultural NPS pollution controls in the watershed above Lavon Reservoir. The study focuses on: (a) effects of erosion controls on farm income, (b) off-side sediment damages in the watersheds; (c) costs of administering and enforcing alternative erosion-sedimentation controls, and (d) effects of adopting cotton pest management methods. Erosion controls considered include possible regulatory programs as well as voluntary programs combined with economic incentives. While the stimulus for this study was concern over pollution (an off-site problem) it can not, because of long-run farm income consequences, be separated from conservation problems (an on-farm problem). Thus, the study is as much an analysis of conservation economics as it is an analysis of environmental economics. Accordingly, the report contains substantial information on the short and long-run on-farm benefits and costs of various soil conservation practices for all soil mapping units in Lavon watershed The results are applicable to much of the Blackland Prairies Land Resource area.

Taylor, C. R.; Reneau, D. R.; Harris, B. L.

1978-10-01T23:59:59.000Z

249

Remediation of the Melton Valley Watershed at Oak Ridge National Lab: An Accelerated Closure Success Story  

Science Conference Proceedings (OSTI)

The Melton Valley (MV) Watershed at the U. S. Department of Energy's (DOE's) Oak Ridge National Laboratory (ORNL) encompasses approximately 430 hectares (1062 acres). Historic operations at ORNL produced a diverse legacy of contaminated facilities and waste disposal areas in the valley. In addition, from 1955 to 1963, ORNL served as a major disposal site for wastes from over 50 off-site government-sponsored installations, research institutions, and other isotope users. Contaminated areas in the watershed included burial grounds, landfills, underground tanks, surface impoundments, liquid disposal pits/trenches, hydro-fracture wells, leak and spill sites, inactive surface structures, and contaminated soil and sediment. Remediation of the watershed in accordance with the requirements specified in the Melton Valley Record of Decision (ROD) for Interim Actions in Melton Valley, which estimated that remedial actions specified in the ROD would occur over a period of 14 years, with completion by FY 2014. Under the terms of the Accelerated Closure Contract between DOE and its contractor, Bechtel Jacobs Company, LLC, the work was subdivided into 14 separate sub-projects which were completed between August 2001 and September 2006, 8 years ahead of the original schedule. (authors)

Johnson, Ch.; Cange, J. [Bechtel Jacobs Company, LLC, Oak Ridge, TN (United States); Skinner, R. [U.S. DOE, Oak Ridge Operations Office, Oak Ridge, TN (United States); Adams, V. [U.S. DOE, Office of Groundwater and Soil Remediation, Washington, DC (United States)

2008-07-01T23:59:59.000Z

250

Evaluating Cumulative Ecosystem Response to Restoration Projects in the Columbia River Estuary, Annual Report 2005  

DOE Green Energy (OSTI)

This report is the second annual report of a six-year project to evaluate the cumulative effects of habitat restoration projects in the Columbia River Estuary, conducted by Pacific Northwest National Laboratory's Marine Sciences Laboratory, NOAA's National Marine Fisheries Service Pt. Adams Biological Field Station, and the Columbia River Estuary Study Taskforce for the US Army Corps of Engineers. In 2005, baseline data were collected on two restoration sites and two associated reference sites in the Columbia River estuary. The sites represent two habitat types of the estuary--brackish marsh and freshwater swamp--that have sustained substantial losses in area and that may play important roles for salmonids. Baseline data collected included vegetation and elevation surveys, above and below-ground biomass, water depth and temperature, nutrient flux, fish species composition, and channel geometry. Following baseline data collection, three kinds of restoration actions for hydrological reconnection were implemented in several locations on the sites: tidegate replacements (2) at Vera Slough, near the city of Astoria in Oregon State, and culvert replacements (2) and dike breaches (3) at Kandoll Farm in the Grays River watershed in Washington State. Limited post-restoration data were collected: photo points, nutrient flux, water depth and temperature, and channel cross-sections. In subsequent work, this and additional post-restoration data will be used in conjunction with data from other sites to estimate net effects of hydrological reconnection restoration projects throughout the estuary. This project is establishing methods for evaluating the effectiveness of individual projects and a framework for assessing estuary-wide cumulative effects including a protocol manual for monitoring restoration and reference sites.

Diefenderfer, Heida L.; Thom, Ronald M.; Borde, Amy B.; Roegner, G. C.; Whiting, Allan H.; Johnson, Gary E.; Dawley, Earl; Skalski, John R.; Vavrinec, John; Ebberts, Blaine D.

2006-12-20T23:59:59.000Z

251

BLM Humboldt River Field Office | Open Energy Information  

Open Energy Info (EERE)

Humboldt River Field Office Jump to: navigation, search Name BLM Humboldt River Field Office Short Name Humboldt River Parent Organization BLM Winnemucca District Office Address...

252

Accelerating Clean-up at Savannah River | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Clean-up at Savannah River Accelerating Clean-up at Savannah River Accelerating Clean-up at Savannah River More Documents & Publications Integrated Project Team RM...

253

Savannah River Site: Plutonium Preparation Project (PuPP) at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site: Plutonium Preparation Project (PuPP) at Savannah River Site Savannah River Site: Plutonium Preparation Project (PuPP) at Savannah River Site Full Document and Summary...

254

Comments of the Lower Colorado River Authority | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lower Colorado River Authority Comments of the Lower Colorado River Authority Comments of the Lower Colorado River Authority on Implementing the National Broadband Plan by Studying...

255

The 'Watcher's Stage' in Lower Colorado River Indian Agriculture  

E-Print Network (OSTI)

Primitive Subsistence on the Lower Colorado and Gila Rivers.Watcher's Stage' in Lower Colorado River Indian AgricultureIndian tribes along the Colorado River to various interior

Lawton, Harry W.; Wilke, Philip J.

1977-01-01T23:59:59.000Z

256

PP-41 Mirias River Electric Cooperative, Inc. | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Mirias River Electric Cooperative, Inc. PP-41 Mirias River Electric Cooperative, Inc. Presidential Permit authorizing Mirias River Electric Cooperative, Inc. to constuct,...

257

Pacific Lamprey Research and Restoration : Annual Report 1997.  

Science Conference Proceedings (OSTI)

The once abundant stocks of Pacific lamprey (Lampetra tridentata) above Bonneville Dam are currently depressed (Close et al. 1995). It is likely that many of the same factors that led to the decline of wild stocks of Columbia River Pacific salmon and steelhead have impacted Pacific lamprey populations as well. The Pacific Lamprey Research and Restoration Project, funded by Bonneville Power Administration, is a cooperative effort between the Confederated Tribes of the Umatilla Indian Reservation, the Columbia River Inter-Tribal Fish Commission, and Oregon State University with the goal to increase Pacific lamprey stocks above Bonneville Dam.

Jackson, Aaron D.; Hatch, Douglas R.; Close, David A.

1998-08-05T23:59:59.000Z

258

Deep drilling data, Raft River geothermal area, Idaho-Raft River...  

Open Energy Info (EERE)

Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep...

259

Savannah River Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Savannah River Site Savannah River Site Savannah River Site | June 2011 Aerial View Savannah River Site | June 2011 Aerial View Savannah River Site (SRS) has mission responsibilities in nuclear weapons stockpile stewardship by ensuring the safe and reliable management of tritium resources; by contributing to the stockpile surveillance program; and by assisting in the development of alternatives for large-scale pit disassembly/conversion capability. SRS also manages excess nuclear materials and supports nuclear nonproliferation initiatives. Environmental stewardship activities include the management, treatment, and disposal of radioactive, hazardous, and mixed wastes. Enforcement April 13, 2010 Consent Order, Parsons Infrastructure & Technology Group, Inc. -

260

Canadian River Compact (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Canadian River Compact (Texas) Canadian River Compact (Texas) Canadian River Compact (Texas) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Texas Program Type Siting and Permitting Provider Canadian River Compact Commission The Canadian River Commission administers the Canadian River Compact which includes the states of New Mexico, Oklahoma, and Texas. Signed in 1950 by

Note: This page contains sample records for the topic "river inter-tribal watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal  

Open Energy Info (EERE)

Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Details Activities (1) Areas (1) Regions (0) Abstract: Cassia County Idaho; data; geophysical surveys; Idaho; Raft River geothermal area; surveys; United States; USGS; Well No. 3; well-logging Author(s): Covington, H.R. Published: Open-File Report - U. S. Geological Survey, 1/1/1978 Document Number: Unavailable DOI: Unavailable Exploratory Well At Raft River Geothermal Area (1977) Raft River Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Deep_drilling_data,_Raft_River_geothermal_area,_Idaho-Raft_River_geothermal_exploration_well_sidetrack-C&oldid=473365"

262

Anadronous Fish Habitat Enhancement for the Middle Fork and Upper Salmon River, 1988 Annual Report.  

DOE Green Energy (OSTI)

The wild and natural salmon and steelhead populations in the Middle Fork and Upper Salmon River are at a critical low. Habitat enhancement through decreasing sediment loads, increasing vegetative cover, removing passage barriers, and providing habitat diversity is imperative to the survival of these specially adapted fish, until passage problems over the Columbia River dams are solved. Personnel from the Boise and Sawtooth National Forests completed all construction work planned for 1988. In Bear Valley, 1573 feet of juniper revetment was constructed at eleven sites, cattle were excluded from 1291 feet of streambanks to prevent bank breakdown, and a small ephemeral gully was filled with juniper trees. Work in the Upper Salmon Drainage consisted of constructing nine rock sills/weirs, two rock deflectors, placing riprap along forty feet of streambank, construction of 2.1 miles of fence on private lands, and opening up the original Valley Creek channel to provide spring chinook passage to the upper watershed. A detailed stream survey of anadromous fish habitat covering 72.0 miles of streams in the Middle Fork Sub-basin was completed.

Andrews, John ( US Forest Service, Intermountain Region, Boise, ID)

1990-01-01T23:59:59.000Z

263

Federal-State Conflicts over the Colorado River  

E-Print Network (OSTI)

A RIVER No MORE: THE COLORADO RIVER AND THE WEST (1981). 3.agricultural use in the Colorado River Basin in California.and California's dispute over Colorado River water, spanning

Kaplan, David

1987-01-01T23:59:59.000Z

264

Savannah River Tank Waste Residuals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah Savannah River Savannah River Tank Waste Residuals HLW Corporate Board November 6, 2008 1 November 6, 2008 Presentation By Sherri R. Ross Department of Energy Savannah River Operations Office The Issue * How clean is clean? * Ultimate Challenge - Justify highly radioactive radionuclides have been removed to the maximum extent practical? 2 removed to the maximum extent practical? - Building compelling regulatory documentation that will withstand intense scrutiny §3116 Requirements 1. Does not require disposal in deep geological repository 2. Highly radioactive radionuclides removed to the maximum extent practical 3. Meet the performance objectives in 10 CFR Part 3 3. Meet the performance objectives in 10 CFR Part 61, Subpart C 4. Waste disposed pursuant to a State-approved closure plan or permit Note: If it is anticipated that Class C disposal limits will be exceeded, additional

265

Savannah River National Laboratory - Home  

NLE Websites -- All DOE Office Websites

SRNL Logo SRNL and DOE logo art SRNL Logo SRNL and DOE logo art Top Menu Bar SRNL Update: Embassy Fellows Report A report co-authored by Savannah River National Laboratory Senior Advisory Engineer, Dr. Robert Sindelar, has been released. The report to the Government of Japan - Ministry of the Environment provides observations and recommendations on decontamination work and progress... >>MORE Portable Power Research at SRNL Hadron Technologies, Inc., a microwave technology and systems development and manufacturing company with offices in Tennessee and Colorado, has signed a license for a Hybrid Microwave and Off-Gas Treatment System developed by the Savannah River National Laboratory, the Department of Energy's applied science laboratory located at the Savannah River Site. >>MORE

266

Global Nutrient Export from WaterSheds 2 (NEWS 2): Model development and implementation  

Science Conference Proceedings (OSTI)

Global NEWS is a global, spatially explicit, multi-element and multi-form model of nutrient exports by rivers. Here we present NEWS 2, the new version of Global NEWS developed as part of a Millennium Ecosystem Assessment scenario implementation from ... Keywords: Basin models, Coastal inputs, Global NEWS, Global river exports, Millennium ecosystem assessment scenarios, Nutrients

Emilio Mayorga; Sybil P. Seitzinger; John A. Harrison; Egon Dumont; Arthur H. W. Beusen; A. F. Bouwman; Balazs M. Fekete; Carolien Kroeze; Gerard Van Drecht

2010-07-01T23:59:59.000Z

267

Managing the Yellowstone River System with Place-based Cultural Data  

E-Print Network (OSTI)

This project aims to create new research tools within the human dimensions (HD) of the natural resources field to improve environmental policy decision making. It addresses problems that arise from the recent trend towards decentralized natural resource management (NRM) and planning (e.g., community-based planning, watershed-based and collaborative management, others). By examining one decentralized riparian management planning effort along the Yellowstone River (Montana), this study finds that decentralization forces new needs such as localized information requirements and a better understanding of the rationales behind local interests. To meet these new scale demands and to ensure that policy best fits the social and biophysical settings, this project argues that local cultural knowledge can serve as an organizing framework for delivering the kinds of understanding needed for decentralized planning. This was tested by interviewing 313 riverfront landowners, recreationalists, and civic managers to understand how residents conceptualize the river’s natural processes, its management, and their desires for the future of the river. Analysis of the transcribed in-depth interview texts—the Yellowstone River Cultural Inventory (YRCI)—found that: (1) altering decision venues places more significance upon interpersonal working relationships between managers and citizens; (2) while local expertise can provide higher quality information to managers, local decision making cultures still retain power dynamics that can inhibit or advance conservation policies; (3) how natural resource places are symbolically communicated has a material impact upon resource uses; (4) how residents conceptualize the ownership of land is complicated along a dynamic river; and (5) this dynamism impacts planning efforts. In sum, this project argues that for social research to provide the data and analysis appropriate, a modification in scale and a commensurate shift in the lenses used for social inquiry is necessary. An in-depth understanding of local cultures—like the YRCI—enables agencies to best manage in decentralized scales of planning by calling attention to site-specific nuances such as power dynamics and place representation which are often missed in traditional large-scale HD methods and lenses. This research also functions as a preemptive way to engage the public in environmental planning helping decision makers’ best fit policy to particular socio-cultural and ecological settings.

Hall, Damon M.

2010-08-01T23:59:59.000Z

268

River Network Routing on the NHDPlus Dataset  

Science Conference Proceedings (OSTI)

The mapped rivers and streams of the contiguous United States are available in a geographic information system (GIS) dataset called National Hydrography Dataset Plus (NHDPlus). This hydrographic dataset has about 3 million river and water body ...

Cédric H. David; David R. Maidment; Guo-Yue Niu; Zong-Liang Yang; Florence Habets; Victor Eijkhout

2011-10-01T23:59:59.000Z

269

Flambeau River Biofuels | Open Energy Information  

Open Energy Info (EERE)

Flambeau River Biofuels Flambeau River Biofuels Jump to: navigation, search Name Flambeau River Biofuels Place Park Falls, Wisconsin Sector Biomass Product A subsidiary of Flambeau River Papers LLC that plans to develop a Fischer Tropsch diesel project in Park Falls, Wisconsin that will process residual wood biomass from forest and agricultural sources. References Flambeau River Biofuels[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Flambeau River Biofuels is a company located in Park Falls, Wisconsin . References ↑ "Flambeau River Biofuels" Retrieved from "http://en.openei.org/w/index.php?title=Flambeau_River_Biofuels&oldid=345407" Categories: Clean Energy Organizations

270

Savannah River Site Environmental Implentation Plan  

SciTech Connect

This report describes the organizational responsibilities for the Savannah River Site Environmental program. Operations, Engineering and projects, Environment, safety, and health, Quality assurance, and the Savannah River Laboratory are described.

1989-08-01T23:59:59.000Z

271

Youghiogheny Wild and Scenic River (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

Portions of the Youghiogheny River are protected under the Scenic and Wild Rivers Act, and development on or near these areas is restricted. COMAR section 08.15.02 addresses permitted uses and...

272

River Corridor Closure Project Partnering Performance Agreement  

Energy.gov (U.S. Department of Energy (DOE))

WCH and DOE have a mission to complete the clsoure of the Hanford River Corridor by 2015.  Early and efficient completion of this work scope law the River Corridor Closure Contract (DE-AC06...

273

A Family By Yellow River  

E-Print Network (OSTI)

River, opposite to Shenxi Province across the River, is within the central zone of Huangtu Plateau Culture in midland China. In history Qikou was a transport hinge connecting Sichuan to the west and Baotou (Inner Mongolia) to the northwest. Still seen... . They own seven mu (a mu is one fifteenth of a hectare) of jujube trees, which is an area expanded on a basis of one mu last year. The labour is tough with a typical droughty climate of Loess Plateau. Shouldering a pole with two buckets at either end...

China Central Television (CCTV)

2005-04-06T23:59:59.000Z

274

Columbia River Component Data Evaluation Summary Report  

Science Conference Proceedings (OSTI)

The purpose of the Columbia River Component Data Compilation and Evaluation task was to compile, review, and evaluate existing information for constituents that may have been released to the Columbia River due to Hanford Site operations. Through this effort an extensive compilation of information pertaining to Hanford Site-related contaminants released to the Columbia River has been completed for almost 965 km of the river.

C.S. Cearlock

2006-08-02T23:59:59.000Z

275

Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-59) (8/14/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

14, 2001 14, 2001 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-59) David Byrnes Fish and Wildlife Project Manager - KEWL-4 Proposed Action: Reestablish Safe Access into Tributaries of the Yakima Subbasin, Tucker Creek Fish Passage Project Project No: 98-034-00 Watershed Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Watershed Management Program EIS): 1.15 Fish Passage Enhancement - Fishways/Screening, 1.16 Spawning Habitat Enhancements, 1.17 Rearing Habitat Enhancements, 1.5 Install Grade Control Structures and Check Dams. Location: Tucker Creek, Kittitas County, Washington Proposed by: Bonneville Power Administration (BPA) and the Yakama Nation Fisheries

276

Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-68)(10/12/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12, 2001 12, 2001 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-68) Joe DeHerrera Fish and Wildlife Project Manager Proposed Action: Mill Creek and Little Creek Crossing Improvement Project No: 1992-026-01 Wildlife Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Wildlife Mitigation Program EIS): 1.13 Culvert Removal/Replacement to Improve Fish Passage. Location: Mill Creek and Little Creek, Union County, Oregon Proposed by: Bonneville Power Administration (BPA), the Grande Ronde Model Watershed Program (GRMWP), and the Union County Public Works Department (UCPWD) Description of the Proposed Action: BPA provides funds to the Grande Ronde Model Watershed

277

(DOE/EIS-0265/SA-101): Supplement Analysis for the Watershed Management EIS 1/2/03  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2003 , 2003 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-101) Mark Shaw, KEWU-4 Fish and Wildlife Project Manager Proposed Action: Restoration of Anadromous Fish Access to Hawley Creek Project No: 2001-052-00 Watershed Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Watershed Management Program EIS): 4.18: Purchase / Negotiate Water Right Location: Lemhi, Lemhi County, Idaho Proposed by: Bonneville Power Administration (BPA) and the Lemhi Soil and Water Conservation District, with the cooperation of the Idaho Governor's Office of Species Conservation. Description of the Proposed Action: BPA proposes to fund a project to enhance fish habitat on

278

Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-79) (5/20/02)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2002 0, 2002 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-79) Joe DeHerrera Fish and Wildlife Project Manager, KEWU-4 Proposed Action: Eisminger/ CREP Dike Relocation Project No: 1992-026-01 Watershed Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Watershed Management Program EIS): 1.8 Bank Protection through Vegetation Management, 2.1 Maintain Healthy Riparian Plant Communities, 2.3 Creation of Wetlands to Provide Near Channel Habitat and Store Water for Land Use, 2.7 Avoid Exotic Species, 2.4 Provide Filter Strips to Catch Sediment and Other Pollutants, 6.1 Deferred Grazing. Location: Union County, Oregon

279

(DOE/EIS-0265/SA-102): Supplement Analysis for the Watershed Management Program EIS 1/17/03  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2003 7, 2003 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-102) David Byrnes, KEWL-4 Fish and Wildlife Project Manager Proposed Action: Yakima Tributary Access and Habitat Program - Ellensburg Water Company/ Cooke Creek Diversion Project Project No: 2002-025-00 Watershed Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Watershed Management Program EIS): 1.5 Install Grade Control Structures and Check Dams; 1.7 Install Other Habitat Complexity Structures; 1.8 Bank Protection Through Vegetation Management; 1.15 Fish Passage Enhancement - Fishways; 2.1 Maintain Healthy Riparian Plant Communities; 4.10 Water Conveyance - Pipeline; 4.20 Water

280

(DOE/EIS-0265/SA-100): Supplement Analysis for the Watershed Management Program EIS 11/25/02  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 25, 2002 November 25, 2002 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-100) Tracey Yerxa TO: Fish and Wildlife Project Manager, KEWL-4 Proposed Action: Oregon Fish Screening Project, Screen Replacements 2003 Project No: 1993-066-00 Watershed Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Watershed Management Program EIS): 1.8 Bank Protection; 1.9 Structural Bank Protection using Bio Engineering Techniques; 1.10 Structural Bank Protection using Engineering Structures; 1.14 Reduce Scour and Deposition at Hydraulic Structures; 1.15 Fish Passage Enhancement-Fishways; 1.16 Spawning Habitat Enhancements;

Note: This page contains sample records for the topic "river inter-tribal watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

(DOE/EIS-0265/SA-92): Supplement Analysis for the Watershed Management Program EIS 10/16/02  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2) 2) Dorothy Welch, KEWU-4 TO: Fish and Wildlife Project Manager Proposed Action: Asotin Creek Six-Year Direct Seed Program Project No: 1999-060-00 Watershed Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Watershed Management Program EIS): 3.2 Conservation Copping Sequence, 3.3 Conservation Tillage, 3.8 Delayed Seed Bed Preparation, 3.9 Grasses and Legumes in rotation, 3.26 Evaluate Field Limitations, 3.27 Equipment Calibration and Use. Location: Various locations in the Asotin Creek Watershed, WA. Proposed by: Bonneville Power Administration (BPA) and Asotin County Conservation District (ACCD). Description of the Proposed Action: BPA proposes to fund a no-till/direct seed farming

282

Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-69) (11/15/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 15, 2001 November 15, 2001 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS, (DOE/EIS-0265/SA-69) Linda Hermeston - KEWL Fish and Wildlife Project Manager Proposed Action: Improvement of Anadromous Fish Habitat and Passage in Omak Creek Project No: 2000-001-00 Watershed Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Watershed Management Program EIS): 1.6 Install Large Woody Debris Structures; 1.7 Install Other Habitat Complexity Structures; 1.8 Bank Protection Through Vegetation Management; 1.9 Structural bank protection using bioengineering methods; 1.13 Culvert Removal/Replacement to improve fish passage; 1.16 Spawning habitat enhancements; 1.17 Rearing habitat enhancement.

283

Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-63) (9/17/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2001 7, 2001 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-63) Joe DeHerrera Fish and Wildlife Project Manager Proposed Action: Pelican Creek Crossing Improvement Project No: 1992-026-01 Wildlife Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Wildlife Mitigation Program EIS): 1.13 Culvert Removal/Replacement to Improve Fish Passage. Location: Pelican Creek, Union County, Oregon Proposed by: Bonneville Power Administration (BPA), the Grande Ronde Model Watershed Program (GRMWP), and the Union County Public Works Department (UCPWD) Description of the Proposed Action: BPA provides funds to the Grande Ronde Model Watershed

284

Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-66) (10/4/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

04, 2001 04, 2001 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-66) John Baugher - KEW-4 Tom Morse - KEW-4 Fish and Wildlife Project Managers Proposed Action: Water Right Acquisition Program Project No: 2001-023-00 (Fifteenmile Subbasin Water Right Acquisition Program) 1999-008-00 (Columbia Plateau Water Right Acquisition Program) 2001-056-00 (Trout Creek 2001 Streamflow Enhancement) 2001-069-00 (John Day Basin Stream Enhancement Project, Summer 2001) Watershed Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Watershed Management Program EIS): 4.18 Purchase / Negotiate Water Right; 4.19 File for Instream Water Right.

285

Columbia River Basin Fish and Wildlife Program Fiscal Year 2000 Annual Implementation Work Plan  

E-Print Network (OSTI)

, at a minimum: · A watershed assessment providing a description of historical and existing conditions; · A clear

286

Detecting atmospheric rivers in large climate datasets  

Science Conference Proceedings (OSTI)

Extreme precipitation events on the western coast of North America are often traced to an unusual weather phenomenon known as atmospheric rivers. Although these storms may provide a significant fraction of the total water to the highly managed western ... Keywords: atmospheric rivers, automatic detection of atmospheric rivers, connected component labeling, extreme climate events

Surendra Byna; Prabhat; Michael F. Wehner; Kesheng John Wu

2011-11-01T23:59:59.000Z

287

Topographic variation of soil nitrogen dynamics at Walker Branch Watershed, Tennessee  

SciTech Connect

Understanding the spatial and temporal variability of soil nitrogen (N) transformations is central to quantifying the N dynamics and productivity of ecosystems. The objectives of this work were to examine spatial and temporal variation of soil N dynamics and to identify factors correlated with topographic variation in soil N dynamics in a forest watershed. Net N mineralization and net nitrification potential were measured by aerobic laboratory incubations of surface (0-7 cm) mineral soils. Principal components analysis was used to describe sampling sites across the watershed based on 13 site characterization variables. A topographic index used in hydrologic modeling, In ({alpha}/tan {beta}), was calculated for each site as the natural logarithm of the ratio of the upslope drainage area per unit contour length ({alpha}) to the local slope angle (tan {beta}). Soils from valley floors had greater total N concentrations, lower carbon-to-nitrogen (C:N) ratios, greater potential net nitrification, and greater microbial activity (as indicated by short-term urease assays) than soils from ridges. Mean net nitrification potential was 0.59 {micro}g N g{sup -1} d{sup -1} in surface soils from valley floors and was < 0.01 on ridges and slopes. The first principal component was related to the N and C properties of soils, leaf litter, and leaf fall at a site. The second principal component was related to forest stand composition. The topographic index was significantly correlated with important variables related to soil N dynamics. Once calibration data are derived, this index may be useful as a first approximation to total soil N concentrations and soil C:N ratios in forest watersheds because In ({alpha}/tan {beta}) can be calculated from geographic information systems that contain topographic data.

Garten Jr, Charles T [ORNL; Huston, Michael A [ORNL; Thoms, C. A. [University of Wisconsin

1994-08-01T23:59:59.000Z

288

Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2008 Annual Technical Report.  

SciTech Connect

The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations remain depressed relative to historic levels and limited information is available for steelhead life history. Numerous habitat protection and rehabilitation projects have been implemented in the basin to improve salmonid freshwater production and survival. However, these projects often lack effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed programmatic or watershed (status and trend) information to help evaluate project-specific effectiveness monitoring efforts as well as meet some data needs as index stocks. Our continued monitoring efforts to estimate salmonid smolt abundance, age structure, SAR, smolts/redd, freshwater habitat use, and distribution of critical life states will enable managers to assess the long-term effectiveness of habitat projects and to differentiate freshwater and ocean survival. Because Columbia Basin managers have identified the John Day subbasin spring Chinook population as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin (Schaller et al. 1999) we continue our ongoing studies. This project is high priority based on the level of emphasis by the NWPPC Fish and Wildlife Program, Independent Scientific Advisory Board (ISAB), Independent Scientific Review Panel (ISRP), NOAA National Marine Fisheries Service (NMFS), and the Oregon Plan for Salmon and Watersheds (OWEB). Each of these groups have placed priority on monitoring and evaluation to provide the real-time data to guide restoration and adaptive management in the region. The objective is to estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook Oncorhynchus tshawytscha and summer steelhead O. mykiss and life history characteristics of summer steelhead.

Wilson, Wayne H.; Schricker, Jaym'e; Ruzychi, James R. (Oregon Department of Fish and Wildlife)

2009-02-13T23:59:59.000Z

289

Smoky Hill and River Valleys  

E-Print Network (OSTI)

.............................................................................3 - 13 Wind Energy and the Meridian Way Wind Farm County. This location is the site of a new wind farm development by Westar Energy, Horizon Wind EnergySmoky Hill and Republican River Valleys Water, Wind, and Economic Development 2008 Field Conference

Peterson, Blake R.

290

HANFORD SITE RIVER CORRIDOR CLEANUP  

SciTech Connect

In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.

BAZZELL, K.D.

2006-02-01T23:59:59.000Z

291

Independent Activity Report, Washington River Protection Solutions -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington River Protection Solutions Washington River Protection Solutions - September 2010 Independent Activity Report, Washington River Protection Solutions - September 2010 September 2010 Participation in the Washington River Protection Solutions, LLC Integrated Safety Management System Annual Review The U.S. Department of Energy, Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), participated in the review of the Washington River Protection Solutions, LLC Integrated Safety Management System Annual Review for 2010. The review was conducted during the period of August 23 to September 2, 2010, and focused on six functional areas: corrective action management, work planning and control, radiological protection, environmental protection, emergency preparedness, and

292

Alteration of As-bearing Phases in a Small Watershed Located on a High Grade Arsenic-geochemical Anomaly (French Massif Central)  

SciTech Connect

At a watershed scale, sediments and soil weathering exerts a control on solid and dissolved transport of trace elements in surface waters and it can be considered as a source of pollution. The studied subwatershed (1.5 km{sup 2}) was located on an As-geochemical anomaly. The studied soil profile showed a significant decrease of As content from 1500 mg kg{sup -1} in the 135-165 cm deepest soil layer to 385 mg kg{sup -1} in the upper 0-5 cm soil layer. Directly in the stream, suspended matter and the <63 {micro}m fraction of bed sediments had As concentrations greater than 400 mg kg{sup -1}. In all these solid fractions, the main representative As-bearing phases were determined at two different observation scales: bulk analyses using X-ray absorption structure spectroscopy (XAS) and microanalyses using scanning electron microscope (SEM) and associated electron probe microanalyses (EPMA), as well as micro-Raman spectroscopy and synchrotron-based micro-scanning X-ray diffraction ({micro}SXRD) characterization. Three main As-bearing phases were identified: (i) arsenates (mostly pharmacosiderite), the most concentrated phases As in both the coherent weathered bedrock and the 135-165 cm soil layer but not observed in the river solid fraction, (ii) Fe-oxyhydroxides with in situ As content up to 15.4 wt.% in the deepest soil layer, and (iii) aluminosilicates, the least concentrated As carriers. The mineralogical evolution of As-bearing phases in the soil profile, coupled with the decrease of bulk As content, may be related to pedogenesis processes, suggesting an evolution of arsenates into As-rich Fe-oxyhydroxides. Therefore, weathering and mineralogical evolution of these As-rich phases may release As to surface waters.

A Bossy; C Grosbois; S Beauchemin; A Courtin-Nomade; W Hendershot; H Bril

2011-12-31T23:59:59.000Z

293

Discriminating between west-side sources of nutrients and organiccarbon contributing to algal growth and oxygen demand in the San JoaquinRiver  

DOE Green Energy (OSTI)

The purpose of this study was to investigate the Salt and Mud Slough tributaries as sources of oxygen demanding materials entering the San Joaquin River (SJR). Mud Slough and Salt Slough are the main drainage arteries of the Grasslands Watershed, a 370,000-acre area west of the SJR, covering portions of Merced and Fresno Counties. Although these tributaries of the SJR are typically classified as agricultural, they are also heavily influenced by Federal, State and private wetlands. The majority of the surface water used for both irrigation and wetland management in the Grassland Watershed is imported from the Sacramento-San Joaquin Delta through the Delta-Mendota Canal. In this study, they measured algal biomass (as chlorophyll a), organic carbon, ammonia, biochemical oxygen demand (BOD), and other measures of water quality in drainage from both agricultural and wetland sources at key points in the Salt Slough and Mud Slough tributaries. This report includes the data collected between June 16th and October 4th, 2001. The objective of the study was to compare agricultural and wetland drainage in the Grasslands Watershed and to determine the relative importance of each return flow source to the concentration and mass loading of oxygen demanding materials entering the SJR. Additionally, they compared the quality of water exiting our study area to water entering our study area. This study has demonstrated that Salt and Mud Sloughs both contribute significant amounts of oxygen demand to the SJR. Together, these tributaries could account for 35% of the oxygen demand observed below their confluence with the SJR. This study has characterized the sources of oxygen demanding materials entering Mud Slough and evaluated the oxygen demand conditions in Salt Slough. Salt Slough was found to be the dominant source of oxygen demand load in the study area, because of the higher flows in this tributary. The origins of oxygen demand in Salt Slough still remain largely uninvestigated and the seasonal oxygen demand loading pattern remains unexplained. An expanded investigation of the Salt Slough watershed is warranted, because of the importance of this watershed to the oxygen demand load entering the SJR.

Wstringfellow@lbl.gov

2002-07-24T23:59:59.000Z

294

Schlumberger soundings in the Upper Raft River and Raft River Valleys,  

Open Energy Info (EERE)

soundings in the Upper Raft River and Raft River Valleys, soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Schlumberger soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Details Activities (1) Areas (1) Regions (0) Abstract: In 1975, the U.S. Geological Survey made seventy Schlumberger resistivity soundings in the Upper Raft River Valley and in parts of the Raft River Valley. These soundings complement the seventy-nine soundings made previously in the Raft River Valley (Zohdy and others, 1975) and bring the total number of soundings to 149. This work was done as part of a hydrogeologic study of the area. The location, number, and azimuth of all 149 Schlumberger sounding stations are presented. The location of the new

295

G. A. Antaki Westinghouse Savannah River Company Savannah River Site  

Office of Scientific and Technical Information (OSTI)

W S R C: M S- 9 5 -0 0 0 8 W S R C: M S- 9 5 -0 0 0 8 Analytical Considerations in the Code Qualification of Piping Systems (U) by G. A. Antaki Westinghouse Savannah River Company Savannah River Site Aiken, South Carolina 29808 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or respnsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark,

296

FINAL TECHNICAL REPORT-THE ECOLOGY AND GENOMICS OF CO2 FIXATIION IN OCEANIC RIVER PLUMES  

SciTech Connect

Oceanic river plumes represent some of the most productive environments on Earth. As major conduits for freshwater and nutrients into the coastal ocean, their impact on water column ecosystems extend for up to a thousand km into oligotrophic oceans. Upon entry into the oceans rivers are tremendous sources of CO2 and dissolved inorganic carbon (DIC). Yet owing to increased light transmissivity from sediment deposition coupled with the influx of nutrients, dramatic CO2 drawdown occurs, and plumes rapidly become sinks for CO2. Using state-of-the-art gene expression technology, we have examined the molecular biodiversity of CO2 fixation in the Mississippi River Plume (MRP; two research cruises) and the Orinoco River Plume (ORP; one cruise). When the MRP extends far into the Gulf because of entrainment with the Loop Current, MRP production (carbon fixation) can account for up to 41% of the surface production in the Gulf of Mexico. Nearer-shore plume stations (“high plume,” salinity< 32 ppt) had tremendous CO2 drawdown that was correlated to heterokont (principally diatom) carbon fixation gene expression. The principal form of nitrogen for this production based upon 15N studies was urea, believed to be from anthropogenic origin (fertilizer) from the MRP watershed. Intermediate plume environments (salinity 34 ppt) were characterized by high levels of Synechococcuus carbon fixation that was fueled by regenerated ammonium. Non-plume stations were characterized by high light Prochlorococcus carbon fixation gene expression that was positively correlated with dissolved CO2 concentrations. Although data from the ORP cruise is still being analyzed, some similarities and striking differences were found between the ORP and MRP. High levels of heterokont carbon fixation gene expression that correlated with CO2 drawdown were observed in the high plume, yet the magnitude of this phenomenon was far below that of the MRP, most likely due to the lower levels of anthropogenic nutrient input. The offshore ORP was characterized by haptophyte and in places Prochlorococcus carbon fixation gene expression in surface water, with greater heterokont rbcL RNA at SCM depths. MODIS satellite chlorophyll-a data implied a plume of high chlorophyll water far into the eastern Caribbean, yet field observations did not support this, most likely because of high levels of colored dissolved organic matter (cDOM) in the ORP. The presence of pelagic nitrogen fixers (Trichodesmium and cyanobacterial diatom endosymbionts) most likely provided N for the offshore MRP production. The results underscore the importance of oceanic river plumes as sinks for CO2 and the need for their incorporation in global carbon models as well as estimates of CO2 sequestration.

PAUL, JOHN H

2013-06-21T23:59:59.000Z

297

Kootenai River Floodplain Ecosystem Operational Loss Assessment, Protection, Mitigation and Rehabilitation, 2007-2008 Annual Report.  

DOE Green Energy (OSTI)

The overarching goals of the 'Kootenai River Floodplain Ecosystem Operational Loss Assessment, Protection, Mitigation and Rehabilitation' Project (BPA Project No.2002-011-00) are to: (1) assess abiotic and biotic factors (i.e., geomorphologic, hydrological, aquatic and riparian/floodplain communities) in determining a definitive composition of ecological integrity, (2) develop strategies to assess and mitigate losses of ecosystem functions, and (3) produce a regional operational loss assessment framework. To produce a scientifically defensible, repeatable, and complete assessment tool, KTOI assembled a team of top scientists in the fields of hydrology, hydraulics, ornithology, entomology, statistics, and river ecology, among other expertise. This advisory team is known as the Research Design and Review Team (RDRT). The RDRT scientists drive the review, selection, and adaptive management of the research designs to evaluate the ecologic functions lost due to the operation of federal hydropower facilities. The unique nature of this project (scientific team, newest/best science, adaptive management, assessment of ecological functions, etc.) has been to work in a dynamic RDRT process. In addition to being multidisciplinary, this model KTOI project provides a stark contrast to the sometimes inflexible process (review, re-review, budgets, etc.) of the Columbia River Basin Fish and Wildlife Program. The project RDRT is assembled annually, with subgroups meeting as needed throughout the year to address project issues, analyses, review, and interpretation. Activities of RDRT coordinated and directed the selection of research and assessment methodologies appropriate for the Kootenai River Watershed and potential for regional application in the Columbia River Basin. The entire RDRT continues to meet annually to update and discuss project progress. RDRT Subcontractors work in smaller groups throughout the year to meet project objectives. Determining the extent to which ecological systems are experiencing anthropogenic disturbance and change in structure and function is critical for long term conservation of biotic diversity in the face of changing landscapes and land use. KTOI and the RDRT propose a concept based on incorporating hydrologic, aquatic, and terrestrial components into an operations-based assessment framework to assess ecological losses as shown in Figure E-1.

Merz, Norm [Kootenai Tribe of Idaho

2009-02-18T23:59:59.000Z

298

From waterfront to watershed : mapping a big idea in the Greater Toronto Region  

E-Print Network (OSTI)

Today, Toronto is revered among Great Lakes' and waterfront cities for its environmental planning: its massive re-investment in water and stormwater infrastructure; protected headwaters of the region's rivers; realized ...

Ciesielski, Linda C. (Linda Claire)

2011-01-01T23:59:59.000Z

299

An Examination of Radar and Rain Gauge–Derived Mean Areal Precipitation over Georgia Watersheds  

Science Conference Proceedings (OSTI)

Compared to conventional rain gauge networks, the Weather Surveillance Radar-1988 Doppler provides precipitation estimates at enhanced spatial and temporal resolution that River Forecast Centers can use to improve streamflow forecasts. This study ...

Keith M. Stellman; Henry E. Fuelberg; Reggina Garza; Mary Mullusky

2001-02-01T23:59:59.000Z

300

Salmon Supplementation Studies in Idaho Rivers; Idaho Supplementation Studies, 2000-2001 Annual Report.  

DOE Green Energy (OSTI)

This report summarizes brood year 1999 juvenile production and emigration data and adult return information for 2000 for streams studied by the Nez Perce Tribe for the cooperative Idaho Salmon Supplementation Studies in Idaho Rivers (ISS) project. In order to provide inclusive juvenile data for brood year 1999, we include data on parr, presmolt, smolt and yearling captures. Therefore, our reporting period includes juvenile data collected from April 2000 through June 2001 for parr, presmolts, and smolts and through June 2002 for brood year 1999 yearling emigrants. Data presented in this report include; fish outplant data for treatment streams, snorkel and screw trap estimates of juvenile fish abundance, juvenile emigration profiles, juvenile survival estimates to Lower Granite Dam (LGJ), redd counts, and carcass data. There were no brood year 1999 treatments in Legendary Bear or Fishing Creek. As in previous years, snorkeling methods provided highly variable population estimates. Alternatively, rotary screw traps operated in Lake Creek and the Secesh River provided more precise estimates of juvenile abundance by life history type. Juvenile fish emigration in Lake Creek and the Secesh River peaked during July and August. Juveniles produced in this watershed emigrated primarily at age zero, and apparently reared in downstream habitats before detection as age one or older fish at the Snake and Columbia River dams. Over the course of the ISS study, PIT tag data suggest that smolts typically exhibit the highest relative survival to Lower Granite Dam (LGJ) compared to presmolts and parr, although we observed the opposite trend for brood year 1999 juvenile emigrants from the Secesh River. SURPH2 survival estimates for brood year 1999 Lake Creek parr, presmolt, and smolt PIT tag groups to (LGJ) were 27%, 39%, and 49% respectively, and 14%, 12%, and 5% for the Secesh River. In 2000, we counted 41 redds in Legendary Bear Creek, 4 in Fishing Creek, 5 in Slate Creek, 153 in the Secesh River, and 180 in Lake Creek. We recovered 19 carcasses (11 natural 8 hatchery) in Legendary Bear Creek, one hatchery carcass in Fishing Creek, zero carcasses in Slate Creek, 82 carcasses (19 of unknown origin and 63 natural) in the Secesh River, and 178 carcasses (2 hatchery 176 natural) from Lake Creek. In 2000 the majority (82%) of carcasses were recovered in index spawning reaches. Preliminary analysis of brood year 1997 PIT tag return data for the Secesh River and Lake Creek yields LGJ to Lower Granite Dam (LGD) juvenile to adult survival rates of, 0.00% for parr, 0.20% for presmolts, and 3.13% for smolts. LGJ to LGD juvenile to adult return rates for brood year 1997 Legendary Bear Creek were 2.98% for naturally produced PIT tagged smolts and 0.89% for PIT tagged supplementation smolts. No adults were detected at LGD from brood year 1997 parr released in Fishing Creek.

Beasley, Chris; Tabor, R.A.; Kinzer, Ryan (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2003-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "river inter-tribal watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Watershed modeling using large-scale distributed computing in Condor and the Soil and Water Assessment Tool model  

Science Conference Proceedings (OSTI)

Models are increasingly being used to quantify the effects of best management practices (BMPs) on water quality. While these models offer the ability to study multiple BMP scenarios, and to analyze impacts of various management decisions on watershed ... Keywords: Condor, Conservation Effectiveness Assessment Program, Lincoln Lake, Soil and Water Assessment Tool Model, TeraGrid, best management practices

Margaret W Gitau; Li-Chi Chiang; Mohamed Sayeed; Indrajeet Chaubey

2012-03-01T23:59:59.000Z

302

Searching for simplified farmers' crop choice models for integrated watershed management in Thailand: A data mining approach  

Science Conference Proceedings (OSTI)

This study used the C4.5 data mining algorithm to model farmers' crop choice in two watersheds in Thailand. Previous attempts in the Integrated Water Resource Assessment and Management Project to model farmers' crop choice produced large sets of decision ... Keywords: Data mining, Decision support system, Decision trees, Farmers' crop choice

Benchaphun Ekasingh; Kamol Ngamsomsuke

2009-12-01T23:59:59.000Z

303

Development and application of the spatially explicit load enrichment calculation tool (select) to determine potential E. coli loads in watersheds  

E-Print Network (OSTI)

According to the USEPA National Section 303(d) List Fact Sheet, bacterial pathogens are the leading cause of water quality impairments in Texas. The automated Spatially Explicit Load Enrichment Calculation Tool (SELECT) uses spatially variable factors such as land use, soil condition, and distance to streams to characterize pathogen sources across a watershed. The results support development of Total Maximum Daily Loads (TMDLs) where bacterial contamination is of concern. SELECT calculates potential E. coli loads by distributing the contributing source populations across suitable habitats, applying a fecal production rate, and then aggregating the potential load to the subwatersheds. SELECT provides a Graphical User Interface (GUI), developed in Visual Basic for Applications (VBA) within ArcGIS 9.X, where project parameters can be adjusted for various pollutant loading scenarios. A new approach for characterizing E. coli loads resulting from on-site wastewater treatment systems (OWTSs) was incorporated into the SELECT methodology. The pollutant connectivity factor (PCF) module was created to identify areas potentially contributing E. coli loads to waterbodies during runoff events by weighting the influence of potential loading, runoff potential, and travel distance. Simulation results indicate livestock and wildlife are potentially contributing large amounts of E. coli in the Lake Granbury Watershed in areas where these contributing sources are not currently monitored for E. coli. The bacterial water quality violations near Lake Granbury are most likely the result of malfunctioning OWTSs and pet waste in the runoff. The automated SELECT was verified by characterizing the potential E. coli loading in the Plum Creek Watershed and comparing to results from a prior study (Teague, 2007). The E. coli potential load for the watershed was lower than the previous study due to major differences in assumptions. Comparing the average ranked PCF estimated by physical properties of the watershed with the statistical clustering of watershed characteristics provided similar groupings. SELECT supports the need to evaluate each contributing source separately to effectively allocate site specific best management practices (BMPs). This approach can be used as a screening step for determining areas where detailed investigation is merited. SELECT in conjunction with PCF and clustering analysis can assist decision makers develop Watershed Protection Plans (WPPs) and determine TMDLs.

Riebschleager, Kendra Jean

2008-08-01T23:59:59.000Z

304

Independent Activity Report, Savannah River Operation - June 2010 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Operation - June 2010 Savannah River Operation - June 2010 Independent Activity Report, Savannah River Operation - June 2010 June 2010 Savannah River Operations Office Self-Assessment of the Technical Qualification Program The U.S. Department of Energy (DOE), Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), participated in the DOE Savannah River Operations Office (DOE-SR) self-assessment of the Technical Qualification Program (TQP). Independent Activity Report, Savannah River Operation - June 2010 More Documents & Publications Independent Oversight Review, Savannah River Operations Office - July 2013 Independent Activity Report, Savannah River Remediation - July 2010 2011 Annual Workforce Analysis and Staffing Plan Report - Savannah River

305

Wing River Wind Farm | Open Energy Information  

Open Energy Info (EERE)

River Wind Farm River Wind Farm Jump to: navigation, search Name Wing River Wind Farm Facility Wing River Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wing River Wind Farm Developer Wing River Wind Farm Location Hewitt MN Coordinates 46.3254°, -95.0864° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.3254,"lon":-95.0864,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

306

Categorical Exclusion Determinations: Savannah River Operations Office |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Operations Savannah River Operations Office Categorical Exclusion Determinations: Savannah River Operations Office Categorical Exclusion Determinations issued by Savannah River Operations Office. DOCUMENTS AVAILABLE FOR DOWNLOAD September 10, 2013 CX-010669: Categorical Exclusion Determination 484-17D Coal Yard Remediation CX(s) Applied: B6.1 Date: 06/07/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office August 1, 2013 CX-010837: Categorical Exclusion Determination Disassembly, Relocation, and Reassembly of a Metal-framed Quonset Hut CX(s) Applied: B1.22 Date: 08/01/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office August 1, 2013 CX-010836: Categorical Exclusion Determination Subcontractor Roof Repair at 717-12S CX(s) Applied: B1.3

307

The Columbia River System : the Inside Story.  

DOE Green Energy (OSTI)

The Columbia Ricer is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Northwest-from providing the world-famous Pacific salmon to supplying the clean natural fuel for over 75 percent of the region's electrical generation. Since early in the century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system. And through cooperative efforts, the floods that periodically threaten developments near the river can be controlled. This publication presents a detailed explanation of the planning and operation of the multiple-use dams and reservoirs of the Columbia River system. It describes the river system, those who operate and use it, the agreements and policies that guide system operation, and annual planning for multiple-use operation.

United States. Bonneville Power Administration.

1991-09-01T23:59:59.000Z

308

An Economic Analysis of Erosion and Sediment Damage in the Lower Running Draw Watershed  

E-Print Network (OSTI)

The development and implementation of agricultural non-point source (NPS) pollution control plans was mandated by the 1972 Federal Pollution Control Act Amendments, Public Law 92-500. The purpose of this particular report is to present the results of a study on the economic impact of implementing potential agricultural NPS pollution controls in Lower Running Water Draw watershed. The study focuses on: (a) the effects of erosion control on farm income, (b) off-site sediment damages in the watershed; (c) the costs of administering and enforcing alternative erosion controls, and (d) on-farm economics of soil conservation practices. Erosion controls considered include the traditional voluntary programs combined with economic incentives as well as possible regulatory programs. The focus of the study is on erosion and sedimentation because sediment is a potential transporter of pollutants. Practices to control agricultural non-point source pollution would probably be aimed at reducing soil loss. Conservation and conservation related practices are, at present, considered the best technical practices to abate agricultural non-point source pollution. This is a study of both conservation and environmental economics, two areas that tend to be closely related. For this project, the concern was over potential pollution (an off-site problem), but because of long-run farm income consequences, this concern cannot be separated from conservation problems (an on-farm problem). Accordingly, the report contains substantial information on the short and long-run on-farm benefits and costs of various soil conservation practices for the specific soil mapping units in Lower Running Water Draw watershed. The results of this study are applicable to the majority of the soils in the High Plains Land Resource Area. Only sheet and rill erosion are considered in the study. The first section of the report describes the selected "Best Management Practices" and examines the on-farm economics of soil conservation. The second section postulates various sediment damage control options and models the economic consequences of implementation, both to agricultural producers as a group, and to society.

Reneau, D. R.; Taylor, C. R.; Harris, B. L.; Lacewell, R. D.; Mueller, P. E.

1978-08-01T23:59:59.000Z

309

DOE to Extend Savannah River Nuclear Solutions Contract at Savannah River  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Extend Savannah River Nuclear Solutions Contract at Savannah to Extend Savannah River Nuclear Solutions Contract at Savannah River Site to September 2016 DOE to Extend Savannah River Nuclear Solutions Contract at Savannah River Site to September 2016 September 6, 2012 - 12:00pm Addthis Media Contact Bill Taylor 803-952-8564 bill.taylor@srs.gov Aiken, SC -- The Department of Energy's (DOE) Savannah River Operations Office today exercised its option to extend the current Savannah River Site Management and Operating contract with Savannah River Nuclear Solutions, LLC (SRNS) for an additional 38 months, from August 1, 2013 to September 2016. The SRNS contract was competatviely awareded January 10, 2008. The total value of the SRNS contract with the extension is approximately $8 billion. The current contract provides for management and operations of Savannah

310

North Woods River: The St. Croix River in Upper Midwest History  

E-Print Network (OSTI)

>, PhD Student, Department of History, PO Box 6023, BuildingRiver in Upper Midwest History. By McMahon, Eileen M. andRiver in Upper Midwest History. Madison, WI: University of

Karalus, Daniel E

2011-01-01T23:59:59.000Z

311

Independent Oversight Activity Report, Savannah River Site -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Security (HSS) (Reference 1). Meet with the SRS WSB project staff and Savannah River Nuclear Solutions (SRNS) engineers to discuss the proposed corrective actions discussed in...

312

Savannah River Site Waste Solidification Building Corrective...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HIAR SRS-2013-5-07 Site: Savannah River Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Savannah...

313

from Savannah River Nuclear Solutions, LLC NEWS  

NLE Websites -- All DOE Office Websites (Extended Search)

and communications campaign known as "Safety Begins with Me" led by Savannah River Nuclear Solutions, LLC (SRNS). Banners are flying over roadways, safety-related stories fill...

314

Wild and Scenic Rivers Act (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

It is state policy to protect the outstanding scenic, geologic, ecologic, historic, recreational, agricultural, fish, wildlife, cultural, and other similar values of certain rivers and adjacent...

315

Savannah River Site, Health Physics Instrument Calibration ...  

Science Conference Proceedings (OSTI)

... Send E-Mail to Laboratory: Savannah River Nuclear Solutions, LLC ... for Alarming Personal Radiation Detection for Homeland Security, Clause 7 ...

2013-09-20T23:59:59.000Z

316

Kings River Conservation Dist | Open Energy Information  

Open Energy Info (EERE)

Kings River Conservation Dist Place California Utility Id 10325 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity...

317

Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-83)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19, 2002 19, 2002 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-83) John Baugher Fish and Wildlife Project Manager, KEWL-4 Proposed Action: Bear Creek Irrigation Siphon Project Project No: 1993-066-00 Wildlife Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Wildlife Mitigation Program EIS): 1.8 Bank Protection; 1.9 Structural Bank Protection using Bio Engineering Techniques; 1.10 Structural Bank Protection using Engineering Structures; 1.14 Reduce Scour and Deposition at Hydraulic Structures; 1.15 Fish Passage Enhancement-Fishways; 1.16 Spawning Habitat Enhancements; 1.17 Rearing Habitat Enhancements; 2.1 Maintain Healthy Riparian Plant Communities; 2.4 Provide Filter Strips to

318

M-FISH Karyotyping - A New Approach Based on Watershed Transform  

E-Print Network (OSTI)

Karyotyping is a process in which chromosomes in a dividing cell are properly stained, identified and displayed in a standard format, which helps geneticist to study and diagnose genetic factors behind various genetic diseases and for studying cancer. M-FISH (Multiplex Fluorescent In-Situ Hybridization) provides color karyotyping. In this paper, an automated method for M-FISH chromosome segmentation based on watershed transform followed by naive Bayes classification of each region using the features, mean and standard deviation, is presented. Also, a post processing step is added to re-classify the small chromosome segments to the neighboring larger segment for reducing the chances of misclassification. The approach provided improved accuracy when compared to the pixel-by-pixel approach. The approach was tested on 40 images from the dataset and achieved an accuracy of 84.21 %.

Sreejini, K S; Govindan, V K

2012-01-01T23:59:59.000Z

319

WASTE INVENTORY DATA AT OAK RIDGEAND SAVANNAH RIVER, IG-0434...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WASTE INVENTORY DATA AT OAK RIDGEAND SAVANNAH RIVER, IG-0434 WASTE INVENTORY DATA AT OAK RIDGEAND SAVANNAH RIVER, IG-0434 The Oak Ridge and Savannah River Operations Offices are...

320

U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER ...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Savannah River Site and the Savannah River National Laboratory are owned by the U.S. Department of Energy, and are managed and operated by Savannah River Nuclear...

Note: This page contains sample records for the topic "river inter-tribal watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Accelerating Clean-up at Savannah River | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Clean-up at Savannah River Accelerating Clean-up at Savannah River Accelerating Clean-up at Savannah River More Documents & Publications Accelerating Clean-up at...

322

Accelerating Clean-up at Savannah River | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Clean-up at Savannah River Accelerating Clean-up at Savannah River Accelerating Clean-up at Savannah River More Documents & Publications Project NameDescription Slide...

323

U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER ...  

NLE Websites -- All DOE Office Websites (Extended Search)

validity of data Patent applied for Savannah River National Laboratory The Savannah River Site and the Savannah River National Laboratory are owned by the U.S. Department of...

324

Water supply analysis for restoring the Colorado River Delta, Mexico  

E-Print Network (OSTI)

Environmental Flows in the Colorado River Delta. Figure 7Cost of Minimum Flows in the Colorado River Delta. Figure 8and Ecological Health on the Colorado River Delta region."

Medellin-Azuara, Josue; Lund, Jay R.; Howitt, Richard E.

2007-01-01T23:59:59.000Z

325

Assessing Satellite-Based Rainfall Estimates in Semiarid Watersheds Using the USDA-ARS Walnut Gulch Gauge Network and TRMM PR  

Science Conference Proceedings (OSTI)

The rain gauge network associated with the Walnut Gulch Experimental Watershed (WGEW) in southeastern Arizona provides a unique opportunity for direct comparisons of in situ measurements and satellite-based instantaneous rain rate estimates like ...

Eyal Amitai; Carl L. Unkrich; David C. Goodrich; Emad Habib; Bryson Thill

2012-10-01T23:59:59.000Z

326

Spatially Distributed Sensible Heat Flux over a Semiarid Watershed. Part I: Use of Radiometric Surface Temperatures and a Spatially Uniform Resistance  

Science Conference Proceedings (OSTI)

Spatially distributed radiometric surface temperatures over a semiarid watershed were computed using remotely sensed data acquired with an aircraft-based multispectral scanner during the Monsoon ’90 Large Scale Field Experiment. The multispectral ...

K. S. Humes; W. P. Kustas; D. C. Goodrich

1997-04-01T23:59:59.000Z

327

PIA - Savannah River Operations Office Executive Commitment Action...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Executive Commitment Action Tracking System PIA - Savannah River Operations Office Executive Commitment Action Tracking System PIA - Savannah River Operations Office Executive...

328

PIA - Savannah River Operations Office Executive Commitment Action...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PIA - Savannah River Operations Office Executive Commitment Action Tracking System PIA - Savannah River Operations Office Executive Commitment Action Tracking System PIA - Savannah...

329

PIA - Savannah River Nuclear Solution SRNS ProRad Environment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management...

330

Department of Energy Cites Savannah River Nuclear Solutions,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Nuclear Solutions, LLC for Worker Safety and Health Violations Department of Energy Cites Savannah River Nuclear Solutions, LLC for Worker Safety and Health...

331

Raft River monitor well potentiometric head responses and water...  

Open Energy Info (EERE)

River site was initiated in 1974 by the IDWR. This effort consisted of semiannual chemical sampling of 22 irrigation wells near the Raft River geothermal development area. This...

332

New River Geothermal Research Project, Imperial Valley, California...  

Open Energy Info (EERE)

New River Geothermal Research Project, Imperial Valley, California Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title New River Geothermal...

333

Trona Injection Tests: Mirant Potomac River Station, Unit 1,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trona Injection Tests: Mirant Potomac River Station, Unit 1, November 12 to December 23, 2005, Summary Report Trona Injection Tests: Mirant Potomac River Station, Unit 1, November...

334

DOE - Office of Legacy Management -- Elk River Reactor - MN 01  

Office of Legacy Management (LM)

Elk River Reactor - MN 01 FUSRAP Considered Sites Site: Elk River Reactor (MN.01 ) Eliminated from consideration under FUSRAP - Reactor was dismantled and decommissioned by 1974...

335

PIA - Savannah River Nuclear Solutions Training Records and Informatio...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Training Records and Information Network (TRAIN) PIA - Savannah River Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River Nuclear Solutions...

336

PIA - Savannah River Nuclear Solutions Training Records and Informatio...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PIA - Savannah River Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River Nuclear Solutions Training Records and Information Network (TRAIN) PIA...

337

Savannah River's Biomass Steam Plant Success with Clean and Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy In order to meet the...

338

Savannah River's Biomass Steam Plant Success with Clean and Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River's Biomass Steam Plant Success with Clean and Renewable Energy Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy In order to meet the federal energy...

339

Consolidation of Surplus Plutonium at Savannah River Site | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Management Nuclear Materials & Waste Consolidation of Surplus Plutonium at Savannah River Site Consolidation of Surplus Plutonium at Savannah River Site Waste...

340

DOE Selects Washington River Protection Solutions, LLC for Tank...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington River Protection Solutions, LLC for Tank Operations Contract at Hanford Site DOE Selects Washington River Protection Solutions, LLC for Tank Operations Contract at...

Note: This page contains sample records for the topic "river inter-tribal watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

EA-1969: Clark Fork River Delta Restoration Project, Bonner County...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1969: Clark Fork River Delta Restoration Project, Bonner County, Idaho EA-1969: Clark Fork River Delta Restoration Project, Bonner County, Idaho Summary Bonneville Power...

342

Independent Oversight Review, Savannah River Site Salt Waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Salt Waste Processing Facility - August 2013 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - August 2013 August 2013 Review...

343

Principal Media Contact: DT Townsend Savannah River Nuclear Solutions...  

NLE Websites -- All DOE Office Websites (Extended Search)

Central Savannah River Area that have previously participated in the DOE Savannah River Science Bowl academic competition. These students have a demonstrated interest and...

344

Savannah River National Laboratory Meets with Historically Black...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River National Laboratory Meets with Historically Black Colleges and Universities Savannah River National Laboratory Meets with Historically Black Colleges and...

345

2013 Annual Planning Summary for the Savannah River Operations...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Annual Planning Summary for the Savannah River Operations Office 2013 Annual Planning Summary for the Savannah River Operations Office 2013 Annual Planning Summary for the...

346

2013 Annual Planning Summary for the Office of River Protection...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River Protection and Richland Operations Office 2013 Annual Planning Summary for the Office of River Protection and Richland Operations Office 2013 Annual Planning Summary for the...

347

2013 Annual Planning Summary for the Savannah River Operations...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Annual Planning Summary for the Savannah River Operations Office 2013 Annual Planning Summary for the Savannah River Operations Office 2013 Annual Planning Summary for the...

348

Refraction Survey At Snake River Plain Region (DOE GTP) | Open...  

Open Energy Info (EERE)

Refraction Survey At Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Snake River Plain...

349

Magnetotellurics At New River Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Magnetotellurics At New River Area (DOE GTP) Exploration Activity Details Location New River Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated...

350

Ground Gravity Survey At Snake River Plain Region (DOE GTP) ...  

Open Energy Info (EERE)

Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Snake River Plain Region (DOE GTP)...

351

Geothermometry At New River Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Geothermometry At New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At New River Area (DOE GTP) Exploration...

352

Inspection of Savannah River Operations Office Managementof Emergency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Operations Office Managementof Emergency Response and Law Enforcement-Related Grants, IG-0604 Inspection of Savannah River Operations Office Managementof Emergency...

353

EIS-0037: Springfield City Utilities, James River Generating...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

37: Springfield City Utilities, James River Generating Station, Power Plants 3 and 4, Springfield, Greene County, Missouri EIS-0037: Springfield City Utilities, James River...

354

Belle Fourche River Compact (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Belle Fourche River Compact (South Dakota) Belle Fourche River Compact (South Dakota) Eligibility Agricultural...

355

CRAD, Emergency Management - Office of River Protection K Basin...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A section...

356

DOE/EIS-0265-SA-168: Supplement Analysis for the Watershed Management Program EIS - Protect and Restore Lolo Creek Watershed - Jim Brown Creek Streambank Stabilization (08/10/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-168) Sabrina Keen Fish and Wildlife Project Manager, KEWU-4 Proposed Action: Protect and Restore Lolo Creek Watershed - Jim Brown Creek Streambank Stabilization Project No: 1996-077-02 Wildlife Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Wildlife Mitigation Program EIS): 1.8 Bank Protection through Vegetation Management, 1.9 Structural Bank Protection using Bioengineering Methods Location: Clearwater County, Idaho Proposed by: Bonneville Power Administration (BPA) and the Nez Perce Tribe Description of the Proposed Action: The Bonneville Power Administration, Nez Perce Tribe, and Potlatch Corporation are proposing to stabilize streambanks along Jim Brown Creek near

357

Understanding Uncertainties in Future Colorado River Streamflow  

Science Conference Proceedings (OSTI)

The Colorado River is the primary water source for more than 30 million people in the U.S. and Mexico. Recent studies that project streamflow changes in the Colorado River all project annual declines, but the magnitude of the projected decreases range ...

Julie A. Vano; Bradley Udall; Daniel R. Cayan; Jonathan T. Overpeck; Levi D. Brekke; Tapash Das; Holly C. Hartmann; Hugo G. Hidalgo; Martin Hoerling; Gregory J. McCabe; Kiyomi Morino; Robert S. Webb; Kevin Werner; Dennis P. Lettenmaier

358

Savannah River Site Environmental Report for 1998  

Science Conference Proceedings (OSTI)

The mission at the Savannah River Site (SRS) is focused primarily on support of the national defense, nonproliferation, and environmental cleanup. SRS-through its prime operating contractor, Westinghouse Savannah River Company-continues to maintain a comprehensive environmental monitoring program.

Arnett, M.

1999-06-09T23:59:59.000Z

359

Powder River 0 20 40 KILOMETERS  

E-Print Network (OSTI)

1 Monitoring Coal Bed Methane Production: A Case Study from the Powder River Basin, Wyoming, United The growing significance of the Powder River Basin's Coal Bed Methane (CBM) to United States domestic energy% of gas mostly methane, hence the name Coal Bed Methane (CBM). The types of coal, in increasing order

360

American Eel in the Susquehanna River  

Science Conference Proceedings (OSTI)

This report reviews and synthesizes factors affecting the potential benefits and adverse consequences of providing upstream passage for the American eel at hydroelectric facilities on the main stem of the Susquehanna River and other rivers on the Atlantic and Gulf Coasts of North America.

2011-09-26T23:59:59.000Z

Note: This page contains sample records for the topic "river inter-tribal watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Willamette River Habitat Protection and Restoration Program  

E-Print Network (OSTI)

.............................................................................6 a. The Challenge of Restoration in a Large River/Flood Plain System.............6 b. The Need Goals: Anchor Habitats as Stepping Stones....................20 f. Measuring Results-purpose dams and reservoirs as part of the Federal Columbia River Power System, as well as 42 miles of bank

362

EIS-0082-S2: Savannah River Site Salt Processing, Savannah River Site,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

082-S2: Savannah River Site Salt Processing, Savannah River 082-S2: Savannah River Site Salt Processing, Savannah River Site, Aiken, South Carolina EIS-0082-S2: Savannah River Site Salt Processing, Savannah River Site, Aiken, South Carolina SUMMARY This SEIS evaluates the potential environmental impacts of alternatives for separating the high-activity fraction from the low-activity fraction of the high-level radioactive waste salt solutions now stored in underground tanks at the Savannah River Site (SRS) near Aiken, South Carolina. The high-activity fraction of the high-level waste (HLW) salt solution would then be vitrified in the Defense Waste Processing Facility (DWPF) and stored until it could be disposed of as HLW in a geologic repository. The low activity fraction would be disposed of as low-level waste (saltstone)

363

Environmental flow for Monsoon Rivers in India: The Yamuna River as a case study  

E-Print Network (OSTI)

We consider the flows of Monsoon Rivers in India that will permit the river to perform all its natural functions. About 80% of the total flow for Indian rivers is during the monsoon and the remaining 20% is during the non monsoon period. By carrying out a case study of the river Yamuna in Delhi we find that at least 50% of the virgin monsoon (July to September) flow is required for the transport of the full spectrum of soil particles in the river sediment. A similar flow is needed for adequate recharge of the floodplain aquifers along river. For the non monsoon period (October to June) about 60% of the virgin flow is necessary to avoid the growth of still water algae and to support river biodiversity.

Soni, Vikram; Singh, Diwan

2013-01-01T23:59:59.000Z

364

(DOE/EIS-0265/SA-03): Supplement Analysis for the Watershed Management Program EIS 10/16/02  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3) 3) Dorothy Welch, KEWU-4 TO: Fish and Wildlife Project Manager Proposed Action: Couse/Tenmile Creeks Six-Year Direct Seed Program Project No: 2002-050-00 Watershed Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Watershed Management Program EIS): 3.2 Conservation Cropping Sequence, 3.3 Conservation Tillage, 3.8 Delayed Seed Bed Preparation, 3.9 Grasses and Legumes in Rotation, 3.26 Evaluate Field Limitations, 3.27 Equipment Calibration and Use Location: Various properties in Anatone, Asotin County, Washington Proposed by: Bonneville Power Administration (BPA) and The Asotin County Conservation District (ACCD). Description of the Proposed Action: BPA proposes to fund a six-year direct seed program

365

(DOE/EIS-0265/SA-95): Supplement Analysis for the Watershed Management Program EIS 10/21/02  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21, 2002 21, 2002 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-95) Ron Morinaka (KEWU - 4) TO: Fish and Wildlife Project Manager, COTR Proposed Action: Libby Creek Channel Stabilization Project Project No: 199500400 Watershed Management Program (See App. A : Available Management Techniques): 1.6 Install Large Woody Debris Structures; 1.7 Install Other Habitat Complexity Structures; 1.9 Structural Bank Protection using Bioengineering Methods; 1.16 Spawning Habitat Enhancements; 1.17 Rearing Habitat Enhancements; 2.1 Maintain Healthy Riparian Plant Communities. Location: On Libby Creek, located about 18 miles southwest of the town of Libby, Montana

366

Erosion and Sediment Damages and Economic Impacts of Potential 208 Controls: A Summary of Five Watershed Studies in Texas  

E-Print Network (OSTI)

This report summarizes results of economic analyses of erosion and sedimentation in five agricultural watersheds in Texas (see fig. 1). Economic analyses of the study areas considered both the on-farm economics of soil conservation and the economic consequences of various sedimentation control options. These topics were joined in the studies because they deal with different facets of the same problem. Unlike some potential pollutants, soil particles transported from a farmer's field that may become a problem downstream are a valuable resource, not a waste product. Because soil is valuable in itself, some level of soil conservation is going to be economically desirable even if downstream damages are not present or are not considered by the farmer. Results of the studies show that soil conservation does indeed pay in many situations and that its value is greater the longer the planning horizon of a farmer. This suggests that an educational program in this regard may reduce sediment damage while increasing farm income at the same time . Sediment can cause environmental damage (off-site costs) both directly and indirectly. Directly, the soil particles can cause environmental damage by filling up reservoirs and flood control structures and by deposition in other places. Indirectly, sediment can cause environmental costs by carrying plant nutrients that are potential pollutants. For the study watersheds, no evidence was found that the concentration of plant nutrients in the water posed health hazards to livestock or humans, nor caused undue eutrophication in the watersheds. Consequently, the study focused on off-site sediment damages resulting from shortened economic lives of reservoir and flood control structures and from sediment deposition in the watershed. Annualized off-site sediment damages ranged from a high of 26 cents per ton of gross erosion in Lake Lavon watershed to 14 cents per ton of gross erosion in Duck Creek, to 13.5 cents per ton of gross erosion in Lower Running Water Draw, to a negligible amount in Turkey Creek and Cameron County. These estimates are considerably lower than off-site sediment damages in corn belt watersheds (Lee & Guntermann). Policy Options for Controlling Sediment Public policies that can be implemented to abate off-site sediment damages include direct regulation, provision of economic incentives, education, and public investment. For point sources of pollutants, regulations are typically directed toward the pollutant at or near the point of emission into waterways. However, this is infeasible with non-point sources such as sediment because they enter waterways at an infinite number of points. Hence, regulations must be directed toward the practices that cause erosion and thus sedimentation. The economic incentive option includes alternatives such as Federal or State cost-sharing for adoption of conservation practices, and disincentives such as taxes or penalties on erosion. Education is a viable policy option in situations where producers are not adopting soil conservation practices that would be profitable. In these situations a successful education program would increase producer's income as well as reducing off-site sediment damages. Public investment could be used to pay for dredging sediment from reservoirs and flood control structures to prevent loss of flood control, water supply and recreational benefits. Social benefits and costs of various policy options based on direct regulation, taxation, and provision of economic incentives were estimated for three watersheds: Lake Lavon, Duck Creek, and Lower Running Water Draw. Items considered in the benefit-cost analysis were: (a) farm income consequences; (b) off-site sediment damages abated; (c) governmental cost or revenue; and (d) administration and enforcement costs associated with each policy. The major conclusion of this social benefit and cost analysis is that off-site damages are not large enough to warrant controls on agricultural activities in any of the watersheds; that i

Taylor, C. R.; Reneau, D. R.; Harris, B. L.

1979-01-01T23:59:59.000Z

367

Remedial investigation report on the Melton Valley watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3: Appendix C  

Science Conference Proceedings (OSTI)

The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions. The industrial and recreational exposure scenarios are used to provide a risk assessment reference context to evaluate levels of contamination in surface water, groundwater, soil, and sediment within each subbasin of the Melton Valley watershed. All available analytical results for the media of interest that could be qualified for use in the risk assessment were screened to determine carcinogenic risk values and noncarcinogenic hazard indexes and to identify the chemicals of concern (COCs) for each evaluated media in each subbasin.

NONE

1997-05-01T23:59:59.000Z

368

Biomonitoring of fish communities, using the Index of Biotic Integrity (IBI) in Rabbit Creek-Cat Creek Watershed, Summer 1992  

SciTech Connect

The Index of Biotic Integrity (IBI) is a method for evaluating the health of water bodies and watersheds by analyzing sample catches of fishes. Sites are scored on a numerical scale of 12--60 and on that basis assigned to a ``bioclass`` ranging from ``very poor`` to ``excellent.`` Overall, the major causes of depressed IBI scores in the Rabbit Creek watershed would appear to be: Organic pollution, mostly from livestock, but also from agricultural runoff and possible septic tank failures; sedimentation, principally from stream bank damage by cattle, also possibly from agriculture and construction; toxic pollution from agrochemicals applied to Holly Springs Golf course and agricultural fields` and Warming of water and evaporation loss due to elimination of shade on stream banks and construction of ponds.

1993-08-01T23:59:59.000Z

369

Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design  

Science Conference Proceedings (OSTI)

A major research plan entitled “Integrated research on the ecohydrological process of the Heihe River Basin” was launched by the National Natural Science Foundation of China in 2010. One of the key aims of this research plan is to establish a research ...

Xin Li; Guodong Cheng; Shaomin Liu; Qing Xiao; Mingguo Ma; Rui Jin; Tao Che; Qinhuo Liu; Weizhen Wang; Yuan Qi; Jianguang Wen; Hongyi Li; Gaofeng Zhu; Jianwen Guo; Youhua Ran; Shuoguo Wang; Zhongli Zhu; Jian Zhou; Xiaoli Hu; Ziwei Xu

2013-08-01T23:59:59.000Z

370

Mercury contamination in non-fish-eating birds from a polluted watershed  

SciTech Connect

Mercury levels in birds collected along the mercury-contaminated Cheyenne river system in South Dakota were analyzed. The study dealt with small birds which feed mainly on insects, aquatic insect larvae and seeds. The levels found are not lethal, but may be hindering reproduction.

Brown, R.L.

1972-01-01T23:59:59.000Z

371

Variation in foliar [sup 15]N abundance and the availability of soil nitrogen on Walker Branch Watershed  

SciTech Connect

Spatial patterns in natural [sup 15]N abundance ([sigma][sup 15]N) in soil, soil solutions, and non-N[sub 2]-fixing plants were studied in the deciduous forest on Walker Branch Watershed near Oak Ridge, Tennessee. This study was undertaken to test the hypothesis that foliar [sigma][sup 15]N values are related to the availability of inorganic nitrogen in mineral soil. Soils collected in or near valley bottoms on the watershed had higher levels of net nitrogen mineralization and net nitrification potential than those sampled from ridges and slopes. More positive foliar [sigma][sup 15]N values occurred in valley bottoms, which, relative to other positions on the watershed, were characterized by greater availability of soil nitrogen and lower C-to-N ratios in the O[sub 1]-horizon, in the surface mineral soil, and in autumn leaf fall. Although leaf nitrogen concentrations changed significantly over the course of the growing season, there was little seasonal variation in foliar [sigma][sup 15]N values. A hypothesis about the relative importance of different sources of nitrogen to the forest and how nitrogen cycling varies with topography in this nitrogen-deficient ecosystem was derived, in part, from spatial patterns in natural [sup 15]N abundance. There appear to be two processes affecting the topographic patterns in foliar [sup 15]N abundance on this watershed: (1) greater uptake from isotopically heavy pools of inorganic soil nitrogen by plants in valley bottoms, and (2) uptake of isotopically light ammonium-N in atmospheric deposition by plants on ridges and slopes (where the availability of inorganic soil nitrogen to plant roots is more limited). Results from this study indicate that foliar [sigma][sup 15]N values are positively correlated with net nitrification potential in surface soil. 34 refs., 13 figs., 8 tabs.

Garten, C.T. Jr. (ORNL, Oak Ridge, TN (United States))

1993-10-01T23:59:59.000Z

372

Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company  

SciTech Connect

Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70[degrees]C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.

Paller, M. (Westinghouse Savannah River Co., Aiken, SC (United States))

1992-03-26T23:59:59.000Z

373

On the uses of hyperspectral data analysis and watershed analytical methods to evaluate the extent of riparian vegetation and habitat in the Navarro River, California  

E-Print Network (OSTI)

and Space Administration; Jet Propulsion Laboratory. Viers,and Space Administration; Jet Propulsion Laboratory.and Space Administration - Jet Propulsion Laboratory (NASA –

Viers, Joshua H.; Ramirez, Carlos; Quinn, James F.

2003-01-01T23:59:59.000Z

374

Changes in Flood Management along the Pajaro River: A Transition to Watershed Management Approaches and Lessons from the Water Framework Directive and Flood Directive  

E-Print Network (OSTI)

2000).  Water Framework Directive.  E.  Parliment, Official 2007).  Flood Risk Directive.  E.  Parliment, Official the Water Framework Directive and Flood Directive Stacie

Jagger, Stacie

2009-01-01T23:59:59.000Z

375

Comparison of PMP-driven Probable Maximum Floods with Flood Magnitudes due to Increasingly Urbanized Catchment: The Case of American River Watershed  

Science Conference Proceedings (OSTI)

Since historical (pre-dam) data is traditionally the sole criterion for dam design, future (post-dam) meteorological and hydrological variability due to land use land cover change cannot be considered for assessing design robustness. For example, ...

Wondmagegn Yigzaw; Faisal Hossain; Alfred Kalyanapu

376

Sources and Fates of Dissolved Organic Carbon in Rural and Urban Watersheds in Brazos County, Texas  

E-Print Network (OSTI)

The Bryan/College Station (B/CS) region has been reported to have elevated concentrations of dissolved organic carbon (DOC) in surface water. Increased DOC concentrations are worrisome as DOC has been shown to be an energy source for the recovery and regrowth of E. coli and many watersheds are impaired by high bacteria levels. To examine the sources and fates of DOC in rural and urban regions to better understand DOC movement though the environment, seven watersheds were studied. To investigate source, streams were analyzed using diffuse reflectance near infrared spectroscopy (DR-NIR) and carbon isotopes. Fate of DOC was determined through monthly streams samples, gathered between March 2011 and February 2012, which were incubated for biodegradable DOC (BDOC). Soil in the region was sampled based on land use categories. Soil was analyzed for DOC and BDOC as well as DOC adsorption, the other major fate of DOC. Above ground vegetation was sampled in conjunction with soil and analyzed for BDOC. Data indicated that fecal matter from cliff swallows provided considerable organic material to streams in the B/CS region as shown through DR-NIR. Carbon isotope values in streams ranged from -23.5 +/- 0.7% to -26.8 +/- 0.5%. Stream spectra may be able to predict carbon isotope values in streams (Adj. R2 = 0.88). Mean annual stream DOC concentrations ranged from 11 +/- 3 mg/L to 31 +/- 12 mg/L, which represents a significant decrease in DOC between 2007 and 2011. Concurrent increases in pH and conductivity were also recorded. The decrease in DOC and the increases in pH and conductivity may be due to impacts of high sodium irrigation tap water. Biodegradable DOC was low in streams, which is likely due to DOC being present in streams in refractory forms that are resistant to microbial breakdown. Soil chemistry, including soil adsorption, was greatly influenced by sodium. The elevated adsorption coefficients and release values seen in highly developed and urban open areas can be attributed to frequent exposure to high sodium irrigation water. The results indicate that sodium is a major driver of DOC in the system. Sound management decisions concerning irrigation water chemistry and urban development might eventually emerge to protect water quality as a result of this research.

Cioce, Danielle

2012-08-01T23:59:59.000Z

377

Independent Oversight Review, Savannah River Operations Office- August 2013  

Energy.gov (U.S. Department of Energy (DOE))

Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development.

378

Raft River Geothermal Aquaculture Experiment. Phase II  

DOE Green Energy (OSTI)

Channel catfish, tilapia and Malaysian prawns were cultured directly in geothermal water for approximately seven months at the Department of Energy, Raft River Geothermal Site, to evaluate the organisms throughout a grow-out cycle. Parameters evaluated included survival, growth, bioaccumulation of metals and fluoride, collagen synthesis, and bone calcium levels. Growth at Raft River was slightly lower than at a companion commercial facility at Buhl, Idaho, but was attributed to facility differences rather than an adverse impact of geothermal water. No significant differences were recorded between Raft River and Buhl fish for bone calcium or collagen concentrations. No significant accumulation of heavy metals by fish or prawns was recorded.

Campbell, D.K.; Rose, F.L.; Kent, J.C.; Watson, L.R.; Sullivan, J.F.

1979-08-01T23:59:59.000Z

379

Rapid River Hatchery - Spring Chinook, Final Report  

SciTech Connect

This report presents the findings of the independent audit of the Rapid River Hatchery (Spring Chinook). The hatchery is located in the lower Snake River basin near Riggins Idaho. The hatchery is used for adult collection, egg incubation, and rearing of spring chinook. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the US Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife.

Watson, M.

1996-05-01T23:59:59.000Z

380

The Management of International Rivers as Demands Grow and Supplies Tighten: India, China, Nepal, Pakistan, Bangladesh  

E-Print Network (OSTI)

relating to hydroelectricity generation, irrigation water,resources to generate hydroelectricity Managing watershedsFor example, micro-hydroelectricity generation may be an

Crow, Ben; Singh, Nirvikar

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "river inter-tribal watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Kootenai River Ecosystem Finding of No Significant Impact (FONSI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kootenai River Ecosystem Kootenai River Ecosystem Finding of No Significant Impact (FONSI) June 2005 1 Department of Energy BONNEVILLE POWER ADMINISTRATION Kootenai River Ecosystem Project Finding of No Significant Impact (FONSI) Summary: Bonneville Power Administration (BPA) is proposing to fund the Kootenai River Ecosystem Project. With this funding the Kootenai Tribe of Idaho (KTOI) and Idaho Fish and Game (IDFG) would add liquid nitrogen and phosphorus to the Kootenai River from late June through September for up to five years to replace nutrients lost to the hydrosystem. The goal of this project is to help enhance native fish populations and river health. The nutrients are expected to stimulate production in the Kootenai River's

382

Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Remediation Intern Sees Nuclear Industry as Job Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity July 9, 2012 - 10:00am Addthis Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Maddie M. Blair Public Affairs Intern, Savannah River Remediation Why does she keep coming back? "There are so many fascinating processes, people, and work

383

Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Remediation Intern Sees Nuclear Industry as Job Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity July 9, 2012 - 10:00am Addthis Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Maddie M. Blair Public Affairs Intern, Savannah River Remediation Why does she keep coming back? "There are so many fascinating processes, people, and work

384

EIS-0241: Hood River Fisheries Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Hood River Fisheries Program 1: Hood River Fisheries Program EIS-0241: Hood River Fisheries Program SUMMARY This EIS evaluates a BPA proposal to protect and improve anadromous salmonid populations in the Hood River Basin. These actions are proposed in an attempt to mitigate the losses of fish and wildlife associated with the construction and operation of Federal hydro-power facilities in the Columbia River Basin. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 4, 2008 EIS-0241-SA-02: Supplement Analysis for the Hood River Fisheries Project Supplement Analysis for the Hood River Fisheries Project May 16, 2005 EIS-0241-SA-01: Supplement Analysis for the Hood River Fisheries Project, Hood River County, Oregon Supplement Analysis for the Hood River Fisheries Project

385

Oversight Reports - Savannah River Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Savannah River Site Oversight Reports - Savannah River Site September 4, 2013 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - August 2013 Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development. August 5, 2013 Independent Oversight Review, Savannah River Operations Office - July 2013 Review of the Employee Concerns Program at the Savannah River Operations Office July 25, 2013 Independent Oversight Activity Report, Savannah River Site Waste Solidification Building Savannah River Site Waste Solidification Building Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design [HIAR SRS-2013-5-07] April 22, 2013 Independent Activity Report, Savannah River Site - March 2013

386

Ohio River Ecological Research Program (ORERP): 2007 Ohio River Monitoring Results  

Science Conference Proceedings (OSTI)

The Ohio River Ecological Research Program (ORERP) is the largest collaborative power plant research program in the world. This report presents the results of the 2007 ORERP fish population sampling near 10 Ohio River power plants that covered nearly the entire (1,000 mile) length of the river. The sampling program consisted of adult/juvenile fish, habitat, and water quality field studies conducted upstream and downstream of the participating power plants.

2009-10-20T23:59:59.000Z

387

Ohio River Ecological Research Program (ORERP): 011 Ohio River Monitoring Results  

Science Conference Proceedings (OSTI)

The 2011 Ohio River Ecological Research Program (ORERP) consisted of adult and juvenile fish surveys, habitat evaluations, and water quality studies that were conducted upstream and downstream of 11 participating power plants that cover nearly 600 river miles. The principal research objectives of this study were to evaluate possible effects of thermal effluents on the temporal and spatial distributions of juvenile and adult fish in the Ohio River and to investigate associations with hydrological, ...

2013-09-05T23:59:59.000Z

388

Ohio River Ecological Research Program (ORERP): 2010 Ohio River Monitoring Results  

Science Conference Proceedings (OSTI)

The 2010 Ohio River Ecological Research Program (ORERP) consisted of adult and juvenile fish surveys, habitat evaluations, and water quality studies conducted upstream and downstream of 11 participating power plants that cover nearly 600 river miles. The principal research objectives of this study were to evaluate possible effects of thermal effluents on the temporal and spatial distributions of juvenile and adult fish in the Ohio River, and to investigate associations with hydrological, water ...

2012-10-12T23:59:59.000Z

389

Ohio River Ecological Research Program (ORERP): 2006 Ohio River Monitoring Results  

Science Conference Proceedings (OSTI)

The Ohio River Ecological Research Program (ORERP) is the largest collaborative power plant research program in the world. This report presents the results of the 2006 ORERP fish population sampling near 12 Ohio River power plants that covered nearly the entire (1000 mile) length of the river. The sampling program consisted of adult/juvenile fish, habitat, and water quality field studies upstream and downstream of the participating power plants.

2008-10-13T23:59:59.000Z

390

Ohio River Ecological Research Program (ORERP): 2005 Ohio River Monitoring Results  

Science Conference Proceedings (OSTI)

The Ohio River Ecological Research Program (ORERP) is the largest collaborative power plant research program in the world. This report presents the results of the 2005 ORERP fish population sampling near the Ohio River power stations. In 2005, the program consisted of adult/juvenile fish, habitat, and water quality field studies near 17 electric generating stations that covered nearly the entire (~1000 mile) length of the river.

2007-12-17T23:59:59.000Z

391

Production of benthic macroinvertebrates in a river used for commercial navigation :Kanawha River, West Virginia.  

E-Print Network (OSTI)

?? The purpose of this study was to analyze the production of the benthic macroinvertebrates in a commercially navigated river in order to assess the… (more)

Layton, Raymond Jay

2009-01-01T23:59:59.000Z

392

Evaluating Cumulative Ecosystem Evaluating Cumulative Ecosystem Response of the Columbia River Response of the Columbia River  

E-Print Network (OSTI)

Fish ­ presence, abundance, res. time, diet, growth rate, fitness Exchange ­ plant biomass, TOC, NOAA Fisheries, Hammond, OR Northwest Power and Conservation Council Columbia River Estuary Science

393

River Data Package for the 2004 Composite Analysis  

Science Conference Proceedings (OSTI)

Beginning in fiscal year 2003, the DOE Richland Operations Office initiated activities, including the development of data packages, to support the 2004 Composite Analysis. The river data package provides calculations of flow and transport in the Columbia River system. This document presents the data assembled to run the river module components for the section of the Columbia River from Vernita Bridge to the confluence with the Yakima River.

Rakowski, Cynthia L.; Guensch, Gregory R.; Patton, Gregory W.

2004-08-01T23:59:59.000Z

394

Categorical Exclusion Determinations: Savannah River Operations Office |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 27, 2012 June 27, 2012 CX-008614: Categorical Exclusion Determination Repair Culvert on Road 3 CX(s) Applied: B1.3 Date: 06/27/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office June 27, 2012 CX-008613: Categorical Exclusion Determination Replace Awning, Building 735-A CX(s) Applied: B1.3 Date: 06/27/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office June 26, 2012 CX-008618: Categorical Exclusion Determination Evaluation of Sorbent/Ion Exchangers for Radiochemical and Metal Separations CX(s) Applied: B3.6 Date: 06/26/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office June 26, 2012 CX-008617: Categorical Exclusion Determination Savannah River National Laboratory Building 735-13A Power Addition CX(s) Applied: B1.15

395

Predicting the Discharge of Global Rivers  

Science Conference Proceedings (OSTI)

The ability to simulate coupled energy and water fluxes over large continental river basins, in particular streamflow, was largely nonexistent a decade ago. Since then, macroscale hydrological models (MHMs) have been developed, which predict such ...

Bart Nijssen; Greg M. O'Donnell; Dennis P. Lettenmaier; Dag Lohmann; Eric F. Wood

2001-08-01T23:59:59.000Z

396

DuPage River Project - Student Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Mini Lessons You will chose from a list of mini-lessons designed to teach you the skills you need to conduct river monitoring, care and raise smallmouth bass, maintain...

397

Savannah River Site Environmental Report for 1997  

Science Conference Proceedings (OSTI)

The mission at the Savannah River Site has changed from the production of nuclear weapons materials for national defense to the management of waste, restoration of the environment, and the development of industry in and around the site.

Arnett, M.W.; Mamatey, A.R. [eds.

1998-08-01T23:59:59.000Z

398

River Falls Municipal Utilities - Business Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Will match Focus on Energy incentive to 5,000 Commercial Central AC Tune-Up: 50 LED Exit Signs: Free Installation River Falls Municipal Utility (RFMU) offers a variety of...

399

Sky River Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Sky River Wind Farm Sky River Wind Farm Jump to: navigation, search Name Sky River Wind Farm Facility Sky River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Zond Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

400

Categorical Exclusion Determinations: Savannah River Operations Office |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 24, 2011 February 24, 2011 CX-005504: Categorical Exclusion Determination Analytical Methods for Radiochemical Measurements CX(s) Applied: B3.6 Date: 02/24/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office February 24, 2011 CX-005503: Categorical Exclusion Determination Drain Line Replacement West of 735-A CX(s) Applied: B1.3 Date: 02/24/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office February 24, 2011 CX-005502: Categorical Exclusion Determination Implement Savannah River National Laboratory Defense Nuclear Facilities Safety Board 2004-2 Gap Closure Activity CX(s) Applied: B2.3 Date: 02/24/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office

Note: This page contains sample records for the topic "river inter-tribal watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Elk River Wind Farm | Open Energy Information  

Open Energy Info (EERE)

River Wind Farm River Wind Farm Jump to: navigation, search Name Elk River Wind Farm Facility Elk River Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner PPM Energy Inc Developer PPM Energy Inc Energy Purchaser Empire District Electric Co. Location Butler County KS Coordinates 37.586575°, -96.547093° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.586575,"lon":-96.547093,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

402

Three Rivers Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Rivers Electric Coop Rivers Electric Coop Jump to: navigation, search Name Three Rivers Electric Coop Place Missouri Utility Id 16751 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting HPS 100 W Lighting Outdoor Lighting HPS 100 W w/Metal Pole Lighting Residential Residential Average Rates Residential: $0.0926/kWh Commercial: $0.0791/kWh Industrial: $0.0688/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Three_Rivers_Electric_Coop&oldid=411667"

403

North Sky River | Open Energy Information  

Open Energy Info (EERE)

Sky River Sky River Jump to: navigation, search Name North Sky River Facility North Sky River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Pacific Gas & Electric Location Tehachapi CA Coordinates 35.335578°, -118.186347° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.335578,"lon":-118.186347,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

404

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area (Redirected from New River Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

405

The Des Plaines River -- Part Two  

NLE Websites -- All DOE Office Websites (Extended Search)

a canal through the Chicago Portage, down the Des Plaines valley, and thence to LaSalle-Peru where the Illinois River became navigable in all seasons. The Northwest Territory...

406

Relating River Plume Structure to Vertical Mixing  

Science Conference Proceedings (OSTI)

The structure of a river plume is related to the vertical mixing using an isohaline-based coordinate system. Salinity coordinates offer the advantage of translating with the plume as it moves or expanding as the plume grows. This coordinate ...

Robert D. Hetland

2005-09-01T23:59:59.000Z

407

First Savannah River Shipment Arrives At WIPP  

NLE Websites -- All DOE Office Websites (Extended Search)

First Savannah River Site Shipment Arrives At WIPP CARLSBAD, N.M., May 10, 2001 - The U.S. Department of Energy's (DOE) Carlsbad Field Office today announced that the first...

408

Contractor Fee Payments- Savannah River Site Office  

Energy.gov (U.S. Department of Energy (DOE))

See the amount of fees earned on EM's major contracts for each evaluated fee period and the total contract to date at the Savannah River Site Office on these charts. 

409

Lance Lab Research | Savannah River Ecology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

from a Cu study On the Savannah River Site we have access to several areas with coal fly ash contamination. We also are looking at the effects of coal combustion wastes on...

410

Think water : reconditioning the Malden River  

E-Print Network (OSTI)

The purpose of this thesis is to link water, history and culture through architectural and urban design by researching the potential for the rejuvenation of a neglected industrial site at the edge of a river. The Malden ...

Oda, Kazuyo, 1969-

2003-01-01T23:59:59.000Z

411

Raft River geoscience case study: appendixes  

DOE Green Energy (OSTI)

The following are included in these appendices: lithology, x-ray analysis, and cores; well construction data; borehole geophysical logs; chemical analyses from wells at the Raft River geothermal site; and bibliography. (MHR)

Dolenc, M.R.; Hull, L.C.; Mizell, S.A.; Russell, B.F.; Skiba, P.A.; Strawn, J.A.; Tullis, J.A.

1981-11-01T23:59:59.000Z

412

Flint River Drought Protection Act (Georgia)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of the Flint River Drought Protection Act is to maintain in-stream flow in times of drought by providing incentives for farmers to take acres out of irrigation. It allows Environmental...

413

Radionuclide transport in the Yenisei River  

E-Print Network (OSTI)

Data characterizing the pollution of the Yenisei River (water and bottom sediment) by radionuclide resulting from the use of the river water for cooling industrial reactors in the Mining-Chemical Complex are presented. Studies have been made of the contamination of the river during the period when reactors with direct flow cooling were used and after these were shut down. Distinctive features of the migration of radionuclide in the Yenisei are noted, in particular, their distribution between the solid and liquid phases. The amounts of 137Cs, 65Zn, 60Co, 54Mn, and 152Eu in the channel are determined from the effluent discharge site to Dudinka port. The rate of continuous self removal of 137Cs is estimated to be 0.19 1/year, corresponding to a half purification time of 3.6 years for a 600 km long segment of the river bed.

S. M. Vakulovsky; E. G. Tertyshnik; A. I. Kabanov

2012-11-15T23:59:59.000Z

414

Probabilistic Quantitative Precipitation Forecasts for River Basins  

Science Conference Proceedings (OSTI)

A methodology has been formulated to aid a field forecaster in preparing probabilistic quantitative precipitation forecasts (QPFs) for river basins. The format of probabilistic QPF is designed to meet three requirements: (i) it is compatible with ...

Roman Krzysztofowicz; William J. Drzal; Theresa Rossi Drake; James C. Weyman; Louis A. Giordano

1993-12-01T23:59:59.000Z

415

RIVER PROTECTION PROJECT SYSTEM PLAN  

SciTech Connect

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste management and treatment facilities, (8) Developing and implementing technical solutions to mitigate the impact from substantial1y increased estimates of Na added during the pretreatment of the tank waste solids, This involves a combination of: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, or (4) accepting an increase in mission duration, ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks, Key elements of the implementation of this strategy are included within the scope of the Tank Operations Contract, currently in procurement Since 2003, the ORP has conducted over 30 design oversight assessments of the Waste Treatment and Immobilization Plant (WTP). The estimated cost at completion has increased and the schedule for construction and commissioning of the WTP has extended, The DOE, Office of Environmental Management (EM), sanctioned a comprehensive review of the WTP flowsheet, focusing on throughput. In 2005, the TFC completed interim stabilization of the SSTs and as of March 2007, has completed the retrieval of seven selected SSTs. Demonstration of supplemental treatment technologies continues. The ongoing tank waste retrieval experience, progress with supplemental treatment technologies, and changes in WTP schedule led to the FY 2007 TFC baseline submittal in November 2006. The TFC baseline submittal was developed before the WTP schedule was fully understood and approved by ORP, and therefore reflects an earlier start date for the WTP facilities. This System Plan is aligned with the current WTP schedule with hot commissioning beginning in 2018 and full operations beginning in 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of

CERTA PJ

2008-07-10T23:59:59.000Z

416

RIVER PROTECTION PROJECT SYSTEM PLAN  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. (6) Deploying interim storage capacity for the immobilized high-level waste (IHLW) pending determination of the final disposal pathway. (7) Closing the SST and DST tank farms, ancillary facilities, and all associated waste management and treatment facilities. (8) Optimizing the overall mission by resolution of technical and programmatic uncertainties, configuring the tank farms to provide a steady, well-balanced feed to the WTP, and performing trade-offs of the required amount and type of supplemental treatment and of the amount of HLW glass versus LAW glass. ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks. Key elements needed to implement the strategy described above are included within the scope of the Tank Operations Contract (TOC). Interim stabilization of the SSTs was completed in March 2004. As of April 2009, retrieval of seven SSTs has been completed and retrieval of four additional SSTs has been completed to the limits of technology. Demonstration of supplemental LAW treatment technologies has stopped temporarily pending revision of mission need requirements. Award of a new contract for tank operations (TOC), the ongoing tank waste retrieval experience, HLW disposal issues, and uncertainties in waste feed delivery and waste treatment led to the revision of the Performance Measurement Baseline (PM B), which is currently under review prior to approval. 6 This System Plan is aligned with the current WTP schedule, with hot commissioning beginning in 2018, and full operations beginning in late 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of these decisions will be to provide a second LAW vitrification facility. No final implementation decisions regarding supplemental technology can be made until the Tank Closure and

CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

2009-09-15T23:59:59.000Z

417

RIVER PROTECTION PROJECT SYSTEM PLAN  

SciTech Connect

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. (6) Deploying interim storage capacity for the immobilized high-level waste (IHLW) pending determination of the final disposal pathway. (7) Closing the SST and DST tank farms, ancillary facilities, and all associated waste management and treatment facilities. (8) Optimizing the overall mission by resolution of technical and programmatic uncertainties, configuring the tank farms to provide a steady, well-balanced feed to the WTP, and performing trade-offs of the required amount and type of supplemental treatment and of the amount of HLW glass versus LAW glass. ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks. Key elements needed to implement the strategy described above are included within the scope of the Tank Operations Contract (TOC). Interim stabilization of the SSTs was completed in March 2004. As of April 2009, retrieval of seven SSTs has been completed and retrieval of four additional SSTs has been completed to the limits of technology. Demonstration of supplemental LAW treatment technologies has stopped temporarily pending revision of mission need requirements. Award of a new contract for tank operations (TOC), the ongoing tank waste retrieval experience, HLW disposal issues, and uncertainties in waste feed delivery and waste treatment led to the revision of the Performance Measurement Baseline (PM B), which is currently under review prior to approval. 6 This System Plan is aligned with the current WTP schedule, with hot commissioning beginning in 2018, and full operations beginning in late 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of these decisions will be to provide a second LAW vitrification facility. No final implementation decisions regarding supplemental technology can be made until the Tank Closure and

CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

2009-09-15T23:59:59.000Z

418

RIVER PROTECTION PROJECT SYSTEM PLAN  

SciTech Connect

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste management and treatment facilities, (8) Developing and implementing technical solutions to mitigate the impact from substantial1y increased estimates of Na added during the pretreatment of the tank waste solids, This involves a combination of: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, or (4) accepting an increase in mission duration, ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks, Key elements of the implementation of this strategy are included within the scope of the Tank Operations Contract, currently in procurement Since 2003, the ORP has conducted over 30 design oversight assessments of the Waste Treatment and Immobilization Plant (WTP). The estimated cost at completion has increased and the schedule for construction and commissioning of the WTP has extended, The DOE, Office of Environmental Management (EM), sanctioned a comprehensive review of the WTP flowsheet, focusing on throughput. In 2005, the TFC completed interim stabilization of the SSTs and as of March 2007, has completed the retrieval of seven selected SSTs. Demonstration of supplemental treatment technologies continues. The ongoing tank waste retrieval experience, progress with supplemental treatment technologies, and changes in WTP schedule led to the FY 2007 TFC baseline submittal in November 2006. The TFC baseline submittal was developed before the WTP schedule was fully understood and approved by ORP, and therefore reflects an earlier start date for the WTP facilities. This System Plan is aligned with the current WTP schedule with hot commissioning beginning in 2018 and full operations beginning in 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcom

CERTA PJ

2008-07-10T23:59:59.000Z

419

Columbia River Component Data Gap Analysis  

SciTech Connect

This Data Gap Analysis report documents the results of a study conducted by Washington Closure Hanford (WCH) to compile and reivew the currently available surface water and sediment data for the Columbia River near and downstream of the Hanford Site. This Data Gap Analysis study was conducted to review the adequacy of the existing surface water and sediment data set from the Columbia River, with specific reference to the use of the data in future site characterization and screening level risk assessments.

L. C. Hulstrom

2007-10-23T23:59:59.000Z

420

Raft River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Raft River Geothermal Area Raft River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Raft River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 DOE Involvement 4 Timeline 5 Regulatory and Environmental Issues 6 Future Plans 7 Raft River Unit II (26 MW) and Raft River Unit III (32 MW) 8 Enhanced Geothermal System Demonstration 9 Exploration History 10 Well Field Description 11 Technical Problems and Solutions 12 Geology of the Area 12.1 Regional Setting 12.2 Structure 12.3 Stratigraphy 12.3.1 Raft River Formation 12.3.2 Salt Lake Formation 12.3.3 Precambrian Rocks 13 Hydrothermal System 14 Heat Source 15 Geofluid Geochemistry 16 NEPA-Related Analyses (1) 17 Exploration Activities (77) 18 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.10166667,"lon":-113.38,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "river inter-tribal watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Snake River Basin environmental program  

DOE Green Energy (OSTI)

The Snake River Basin Environmental Program was designed to evaluate existing environmental data with respect to potential geothermal development in eight Known Geothermal Resource Areas (KGRAs) in Idaho. State and federal agencies, public interest groups, consulting groups, and universities participated in the DOE program. Final reports for the program are intended to be utilized as reference documents and planning tools for future environmental studies. Evaluation of the data indicated that the majority of the existing data base is adequate for small-scale direct-use developments. The potential impacts of development on water quality and water supply are the primary environmental concern. Preliminary data suggest that subsidence and induced seismicity may be a problem in several of the KGRAs. Sensitive animal species and habitats have been identified in each area; development in the Castle Creek KGRA may be restricted due to the Birds of Prey Natural Area. Two workshops provided public input on concerns and land use planning for geothermal development in Idaho. Based on the data evaluation and public input, a plan for supplementing the existing environmental data base was prepared.

Spencer, S.G.; Sullivan, J.F.

1979-09-01T23:59:59.000Z

422

Indian River Hydroelectric Project Grant  

Science Conference Proceedings (OSTI)

This Final Technical Report provides a concise retrospective and summary of all facets of the Sheldon Jackson College electrical Infrastructure Renovation portion of the Indian River Hydroelectric Project Grant of the City and Borough of Sitka, Alaska. The Project Overview describes the origins of the project, the original conditions that provided the impetus for the grant funding, how the grant amendment was developed, the conceptual design development, and the actual parameters of the final project as it went out to bid. The Project Overview also describes the ''before and after'' conditions of the project. The Objectives division of this Final Technical Report describes the amendment-funded goals of the project. It also describes the milestones of project development and implementation, as well as, the rationale behind the milestone array. The Description of Activities Performed division of this report provides an in-depth chronological analysis of progressive project implementation. Photographs will provide further illustration of particular functional aspects of the renovation project within project parameters. The Conclusions and Recommendations division of this report provides a comprehensive retrospective analysis of the project.

Rebecca Garrett

2005-04-29T23:59:59.000Z

423

Geochemical modeling at Raft River  

DOE Green Energy (OSTI)

Chemical analysis of water from three depth regimes at the Raft River KGRA indicate the presence of at least two distinct hydrothermal fluids. One fluid predominates in the fracture system on the west side of the valley, known as the Bridge Fault. This fluid is characterized by low conductivity (2,000 to 3,000 ..mu..s) and 6 to 9 ..mu..g/ml F/sup -/. The second fluid, encountered in the center of the valley, appears to be associated with the Narrows Structure and is characterized by a conductivity of 6,000 to 11,000 ..mu..s and F/sup -/ of 3 to 6 ..mu..g/ml. Contour mapping of conductivity and Cl/sup -//F/sup -/ ratios indicates upwelling of both deep geothermal fluids into the shallow system. This recharge into the intermediate and shallow zones produces high-conductivity water which is used for irrigation. Application of a simple mixing model shows that all the water sampled in intermediate and deep zones can be described by mixtures of two nearly pure fluids. One mechanism, consistent with the known data, is deep upwelling of a highly mineralized fluid which is heated by the basement rock and then penetrates sediment layers through fractures. The second fluid is relatively recent meteoric water conductively heated by the basement rock.

Allen, C.A.; Chaney, R.E.; McAtee, R.E.

1979-01-01T23:59:59.000Z

424

Framework to Evaluate Water Demands and Availability for Electrical Power Production Within Watersheds Across the United States: Dev elopment and Applications  

Science Conference Proceedings (OSTI)

A framework to evaluate the water resources available to sustain present and projected electrical power production is under development and has been applied to four case studies around the United States. Those case studies are: the Lower Coosa River Basin (AL), the Muskingum River Basin (OH), the San Juan River Basin (CO, UT, AZ, NM), and the Platte River Basin (NE, CO, WY). The river basins were chosen for the case studies because of the difference among these basins, including climatic conditions, wate...

2005-12-12T23:59:59.000Z

425

An Assessment of Lower Snake River Hydrosystem Alternatives on Survival and Recovery of Snake River Salmonids  

E-Print Network (OSTI)

River, New Jersey: Prentice-Hall. Palmer, T. 1991. The Snake River: Window to the West. Washington, DC in the American West. Seattle, Washington: University of Washington Press. Goble, D.D., and P.W. Hirt (editors). 1999. Northwest Lands, Northwest Peoples: Readings in Environmental History. Seattle, Washington

426

DOE/EIS-0265-SA-170: Supplement Analysis for the Watershed Management Program EIS--Tapteal Bend Riparian Corridor Restoration Project (8/11/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2004 1, 2004 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-170) Jonathan McCloud Fish and Wildlife Project Manager - KEWL-4 Proposed Action: Tapteal Bend Riparian Corridor Restoration Project Project No: 2002-018-00 Watershed Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Watershed Management Program EIS): 1.9 Structural Bank Protection Using Bioengineering Methods, 2.1 Maintain Healthy Riparian Plant Communities Location: Benton County, Washington Proposed by: Bonneville Power Administration (BPA) and the Tapteal Bend Greenway Association Description of the Proposed Action: The Bonneville Power Administration is proposing to fund the

427

Occurrence, Prevalence, and Disinfection Potential of Tetracycline Resistance Genes and Tetracycline Resistant Bacteria in a Subtropical Watershed  

E-Print Network (OSTI)

Antibiotics are an important method for protecting human health. Unfortunately, the development of antibiotic resistance has decreased the effectiveness of antibiotics in treating disease and preventing deaths associated with bacterial infection. The objective of this dissertation research was to gain a better understanding of anthropogenic influences on occurrence of tetracycline resistance and use of traditional disinfection methods for the reduction of tetracycline resistant bacteria and genes. Culture based and molecular methods were used to evaluate the occurrence of tetracycline resistance in a rapidly urbanizing watershed, identify the dominant resistant organisms and resistance genes in the watershed, and evaluate the use of UV and chlorine to reduce the concentration of resistant bacteria and resistance genes. Results from this research showed that tetracycline resistance was prevalent and is maintained in this study area. Several bacterial species (Aeromonas, Acinetobacter, Chryseobacterium, E. coli, Pseudomonas, and Serratia) made up the resistant population. The results also indicated that tet(W) was the major resistance gene in this watershed and that a majority of the resistant bacteria were capable of transferring their resistance. Landuse did not cause a difference in occurrence of resistant bacteria or resistance genes which suggests that a rapidly urbanizing watershed could experience resistance. It was also identified that environmental media (sediment and water) influence the occurrence and prevalence of resistant bacteria and resistance genes. The results indicate that streambed sediment may act as a reservoir for resistance and resistance might be transported in the water. Finally, the results showed that neither UV nor chlorine disinfection were effective in reducing tet(W) concentrations though the results varied greatly among species. Results from this research indicate that preventing the occurrence and distribution of resistance gene in the environment is difficult, and resistance will most likely be maintained. Therefore, in order to prevent the spread of antibiotic resistance, it will be important to prevent antibiotic resistance from becoming established in the environment. This can be done by educating the public about the importance of misusing and mismanaging antibiotics. Additionally, classifying antibiotics for either human or veterinary use may help slow the development of resistance. This should prevent clinically important antibiotics from being used in sub-therapeutic doses, which could decrease the selective pressure in the environment. Also clinically relevant bacteria can be prevented from interacting with resistant bacteria in the environment by disinfecting human waste.

Sullivan, Bailey Ann

2013-05-01T23:59:59.000Z

428

Great River Energy (28 Member Cooperatives) - Commercial and Industrial  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Great River Energy (28 Member Cooperatives) - Commercial and Great River Energy (28 Member Cooperatives) - Commercial and Industrial Efficiency Rebates Great River Energy (28 Member Cooperatives) - Commercial and Industrial Efficiency Rebates < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Program Info Funding Source Great River Energy State Minnesota Program Type Utility Rebate Program Rebate Amount Varies by measure and member cooperative offering. Provider Great River Energy Great River Energy, a generation and transmission cooperative which serves

429

Interstate Commission on the Potomac River Basin (Multiple States) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interstate Commission on the Potomac River Basin (Multiple States) Interstate Commission on the Potomac River Basin (Multiple States) Interstate Commission on the Potomac River Basin (Multiple States) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State District of Columbia Program Type Environmental Regulations Siting and Permitting Provider Interstate Commission on the Potomac River Basin The Interstate Commission on the Potomac River Basin's (ICPRB) mission is to enhance, protect, and conserve the water and associated land resources of the Potomac River and its tributaries through regional and interstate

430

Independent Oversight Follow-up Review, Savannah River National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River National Savannah River National Laboratory - January 2012 Independent Oversight Follow-up Review, Savannah River National Laboratory - January 2012 January 2012 Follow-up Review of Implementation Verification Reviews at the Savannah River National Laboratory Savannah River Site The Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent review of the identification and implementation of safety basis hazard controls associated with "flashing spray release" and supporting information documented in the Savannah River National Laboratory (SRNL) WSRC-SA-2, SRNL Technical Area Documented Safety Analysis, Revision 10; WSRC-TS-97-00014, SRNL Technical Area Technical Safety Requirements,

431

Singing River Electric Power Association - Comfort Advantage Home Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Singing River Electric Power Association - Comfort Advantage Home Singing River Electric Power Association - Comfort Advantage Home Program Singing River Electric Power Association - Comfort Advantage Home Program < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Heat Pumps Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount Contact Singing River Electric Power Association Provider Singing River Electric Power Association Singing River Electric Power Association provides rebates on energy efficiency measures in new homes and heat pumps that meet [http://www.comfortadvantage.com/Comfort%20Advantage%20brochure.pdf Comfort Advantage] weatherization standards. To qualify for this rebate the home

432

Coho Salmon Master Plan, Clearwater River Basin.  

DOE Green Energy (OSTI)

The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these uncertainties, the Nez Perce Tribe proposes to utilize a phased approach for coho reintroductions. This Master Plan seeks authorization and funding to move forward to Step 2 in the Northwest Power and Conservation Council 3-Step review process to further evaluate Phase I of the coho reintroduction program, which would focus on the establishment of a localized coho salmon stock capable of enduring the migration to the Clearwater River subbasin. To achieve this goal, the Nez Perce Tribe proposes to utilize space at existing Clearwater River subbasin hatchery facilities in concert with the construction of two low-tech acclimation facilities, to capitalize on the higher survival observed for acclimated versus direct stream released coho. In addition, Phase I would document the natural productivity of localized coho salmon released in two targeted tributaries within the Clearwater River subbasin. If Phase I is successful at establishing a localized coho salmon stock in an abundance capable of filling existing hatchery space, the rates of natural productivity are promising, and the interspecific interactions between coho and sympatric resident and anadromous salmonids are deemed acceptable, then Phase II would be triggered. Phase II of the coho reintroduction plan would focus on establishing natural production in a number of Clearwater River subbasin tributaries. To accomplish this goal, Phase II would utilize existing Clearwater River subbasin hatchery facilities, and expand facilities at the Nez Perce Tribal Hatchery Site 1705 facility to rear approximately 687,700 smolts annually for use in a rotating supplementation schedule. In short, this document identifies a proposed alternative (Phase I), complete with estimates of capital, operations and maintenance, monitoring and evaluation, and permitting that is anticipated to raise average smolt replacement rates from 0.73 (current) to 1.14 using primarily existing facilities, with a limited capital investment for low-tech acclimation facilities. This increase in survival is expected to provide the opportunity for the establishm

Nez Perce Tribe; FishPro

2004-10-01T23:59:59.000Z

433

The Development of a Coordinated Database for Water Resources and Flow Model in the Paso Del Norte Watershed (Phase III) Part III GIS Coverage for the Valle de Juárez Irrigation District 009 (ID-009) (Distrito de Riego 009) Chihuahua, México  

E-Print Network (OSTI)

This report fulfills the deliverables required by the cooperative agreement between the U.S. Army Corps of Engineers and Texas Agricultural Experiment Station (TAES/03-PL- 02: Modification No. 3) on behalf of the Paso del Norte Watershed Council. Tasks accomplished in this phase include (a) assessment of data availability for expansion of the URGWOM model, identification of data gaps, generation of data needed from historic data using empirical methods, compilation and verification of the water quality data for reaches between the Elephant Butte Reservoir, New Mexico and Fort Quitman, Texas; (b) development of the RiverWare physical model for the Rio Grande flow for the selected reaches between Elephant Butte Reservoir and El Paso, beginning with a conceptual model for interaction of surface water and groundwater in the Rincon and Mesilla valleys, and within the limits of available data; and (c) implementation of data transfer interface between the coordinated database and hydrologic models. This Project was conducted by researchers at Texas A&M University (TAMU) and New Mexico State University (NMSU) under the direction of Zhuping Sheng of TAMU and J. Phillip King of New Mexico State University. It was developed to enhance the coordinated database, which was originally developed by the Paso del Norte Watershed Council with support of El Paso Water Utilities to fulfill needs for better management of regional water resources and to expand the Upper Rio Grande Water Operations Model (URGWOM) to cover the river reaches between Elephant Butte Dam, New Mexico and Fort Quitman, Texas. In Phases I and II of this Project (TAES/03-PL-02), hydrological data needed for flow model development were compiled and data gaps were identified and a conceptual model developed. The objectives of this phase were to develop a physical model of the Rio Grande flow between Elephant Butte Dam and American Dam by using data collected in the first development phase of the PdNWC/Corps Coordinated Water Resources Database and to enhance the data portal capabilities of the PdNWC Coordinated Database Project. This report is Part III of a three part completion report for Phase III and provides information on water sources, uses, and GIS of the canals and ditches of the Valle de Juárez Irrigation District 009 (ID 009) in the Juárez Lower Valley, Chihuahua, México. The author explains that the water needs of this region have changed in recent years from being primarily for agricultural purposes to domestic and industrial uses currently. Also, the United States wanted to assess and identify new data sources on a GIS format for the Mexican side. Therefore, this project produced several maps with the location of channels and ditches along the Valle de Juárez Irrigation District. This information also will support water planning of the Valle de Juárez Irrigation District 009. The maps were produced from existing digital data regarding water resources and by adding thematic layers such as soil salinity and soil texture from analog maps. ASTER satelli