Sample records for river hot springs

  1. Red River Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRausWyoming: Energy Resources6072302°,Red River

  2. Seismic baseline and induction studies- Roosevelt Hot Springs...

    Open Energy Info (EERE)

    studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Abstract Local seismic networks were established at the Roosevelt Hot Springs geothermal area, utah and at Raft...

  3. Salida Hot Springs (Poncha Spring) Space Heating Low Temperature...

    Open Energy Info (EERE)

    Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Salida Hot Springs (Poncha Spring) Space Heating Low...

  4. E-Print Network 3.0 - acidic hot spring Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science 22 Geothermal fluxes of alkalinity in the Narayani river system of central Nepal Summary: hot springs flow within the steeply incised gorges of the central Nepal...

  5. E-Print Network 3.0 - ambiente hot spring Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Ecology 7 Geothermal fluxes of alkalinity in the Narayani river system of central Nepal Summary: hot springs flow within the steeply incised gorges of the central Nepal...

  6. Pilgrim Hot Springs, Alaska

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket | DepartmentPhotoelectrochemicalInan<aPilgrim Hot

  7. Idaho_HotSprings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSLtheIndustryMitch204 Latitude: N.MikePatHot

  8. E-Print Network 3.0 - alkaline hot springs Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 3 4 5 > >> 1 Geothermal fluxes of alkalinity in the Narayani river system of central Nepal Summary: investigated, source of river solutes and alkalinity. Active hot springs are...

  9. Detachment Faulting & Geothermal Resources - Pearl Hot Spring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Faulting & Geothermal Resources - Pearl Hot Spring, NV Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA Crump Geyser: High Precision...

  10. Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility...

  11. Steamboat Villa Hot Springs Spa Space Heating Low Temperature...

    Open Energy Info (EERE)

    Villa Hot Springs Spa Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Villa Hot Springs Spa Space Heating Low Temperature Geothermal...

  12. Broadwater Athletic Club & Hot Springs Space Heating Low Temperature...

    Open Energy Info (EERE)

    Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Broadwater Athletic Club & Hot Springs Space Heating Low Temperature...

  13. Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal...

    Open Energy Info (EERE)

    Activity: Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Exploration Activity Details Location Indian Valley Hot Springs Geothermal Area...

  14. Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

  15. Aeromagnetic Survey At Roosevelt Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    literature review of the Roosevelt Hot Springs Geothermal Area. Notes Aeromagnetic intensity residual map compiled for Roosevelt Hot Springs Geothermal Area, providing...

  16. Compound and Elemental Analysis At Lake City Hot Springs Area...

    Open Energy Info (EERE)

    Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Compound and Elemental Analysis Activity...

  17. Compound and Elemental Analysis At Lake City Hot Springs Area...

    Open Energy Info (EERE)

    Lake City Hot Springs Area (Sladek, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Compound and Elemental Analysis Activity...

  18. Data Acquisition-Manipulation At Lake City Hot Springs Area ...

    Open Energy Info (EERE)

    Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Data Acquisition-Manipulation Activity...

  19. Hot Springs Metropolitan Planning Organization 2030 Long Range Transportation Plan

    E-Print Network [OSTI]

    Hot Springs Metropolitan Planning Organization

    2005-11-03T23:59:59.000Z

    Hot Springs Area Metropolitan Planning Organization 100 Broadway Terrace Hot Springs, Arkansas 71901 Adopted November 3, 2005 HSA-MPO 2030 LRTPii Participating Agencies Garland County Hot... Federal Highway Administration Federal Transit Administration 2030 Long Range Transportation Plan for the Hot Springs Area Metropolitan Planning Organization This LRTP has been funded with federal Metropolitan Planning (PL) funds through...

  20. Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Springs Ranch Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal Facility...

  1. Thermal Gradient Holes At Spencer Hot Springs Area (Shevenell...

    Open Energy Info (EERE)

    discoveries to the attention of the geothermal community. Exploration holes at Tungsten Mountain and McGuiness Hills (Spencer Hot Springs?) in 2004 and 2005 encountered hot...

  2. Ground Gravity Survey At Lake City Hot Springs Area (Warpinski...

    Open Energy Info (EERE)

    Lake City Hot Springs Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Lake City Hot...

  3. Cuttings Analysis At Roosevelt Hot Springs Area (Christensen...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Roosevelt Hot Springs Area (Christensen, Et Al., 1983) Exploration Activity...

  4. Hot Springs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII Wind Farm FacilityPotSprings Jump to:

  5. Sol Duc Hot Springs feasibility study

    SciTech Connect (OSTI)

    Not Available

    1981-12-01T23:59:59.000Z

    Sol Duc Springs is located in the Olympic National Park in western Washington state. Since the turn of the century, the area has served as a resort, offering hot mineral baths, lodge and overnight cabin accommodations. The Park Service, in conjunction with the concessionaire, is in the process of renovating the existing facilities, most of which are approximately 50 years old. The present renovation work consists of removing all of the existing cabins and replacing them with 36 new units. In addition, a new hot pool is planned to replace the existing one. This report explores the possibility of a more efficient use of the geothermal resource to accompany other planned improvements. It is important to note that the system outlined is based upon the resource development as it exists currently. That is, the geothermal source is considered to be: the two existing wells and the hot springs currently in use. In addition, every effort has been made to accommodate the priorities for utilization as set forth by the Park Service.

  6. Geology and Geothermal Potential of the Roosevelt Hot Springs...

    Open Energy Info (EERE)

    Utah Jump to: navigation, search OpenEI Reference LibraryAdd to library Thesis: Geology and Geothermal Potential of the Roosevelt Hot Springs Area, Beaver County,...

  7. Analysis Of Hot Springs And Associated Deposits In Yellowstone...

    Open Energy Info (EERE)

    analysis, and VNIR spectroscopy. Samples of hot spring deposits, geyser deposits, and soil were also collected. Analysis of ASTER data provided broad scale characteristics of the...

  8. Soil Sampling At Waunita Hot Springs Geothermal Area (Ringrose...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Waunita Hot Springs Geothermal Area (Ringrose & Pearl, 1981) Exploration...

  9. Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Oregon Institute of Technology's Geo-Heat Center1 Fairmont Hot Springs Resort is a Space Heating low temperature direct use geothermal facility in Fairmont, Montana. This...

  10. Walley's Hot Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Walley's...

  11. Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility...

  12. Hot Springs National Park Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    National Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs National Park Space Heating Low Temperature Geothermal Facility...

  13. Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson & Dellechaie, 1976)...

  14. Time-Domain Electromagnetics At Neal Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    Activity: Time-Domain Electromagnetics At Neal Hot Springs Geothermal Area (Colorado School of Mines and Imperial College London, 2011) Exploration Activity Details Location Neal...

  15. Isotopic Analysis- Fluid At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    of the Roosevelt Hot Springs Geothermal Area. Notes Stable isotope analysis of thermal fluids determined meteoric origin primarily from the Mineral Mountains with a small...

  16. Ground Gravity Survey At Neal Hot Springs Geothermal Area (U...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2007) Exploration...

  17. Ground Gravity Survey At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Mt Princeton Hot Springs Geothermal Area (Case, Et Al., 1984) Exploration...

  18. Ground Gravity Survey At Baltazor Hot Springs Area (Isherwood...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Baltazor Hot Springs Area (Isherwood & Mabey, 1978) Exploration Activity...

  19. Ground Gravity Survey At Roosevelt Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    Details Location Roosevelt Hot Springs Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1985 - 1985 Usefulness useful DOE-funding Unknown Exploration...

  20. Chena Hot Springs GRED III Project: Final Report Geology, Petrology...

    Open Energy Info (EERE)

    hot springs area. This included pluton mapping, limited mapping of localfaults and fracture orientations, and petrology, mineralogy, geochemistry, of surface rocksamples. 2)...

  1. Idaho Public Utilities Commission Approves Neal Hot Springs Power...

    Open Energy Info (EERE)

    Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Idaho Public Utilities...

  2. Hydrogeologic investigation of Coso Hot Springs, Inyo County...

    Open Energy Info (EERE)

    Hydrogeologic investigation of Coso Hot Springs, Inyo County, California. Final report October 1977--January 1978 Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  3. Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski...

    Open Energy Info (EERE)

    Warpinski, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated...

  4. Static Temperature Survey At Lake City Hot Springs Area (Benoit...

    Open Energy Info (EERE)

    Benoit Et Al., 2005) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding...

  5. Geothermal Literature Review At Lake City Hot Springs Area (Benoit...

    Open Energy Info (EERE)

    Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding...

  6. Interpretation of Water Sample Analysis, Waunita Hot Spring Project...

    Open Energy Info (EERE)

    R. H. Carpenter (Colorado Geological Survey in Cooperation with the U.S. Department of Energy). 1981. Interpretation of Water Sample Analysis, Waunita Hot Spring Project,...

  7. Abraham Hot Springs Geothermal Area Northern Basin and Range...

    Open Energy Info (EERE)

    Range Geothermal Region Big Windy Hot Springs Geothermal Area Alaska Geothermal Region Bingham Caribou Geothermal Area Yellowstone Caldera Geothermal Region Birdsville...

  8. Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility...

  9. Micro-Earthquake At Roosevelt Hot Springs Geothermal Area (Zandt...

    Open Energy Info (EERE)

    Activity Details Location Roosevelt Hot Springs Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1982 Usefulness not indicated DOE-funding Unknown...

  10. Thermal Gradient Holes At Waunita Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    holes Additional References Retrieved from "http:en.openei.orgwindex.php?titleThermalGradientHolesAtWaunitaHotSpringsGeothermalArea(Zacharakis,1981)&oldid762...

  11. Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen, Et Al., 1993)...

  12. Chemical and Isotopic Composition of Casa Diablo Hot Spring:...

    Open Energy Info (EERE)

    Composition of Casa Diablo Hot Spring: Magmatic CO2 near Mammoth Lakes, CA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Chemical and...

  13. Compound and Elemental Analysis At Zim's Hot Springs Geothermal...

    Open Energy Info (EERE)

    Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1)...

  14. Compound and Elemental Analysis At Breitenbush Hot Springs Area...

    Open Energy Info (EERE)

    Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1)...

  15. OkanoganRiver SpringChinookSalmon

    E-Print Network [OSTI]

    : Species or Hatchery Stock: Agency/Operator: Watershed and Region: Date Submitted: Date Last Updated: NOTE Chinook Above Wells Dam Table 3. Tribal Incidental Take Thresholds for ESA-Listed 44 Upper Columbia River Steelhead Table 4. Tribal & Recreational Incidental Take Thresholds 45 for Unmarked Spring Chinook Table 5

  16. Analysis of geothermal electric-power generation at Big Creek Hot Springs, Lemhi County, Idaho

    SciTech Connect (OSTI)

    Struhsacker, D.W. (ed.)

    1981-01-01T23:59:59.000Z

    Big Creek Hot Springs was evaluated as a source of electrical power for the Blackbird Cobalt Mine, approximately 13 miles south of the hot spring. An evaluaton of the geothermal potential of Big Creek Hot Springs, a suggested exploration program and budget, an engineering feasibility study of power generation at Big Creek Hot Springs, an economic analysis of the modeled power generating system, and an appraisal of the institutional factors influencing development at Big Creek Hot Springs are included.

  17. Microbialsilica interactions in Icelandic hot spring sinter: possible analogues for some Precambrian siliceous stromatolites

    E-Print Network [OSTI]

    Konhauser, Kurt

    Microbial±silica interactions in Icelandic hot spring sinter: possible analogues for some, UK àFossil Fuels and Environmental Geochemistry Postgraduate Institute, Drummond Building, University, in particular sections of microstromatolites growing at the Krisuvik hot spring, Iceland, reveals

  18. Detachment Faulting & Geothermal Resources- Pearl Hot Spring, NV

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: Integration of new thermochronometric, structural and geological analyses, reflection and refraction seismic surveys and existing geophysical data into a 3-D Earth Model to elucidate the tectonic and 4-D thermal evolution of southern Clayton Valley and the Weepah Hills (Pearl Hot Spring geothermal play).

  19. Colorado's Hot Springs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby,Sullivan,Information FeedColombia: Energy7 March, 2013 -Hot

  20. 3D Model of the Neal Hot Springs Geothermal Area

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-12-31T23:59:59.000Z

    The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

  1. 3D Model of the Neal Hot Springs Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

  2. A biophysical model of prokaryotic diversity in geothermal hot springs

    E-Print Network [OSTI]

    Klales, Anna; Nett, Elizabeth Janus; Kane, Suzanne Amador

    2008-01-01T23:59:59.000Z

    Recent field investigations of photosynthetic bacteria living in geothermal hot spring environments have revealed surprisingly complex ecosystems, with an unexpected level of genetic diversity. One case of particular interest involves the distribution along hot spring thermal gradients of genetically distinct bacterial strains that differ in their preferred temperatures for reproduction and photosynthesis. In such systems, a single variable, temperature, defines the relevant environmental variation. In spite of this, each region along the thermal gradient exhibits multiple strains of photosynthetic bacteria adapted to several distinct thermal optima, rather than the expected single thermal strain adapted to the local environmental temperature. Here we analyze microbiology data from several ecological studies to show that the thermal distribution field data exhibit several universal features independent of location and specific bacterial strain. These include the distribution of optimal temperatures of differe...

  3. Latty Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN) JumpLarderelloLathrop,Latty Hot Springs

  4. Dynamics of precipitation pattern formation at geothermal hot springs

    E-Print Network [OSTI]

    Nigel Goldenfeld; Pak Yuen Chan; John Veysey

    2006-01-13T23:59:59.000Z

    We formulate and model the dynamics of spatial patterns arising during the precipitation of calcium carbonate from a supersaturated shallow water flow. The model describes the formation of travertine deposits at geothermal hot springs and rimstone dams of calcite in caves. We find explicit solutions for travertine domes at low flow rates, identify the linear instabilities which generate dam and pond formation on sloped substrates, and present simulations of statistical landscape evolution.

  5. Brockway Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHISBrickyard EnergyBrockway Hot Springs Geothermal

  6. Bailey Bay Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitasUSFWSBay Hot Springs Geothermal

  7. Geothermometry At Hot Springs Ranch Area (Szybinski, 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - AInformation Hot Springs Ranch

  8. Pilgrim Hot Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: EnergyPierce County, Nebraska:Pilgrim Hot Springs Geothermal

  9. Pilgrim Hot Springs, Alaska Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: EnergyPierce County, Nebraska:Pilgrim Hot Springs

  10. Pinto Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: EnergyPierceJump to: navigation, searchPinto Hot Springs

  11. DEPOSITIONAL FACIES AND AQUEOUS-SOLID GEOCHEMISTRY OF TRAVERTINE-DEPOSITING HOT SPRINGS (ANGEL TERRACE, MAMMOTH HOT SPRINGS, YELLOWSTONE NATIONAL PARK, U.S.A.)

    E-Print Network [OSTI]

    Farmer, Jack D.

    include hot spring travertine (precipitates from high-temperature springs, also called carbonate sinters spring water in the higher-temperature (-50-73°C) depositional facies. Conversely, travertine from waters in low- to high- * Present Address: Department of Geology, Arizona State University, Box

  12. DC Resistivity Survey (Dipole-Dipole Array) At Waunita Hot Springs...

    Open Energy Info (EERE)

    Notes Heinrichs Geoexploration Company conducted two phases of eletrical resistivity tomography around the Waunita Hot Springs and Tomichi Dome area. The first phase consisted of...

  13. Geothermal resource assessment of Hot Sulphur Springs, Colorado

    SciTech Connect (OSTI)

    Pearl, R.H.; Zacharakis, T.G.; Ringrose, C.D.

    1982-01-01T23:59:59.000Z

    Approximately 10 springs whose waters are used for recreation, steam baths and laundry purposes are located at Hot Sulphur Springs. Estimated heat-flow at Hot Sulphur Springs is approximately 100 mW/m2, which is about normal for western Colorado. Recent work tends to show that surface and reduced heat flow in the mountains of northern Colorado could be high. The thermal waters have an estimated discharge of 50 gpm, a temperature that ranges from 104/sup 0/F (40/sup 0/C) to a high of 111/sup 0/F (44/sup 0/C), and a total dissolved solid content of 1200 mg/l. The waters are a sodium bicarbonate type with a large concentration of sulphate. It is estimated that the most likely reservoir temperature of this system ranges from 167/sup 0/F (75/sup 0/F) to 302/sup 0/F (150/sup 0/C) and that the areal extent of the system could encompass 1.35 sq mi (3.50 sq km) and could contain 0.698 Q's (1015 B.T.U.'s) of heat energy. Soil mercury and electrical resistivity surveys were conducted. The geophysical survey delineated several areas of low resistivity associated with the north trending fault that passes just to the west of the spring area. It appears that this fault is saturated with thermal waters and may be the conduit along which the thermal waters are moving up from depth. The appendices to this report include tables showing water temperatures required for various industrial processes, as well as dissolved minerals, trace elements and radioactivity levels found in the thermal waters. Also presented are a complete description of the factors affecting the electrical resistivity measurements, a description of the electrical resistivity equipment used, and the resistivity field procedures. Electrical resistivity calculations are also included in the appendices.

  14. Desert Hot Springs, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: Energy ResourcesDesert Hot Springs,

  15. Dixie Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor,DiscountDiversified EnergyDixie CountyHot Springs

  16. Umpqua Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 et seq. -Udhaya Energyfor LowUmpqua Hot Springs

  17. Umpqua Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 et seq. -Udhaya Energyfor LowUmpqua Hot Springs

  18. Upper Division Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin:california JumpEnergyDivision Hot Spring

  19. Wedell Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDSWawarsing,Webb County, Texas:75692°,Wedell Hot Spring

  20. Baker Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin EnergyBacliff, Texas: Energy ResourcesBaiting StartHot Spring

  1. Montezuma Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMont VistaMontezuma Hot Spring

  2. Sulphur Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpen EnergyInsulatedInformationSulphur Hot Springs

  3. Vulcan Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City,Division of OilGuyane Jump to:Vu1Hot Springs

  4. Radium Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aREC SolarRadium Hot Springs Geothermal

  5. Zim's Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty is aYoakumYuHange BatteryZim's Hot Springs

  6. Rowland Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRoosevelt Gardens is°and Ready BiomassHot Springs Geothermal

  7. Joseph Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 Climate ZoneJeromeCounty is aJoseph Hot Springs Geothermal

  8. Fisher Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf Jump to:Siting.pdf JumpFirelandsOpenFisher Hot Spring

  9. Camp Preventorium Hot Springs Pool & Spa Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacility | Open Energy Information Hot Springs Pool & Spa

  10. Gillard Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to: navigation,GigaCrete Inc Jump to: navigation,Gillard Hot Springs

  11. Thermo Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978) | Open EnergyHot Springs Geothermal Area Jump

  12. Sharkey Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyARaft River,Shakes SpringsScale Wind

  13. Quantification of thermophilic archaea and bacteria in a Nevada hot spring using fluorescent in situ hybridization

    E-Print Network [OSTI]

    Walker, Lawrence R.

    in situ hybridization Abstract Previous studies of high temperature hot springs in Yellowstone National temperatures. The cells, which were concentrated from 300 liters of hot spring water through tangential flow dominate in high-temperature environments such as Yellowstone National Park. However, our study indicates

  14. Yakima River Spring Chinook Enhancement Study, 1985 Annual Report.

    SciTech Connect (OSTI)

    Fast, David E.

    1986-02-01T23:59:59.000Z

    The purpose was to evaluate enhancement methodologies that can be used to rebuild runs of spring chinook salmon in the Yakima River basin. The objectives were to: (1) determine the abundance, distribution and survival of naturally produced fry and smolts in the Yakima River; (2) evaluate different methods of fry and smolt supplementation into the natural rearing environment while maintaining as much as possible the gentic integrity of naturally produced stocks; (3) locate and define areas in the watershed which may be used for the rearing of spring chinook; (4) define strategies for enhancing natural production of spring chinook in the Yakima River; and (5) determine physical and biological limitations for production within the system.

  15. Magnetotelluric models of the Roosevelt Hot Springs thermal area, Utah

    SciTech Connect (OSTI)

    Wannamaker, P.E.; Ward, S.H.; Hohmann, G.W.; Sill, W.R.

    1980-09-01T23:59:59.000Z

    The Roosevelt Hot Springs (RHS) thermal area, which includes a hotwater-dominated fracture zone prospect, near the eastern margin of the Basin-Range tectonic province, conceivably possesses a whole family of resistivity structures that includes the following: deep hot brine reservoirs, deep-seated partially molten heat sources in the crust or upper mantle that drive the convective system, near-surface hydrothermal alteration zones, wet sedimentary fill in valleys, and a regional, apparently one-dimensional resistivity profile of the crust and upper mantle. This complex resistivity makeup, particular to RHS but probably similar to that at other geothermal areas in the Great Basin, must be treated as being fully three-dimensional (3-D). In an attempt to understand these structures, broadband (10/sup -3/ to 10/sup -2/ Hz) tensor magnetotelluric (MT) data were obtained including apparent resistivities (rho/sub a/), impedance phases (phi) and vertical magnetic field transfer functions for 93 sites in the vicinity of this resource area.

  16. Geothermal-resource assessment of the Steamboat-Routt Hot Springs area, Colorado. Resources Series 22

    SciTech Connect (OSTI)

    Pearl, R.H.; Zacharakis, T.G.; Ringrose, C.D.

    1983-01-01T23:59:59.000Z

    An assessment of the Steamboat Springs region in northwest Colorado was initiated and carried out in 1980 and 1981. The goal of this program was to delineate the geological features controlling the occurrence of the thermal waters (temperatures in excess of 68/sup 0/F (20/sup 0/C)) in this area at Steamboat Springs and 8 miles (12.8 km) north at Routt Hot Springs. Thermal waters from Heart Spring, the only developed thermal water source in the study area, are used in the municipal swimming pool in Steamboat Springs. The assessment program was a fully integrated program consisting of: dipole-dipole, Audio-magnetotelluric, telluric, self potential and gravity geophysical surveys, soil mercury and soil helium geochemical surveys; shallow temperature measurements; and prepartion of geological maps. The investigation showed that all the thermal springs appear to be fault controlled. Based on the chemical composition of the thermal waters it appears that Heart Spring in Steamboat Springs is hydrologically related to the Routt Hot Springs. This relationship was further confirmed when it was reported that thermal waters were encountered during the construction of the new high school in Strawberry Park on the north side of Steamboat Springs. In addition, residents stated that Strawberry Park appears to be warmer than the surrounding country side. Geological mapping has determined that a major fault extends from the Routt Hot Springs area into Strawberry Park.

  17. Yakima River Spring Chinook Enhancement Study, 1987 Annual Report.

    SciTech Connect (OSTI)

    Fast, David E.

    1988-01-01T23:59:59.000Z

    The smelt outmigration was monitored at wapatox on the Naches River and Prosser on the lower Yakima. The spring outmigration at Wapatox was estimated to be 16,141 smolts. The 1987 spring outmigration of wild spring chinook from the Yakima Basin was estimated to be 251,975 smolts at Prosser. The survival from egg to smelt was calculated using the 1985 redd counts and the 1987 smolt outmigration at Prosser. The estimated survival was 4.16%, which gives a mean egg to smolt survival over four years of 6.32%. In 1987 a total of 3,683 adult and 335 jack spring chinook salmon returning to the Yakima River were counted at Prosser fish ladder. This gives a total of 4,018 salmon returning to Prosser Dam. The median dates of passage were May 12 and May 16 for adults and jacks respectively. An additional 372 fish were estimated to have been caught in the Yakima River subsistence dipnet fishery below Horn Rapids and Prosser Dams. Therefore, total return to the Yakima system was 4,390 spring chinook salmon. Spring chinook were counted at Roza Dam from May 1 to September 30, 1987. Passage at Roza Dam was 1,610 adult and 67 jack spring chinook for a total of 1,677 wild fish. The median dates of passage at Roza Dam were May 29 and May 26 for spring chinook adults and jacks respectively. The smolt to adult (S{sub sa}) survival was calculated based on the 1983 smelt outmigration estimated at Prosser and the 1984 return of jacks (3 year old fish) the 1985 return of four year old adults, and the 1986 return of five year old fish to the Yakima River. It was estimated that 6,012 wild three, four, and five year old fish returned from an estimated smolt outmigration of 135,548 fish in 1983. This gives an estimated survival from smolt to adult of 4.4%. The smolt to adult survival for the 1984 smolt outmigration was 5.3% with 423 jacks returning in 1985, 5,163 four year old adults returning in 1986, and 983 five year old fish returning in 1987 fran an estimated 123,732 smolts in 1984. Spring chinook adults from fourteen different hatchery release groups were recovered in 1987. A total of 211 coded wire tags were recovered and these were expanded to an estimated 253 returning hatchery fish in 1987. Nine of these fish were jacks.

  18. Static downhole characteristics of well CGEH-1 at Coso Hot Springs...

    Open Energy Info (EERE)

    downhole characteristics of well CGEH-1 at Coso Hot Springs, China Lake, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Static downhole...

  19. Three-dimensional Q (super -1) model of the Coso Hot Springs...

    Open Energy Info (EERE)

    Q (super -1) model of the Coso Hot Springs known geothermal resource area (in Coso geothermal area) Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  20. Yakima River Spring Chinook Enhancement Study, 1984 Annual Report.

    SciTech Connect (OSTI)

    Wasserman, Larry

    1985-01-01T23:59:59.000Z

    This study develops data to present management alternatives for Yakima River spring chinook. The first objective is to determine the distribution, abundance and survival of wild Yakima River spring chinook. Naturally produced populations will be studied to determine if these runs can be sustained in the face of present harvest and environmental conditions. This information will be gathered through spawning ground surveys, counting of adults at Prosser and Roza fish ladders, and through monitoring the tribal dipnet fishery. Concurrent studies will examine potential habitat limitations within the basin. Presently, survival to emergence studies, in conjunction with substrate quality analysis is being undertaken. Water temperature is monitored throughout the basin, and seining takes place monthly to evaluate distribution and abundance. The outcome of this phase of the investigation is to determine an effective manner for introducing hatchery stocks that minimize the impacts on the wild population. The second objective of this study is to determine relative effectiveness of different methods of hatchery supplementation.

  1. Catalog of known hot springs and thermal place names for Honduras

    SciTech Connect (OSTI)

    Finch, R.C.

    1986-08-01T23:59:59.000Z

    Thermal place names were compiled from all 1:50,000 topographic quadrangle maps for the Republic of Honduras as of July 1986, from other published maps, and from several sources of unpublished data. Known hot spring sites include those visited by Empresa Nacional de Energia Electrica (Honduras) geologists, sites visited by Los Alamos geologists in 1985, and other sites known to R.C. Finch. The number of known hot spring sites in Honduras with temperatures >30/sup 0/C is 125. In addition, 56 thermal sites are suspected on the basis of thermal place names. The total number of geothermal sites, known and suspected, is 181.

  2. EIS-0502: Hot Springs to Anaconda Transmission Line Rebuild Project, Montana

    Broader source: Energy.gov [DOE]

    DOEs Bonneville Power Administration (BPA) is preparing an EIS that will analyze the potential environmental impacts of a proposal to rebuild approximately 120 miles of existing transmission line in Sanders, Lake, Missoula, Granite, Powell, and Deer Lodge Counties in Montana. Additional information is available at http://efw.bpa.gov/environmental_services/Document_Library/HotSpringsAna....

  3. Boiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley Caldera

    E-Print Network [OSTI]

    Torgersen, Christian

    ). Conditions in Hot Creek can change very quickly. These fish--caught in a burst of high-temperature water" or intermittently spurting very hot, sediment-laden water as high as 6 feet (2 m) above the stream surface. At timesBoiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley

  4. Bonneville Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE ISJumpSphereBonita Springs,

  5. Reed River Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aRECRaton,RFPs HomeEnergy LLC JumpReed

  6. Bradfield Canal Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGEFairfield(CTI PFAN) |Bradfield Canal Hot

  7. Neal Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3InformationofServices TMS Inc ||Navarre, Ohio:NavitasNeal Hot

  8. Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRooseveltVISantonOpen Energy Information Schutz's Hot

  9. Leonards Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:Keystone CleanLaton,Learn Gapminder4906177°,Leonards Hot

  10. Magnetotellurics At Dixie Hot Springs Area (Combs 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(Held & Henderson, 2012)Information Dixie Hot

  11. Dixie Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor,DiscountDiversified EnergyDixie CountyHot

  12. Wabuska Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS data Jump to:Wabaunsee County, Kansas: EnergyWabuska Hot

  13. Waunita Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa|Wattner and ScheutenWaunita Hot

  14. Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal Facility

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa|Wattner and ScheutenWaunita HotOpen|

  15. Wayland Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDSWawarsing, New York: Energy Resources Jump to:Wayland Hot

  16. Weberg Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDSWawarsing,Webb County, Texas: Energy ResourcesWeberg Hot

  17. Weiser Hot Springs Greenhouse Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDSWawarsing,Webb County, Texas:75692°,Wedell HotWeir,

  18. Brady Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Area Solar EnergyBradbury, California: It is classifiedBrady Hot

  19. Medical Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalwayHydrothermalMcFarland isDiscoveries Inc Jump to:Hot

  20. Melozi Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonald isMellette County, South Dakota:Melozi Hot

  1. Big Bend Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuelsBig Bend ElectricHot

  2. Big Creek Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuelsBig BendCreek Hot

  3. White Arrow Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWestILI Wind Farm FacilityArrow Hot

  4. Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacility | Open Energy Information HotEnergy5992396°Open

  5. Grovers Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net Jump to:EnergyEnergy° Loading map...Grovers Hot

  6. Summer Lake Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen, Minnesota: EnergySubletteTexas:Open Energy Information ofHot

  7. Indian Valley Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: Eden Prairie, Minnesota Zip: 55344ESMAPIndianValley Hot

  8. Kyle Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:Keystone Clean Air JumpMaine. ItsKun RenewablesKyle Hot

  9. Lee Hot Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:Keystone CleanLaton,Learn Gapminder Jump3. It isLee Hot

  10. Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyARaft River, Idaho | Open Energy

  11. Sespe Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyARaft River, IdahoServicios Eolicos S A

  12. EA-1944: Ormat Technologies Brady Hot Springs Project, Churchill County, NV

    Broader source: Energy.gov [DOE]

    Ormat Technologies, Inc. (Ormat) proposes to use DOE and cost share funding to study the Brady Hot Springs geothermal Field 15-12RD well. This is an EGS Demonstration project divided into three phases. During Phase 1, Ormat characterized the target well to prepare for stimulation activities in Phase 2, Phase 2: Well Stimulation and Collection/Analysis of Stimulation Monitoring Data and Phase 3: Long-term testing of the system. Phase 2 and 3 activities would occur at Ormat's Brady Hot Springs geothermal field in Churchill County, NV on public lands managed by the Bureau of Land Management (BLM) and Bureau of Reclamation (BOR). Since Phases 2 and 3 have the potential to impact subsurface resources, DOE must analyze the impacts associated with Phases 2 and 3. The BLM will be the lead agency for completion of the EA with BOR and DOE as cooperating agencies.

  13. Skeletal crystals of calcite and trona from hot-spring deposits in Kenya and New Zealand

    SciTech Connect (OSTI)

    Jones, B. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Earth and Atmospheric Sciences; Renaut, R.W. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada). Dept. of Geological Sciences

    1996-01-01T23:59:59.000Z

    Skeletal crystals are hollow crystals that develop because their outer walls grow before their cores. The presence of skeletal crystals of calcite (three types--trigonal prisms, hexagonal prisms, and plates) and trona in hot (> 90 C) spring deposits in New Zealand (Waikite Springs and Ohaaki Pool) and Kenya (Lorusio hot springs) shows that they can form in natural sedimentary regimes. Analysis of samples from these deposits shows that this crystal morphology develops under disequilibrium conditions that are unrelated to a specific environmental or diagenetic setting. Skeletal crystals transform into solid crystals when subsequent precipitation fills their hollow cores. In some cases, this may involve precipitation of crystalline material that has a sieve-like texture. In other examples, the skeletal crystal provides a framework upon which other materials can be precipitated. Walls in the skeletal trigonal calcite prisms from Waikite Springs are formed of subcrystals that mimic the shape of the parent crystal. Similarly, plate-like skeletal crystals from Lorusio are formed of densely packed subcrystals that are < 0.5 {micro}m long. Conversely, the walls of the skeletal hexagonal calcite crystals from Ohaaki Pool and the skeletal trona crystals from Lorusio are not formed of subcrystals. Recognition of skeletal crystals is important because they represent growth that follows the reverse pattern of normal growth. Failure to recognize that crystal growth followed the skeletal motif may lead to false interpretations concerning the growth of a crystal.

  14. Noncrystallographic calcite dendrites from hot-spring deposits at Lake Bogoria, Kenya

    SciTech Connect (OSTI)

    Jones, B. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Geology; Renaut, R.W. [Univ. of Saskatchewan, Saskatoon (Canada). Dept. of Geological Sciences

    1995-01-02T23:59:59.000Z

    Complex calcite crystals are an integral component of precipitates that form around the orifices of the Loburu and Mawe Moto hot springs on the shores of Lake bogoria, Kenya. Two types of large (up to 4 cm long) noncrystallographic dendrites are important components of these deposits. Feather dendrites are characterized by multiple levels of branching with individual branches developed through crystal splitting and spherulitic growth. Scandulitic (from Latin meaning shingle) dendrites are formed of stacked calcite crystals and are generally more compact than feather dendrites. These developed through the incremental stacking of rectangular-shaped calcite crystals that initially grew as skeletal crystals. Feather and scandulitic dendrites precipitated from the same waters in the same springs. The difference in morphology is therefore related to microenvironments in which they grew. Feather dendrites grew in any direction in pools of free-standing water provided that they were in constant contact with the solute. Conversely, scandulitic dendrites grew on rims of dams where water flowed over the surface in concert with the pulses of spring water. Thus, each calcite crystal in these dendrites represents one episode of crystal growth. The orientation of the component crystals in scandulitic dendrites is controlled by the topography of the dam or surface, not crystallographic criteria. The noncrystallographic dendrites formed from spring waters with initial temperatures of 90--99 C. Surficial water cooling, loss of CO{sub 2}, and presence of other elements that can interfere with crystal growth contributed to the formation of these unusual crystals.

  15. Geologic Map of the Neal Hot Springs Geothermal Area - GIS Data

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-03-31T23:59:59.000Z

    Neal Hot SpringsESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Three cross?sections. - Locations of production, injection, and exploration wells. - Locations of 40Ar/39Ar samples. - Location of XRF geochemical samples. - 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics (model not in the ESRI geodatabase).

  16. Valley View Hot Springs Pool & Spa Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpen Energy Information Valley View Hot Springs Pool &

  17. Bear Lake Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine:Barbers PointEnergy Information Hot Springs Pool & Spa Low

  18. Bear Trap Hot Spring Pool & Spa Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine:Barbers PointEnergy Information Hot Springs Pool & Spa LowEnergy

  19. Slim Holes At Crump's Hot Springs Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) |Crump's Hot Springs Area (DOE

  20. Trimble Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformation DixieTraverseEnergy Information Hot Springs

  1. Steady states and linear stability analysis of precipitation pattern formation at geothermal hot springs

    E-Print Network [OSTI]

    Pak Yuen Chan; Nigel Goldenfeld

    2007-08-22T23:59:59.000Z

    A dynamical theory of geophysical precipitation pattern formation is presented and applied to irreversible calcium carbonate (travertine) deposition. Specific systems studied here are the terraces and domes observed at geothermal hot springs, such as those at Yellowstone National Park, and speleothems, particularly stalactites and stalagmites. The theory couples the precipitation front dynamics with shallow water flow, including corrections for turbulent drag and curvature effects. In the absence of capillarity and with a laminar flow profile, the theory predicts a one-parameter family of steady state solutions to the moving boundary problem describing the precipitation front. These shapes match well the measured shapes near the vent at the top of observed travertine domes. Closer to the base of the dome, the solutions deviate from observations, and circular symmetry is broken by a fluting pattern, which we show is associated with capillary forces causing thin film break-up. We relate our model to that recently proposed for stalactite growth, and calculate the linear stability spectrum of both travertine domes and stalactites. Lastly, we apply the theory to the problem of precipitation pattern formation arising from turbulent flow down an inclined plane, and identify a linear instability that underlies scale-invariant travertine terrace formation at geothermal hot springs.

  2. Geothermal heating from Pinkerton Hot Springs at Colorado Timberline Academy, Durango, Colorado. Final technical report

    SciTech Connect (OSTI)

    Allen, C.C.; Allen, R.W.; Beldock, J.

    1981-11-08T23:59:59.000Z

    The efforts to establish a greater pool of knowledge in the field of low temperature heat transfer for the application of geothermal spring waters to space heating are described. A comprehensive set of heat loss experiments involving passive radiant heating panels is conducted and the results presented in an easily interpretable form. Among the conclusions are the facts that heating a 65 to 70 F/sup 0/ space with 90 to 100 F/sup 0/ liquids is a practical aim. The results are compared with the much lower rates published in the American Society of Heating Refrigeration and Air Conditioning Engineers SYSTEMS, 1976. A heat exchange chamber consisting of a 1000 gallon three compartment, insulated and buried tank is constructed and a control and pumping building erected over the tank. The tank is intended to handle the flow of geothermal waters from Pinkerton Hot Springs at 50 GPM prior to the wasting of the spring water at a disposal location. Approximately 375,000 Btu per hour should be available for heating assuming a 15 F/sup 0/ drop in water temperature. A combination of the panel heat loss experiments, construction of the heat exchange devices and ongoing collection of heat loss numbers adds to the knowledge available to engineers in sizing low temperature heat systems, useful in both solar and geothermal applications where source temperature may be often below 110 F/sup 0/.

  3. Origin of platy calcite crystals in hot-spring deposits in the Kenya Rift Valley

    SciTech Connect (OSTI)

    Jones, B. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Earth and Atmospheric Sciences; Renault, R.W. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada). Dept. of Geological Sciences

    1998-09-01T23:59:59.000Z

    Platy calcite crystals, which have their c axis parallel to their shortest length axis, are common components of travertine deposits found around some hot springs in the Kenya Rift Valley. They are composite crystals formed of numerous paper-thin subcrystals. Individual plates allowed to grow without obstruction develop a hexagonal motif. The Kenyan crystals typically form in hot (>75 C) waters that have a low Ca content (<10 mg/l), a high CO{sub 2} content, and a high rate of CO{sub 2} degassing. At Chemurkeu, aggregates of numerous small platy crystals collectively form lattice crystals that superficially resemble ray crystals. The walls of the lattice crystals are formed of large platy crystals that have their long and intermediate length axes aligned parallel to the plane of the long axis of the lattice crystal. Internally, the lattice crystals are formed of small platy calcite crystals arranged in a boxlike pattern that creates the appearance of a lattice when viewed in thin section. Lattice crystals are highly porous, with each pore being enclosed by platy crystals. At Lorusio, travertines are mainly formed of pseudodentrites that are constructed by numerous small platy crystals attached to a main stem which is a large platy crystal that commonly curves along its long axis. The pseudodentrites are the main construction blocks in ledges and lilypads that form in the vent pool and spring outflow channels, where the water is too hot for microbes other than hyperthermophiles. The platy calcite crystals in the Kenyan travertines are morphologically similar to platy calcite crystals that form as scale in pipes in the geothermal fields of New Zealand and hydrothermal angel wing calcite from the La Fe mine in Mexico. Comparison of the Kenyan and New Zealand crystals indicates that platy calcite crystals form from waters with a low Ca{sup 2+} content and a high CO{sub 3}/Ca ratio due to rapid rates of CO{sub 2} degassing.

  4. atural aquatic habitats include ponds, lakes, rivers, streams, springs, estuaries, bays, and

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    from small (ten surface acres) to large (the Great Lakes: Erie, Michigan, Huron, Ontario, and SuperiorN atural aquatic habitats include ponds, lakes, rivers, streams, springs, estuaries, bays little oxygen. Aquatic habitats can be classified as: · non-flowing waters like lakes and ponds, · slowly

  5. FORT UNION COAL IN THE GREATER GREEN RIVER BASIN, EAST FLANK OF THE ROCK SPRINGS UPLIFT,

    E-Print Network [OSTI]

    Chapter GS FORT UNION COAL IN THE GREATER GREEN RIVER BASIN, EAST FLANK OF THE ROCK SPRINGS UPLIFT 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky in the toolbar to return. 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky

  6. Multielement geochemistry of solid materials in geothermal systems and its applications. Part 1. Hot-water system at the Roosevelt Hot Springs KGRA, Utah

    SciTech Connect (OSTI)

    Bamford, R.W.; Christensen, O.D.; Capuano, R.M.

    1980-02-01T23:59:59.000Z

    Geochemical studies of the geothermal system at Roosevelt Hot Springs, Utah, have led to development of chemical criteria for recognition of major features of the system and to a three-dimensional model for chemical zoning in the system. Based on this improved level of understanding several new or modified geochemical exploration and assessment techniques have been defined and are probably broadly applicable to evaluation of hot-water geothermal systems. The main purpose of this work was the development or adaptation of solids geochemical exploration techniques for use in the geothermal environment. (MHR)

  7. Steady states and linear stability analysis of precipitation pattern formation at geothermal hot springs

    E-Print Network [OSTI]

    Chan, Pak Yuen

    2007-01-01T23:59:59.000Z

    A dynamical theory of geophysical precipitation pattern formation is presented and applied to irreversible calcium carbonate (travertine) deposition. Specific systems studied here are the terraces and domes observed at geothermal hot springs, such as those at Yellowstone National Park, and speleothems, particularly stalactites and stalagmites. The theory couples the precipitation front dynamics with shallow water flow, including corrections for turbulent drag and curvature effects. In the absence of capillarity and with a laminar flow profile, the theory predicts a one-parameter family of steady state solutions to the moving boundary problem describing the precipitation front. These shapes match well the measured shapes near the vent at the top of observed travertine domes. Closer to the base of the dome, the solutions deviate from observations, and circular symmetry is broken by a fluting pattern, which we show is associated with capillary forces causing thin film break-up. We relate our model to that recent...

  8. Light stable isotope study of the Roosevelt Hot Springs thermal area, Southwestern Utah

    SciTech Connect (OSTI)

    Rohrs D.T.; Bowman, J.R.

    1980-05-01T23:59:59.000Z

    The isotopic composition of hydrogen, oxygen, and carbon has been determined for regional cold springs, thermal fluids, and rocks and minerals from the Roosevelt Hot Springs thermal area. The geothermal system has developed within plutonic granitic rocks and amphibolite facies gneiss, relying upon fracture-controlled permeability for the migration of the thermal fluids. Probably originating as meteoric waters in the upper elevations of the Mineral Mountains, the thermal waters sampled in the production wells display an oxygen isotopic shift of at least +1.2. Depletions of delta /sup 18/O in wole rock, K-feldspar, and biotite have a positive correlation with alteration intensity. W/R mass ratios, calculated from the isotopic shifts of rock and water, range up to 3.0 in a producing horizon of one well, although the K-feldspar has experienced only 30% exchange with the thermal waters. While veinlet quartz has equilibrated with the thermal waters, the /sup 18/O values of K-mica clay, an alteration product of plagioclase, mimic the isotopic composition of K-feldspar and whole rock. This suggests that locally small W/R ratios enable plagioclase to influence its alteration products by isotopic exchange.

  9. Economic Contributions and Ecosystem Services of Springs in the Lower Suwannee and Santa Fe River Basins of North-Central

    E-Print Network [OSTI]

    Florida, University of

    ................................................................................................... 37 Appendix C. Ecosystem Service Valuation Studies Focused on North Florida1 Economic Contributions and Ecosystem Services of Springs in the Lower Suwannee and Santa Fe River: Mark Long) #12;2 Economic Contributions and Ecosystem Services of Springs in the Lower Suwannee

  10. Slip and Dilation Tendency Anlysis of Neal Hot Springs Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Based on inversion of fault kinematic data, Edwards (2013) interpreted that two discrete stress orientations are preserved at Neal Hot Springs. An older episode of east-west directed extension and a younger episode of southwest-northeast directed sinistral, oblique -normal extension. This interpretation is consistent with the evolution of Cenozoic tectonics in the region (Edwards, 2013). As such we applied a southwest-northeast (060) directed normal faulting stress regime, consistent with the younger extensional episode, to the Neal Hot Springs faults. Under these stress conditions northeast striking steeply dipping fault segments have the highest tendency to dilate and northeast striking 60 dipping fault segments have the highest tendency to slip. Under these stress condition...

  11. Thermal springs in the Payette River basin, west-central Idaho

    SciTech Connect (OSTI)

    Lewis, R.E.; Young, H.W.

    1980-10-01T23:59:59.000Z

    The Payette River basin, characterized by steep, rugged mountains and narrow river valleys, occupies an area of about 3300 square miles in west-central Idaho. Predominant rock types in the basin include granitic rocks of the Idaho batholith and basalt flows of the Columbia River Basalt Group. Waters from thermal springs in the basin, temperatures of which range from 34/sup 0/ to 86/sup 0/ Celsius, are sodium bicarbonate type and are slightly alkaline. Dissolved-solids concentrations range from 173 to 470 milligrams per liter. Reservoir temperatures determined from the sodium-potassium-calcium, silicic acid-corrected silica, and sulfate-water isotope geothermometers range from 53/sup 0/ to 143/sup 0/ Celsius. Tritium, present in concentrations between 0 and 2 tritium units, indicate that sampled thermal waters are at least 100 years and possibly more than 1000 years old. Stable-isotope data indicate it is unlikely any of the nonthermal waters sampled are representative of precipitation that recharges the thermal springs in the basin. Thermal springs discharged about 5700 acre-feet of water in 1979. Associated convective heat flux is 1.1 x 10/sup 7/ calories per second.

  12. E-Print Network 3.0 - alkaline siliceous hot Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 3 4 5 > >> 1 Geothermal fluxes of alkalinity in the Narayani river system of central Nepal Summary: is the fraction of the total hot spring alkalinity derived from silicate...

  13. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2007 Smolt Acclimation and Adult Return Report.

    SciTech Connect (OSTI)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31T23:59:59.000Z

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eleventh season (1997-2007) of adult Chinook salmon broodstock collection in the Lostine River and the ninth season (1999-2007) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2007, acclimation of Lostine River spring Chinook salmon smolts occurred from 3/5/07 through to 4/17/07 and a total of 230,010 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2005 egg source and included captive brood (24,604) and conventional (205,406) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2007 began May 14th. The first Chinook was captured on June 2, 2007 and the last Chinook was captured on September 25, 2007. The weir and trap were removed on October 1, 2007. A total of 637 adult Chinook, including jacks, were captured during the season. The composition of the run included 240 natural origin fish and 397 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 41 natural and 81 hatchery supplementation adults were retained for broodstock and transported to LGH for holding and spawning, 403 adult Chinook were passed or transported above the weir to spawn naturally, and only hatchery origin jack Chinook were transported and outplanted in the Wallowa River and Bear Creek in underseeded habitat. Of the 122 adult fish retained for broodstock, 20 natural females and 40 supplementation females were represented in spawning. The eggs from these females produced a total of 267,350 eggs at fertilization. Eye-up was 86.73% which yielded a total of 231,882 conventional program eyed eggs. The fecundity averaged 4,456 eggs per female. These eggs will be incubated and reared at Lookingglass Hatchery until they are smolts in the spring of 2009. Captive brood program eggs/fish will be added to the conventional program eggs to make up the entire juvenile release for the Lostine River program in 2009. Due to the success of the 2007 egg collection, the number of fish produced exceeded program needs and facility capabilities. As a result, there are plans to outplant fry in 2008 and parr in early 2009 to underseeded habitat in the Wallowa River.

  14. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2004 Smolt Acclimation and Adult Return Report.

    SciTech Connect (OSTI)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31T23:59:59.000Z

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eighth season (1997-2004) of adult Chinook salmon broodstock collection in the Lostine River and the sixth season (1999-2004) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progency for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2004, acclimation of Lostine River spring Chinook salmon smolts occurred from March 1, 2004 through to April 14, 2004 and a total of 250,249 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2002 egg source and included captive brood (133,781) and conventional (116,468) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2004 began May 10, the first Chinook was captured on May 19, 2004 and the last Chinook was captured on September 16, 2004. The weir and trap were removed on October 1, 2004. A total of 1,091 adult Chinook, including jacks, were captured during the season. The composition of the run included 299 natural origin fish and 792 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 46 natural and 69 hatchery supplementation adults were retained for broodstock and transported to Lookingglass Hatchery for holding and spawning, 537 adult Chinook were passed or transported above the weir to spawn naturally, and 447 hatchery origin adult Chinook were transported and outplanted in the Wallowa River and Bear Creek to spawn in underseeded habitat. Of the 107 adults retained (eight additional hatchery females were collected and then later returned to the Lostine River to spawn naturally) for broodstock at Lookingglass Hatchery, 22 natural females and 30 supplementation females were represented in spawning. These females produced a total of 221,889 eggs at fertilization. Eye-up was 94.9% which yielded a total of 210,661 conventional program eyed eggs. The fecundity averaged 4,267 eggs per female. These eggs were incubated and at Lookingglass Hatchery until eyed stage and then transferred to Oxbow Hatchery where they will be reared to the fingerling stage. They will then be transported back to LGH and reared to the smolt stage and then transported to the Lostine acclimation facility for release in the spring of 2006. Captive brood program eggs/fish will be added to

  15. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2003 Smolt Acclimation and Adult Return Report.

    SciTech Connect (OSTI)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31T23:59:59.000Z

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the seventh season (1997-2003) of adult Chinook salmon broodstock collection in the Lostine River and the fifth season (1999-2003) of acclimating the resultant progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2003, acclimation of Lostine River spring Chinook salmon smolts occurred from March 3, 2003 through to April 14, 2003 and a total of 242,776 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2001 egg source and included captive broodstock (141,860) and conventional broodstock (100,916) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2003 began April 30th, the first Chinook was captured on May 16, 2003 and the last Chinook was captured on September 21, 2003. The weir and trap were removed on October 1, 2003. A total of 464 adult Chinook, including jacks, were captured during the season. The composition of the run included 239 natural origin fish and 225 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 45 natural and 4 hatchery supplementation adults were retained for broodstock and transported to LGH for holding and spawning, 366 adult Chinook were passed or transported above the weir to spawn naturally, and 49 hatchery origin adult jack Chinook were transported and outplanted in the Wallowa River and Bear Creek to spawn in underseeded habitat. Of the 49 adults retained for broodstock at Lookingglass Hatchery, 21 natural females and no hatchery origin females were represented in spawning. These females produced a total of 106,609 eggs at fertilization. Eye-up was 95.50% which yielded a total of 101,811 conventional program eyed eggs. The fecundity averaged 5,077 eggs per female. These eggs were incubated and at Lookingglass Hatchery until eyed stage. At eye they were transferred to Oxbow Hatchery where they were reared to the fingerling state at which time they were transported back to LGH until they were smolts in the spring of 2005. Captive brood program eggs/fish will be added to the conventional program eggs to make up the entire juvenile release for the Lostine River program in 2005.

  16. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2006 Smolt Acclimation and Adult Return Report.

    SciTech Connect (OSTI)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31T23:59:59.000Z

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the tenth season (1997-2006) of adult Chinook salmon broodstock collection in the Lostine River and the eighth season (1999-2006) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2006, acclimation of Lostine River spring Chinook salmon smolts occurred from February 27, 2006 through to April 10, 2006 and a total of 240,568 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2004 egg source and included captive brood (40,982) and conventional (199,586) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2006 began May 15th, the first Chinook was captured on June 14, 2006 and the last Chinook was captured on September 27, 2006. The weir and trap were removed on October 1, 2006. A total of 534 adult Chinook, including jacks, were captured during the season. The composition of the run included 205 natural origin fish and 329 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 33 natural and 120 hatchery supplementation adults were retained for broodstock and transported to LGH for holding and spawning and 397 adult Chinook were passed or transported above the weir to spawn naturally. In 2006, no hatchery origin adult Chinook were transported and out planted in the Wallowa River and Bear Creek to spawn in under seeded habitat. In order to meet egg take goals for the conventional portion of the program, a determination was made that approximately 147 adults were needed for broodstock. As a result 16 (8 males and 8 females) of the 153 fish collected for broodstock were returned to the Lostine River to spawn naturally. Females that were spawned and provided the brood source were made up of 12 natural females and 45 supplementation females. One of these females tested positive for high levels of Bacterial Kidney Disease and consequently this females eggs were destroyed. The remaining females produced a total of 241,372 eggs at fertilization. Eye-up was 85.47% which yielded a total of 206,309 conventional program eyed eggs. The fecundity averaged 4,162 eggs per female. The brood year 2006 eggs will be incubated and reared at Lookingglass Hatchery until

  17. Snake River Spring/Summer Chinook Captive Broodstock Rearing and Research, 2002 Annual Report.

    SciTech Connect (OSTI)

    McAuley, W. Carlin; Maynard, Desmond J. (National Marine Fishereis Service, Northwest Fisheries Science Center, Seattle, WA)

    2003-03-01T23:59:59.000Z

    In 1995, the National Marine Fisheries Service (NMFS), in cooperation with the Idaho Department of Fish and Game (IDFG), the Oregon Department of Fish and Wildlife (ODFW), and the Bonneville Power Administration (BPA) established captive broodstock programs to aid in the recovery of Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) listed as endangered under the U.S. Endangered Species Act (ESA). These programs were intended to provide safety nets for Salmon and Grande Ronde River Basins spring/summer chinook salmon stocks. They also provide a basis of examining the efficacy of captive rearing and captive breeding programs as tools for recovering listed salmonid populations. In years when no or few naturally produced fish return from the sea, captive fish and their progeny can be used to maintain populations in these two Snake River Basin tributaries. The NMFS facility at Manchester, WA, provides the crucial seawater environment needed to culture anadromous salmonids during the marine phase of their life cycle. At the Manchester Research Station, the fish are cultured in 6.1m diameter circular tanks housed in a fully enclosed and secure building. The tanks are supplied with seawater that has been processed to eliminate most marine pathogens. The fish are fed a commercially prepared diet and held at densities and loading rates designed to maximize fish quality. When fish begin to mature, they are transferred to ODFW or IDFG freshwater facilities in Oregon and Idaho for final maturation. The states then release the mature fish (Idaho) or their progeny (Oregon) back into their native Snake River tributary waters in restoration efforts. In FY 2002, NMFS cultured 1996, 1997, 1998, 1999, and 2000 broodyear fish at its Manchester Facility. This report addresses program activities from September 1, 2001 to August 31, 2002.

  18. Snake River Spring/Summer Chinook Captive Broodstock Rearing and Research, 2003 Annual Report.

    SciTech Connect (OSTI)

    Maynard, Desmond J.; McAuley, W. Carlin (National Marine Fisheries Service, Northwest Fisheries Science Center, Resource Enhancement and Utilization, Seattle, WA)

    2004-08-01T23:59:59.000Z

    In 1995, the National Marine Fisheries Service (NMFS), in cooperation with the Idaho Department of Fish and Game (IDFG), the Oregon Department of Fish and Wildlife (ODFW), and the Bonneville Power Administration (BPA) established captive broodstock programs to aid in the recovery of Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) listed as endangered under the U.S. Endangered Species Act (ESA). These programs are intended to provide safety nets for Salmon and Grande Ronde River Basins spring/summer chinook salmon stocks. They also provide a basis of examining the efficacy of captive rearing and captive breeding programs as tools for recovering listed salmonid populations. In years when no or few naturally produced fish return from the sea, captive fish and their progeny can be used to maintain populations in these two Snake River Basin tributaries. The NMFS facility at Manchester, WA provides the crucial seawater environment needed to culture anadromous salmonids during the marine phase of their life cycle. At the Manchester Research Station, the fish are cultured in 6.1m diameter circular tanks housed in a fully enclosed and secure building. The tanks are supplied with seawater that has been processed to eliminate most marine pathogens. The fish are fed a commercially prepared diet and held at densities and loading rates intended to maximize fish quality. When fish begin to mature, they are transferred to ODFW or IDFG freshwater facilities in Oregon and Idaho for final maturation. The states then release the mature fish (Idaho) or their progeny (Oregon) back into their native Snake River tributary waters in restoration efforts. In FY 2003, NMFS cultured 1998, 1999, 2000, and 2001 broodyear fish at its Manchester Facility. This report addresses program activities from September 1, 2002 to August 31, 2003.

  19. Migratory Behavior of Adult Spring Chinook Salmon in the Willamette River and its Tributaries: Completion report

    SciTech Connect (OSTI)

    Schreck, Carl B.

    1994-01-01T23:59:59.000Z

    Migration patterns of adult spring chinook salmon above Willamette Falls differed depending on when the fish passed the Falls, with considerable among-fish variability. Early-run fish often terminated their migration for extended periods of time, in association with increased flows and decreased temperatures. Mid-run fish tended to migrate steadily upstream at a rate of 30-40 km/day. Late-run fish frequently ceased migrating or fell back downstream after migrating 10-200 km up the Willamette River or its tributaries; this appeared to be associated with warming water during summer and resulted in considerable mortality. Up to 40% of the adult salmon entering the Willamette River System above Willamette Falls (i.e. counted at the ladder) may die before reaching upriver spawning areas. Up to 10% of the fish passing up over Willamette Falls may fall-back below the Falls; some migrate to the Columbia River or lower Willamette River tributaries. If rearing conditions at hatcheries affect timing of adult returns because of different juvenile development rates and improper timing of smolt releases, then differential mortality in the freshwater segment of the adult migrations may confound interpretation of studies evaluating rearing practices.

  20. Identification of Novel Positive-Strand RNA Viruses by Metagenomic Analysis of Archaea-Dominated Yellowstone Hot Springs

    SciTech Connect (OSTI)

    Benjamin Bolduc; Daniel P. Shaughnessy; Yuri I. Wolf; Eugene V. Koonin; Francisco F. Roberto; Mark Young

    2012-05-01T23:59:59.000Z

    There are no known RNA viruses that infect Archaea. Filling this gap in our knowledge of viruses will enhance our understanding of the relationships between RNA viruses from the three domains of cellular life and, in particular, could shed light on the origin of the enormous diversity of RNA viruses infecting eukaryotes. We describe here the identification of novel RNA viral genome segments from high-temperature acidic hot springs in Yellowstone National Park in the United States. These hot springs harbor low-complexity cellular communities dominated by several species of hyperthermophilic Archaea. A viral metagenomics approach was taken to assemble segments of these RNA virus genomes from viral populations isolated directly from hot spring samples. Analysis of these RNA metagenomes demonstrated unique gene content that is not generally related to known RNA viruses of Bacteria and Eukarya. However, genes for RNA-dependent RNA polymerase (RdRp), a hallmark of positive-strand RNA viruses, were identified in two contigs. One of these contigs is approximately 5,600 nucleotides in length and encodes a polyprotein that also contains a region homologous to the capsid protein of nodaviruses, tetraviruses, and birnaviruses. Phylogenetic analyses of the RdRps encoded in these contigs indicate that the putative archaeal viruses form a unique group that is distinct from the RdRps of RNA viruses of Eukarya and Bacteria. Collectively, our findings suggest the existence of novel positive-strand RNA viruses that probably replicate in hyperthermophilic archaeal hosts and are highly divergent from RNA viruses that infect eukaryotes and even more distant from known bacterial RNA viruses. These positive-strand RNA viruses might be direct ancestors of RNA viruses of eukaryotes.

  1. Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.

    SciTech Connect (OSTI)

    Goranson, Colin

    2005-03-01T23:59:59.000Z

    Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in volcanic settings.

  2. EA-1002: Bonneville Power Administration's Hot Springs- Garrison Fiber Optic Project, Montana

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the U.S. Department of Energy's Bonneville Power Administration's proposal to upgrade its operational telecommunications system between the Hot...

  3. U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs...

    Open Energy Info (EERE)

    Springs Completes Production Wells Needed for Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: U.S. Geothermal Drills Another Prolific Well at...

  4. U.S. Geothermal Announces More Test Results From the Neal Hot Springs Production Well and a Key Addition to Senior Staff

    Broader source: Energy.gov [DOE]

    U.S. Geothermal Inc. ("U.S. Geothermal"), a renewable energy company focused on the production of electricity from geothermal energy, announced today results from a second, higher rate flow test of the first full size production well (NHS-1) at the Neal Hot Springs Project.

  5. Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck, 1983) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonaldInformationEnergy Information Mickey Hot

  6. Three-dimensional Q (super -1) model of the Coso Hot Springs known

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective JumpInc., 2010) |TheseeSprings

  7. Tracer Testing At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective:Toyo Aluminium KK Jump to:Springs)2012) | Open

  8. U.S. Geothermal Drills Prolific Well at Neal Hot Springs | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective:ToyoTurkey:S Army CorpsInformation Springs

  9. Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa|Wattner and ScheutenWaunita HotOpen

  10. Harbin Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is8584°, -79.954985°isEnergy Information Harbin Hot

  11. Self Potential At Roosevelt Hot Springs Area (Combs 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation, search Name:Open Energy|Information Roosevelt Hot

  12. McCauley Hot Spring Pool & Spa Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis aMaury County,Energy Information McCauley Hot

  13. Zim's Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty is aYoakumYuHange BatteryZim's Hot

  14. Campbell Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacility | Open Energy Information HotEnergy Information

  15. Campbells Gila Hot Springs Rv Park Pool & Spa Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacility | Open Energy Information HotEnergy5992396°

  16. Summer Lake Hot Springs Pool & Spa Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen, Minnesota: EnergySubletteTexas:Open Energy Information ofHotOpen

  17. Sycamore Hot Spring Resort Pool & Spa Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to: navigation,Open Energy Information Sycamore Hot

  18. Woody's Feather River Hot Springs Pool & Spa Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodson County, Kansas: EnergyWoodward

  19. Red River Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRausWyoming: Energy Resources6072302°,Red

  20. River Inn Natural Hot Spring Pool & Spa Low Temperature Geothermal Facility

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue RidgeUniversityMedio, New Mexico:LimitedEdge, NewGrove

  1. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Juveniles, 2007-2008

    SciTech Connect (OSTI)

    Achord, Stephen; Sandford, Benjamin P.; Hockersmith, Eric E. [Fish Ecology Division, Northwest Fisheries Science Center

    2009-07-09T23:59:59.000Z

    This report provides results from an ongoing project to monitor the migration behavior and survival of wild juvenile spring/summer Chinook salmon in the Snake River Basin. Data reported is from detections of PIT tagged fish during late summer 2007 through mid-2008. Fish were tagged in summer 2007 by the National Marine Fisheries Service (NMFS) in Idaho and by the Oregon Department of Fish and Wildlife (ODFW) in Oregon. Our analyses include migration behavior and estimated survival of fish at instream PIT-tag monitors and arrival timing and estimated survival to Lower Granite Dam. Principal results from tagging and interrogation during 2007-2008 are: (1) In July and August 2007, we PIT tagged and released 7,390 wild Chinook salmon parr in 12 Idaho streams or sample areas. (2) Overall observed mortality from collection, handling, tagging, and after a 24-hour holding period was 1.4%. (3) Of the 2,524 Chinook salmon parr PIT tagged and released in Valley Creek in summer 2007, 218 (8.6%) were detected at two instream PIT-tag monitoring systems in lower Valley Creek from late summer 2007 to the following spring 2008. Of these, 71.6% were detected in late summer/fall, 11.9% in winter, and 16.5% in spring. Estimated parr-to-smolt survival to Lower Granite Dam was 15.5% for the late summer/fall group, 48.0% for the winter group, and 58.5% for the spring group. Based on detections at downstream dams, the overall efficiency of VC1 (upper) or VC2 (lower) Valley Creek monitors for detecting these fish was 21.1%. Using this VC1 or VC2 efficiency, an estimated 40.8% of all summer-tagged parr survived to move out of Valley Creek, and their estimated survival from that point to Lower Granite Dam was 26.5%. Overall estimated parr-to-smolt survival for all summer-tagged parr from this stream at the dam was 12.1%. Development and improvement of instream PIT-tag monitoring systems continued throughout 2007 and 2008. (4) Testing of PIT-tag antennas in lower Big Creek during 2007-2008 showed these antennas (and anchoring method) are not adequate to withstand high spring flows in this drainage. Future plans involve removing these antennas before high spring flows. (5) At Little Goose Dam in 2008, length and/or weight were taken on 505 recaptured fish from 12 Idaho stream populations. Fish had grown an average of 40.1 mm in length and 10.6 g in weight over an average of 288 d. Their mean condition factor declined from 1.25 at release (parr) to 1.05 at recapture (smolt). (6) Mean release lengths for detected fish were significantly larger than for fish not detected the following spring and summer (P < 0.0001). (7) Fish that migrated through Lower Granite Dam in April and May were significantly larger at release than fish that migrated after May (P < 0.0001) (only 12 fish migrated after May). (8) In 2008, peak detections at Lower Granite Dam of parr tagged during summer 2007 (from the 12 stream populations in Idaho and 4 streams in Oregon) occurred during moderate flows of 87.5 kcfs on 7 May and high flows of 197.3 kcfs on 20 May. The 10th, 50th, and 90th percentile passage occurred on 30 April, 11 May, and 23 May, respectively. (9) In 2007-2008, estimated parr-to-smolt survival to Lower Granite Dam for Idaho and Oregon streams (combined) averaged 19.4% (range 6.2-38.4% depending on stream of origin). In Idaho streams the estimated parr-to-smolt survival averaged 21.0%. This survival was the second highest since 1993 for Idaho streams. Relative parr densities were lower in 2007 (2.4 parr/100 m2) than in all previous years since 2000. In 2008, we observed low-to-moderate flows prior to mid-May and relatively cold weather conditions throughout the spring migration season. These conditions moved half of the fish through Lower Granite Dam prior to mid-May; then high flows moved 50 to 90% of the fish through the dam in only 12 days. Clearly, complex interrelationships of several factors drive the annual migrational timing of the stocks.

  2. GRED III Final Report Clifton Hot Springs Geothermal Greenlee County, AZ

    SciTech Connect (OSTI)

    Brown, David E.

    2006-06-15T23:59:59.000Z

    Black & Veatch Corporation has prepared this report for Arizona Public Service Company, Salt River Project, and Tucson Electric Power Company (APS/SRP/TEP). The purpose of this report is to assess the prospects for significant renewable energy development in Arizona. The scope of the study is limited to Arizona projects that would export power to the grid (that is, not distributed energy projects). This study includes a review of the current status of renewable energy in Arizona, characterization of renewable power generation technologies, assessment of Arizona''s renewable resources, and an assessment of key risk factors. This section summarizes the key findings in these areas.

  3. Self Potential At Mt Princeton Hot Springs Geothermal Area (Richards, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyARaft River, Idaho | OpenSelawik Wind6)Al.,

  4. Self Potential At Neal Hot Springs Geothermal Area (Colwell, Et Al., 2012)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyARaft River, Idaho | OpenSelawik Wind6)Al.,|

  5. Marshall Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a town inRiver93. ItKansas. Its FIPSMarshall

  6. Geothermal fluxes of alkalinity in the Narayani river system of central Nepal

    E-Print Network [OSTI]

    Derry, Louis A.

    Geothermal fluxes of alkalinity in the Narayani river system of central Nepal Matthew J. Evans hot springs flow within the steeply incised gorges of the central Nepal Himalayan front. The spring of central Nepal, Geochem. Geophys. Geosyst., 5, Q08011, doi:10.1029/2004GC000719. G 3 G 3Geochemistry

  7. Big George to Carter Mountain 115-kV transmission line project, Park and Hot Springs Counties, Wyoming. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The Western Area Power Administration (Western) is proposing to rebuild, operate, and maintain a 115-kilovolt (kV) transmission line between the Big George and Carter Mountain Substations in northwest Wyoming (Park and Hot Springs Counties). This environmental assessment (EA) was prepared in compliance with the National Environmental Policy Act (NEPA) and the regulations of the Council on Environmental Quality (CEQ) and the Department of Energy (DOE). The existing Big George to Carter Mountain 69-kV transmission line was constructed in 1941 by the US Department of Interior, Bureau of Reclamation, with 1/0 copper conductor on wood-pole H-frame structures without an overhead ground wire. The line should be replaced because of the deteriorated condition of the wood-pole H-frame structures. Because the line lacks an overhead ground wire, it is subject to numerous outages caused by lightning. The line will be 54 years old in 1995, which is the target date for line replacement. The normal service life of a wood-pole line is 45 years. Under the No Action Alternative, no new transmission lines would be built in the project area. The existing 69-kV transmission line would continue to operate with routine maintenance, with no provisions made for replacement.

  8. Hood River Production Program Monitoring and Evaluation (M&E) - Confederated Tribes of Warm Springs : Annual Report For Fiscal Year, October 2007 September 2008.

    SciTech Connect (OSTI)

    Gerstenberger, Ryan [Confederated Tribes of Warm Springs Reservation

    2009-07-27T23:59:59.000Z

    This progress report describes work performed by the Confederated Tribes of Warm Springs (CTWSRO) portion of the Hood River Production Program Monitoring and Evaluation Project (HRPP) during the 2008 fiscal year. A total of 64,736 hatchery winter steelhead, 12,108 hatchery summer steelhead, and 68,426 hatchery spring Chinook salmon smolts were acclimated and released in the Hood River basin during the spring. The HRPP exceeded program goals for a release of and 50,000 winter steelhead but fell short of the steelhead release goals of 30,000 summer steelhead and 75,000 spring Chinook in 2008. Passive Integrated Transponders (PIT) tags were implanted in 6,652 hatchery winter steelhead, and 1,196 hatchery summer steelhead, to compare migratory attributes and survival rates of hatchery fish released into the Hood River. Water temperatures were recorded at six locations within the Hood River subbasin to monitor for compliance with Oregon Department of Environmental Quality water quality standards. A preseason spring Chinook salmon adult run forecast was generated, which predicted an abundant return adequate to meet escapement goal and brood stock needs. As a result the tribal and sport fisheries were opened. A tribal creel was conducted from May 22 to July 18 during which an estimated 172 spring Chinook were harvested. One hundred sixteen Spring Chinook salmon redds were observed and 72 carcasses were inspected on 19.4 miles of spawning grounds throughout the Hood River Basin during 2008. Annual salvage operations were completed in two irrigation canals resulting in the liberation of 1,641 fish back to the Hood River.

  9. Escapement and Productivity of Spring Chinook and Summer Steelhead in the John Day River Basin, Technical Report 2004-2005.

    SciTech Connect (OSTI)

    Wilson, Wayne

    2007-04-01T23:59:59.000Z

    The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. Spawning ground surveys for spring (stream-type) Chinook salmon were conducted in four main spawning areas (Mainstem, Middle Fork, North Fork, and Granite Creek System) and seven minor spawning areas (South Fork, Camas Creek, Desolation Creek, Trail Creek, Deardorff Creek, Clear Creek, and Big Creek) in the John Day River basin during August and September of 2005. Census surveys included 298.2 river kilometers (88.2 rkm within index, 192.4 rkm additional within census, and 17.6 rkm within random survey areas) of spawning habitat. We observed 902 redds and 701 carcasses including 227 redds in the Mainstem, 178 redds in the Middle Fork, 420 redds in the North Fork, 62 redds in the Granite Creek System, and 15 redds in Desolation Creek. Age composition of carcasses sampled for the entire basin was 1.6% age 3, 91.2% age 4, and 7.1% age 5. The sex ratio was 57.4% female and 42.6% male. Significantly more females than males were observed in the Granite Creek System. During 2005, 82.3% of female carcasses sampled had released all of their eggs. Significantly more pre-spawn mortalities were observed in Granite Creek. Nine (1.3%) of 701 carcasses were of hatchery origin. Of 298 carcasses examined, 4.0% were positive for the presence of lesions. A significantly higher incidence of gill lesions was found in the Granite Creek System when compared to the rest of the basin. Of 114 kidney samples tested, two (1.8%) had clinical BKD levels. Both infected fish were age-4 females in the Middle Fork. All samples tested for IHNV were negative. To estimate spring Chinook and summer steelhead smolt-to-adult survival (SAR) we PIT tagged 5,138 juvenile Chinook and 4,913 steelhead during the spring of 2005. We estimated that 130,144 (95% CL's 97,133-168,409) Chinook emigrated from the upper John Day subbasin past our seining area in the Mainstem John Day River (river kilometers 274-296) between February 4 and June 16, 2005. We also estimated that 32,601 (95% CL's 29,651 and 36,264) Chinook and 47,921 (95% CL's 35,025 and 67,366) steelhead migrated past our Mainstem rotary screw trap at river kilometer (rkm) 326 between October 4, 2004 and July 6, 2005. We estimated that 20,193 (95% CL's 17,699 and 22,983) Chinook and 28,980 (95% CL's 19,914 and 43,705) steelhead migrated past our Middle Fork trap (rkm 24) between October 6, 2004 and June 17, 2005. Seventy three percent of PIT tagged steelhead migrants were age-2 fish, 13.8% were age-3, 12.7% were age-2, and 0.3% were age 4. Spring Chinook SAR for the 2002 brood year was estimated at 2.5% (100 returns of 4,000 PIT tagged smolts). Preliminary steelhead SAR (excluding 2-ocean fish) for the 2004 tagging year was estimated at 1.61% (60 returns of 3,732 PIT-tagged migrants).

  10. Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring

    SciTech Connect (OSTI)

    Slobodkin, A.; Wiegel, J. [Univ. of Georgia, Athens, GA (United States); Reysenbach, A.L. [Rutgers Univ., New Brunswick, NJ (United States)] [and others

    1997-04-01T23:59:59.000Z

    A strain of a thermophilic, anaerobic, dissimilatory, Fe(III)-reducing bacterium, Thermoterrabacterium ferrireducens gen. nov., sp. nov. (type strain JW/AS-Y7{sup T}; DSM 11255), was isolated from hot springs in Yellowstone National Park and New Zealand. The gram-positive-staining cells occurred singly or in pairs as straight to slightly curved rods, 0.3 to 0.4 by 1.6 to 2.7 {mu}m, with rounded ends and exhibited a tumbling motility. Spores were not observed. The temperature range for growth was 50 to 74{degrees}C with an optimum at 65{degrees}C. The pH range for growth at 65{degrees}C was from 5.5 to 7.6, with an optimum at 6.0 to 6.2. The organism coupled the oxidation of glycerol to reduction of amorphous Fe(III) oxide or Fe(III) citrate as an electron acceptor. In the presence as well as in the absence of Fe(III) and in the presence of CO{sub 2}, glycerol was metabolized by incomplete oxidation to acetate as the only organic metabolic product; no H{sub 2} was produced during growth. The organism utilized glycerol, lactate, 1,2-propanediol, glycerate, pyruvate, glucose, fructose, mannose, and yeast extract as substrates. In the presence of Fe(III) the bacterium utilized molecular hydrogen. The organism reduced 9,10-anthraquinone-2,6-disulfonic acid, fumarate (to succinate), and thiosulfate (to elemental sulfur) but did not reduce MnO{sub 2}, nitrate, sulfate, sulfite, or elemental sulfur. The G+C content of the DNA was 41 mol% (as determined by high-performance liquid chromatography). The 16S ribosomal DNA sequence analysis placed the isolated strain as a member of a new genus within the gram-type positive Bacillus-Clostridium subphylum.

  11. RIVER ECOLOGY BIO 568 Dr. Mike Mallin SPRING 2011 office is CMS 1331

    E-Print Network [OSTI]

    Mallin, Michael

    ; stream protection and stream restoration / CFR benthos April 13 Field trip to Wilmington urbanized tidal Introduction, physical aspects of streams and rivers January 19 The primary producers; Stream nutrients January 26 Stream nutrients; Stream and river consumer communities February 2 Consumers; Major concepts

  12. Pilgrim Hot Springs, Alaska

    Broader source: Energy.gov [DOE]

    Residents in rural Alaska may someday have the option of replacing diesel generators with clean renewable geothermal energy. Alaskans face some of the harshest weather conditions in America, and in...

  13. Cryogenic opal-A deposition from Yellowstone hot springs Alan Channing a,, Ian B. Butler b,1

    E-Print Network [OSTI]

    . Unconsolidated cryogenic opal-A sediment accumulates in and below water-ice where it is locked until spring thaw describe cryogenic silica precipitation that produces unconsolidated opal-A sedi- ment within and beneath

  14. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Achond, Stephen; Hockersmith, Eric E.; Sandford, Benjamin P. (National Marine Fisheries Service, Northwest Fisheries Science Center, Seattle, WA)

    2003-07-01T23:59:59.000Z

    This report details the 2002 results from an ongoing project to monitor the migration behavior of wild spring/summer chinook salmon smolts in the Snake River Basin. The report also discusses trends in the cumulative data collected for this project from Oregon and Idaho streams since 1989. The project was initiated after detection data from passive-integrated-transponder tags (PIT tags) had shown distinct differences in migration patterns between wild and hatchery fish for three consecutive years. National Marine Fisheries Service (NMFS) investigators first observed these differences in 1989. The data originated from tagging and interrogation operations begun in 1988 to evaluate smolt transportation for the U.S. Army Corps of Engineers. In 1991, the Bonneville Power Administration began a cooperative effort with NMFS to expand tagging and interrogation of wild fish. Project goals were to characterize the outmigration timing of these fish, to determine whether consistent migration patterns would emerge, and to investigate the influence of environmental factors on the timing and distribution of these migrations. In 1992, the Oregon Department of Fish and Wildlife (ODFW) began an independent program of PIT tagging wild chinook salmon parr in the Grande Ronde and Imnaha River Basins in northeast Oregon. Since then, ODFW has reported all tagging, detection, and timing information on fish from these streams. However, with ODFW concurrence, NMFS will continue to report arrival timing of these fish at Lower Granite Dam.

  15. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Juveniles, 2007-2008 Report of Research.

    SciTech Connect (OSTI)

    Achord, Stephen; Sandford, Benjamin P.; Hockersmith, Eric E. [Northwest Fisheries Science Center

    2009-05-26T23:59:59.000Z

    This report provides results from an ongoing project to monitor the migration behavior and survival of wild juvenile spring/summer Chinook salmon in the Snake River Basin. Data reported is from detections of PIT tagged fish during late summer 2007 through mid-2008. Fish were tagged in summer 2007 by the National Marine Fisheries Service (NMFS) in Idaho and by the Oregon Department of Fish and Wildlife (ODFW) in Oregon. Our analyses include migration behavior and estimated survival of fish at instream PIT-tag monitors and arrival timing and estimated survival to Lower Granite Dam. Principal results from tagging and interrogation during 2007-2008 are listed below: (1) In July and August 2007, we PIT tagged and released 7,390 wild Chinook salmon parr in 12 Idaho streams or sample areas. (2) Overall observed mortality from collection, handling, tagging, and after a 24-hour holding period was 1.4%. (3) Of the 2,524 Chinook salmon parr PIT tagged and released in Valley Creek in summer 2007, 218 (8.6%) were detected at two instream PIT-tag monitoring systems in lower Valley Creek from late summer 2007 to the following spring 2008. Of these, 71.6% were detected in late summer/fall, 11.9% in winter, and 16.5% in spring. Estimated parr-to-smolt survival to Lower Granite Dam was 15.5% for the late summer/fall group, 48.0% for the winter group, and 58.5% for the spring group. Based on detections at downstream dams, the overall efficiency of VC1 (upper) or VC2 (lower) Valley Creek monitors for detecting these fish was 21.1%. Using this VC1 or VC2 efficiency, an estimated 40.8% of all summer-tagged parr survived to move out of Valley Creek, and their estimated survival from that point to Lower Granite Dam was 26.5%. Overall estimated parr-to-smolt survival for all summer-tagged parr from this stream at the dam was 12.1%. Development and improvement of instream PIT-tag monitoring systems continued throughout 2007 and 2008. (4) Testing of PIT-tag antennas in lower Big Creek during 2007-2008 showed these antennas (and anchoring method) are not adequate to withstand high spring flows in this drainage. Future plans involve removing these antennas before high spring flows. (5) At Little Goose Dam in 2008, length and/or weight were taken on 505 recaptured fish from 12 Idaho stream populations. Fish had grown an average of 40.1 mm in length and 10.6 g in weight over an average of 288 d. Their mean condition factor declined from 1.25 at release (parr) to 1.05 at recapture (smolt). (6) Mean release lengths for detected fish were significantly larger than for fish not detected the following spring and summer (P < 0.0001). (7) Fish that migrated through Lower Granite Dam in April and May were significantly larger at release than fish that migrated after May (P < 0.0001) (only 12 fish migrated after May). (8) In 2008, peak detections at Lower Granite Dam of parr tagged during summer 2007 (from the 12 stream populations in Idaho and 4 streams in Oregon) occurred during moderate flows of 87.5 kcfs on 7 May and high flows of 197.3 kcfs on 20 May. The 10th, 50th, and 90th percentile passage occurred on 30 April, 11 May, and 23 May, respectively. (9) In 2007-2008, estimated parr-to-smolt survival to Lower Granite Dam for Idaho and Oregon streams (combined) averaged 19.4% (range 6.2-38.4% depending on stream of origin). In Idaho streams the estimated parr-to-smolt survival averaged 21.0%. This survival was the second highest since 1993 for Idaho streams. Relative parr densities were lower in 2007 (2.4 parr/100 m{sup 2}) than in all previous years since 2000. In 2008, we observed low-to-moderate flows prior to mid-May and relatively cold weather conditions throughout the spring migration season. These conditions moved half of the fish through Lower Granite Dam prior to mid-May; then high flows moved 50 to 90% of the fish through the dam in only 12 days. Clearly, complex interrelationships of several factors drive the annual migrational timing of the stocks.

  16. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Knudsen, Curtis M. (Oncorh Consulting, Olympia, WA); Schroder, Steven L. (Washington Department of Fish and Wildlife, Olympia, WA); Johnston, Mark V. (yakama Nation, Toppenish, WA)

    2005-05-01T23:59:59.000Z

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning and (2) summarize results of research that have broader scientific relevance. This is the fourth in a series of reports that address reproductive ecological research and monitoring of spring chinook populations in the Yakima River basin. This annual report summarizes data collected between April 1, 2004 and March 31, 2005 and includes analyses of historical baseline data, as well. Supplementation success in the Yakima Klickitat Fishery Project's (YKFP) spring chinook (Oncorhynchus tshawytscha) program is defined as increasing natural production and harvest opportunities, while keeping adverse ecological interactions and genetic impacts within acceptable bounds (Busack et al. 1997). Within this context demographics, phenotypic traits, and reproductive ecology have significance because they directly affect natural productivity. In addition, significant changes in locally adapted traits due to hatchery influence, i.e. domestication, would likely be maladaptive resulting in reduced population productivity and fitness (Taylor 1991; Hard 1995). Thus, there is a need to study demographic and phenotypic traits in the YKFP in order to understand hatchery and wild population productivity, reproductive ecology, and the effects of domestication (Busack et al. 1997). Tracking trends in these traits over time is also a critical aspect of domestication monitoring (Busack et al. 2004) to determine whether trait changes have a genetic component and, if so, are they within acceptable limits. The first chapter of this report compares first generation hatchery and wild upper Yakima River spring chinook returns over a suite of life-history, phenotypic and demographic traits. The second chapter deals specifically with identification of putative populations of wild spring chinook in the Yakima River basin based on differences in quantitative and genetic traits. The third chapter is a progress report on gametic traits and progeny produced by upper Yakima River wild and hatchery origin fish spawned in 2004 including some comparisons with Little Naches River fish. In the fourth chapter, we present a progress report on comparisons naturally spawning wild and hatchery fish in the upper Yakima River and in an experimental spawning channel at CESRF in 2004. The chapters in this report are in various stages of development. Chapters One and Two will be submitted for peer reviewed publication. Chapters Three and Four should be considered preliminary and additional fieldwork and/or analysis are in progress related to these topics. Readers are cautioned that any preliminary conclusions are subject to future revision as more data and analytical results become available.

  17. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Subbasin, Annual Report 2008 : Project Period 1 February 2008 to 31 January 2009.

    SciTech Connect (OSTI)

    Yanke, Jeffrey A.; Alfonse, Brian M.; Bratcher, Kyle W. [Oregon Department of Fish and Wildlife

    2009-07-31T23:59:59.000Z

    This study was designed to document and describe the status and life history strategies of spring Chinook salmon and summer steelhead in the Grande Ronde River Subbasin. We determined migration timing, abundance, and life-stage survival rates for juvenile spring Chinook salmon Oncorhynchus tshawytscha and summer steelhead O. mykiss in four streams during migratory year 2008 from 1 July 2007 through 30 June 2008. As observed in previous years of this study, spring Chinook salmon and steelhead exhibited fall and spring movements out of natal rearing areas, but did not begin their smolt migration through the Snake and lower Columbia River hydrosystem until spring. In this report we provide estimates of migrant abundance and migration timing for each study stream, and their survival and timing to Lower Granite Dam. We also document aquatic habitat conditions using water temperature and stream flow in four study streams in the subbasin.

  18. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 3 of 7, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Knudsen, Curtis (Oncorh Consulting, Olympia, WA)

    2004-05-01T23:59:59.000Z

    This is the third in a series of annual reports that address reproductive ecological research and comparisons of hatchery and wild origin spring chinook in the Yakima River basin. Data have been collected prior to supplementation to characterize the baseline reproductive ecology, demographics and phenotypic traits of the unsupplemented upper Yakima population, however this report focuses on data collected on hatchery and wild spring chinook returning in 2003; the third year of hatchery adult returns. This report is organized into three chapters, with a general introduction preceding the first chapter and summarizes data collected between April 1, 2003 and March 31, 2004 in the Yakima basin. Summaries of each of the chapters in this report are included below. A major component of determining supplementation success in the Yakima Klickitat Fishery Project's spring chinook (Oncorhynchus tshawytscha) program is an increase in natural production. Within this context, comparing upper Yakima River hatchery and wild origin fish across traits such as sex ratio, age composition, size-at-age, fecundity, run timing and gamete quality is important because these traits directly affect population productivity and individual fish fitness which determine a population's productivity.

  19. Raft River Rural Electric Coop. Vigilante Electric Coop. Northern

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Farmers Electric Riverside Electric Minidoka Soda Springs Idaho Falls Lower Valley Energy Lost River Electric Coop. Fall River Rural Electric Coop. Salmon River Electric...

  20. Escapement and Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2005-2006 Annual Technical Report.

    SciTech Connect (OSTI)

    Schultz, Terra Lang; Wilson, Wayne H.; Ruzycki, James R. [Oregon Department of Fish and Wildlife

    2009-04-10T23:59:59.000Z

    The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations, however, remain depressed relative to historic levels. Between the completion of the life history and natural escapement study in 1984 and the start of this project in 1998, spring Chinook spawning surveys did not provide adequate information to assess age structure, progeny-to-parent production values, smolt-to-adult survival (SAR), or natural spawning escapement. Further, only very limited information is available for steelhead life history, escapement, and productivity measures in the John Day subbasin. Numerous habitat protection and rehabilitation projects to improve salmonid freshwater production and survival have also been implemented in the basin and are in need of effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed background information for developing context for project-specific effectiveness monitoring efforts. To meet the data needs as index stocks, to assess the long-term effectiveness of habitat projects, and to differentiate freshwater and ocean survival, sufficient annual estimates of spawner escapement, age structure, SAR, egg-to-smolt survival, smolt-per-redd ratio, and freshwater habitat use are essential. We have begun to meet this need through spawning ground surveys initiated for spring Chinook salmon in 1998 and smolt PIT-tagging efforts initiated in 1999. Additional sampling and analyses to meet these goals include an estimate of smolt abundance and SAR rates, and an updated measure of the freshwater distribution of critical life stages. Because Columbia Basin managers have identified the John Day subbasin spring Chinook population as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin (Schaller et al. 1999) we continue our ongoing studies. This project is high priority based on the high level of emphasis the NWPPC Fish and Wildlife Program, Subbasin Summaries, NMFS, and the Oregon Plan for Salmon and Watersheds have placed on monitoring and evaluation to provide the real-time data to guide restoration and adaptive management in the region. By implementing the proposed program we have been able to address many of the goals for population status monitoring, such as defining areas currently used by spring Chinook for holding and spawning habitats and determining range expansion or contraction of summer rearing and spawning populations. The BiOp describes these goals as defining population growth rates (adult monitoring), detecting changes in those growth rates or relative abundance in a reasonable time (adult/juvenile monitoring), estimating juvenile abundance and survival rates (juvenile/smolt monitoring), and identifying stage-specific survival (adult-to-smolt, smolt-to-adult).

  1. Idaho_LavaHotSprings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSLtheIndustryMitch204 Latitude:Barbara Lava

  2. Manchester Spring Chinook Broodstock Project, 1998-1999 Annual Report.

    SciTech Connect (OSTI)

    McAuley, W.Carlin; Wastel, Michael R.; Flagg, Thomas A. (Northwest and Alaska Fisheries Science Center, Coastal Zone and Estuarine Studies Division, Seattle, WA)

    2000-02-01T23:59:59.000Z

    This yearly report concerned facilities upgrade and endangered Snake River spring/summer chinook salmon captive broodstock rearing.

  3. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2008.

    SciTech Connect (OSTI)

    Faulkner, James R.; Smith, Steven G.; Muir, William D. [Northwest Fisheries Science Center

    2009-06-23T23:59:59.000Z

    In 2008, the National Marine Fisheries Service completed the sixteenth year of a study to estimate survival and travel time of juvenile salmonids Oncorhynchus spp. passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder (PIT) tags. We PIT tagged and released a total of 18,565 hatchery steelhead O. mykiss, 15,991 wild steelhead, and 9,714 wild yearling Chinook salmon O. tshawytscha at Lower Granite Dam in the Snake River. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from the hydropower system and at sites within the hydropower system in both the Snake and Columbia Rivers. These included 122,061 yearling Chinook salmon tagged at Lower Granite Dam for evaluation of latent mortality related to passage through Snake River dams. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, Ice Harbor, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the single-release model). Primary research objectives in 2008 were to: (1) estimate reach survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling Chinook salmon and steelhead, (2) evaluate relationships between survival estimates and migration conditions, and (3) evaluate the survival estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2008 for PIT-tagged yearling Chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Additional details on the methodology and statistical models used are provided in previous reports cited here. Survival and detection probabilities were estimated precisely for most of the 2008 yearling Chinook salmon and steelhead migrations. Hatchery and wild fish were combined in some of the analyses. For yearling Chinook salmon, overall percentages for combined release groups used in survival analyses in the Snake River were 80% hatchery-reared and 20% wild. For steelhead, the overall percentages were 65% hatchery-reared and 35% wild. Estimated survival from the tailrace of Lower Granite Dam to the tailrace of Little Goose Dam averaged 0.939 for yearling Chinook salmon and 0.935 for steelhead.

  4. Monitoring the Reproductive Success of Naturally Spawning Hatchery and Natural Spring Chinook Salmon in the Wenatchee River, 2008-2009 Progress Report.

    SciTech Connect (OSTI)

    Ford, Michael J.; Williamson, Kevin S. [Northwest Fisheries Science Center

    2009-05-28T23:59:59.000Z

    We investigated differences in the statistical power to assign parentage between an artificially propagated and wild salmon population. The propagated fish were derived from the wild population, and are used to supplement its abundance. Levels of genetic variation were similar between the propagated and wild groups at 11 microsatellite loci, and exclusion probabilities were >0.999999 for both groups. The ability to unambiguously identify a pair of parents for each sampled progeny was much lower than expected, however. Simulations demonstrated that the proportion of cases the most likely pair of parents were the true parents was lower for propagated parents than for wild parents. There was a clear relationship between parentage assignment ability and the degree of linkage disequilibrium, the estimated effective number of breeders that produced the parents, and the size of the largest family within the potential parents. If a stringent threshold for parentage assignment was used, estimates of relative fitness were biased downward for the propagated fish. The bias appeared to be largely eliminated by either fractionally assigning progeny among parents in proportion to their likelihood of parentage, or by assigning progeny to the most likely set of parents without using a statistical threshold. We used a DNA-based parentage analysis to measure the relative reproductive success of hatchery- and natural-origin spring Chinook salmon in the natural environment. Both male and female hatchery-origin fish produced far fewer juvenile progeny per parent when spawning naturally than did natural origin fish. Differences in age structure, spawning location, weight and run timing were responsible for some of the difference in fitness. Male size and age had a large influence on fitness, with larger and older males producing more offspring than smaller or younger individuals. Female size had a significant effect on fitness, but the effect was much smaller than the effect of size on male fitness. For both sexes, run time had a smaller but still significant effect on fitness, with earlier returning fish favored. Spawning location within the river had a significant effect on fitness for both males and females, and for females explained most of the reduced fitness observed for hatchery fish in this population. While differences have been reported in the relative reproductive success of hatchery and naturally produced salmonids Oncorhynchus spp., factors explaining the differences are often confounded. We examined the spawning site habitat and redd structure variables of hatchery and naturally produced spring Chinook salmon O. tshawytscha of known size that spawned in two tributaries of the Wenatchee River. We controlled for variability in spawning habitat by limiting our analysis to redds found within four selected reaches. No difference in the instantaneous spawner density or location of the redd in the stream channel was detected between reaches. Within each reach, no difference in the fork length or weight of hatchery and naturally produced fish was detected. While most variables differed between reaches, we found no difference in redd characteristics within a reach between hatchery and naturally produced females. Correlation analysis of fish size and redd characteristics found several weak but significant relationships suggesting larger fish contract larger redds in deeper water. Spawner density was inversely related to several redd structure variables suggesting redd size may decrease as spawner density increases. Results should be considered preliminary until samples size and statistical power goals are reached in future years. Trends in relative reproductive success of hatchery and naturally produced spring Chinook salmon Oncorhynchus tshawytscha in the Wenatchee Basins suggest females that spawn in the upper reaches of the tributaries produced a great number of offspring compared to females that spawn in the lower reaches of the tributaries. To better understand this trend, redd microhabitat data was collected from spring Chinook sa

  5. Why Springs Are Valuable Natural springs are important aquatic resources.

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    source of clean, high-quality groundwater that flows at a relatively constant rate and temperature hot weather and droughts. Spring streams and riparian lands provide critical water, food, refuge. Because springs are dependable, they are an increasingly valuable supply of water for people and wildlife

  6. Vertical Electrical Sounding Configurations At Mt Princeton Hot...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Vertical Electrical Sounding Configurations At Mt Princeton Hot Springs Geothermal Area (Zohdy, Et Al.,...

  7. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Smith, Steven G.; Muir, William D.; Marsh, Douglas M. (National Marine Fisheries Service, Northwest Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2005-10-01T23:59:59.000Z

    In 2004, the National Marine Fisheries Service and the University of Washington completed the twelfth year of a study to estimate survival and travel time of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder tags (PIT tags). We PIT tagged and released a total of 19,621 hatchery steelhead, 8,128 wild steelhead, and 9,227 wild yearling Chinook salmon at Lower Granite Dam. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from the hydropower system and sites within the hydropower system. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the single-release model). Primary research objectives in 2004 were to (1) estimate reach survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling Chinook salmon O. tshawytscha and steelhead O. mykiss; (2) evaluate relationships between survival estimates and migration conditions; and (3) evaluate the survival-estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2004 for PIT-tagged yearling Chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Results are reported primarily in the form of tables and figures; details on methodology and statistical models used are provided in previous reports cited here. Survival and detection probabilities were estimated precisely for most of the 2004 yearling Chinook salmon and steelhead migrations. Hatchery and wild fish were combined in some of the analyses. Overall, the percentages for combined release groups used in survival analyses were 68% hatchery-reared yearling Chinook salmon and 32% wild. For steelhead, the overall percentages were 73% hatchery-reared and 27% wild. Estimated survival from the tailrace of Lower Granite Dam to the tailrace of Little Goose Dam averaged 0.923 for yearling Chinook salmon and 0.860 for steelhead. Respective average survival estimates for yearling Chinook salmon and steelhead were 0.875 and 0.820 from Little Goose Dam tailrace to Lower Monumental Dam tailrace; 0.818 and 0.519 from Lower Monumental Dam tailrace to McNary Dam tailrace (including passage through Ice Harbor Dam); and 0.809 and 0.465 from McNary Dam tailrace to John Day Dam tailrace. Survival for yearling Chinook salmon from John Day Dam tailrace to Bonneville Dam tailrace (including passage through The Dalles Dam) was 0.735. We were unable to estimate survival through this reach for steelhead during 2004 because too few fish were detected at Bonneville Dam due to operation of the new corner collector at the second powerhouse. Combining average estimates from the Snake River smolt trap to Lower Granite Dam, from Lower Granite Dam to McNary Dam, and from McNary Dam to Bonneville Dam, estimated annual average survival through the entire hydropower system from the head of Lower Granite reservoir to the tailrace of Bonneville Dam (eight projects) was 0.353 (s.e. 0.045) for Snake River yearling Chinook salmon. We could not empirically estimate survival through the entire system for steelhead in 2004 because of low detection rates for this species at Bonneville Dam. For yearling spring Chinook salmon released in the Upper Columbia River, estimated survival from point of release to McNary Dam tailrace was 0.484 (s.e. 0.005) for fish released from Leavenworth Hatchery, 0.748 (s.e. 0.015) for fish released from Entiat Hatchery, 0.738 (s.e. 0.036) for fish released from Winthrop Hatchery, and 0.702 (s.e. 0.048) and 0.747 (s.e.0.047) for those from Methow Hatchery, Chewuch Pond and

  8. Raft River Rural Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aREC SolarRadium Hot SpringsOpenRaft River

  9. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook and Juvenile-to-Adult PIT-tag Retention; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001 Annual Report.

    SciTech Connect (OSTI)

    Knudsen, Curtis M. (Washington Department of Fish and Wildlife, Olympia, WA)

    2002-11-01T23:59:59.000Z

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the first in an anticipated series of reports that address reproductive ecological research and monitoring of spring chinook in the Yakima River basin. In addition to within-year comparisons, between-year comparisons will be made to determine if traits of the wild Naches basin control population, the naturally spawning population in the upper Yakima River and the hatchery control population are diverging over time. This annual report summarizes data collected between April 1, 2001 and March 31, 2002. In the future, these data will be compared to previous years to identify general trends and make preliminary comparisons.

  10. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2005-2006 Annual Report.

    SciTech Connect (OSTI)

    Smith, Steven G.; Muir, William D.; Marsh, Douglas M. (National Marine Fisheries Service, Northwest Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2006-05-01T23:59:59.000Z

    In 2005, the National Marine Fisheries Service and the University of Washington completed the thirteenth year of a study to estimate survival and travel time of juvenile salmonids Oncorhynchus spp. passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder tags (PIT tags). We PIT tagged and released a total of 18,439 hatchery steelhead, 5,315 wild steelhead, and 6,964 wild yearling Chinook salmon at Lower Granite Dam in the Snake River. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from the hydropower system and at sites within the hydropower system in both the Snake and Columbia Rivers. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, Ice Harbor, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the ''single-release model''). Primary research objectives in 2005 were: (1) Estimate reach survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling Chinook salmon O. tshawytscha and steelhead O. mykiss. (2) Evaluate relationships between survival estimates and migration conditions. (3) Evaluate the survival estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2005 for PIT-tagged yearling Chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Additional details on the methodology and statistical models used are provided in previous reports cited here.

  11. Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs...

    Open Energy Info (EERE)

    the trends of concealed geologic structures. Ion chromatography, gas chromatography, atomic absorption spectrometry, and inductively coupled plasma-mass spectrometry have been...

  12. Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRooseveltVI Solaris a city in Utah County, Utah. It

  13. Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs, And Desert

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCell EnergyGlass Buttes Area ExplorationPeak

  14. Pilgrim Hot Springs, Alaska | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    new and old data sets to develop conceptual model. Confirm this model through drilling two confirmation slim holes. validationholdmannpilgrimhotsprings.pdf More...

  15. Paleomagnetic Measurements At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  16. Chena Hot Springs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information onChemithon Enterprises Inc JumpEnergy Information

  17. Hot Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII Wind Farm FacilityPot

  18. Hot Pot Field Observations

    SciTech Connect (OSTI)

    Lane, Michael

    2013-06-28T23:59:59.000Z

    Map of field observations including depressions, springs, evidence of former springs, travertine terraces and vegetation patterns. Map also contains interpretation of possible spring alignments.

  19. Hot Pot Field Observations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Map of field observations including depressions, springs, evidence of former springs, travertine terraces and vegetation patterns. Map also contains interpretation of possible spring alignments.

  20. Compound and Elemental Analysis At Belknap-Foley-Bigelow Hot...

    Open Energy Info (EERE)

    Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1)...

  1. Exploration model for possible geothermal reservoir, Coso Hot...

    Open Energy Info (EERE)

    Abstract The purpose of this study was to test the hypothesis that a steam-filled fracture geothermal reservoir exists at Coso Hot Springs KGRA, as proposed by Combs and...

  2. SPRING AND SUMMER MOVEMENTS OF SUBADULT STRIPED BASS,

    E-Print Network [OSTI]

    fish lifts in relation to river temperature during 1979-86. Study Area Radio-tagged striped bass wereSPRING AND SUMMER MOVEMENTS OF SUBADULT STRIPED BASS, MORONE SAXATIUS, IN THE CONNECTICUT RIVER! The Connecticut River has no known spawning population of striped bass, Morone saxatilis, but there is an annual

  3. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Zabel, Richard; Williams, John G.; Smith, Steven G. (Northwest and Alaska Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2002-06-01T23:59:59.000Z

    In 2001, the National Marine Fisheries Service and the University of Washington completed the ninth year of a study to estimate survival and travel time of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from passive integrated transponder (PIT)-tagged fish. We PIT tagged and released at Lower Granite Dam a total of 17,028 hatchery and 3,550 wild steelhead. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream of the hydropower system and sites within the hydropower system. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using the Single-Release Model. Primary research objectives in 2001 were to: (1) estimate reach and project survival and travel time in the Snake and Columbia Rivers throughout the yearling chinook salmon and steelhead migrations; (2) evaluate relationships between survival estimates and migration conditions; and (3) evaluate the survival-estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2001 for PIT-tagged yearling chinook salmon and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Results are reported primarily in the form of tables and figures with a minimum of text. More details on methodology and statistical models used are provided in previous reports cited in the text. Results for summer-migrating chinook salmon will be reported separately.

  4. E-Print Network 3.0 - alkaline thermal spring Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biotechnology 2 Geothermal fluxes of alkalinity in the Narayani river system of central Nepal Summary: estimate that the springs provide 25 (15)% of the silicate-derived...

  5. Hot Canyon

    ScienceCinema (OSTI)

    None

    2013-03-01T23:59:59.000Z

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  6. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    and Janik, 1992). Hot spring gas samples were collected by submerging a 20-cm-diameter plastic funnel into the pool over the bubble stream. Fumarole gas samples were collected by...

  7. Compound and Elemental Analysis At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    and Janik, 1992). Hot spring gas samples were collected by submerging a 20-cm-diameter plastic funnel into the pool over the bubble stream. Fumarole gas samples were collected by...

  8. Gas Sampling At Valles Caldera - Sulphur Springs Geothermal Area...

    Open Energy Info (EERE)

    and Janik, 1992). Hot spring gas samples were collected by submerging a 20-cm-diameter plastic funnel into the pool over the bubble stream. Fumarole gas samples were collected by...

  9. Evaluation of Delisting Criteria and Rebuilding Schedules for Snake River Spring/Summer Chinook, Fall Chinook and Sockeye Salmon : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 10 of 11.

    SciTech Connect (OSTI)

    Cramer, Steven P.; Neeley, Doug

    1993-06-01T23:59:59.000Z

    We develop a framework for distinguishing healthy and threatened populations, and we analyze specific criteria by which these terms can be measured for threatened populations of salmon in the Snake River. We review reports and analyze existing data on listed populations of salmon in the Snake River to establish a framework for two stages of the recovery process: (1) defining de-listing criteria, and (2) estimating the percentage increase in survival that will be necessary for recovery of the population within specified time frames, given the de-listing criteria that must be achieved. We develop and apply a simplified population model to estimate the percentage improvement in survival that will be necessary to achieve different rates of recovery. We considered five main concepts identifying de-listing criteria: (1) minimum population size, (2) rates of population change, (3) number of population subunits, (4) survival rates, and (5) driving variables. In considering minimum population size, we conclude that high variation in survival rates poses a substantially greater probability of causing extinction than does loss of genetic variation. Distinct population subunits exist and affect both the genetic variability of the population and the dynamics of population decline and growth. We distinguish between two types of population subunits, (1) genetic and (2) geographic, and we give examples of their effects on population recovery.

  10. Comparing the Reproductive Success of Yakima River Hatchery- and Wild-Origin Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2005-2006 Annual Report.

    SciTech Connect (OSTI)

    Schroder, S.L.; Pearsons, T.N. (Washington Department of Fish and Wildlife, Olympia, WA); Knudsen, C.M. (Oncorh Consulting, Olympia, WA)

    2006-05-01T23:59:59.000Z

    Reproductive success in wild- and first generation hatchery-origin spring Chinook males was examined by allowing the fish to compete for spawning opportunities in two sections of an observation stream. Behavioral observations were used to characterize the frequency of aggression and courting activities. Microsatellite DNA from each male and fry collected from the observation stream were used in pedigree analyses to estimate reproductive success. The coefficient of variation in male reproductive success equaled 116 and 86% in the two populations. No differences were detected in reproductive success due to hatchery or wild origin. Nor were any behavioral differences found between hatchery and wild males. Although statistical power was low due to intrinsic variation a great deal of overlap existed in the reproductive success values of hatchery and wild males. Significant disparities existed among the males on their ability to produce offspring. Males achieving high reproductive success mated with numerous females, were socially dominant, aggressive, and tended to stay in localized areas, courting and spawning with females that were adjacent to one another.

  11. The effects of overwinter flowson the spring condition of rainbow and brown trout size classes in the Green River downstream of Flaming Gorge Dam, Utah.

    SciTech Connect (OSTI)

    Magnusson, A. K.; LaGory, K. E.; Hayse, J. W.; Environmental Science Division

    2010-06-25T23:59:59.000Z

    Flaming Gorge Dam, a hydroelectric facility operated by the Bureau of Reclamation (Reclamation), is located on the Green River in Daggett County, northeastern Utah. Until recently, and since the early 1990s, single daily peak releases or steady flows have been the operational pattern of the dam during the winter period. However, releases from Flaming Gorge Reservoir followed a double-peak pattern (two daily flow peaks) during the winters of 2006-2007 and 2008-2009. Because there is little recent long-term history of double-peaking at Flaming Gorge Dam, the potential effects of double-peaking operations on trout body condition in the dam's tailwater are not known. A study plan was developed that identified research activities to evaluate potential effects from winter double-peaking operations (Hayse et al. 2009). Along with other tasks, the study plan identified the need to conduct a statistical analysis of historical trout condition and macroinvertebrate abundance to evaluate the potential effects of hydropower operations. The results from analyses based on the combined size classes of trout (85-630 mm) were presented in Magnusson et al. (2008). The results of this earlier analysis suggested possible relationships between trout condition and flow, but concern that some of the relationships resulted from size-based effects (e.g., apparent changes in condition may have been related to concomitant changes in size distribution, because small trout may have responded differently to flow than large trout) prompted additional analysis of within-size class relationships. This report presents the results of analyses of three different size classes of trout (small: 200-299 mm, medium: 300-399 mm, and large: {ge}400 mm body length). We analyzed historical data to (1) describe temporal patterns and relationships among flows, benthic macroinvertebrate abundance, and condition of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in the tailwaters of Flaming Gorge Dam, and to (2) evaluate the relative importance of the effects of flow (i.e., flow volumes and flow variability), trout abundance (catch per unit effort [CPUE]), and benthic macroinvertebrate abundance on trout condition for different size classes of trout.

  12. Hot dry rock venture risks investigation:

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

  13. River Thames River Thames

    E-Print Network [OSTI]

    Delmotte, Nausicaa

    West Kent House Penge East Lower Sydenham Forest Hill Honor Oak Park Crofton Park Nunhead New CrossC BD A River Thames River Thames Waterloo & City Southwark Northwood Northwood Hills North Harrow Harrow- on-the-Hill Northwick Park Harrow & Wealdstone Headstone Lane Pinner Kenton Stanmore Canons Park

  14. Low-altitude aeromagnetic survey of a portion of the Coso Hot...

    Open Energy Info (EERE)

    Inyo County, California Abstract A detailed low-altitude aeromagnetic survey of 576 line-mi (927 line-km) was completed over a portion of the Coso Hot Springs KGRA in September...

  15. U.S. Geothermal Announces More Test Results from the Neal Hot...

    Open Energy Info (EERE)

    Announces More Test Results from the Neal Hot Springs Production Well and a Key Addition to Senior Staff Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  16. Spring structure for a thermionic converter emitter support arrangement

    DOE Patents [OSTI]

    Allen, D.T.

    1992-03-17T23:59:59.000Z

    A support is provided for use in a thermionic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end is supported by a spring structure that includes a pair of Belleville springs, and the spring structure is supported by a support structure fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element at the front end, a larger metal main support at the rear end that is attached to the housing, and with a ceramic layer between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer captured between the Belleville springs. 7 figs.

  17. Spring structure for a thermionic converter emitter support arrangement

    SciTech Connect (OSTI)

    Allen, Daniel T. (La Jolla, CA)

    1992-01-01T23:59:59.000Z

    A support is provided for use in a thermionic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housing, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

  18. Partitioning of bacterial communities between travertine depositional facies at Mammoth Hot

    E-Print Network [OSTI]

    Fouke, Bruce W.

    flow of spring water from the high-temperature to low-temperature facies. These results suggest of depositional facies models that correlate (1) the depth, velocity, temperature, and chemistry of waterPartitioning of bacterial communities between travertine depositional facies at Mammoth Hot Springs

  19. Guiding Tours of the LA River and Promoting Sustainability

    E-Print Network [OSTI]

    Price, Jenny

    2011-01-01T23:59:59.000Z

    River and Promoting Sustainability T his spring, Im pleaseds new M.A. in Urban Sustainability program, and excitedlyCSW research scholars Sustainability, on the central role

  20. Thermal Springs of Arizona

    SciTech Connect (OSTI)

    Witcher, J.C.; Ruscetta, C.A.; Foley, D. (eds.)

    1981-05-01T23:59:59.000Z

    An updated list of Arizona springs judged to be carrying anomalous heat. Possible heat sources are briefly outlined. (MHR)

  1. ART & LITERARY SPRING 2012

    E-Print Network [OSTI]

    Kenny, Paraic

    ART & LITERARY MAGAZINE VOL. --10 SPRING 2012 #12;2 AD LIBITUM SPRING 2012 3 Ad Libitum Staff Cover LIBITUM SPRING 2012 Today I was at the vending machine buying a soda to have with my lunch. I was put machine. The candies, chips and cookies were care- lessly stuffed on to a metal coil; with each dollar

  2. Joshua Smith Spring 2006

    E-Print Network [OSTI]

    Rosemond, Amy Daum

    Stormwater Utilities in Georgia Joshua Smith Spring 2006 #12;The UGA Land Use Clinic provides in Georgia Author: Joshua Smith Editor: Jamie Baker Roskie University of Georgia Land Use Clinic Spring 2006....................................................................................................10 #12;#12;1Stormwater Utilities in Georgia Stormwater Utilities in Georgia Joshua Smith Spring 2006

  3. How We Got Started Sheyenne River

    E-Print Network [OSTI]

    for Riparian Ecosystems · Field Tours · Rancher Meetings · Educational Materials #12;Project Collaborators Source Program #12;· The goals of this project is to improve and strengthen the ability of resource Project #12;· 6 New Riparian ESDs · MLRA 54 · Knife River · Spring Creek · MLRA 55B · Baldhill Creek

  4. EIS-0500: Crystal Springs Hatchery Program; Bingham, Custer, and Lemhi Counties, Idaho

    Broader source: Energy.gov [DOE]

    DOEs Bonneville Power Administration is preparing an EIS that will assess potential environmental impacts of funding a proposal of the Shoshone-Bannock Tribes of the Fort Hall Reservation of Idaho to construct and operate a hatchery for spring/summer Chinook salmon in the Salmon River subbasin and Yellowstone cutthroat trout in the Upper Snake River subbasin on Fort Hall Reservation.

  5. Geographic Information System (GIS) and Geospatial Applications Spring 2012

    E-Print Network [OSTI]

    Hung, I-Kuai

    1 GIS 553 Geographic Information System (GIS) and Geospatial Applications Spring 2012 Final project Analysis of Golf Shot Locations 3 Mark Busing Geospatial and Geostatistical Analysis of Colorado River Data Overturf Estimating Wetland Acreage with USGS DEMs and Auxiliary Public Sources #12;2 Geospatial

  6. Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry

    SciTech Connect (OSTI)

    Ghanashyam Neupane; Earl D. Mattson; Travis L. McLing; Carl D. Palmer; Robert W. Smith; Thomas R. Wood

    2014-02-01T23:59:59.000Z

    The U.S. Geological survey has estimated that there are up to 4,900 MWe of undiscovered geothermal resources and 92,000 MWe of enhanced geothermal potential within the state of Idaho. Of particular interest are the resources of the Eastern Snake River Plain (ESRP) which was formed by volcanic activity associated with the relative movement of the Yellowstone Hot Spot across the state of Idaho. This region is characterized by a high geothermal gradient and thermal springs occurring along the margins of the ESRP. Masking much of the deep thermal potential of the ESRP is a regionally extensive and productive cold-water aquifer. We have undertaken a study to infer the temperature of the geothermal system hidden beneath the cold-water aquifer of the ESRP. Our approach is to estimate reservoir temperatures from measured water compositions using an inverse modeling technique (RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. In the initial stages of this study, we apply the RTEst model to water compositions measured from a limited number of wells and thermal springs to estimate the regionally extensive geothermal system in the ESRP.

  7. Ground Gravity Survey At Neal Hot Springs Geothermal Area (Colwell...

    Open Energy Info (EERE)

    Technique Ground Gravity Survey Activity Date 2011 - 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Gravity surveys were conducted to gain a better...

  8. Aerial Photography At Roosevelt Hot Springs Geothermal Area ...

    Open Energy Info (EERE)

    Exploration Technique Aerial Photography Activity Date 1975 - 1975 Usefulness useful DOE-funding Unknown Exploration Basis Petersen, C.A. Masters Thesis at the University of Utah...

  9. Petrography Analysis At Roosevelt Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    Technique Petrography Analysis Activity Date 1975 - 1975 Usefulness useful DOE-funding Unknown Exploration Basis Petersen, C.A. Masters Thesis at the University of Utah...

  10. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    Technique Geothermal Literature Review Activity Date 1975 - 1975 Usefulness useful DOE-funding Unknown Exploration Basis Petersen, C.A. Masters Thesis at the University of Utah...

  11. Ground Magnetics At Neal Hot Springs Geothermal Area (Colwell...

    Open Energy Info (EERE)

    Technique Ground Magnetics Activity Date 2011 - 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Magnetic surveys were conducted to gain a better...

  12. An Overview of Environmental Issues: Roosevelt Hot Springs KGRA...

    Open Energy Info (EERE)

    creating unacceptable noise impacts. Author Philip Leitner Published Journal DOE Science and Technical Information, 1978 DOI 10.21726217844 Online Internet link for An...

  13. Trace Element Geochemical Zoning in the Roosevelt Hot Springs...

    Open Energy Info (EERE)

    in the development of distinctive trace element signatures. Geochemical analysis of soil sample, shallow temperature gradient drill hole cuttings and deep drill hole cutting...

  14. Lost Trail Hot Springs Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    poi":true,"imageoverlays":,"markercluster":false,"searchmarkers":"","locations": The following error has been detected in your syntax: * Display map Temperature No Data Listed...

  15. Ringboldt Rapids Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    poi":true,"imageoverlays":,"markercluster":false,"searchmarkers":"","locations": The following error has been detected in your syntax: * Display map Temperature No Data Listed...

  16. Roman Spa Hot Springs Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    poi":true,"imageoverlays":,"markercluster":false,"searchmarkers":"","locations": The following error has been detected in your syntax: * Display map Temperature No Data Listed...

  17. Dr. Wilkinson's Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    poi":true,"imageoverlays":,"markercluster":false,"searchmarkers":"","locations": The following error has been detected in your syntax: * Display map Temperature No Data Listed...

  18. Walley's Hot Springs Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    poi":true,"imageoverlays":,"markercluster":false,"searchmarkers":"","locations": The following error has been detected in your syntax: * Display map Temperature 71.0 C 160.0...

  19. Geologic Setting of the Central Alaskan Hot Springs Belt: Implications...

    Open Energy Info (EERE)

    from magmatic ordeep crustal sources, which have higher reservoir temperatures and larger spatial extent).In this context, the individual capacity of several CAHSB resources close...

  20. DC Resistivity Survey (Wenner Array) At Mt Princeton Hot Springs...

    Open Energy Info (EERE)

    Determination of groundwater flux patterns Notes Researchers measured DC resistivity and produced 12 resistivity profiles, each approximately 1.3 km in length. Equilibrium...

  1. Reflection Survey At Neal Hot Springs Geothermal Area (Colwell...

    Open Energy Info (EERE)

    areas. This study was conducted by a geophysics field camp from the Colorado School of Mines. Notes Two seismic surveys were done, the first was a low frequency survey...

  2. Compound and Elemental Analysis At Hot Springs Ranch Area (Szybinski...

    Open Energy Info (EERE)

    distinct waters in this group of samples (Tom Powell of Thermochem Inc., personal communication, 2005). Powell found that MDH, TRS-1 and TRS-6 are the most prospective waters and...

  3. Paleomagnetic Measurements At Neal Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    pipe drill. Core samples were oriented by azimuth and hade using a magnetic compass and sun dial, then marked before being removed from the host rock. The core samples were then...

  4. The Chena Hot Springs 400kw Geothermal Power Plant: Experience...

    Open Energy Info (EERE)

    PureCycle 200product released by UTC in 2004 and designed to operate offindustrial waste heat applications. The PureCycle 200 usescomponents and hardware from the Carrier...

  5. Direct-Current Resistivity Survey At Mt Princeton Hot Springs...

    Open Energy Info (EERE)

    Survey Activity Date 2010 Usefulness useful DOE-funding Unknown Notes Used to map fracture and fluid flow patterns. References K. Richards, A. Revil, A. Jardani, F. Henderson,...

  6. Ch. IV, A hydrogeochemical comparison of the Waunita Hot Springs...

    Open Energy Info (EERE)

    Published Colorado Geological Survey in Cooperation with the U.S. Department of Energy, 1981 Report Number Special Publication 16 DOI Not Provided Check for DOI...

  7. Understanding The Chena Hot Springs, Alaska, Geothermal System...

    Open Energy Info (EERE)

    varying pressure versus depth characteristics and can be used alone in cases where staged drilling is not practical. The extensive exploration activities helped define optimal...

  8. Geothermometry At Mt Princeton Hot Springs Geothermal Area (Pearl...

    Open Energy Info (EERE)

    Basis Temperature estimation of valley-fill hydrothermal reservoir Notes Si, Na-K, & Na-K-Ca geothermometry estimates yielded a reservoir temperature range of 97 to 188...

  9. Self Potential At Roosevelt Hot Springs Geothermal Area (Ward...

    Open Energy Info (EERE)

    Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  10. Magnetotellurics At Roosevelt Hot Springs Geothermal Area (Ward...

    Open Energy Info (EERE)

    MT data. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  11. Refraction Survey At Roosevelt Hot Springs Geothermal Area (Ward...

    Open Energy Info (EERE)

    Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  12. DC Resistivity Survey (Schlumberger Array) At Roosevelt Hot Springs...

    Open Energy Info (EERE)

    zones. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  13. Thermal Gradient Holes At Roosevelt Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  14. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  15. Aerial Photography At Roosevelt Hot Springs Geothermal Area ...

    Open Energy Info (EERE)

    infrared. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  16. Geothermometry At Roosevelt Hot Springs Geothermal Area (Ward...

    Open Energy Info (EERE)

    Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  17. Field Mapping At Roosevelt Hot Springs Geothermal Area (Ward...

    Open Energy Info (EERE)

    Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  18. Micro-Earthquake At Roosevelt Hot Springs Geothermal Area (Ward...

    Open Energy Info (EERE)

    Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  19. Ground Gravity Survey At Roosevelt Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    model. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  20. Ground Magnetics At Roosevelt Hot Springs Geothermal Area (Ward...

    Open Energy Info (EERE)

    Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  1. Aeromagnetic Survey At Roosevelt Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  2. Isotopic Analysis- Fluid At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    waters. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  3. Rock Sampling At Roosevelt Hot Springs Geothermal Area (Ward...

    Open Energy Info (EERE)

    Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  4. Pilgrim Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilips Color Kinetics Jump to:PiedmontMauna Loa

  5. Poncha Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilips Color KineticsGrowth JumpPub Pwr

  6. EIS-0502: Hot Springs to Anaconda Transmission Line Rebuild Project,

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement | Department of333Energy

  7. Lake City Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington: Energy Resources JumpFlorida: Energy Resources JumpNew

  8. Lake City Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington: Energy Resources JumpFlorida: Energy Resources JumpNewLake

  9. Lava Hot Springs Space Heating Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN)Lauderhill, Florida: EnergyLaurelDome

  10. Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster AndLittletown, Arizona:Lockland, Ohio: ItOpen Energy

  11. Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuels Chemical Kinetic

  12. Little Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList ofPassiveMachineBalanceArea,Elm,

  13. Macfarlane's Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.pngWavemill <MNMabank, Texas:

  14. Magnetotelluric Techniques At Mt Princeton Hot Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(Held & Henderson, 2012) | Open Energy

  15. Magnetotellurics At Brady Hot Springs Area (Combs 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(Held & Henderson, 2012) | OpenInformation

  16. Magnetotellurics At Roosevelt Hot Springs Area (Combs 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(Held & Henderson,Mcgee Mountain

  17. Maple Grove Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(HeldManhattan, Kansas: EnergyNo companies

  18. Hydrothermal Exploration at Pilgrim Hot Springs, Alaska | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013DepartmentAgenda forThisEnergy Lower

  19. Cottonwood Hot Springs Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova Electric Coop,Cosmo PowertechCotoCounty,Open

  20. Cove Hot Spring Greenhouse Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova Electric633211°,ofSector Biomass

  1. Crane Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova39. It is classified

  2. Crane Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova39. It is classified

  3. Crump's Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)Crowley County, Colorado: Energy ResourcesCrucialCrump's

  4. Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergy Information Mountain Geothermal

  5. DC Resistivity Survey (Schlumberger Array) At Roosevelt Hot Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse) Jump to: navigation, searchGeothermal

  6. Dall Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to: navigation, search GEOTHERMALDale Renewables Consulting JumpDalianDall

  7. Darrough Hot Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to: navigation, searchIllinois: Energy Resources JumpDarrel Dammen Jump

  8. Abraham Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWS Ocean Energy Ltd Jump

  9. Brady Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder, CO) Jump to: navigation, searchBozrah

  10. Buffalo Valley Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder, CO) JumpNREL BiofuelsBrowseJump

  11. Del Rio Hot Springs Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618bDeer Park, Ohio:Mar, California:Open Energy

  12. Desert Hot Springs Space Heating Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: Energy Resources

  13. Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1DeringDolgeville, New York: EnergyAmerica and theDoniphanOpen

  14. Double Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1DeringDolgeville, NewDorchester, Wisconsin: EnergyDorsettDouble

  15. Vale Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401UpsonUtah StateLoadingGrantEnergyVRBVal

  16. Vertical Electrical Sounding Configurations At Mt Princeton Hot Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpenVerona, New Jersey: Energy ResourcesLabs LLPGeothermal

  17. Vichy Hot Springs Space Heating Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpenVerona, New Jersey: EnergyProfilingEnergy Information

  18. Walley's Hot Springs Resort Space Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS data JumpWakulla County,Wall,| Open Energy

  19. Ground Gravity Survey At Roosevelt Hot Springs Geothermal Area (Faulder,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county inAl., 1979) | OpenGround GravityOpen

  20. Hobo Hot Springs Aquaculture Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi Gtel JumpHoard, Wisconsin: Energy Resources JumpEnergy

  1. Hot Spring County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace, NorthHorvatic

  2. Hot Springs County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace,

  3. Hot Springs Cove Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace,Geothermal Area Jump to: navigation,

  4. Hot Springs National Park Space Heating Low Temperature Geothermal Facility

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace,Geothermal Area Jump to: navigation,|

  5. Hot Springs Point Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace,Geothermal Area Jump to:

  6. Hot Springs Ranch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace,Geothermal Area Jump to:Ranch

  7. Hot Springs Ranch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace,Geothermal Area Jump to:RanchRanch

  8. Hot Sulphur Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace,Geothermal Area JumpOpen Energy

  9. Hot Sulphur Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace,Geothermal Area JumpOpen

  10. Hot Sulphur Springs Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace,Geothermal Area JumpOpenEnergyOpen

  11. Arrowhead Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergyElectric Coop Corp Place:ArmaecArmyArontisEnergy

  12. Arrowhead Hot Springs Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergyElectric Coop Corp Place:ArmaecArmyArontisEnergyOpen Energy

  13. Avila Hot Springs Space Heating Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: Texas ServiceAvalon, NewAventura,Facility

  14. Baltazor Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin EnergyBacliff,Ballenger Creek, Maryland: EnergyJump to:

  15. Baltazor Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin EnergyBacliff,Ballenger Creek, Maryland: EnergyJump

  16. Banbury Hot Springs Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin EnergyBacliff,BallengerEnergy Information Pool &

  17. Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine:Barbers Point Housing,Illinois:County is a countyVentures JumpBauerOpen

  18. Micro-Earthquake At Neal Hot Springs Geothermal Area (Nichols...

    Open Energy Info (EERE)

    seismic sensor, a data acquisition system that records information onto flash drives, a solar panel and battery, and a fence to keep cows out. References Scott Nichols, David...

  19. Trace Element Analysis At Roosevelt Hot Springs Area (Christensen...

    Open Energy Info (EERE)

    suites at depth within the system are: (4) concentrations of As in sulfides and Li in silicate alteration minerals in the vicinity of high-temperature fluid conduits; and (5)...

  20. Beowawe Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy Resources (RedirectedInformation3166362°,Geothermal Facility

  1. Beowawe Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy Resources (RedirectedInformation3166362°,Geothermal Facility

  2. Big Windy Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey: EnergyBerthoud,BiodieselRapids is aJump to: navigation,

  3. Boulder Hot Springs Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Area Solar Energy Association JumpOpen Energy Information

  4. Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Area Solar Energy AssociationBowerbank,Boyd,Open Energy

  5. Breitenbush Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Area Solar EnergyBradbury,Brayton

  6. Breitenbush Hot Springs Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Area Solar EnergyBradbury,BraytonOpen Energy Information

  7. Broadwater Athletic Club & Hot Springs Space Heating Low Temperature

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Area SolarConnecticut:659243° LoadingBroadMontana:

  8. Buffalo Valley Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais a villageBucyrus, North Dakota:(Redirected from Buffalo

  9. Burgdorf Hot Springs Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais a villageBucyrus,Burbank,Alternative in an EAOpen Energy

  10. Mt Princeton Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area EnergyMohawkaccrediation of NIE) Jump to:Open Jump to:

  11. Tassajara Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to: navigation, search Name:EnergyTarrytown, New

  12. Tecopa Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to: navigation, searchTecate Group

  13. The Geophysical Environment Around Waunita Hot Springs | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective Jump to: navigation, search

  14. Thermal Gradient Holes At Waunita Hot Springs Geothermal Area (Zacharakis,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective JumpInc., 2010) | Open2008) | Open1981) | Open

  15. Travertine Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective:Toyo AluminiumCity Light & Power Wind

  16. Understanding The Chena Hot Springs, Alaska, Geothermal System Using

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTagusparkCalculator Jump to: navigation,UTEKUlsterJump to:Temperature

  17. Vale Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip:Scale Solar IncVairex Corporation

  18. Vertical Seismic Profiling At Neal Hot Springs Geothermal Area (Colorado

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, UtahResources/Full Version

  19. Boulder Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGEFairfield(CTI PFAN) | OpenCity,

  20. Boyes Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGEFairfield(CTI PFAN) |

  1. Brady Hot Springs I Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGEFairfield(CTI PFAN) |Bradfield CanalBrady

  2. Breitenbush Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGEFairfield(CTIAdvancedOffshore

  3. Broadwater Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHISBrickyard Energy

  4. Cabarton Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis a city in ChittendenPartners LLCInvestmentAltamont

  5. Carey Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan DivideCannonCirculating

  6. Chena Hot Springs Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanic National Park | Open EnergyFacility Jump to:

  7. Clifton Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address: 13615Boulder27. It is

  8. Mineral Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo, Maine: Energy Resources8.4863963° Loading map...57.

  9. Miracle Hot Spring Space Heating Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo, Maine: EnergyMinnErgy LLCMinwind Energy LLC Jump

  10. Miracle Hot Springs Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo, Maine: EnergyMinnErgy LLCMinwind Energy LLC

  11. Multispectral Imaging At Buffalo Valley Hot Springs Area (Laney, 2005) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmelAlum Area (DOE GTP) Jump to:Open

  12. Mystic Hot Springs Aquaculture Aquaculture Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmelAlum|Texas:

  13. Neal Hot Springs Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3InformationofServices TMS Inc ||Navarre, Ohio:NavitasNeal

  14. Neinmeyer Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3InformationofServices TMS IncNeety International Jump

  15. Mccredie Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalwayHydrothermalMcFarland is a city inMcLean,CoMcNeilus

  16. Mccredie Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalwayHydrothermalMcFarland is a city inMcLean,CoMcNeilus

  17. Mickey Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy Resources Jump

  18. Molly's Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe Wind Farm Jump to:Mojave/MorowindMolly's

  19. Multispectral Imaging At Buffalo Valley Hot Springs Area (Littlefield &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:MoeInformation MulkCalvin, 2009) | Open

  20. Murphy Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:MoeInformationMultnomahMunnsville

  1. Neal Hot Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithunCenter Jump to: navigation,Navajo TribalNavyNavyNeal

  2. Neal Hot Springs II Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithunCenter Jump to: navigation,Navajo

  3. Riggins Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm Jump to:Sector WindRigby

  4. Sitka Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) | Open EnergySCRSipexSistemSitka

  5. Slate Creek Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) | OpenSixthSkypoint Solar IncSlate

  6. Sleeping Child Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) | OpenSixthSkypoint

  7. Spencer Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region -SonelgazSunbelt

  8. Sunbeam Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpenSummerside Wind FarmSunTechnics GmbH Jump

  9. Cold Bay Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address:ClimaticCoalogixCochisefield |Bay

  10. Compound and Elemental Analysis At Breitenbush Hot Springs Area (Wood,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation, search Name:CXD)2010) |2002) | Open Energy

  11. Compound and Elemental Analysis At Roosevelt Hot Springs Area (Christensen,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation, search(Thompson, 1985)Al., 2010) |Et Al.,

  12. Controlled Source Frequency-Domain Electromagnetics At Neal Hot Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to:Information New York

  13. Controlled Source Frequency-Domain Electromagnetics At Neal Hot Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to:Information New YorkGeothermal Area (Shaltry, 2012)

  14. Dann Ranch Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at NorthDaly International

  15. Darrough Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at NorthDalyMontana: Energy

  16. Silver Star Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation,Pvt LtdShrub Oak, NewSilicium deSilver PeakNetworks

  17. Soil mercury investigations, Waunita Hot Springs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver Peak Area (Henkle, Et Al., 2005)mercury

  18. Owl Creek Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County is aOrmesa IOvonic Battery CompanyOwl Creek

  19. Paleomagnetic Measurements At Neal Hot Springs Geothermal Area (London,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County is aOrmesaPPT ResearchPacificPakiniPalcan2011)

  20. Pilger Estates Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru: EnergyInformation

  1. Pilgrim Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru: EnergyInformation(Redirected from Pilgrim

  2. Port Moller Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:Job Corp Jump PartnerPonder,Technologies Jump

  3. Preliminary Assessment of the Structural Controls of Neal Hot Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:Job CorpPowerVerde IncStar

  4. Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company AgreesDesiree Pipkins About UsDepartment of

  5. Magnetotellurics At Roosevelt Hot Springs Geothermal Area (Ward, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger11.Spain: EnergyMagnetJemezEnergy1978) |

  6. Manley Hot Springs Greenhouse Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a town in Carroll County,Manitoba HydroGeothermal

  7. Manley Hot Springs Space Heating Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a town in Carroll County,Manitoba

  8. Medical Hot Springs Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonald is aElectric Coop, IncxmlEditEnergyOpen Energy

  9. Mickey Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbH Jump to:Michigan: Energy Resources Jump to: navigation,

  10. Alvord Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuriAlexandriaAlstom EnergyEnergyOpenJump to:

  11. Analysis Of Hot Springs And Associated Deposits In Yellowstone National

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jump to:Operations atAnaconda,Park Using Aster

  12. Barron's Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass Facility Jump to: navigation, search Name

  13. Bell Island Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass Facility JumpBedfordBelize: Energy ResourcesIsland

  14. Water Sampling At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County,EnergyDellechaie,InformationOpen

  15. Water Sampling At Waunita Hot Springs Geothermal Area (Carpenter, 1981) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenawInformation Henkle, Et Al.,EnergyOpen

  16. White Licks Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWestILI Wind Farm FacilityArrowLicks

  17. Wilson Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit JumpWill County, Illinois: FacilityWilmont

  18. A Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights, Substantive(Sichuan, SwOpen Energy InformationArea In

  19. A hydrogeochemical comparison of the Waunita Hot Springs, Hortense, Castle

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,Information Of The Transiel Method OnA hungry

  20. Reflection Survey At Hot Sulphur Springs Area (Goranson, 2005) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aRECRaton,RFPs| Open EnergyEnergy

  1. Geothermal Literature Review At Breitenbush Hot Springs Area (Ingebritsen,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County,Information(EC-LEDS)Et Al., 1996) | Open Energy

  2. Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County,Information(EC-LEDS)Et1957) | Open2008)Open

  3. Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County,Information(EC-LEDS)Et1957) |

  4. Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County,Information(EC-LEDS)Et1957) |(Ward, Et Al., 1978)

  5. Geothermal resistivity resource evaluation survey Waunita Hot Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - A Survey of Workproject, Gunnison

  6. Geothermometry At Buffalo Valley Hot Springs Area (Laney, 2005) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - A Survey ofJumpEnergyOpen

  7. Geothermometry At Roosevelt Hot Springs Geothermal Area (Ward, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - AInformation|Open1978) | Open

  8. Gila Hot Springs District Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation MexicoLLC JumpAccess,53.Open Energy

  9. Gila Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation MexicoLLC JumpAccess,53.Open EnergyGeothermal

  10. Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: Energy Resources Jump to: navigation,Open Energy

  11. Goddard Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: Energy Resources Jump to:Gloria Glens Park,Glouster is aGlynnGoddard

  12. Green Canyon Hot Springs Greenhouse Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslands RenewableGreatwood, Texas:

  13. Radium Hot Springs Space Heating Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource History ViewRadiance:InformationOpen

  14. Roosevelt Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRoosevelt Gardens is a census-designated place in Broward

  15. Roosevelt Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRoosevelt Gardens is a census-designated place in

  16. Roystone Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRoosevelt Gardens is°and ReadyEnergyRoyalRoyersford,Roystone

  17. Sand Dunes Hot Spring Aquaculture Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRooseveltVI Solaris aMarino,Sanctuary, Texas: Energy

  18. Deer Creek Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has been approved forDaytonCounty,Deepi

  19. Dyke Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has TypeGeothermalII WindDupont

  20. Electrical Resistivity At Neal Hot Springs Geothermal Area (Colorado School

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revisionWind,Soils and Rocks Jump to:of Mines and

  1. Ennis Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro, California Zip:Enginuity Energy, LLC

  2. Paleomagnetic Measurements At Roosevelt Hot Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County,PPP EquipmentPartners LLC5657°Palatka,

  3. Paleomagnetic Measurements At Roosevelt Hot Springs Geothermal Area (Ward,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County,PPP EquipmentPartners LLC5657°Palatka,Et Al., 1978)

  4. Petrography Analysis At Roosevelt Hot Springs Geothermal Area (Petersen,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: Energy Resources2003) | Open EnergyInformation Jump to:1975)

  5. Pinkerton Hot Springs Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: EnergyPierceJump to: navigation, search EquivalentPink,Open

  6. Pressure Temperature Log At Roosevelt Hot Springs Geothermal Area (Faulder,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimate Action Project JumpCoopMaui Area

  7. Ishtalitna Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load)InternationalRenewableIowaIronIselin, New Jersey:

  8. Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy2005) | Open Energy Information(1990) | Open

  9. Isotopic Analysis- Fluid At Roosevelt Hot Springs Geothermal Area (Faulder,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy2005) | Open Energy Information(1990) |Al.,1991)

  10. Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy2005) |JMalucelliIowa Andrew,Jackson County| Open

  11. Kahneetah Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 Climate ZoneJeromeCountyKGRA EnergyKahaluu, Hawaii:

  12. Kelly Hot Springs Aquaculture Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 ClimateKamas, Utah:Kaufman684342°,KeithKelleysEnergy

  13. Waunita Hot Springs Geothermal Area | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,Warren County RuralInformationCSM's

  14. Abraham Hot Springs Geothermal Area Northern Basin and Range Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to: navigation, search Name:Brophy br Model br Moeck

  15. Aerial Photography At Roosevelt Hot Springs Geothermal Area (Petersen,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:IowaResource Evaluation AndwebsiteLtd, 2003)2003)

  16. Aeromagnetic Survey At Roosevelt Hot Springs Geothermal Area (Faulder,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:IowaResource(Nannini,Information 8)

  17. Aeromagnetic Survey At Waunita Hot Springs Geothermal Area (Lange, 1981) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:IowaResource(Nannini,Information 8)1978) |

  18. Alvord Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergy Systems Place: Folsom,IncAltoona,GeotermalAlvan(Redirected

  19. An Overview of Environmental Issues: Roosevelt Hot Springs KGRA, Utah:

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | Open Energy InformationWater Law

  20. California Hot Springs Pool & Spa Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3: Crystalline RockCaldera2California

  1. Calistoga Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3:Information US Recovery Act<StateCalisolar Inc

  2. Fales Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,LawFEMA -Single-WellValley45.Fairview,Fales

  3. Fly Ranch Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlintFlux Power Incorporated Jump to:Fly Ranch

  4. GEOTHERMAL CASE STUDY: WAUNITA HOT SPRINGS, GUNNISON COUNTY, COLORADO

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCell Energy IncFOR EGS DEVELOPMENT |GEOTHERMAL

  5. Geographic Information System At Brady Hot Springs Area (Laney, 2005) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCellGemini SolarAssetsofLane: 2. VelocityOpen

  6. Geophysical Characterization of a Geothermal System Neal Hot Springs,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCellGeminiEnergy Information Geometry

  7. Gregson Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place: Golden,GreenVoltsGreenpeaceGreenwood CapitalGregson

  8. Olene Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahoma Jump to: navigation,Olene Gap GeothermalOlene

  9. OpenEI Community - Waunita Hot Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahomast, 2012Coast Utilities prepare

  10. Ch. II, Waunita Hot Springs, Colorado Geothermal Prospect Reconaissance |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information on PV2009 | OpenCeradyne Inc Jump to:Cerion Jump

  11. Ch. VI, The geophysical environment around Waunita Hot Springs | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information on PV2009 | OpenCeradyne Inc Jump to:CerionEnergy

  12. Ch. VIII, Soil mercury investigations, Waunita Hot Springs | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information on PV2009 | OpenCeradyne Inc Jump

  13. Chena Hot Springs GRED III Project: Final Report Geology, Petrology,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information onChemithon Enterprises Inc Jump to:Geochemistry,

  14. Chena Hot Springs Greenhouse Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information onChemithon Enterprises Inc Jump to:Geochemistry,Energy

  15. Chena Hot Springs Space Heating Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information onChemithon Enterprises Inc JumpEnergy Information

  16. Chico Hot Springs Greenhouse Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information onChemithon842667°,Cheviot,3. It isAlta Vista,Energy

  17. Chico Hot Springs Space Heating Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information onChemithon842667°,Cheviot,3. It isAltaEnergy

  18. Circle Hot Springs Greenhouse Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLake SouthChroma ATE IncCimarronCapital & Trading,

  19. Circle Hot Springs Space Heating Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLake SouthChroma ATE IncCimarronCapital &Energy

  20. Spencer Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland, Illinois:5717551°FarmsSES Jump to:County,

  1. Squaw Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland,0162112°, -72.1592444°Springwater, New York:

  2. Steamboat Villa Hot Springs Spa Space Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland,0162112°,St.StanlyEnergyInformationFacility |Facility |

  3. Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen, Minnesota: EnergySubletteTexas:Open Energy Information

  4. Surprise Valley Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen, Minnesota:36052°,Sunfield,FarmsSupport| Open Energy

  5. Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County, NewTechnologiekontorTecnalia JumpOpen

  6. Thermal Characteristics of the Chena Hot Springs Alaska Geothermal System |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump Jump to:InformationTheInformation 9)Open Energy|

  7. Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump Jump to:InformationTheInformationAl., 1993) | Open

  8. Huckelberry Hot Springs Pool & Spa Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer,Hubbardston, Massachusetts: EnergyHuberHuber andOpen

  9. Huckleberry Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer,Hubbardston, Massachusetts: EnergyHuberHuber

  10. Hunter Hot Spring Greenhouse Greenhouse Low Temperature Geothermal Facility

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy Resources Jump to: navigation,53.County is|

  11. Hunters Hot Spring Space Heating Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy Resources Jump to:Cogeneration LPEnergy

  12. Exploration model for possible geothermal reservoir, Coso Hot Springs KGRA,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It isInformationexplains a4Evendale, -EnergySonar Imaging,Systems:Inyo

  13. Exploratory Well At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It isInformationexplains a4Evendale,Open Energy Information

  14. Exploratory Well At Roosevelt Hot Springs Geothermal Area (Petersen, 1975)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It isInformationexplains a4Evendale,Open Energy Information| Open

  15. Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: Energy Resources Jump to: navigation,Beach,Fairhaven|

  16. Hot Spring On Umnak Island Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII Wind Farm FacilityPot GeothermalOn

  17. Hot Springs Bay Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII Wind Farm FacilityPot GeothermalOnBay

  18. Hydrogeologic investigation of Coso Hot Springs, Inyo County, California.

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII WindHybridsCar CoHydrogen Jump to:Final

  19. Icy Point Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIIIDrive LtdINDEX

  20. Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIIIDrive LtdINDEXIcynene