Powered by Deep Web Technologies
Note: This page contains sample records for the topic "river geothermal system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM,  

Open Energy Info (EERE)

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Details Activities (3) Areas (1) Regions (0) Abstract: The Raft River geothermal system is located in southern Idaho, near the Utah-Idaho state boarder in the Raft River Valley. The field, which is owned and operated by U.S. Geothermal, has been selected as an EGS demonstration site by the U. S. Department of Energy. This paper summarizes ongoing geologic and petrologic investigations being conducted in support of this project. The reservoir is developed in fractured Proterozoic schist and quartzite, and Archean quartz monzonite cut by younger diabase

2

Geology and alteration of the Raft River geothermal system, Idaho | Open  

Open Energy Info (EERE)

alteration of the Raft River geothermal system, Idaho alteration of the Raft River geothermal system, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geology and alteration of the Raft River geothermal system, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: analcime; Cassia County Idaho; Cenozoic; chlorite; chlorite group; clay minerals; economic geology; exploration; framework silicates; geothermal energy; Idaho; illite; kaolinite; laumontite; montmorillonite; Neogene; Precambrian; Raft Formation; Raft River KGRA; Salt Lake Formation; sheet silicates; silicates; Tertiary; United States; wairakite; wells; zeolite group Author(s): Blackett, R.E.; Kolesar, P.T. Published: Geothermal Resource Council Transactions 1983, 1/1/1983 Document Number: Unavailable DOI: Unavailable

3

Geophysical logging case history of the Raft River geothermal system, Idaho  

Open Energy Info (EERE)

Geophysical logging case history of the Raft River geothermal system, Idaho Geophysical logging case history of the Raft River geothermal system, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geophysical logging case history of the Raft River geothermal system, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Drilling to evaluate the geothermal resource in the Raft River Valley began in 1974 and resulted in the discovery of a geothermal reservoir at a depth of approximately 1523 m (500 ft). Several organizations and companies have been involved in the geophysical logging program. There is no comprehensive report on the geophysical logging, nor has there been a complete interpretation. The objectives of this study are to make an integrated interpretation of the available data and compile a case history. Emphasis has been on developing a simple interpretation

4

Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and  

Open Energy Info (EERE)

Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Details Activities (3) Areas (3) Regions (0) Abstract: Helium isotope ratios have been measured in geothermal fluids from Iceland, The Geysers, Raft River, Steamboat Springs and Hawaii. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic ratios (i.e. magmatic He, ~10 Ra; atmospheric He, R,sub>a; and crustal He, ~0.1 Ra) and in terms of the processes which can alter the isotopic ratio (hydrologic mixing, U-Th series alpha production and weathering release of crustal He, magma aging and

5

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL...  

Open Energy Info (EERE)

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOLOGY AND...

6

Geothermal: Sponsored by OSTI -- Enhanced Geothermal System Potential...  

Office of Scientific and Technical Information (OSTI)

Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

7

Borehole geophysics evaluation of the Raft River geothermal reservoir,  

Open Energy Info (EERE)

reservoir, reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; GEOPHYSICAL SURVEYS; RAFT RIVER VALLEY; GEOTHERMAL EXPLORATION; BOREHOLES; EVALUATION; HOT-WATER SYSTEMS; IDAHO; MATHEMATICAL MODELS; WELL LOGGING; CAVITIES; EXPLORATION; GEOTHERMAL SYSTEMS; HYDROTHERMAL SYSTEMS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace, T.L. Published: Geophysics, 2/1/1977 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Geophysical Method At Raft River Geothermal Area (1977) Raft River Geothermal Area

8

Raft River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Raft River Geothermal Area Raft River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Raft River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 DOE Involvement 4 Timeline 5 Regulatory and Environmental Issues 6 Future Plans 7 Raft River Unit II (26 MW) and Raft River Unit III (32 MW) 8 Enhanced Geothermal System Demonstration 9 Exploration History 10 Well Field Description 11 Technical Problems and Solutions 12 Geology of the Area 12.1 Regional Setting 12.2 Structure 12.3 Stratigraphy 12.3.1 Raft River Formation 12.3.2 Salt Lake Formation 12.3.3 Precambrian Rocks 13 Hydrothermal System 14 Heat Source 15 Geofluid Geochemistry 16 NEPA-Related Analyses (1) 17 Exploration Activities (77) 18 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.10166667,"lon":-113.38,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

9

Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal  

Open Energy Info (EERE)

Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Details Activities (1) Areas (1) Regions (0) Abstract: Cassia County Idaho; data; geophysical surveys; Idaho; Raft River geothermal area; surveys; United States; USGS; Well No. 3; well-logging Author(s): Covington, H.R. Published: Open-File Report - U. S. Geological Survey, 1/1/1978 Document Number: Unavailable DOI: Unavailable Exploratory Well At Raft River Geothermal Area (1977) Raft River Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Deep_drilling_data,_Raft_River_geothermal_area,_Idaho-Raft_River_geothermal_exploration_well_sidetrack-C&oldid=473365"

10

Telluric Survey At Raft River Geothermal Area (1978) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1978) Raft River Geothermal Area (1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Telluric Survey At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Telluric Survey Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration Basis Infer the structure and the general lithology underlying the valley Notes The relative ellipse area contour map compiled from the telluric current survey generally conforms to the gravity map except for lower values in the area of the geothermal system. References Mabey, D.R.; Hoover, D.B.; O'Donnell, J.E.; Wilson, C.W. (1 December 1978) Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho

11

New River Geothermal Research Project, Imperial Valley, California...  

Open Energy Info (EERE)

New River Geothermal Research Project, Imperial Valley, California Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title New River Geothermal...

12

Exploratory Well At Raft River Geothermal Area (1950) | Open Energy  

Open Energy Info (EERE)

50) 50) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1950) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1950 Usefulness not indicated DOE-funding Unknown Exploration Basis Agricultural Wells Notes The geothermal resource at Raft River was discovered sometime prior to 1950 when two shallow agricultural wells, the Bridge and Crank wells, encountered boiling water. References Diek, A.; White, L.; Roegiers, J.-C.; Moore, J.; McLennan, J. D. (1 January 2012) BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Retrieved from "http://en.openei.org/w/index.php?title=Exploratory_Well_At_Raft_River_Geothermal_Area_(1950)&oldid=473844

13

Geothermal Modeling of the Raft River Geothermal Field | Open Energy  

Open Energy Info (EERE)

Geothermal Modeling of the Raft River Geothermal Field Geothermal Modeling of the Raft River Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Modeling of the Raft River Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: This interim report presents the results to date of chemical modeling of the Raft River KGRA. Earlier work indicated a northwest-southeast anomaly in the contours. Modeling techniques applied to more complete data allowed further definition of the anomaly. Models described in this report show the source of various minerals in the geothermal water. There appears to be a regional heat source that gives rise to uniform conductive heat flow in the region, but convective flow is concentrated near the upwelling in the Crook well vicinity. Recommendations

14

Airborne Electromagnetic Survey At Raft River Geothermal Area (1979) | Open  

Open Energy Info (EERE)

Electromagnetic Survey At Raft River Electromagnetic Survey At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Airborne Electromagnetic Survey Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis To show that AEM methods can be useful in exploration for and defining geothermal systems Notes Extensive audio-magnetotelluric (AMT) work by the USGS in KGRA's showed that many geothermal systems do have a near-surface electrical signature which should be detectable by an AEM system. References Christopherson, K.R.; Long, C.L.; Hoover, D.B. (1 September 1980) Airborne electromagnetic surveys as a reconnaissance technique for geothermal exploration Retrieved from "http://en.openei.org/w/index.php?title=Airborne_Electromagnetic_Survey_At_Raft_River_Geothermal_Area_(1979)&oldid=510231

15

Reconnaissance geophysical studies of the geothermal system in...  

Open Energy Info (EERE)

geophysical studies of the geothermal system in southern Raft River Valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance...

16

Field Mapping At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1980) Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Field Mapping Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Delineate the subsurface geology Notes The Raft River Valley occupies an upper Cenozoic structural basin filled with nearly 1600 m of fluvial silt, sand, and gravel. Rapid facies and thickness changes, steep initial dips (30 0C), and alteration make correlation of basin-fill depositional units very difficult. The Raft River geothermal system is a hot water convective system relying on deep circulation of meteoric water in a region of high geothermal gradients and open fractures near the base of the Tertiary basin fill. References Covington, H. R. (1 September 1980) Subsurface geology of the

17

Petrography Analysis At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

Petrography Analysis At Raft River Geothermal Area (2011) Petrography Analysis At Raft River Geothermal Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Petrography Analysis At Raft River Geothermal Area (2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Petrography Analysis Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Explore for development of an EGS demonstration project Notes X-ray diffraction and thin section analyses are being conducted on samples from 5 deep wells, RRG- 1, 2, 3, 7 and 9, to determine the characteristics of the rock types and hydrothermal alteration within the geothermal system. Thin section analyses of samples from RRG-9 document the presence of strong alteration and brecciation at the contact between the Tertiary and basement

18

Deep drilling data, Raft River geothermal area, Idaho-Raft River...  

Open Energy Info (EERE)

Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep...

19

Reconnaissance geothermal exploration at Raft River, Idaho from...  

Open Energy Info (EERE)

Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article:...

20

Self Potential Measurements At Raft River Geothermal Area (1983) | Open  

Open Energy Info (EERE)

Measurements At Raft River Geothermal Area (1983) Measurements At Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential Measurements At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Self Potential Measurements Activity Date 1983 Usefulness not indicated DOE-funding Unknown Notes Self-potential measurements before and during injection tests at Raft River KGRA, Idaho indicate a small negative change. The magnitude of the change (5 to 10 mV) is near the noise level (5 mV) but they extend over a fairly broad area. The presence of a cathodic protection system clouds the issue of the validity of the changes, however the form of the observed changes cannot be explained by any simple change in the current strength of the

Note: This page contains sample records for the topic "river geothermal system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho  

SciTech Connect

The Snake River volcanic province overlies a thermal anomaly that extends deep into the mantle and represents one of the highest heat flow provinces in North America (Blackwell and Richards, 2004). This makes the Snake River Plain (SRP) one of the most under-developed and potentially highest producing geothermal districts in the United States. Elevated heat flow is typically highest along the margins of the topographic SRP and lowest along the axis of the plain, where thermal gradients are suppressed by the Snake River aquifer. Beneath this aquifer, however, thermal gradients rise again and may tap even higher heat flows associated with the intrusion of mafic magmas into the mid-crustal sill complex (e.g., Blackwell, 1989).

Robert K Podgorney; Thomas R. Wood; Travis L McLing; Gregory Mines; Mitchell A Plummer; Michael McCurry; Ahmad Ghassemi; John Welhan; Joseph Moore; Jerry Fairley; Rachel Wood

2013-09-01T23:59:59.000Z

22

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area (Redirected from New River Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

23

Aeromagnetic Survey At Raft River Geothermal Area (1978) | Open Energy  

Open Energy Info (EERE)

Area (1978) Area (1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Aeromagnetic Survey Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration Basis To infer the structure and the general lithology underlying the valley Notes The aeromagnetic data indicate the extent of the major Cenozoic volcanic units. References Mabey, D.R.; Hoover, D.B.; O'Donnell, J.E.; Wilson, C.W. (1 December 1978) Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Aeromagnetic_Survey_At_Raft_River_Geothermal_Area_(1978)&oldid=473817"

24

Decision Analysis for Enhanced Geothermal Systems Geothermal...  

Open Energy Info (EERE)

Recovery Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Project Type Topic 2 Geothermal Analysis Project Description The result of the proposed...

25

Geothermal: Sponsored by OSTI -- Engineered Geothermal Systems...  

Office of Scientific and Technical Information (OSTI)

Engineered Geothermal Systems Energy Return On Energy Investment Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

26

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

27

Conceptual Model At Raft River Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

6) 6) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine productive zones in the reservoir Notes Borehole geophysics techniques were used in evaluating the Raft River geothermal reservoir to establish a viable model for the system. The assumed model for the hot water 1450C reservoir was a zone of higher conductivity, increased porosity, decreased density, and lower sonic velocity. References Applegate, J.K.; Donaldson, P.R.; Kinkley, D.L.; Wallace, T.L. (1 January 1976) Borehole geophysics evaluation of the Raft River geothermal reservoir Retrieved from "http://en.openei.org/w/index.php?title=Conceptual_Model_At_Raft_River_Geothermal_Area_(1976)&oldid=473821

28

Raft River Geothermal Aquaculture Experiment. Phase II  

DOE Green Energy (OSTI)

Channel catfish, tilapia and Malaysian prawns were cultured directly in geothermal water for approximately seven months at the Department of Energy, Raft River Geothermal Site, to evaluate the organisms throughout a grow-out cycle. Parameters evaluated included survival, growth, bioaccumulation of metals and fluoride, collagen synthesis, and bone calcium levels. Growth at Raft River was slightly lower than at a companion commercial facility at Buhl, Idaho, but was attributed to facility differences rather than an adverse impact of geothermal water. No significant differences were recorded between Raft River and Buhl fish for bone calcium or collagen concentrations. No significant accumulation of heavy metals by fish or prawns was recorded.

Campbell, D.K.; Rose, F.L.; Kent, J.C.; Watson, L.R.; Sullivan, J.F.

1979-08-01T23:59:59.000Z

29

Raft River Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home GEOTHERMAL ENERGYGeothermal Home Raft River Geothermal Facility General Information Name Raft River Geothermal Facility Facility Raft River Sector Geothermal energy Location Information Location Cassia County, Idaho Coordinates 42.358036°, -113.5728501° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.358036,"lon":-113.5728501,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

30

Carson River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

River Geothermal Area River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Carson River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.77,"lon":-119.715,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

31

Raft River Geothermal Exploratory Hole No. 3  

DOE Green Energy (OSTI)

Raft River Geothermal Exploratory Hole No. 3 (RRGE-3) is an exploratory hole with three directional legs, drilled to depths ranging from approximately 5,500 to 6,000 feet into intruded quartz monzonite basement rock of the Raft River valley of southeastern Idaho. The goal of the Raft River Geothermal R and D program is to determine the feasibility of developing and utilizing medium temperature (300/sup 0/F) geothermal resources for power generation and nonelectrical applications. This well was drilled to provide data to further investigate and evaluate the geothermal reservoir, as well as to optimize the location of possible future resource and/or injection wells and to develop methods to reduce the cost of geothermal wells. The drilling and completion of RRGE-3 is described and the daily drilling reports, drill bit records, descriptions of the casing, cementing, logging and coring programs, and the containment techniques employed on RRGE-3 are included.

Shoopman, H.H. (comp.)

1977-06-01T23:59:59.000Z

32

Milky River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Milky River Geothermal Area Milky River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Milky River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.32,"lon":-174.1472,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

33

Reese River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Reese River Geothermal Area Reese River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Reese River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (10) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.89,"lon":-117.14,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

34

Simulation analysis of the unconfined aquifer, Raft River Geothermal...  

Open Energy Info (EERE)

Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Simulation analysis of...

35

FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO...  

Open Energy Info (EERE)

FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND HYDROGEOLOGICAL IMPLICATIONS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference...

36

Total field aeromagnetic map of the Raft River known Geothermal...  

Open Energy Info (EERE)

field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report:...

37

Borehole geophysics evaluation of the Raft River geothermal reservoir...  

Open Energy Info (EERE)

reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Details...

38

Micro-Earthquake At Snake River Plain Geothermal Region (1976...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Micro-Earthquake At Snake River Plain Geothermal Region (1976) Jump to: navigation, search GEOTHERMAL...

39

Preservation of an extreme transient geotherm in the Raft River...  

Open Energy Info (EERE)

transient geotherm in the Raft River detachment shear zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Preservation of an extreme transient...

40

Exploratory Well At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

7) 7) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes Raft River Geothermal Exploratory Hole No. 4, RRGE-4 drilled. During this time Raft River geothermal exploration well sidetrack-C also completed. References Kunze, J. F.; Stoker, R. C.; Allen, C. A. (14 December 1977) Update on the Raft River Geothermal Reservoir Covington, H.R. (1 January 1978) Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Retrieved from "http://en.openei.org/w/index.php?title=Exploratory_Well_At_Raft_River_Geothermal_Area_(1977)&oldid=473847"

Note: This page contains sample records for the topic "river geothermal system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Mary's River Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

River Geothermal Project River Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Mary's River Geothermal Project Project Location Information Coordinates 41.750555555556°, -115.30194444444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.750555555556,"lon":-115.30194444444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

42

National Geothermal Data System (NGDS) Geothermal Data Domain...  

Open Energy Info (EERE)

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library...

43

Hybrid Geothermal Heat Pump Systems  

Science Conference Proceedings (OSTI)

Hybrid geothermal heat pump systems offer many of the benefits of full geothermal systems but at lower installed costs. A hybrid geothermal system combines elements of a conventional water loop heat pump system in order to reduce the geothermal loop heat exchanger costs, which are probably the largest cost element of a geothermal system. These hybrid systems have been used successfully where sufficient ground space to install large heat exchangers for full geothermal options was unavailable, or where the...

2009-12-21T23:59:59.000Z

44

Sedimentary Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Sedimentary Geothermal Systems Sedimentary Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geopressured Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Sedimentary Geothermal Links Related documents and websites Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana EGS Schematic.jpg ] Dictionary.png Sedimentary Geothermal Systems: Sedimentary Geothermal Systems produce electricity from medium temperature,

45

Core Analysis At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

2011) 2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Core Analysis Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Explore for development of an EGS demonstration project Notes Core was obtained from RRG-3C. The sample is a brecciated and altered siltstone from the base of the Tertiary sequence and is similar to rocks at the base of the Tertiary deposits in RRG-9. The results of thermal and quasi-static mechanical property measurements that were conducted on the core sample are presented. References Jones, C.; Moore, J.; Teplow, W.; Craig, S. (1 January 2011) GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Raft_River_Geothermal_Area_(2011)&oldid=473834

46

Reese River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Reese River Geothermal Area Reese River Geothermal Area (Redirected from Reese River Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Reese River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (10) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.89,"lon":-117.14,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

47

Modeling of geothermal systems  

DOE Green Energy (OSTI)

During the last decade the use of numerical modeling for geothermal resource evaluation has grown significantly, and new modeling approaches have been developed. In this paper we present a summary of the present status in numerical modeling of geothermal systems, emphasizing recent developments. Different modeling approaches are described and their applicability discussed. The various modeling tasks, including natural-state, exploitation, injection, multi-component and subsidence modeling, are illustrated with geothermal field examples. 99 refs., 14 figs.

Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

1985-03-01T23:59:59.000Z

48

Corrosion engineering in the utilization of the Raft River geothermal resource  

DOE Green Energy (OSTI)

The economic impact of corrosion and the particular problems of corrosion in the utilization of geothermal energy resources are noted. Corrosion is defined and the parameters that control corrosion in geothermal systems are discussed. A general background of corrosion is presented in the context of the various forms of corrosion, in relation to the Raft River geothermal system. A basic reference for mechanical design engineers involved in the design of geothermal energy recovery systems is provided.

Miller, R.L.

1976-08-01T23:59:59.000Z

49

Petrography of late cenozoic sediments, Raft River geothermal field, Idaho  

Open Energy Info (EERE)

of late cenozoic sediments, Raft River geothermal field, Idaho of late cenozoic sediments, Raft River geothermal field, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Petrography of late cenozoic sediments, Raft River geothermal field, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; RAFT RIVER VALLEY; GEOTHERMAL FIELDS; PETROGRAPHY; BIOTITE; CALCITE; CLAYS; LIMESTONE; PYRITE; SANDSTONES; SEDIMENTS; SHALES; VOLCANIC ROCKS; ZEOLITES; ALKALINE EARTH METAL COMPOUNDS; CALCIUM CARBONATES; CALCIUM COMPOUNDS; CARBON COMPOUNDS; CARBONATE ROCKS; CARBONATES; CHALCOGENIDES; IDAHO; IGNEOUS ROCKS; INORGANIC ION EXCHANGERS; ION EXCHANGE MATERIALS; IRON COMPOUNDS; IRON SULFIDES; MICA; MINERALS; NORTH AMERICA; ORES; OXYGEN COMPOUNDS; PACIFIC NORTHWEST REGION; PYRITES; ROCKS; SEDIMENTARY ROCKS; SULFIDES; SULFUR COMPOUNDS;

50

Final Technical Resource Confirmation Testing at the Raft River Geothermal  

Open Energy Info (EERE)

Final Technical Resource Confirmation Testing at the Raft River Geothermal Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield. Author(s): Glaspey, Douglas J. Published: DOE Information Bridge, 1/30/2008 Document Number: Unavailable DOI: 10.2172/922630 Source: View Original Report Flow Test At Raft River Geothermal Area (2008) Raft River Geothermal Area Retrieved from

51

Geophysical Method At Raft River Geothermal Area (1975) | Open Energy  

Open Energy Info (EERE)

Method At Raft River Geothermal Area (1975) Method At Raft River Geothermal Area (1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geophysical Method At Raft River Geothermal Area (1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Geophysical Techniques Activity Date 1975 Usefulness not indicated DOE-funding Unknown Notes Geologic and geophysics studies were completed at the Raft River valley. References Williams, P.L.; Mabey, D.R.; Pierce, K.L.; Zohdy, A.A.R.; Ackermann, H.; Hoover, D.B. (1 May 1975) Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Geophysical_Method_At_Raft_River_Geothermal_Area_(1975)&oldid=59434

52

Deep drilling data Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

drilling data Raft River geothermal area, Idaho drilling data Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep drilling data Raft River geothermal area, Idaho Details Activities (2) Areas (1) Regions (0) Abstract: Stratigraphy and geophysical logs of three petroleum test boreholes in the Raft River Valley are presented. The geophysical logs include: temperature, resistivity, spontaneous potential, gamma, caliper, and acoustic logs. Author(s): Oriel, S. S.; Williams, P. L.; Covington, H. R.; Keys, W. S.; Shaver, K. C. Published: DOE Information Bridge, 1/1/1978 Document Number: Unavailable DOI: 10.2172/6272996 Source: View Original Report Exploratory Well At Raft River Geothermal Area (1975) Exploratory Well At Raft River Geothermal Area (1976) Raft River Geothermal Area

53

Geophysical Method At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Geophysical Method At Raft River Geothermal Area (1977) Geophysical Method At Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geophysical Method At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Geophysical Techniques Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes Borehole geophysics were completed at the Raft River valley, Idaho. References Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace, T.L. (1 February 1977) Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Geophysical_Method_At_Raft_River_Geothermal_Area_(1977)&oldid=594349" Category: Exploration Activities

54

New River Geothermal Research Project, Imperial Valley, California  

Open Energy Info (EERE)

Research Project, Imperial Valley, California Research Project, Imperial Valley, California Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title New River Geothermal Research Project, Imperial Valley, California Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Current models for the tectonic evolution of the Salton Trough provide a refined geologic model to be tested within the New River system and subsequently applied to additional rift dominated settings. Specific concepts to be included in model development include: rifting as expressed by the Brawley Seismic zone setting, northwest extensional migration, detachment faulting and a zone of tectonic subsidence as defining permeability zones; and evaluation and signature identification of diabase dike systems. Lateral continuous permeable sand units will be demonstrated through integration of existing well records with results of drilling new wells in the area.

55

Residential Geothermal Systems Credit  

Energy.gov (U.S. Department of Energy (DOE))

A resident individual taxpayer of Montana who installs a geothermal heating or cooling system in their principal dwelling can claim a tax credit based on the installation costs of the system, not...

56

Reconnaissance geothermal exploration at Raft River, Idaho from thermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; INFRARED SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; TEMPERATURE DISTRIBUTION; EXPLORATION; GEOPHYSICAL SURVEYS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Watson, K. Published: Geophysics, 4/1/1976

57

Borehole geophysics evaluation of the Raft River geothermal reservoir |  

Open Energy Info (EERE)

reservoir reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Borehole geophysics evaluation of the Raft River geothermal reservoir Details Activities (1) Areas (1) Regions (0) Abstract: Borehole geophysics techniques were used in evaluating the Raft River geothermal reservoir to establish a viable model for the system. The assumed model for the hot water (145/sup 0/C) reservoir was a zone of higher conductivity, increased porosity, decreased density, and lower sonic velocity. It was believed that the long term contact with the hot water would cause alteration producing these effects. With this model in mind, cross-plots of the above parameters were made to attempt to delineate the reservoir. It appears that the most meaningful data include smoothed and

58

Exploratory Well At Raft River Geothermal Area (1975) | Open Energy  

Open Energy Info (EERE)

5) 5) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1975 Usefulness not indicated DOE-funding Unknown Exploration Basis First exploratory well Notes Raft River Geothermal Exploratory Hole No. 1 (RRGE-1) is drilled. References Reynolds Electrical and Engineering Co., Inc., Las Vegas, Nev. (USA) (1 October 1975) Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report Kunze, J.F. (1 May 1977) Geothermal R and D project report, October 1, 1976--March 31, 1977 Oriel, S. S.; Williams, P. L.; Covington, H. R.; Keys, W. S.; Shaver, K. C. (1 January 1978) Deep drilling data Raft River geothermal

59

Development Wells At Raft River Geothermal Area (2004) | Open Energy  

Open Energy Info (EERE)

Development Wells At Raft River Geothermal Area (2004) Development Wells At Raft River Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Raft River Geothermal Area (2004) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Development Wells Activity Date 2004 Usefulness not indicated DOE-funding GRED II Notes Geothermal Resource Exploration and Definition Projects Raft River (GRED II): Re-assessment and testing of previously abandoned production wells. The objective of the U.S. Geothermal effort is to re-access the available wellbores, assess their condition, perform extensive testing of the reservoir to determine its productive capacity, and perform a resource utilization assessment. At the time of this paper, all five wells had been

60

Enhanced Geothermal Systems (EGS) | Open Energy Information  

Open Energy Info (EERE)

Enhanced Geothermal Systems (EGS) Enhanced Geothermal Systems (EGS) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Enhanced Geothermal Systems (EGS) Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps EGS Links Related documents and websites DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation) EGS Schematic.jpg ] Dictionary.png Enhanced Geothermal Systems: Enhanced Geothermal Systems (EGS) are human engineered hydrothermal reservoirs developed for commercial use as an alternative to naturally

Note: This page contains sample records for the topic "river geothermal system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

62

Geothermal Technologies Program: Enhanced Geothermal Systems  

DOE Green Energy (OSTI)

This general publication describes enhanced geothermal systems (EGS) and the principles of operation. It also describes the DOE program R&D efforts in this area, and summarizes several projects using EGS technology.

Not Available

2004-08-01T23:59:59.000Z

63

Ray River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Ray River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Ray River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.96202521,"lon":-150.9200119,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

64

Numerical Modeling At Raft River Geothermal Area (1983) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1983) Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Numerical Modeling Activity Date 1983 Usefulness not indicated DOE-funding Unknown Notes The numerical modeling of the resistivity data is marginal for changes as small as those observed but the results suggest that changes of a few percent could be expected from a fracture zone extending from depth to within 100 m of the surface. References Sill, W. R. (1 September 1983) Resistivity measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Retrieved from "http://en.openei.org/w/index.php?title=Numerical_Modeling_At_Raft_River_Geothermal_Area_(1983)&oldid=47387

65

Reese River Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Reese River Geothermal Project Reese River Geothermal Project Project Location Information Coordinates 39.034444444444°, -116.67666666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.034444444444,"lon":-116.67666666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

66

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment  

Open Energy Info (EERE)

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Abstract To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is in-vesting in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup-ply cutting edge geoinformatics. NGDS geothermal data acquisition, delivery, and methodology are dis-cussed. In particular, this paper addresses the various types of data required to effectively assess

67

Seismic refraction study of the Raft River geothermal area, Idaho | Open  

Open Energy Info (EERE)

refraction study of the Raft River geothermal area, Idaho refraction study of the Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Seismic refraction study of the Raft River geothermal area, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River geothermal system in southeastern Idaho is a convective hot water system, presently being developed to demonstrate the production of electricity from low-temperature (approx. 150 0C) water. Interpretation of seismic refraction recordings in the area yielded compressional velocities from near the surface to the crystalline basement at a maximum depth of approximately 1600 m. The results show a complex sequence of sediments and volcanic flows overlying basement. Velocities in the sedimentary section vary laterally. Correlation with well data suggests

68

Ground Gravity Survey At Raft River Geothermal Area (1978) |...  

Open Energy Info (EERE)

Activity Details Location Raft River Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration...

69

Exploring the Raft River geothermal area, Idaho, with the dc...  

Open Energy Info (EERE)

Home Journal Article: Exploring the Raft River geothermal area, Idaho, with the dc resistivity method (Abstract) edit Details Activities (1) Areas (1) Regions (0)...

70

DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area (1974-1975) Jump...

71

Chemical Logging At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

Logging At Raft River Geothermal Area (1979) Logging At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Chemical Logging At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Chemical Logging Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To use new methods to assist geothermal well drilling. Notes Chemical logging resulted in the development of a technique to assist in geothermal well drilling and resource development. Calcium-alkalinity ratios plotted versus drill depth assisted in defining warm and hot water aquifers. Correlations between the calcium-alkalinity log and lithologic logs were used to determine aquifer types and detection of hot water zones

72

Monitor well responses at the Raft River, Idaho, Geothermal Site  

DOE Green Energy (OSTI)

Effects of geothermal fluid production and injection on overlying ground-water aquifers have been studied at the Raft River Geothermal Site in southcentral Idaho. Data collected from 13 monitor wells indicate a complex fractured and porous media controlled ground-water flow system affected by natural recharge and discharge, irrigation withdrawal, and geothermal withdrawal and injection. The monitor wells are completed in aquifers and aquitards overlying the principal geothermal aquifers. Potentiometric heads and water quality are significantly affected by natural upward geothermal leakage via faults and matrix seepage. No significant change in water quality data has been observed, but potentiometric head changes resulted due to geothermal resource testing and utilization. Long-term hydrographs for the wells exhibit three distinct patterns, with superimposed responses due to geothermal pumping and injection. Well hydrographs typical of the Shallow aquifer exhibit effects of natural recharge and irrigation withdrawals. For selected wells, pressure declines due to injection and pressure buildup associated with pumping are observed. The latter effect is presumably due to the elastic deformation of geologic material overlying the stressed aquifers. A second distinct pattern occurs in two wells believed to be hydraulically connected to the underlying Intermediate aquifer via faults. These wells exhibit marked buildup effects due to injection as well as responses typical of the Shallow aquifer. The third pattern is demonstrated by three monitor wells near the principal production wells. This group of wells exhibits no seasonal potentiometric head fluctuations. Fluctuations which do occur are due to injection and pumpage. The three distinct hydrograph patterns are composites of the potentiometric head responses occurring in the various aquifers underlying the Raft River Site.

Skiba, P.A.; Allman, D.W.

1984-05-01T23:59:59.000Z

73

American Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name American Geothermal Systems Place Austin, Texas Sector Geothermal energy Product Installer of geothermal heating and cooling technologies, also has a...

74

Modeling-Computer Simulations At Raft River Geothermal Area (1983) | Open  

Open Energy Info (EERE)

Modeling-Computer Simulations At Raft River Geothermal Area (1983) Modeling-Computer Simulations At Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1983 Usefulness useful DOE-funding Unknown Exploration Basis Predict flow rate and porosity Notes The objectives of the physical modeling effort are to: (1) evaluate injection-backflow testing for fractured reservoirs under conditions of known reservoir parameters (porosity, fracture width, etc.); (2) study the mechanisms controlling solute transport in fracture systems; and (3) provide data for validation of numerical models that explicitly simulate

75

Preservation of an extreme transient geotherm in the Raft River detachment  

Open Energy Info (EERE)

Preservation of an extreme transient geotherm in the Raft River detachment Preservation of an extreme transient geotherm in the Raft River detachment shear zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Preservation of an extreme transient geotherm in the Raft River detachment shear zone Details Activities (1) Areas (1) Regions (0) Abstract: Extensional detachment systems separate hot footwalls from cool hanging walls, but the degree to which this thermal gradient is the product of ductile or brittle deformation or a preserved original transient geotherm is unclear. Oxygen isotope thermometry using recrystallized quartz-muscovite pairs indicates a smooth thermal gradient (140 °C/100 m) across the gently dipping, quartzite-dominated detachment zone that bounds the Raft River core complex in northwest Utah (United States). Hydrogen

76

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM  

Open Energy Info (EERE)

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Details Activities (1) Areas (1) Regions (0) Abstract: Thermal stimulation can be utilized to precondition a well to optimize fracturing and production during Enhanced Geothermal System (EGS) reservoir development. A finite element model was developed for the fully coupled processes consisting of: thermoporoelastic deformation, hydraulic conduction, thermal osmosis, heat conduction, pressure thermal effect, and the interconvertibility of mechanical and thermal energy. The model has

77

New River Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: New River Geothermal Project Project Location Information Coordinates 33.131388888889°, -115.69444444444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.131388888889,"lon":-115.69444444444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

78

Injectivity Test At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

Injectivity Test At Raft River Geothermal Area (1979) Injectivity Test At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Injectivity Test Activity Date 1979 Usefulness useful DOE-funding Unknown Notes Quantification of the pressure response prior to 600 minutes is not always possible. Short-duration (< 24-hour) injection or pump tests are conducted with the drilling rig equipment, and long-duration (21-day) injection and pump tests are then conducted with the permanent pumping facilities. References Allman, D. W.; Goldman, D.; Niemi, W. L. (1 January 1979) Evaluation of testing and reservoir parameters in geothermal wells at Raft

79

Conceptual Model At Raft River Geothermal Area (1981) | Open Energy  

Open Energy Info (EERE)

Conceptual Model At Raft River Geothermal Area (1981) Conceptual Model At Raft River Geothermal Area (1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Raft River Geothermal Area (1981) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1981 Usefulness not indicated DOE-funding Unknown Exploration Basis Use geoscience data to develop a conceptual model of the reservoir. Notes The geoscience data gathered in the drilling and testing of seven geothermal wells suggest that the thermal reservoir is: (a) produced from fractures found at the contact metamorphic zone, apparently the base of detached normal faulting from the Bridge and Horse Well Fault zones of the Jim Sage Mountains; (b) anisotropic, with the major axis of hydraulic

80

Exploratory Well At Raft River Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

76) 76) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1976) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Second and third exploratory wells drilled Notes Raft River Geothermal Exploratory Hole No. 2, RRGE-2 drilled. During this period, a third well, RRGE-3 was also drilled and well production was tested. Down-hole data was obtained from RRGE-3. References Speake, J.L. (1 August 1976) Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report Kunze, J.F. (1 October 1976) Geothermal R and D Project report for period April 1, 1976 to June 30, 1976

Note: This page contains sample records for the topic "river geothermal system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Conceptual Model At Raft River Geothermal Area (1988) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Conceptual Model At Raft River Geothermal Area (1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Raft River Geothermal Area (1988) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1988 Usefulness not indicated DOE-funding Unknown Exploration Basis Use geophysical logs to determine the reservoir transmissivity Notes Seven fracture orientation sets are recognized in the sedimentary and metamorphic rock units. Although the conventional geophysical logs showed

82

Geothermal Technologies Office: Enhanced Geothermal Systems Technologi...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

83

Geothermal Technologies Office: Enhanced Geothermal Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

84

Acoustic Logs At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1979) Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Acoustic Logs Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To permit the lateral and vertical extrapolation of core and test data and bridged the gap between surface geophysical data and core analyses. Notes Televiewer logs permitted the location and orientation of numerous fractures and several features that may be faults. References Keys, W. S.; Sullivan, J. K. (1 June 1979) Role of borehole geophysics in defining the physical characteristics of the Raft River geothermal reservoir, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Acoustic_Logs_At_Raft_River_Geothermal_Area_(1979)&oldid=473816"

85

Simulation analysis of the unconfined aquifer, Raft River Geothermal Area,  

Open Energy Info (EERE)

Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Details Activities (1) Areas (1) Regions (0) Abstract: This study covers about 1000 mi2 (2600 km2) of the southern Raft River drainage basin in south-central Idaho and northwest Utah. The main area of interest, approximately 200 mi2 (520 km2) of semiarid agricultural and rangeland in the southern Raft River Valley that includes the known Geothermal Resource Area near Bridge, Idaho, was modelled numerically to evaluate the hydrodynamics of the unconfined aquifer. Computed and estimated transmissivity values range from 1200 feet squared per day (110

86

Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report |  

Open Energy Info (EERE)

Hole No. 2, RRGE-2. Completion report Hole No. 2, RRGE-2. Completion report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River Geothermal Exploratory Hole No. 2 (RRGE-2) is the second exploratory hole drilled in the Raft River Valley location of the Idaho Geothermal R and D Project for the purpose of determining the existence of hot water in quantities suitable for commercial power generation and nonelectric applications. This well was drilled to a depth of 6,543 feet below ground level to obtain additional geological information for evaluation of the deep geothermal reservoir system. The drilling and completion of RRGE-2 are described. The daily drilling

87

Magnetotellurics At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Magnetotellurics At Raft River Geothermal Area (1977) Magnetotellurics At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Magnetotellurics Activity Date 1977 Usefulness useful DOE-funding Unknown Notes Magnetotelluric soundings along a profile extending from the Raft River geothermal area in southern Idaho in Yellowstone National Park in Wyoming reveal a highly anomalous crustal structure involving a conductive zone at depths that range from 18 km in the central part of the eastern Snake River Plain to 7 km beneath the Raft River thermal area and as little as 5 km in Yellowstone. Resistivities in this conductive zone are less than 10 ohm-m and at some sites than 1 ohm-m. References Stanley, W.D.; Boehl, J.E.; Bostick, F.X.; Smith, H.W. (10 June

88

Snake River Plain Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Snake River Plain Geothermal Region Snake River Plain Geothermal Region (Redirected from Snake River Plain) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Snake River Plain Geothermal Region Details Areas (8) Power Plants (1) Projects (2) Techniques (11) Map: {{{Name}}} "The Snake River Plain is a large arcuate structural trough that characterizes the topography of southern Idaho that can be divided into three sections: western, central, and eastern. The western Snake River Plain is a large tectonic graben or rift valley filled with several km of lacustrine (lake) sediments; the sediments are underlain by rhyolite and basalt, and overlain by basalt. The western plain began to form around 11-12 Ma with the eruption of rhyolite lavas and ignimbrites. The western plain is not parallel to North American Plate motion, and lies at a high

89

OIT geothermal system improvements  

Science Conference Proceedings (OSTI)

Three geothermal wells drilled during the original campus construction vary from 396 m (1,300 ft) to 550 m (1,800 ft). These wells supply all of the heating and part of the cooling needs of the 11-building, 62,200 m{sup 2} (670,000 ft{sup 2}) campus. The combined capacity of the well pumps is 62 L/s(980 gpm) of 89{degrees}C (192{degrees}F) geothermal fluids. Swimming pool and domestic hot water heating impose a small but nearly constant year-round flow requirement. In addition to heating, a portion of the campus is also cooled using the geothermal resource. This is accomplished through the use of an absorption chiller. The chiller, which operates on the same principle as a gas refrigerator, requires a flow of 38 L/s (600 gpm) of geothermal fluid and produces 541 kW (154 tons) of cooling capacity (Rafferty, 1989). The annual operating costs for the system is about $35,000 including maintenance salary, equipment replacement and cost of pumping. This amounts to about $0.05 per square foot per year.

Lienau, P.J. [Geo-Heat Center, Klamath Falls, OR (United States)

1996-08-01T23:59:59.000Z

90

Electromagnetic Soundings At Raft River Geothermal Area (1977) | Open  

Open Energy Info (EERE)

Electromagnetic Soundings At Raft River Geothermal Area (1977) Electromagnetic Soundings At Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Electromagnetic Sounding Techniques Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis The purpose of the survey was: (1) to field test U.S. Geological Survey extra-low-frequency (ELF) equipment using a grounded wire source and receiver loop configuration (which is designed to measure the vertical magnetic field (Hz) at the loop center for various frequencies); (2) to present an example of the EM sounding data and interpretations using a

91

Fault Mapping At Raft River Geothermal Area (1993) | Open Energy  

Open Energy Info (EERE)

Fault Mapping At Raft River Geothermal Area (1993) Fault Mapping At Raft River Geothermal Area (1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fault Mapping At Raft River Geothermal Area (1993) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Fault Mapping Activity Date 1993 Usefulness useful DOE-funding Unknown Exploration Basis Geologic mapping, strain and kinematic analysis Notes The mountains expose a detachment fault that separates a hanging wall of Paleozoic rocks from Proterozoic and Archean rocks of the footwall. Beneath the detachment lies a 100 to 300m-thick top-to-the-east extensional shear zone. Geologic mapping, strain and kinematic analysis, and 40Ar/39Ar thermochronology suggest that the shear zone and detachment fault had an

92

Field Mapping At Raft River Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

Field Mapping At Raft River Geothermal Area (1990) Field Mapping At Raft River Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Raft River Geothermal Area (1990) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Field Mapping Activity Date 1990 Usefulness not indicated DOE-funding Unknown Notes Together, field and 40Ar/39Ar results suggest that Late Cretaceous extension occurred in the Sevier belt hinterland at the same time as shortening in the eastern foreland and at depth in the hinterland. Sufficient topography must have been present to drive upper-crustal extension in the eastern hinterland. References Wells, M.L.; Allmendinger, R.W.; Dallmeyer, R.D. (1 October 1990) Late Cretaceous extension in the hinterland of the Sevier thrust belt,

93

Blind Geothermal System | Open Energy Information  

Open Energy Info (EERE)

Blind Geothermal System Blind Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Blind Geothermal System Dictionary.png Blind Geothermal System: An area with a geothermal heat source, but no modern surface manifestations. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Many geothermal areas show no signs of geothermal activity at the surface if the heated water is too far below or no conduits to the surface are available. An area of geothermal activity with no surface features is referred to as a "blind geothermal system." Examples Want to add an example to this list? Select a Geothermal Resource Area to

94

Enhanced Geothermal Systems (EGS) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Enhanced Geothermal Systems (EGS) (Redirected from EGS) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Enhanced Geothermal Systems (EGS) Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps EGS Links Related documents and websites DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation)

95

Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report  

DOE Green Energy (OSTI)

The Raft River Geothermal Exploratory Hole No. 2 (RRGE-2) is the second exploratory hole drilled in the Raft River Valley location of the Idaho Geothermal R and D Project for the purpose of determining the existence of hot water in quantities suitable for commercial power generation and nonelectric applications. This well was drilled to a depth of 6,543 feet below ground level to obtain additional geological information for evaluation of the deep geothermal reservoir system. The drilling and completion of RRGE-2 are described. The daily drilling reports, drill bit records, casing records, and descriptions of the cementing, logging, coring and containment techniques employed during the drilling operation are included.

Speake, J.L. (comp.)

1976-08-01T23:59:59.000Z

96

Field Mapping At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Field Mapping At Raft River Geothermal Area (1977) Field Mapping At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Field Mapping Activity Date 1977 Usefulness useful DOE-funding Unknown Exploration Basis To estimate the permeability and storage parameters of the geothermal reservoir, and the possible existence of barrier boundaries. Notes Production and interference tests were conducted on the geothermal wells RRGE 1 and RRGE 2 during September--November, 1975. In all, three tests were conducted, two of them being short-duration production tests and one, a long duration interference test. The data collected during the tests also indicated that the reservoir pressure varies systematically in response to the changes in the Earth's gravitational field caused by the passage of the

97

Geothermal Site Assessment Using the National Geothermal Data System  

Open Energy Info (EERE)

Geothermal Site Assessment Using the National Geothermal Data System Geothermal Site Assessment Using the National Geothermal Data System (NGDS), with Examples from the Hawthorne Ammunition Depot Area Jump to: navigation, search Tool Summary Name: Geothermal Site Assessment Using the National Geothermal Data System (NGDS), with Examples from the Hawthorne Ammunition Depot Area Agency/Company /Organization: University of Nevada-Reno Sector: Energy Focus Area: Renewable Energy, Geothermal Topics: Resource assessment Resource Type: Case studies/examples, Publications Website: www.unr.edu/geothermal/pdffiles/PenfieldGRC2010_GeothermalSiteAssessme Cost: Free Language: English References: Paper[1] "This paper examines the features and functionality of the existing database, its integration into the 50-state NGDS, and its usage in

98

Hybrid Geothermal Heat Pump System Research Geothermal Project | Open  

Open Energy Info (EERE)

Hybrid Geothermal Heat Pump System Research Geothermal Project Hybrid Geothermal Heat Pump System Research Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Hybrid Geothermal Heat Pump System Research Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 2: Data Gathering and Analysis Project Description Geothermal, or ground-source heat pump systems have been shown to have superior energy performance to conventional heating and cooling systems in many building types and climates. There has been significant growth in the application of these systems; yet, geothermal systems have only been able to capture a few percent of the heating and cooling market. This is due primarily to the prohibitively high cost of installing the necessary ground loop.

99

Interpretation of electromagnetic soundings in the Raft River geothermal  

Open Energy Info (EERE)

Interpretation of electromagnetic soundings in the Raft River geothermal Interpretation of electromagnetic soundings in the Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Interpretation of electromagnetic soundings in the Raft River geothermal area, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: An electromagnetic (EM) controlled source survey was conducted in the Raft River Valley, near Malta, Idaho. The purpose of the survey was: to field test U.S. Geological Survey extra-low-frequency (ELF) equipment using a grounded wire source and receiver loop configuration (which is designed to measure the vertical magnetic field (Hz) at the loop center for various frequencies); to present an example of the EM sounding data and interpretations using a previously developed inversion program; and (3) to

100

National Geothermal Data System (NGDS)  

DOE Data Explorer (OSTI)

The National Geothermal Data System (NGDS) is a DOE-funded distributed network of databases and data sites. Much of the risk of geothermal energy development is associated with exploring for, confirming and characterizing the available geothermal resources. The overriding purpose of the NGDS is to help mitigate this up-front risk by serving as a central gateway for geothermal and relevant related data as well as a link to distributed data sources. Assessing and categorizing the nation's geothermal resources and consolidating all geothermal data through a publicly accessible data system will support research, stimulate public interest, promote market acceptance and investment, and, in turn, the growth of the geothermal industry. Major participants in the NGDS to date include universities, laboratories, the Arizona Geological Survey and Association of American State Geologists (Arizona Geological Survey, lead), the Geothermal Resources Council, and the U.S. Geological Survey. The Geothermal Energy Association is collaborating with the NGDS to insure that it meets the needs of the geothermal industry. [Copied from http://www.geothermaldata.org/Home.aspx

Note: This page contains sample records for the topic "river geothermal system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Enhanced Geothermal Systems  

DOE Green Energy (OSTI)

Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation/dissolution, as well as the variation in fracture aperture and pressure. Also, a three-dimensional model of injection/extraction has been developed to consider the impact poro- and thermoelastic stresses on fracture slip and injection pressure. These investigations shed light on the processes involved in the observed phenomenon of injection pressure variation (e.g., in Coso), and allow the assessment of the potential of thermal and chemical stimulation strategies.

Ahmad Ghassemi

2009-10-01T23:59:59.000Z

102

Completion report: Raft River Geothermal Production Well Five (RRGP-5)  

DOE Green Energy (OSTI)

The Raft River Geothermal Production Well Five (RRGP-5) is a production well in the Raft River KGRA (Known Geothermal Resource Area). The plan for this well included three barefoot legs. Due to technical and funding problems, two legs were drilled; only one leg is a producing leg. This report describes the entire drilling operation and includes daily drilling reports, drill bit records, casing records, and descriptions of cementing, logging, coring, and containment techniques.

Miller, L.G.; Prestwich, S.M.

1979-02-01T23:59:59.000Z

103

Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal...  

Open Energy Info (EERE)

evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Reservoir evaluation tests on RRGE...

104

Mathematical Analysis of a Geothermal System.  

E-Print Network (OSTI)

??The issue being examined is to design a more economical and efficient therefore superior geothermal system than currently in use in industry. Current geothermal systems (more)

Erceg, Ivan P.

2008-01-01T23:59:59.000Z

105

Core Analysis At Raft River Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

6) 6) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Core Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Fracture analysis to determine if sealing or open fractures exist Notes Core samples show diagenesis superimposed on episodic fracturing and fracture sealing. The minerals that fill fractures show significant temporal variations. Fracture sealing and low fracture porosity imply that only the most recently formed fractures are open to fluids. References Michael L. Batzle; Gene Simmons (1 January 1976) Microfractures in rocks from two geothermal areas Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Raft_River_Geothermal_Area_(1976)&oldid=47383

106

DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area  

Open Energy Info (EERE)

Area Area (1974-1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area (1974-1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique DC Resistivity Survey (Schlumberger Array) Activity Date 1974 - 1975 Usefulness not indicated DOE-funding Unknown Exploration Basis Hydrogeologic study of the area Notes In 1975, the U.S. Geological Survey made 70 Schlumberger resistivity soundings in the Upper Raft River Valley and in parts of the Raft River Valley. These soundings complement the 79 soundings made previously in the Raft River Valley and bring the total number of soundings to 149. This work was done as part of a hydrogeologic study of the area. The location,

107

The Snake River Geothermal Drilling Project - Innovative Approaches to  

Open Energy Info (EERE)

Snake River Geothermal Drilling Project - Innovative Approaches to Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description This project will implement and test a series of innovative geothermal exploration strategies in two phases. Phase 1 studies will comprise surface mapping, shallow seismic surveys, potential field surveys (gravity and magnetics), compilation of existing well data, and the construction of three dimension structure sections. Phase 2 will comprise two intermediate depth (1.5-1.6 km) slim-hole exploration wells with a full suite of geophysical borehole logs and a vertical seismic profile to extrapolate stratigraphy encountered in the well into the surrounding terrain. Both of the exploration wells will be fully cored to preserve a complete record of the volcanic stratigraphy that can be used in complementary science projects. This project will function in tandem with Project Hotspot, a continental scientific drilling project that focuses on the origin and evolution of the Yellowstone hotspot.

108

EA-1893: Canby Cascaded Geothermal Development System, Canby, California |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

93: Canby Cascaded Geothermal Development System, Canby, 93: Canby Cascaded Geothermal Development System, Canby, California EA-1893: Canby Cascaded Geothermal Development System, Canby, California Summary This EA will evaluate the environmental impacts of a proposal by Modoc Contracting Company to use DOE grant funds to fulfill its plan to expand its reliance on geothermal resources by producing more hot water and using it to produce power as well as thermal energy. The goal of the project is to complete a cascaded geothermal system that generates green power for the local community, provides thermal energy to support greenhouse and aquaculture operation, provide sustainable thermal energy for residential units, and eliminate the existing geothermal discharge to a local river. NOTE: NOTE: This EA has been cancelled.

109

Geochemical modeling of the Raft River geothermal field | Open Energy  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Geochemical modeling of the Raft River geothermal field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geochemical modeling of the Raft River geothermal field Details Activities (1) Areas (1) Regions (0) Abstract: The results to date of chemical modeling of the Raft River KGRA are presented. Earlier work indicated a northwest-southeast anomaly in the contours. Modeling techniques applied to more complete data allowed further definition of the anomaly. Models described in this report show the source of various minerals in the geothermal water. There appears to be a regional heat source that gives rise to uniform conductive heat flow in the region, but convective flow is concentrated near the upwelling in the Crook well

110

Update on the Raft River Geothermal Reservoir | Open Energy Information  

Open Energy Info (EERE)

on the Raft River Geothermal Reservoir on the Raft River Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Update on the Raft River Geothermal Reservoir Details Activities (1) Areas (1) Regions (0) Abstract: Since the last conference, a fourth well has been drilled to an intermediate depth and tested as a production well, with plans to use this well in the long term for injection of fluids into the strata above the production strata. The third, triple legged well has been fully pump tested, and the recovery of the second well from an injection well back to production status has revealed very interesting data on the reservoir conditions around that well. Both interference testing and geochemistry analysis shows that the third well is producing from a different aquifer

111

Geographic Information System At International Geothermal Area...  

Open Energy Info (EERE)

Indonesia (Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area...

112

Reconnaissance geophysical studies of the geothermal system in southern  

Open Energy Info (EERE)

geophysical studies of the geothermal system in southern geophysical studies of the geothermal system in southern Raft River Valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho Details Activities (4) Areas (1) Regions (0) Abstract: Gravity, aeromagnetic, and telluric current surveys in the southern Raft River have been used to infer the structure and the general lithology underlying the valley. The gravity data indicate the approximate thickness of the Cenozoic rocks and location of the larger normal faults, and the aeromagnetic data indicate the extent of the major Cenozoic volcanic units. The relative ellipse area contour map compiled from the telluric current survey generally conforms to the gravity map except for

113

Tracer Testing At Raft River Geothermal Area (1983) | Open Energy  

Open Energy Info (EERE)

3) 3) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Tracer Testing Activity Date 1983 Usefulness not indicated DOE-funding Unknown Exploration Basis To develop chemical tracing procedures for geothermal areas. Notes Two field experiments were conducted to develop chemical tracer procedures for use with injection-backflow testing, one on the fracture-permeability Raft River reservoir and the other on the matrix-permeability East Mesa reservoir. Results from tests conducted with incremental increases in the injection volume at both East Mesa and Raft River suggests that, for both reservoirs, permeability remained uniform with increasing distance from the well bore. Increased mixing during quiescent periods, between injection and

114

Conceptual Model At Raft River Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

Conceptual Model At Raft River Geothermal Area (1990) Conceptual Model At Raft River Geothermal Area (1990) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Develop a conceptual model to explain the exposed rocks. Notes Although commonly obscured by simple shear, pure shear fabrics occur locally within many metamorphic core complexes. The cover rocks of the Raft River metamorphic core complex exposed within the Black Pine Mountains display an early coaxial strain history which developed prior to the formation of low-angle fault-bounded allochthons. At higher structural levels this is documented by pressure shadows with straight sutures, and oppositely-rotated antitaxial calcite veins.

115

Conceptual Model At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

) ) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine time to cool the geothermal field with reinjection Notes If reinjection and production wells intersect connected fractures, it is expected that reinjected fluid would cool the production well much sooner than would be predicted from calculations of flow in a porous medium. A method for calculating how much sooner that cooling will occur was developed. References Kasameyer, P. W.; Schroeder, R. C. (1 January 1977) Application of thermal depletion model to geothermal reservoirs with fracture and pore permeability Retrieved from "http://en.openei.org/w/index.php?title=Conceptual_Model_At_Raft_River_Geothermal_Area_(1977)&oldid=473822

116

Raft River 5-MW(e) geothermal pilot plant project  

SciTech Connect

The Raft River 5-MW(e) Pilot Plant Project was started in 1976. Construction is scheduled for completion in July 1980, with three years of engineering and operational testing to follow. The plant utilized a 280/sup 0/F geothermal fluid energy source and a dual boiling isobutane cycle. Developmental efforts are in progress in the areas of down hole pumps and chemical treatment of geothermal fluid for cooling tower makeup.

Rasmussen, T.L.; Whitbeck, J.F.

1980-01-01T23:59:59.000Z

117

Field Mapping At Raft River Geothermal Area (1993) | Open Energy  

Open Energy Info (EERE)

Exploration Activity: Field Mapping At Raft River Geothermal Area (1993) Exploration Activity: Field Mapping At Raft River Geothermal Area (1993) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Field Mapping Activity Date 1993 Usefulness not indicated DOE-funding Unknown Exploration Basis To determine the importance of Early to Middle Miocene period in the northern Basin and Range region. Notes New apatite fission track cooling age and track length data, supplemented by other information, point to the Early to Middle Miocene as an additional time of very significant extension-induced uplift and range formation. Many ranges in a 700-km-long north-south corridor from the Utah-Nevada-Idaho border to southernmost Nevada experience extension and major exhumation in Early to Middle Miocene time. Reconnaissance apatite ages from the Toiyabe

118

Thermochronometry At Raft River Geothermal Area (1993) | Open Energy  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Raft River Geothermal Area (1993) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Thermochronometry Activity Date 1993 Usefulness not indicated DOE-funding Unknown Notes Constraints on the initial orientation and crustal position of the shear zone have been derived from 40Ar/39Ar thermochronology of mineral suites (hornblende, muscovite, biotite, and k-feldspar) collected within and beneath the shear zone along a 27 km transect parallel to the transport direction. References Wells, M.L.; Snee, L.W. (1 April 1993) Geologic and thermochronologic constraints on the initial orientation of the Raft River detachment and footwall shear zone

119

Geothermometry At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Raft River Geothermal Area (1980) Geothermometry At Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Geothermometry Activity Date 1980 Usefulness not indicated DOE-funding Unknown Notes Geothermometer temperatures of shallow samples suggest significant re-equilibration at temperatures below those found in the deep wells. Silica geothermometer temperatures of water samples from the deep wells are in reasonable agreement with measured temperatures, whereas Na-K-Ca temperatures are significantly higher than measured temperatures. The chemical characteristics of the water, as indicated by chloride concentration, are extremely variable in shallow and deep samples. Chloride concentrations of the deep samples range from 580 to 2200 mg/kg.

120

Micro-Earthquake At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

Micro-Earthquake At Raft River Geothermal Area (2011) Micro-Earthquake At Raft River Geothermal Area (2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Micro-Earthquake Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine seismicity before and after reservoir stimulation for EGS Notes The overall goal is to gather high resolution seismicity data before, during and after stimulation activities at the EGS projects. This will include both surface and borehole deployments to provide high quality seismic data for improved processing and interpretation methodologies. This will allow the development and testing of seismic methods for understanding the performance of the EGS systems, as well as aid in developing induced seismicity mitigation techniques that can be used for a variety of EGS

Note: This page contains sample records for the topic "river geothermal system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Raft River 5MW Geothermal Pilot Plant  

SciTech Connect

Elements of design of the 5 MW(e) binary cycle plant to be built in the Raft River Valley in Idaho are discussed. Advantages of the dual boiling cycle for use with moderate temperature (250 to 350/sup 0/F) resources are discussed. A breakdown of the heat loads and power requirements is presented. Various components, including pumps, heat exchangers, cooling tower, turbine-generators, and production and injection systems, are described. (JGB)

Whitbeck, J.F.; Piscitella, R.R.

1978-01-01T23:59:59.000Z

122

Computerized international geothermal information systems  

DOE Green Energy (OSTI)

The computerized international geothermal energy information system is reviewed. The review covers establishment of the Italy - United States linked data centers by the NATO Committee on Challenges of Modern Society, through a bilateral agreement, and up to the present time. The result of the information exchange project is given as the bibliographic and numerical data available from the data centers. Recommendations for the exchange of computerized geothermal information at the international level are discussed.

Phillips, S.L.; Lawrence, J.D.; Lepman, S.R.

1980-03-01T23:59:59.000Z

123

Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) |  

Open Energy Info (EERE)

Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Thermal And-Or Near Infrared Activity Date 1974 - 1976 Usefulness useful DOE-funding Unknown Exploration Basis Reconnaissance geothermal exploration Notes A TIR survey of the Raft River geothermal area prospect in Idaho where thermal waters move laterally in an alluvial plain and have no visible surface manifestations was undertaken as part of geothermal exploration. References K. Watson (1974) Geothermal Reconnaissance From Quantitative Analysis Of Thermal Infrared Imagery

124

Large Scale Geothermal Exchange System for Residential, Office and Retail  

Open Energy Info (EERE)

Geothermal Exchange System for Residential, Office and Retail Geothermal Exchange System for Residential, Office and Retail Development Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Large Scale Geothermal Exchange System for Residential, Office and Retail Development Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description RiverHeath will be a new neighborhood, with residences, shops, restaurants, and offices. The design incorporates walking trails, community gardens, green roofs, and innovative stormwater controls. A major component of the project is our reliance on renewable energy. One legacy of the land's industrial past is an onsite hydro-electric facility which formerly powered the paper factories. The onsite hydro is being refurbished and will furnish 100% of the project's electricity demand.

125

Total field aeromagnetic map of the Raft River known Geothermal Resource  

Open Energy Info (EERE)

field aeromagnetic map of the Raft River known Geothermal Resource field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Total field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; MAGNETIC SURVEYS; MAPS; RAFT RIVER VALLEY; AERIAL SURVEYING; GEOTHERMAL RESOURCES; IDAHO; KGRA; FEDERAL REGION X; GEOPHYSICAL SURVEYS; NORTH AMERICA; RESOURCES; SURVEYS; USA Author(s): Geological Survey, Denver, CO (USA) Published: DOE Information Bridge, 1/1/1981 Document Number: Unavailable DOI: 10.2172/5456508 Source: View Original Report Aeromagnetic Survey At Raft River Geothermal Area (1981) Raft River Geothermal Area

126

Snake River Plain Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Region Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Snake River Plain Geothermal Region Details Areas (8) Power Plants (1) Projects (2) Techniques (11) Map: {{{Name}}} "The Snake River Plain is a large arcuate structural trough that characterizes the topography of southern Idaho that can be divided into three sections: western, central, and eastern. The western Snake River Plain is a large tectonic graben or rift valley filled with several km of lacustrine (lake) sediments; the sediments are underlain by rhyolite and basalt, and overlain by basalt. The western plain began to form around 11-12 Ma with the eruption of rhyolite lavas and ignimbrites. The western plain is not parallel to North American Plate motion, and lies at a high angle to the central and eastern Snake River Plains. Its morphology is

127

Lower Ray River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lower Ray River Geothermal Area Lower Ray River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lower Ray River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.9839,"lon":-150.5797,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

Red River Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Red River Hot Springs Geothermal Area Red River Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Red River Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.7878,"lon":-115.1978,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

Raft River III Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Raft River III Geothermal Project Project Location Information Coordinates 42.099444444444°, -113.38222222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.099444444444,"lon":-113.38222222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Mary's River SW Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Mary's River SW Geothermal Project Project Location Information Coordinates 41.750555555556°, -115.30194444444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.750555555556,"lon":-115.30194444444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

Core Analysis At Raft River Geothermal Area (1981) | Open Energy  

Open Energy Info (EERE)

81) 81) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Raft River Geothermal Area (1981) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Core Analysis Activity Date 1981 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine fault and joint geometry Notes Core taken from less than 200 m above the decollement contains two sets of normal faults. The major set of faults dips between 500 and 70 0. These faults occur as conjugate pairs that are bisected by vertical extension fractures. The second set of faults dips 100 to 200 and may parallel part of the basal decollement or reflect the presence of listric normal faults in the upper plate. References Guth, L. R.; Bruhn, R. L.; Beck, S. L. (1 July 1981) Fault and

132

Conceptual Model At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

79) 79) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis Recommendations are made concerning field expansion and additional work needed to refine the overall reservoir model. Notes Models described in this report show the source of various minerals in the geothermal water. There appears to be a regional heat source that gives rise to uniform conductive heat flow in the region, but convective flow is concentrated near the upwelling in the Crook well vicinity. References Overton, H. L.; Chaney, R. E.; Mcatee, R. E.; Graham, D. L. (1 November 1979) Geochemical modeling of the Raft River geothermal field Overton, H. L.; Chaney, R. E.; Mcatee, D. L.; Graham, D. L. (1

133

Raft River well stimulation experiments: geothermal reservoir well stimulation program  

DOE Green Energy (OSTI)

The Geothermal Reservoir Well Stimulation Program (GRWSP) performed two field experiments at the Raft River KGRA in 1979. Wells RRGP-4 and RRGP-5 were selected for the hydraulic fracture stimulation treatments. The well selection process, fracture treatment design, field execution, stimulation results, and pre- and post-job evaluations are presented.

Not Available

1980-08-01T23:59:59.000Z

134

Geothermal resources of the Southern Powder River Basin, Wyoming  

DOE Green Energy (OSTI)

This report describes the geothermal resources of the Southern Powder River Basin. The report contains a discussion of the hydrology as it relates to the movement of heated water, a description and interpretation of the thermal regime, and four maps: a generalized geological map, a structure contour map, a thermal gradient contour map, and a ground water temperature map. 10 figs. (ACR)

Heasler, H.P.; Buelow, K.L.; Hinckley, B.S.

1985-06-13T23:59:59.000Z

135

Modeling-Computer Simulations At Raft River Geothermal Area (1977) | Open  

Open Energy Info (EERE)

Raft River Geothermal Area (1977) Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Simulate reservoir performance Notes Computer models describing both the transient reservoir pressure behavior and the time dependent temperature response of the wells were developed. A horizontal, two-dimensional, finite-difference model for calculating pressure effects was constructed to simulate reservoir performance. Vertical, two-dimensional, finite-difference, axisymmetric models for each

136

Flow Test At Raft River Geothermal Area (2008) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (2008) Flow Test At Raft River Geothermal Area (2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2008) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis To confirm resource using flow tests Notes Both production and injection wells were flow tested. Aslo includes interference testing across the well field. References Glaspey, Douglas J. (30 January 2008) Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Flow_Test_At_Raft_River_Geothermal_Area_(2008)&oldid=473856

137

Completion report: Raft River Geothermal Production Well Four (RRGP-4)  

DOE Green Energy (OSTI)

The fourth Raft River well was originally drilled to 866 m (2840 ft), for use as a test injection well. This well allowed the injection of geothermal fluids into the intermediate zone--above the geothermal production zone and below the shallow groundwater aquifers. After this testing, the well was deepened and cased for use as a production well. The well's designation was changed from RRGI-4 to RRGP-4. This report describes the drilling and completion of both drilling projects. Results of well tests are also included.

Miller, L.G.; Prestwich, S.M.

1979-02-01T23:59:59.000Z

138

Geological and Geothermal Investigation of the Lower Wind River Valley, Southwestern Washington Cascade Range  

DOE Green Energy (OSTI)

The Wind River Valley, on the west slope of the Cascade Range, is a northwest-trending drainage that joins the Columbia River near Carson, Washington. The region has been heavily dissected by fluvial and glacial erosion. Ridges have sharp crests and deep subsidiary valleys typical of a mature topography, with a total relief of as much as 900 m. The region is vegetated by fir and hemlock, as well as dense, brushy ground-cover and undergrowth. The lower 8 km of the valley is privately owned and moderately populated. The upper reaches lies within the Gifford Pinchot National Forest, and include several campgrounds and day parks, the Carson National Fish Hatchery, and the Wind River Ranger Station and Wind River Nursery of the US Forest Service. Logging activity is light due to the rugged terrain, and consequently, most valley slopes are not accessible by vehicle. The realization that a potential for significant geothermal resources exists in the Wind River area was brought about by earlier exploration activities. Geologic mapping and interpretation was needed to facilitate further exploration of the resource by providing a knowledge of possible geologic controls on the geothermal system. This report presents the detailed geology of the lower Wind River valley with emphasis on those factors that bear significantly on development of a geothermal resource.

Berri, Dulcy A.; Korosec, Michael A.

1983-01-01T23:59:59.000Z

139

Summary and results of the comprehensive environmental monitoring program at the INEL's Raft River geothermal site  

DOE Green Energy (OSTI)

The Raft River Geothermal Program was designed to demonstrate that moderate temperature (approx. 150/sup 0/C) geothermal fluids could be used to generate electricity and provide an alternate energy source for direct-use applications. The environmental program was initiated soon after drilling began. The major elements of the monitoring program were continued during the construction and experimental testing of the 5-MW(e) power plant. The monitoring studies established pre-development baseline conditions of and assessed changes in the physical, biological, and human environment. The Physical Environmental Monitoring Program collected baseline data on geology, subsidence, seismicity, meteorology and air quality. The Biological Environmental Monitoring Program collected baseline data on the flora and fauna of the terrestrial ecosystem, studied raptor disturbances, and surveyed the aquatic communities of the Raft River. The Human Environmental Monitoring Program surveyed historic and archaeological sites, considered the socioeconomic environment, and documented incidences of fluorosis in the Raft River Valley. In addition to the environmental monitoring programs, research on biological direct applications using geothermal water was conducted at Raft River. Areas of research included biomass production of wetland and tree species, aquaculture, agricultural irrigation, and the use of wetlands as a treatment or pretreatment system for geothermal effluents.

Mayes, R.A.; Thurow, T.L.; Cahn, L.S.

1982-01-01T23:59:59.000Z

140

FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND  

Open Energy Info (EERE)

FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND HYDROGEOLOGICAL IMPLICATIONS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND HYDROGEOLOGICAL IMPLICATIONS Details Activities (1) Areas (1) Regions (0) Abstract: Following a period of exploration and development in the mid-late 1970's, there was little activity at the Raft River geothermal field for the next ~20 years. US Geothermal Inc. acquired the project in 2002, and began commercial power generation in January 2008. From mid-2004 to present, US Geothermal Inc. has collected geochemical data from geothermal and monitoring wells in the field, as well as other shallow wells in the

Note: This page contains sample records for the topic "river geothermal system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Exploring the Raft River geothermal area, Idaho, with the dc resistivity  

Open Energy Info (EERE)

Exploring the Raft River geothermal area, Idaho, with the dc resistivity Exploring the Raft River geothermal area, Idaho, with the dc resistivity method (Abstract) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Exploring the Raft River geothermal area, Idaho, with the dc resistivity method (Abstract) Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY; GEOTHERMAL WELLS; KGRA; TEMPERATURE MEASUREMENT; ELECTRICAL PROPERTIES; EXPLORATION; GEOPHYSICAL SURVEYS; NORTH AMERICA; PACIFIC NORTHWEST REGION; PHYSICAL PROPERTIES; USA; WELLS Author(s): Zohdy, A.A.R.; Jackson, D.B.; Bisdorf, R.J. Published: Geophysics, 10/12/1975 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article

142

Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho  

Science Conference Proceedings (OSTI)

Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

Glaspey, Douglas J.

2008-01-30T23:59:59.000Z

143

Groundwater Sampling At Raft River Geothermal Area (2004-2011) | Open  

Open Energy Info (EERE)

Groundwater Sampling At Raft River Geothermal Area (2004-2011) Groundwater Sampling At Raft River Geothermal Area (2004-2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Groundwater Sampling At Raft River Geothermal Area (2004-2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Groundwater Sampling Activity Date 2004 - 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Collect new water chemistry data on geothermal field Notes From mid-2004 to present, US Geothermal Inc. has collected geochemical data from geothermal and monitoring wells in the field, as well as other shallow wells in the area. An additional sampling program was completed in July 2010 to measure a wider range of trace elements and key water isotopes (δ18O, δD, and 3H (Tritium)) in the field. The data indicate that the

144

Flow Test At Raft River Geothermal Area (2004) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (2004) Flow Test At Raft River Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2004) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 2004 Usefulness useful DOE-funding GRED II Notes Geothermal Resource Exploration and Definition Projects Raft River (GRED II): Re-assessment and testing of previously abandoned production wells. The objective of the U.S. Geothermal effort is to re-access the available wellbores, assess their condition, perform extensive testing of the reservoir to determine its productive capacity, and perform a resource utilization assessment. At the time of this paper, all five wells had been

145

Thermal And-Or Near Infrared At Raft River Geothermal Area (1997) | Open  

Open Energy Info (EERE)

Raft River Geothermal Area (1997) Raft River Geothermal Area (1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Raft River Geothermal Area (1997) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Thermal And-Or Near Infrared Activity Date 1997 Usefulness not indicated DOE-funding Unknown Exploration Basis Locate geothermal surface manifestations Notes Several examples of the use of TIR to locate geothermal surface manifestations and notes that TIR is more useful in remote areas. The analysis of three TIR images acquired during a diurnal cycle at Raft River is presented. The purpose of these images was to minimize the masking of temperature variations by vegetation and topography. References

146

Flow Test At Raft River Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (2006) Flow Test At Raft River Geothermal Area (2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2006) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 2006 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine field hydraulic conductivity using borehole impeller flowmeter data Notes A quantitative evaluation of borehole-impeller flowmeter data leads to estimated field hydraulic conductivity. Data were obtained during an injection test of a geothermal well at the Raft River geothermal test site in Idaho. Both stationary and trolling calibrations of the flowmeter were made in the well. Methods were developed to adjust for variations in hole

147

Core Analysis At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

9) 9) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Core Analysis Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis Permitted the lateral and vertical extrapolation of core and test data and bridged the gap between surface geophysical data and core analyses. Notes 1) Microcracks were observed in core samples. A set of observable characteristics of microcracks were discovered in racks from geothermal regions that appears to be unique and to have considerable potential for exploration for geothermal regions. Both permeability and electrical conductivity were measured for a suite of samples with a range of microcracks characteristics. A partial set of samples were collected to study migration of radioactive elements. 2) Laboratory analyses of cores

148

Geothermal-heating facilities for Carson Elementary School and Wind River Middle School  

DOE Green Energy (OSTI)

Carson Elementary School and Wind River Middle School are located in Carson, Washington, adjacent to the Wind River. Both schools are operated by the Stevenson-Carson School District. Carson Elementary, comprised of 49,000 square feet, was constructed in several phases beginning in 1951. The construction is variable, but is characterized by large expanses of single glass and uninsulated masonry areas. An oil fired steam boiler supplies a variety of terminal equipment. Wind River Middle School was built in 1972 and, as a result, exhibits much greater insulation levels. The 38,000 square foot structure is heated entirely by an electric resistance terminal reheat system. Carson Hot Springs Resort, located approximately one half mile from the schools, exhibits temperatures of 124/sup 0/F. In addition, geological work is in progress to better define the local geothermal resource. The feasibility of geothermal use at the school for space heating purposes is examined.

Not Available

1982-02-01T23:59:59.000Z

149

Reed River Hot Spring Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Reed River Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Reed River Hot Spring Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":67.26650701,"lon":-155.0521524,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

150

Well Log Techniques At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Well Log Techniques At Raft River Geothermal Area Well Log Techniques At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Well Log Techniques Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Characterize the rock using well log data. Notes Information is given on the following logs: dual-induction focused log, including resistivity, sp, and conductivity; acoustic log; compensated neutron; compensated densilog; and caliper. Lithologic breaks for a drill core to a depth of 2840 ft are illustrated. References Covington, H.R. (1 January 1978) Deep drilling data, Raft River geothermal area, Idaho Raft River geothermal exploration well No. 4 Retrieved from "http://en.openei.org/w/index.php?title=Well_Log_Techniques_At_Raft_River_Geothermal_Area_(1977)&oldid=6004

151

Groundwater Sampling At Raft River Geothermal Area (1974-1982) | Open  

Open Energy Info (EERE)

Groundwater Sampling At Raft River Geothermal Area (1974-1982) Groundwater Sampling At Raft River Geothermal Area (1974-1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Groundwater Sampling At Raft River Geothermal Area (1974-1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Groundwater Sampling Activity Date 1974 - 1982 Usefulness useful DOE-funding Unknown Exploration Basis Collect baseline chemical data Notes Ground-water monitoring near the Raft River site was initiated in 1974 by the IDWR. This effort consisted of semiannual chemical sampling of 22 irrigation wells near the Raft River geothermal development area. This program yielded useful baseline chemical data; however, several problems were inherent. For example, access to water pumped from the wells is

152

Raft River II Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Raft River II Geothermal Project Raft River II Geothermal Project Project Location Information Coordinates 42.605555555556°, -113.24055555556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.605555555556,"lon":-113.24055555556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

153

Study of Hybrid Geothermal Heat Pump Systems  

Science Conference Proceedings (OSTI)

Hybrid Ground Source Heat Pump systems often combine a traditional geothermal system with either a cooling tower or fluid cooler for heat rejection and a boiler or solar heat collector for heat addition to the loop. These systems offer the same energy efficiency benefits as full geothermal systems to utilities and their customers but at a potentially lower first cost. Many hybrid systems have materialized to resolve heat buildup in full geothermal system loops where loop temperatures continue to rise as ...

2010-12-06T23:59:59.000Z

154

Geothermal Data from the National Geothermal Data System (NGDS)  

DOE Data Explorer (OSTI)

The National Geothermal Data System (NGDS) is a distributed data system providing access to information resources related to geothermal energy from a network of data providers. Data are contributed by academic researchers, private industry, and state and federal agencies. Built on a scalable and open platform through the U.S. Geoscience Information Network (USGIN), NGDS respects data provenance while promoting shared resources.Since NGDS is built using a set of open protocols and standards, relying on the Open Geospatial Consortium (OGC) and International Organization for Standardization (ISO), members of the community may access the data in a variety of proprietary and open-source applications and software. In addition, developers can add functionality to the system by creating new applications based on the open protocols and standards of the NGDS. The NGDS, supported by the U.S. Department of Energys Geothermal Technology Program, is intended to provide access to all types of geothermal data to enable geothermal analysis and widespread public use in an effort to reduce the risk of geothermal energy development [copied from http://www.geothermaldata.org/page/about]. See the long list of data contributors at http://geothermaldata.org/page/data-types-and-contributors#data-contributors.

155

Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing  

Open Energy Info (EERE)

Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Details Activities (6) Areas (1) Regions (0) Abstract: This report covers the drilling and testing of the slim well 56-4 at the Reese River Geothermal Project in Lander County, Nevada. This well was partially funded through a GRED III Cooperative Funding Agreement # DE-FC36-04GO14344, from USDOE. Author(s): William R. Henkle, Joel Ronne Published: Geothermal Technologies Legacy Collection, 2008 Document Number: Unavailable DOI: Unavailable Source: View Original Report Compound and Elemental Analysis At Reese River Area (Henkle & Ronne, 2008)

156

Geothermal systems of northern Nevada  

DOE Green Energy (OSTI)

Hot springs are numerous and nearly uniformly distributed in northern Nevada. Most occur on the flanks of basins, along Basin and Range (late Miocene to Holocene) faults, while some occur in the inner parts of the basins. Surface temperatures of the springs range from slightly above ambient to boiling; some springs are superheated. Maximum subsurface water temperatures calculated on the basis of quartz solubility range as high as 252/sup 0/C, although most are below 190/sup 0/C. Flows range from a trickle to several hundred liters per minute. The Nevada geothermal systems differ markedly from the power-producing system at The Geysers, Calif., and from those areas with a high potential for power production (e.g., Yellowstone Park, Wyo.; Jemez Mountains, N. Mex.). These other systems are associated with Quaternary felsic volcanic rocks and probably derive their heat from cooling magma rather high in the crust. In northern Nevada, however, felsic volcanic rocks are virtually all older than 10 million years, and analogous magmatic heat sources are, therefore, probably lacking. Nevada is part of an area of much higher average heat flow than the rest of the United States. In north-central Nevada, geothermal gradients are as great as 64/sup 0/C per kilometer in bedrock and even higher in basin fill. The high gradients probably result from a combination of thin crust and high temperature upper mantle. It is suggested that the geothermal systems of northern Nevada result from circulation of meteoric waters along Basin and Range faults and that their temperature chiefly depends upon (1) depth of circulation and (2) the geothermal gradient near the faults.

Hose, R.K.; Taylor, B.E.

1974-01-01T23:59:59.000Z

157

Agribusiness geothermal energy utilization potential of Klamath and Western Snake River Basins, Oregon. Final report  

DOE Green Energy (OSTI)

Resource assessment and methods of direct utilization for existing and prospective food processing plants have been determined in two geothermal resource areas in Oregon. Ore-Ida Foods, Inc. and Amalgamated Sugar Company in the Snake River Basin; Western Polymer Corporation (potato starch extraction) and three prospective industries--vegetable dehydration, alfalfa drying and greenhouses--in the Klamath Basin have been analyzed for direct utilization of geothermal fluids. Existing geologic knowledge has been integrated to indicate locations, depth, quality, and estimated productivity of the geothermal reservoirs. Energy-economic needs and balances, along with cost and energy savings associated with field development, delivery systems, in-plant applications and fluid disposal have been calculated for interested industrial representatives.

Lienau, P.J.

1978-03-01T23:59:59.000Z

158

Conceptual Model At Raft River Geothermal Area (1987) | Open Energy  

Open Energy Info (EERE)

Exploration Activity Details Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1987 Usefulness not indicated DOE-funding Unknown Exploration Basis To model the kinematics of compressional and extensional ductile shearing deformation Notes Analysis of shear criteria enables the kinematics of two main ductile-shearing events (D1 and D2) to be established in the Raft River, Grouse Creek and Albion 'metamorphic core complex'. The first event (D1) is a NNE-thrusting and corresponds to Mesozoic shortening. A well developed non-coaxial ductile deformation (D2), of Cenozoic age, is marked by the occurrence of opposing eastward (in Raft River) and westward shear criteria (in Albion-Grouse Creek). These characterize an arch structure

159

Calpine Enhanced Geothermal Systems Project Final Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Calpine Enhanced Geothermal Systems Project Final Environmental Assessment June 2010 Prepared for: U.S. Department of Energy 1617 Cole Boulevard Golden, CO 80401 Prepared by: RMT...

160

Geographic Information Systems- Tools For Geotherm Exploration...  

Open Energy Info (EERE)

that can help the geothermal industry in exploration, tracer analysis, infrastructure management, and the general distribution and use of data. GIS systems are highly...

Note: This page contains sample records for the topic "river geothermal system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report |  

Open Energy Info (EERE)

Exploratory Hole No. 1 (RRGE-1). Completion report Exploratory Hole No. 1 (RRGE-1). Completion report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; BOREHOLES; WELL DRILLING; GEOTHERMAL EXPLORATION; GEOTHERMAL WELLS; IDAHO; EQUIPMENT; GEOLOGICAL SURVEYS; WELL CASINGS; WELL LOGGING; CAVITIES; DRILLING; EXPLORATION; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA; WELLS Author(s): Reynolds Electrical and Engineering Co., Inc., Las Vegas, Nev. (USA) Published: DOE Information Bridge, 10/1/1975 Document Number: Unavailable DOI: 10.2172/5091938 Source: View Original Report Exploratory Well At Raft River Geothermal Area (1975) Raft River Geothermal Area Retrieved from

162

Snake River Plain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Snake River Plain Geothermal Project Project Location Information Coordinates 43.136944444444°, -115° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.136944444444,"lon":-115,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

163

Conceptual Model At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

0) 0) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the relevant data necessary to assess a geothermal reservoir in similar rock types and use cross plots to potentially define the producing zones. Notes A conceptual model was developed that uses all geophysical data that has been collected on the area to determine the rock types and reasonable values of the parameters of interest. Emphasis has been on developing a simple interpretation scheme from a minimum of data sets. However, the cross plotting of various parameters has allowed a determination of rock types and an analysis of the degree of alteration and the density of

164

Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal  

Open Energy Info (EERE)

evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Results of the production and interference tests conducted on the geothermal wells RRGE 1 and RRGE 2 in Raft River Valley, Idaho during September--November, 1975 are presented. In all, three tests were conducted, two of them being short-duration production tests and one, a long duration interference test. In addition to providing estimates on the permeability and storage parameters of the geothermal reservoir, the tests also indicated the possible existence of barrier boundaries. The data

165

Isotopic Analysis-Fluid At Raft River Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

Analysis-Fluid At Raft River Geothermal Area Analysis-Fluid At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1982 Usefulness not useful DOE-funding Unknown Exploration Basis Determine which reservoir model best matches the isotope data. Notes 1) Chemical and light-stable isotope data are presented for water samples from the Raft River geothermal area and nearby. On the basis of chemical character, as defined by a trilinear plot of per cent milliequivalents, and light-stable isotope data, the waters in the geothermal area can be divided into waters that have and have not mixed with cold water. 2) Helium isotope ratios have been measured in geothermal fluids. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic

166

Micro-Earthquake At Raft River Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis Develop a background seismicity before power production begins Notes Local seismic networks were established to monitor the background seismicity prior to initiation of geothermal power production. The Raft River study area is currently seismically quiet down to the level of approximately magnitude one. References Zandt, G.; Mcpherson, L.; Schaff, S.; Olsen, S. (1 May 1982) Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and

167

Enhanced Geothermal Systems (EGS) R&D Program, Status Report: Foreign Research on Enhanced Geothermal Systems  

DOE Green Energy (OSTI)

This report reviews enhanced geothermal systems (EGS) research outside the United States. The term ''enhanced geothermal systems'' refers to the use of advanced technology to extract heat energy from underground in areas with higher than average heat flow but where the natural permeability or fluid content is limited. EGS covers the spectrum of geothermal resources from low permeability hydrothermal to hot dry rock.

McLarty, Lynn; Entingh, Daniel

2000-09-29T23:59:59.000Z

168

Two-dimensional simulation of the Raft River geothermal reservoir and  

Open Energy Info (EERE)

dimensional simulation of the Raft River geothermal reservoir and dimensional simulation of the Raft River geothermal reservoir and wells. (SINDA-3G program) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Two-dimensional simulation of the Raft River geothermal reservoir and wells. (SINDA-3G program) Details Activities (1) Areas (1) Regions (0) Abstract: Computer models describing both the transient reservoir pressure behavior and the time dependent temperature response of the wells at the Raft River, Idaho, Geothermal Resource were developed. A horizontal, two-dimensional, finite-difference model for calculating pressure effects was constructed to simulate reservoir performance. Vertical, two-dimensional, finite-difference, axisymmetric models for each of the three existing wells at Raft River were also constructed to describe the

169

Fluid Inclusion Analysis At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Raft River Geothermal Area (2011) Fluid Inclusion Analysis At Raft River Geothermal Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Raft River Geothermal Area (2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2011 Usefulness not indicated DOE-funding Unknown Notes Hydrogen isotope values of muscovite (δDMs ∼-100‰) and fluid inclusions in quartz (δDFluid ∼-85‰) indicate the presence of meteoric fluids during detachment dynamics. Recrystallized grain-shape fabrics and quartz c-axis fabric patterns reveal a large component of coaxial strain (pure shear), consistent with thinning of the detachment section. Therefore, the high thermal gradient preserved in the Raft River

170

Completion report: Raft River Geothermal Injection Well Six (RRGI-6)  

DOE Green Energy (OSTI)

Raft River Geothermal Injection Well Six (RRGI-6) is an intermediate-depth injection well designed to accept injection water in the 600 to 1000 m (2000 to 3500 ft) depth range. It has one barefoot leg, and it was drilled so that additional legs can be added later; if there are problems with intermediate-depth injection, one or more additional legs could be directionally drilled from the current well bore. Included are the reports of daily drilling records of drill bits, casings, and loggings, and descriptions of cementing, coring, and containment.

Miller, L.G.; Prestwich, S.M.

1979-02-01T23:59:59.000Z

171

Co-Produced Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Produced Geothermal Systems Produced Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Co-Produced Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Dictionary.png Co-Produced Geothermal System: Co-Produced water is the water that is produced as a by-product during oil and gas production. If there is enough water produced at a high enough temperature co-produced water can be utilized for electricity production. Other definitions:Wikipedia Reegle General Air Cooled Co-Produced geothermal system demonstration at RMOTC oil site.

172

Geothermal system saving money at fire station | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal system saving money at fire station Geothermal system saving money at fire station April 9, 2010 - 3:45pm Addthis Joshua DeLung What will the project do? A geothermal...

173

Direct-Current Resistivity Survey At Raft River Geothermal Area (1983) |  

Open Energy Info (EERE)

Raft River Geothermal Area (1983) Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date 1983 Usefulness not indicated DOE-funding Unknown Notes The objectives of the resistivity measurements were to determine if measureable changes could be observed and whether they could be used to infer the direction of fluid flow. Most of the apparent resistivity changes observed after the injection phase of Test 5 are smaller than the estimated standard deviation of the measurements. However, the contour map of the changes suggest an anomalous trend to the northeast which is similar to the

174

Flow Test At Raft River Geothermal Area (1979) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (1979) Flow Test At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To allow for the lateral and vertical extrapolation of core and test data and bridged the gap between surface geophysical data and core analyses. Notes Temperature and flowmeter logs provide evidence that these fractures and faults are conduits that conduct hot water to the wells. One of the intermediate depth core holes penetrated a hydrothermally altered zone that includes several fractures producing hot water. This altered production

175

Fault and joint geometry at Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

and joint geometry at Raft River geothermal area, Idaho and joint geometry at Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Fault and joint geometry at Raft River geothermal area, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Raft River geothermal reservoir is formed by fractures in sedimentary strata of the Miocene and Pliocene Salt Lake Formation. The fracturing is most intense at the base of the Salt Lake Formation, along a decollement that dips eastward at less than 5 0 on top of metamorphosed Precambrian and Lower Paleozoic rocks. Core taken from less than 200 m above the decollement contains two sets of normal faults. The major set of faults dips between 50 0 and 70 0. These faults occur as conjugate pairs that are bisected by vertical extension fractures. The second set of faults

176

Ground Gravity Survey At Raft River Geothermal Area (1957-1961) | Open  

Open Energy Info (EERE)

Ground Gravity Survey At Raft River Geothermal Area (1957-1961) Ground Gravity Survey At Raft River Geothermal Area (1957-1961) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Raft River Geothermal Area (1957-1961) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1957 - 1961 Usefulness not indicated DOE-funding Unknown Notes From 1957 to 1961 a regional gravity survey was made over the northern part of the Great Salt Lake Desert and adjacent areas in Utah, eastern Nevada, and southeastern Idaho. A total of 1040 stations were taken over an area of about 7000 square miles. The results were compiled as a Bouguer gravity anomaly map with a contour interval of 2 mgal. The Bouguer values ranged

177

Surface Water Sampling At Raft River Geothermal Area (1973) | Open Energy  

Open Energy Info (EERE)

Surface Water Sampling At Raft River Geothermal Area (1973) Surface Water Sampling At Raft River Geothermal Area (1973) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Water Sampling At Raft River Geothermal Area (1973) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Surface Water Sampling Activity Date 1973 Usefulness not indicated DOE-funding Unknown Exploration Basis At least 380 hot springs and wells are known to occur throughout the central and southern parts of Idaho. Notes One hundred twenty-four of 380 hot springs and wells in the central and southern parts of Idaho were inventoried as a part of the study reported on herein. At the spring vents and wells visited, the thermal waters flow from rocks ranging in age from Precambrian to Holocene and from a wide range of

178

Gamma Log At Raft River Geothermal Area (1979) | Open Energy Information  

Open Energy Info (EERE)

Gamma Log At Raft River Geothermal Area (1979) Gamma Log At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gamma Log At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Gamma Log Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To allow for the lateral and vertical extrapolation of core and test data and bridged the gap between surface geophysical data and core analyses. Notes Borehole gamma spectrometry can be used to identify anomalous concentration of uranium, thorium, and potassium which are probably due to transportation by hydrothermal solutions. Computer crossplotting was used as an aid to the identification of such rock types as quartzite, quartz monzonite, and

179

Economic evaluation of four types of dry/wet cooling applied to the 5-MWe Raft River geothermal power plant  

DOE Green Energy (OSTI)

A cost study is described which compared the economics of four dry/wet cooling systems to use at the existing Raft River Geothermal Plant. The results apply only at this site and should not be generalized without due consideration of the complete geothermal cycle. These systems are: the Binary Cooling Tower, evaporative condenser, Combin-aire, and a metal fin-tube dry cooling tower with deluge augmentation. The systems were evaluated using cooled, treated geothermal fluid instead of ground or surface water in the cooling loops. All comparisons were performed on the basis of a common plant site - the Raft River 5 MWe geothermal plant in Idaho. The Binary Cooling Tower and the Combin-aire cooling system were designed assuming the use of the isobutane/water surface condenser currently installed at the Raft River Plant. The other two systems had the isobutane ducted to the evaporative condensers. Capital credit was not given to the system employing the direct condensing process. The cost of the systems were estimated from designs provided by the vendors. The levelized energy cost range for each cooling system is listed below. The levelized energy cost reflects the incremental cost of the cooling system for the life of the plant. The estimates are presented in 1981 dollars.

Bamberger, J.A.; Allemann, R.T.

1982-07-01T23:59:59.000Z

180

Philip, South Dakota geothermal district heating systems  

SciTech Connect

The geothermal heating project in Philip, South Dakota which uses the waste water from the Haakon School has now been in operation for 15 years. This project was one of the 23 cost shared by the U.S. DOE starting in 1978, of which 15 became operational. This article describes the geothermal heating system for eight buildings in downtown Philip.

Lund, J.W.

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "river geothermal system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NUMERICAL SIMULATION OF RESERVOIR COMPACTION IN LIQUID DOMINATED GEOTHERMAL SYSTEMS  

E-Print Network (OSTI)

13. modeling of liquid geothermal systems: Ph.D. thesis,of water dominated geothermal fields with large temper~of land subsidence in geothermal areas: Proc. 2nd Int. Symp.

Lippmann, M.J.

2010-01-01T23:59:59.000Z

182

Strategies To Detect Hidden Geothermal Systems Based On Monitoring...  

Open Energy Info (EERE)

Geothermal Systems Based On Monitoring and Analysis Of CO2 In The Near-Surface Environment Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article:...

183

Assessment of Hybrid Geothermal Heat Pump Systems - Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

cool- ing needs of the building and offers general guidelines Assessment of Hybrid Geothermal Heat Pump Systems Geothermal heat pumps offer attractive choice for space...

184

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID...  

Open Energy Info (EERE)

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: TRACING...

185

A Geothermal District-Heating System and Alternative Energy Research...  

Open Energy Info (EERE)

Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project...

186

Earth Tidal Analysis At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Earth Tidal Analysis At Raft River Geothermal Earth Tidal Analysis At Raft River Geothermal Area(1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the reservoir response to tidal and barometric effects Notes Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters. References Hanson, J. M. (29 May 1980) Reservoir response to tidal and barometric effects

187

Neutron imaging for geothermal energy systems  

Science Conference Proceedings (OSTI)

Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or engineered within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

Bingham, Philip R [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Polsky, Yarom [ORNL

2013-01-01T23:59:59.000Z

188

Effects of irrigation on crops and soils with Raft River geothermal water  

DOE Green Energy (OSTI)

The Raft River Irrigation Experiment investigated the suitability of using energy-expended geothermal water for irrigation of selected field-grown crops. Crop and soil behavior on plots sprinkled or surface irrigated with geothermal water was compared to crop and soil behavior on plots receiving water from shallow irrigation wells and the Raft River. In addition, selected crops were produced, using both geothermal irrigation water and special management techniques. Crops irrigated with geothermal water exhibited growth rates, yields, and nutritional values similar to comparison crops. Cereal grains and surface-irrigated forage crops did not exhibit elevated fluoride levels or accumulations of heavy metals. However, forage crops sprinkled with geothermal water did accumulate fluorides, and leaching experiments indicate that new soils receiving geothermal water may experience increased salinity, exchangeable sodium, and decreased permeability. Soil productivity may be maintained by leaching irrigations.

Stanley, N.E.; Schmitt, R.C.

1980-01-01T23:59:59.000Z

189

Conceptual Model At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

2011) 2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Explore for development of an EGS demonstration project Notes The reservoir is developed in fractured Proterozoic schist and quartzite, and Archean quartz monzonite cut by younger diabase intrusions. The basement complex was deformed during the mid Tertiary and covered by approximately 5000 ft of late Tertiary sedimentary and volcanic deposits. Listric normal faults of Cenozoic age disrupt the Tertiary deposits but do not offset the basement rocks. RRG-9, the target well, was drilled southwest of the main well field to a measured depth (MD) of 6089 ft. The well is deviated to the west and cased to a depth of 2316 ft MD. It

190

Small geothermal electric systems for remote powering  

DOE Green Energy (OSTI)

This report describes conditions and costs at which quite small (100 to 1,000 kilowatt) geothermal systems could be used for off-grid powering at remote locations. This is a first step in a larger process of determining locations and conditions at which markets for such systems could be developed. The results suggest that small geothermal systems offer substantial economic and environmental advantages for powering off-grid towns and villages. Geothermal power is most likely to be economic if the system size is 300 kW or greater, down to reservoir temperatures of 100{degree}C. For system sizes smaller than 300 kW, the economics can be favorable if the reservoir temperature is about 120{degree}C or above. Important markets include sites remote from grids in many developing and developed countries. Estimates of geothermal resources in many developing countries are shown.

Entingh, Daniel J.; Easwaran, Eyob.; McLarty, Lynn

1994-08-08T23:59:59.000Z

191

Definition: Enhanced Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Definition Also Known As EGS, Engineered Geothermal Systems References http:www1.eere.energy.govgeothermalenhancedsystems.html Ret LikeLike UnlikeLike You like this.Sign...

192

Modeling-Computer Simulations At Raft River Geothermal Area (1979) | Open  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To evaluate the hydrodynamics of the unconfined aquifer. Notes This study covers about 1000 mi2 (2600 km2) of the southern Raft River drainage basin in south-central Idaho and northwest Utah. The main area of interest, approximately 200 mi2 (520 km2) of semiarid agricultural and rangeland in the southern Raft River Valley that includes the known Geothermal Resource Area near Bridge, Idaho, was modelled numerically. Computed and estimated transmissivity values range from 1200 ft2 per day

193

Subsurface geology of the Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

geology of the Raft River geothermal area, Idaho geology of the Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Subsurface geology of the Raft River geothermal area, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River Valley occupies an upper Cenozoic structural basin filled with nearly 1600 m of fluvial silt, sand, and gravel. Rapid facies and thickness changes, steep initial dips (30 0C), and alteration make correlation of basin-fill depositional units very difficult. Hydrothermal alteration products in the form of clays and zeolites, and deposition of secondary calcite and silica increase with depth. The abundance of near-vertical open fractures also increases with depth, allowing greater movement of hydrothermal fluids near the base of the Cenozoic basin fill.

194

Woody's Feather River Hot Springs Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Woody's Feather River Hot Springs Pool & Spa Low Temperature Geothermal Woody's Feather River Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Woody's Feather River Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Woody's Feather River Hot Springs Sector Geothermal energy Type Pool and Spa Location Twain, California Coordinates 40.0201673°, -121.0719031° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

195

Modeling-Computer Simulations At Raft River Geothermal Area (1980) | Open  

Open Energy Info (EERE)

80) 80) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis From refined estimates of reservoir coefficients better predictions of interference effects and long-term drawdown in the wells can be made. Notes Analytic methods have been used during reservoir testing to calculate reservoir coefficients. However, anisotropy of the reservoir due to fractures has not been taken into account in these calculations and estimates of these coefficients need to be refined. In conjunction with the

196

Micro-Earthquake At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

9) 9) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis Refraction Survey Notes Interpretation of seismic refraction recordings in the area yielded compressional velocities from near the surface to the crystalline basement at a maximum depth of approximately 1600 m. The results show a complex sequence of sediments and volcanic flows overlying basement. Velocities in the sedimentary section vary laterally. Correlation with well data suggests that zones of higher velocities may correspond to zones where sediments are

197

Evaluation of geothermal cooling systems for Arizona  

DOE Green Energy (OSTI)

Arizona consumes nearly 50 percent more electricity during the peak summer season of May through part of October, due to the high cooling load met by electrical-driven air conditioning units. This study evaluates two geothermal-driven cooling systems that consume less electricity, namely, absorption cooling and heat pumps. Adsorption cooling requires a geothermal resource above 105{sup 0}C (220{sup 0}F) in order to operate at a reasonable efficiency and capacity. Geothermal resources at these temperatures or above are believed existing in the Phoenix and Tucson areas, but at such depths that geothermal-driven absorption systems have high capital investments. Such capital investments are uneconomical when paid out over only five months of operation each year, but become economical when cascaded with other geothermal uses. There may be other regions of the state, where geothermal resources exist at 105{sup 0}C (220{sup 0}F) or higher at much less depth, such as the Casa Grande/Coolidge or Hyder areas, which might be attractive locations for future plants of the high-technology industries. Geothermal assisted heat pumps have been shown in this study to be economical for nearly all areas of Arizona. They are more economical and reliable than air-to-air heat pumps. Such systems in Arizona depend upon a low-temperature geothermal resource in the narrow range of 15.5 to 26.6{sup 0}C (60 to 80{sup 0}F), and are widely available in Arizona. The state has over 3000 known (existing) thermal wells, out of a total of about 30,000 irrigation wells.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

198

Near-Surface CO2 Monitoring And Analysis To Detect Hidden Geothermal Systems  

E-Print Network (OSTI)

dioxide flux at the Dixie Valley geothermal field, Nevada;volcanic system, USA Dixie Valley Geothermal Field, USAProvince system like the Dixie Valley (Nevada) geothermal

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2005-01-01T23:59:59.000Z

199

Chemistry and materials in geothermal systems  

DOE Green Energy (OSTI)

The development of a geothermal fluid, from its origin as meteoric water precipitating on the earth's surface, as it flows through the soils and rocks of geological formations, to the point where it returns to the surface as a hot spring, geyser, well, etc. is traced. Water of magmatic origin is also included. The tendency of these hydrothermal fluids to form scales by precipitation of a portion of their dissolved solids is noted. A discussion is presented of types of information required for materials selection for energy systems utilizing geothermal fluids, including pH, temperature, the speciation of the particular geothermal fluid (particularly chloride, sulfide and carbon dioxide content) and various types of corrosive attack on common materials. Specific examplers of materials response to geothermal fluid are given.

Miller, R.L.

1979-05-01T23:59:59.000Z

200

Audio-Magnetotellurics At Raft River Geothermal Area (1978) | Open Energy  

Open Energy Info (EERE)

Audio-Magnetotellurics At Raft River Geothermal Area Audio-Magnetotellurics At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Audio-Magnetotellurics Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration Basis To infer the structure and the general lithology underlying the valley Notes An area of low apparent resistivity values defined by the audiomagnetotelluric (AMT) survey appears to outline the extent of the geothermal reservoir even though the reservoir is deeper than the penetration of the survey. Self-potential anomalies relate to near surface hydrology. Upward leakage from the reservoir produces shallower effects that were measured by the AMT survey. References Mabey, D.R.; Hoover, D.B.; O'Donnell, J.E.; Wilson, C.W. (1

Note: This page contains sample records for the topic "river geothermal system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Geothermal Heat Pump System for New Student Housing Geothermal...  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

202

Geothermal Heat Pump System for Ice Arena Geothermal Project...  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

203

Development of geothermal-well-completion systems. Final report  

DOE Green Energy (OSTI)

Results of a three year study concerning the completion of geothermal wells, specifically cementing, are reported. The research involved some specific tasks: (1) determination of properties an adequate geothermal well cement must possess; (2) thorough evaluation of current high temperature oilwell cementing technology in a geothermal context; (3) basic research concerning the chemical and physical behavior of cements in a geothermal environment; (4) recommendation of specific cement systems suitable for use in a geothermal well.

Nelson, E.B.

1979-01-01T23:59:59.000Z

204

Induced seismicity associated with enhanced geothermal system  

E-Print Network (OSTI)

Cooper Basin, Australia. Geothermal Resources Council Trans.a hot fractured rock geothermal project. Engineering Geologyseismicity in The Geysers geothermal area, California. J.

Majer, Ernest L.

2006-01-01T23:59:59.000Z

205

Heating and cooling the Raft River geothermal transite pipe line  

SciTech Connect

A preliminary transient heat transfer analysis to aid in defining operating limits for the 4000-foot-long transite pipe line at the Raft River geothermal test site was completed. The heat transfer problem was to determine the time required to cool down the line from a 285/sup 0/F operating temperature to 50/sup 0/F and the time to heat up the line from 50/sup 0/F to 285/sup 0/F such that the temperature differential across the pipe wall will not exceed 25/sup 0/F. The pipe and the surrounding soil was modeled with a two-dimensional heat transfer computer code assuming constant convective heat transfer at the soil-atmosphere interface. The results are sensitive to the soil thermal conductivity used in the calculation and imply that measurement of soil thermal conductivity used in the calculation and imply that measurement of soil thermal properties should be made in order to refine the calculations. Also, the effect of variable convective heat transfer at the soil surface should be investigated. However, the results reported here indicate the order of magnitude to be expected for cool-down and heat-up times when operating the transite pipe at the stated condition.

Shaffer, C.J.

1977-06-01T23:59:59.000Z

206

Geographic Information System At International Geothermal Area, Indonesia  

Open Energy Info (EERE)

International Geothermal Area, Indonesia International Geothermal Area, Indonesia (Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area Indonesia (Nash, Et Al., 2002) Exploration Activity Details Location International Geothermal Area Indonesia Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes GIs also facilitates grid data (raster) analysis and visualization. For example, a raster GIs layer, derived from an enhanced Landsat 7 Thematic Mapper (TM) image of the Karaha-Telaga Bodas area, Indonesia, is shown in Figure 2. References Gregory D. Nash, Christopher Kesler, Michael C. Adam (2002) Geographic Information Systems- Tools For Geotherm Exploration, Tracers

207

Temporal changes in noble gas compositions within the Aidlin sector ofThe Geysers geothermal system  

E-Print Network (OSTI)

felsite unit), Geysers geothermal field, California: a 40California A summary. Geothermal Resources Councilsystematics of a continental geothermal system: results from

Dobson, Patrick; Sonnenthal, Eric; Kennedy, Mack; van Soest, Thijs; Lewicki, Jennifer

2006-01-01T23:59:59.000Z

208

Geochemical characterization of geothermal systems in the Great...  

Open Energy Info (EERE)

insights into the possible contributions of geothermal systems to groundwater chemistry and development of mitigation strategies for attendant environmental issues....

209

Red River Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Pool & Spa Low Temperature Geothermal Facility Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Red River Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Red River Hot Springs Sector Geothermal energy Type Pool and Spa Location Elk City, Idaho Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

210

Potential use of geothermal resources in the Snake River Basin: an environmental overview. Volume I  

DOE Green Energy (OSTI)

Environmental baseline data for the Snake River Plain known geothermal resource areas (KGRAs) are evaluated for geothermal development. The objective is to achieve a sound data base prior to geothermal development. These KGRAs are: Vulcan Hot Springs, Crane Creek, Castle Creek, Bruneau, Mountain Home, Raft River, Island Park, and Yellowstone. Air quality, meteorology, hydrology, water quality, soils, land use, geology, subsidence, seismicity, terrestrial and aquatic ecology, demography, socioeconomics, and heritage resources are analyzed. This program includes a summary of environmental concerns related to geothermal development in each of the KGRAs, an annotated bibliography of reference materials (Volume II), detailed reports on the various program elements for each of the KGRAs, a program plan identifying future research needs, and a comprehensive data file.

Spencer, S.G.; Russell, B.F.; Sullivan, J.F. (eds.)

1979-09-01T23:59:59.000Z

211

River Inn Natural Hot Spring Pool & Spa Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Inn Natural Hot Spring Pool & Spa Low Temperature Geothermal Facility Inn Natural Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name River Inn Natural Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility River Inn Natural Hot Spring Sector Geothermal energy Type Pool and Spa Location Reno, Nevada Coordinates 39.5296329°, -119.8138027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

212

The Snake River Geothermal Drilling Project - Innovative Approaches...  

Open Energy Info (EERE)

Innovative Exploration Technologies Project Description This project will implement and test a series of innovative geothermal exploration strategies in two phases. Phase 1 studies...

213

Tracer Testing At Raft River Geothermal Area (1984) | Open Energy...  

Open Energy Info (EERE)

L.; Yorgason, K. R.; Moore, J. N. (1 December 1984) Preferred methods of analysis for chemical tracers in moderate- and high-temperature geothermal environments Retrieved from...

214

Baseline System Costs for 50.0 MW Enhanced Geothermal System...  

Open Energy Info (EERE)

Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location Geothermal Project Jump to: navigation, search Last modified...

215

Geothermal district heating system feasibility analysis, Thermopolis, Wyoming  

DOE Green Energy (OSTI)

The purpose of this study is to determine the technical and economic feasibility of constructing and operating a district heating system to serve the residential, commercial, and public sectors in Thermopolis. The project geothermal resource assessment, based on reviews of existing information and data, indicated that substantial hot water resources likely exist in the Rose Dome region 10 miles northeast of Thermopolis, and with quantities capable of supporting the proposed geothermal uses. Preliminary engineering designs were developed to serve the space heating and hot water heating demands for buildings in the Thermopolis-East Thermopolis town service area. The heating district design is based on indirect geothermal heat supply and includes production wells, transmission lines, heat exchanger units, and the closed loop distribution and collection system necessary to serve the individual customers. Three options are presented for disposal of the cooled waters-reinjection, river disposal, and agricultural reuse. The preliminary engineering effort indicates the proposed system is technically feasible. The design is sized to serve 1545 residences, 190 businesses, and 24 public buildings. The peak design meets a demand of 128.2 million Btu at production rates of 6400 gpm.

Goering, S.W.; Garing, K.L.; Coury, G.; Mickley, M.C.

1982-04-26T23:59:59.000Z

216

Convective heat transport in geothermal systems  

DOE Green Energy (OSTI)

Most geothermal systems under exploitation for direct use or electrical power production are of the hydrothermal type, where heat is transferred essentially by convection in the reservoir, conduction being secondary. In geothermal systems, buoyancy effects are generally important, but often the fluid and heat flow patterns are largely controlled by geologic features (e.g., faults, fractures, continuity of layers) and location of recharge and discharge zones. During exploitation, these flow patterns can drastically change in response to pressure and temperature declines, and changes in recharge/discharge patterns. Convective circulation models of several geothermal systems, before and after start of fluid production, are described, with emphasis on different characteristics of the systems and the effects of exploitation on their evolution. Convective heat transport in geothermal fields is discussed, taking into consideration (1) major geologic features; (2) temperature-dependent rock and fluid properties; (3) fracture- versus porous-medium characteristics; (4) single- versus two-phase reservoir systems; and (5) the presence of noncondensible gases.

Lippmann, M.J.; Bodvarsson, G.S.

1986-08-01T23:59:59.000Z

217

Earth Tidal Analysis At Raft River Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

Tidal Analysis At Raft River Geothermal Area Tidal Analysis At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis To estimate subsurface fracture orientation based on an analysis of solid earth tidal strains. Notes A new practical method has been developed. The tidal strain fracture orientation technique is a passive method which has no depth limitation. The orientation of either natural or hydraulically stimulated fractures can be measured using either new or old static observation wells. Estimates for total compressibility and areal interconnected porosity can also be developed for reservoirs with matrix permeability using a combination of

218

Earth Tidal Analysis At Raft River Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Earth Tidal Analysis At Raft River Geothermal Area Earth Tidal Analysis At Raft River Geothermal Area (1984) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous medium compressibility if porosity is known. In the present work, change in external stress is estimated from

219

Induced seismicity associated with enhanced geothermal system  

Science Conference Proceedings (OSTI)

Enhanced Geothermal Systems (EGS) offer the potential to significantly add to the world energy inventory. As with any development of new technology, some aspects of the technology has been accepted by the general public, but some have not yet been accepted and await further clarification before such acceptance is possible. One of the issues associated with EGS is the role of microseismicity during the creation of the underground reservoir and the subsequent extraction of the energy. The primary objectives of this white paper are to present an up-to-date review of the state of knowledge about induced seismicity during the creation and operation of enhanced geothermal systems, and to point out the gaps in knowledge that if addressed will allow an improved understanding of the mechanisms generating the events as well as serve as a basis to develop successful protocols for monitoring and addressing community issues associated with such induced seismicity. The information was collected though literature searches as well as convening three workshops to gather information from a wide audience. Although microseismicity has been associated with the development of production and injection operations in a variety of geothermal regions, there have been no or few adverse physical effects on the operations or on surrounding communities. Still, there is public concern over the possible amount and magnitude of the seismicity associated with current and future EGS operations. It is pointed out that microseismicity has been successfully dealt with in a variety of non-geothermal as well as geothermal environments. Several case histories are also presented to illustrate a variety of technical and public acceptance issues. It is concluded that EGS Induced seismicity need not pose any threat to the development of geothermal resources if community issues are properly handled. In fact, induced seismicity provides benefits because it can be used as a monitoring tool to understand the effectiveness of the EGS operations and shed light on the mechanics of the reservoir.

Majer, Ernest; Majer, Ernest L.; Baria, Roy; Stark, Mitch; Oates, Stephen; Bommer, Julian; Smith, Bill; Asanuma, Hiroshi

2006-09-26T23:59:59.000Z

220

Geothermal Progress Monitor. System status and operational experience  

DOE Green Energy (OSTI)

The Geothermal Progress Monitor (GPM) system was designed and implemented by MITRE for DOE's Division of Geothermal Energy (now the Division of Geothermal and Hydropower Technologies). This report summarizes MITRE's operational experience with the system during fiscal year 1983 and provides a qualitative assessment of its data sources.

Gerstein, R.E.; Medville, D.M.

1983-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "river geothermal system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Geothermal energy systems plan for Boise City  

DOE Green Energy (OSTI)

This is a plan for development of a downtown Boise geothermal district space heating system incorporating legal, engineering, organizational, geological, and economic requirements. Topics covered include: resource characteristics, system design and feasibility, economic feasibility, legal overview, organizational alternatives, and conservation. Included in appendices are: property ownership patterns on the Boise Front, existing hot well data, legal briefs, environmental data, decision point communications, typical building heating system retrofit schematics, and background assumptions and data for cost summary. (MHR)

Not Available

1979-01-01T23:59:59.000Z

222

Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada  

DOE Green Energy (OSTI)

Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

2003-08-14T23:59:59.000Z

223

Materials selection guidelines for geothermal energy utilization systems  

DOE Green Energy (OSTI)

This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

Ellis, P.F. II; Conover, M.F.

1981-01-01T23:59:59.000Z

224

Environmental development plan: geothermal energy systems  

DOE Green Energy (OSTI)

To ensure that environmental, health, and safety (EH and S) considerations are addressed adequately in the technology decision making process, the Environmental Development Plan (EDP) identifies and evaluates EH and S concerns; defines EH and S research and related assessments to examine or resolve the concerns; provides a coordinated schedule with the technology program for required EH and S research and developement; and indicates the timing for Environmental Assessments, Environmental Impact Statements, Environmental Readiness Documents, and Safety Analysis Reports. This EDP for geothermal energy systems covers all current and planned activities of the DOE Geothermal Energy Systems. Hydrothermal convection systems, geopressured systems, and hot-dry-rock systems are covered. Environmental concerns and requirements for resolution of these concerns are discussed at length. (MHR)

Not Available

1979-08-01T23:59:59.000Z

225

Specific features of geothermal steam turbine control and emergency system  

SciTech Connect

There are significant construction as well as operational differences between geothermal and conventional steam turbines. These result in specific features associated with geothermal steam turbine control and emergency system. Several aspects of geothermal steam turbine control have been considered. Some proposals of geothermal steam turbine control have been presented. Among others the following operation modes have been considered: Driving turbine, driving well, turbine power and well steam pressure coupled control.

Domachowski, Z.; Gutierrez, A.

1986-01-01T23:59:59.000Z

226

Assessment of solar-geothermal hybrid system concepts  

SciTech Connect

Studies were conducted to assess the technical and economic merits and limitations of advanced solar-geothermal hybrid electric power plant concepts. Geothermal resource characteristics and technologies were reviewed to determine the best possible ways of combining solar and geothermal technologies into a hybrid operation. Potential hybrid system concepts are defined and their performance, resource usage, and economics are assessed relative to the individual solar and geothermal resource development techniques. Key results are presented.

Mathur, P.N.

1979-03-15T23:59:59.000Z

227

Development of Exploration Methods for Engineered Geothermal Systems  

Open Energy Info (EERE)

Exploration Methods for Engineered Geothermal Systems Exploration Methods for Engineered Geothermal Systems Through Integrated Geophysical, Geologic and Geochemical Interpretation the Seismic Analysis Component Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Development of Exploration Methods for Engineered Geothermal Systems Through Integrated Geophysical, Geologic and Geochemical Interpretation the Seismic Analysis Component Authors Ileana M. Tibuleac, Joe Iovenitti, David von Seggern, Jon Sainsbury, Glenn Biasi and John G. Anderson Conference Stanford Geothermal Conference; Stanford University; 2013 Published PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University;, 2013 DOI Not Provided Check for DOI availability: http://crossref.org

228

Mapping Fractures In The Medicine Lake Geothermal System | Open Energy  

Open Energy Info (EERE)

Fractures In The Medicine Lake Geothermal System Fractures In The Medicine Lake Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mapping Fractures In The Medicine Lake Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: A major challenge to energy production in the region has been locating high-permability fracture zones in the largely impermeable volcanic host rock. An understanding of the fracture networks will be a key to harnessing geothermal resources in the Cascades Author(s): Steven Clausen, Michal Nemcok, Joseph Moore, Jeffrey Hulen, John Bartley Published: GRC, 2006 Document Number: Unavailable DOI: Unavailable Core Analysis At Medicine Lake Area (Clausen Et Al, 2006) Medicine Lake Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Mapping_Fractures_In_The_Medicine_Lake_Geothermal_System&oldid=388927

229

High Temperature 300C Directional Drilling System Geothermal...  

Open Energy Info (EERE)

Recovery Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Project Type Topic 2 Directional Drilling Systems Project Description The development plan...

230

Compound and Elemental Analysis At Raft River Geothermal Area (1981) | Open  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Raft River Geothermal Area (1981) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date 1981 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the validity of data from multiple sources to develop a better conceptual model Notes Five analytical laboratories have conducted analyses on waters from the KGRA. Charge-balance error calculations conducted on the data produced from these laboratories indicated that data from three laboratories were reliable while two were not. A method of equating all data was established by using linear regression analyses on sets of paired data from various

231

Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho  

DOE Green Energy (OSTI)

Results of the production and interference tests conducted on the geothermal wells RRGE 1 and RRGE 2 in Raft River Valley, Idaho during September--November, 1975 are presented. In all, three tests were conducted, two of them being short-duration production tests and one, a long duration interference test. In addition to providing estimates on the permeability and storage parameters of the geothermal reservoir, the tests also indicated the possible existence of barrier boundaries. The data collected during the tests also indicated that the reservoir pressure varies systematically in response to the changes in the Earth's gravitational field caused by the passage of the sun and the moon. Overall, the results of the tests indicate that the geothermal reservoir in southern Raft River valley is fairly extensive and significantly permeable and merits further exploration.

Narasimhan, T.N.; Witherspoon, P.A.

1977-05-01T23:59:59.000Z

232

Geothermal investigations in Idaho. Part 8. Heat flow study of the Snake River Plain region, Idaho  

DOE Green Energy (OSTI)

The Snake River Plain of Idaho has recent lava flows and a large number of thermal springs and wells. A heat flow study was initiated which, together with available geological and geophysical information, allows a better definition of the geothermal resource and evaluation of the geothermal potential. Local geothermal anomalies were not the objects of this study and have not been studied in detail. The quality of the heat flow values obtained varies as interpretation was necessary to determine geothermal gradients for many of the holes which had disturbances. A major problem in determining the heat flow values is the lack of knowledge of the in situ porosity of the rocks. The heat flow values obtained for the Eastern Snake River Plain are from shallow wells (< 200 m), hence the heat flow there is low (< 0.5 HFU) because of the water movement in the Snake Plain aquifer. The anomalous regional heat flow pattern around the Snake River Plain, together with other geophysical and geological data, suggest the presence of a major crustal heat source. With the exception of the area of the Snake Plain aquifer, high geothermal gradients were found in all areas of southern Idaho (40 to 100/sup 0/C/km). Temperatures hot enough for space heating can be found most anywhere in the Plain at relatively shallow depths (1 to 2 km). Temperatures hot enough for electrical power generation (200/sup 0/C) can be found beneath southern Idaho almost anywhere at depths of 3 to 4 kilometers. The Plain is fault bounded and hot water circulating along the fault zones from depths can be a very important geothermal resource at shallow depths. The margins of the Plain have the highest heat flow values, are the most faulted, and have possibly the highest geothermal resource potential.

Brott, C.A.; Blackwell, D.D.; Mitchell, J.C.

1976-09-01T23:59:59.000Z

233

Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling and Testing  

DOE Green Energy (OSTI)

This report covers the drilling and testing of the slim well 56-4 at the Reese River Geothermal Project in Lander County, Nevada. This well was partially funded through a GRED III Cooperative Funding Agreement # DE-FC36-04GO14344, from USDOE.

Henkle, William R.; Ronne, Joel

2008-06-15T23:59:59.000Z

234

Behavior Of Rare Earth Element In Geothermal Systems, A New  

Open Energy Info (EERE)

Behavior Of Rare Earth Element In Geothermal Systems, A New Behavior Of Rare Earth Element In Geothermal Systems, A New Exploration-Exploitation Tool Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Behavior Of Rare Earth Element In Geothermal Systems, A New Exploration-Exploitation Tool Details Activities (32) Areas (17) Regions (0) Abstract: The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields

235

Prediction of Scaling in Geothermal Systems  

Science Conference Proceedings (OSTI)

One of the main objectives of the DOE Geothermal Program is to improve the efficiency and reliability of geothermal operations so that this renewable form of energy can be integrated into the nation's energy system. Scale formation and other chemical problems associated with energy extraction from high temperature brines frequently inhibit the economical utilization of geothermal resources. In some cases, these chemical problems can be so severe that development of a site must be abandoned after considerable capital investment. The goal of our research efforts is to construct an accurate computer model for describing the chemical behavior of geothermal brines under a wide range of operating conditions. This technology will provide industry a cost-effective means of identifying scaling problems in production and reinjection wells as well as in surface equipment, and also devising and testing methods for well as other uses described in table (1) can contribute significantly to meeting the objectives of the Geothermal Program. The chemical model we have developed to date can simulate calcium carbonate scale formation and gas solubilities in concentrated brines containing sodium, potassium, calcium, chloride and sulfate ions as a function of temperature to 250 C and for variable partial pressure of CO{sub 2}. It can predict the solubility of other scale-forming minerals, such as amorphous silica, gypsum-anhydrite, halite and glasserite, as a function of brine composition to 250 C. The only required input for the model is the temperature, pressure and composition of the brine. Our modeling approach is based on semi-empirical thermodynamic descriptions of aqueous solutions. The model equations are parameterized by careful comparison to a variety of laboratory data. The ability of the resulting models to accurately predict the chemical behavior of even very concentrated high temperature brines is well demonstrated. This ability is an unusual feature of our models which is vital for applications to many important geothermal systems, such as those found in the Imperial Valley of California. In this report, the use of the present version of our model will be illustrated by an application to the prediction of the onset of two phase flow (breakout) in a brine confined by an external pressure. Calculations of this kind are important in assessing the production potential of a geothermal resource because the initiation of breakout in a well bore or power plant is usually simultaneous with the appearance of massive scale deposition. It is therefore necessary to predict breakout and also to assess the consequences of breakout in designing more efficient energy extraction processes. For the geothermal brine for which we have reliable composition and breakout data (East Mesa in California), the model gives results which are essentially identical to the measured values. Calculations also illustrate the importance of contributions of dissolved gases to the total pressure of the brines. Applications to other scale formation problems in Dixie Valley geothermal brines will also be discussed.

Weare, John H.; Moller, Nancy E.

1989-03-21T23:59:59.000Z

236

Numerical Modelling of Geothermal Systems a Short Introduction | Open  

Open Energy Info (EERE)

Numerical Modelling of Geothermal Systems a Short Introduction Numerical Modelling of Geothermal Systems a Short Introduction Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Numerical Modelling of Geothermal Systems a Short Introduction Authors Mauro Cacace, Björn Onno Kaiser and Yvonne Cherubini Published Helmholtz Association, The date "N/A" was not understood.The date "N/A" was not understood. DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Numerical Modelling of Geothermal Systems a Short Introduction Citation Mauro Cacace,Björn Onno Kaiser,Yvonne Cherubini. N/A. Numerical Modelling of Geothermal Systems a Short Introduction. N/A. Helmholtz Association. N/Ap. Retrieved from "http://en.openei.org/w/index.php?title=Numerical_Modelling_of_Geothermal_Systems_a_Short_Introduction&oldid=688986"

237

Ball State building massive geothermal system | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ball State building massive geothermal system Ball State building massive geothermal system Ball State building massive geothermal system March 19, 2010 - 5:47pm Addthis Workers drill boreholes for a geothermal heating and cooling system at Ball State University’s campus in Muncie, Ind. | Photo courtesy of Ball State University Workers drill boreholes for a geothermal heating and cooling system at Ball State University's campus in Muncie, Ind. | Photo courtesy of Ball State University Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy Ball State University is building America's largest ground source district geothermal heating and cooling system. The new operation will save the school millions of dollars, slash greenhouse gases and create jobs. The project will also "expand how America will define the use of

238

Ball State building massive geothermal system | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ball State building massive geothermal system Ball State building massive geothermal system Ball State building massive geothermal system March 19, 2010 - 5:47pm Addthis Workers drill boreholes for a geothermal heating and cooling system at Ball State University’s campus in Muncie, Ind. | Photo courtesy of Ball State University Workers drill boreholes for a geothermal heating and cooling system at Ball State University's campus in Muncie, Ind. | Photo courtesy of Ball State University Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Ball State University is building America's largest ground source district geothermal heating and cooling system. The new operation will save the school millions of dollars, slash greenhouse gases and create jobs. The project will also "expand how America will define the use of

239

Numerical Modeling Of Basin And Range Geothermal Systems | Open Energy  

Open Energy Info (EERE)

Numerical Modeling Of Basin And Range Geothermal Systems Numerical Modeling Of Basin And Range Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Numerical Modeling Of Basin And Range Geothermal Systems Details Activities (3) Areas (3) Regions (0) Abstract: Basic qualitative relationships for extensional geothermal systems that include structure, heat input, and permeability distribution have been established using numerical models. Extensional geothermal systems, as described in this paper, rely on deep circulation of groundwater rather than on cooling igneous bodies for heat, and rely on extensional fracture systems to provide permeable upflow paths. A series of steady-state, two-dimensional simulation models is used to evaluate the effect of permeability and structural variations on an idealized, generic

240

Geological and geothermal investigation of the lower Wind River valley, southwestern Washington Cascade Range  

DOE Green Energy (OSTI)

The detailed geology of the lower Wind River valley is presented with emphasis on those factors that bear significantly on development of a geothermal resource. The lower Wind River drainage consists primarily of the Ohanapecosh Formation, an Oligocene unit that is recognized across the entire southern Washington Cascade Range. The formation is at least 300 m thick in the Wind River valley area. It consists largely of volcaniclastic sediments, with minor massive pyroclastic flows, volcanic breccias and lava flows. Low grade zeolite facies metamorphism during the Miocene led to formation of hydrothermal minerals in Ohanapecosh strata. Metamorphism probably occurred at less than 180{sup 0}C.

Berri, D.A.; Korosec, M.A.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "river geothermal system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Geochemical characterization of geothermal systems in the Great Basin:  

Open Energy Info (EERE)

characterization of geothermal systems in the Great Basin: characterization of geothermal systems in the Great Basin: Implications for exploration, exploitation, and environmental issues Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geochemical characterization of geothermal systems in the Great Basin: Implications for exploration, exploitation, and environmental issues Details Activities (0) Areas (0) Regions (0) Abstract: The objective of this ongoing project is the development of a representative geochemical database for a comprehensive range of elemental and isotopic parameters (i.e., beyond the typical data suite) for a range of geothermal systems in the Great Basin. Development of this database is one of the first steps in understanding the nature of geothermal systems in the Great Basin. Of particular importance in the Great Basin is utilizing

242

Geographic Information Systems- Tools For Geotherm Exploration, Tracers  

Open Energy Info (EERE)

Systems- Tools For Geotherm Exploration, Tracers Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And Management Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geographic Information Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And Management Details Activities (4) Areas (3) Regions (0) Abstract: Geographic information systems (GIS) are an underused resource that can help the geothermal industry in exploration, tracer analysis, infrastructure management, and the general distribution and use of data. GIS systems are highly customizable to specific user needs and can use entire corporate data sets through a visual interface. This paper briefly documents the use of GIS in specific examples of geothermal research at the

243

Stragegies to Detect Hidden Geothermal Systems Based on Monitoring and Analysis of CO2 in the Near-Surface Environment  

E-Print Network (OSTI)

dioxide flux at the Dixie Valley geothermal field, Nevada;volcanic system, USA Dixie Valley Geothermal Field, USAProvince system like the Dixie Valley (Nevada) geothermal

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2008-01-01T23:59:59.000Z

244

Stragegies to Detect Hidden Geothermal Systems Based on Monitoring and Analysis of CO2 in the Near-Surface Environment  

E-Print Network (OSTI)

in volcanic and geothermal areas. Appl. Geochem. , 13, 5431977. Chemistry and Geothermal Systems. Academic Press, Newfor detecting hidden geothermal systems by near-surface gas

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2008-01-01T23:59:59.000Z

245

Experience with the Development of Advanced Materials for Geothermal Systems  

Science Conference Proceedings (OSTI)

This chapter contains the following sections: Introduction, Advanced Cements, Materials Research and Development in Enhanced Geothermal Systems (EGS), Advanced Coatings, and Conclusions.

Sugama, T.; Butcher, T.; Ecker, L.

2011-01-01T23:59:59.000Z

246

36Cl/Cl ratios in geothermal systems- preliminary measurements...  

Open Energy Info (EERE)

(1) Areas (1) Regions (0) Abstract: The sub 36ClCl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic...

247

Identification of a New Blind Geothermal System with Hyperspectral...  

Open Energy Info (EERE)

a New Blind Geothermal System with Hyperspectral Remote Sensing and Shallow Temperature Measurements at Columbus Salt Marsh, Esmeralda County, Nevada Jump to: navigation, search...

248

Behavior of Rare Earth Elements in Geothermal Systems- A New...  

Open Energy Info (EERE)

2001 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Behavior of Rare Earth Elements in Geothermal Systems- A New Exploration...

249

Enthalpy restoration in geothermal energy processing system  

DOE Patents (OSTI)

A geothermal deep well energy extraction system is provided of the general type in which solute-bearing hot water is pumped to the earth's surface from a relatively low temperature geothermal source by transferring thermal energy from the hot water to a working fluid for driving a primary turbine-motor and a primary electrical generator at the earth's surface. The superheated expanded exhaust from the primary turbine motor is conducted to a bubble tank where it bubbles through a layer of sub-cooled working fluid that has been condensed. The superheat and latent heat from the expanded exhaust of the turbine transfers thermal energy to the sub-cooled condensate. The desuperheated exhaust is then conducted to the condenser where it is condensed and sub-cooled, whereupon it is conducted back to the bubble tank via a barometric storage tank. The novel condensing process of this invention makes it possible to exploit geothermal sources which might otherwise be non-exploitable.

Matthews, Hugh B. (Boylston, MA)

1983-01-01T23:59:59.000Z

250

Geothermal Resource Analysis and Structure of Basin and Range Systems,  

Open Energy Info (EERE)

Analysis and Structure of Basin and Range Systems, Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Authors David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith and Jason McKenna Published U.S. Department of Energy, 2003 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Citation David D. Blackwell,Kenneth W. Wisian,Maria C. Richards,Mark Leidig,Richard Smith,Jason McKenna. 2003. Geothermal Resource Analysis and Structure of

251

Residential space heating cost: geothermal vs conventional systems  

SciTech Connect

The operating characteristics and economies of several representative space heating systems are analyzed. The analysis techniques used may be applied to a larger variety of systems than considered herein, thereby making this document more useful to the residential developer, heating and ventilating contractor, or homeowner considering geothermal space heating. These analyses are based on the use of geothermal water at temperatures as low as 120/sup 0/F in forced air systems and 140/sup 0/F in baseboard convection and radiant floor panel systems. This investigation indicates the baseboard convection system is likely to be the most economical type of geothermal space heating system when geothermal water of at least 140/sup 0/F is available. Heat pumps utilizing water near 70/sup 0/F, with negligible water costs, are economically feasible and they are particularly attractive when space cooling is included in system designs. Generally, procurement and installation costs for similar geothermal and conventional space heating systems are about equal, so geothermal space heating is cost competitive when the unit cost of geothermal energy is less than or equal to the unit cost of conventional energy. Guides are provided for estimating the unit cost of geothermal energy for cases where a geothermal resource is known to exist but has not been developed for use in residential space heating.

Engen, I.A.

1978-02-01T23:59:59.000Z

252

Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring  

E-Print Network (OSTI)

for Detection of Hidden Geothermal Systems Figure 7.4.for Detection of Hidden Geothermal Systems Figure 7.5.for Detection of Hidden Geothermal Systems Figure 7.6.

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2004-01-01T23:59:59.000Z

253

Numerical models for the evaluation of geothermal systems  

DOE Green Energy (OSTI)

We have carried out detailed simulations of various fields in the USA (Bada, New Mexico; Heber, California); Mexico (Cerro Prieto); Iceland (Krafla); and Kenya (Olkaria). These simulation studies have illustrated the usefulness of numerical models for the overall evaluation of geothermal systems. The methodology for modeling the behavior of geothermal systems, different approaches to geothermal reservoir modeling and how they can be applied in comprehensive evaluation work are discussed.

Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

1986-08-01T23:59:59.000Z

254

Understanding The Chena Hot Springs, Alaska, Geothermal System Using  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Understanding The Chena Hot Springs, Alaska, Geothermal System Using Temperature And Pressure Data From Exploration Boreholes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Understanding The Chena Hot Springs, Alaska, Geothermal System Using Temperature And Pressure Data From Exploration Boreholes Details Activities (7) Areas (1) Regions (0) Abstract: Chena Hot Springs is a small, moderate temperature, deep circulating geothermal system, apparently typical of those associated to hot springs of interior Alaska. Multi-stage drilling was used in some

255

Conceptual design of a geothermal site development forecasting system  

DOE Green Energy (OSTI)

A site development forecasting system has been designed in response to the need to monitor and forecast the development of specific geothermal resource sites for electrical power generation and direct heat applications. The system is comprised of customized software, a site development status data base, and a set of complex geothermal project development schedules. The system would use site-specific development status information obtained from the Geothermal Progress Monitor and other data derived from economic and market penetration studies to produce reports on the rates of geothermal energy development, federal agency manpower requirements to ensure these developments, and capital expenditures and technical/laborer manpower required to achieve these developments.

Neham, E.A.; Entingh, D.J.

1980-03-01T23:59:59.000Z

256

Geochemistry Of The Lake City Geothermal System, California, Usa | Open  

Open Energy Info (EERE)

Geochemistry Of The Lake City Geothermal System, California, Usa Geochemistry Of The Lake City Geothermal System, California, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geochemistry Of The Lake City Geothermal System, California, Usa Details Activities (2) Areas (1) Regions (0) Abstract: Lake City hot springs and geothermal wells chemically fall into a narrow compositional group. This indicates that, with the exception of a few hot springs, mixing with shallow cold ground waters does not have a significant influence on the chemistry of the hot springs. Narrow ranges in plots of F, B and Li versus Cl, and _D to _18O values indicate minimal mixing. Because of this, the compositions of the natural hot spring waters are fairly representative of the parent geothermal water. The average

257

Geophysical Characterization of a Geothermal System Neal Hot Springs,  

Open Energy Info (EERE)

Characterization of a Geothermal System Neal Hot Springs, Characterization of a Geothermal System Neal Hot Springs, Oregon, USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Characterization of a Geothermal System Neal Hot Springs, Oregon, USA Abstract Neal Hot Springs is an active geothermal area that is also the proposed location of a binary power plant, which is being developed by US Geothermal Inc. To date, two production wells have been drilled and an injection well is in the process of being completed. The primary goal of this field camp was to provide a learning experience for students studying geophysics, but a secondary goal was to characterize the Neal Hot Springs area to provide valuable information on the flow of geothermal fluids through the subsurface. This characterization was completed using a variety of

258

Geothermal Resource Analysis And Structure Of Basin And Range Systems,  

Open Energy Info (EERE)

Analysis And Structure Of Basin And Range Systems, Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Details Activities (12) Areas (5) Regions (0) Abstract: Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy

259

Geothermal energy control system and method  

DOE Patents (OSTI)

A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system. The bearing system employs liquid lubricated thrust and radial bearings with all bearing surfaces bathed in clean water serving as a lubricant and maintained under pressure to prevent entry into the bearings of contaminated geothermal fluid, an auxiliary thrust ball bearing arrangement comes into operation when starting or stopping the pumping system.

Matthews, Hugh B. (Acton, MA)

1977-01-01T23:59:59.000Z

260

Fluidized-bed potato waste drying experiments at the Raft River Geothermal Test Site  

SciTech Connect

A fluidized-bed dryer was built and operated at the Raft River Geothermal Test Site in south central Idaho to test the feasibility of using low-temperature (145/sup 0/C or lower) geothermal fluids as an energy source for drying operations. The dryer performed successfully on two potato industry waste products that had a solid content of 5 to 13%. The dried product was removed as a sand-like granular material or as fines with a flour-like texture. Test results, observations, and design recommendations are presented. Also presented is an economic evaluation for commercial-scale drying plants using either geothermal low-temperature water or oil as a heat source.

Cole, L.T.; Schmitt, R.C.

1980-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "river geothermal system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Numerical modeling of liquid geothermal systems  

DOE Green Energy (OSTI)

A mathematical model describing the physical behavior of hot-water geothermal systems is presented. The model consists of a set of coupled partial differential equations for heat and mass transfer in porous media and an equation of state relating fluid density to temperature and pressure. The equations are solved numerically using an integrated finite difference method which can treat arbitrary nodal configurations in one, two, or three dimensions. The model is used to analyze cellular convection in permeable rock layers heated from below. Results for cases with constant fluid and rock properties are in good agreement with numerical and experimental results from other authors.

Sorey, M.L.

1978-01-01T23:59:59.000Z

262

Internal Technical Report, 1981 Annual Report, An Analysis of the Response of the Raft River Geothermal Site Monitor Wells  

Science Conference Proceedings (OSTI)

A groundwater monitoring program has been established on the Raft River Geothermal Site since 1978. The objective of this program is to document possible impacts that may be caused by geothermal production and injection on the shallow aquifers used for culinary and irrigation purposes. This annual progress report summarizes data from 12 monitor wells during 1981. These data are compared with long-term trends and are correlated with seasonal patterns, irrigation water use and geothermal production and testing. These results provide a basis for predicting long-term impacts of sustained geothermal production and testing. To date, there has been no effect on the water quality of the shallow aquifers.

Thurow, T.L.; Large, R.M.; Allman, D.W.; Tullis, J.A.; Skiba, P.A.

1982-04-01T23:59:59.000Z

263

Asbestos--cement pipeline experience at the Raft River Geothermal Project  

DOE Green Energy (OSTI)

The first buried asbestos-cement (Transite) pipeline used in high temperature (approximately 300/sup 0/F) service for transport of geothermal fluids was installed in the fall of 1975, and has seen 1/sup 1///sub 2/ years of service. The line is 4000 ft long, between the deep geothermal wells No. 1 and No. 2, in the Raft River Valley of Idaho. The experience in using this pipeline has been satisfactory, and methods have been developed for minimizing the thermal expansion/thermal shock breakage problems. Recommendations on improved design and construction practices for future pipelines are given. The substantially reduced cost (factor of 2) of an asbestos-cement pipeline compared to the conventional steel pipeline, plus the esthetically desirable effect of a buried pipeline dictate adoption of this type as standard practice for moderate temperature geothermal developments. The Raft River Geothermal Project intends to connect all future wells with pipelines of asbestos-cement, insulated with 1 to 2-inches of urethane, and buried between 2 and 3 ft. Total cost will be approximately $110,000/mile for 10-inch diameter pipe, $125,000/mile for 12-inch diameter.

Miller, L.G.; Kunze, J.F.; Sanders, R.D.

1977-04-01T23:59:59.000Z

264

Numerical studies of fluid-rock interactions in Enhanced Geothermal Systems (EGS) with CO2 as working fluid  

E-Print Network (OSTI)

Development of Enhanced Geothermal Systems, paper presentedin the Deep Reservoir of the Mt. Amiata Geothermal Field,Italy, Transactions, Geothermal Resources Council, 31, 153-

Xu, Tianfu; Pruess, Karsten; Apps, John

2008-01-01T23:59:59.000Z

265

Numerical simulation to study the feasibility of using CO2 as a stimulation agent for enhanced geothermal systems  

E-Print Network (OSTI)

stimulation of an enhanced geothermal system using a high pHTwenty-Ninth Workshop on Geothermal Reservoir Engineering,Calcite dissolution in geothermal reservoirs using chelants,

Xu, T.

2010-01-01T23:59:59.000Z

266

Role of Fluid Pressure in the Production Behavior of Enhanced Geothermal Systems with CO2 as Working Fluid  

E-Print Network (OSTI)

and Clay Swelling in a Fractured Geothermal Reservoir,Transactions, Geothermal Resources Council, Vol. 28, pp.2004b. Pruess, K. Enhanced Geothermal Systems (EGS) Using CO

Pruess, Karsten

2008-01-01T23:59:59.000Z

267

Characteristics of Basin and Range Geothermal Systems with Fluid  

Open Energy Info (EERE)

Characteristics of Basin and Range Geothermal Systems with Fluid Characteristics of Basin and Range Geothermal Systems with Fluid Temperatures of 150°C to 200°C Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Characteristics of Basin and Range Geothermal Systems with Fluid Temperatures of 150°C to 200°C Abstract Six geothermal reservoirs with fluid temperatures over 200°C and ten geothermal systems with measured fluid temperatures of 150-200°C have been discovered in the northern Basin and Range Province of the USA. A comparison of these high and moderate temperature systems shows considerable overlap in geographical distribution, geology, and physical properties. Our ability to distinguish between moderate and high temperature systems using fluid chemistry has been limited by often

268

Geothermal system saving money at fire station | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal system saving money at fire station Geothermal system saving money at fire station Geothermal system saving money at fire station April 9, 2010 - 3:45pm Addthis Joshua DeLung What will the project do? A geothermal heating and cooling system has enabled the substation to save taxpayers $15,000 annually when compared to a traditional system. The high temperature of the treatment building's water helps reduce the amount of energy needed to heat water in the substation. An environmentally friendly geothermal heating and cooling system in Pennsylvania will save taxpayers $15,000 a year as part of a new fire substation that will decrease emergency response times. The Alpha Fire Co. celebrated the opening of substation on the ground floor of the College Township municipal building earlier this year in State

269

Blind Geothermal System Exploration in Active Volcanic Environments;  

Open Energy Info (EERE)

System Exploration in Active Volcanic Environments; System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawaii and Maui Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawai'i and Maui Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The project will perform a suite of stepped geophysical and geochemical surveys and syntheses at both a known, active volcanic system at Puna, Hawai'i and a blind geothermal system in Maui, Hawai'i. Established geophysical and geochemical techniques for geothermal exploration including gravity, major cations/anions and gas analysis will be combined with atypical implementations of additional geophysics (aeromagnetics) and geochemistry (CO2 flux, 14C measurements, helium isotopes and imaging spectroscopy). Importantly, the combination of detailed CO2 flux, 14C measurements and helium isotopes will provide the ability to directly map geothermal fluid upflow as expressed at the surface. Advantageously, the similar though active volcanic and hydrothermal systems on the east flanks of Kilauea have historically been the subject of both proposed geophysical surveys and some geochemistry; the Puna Geothermal Field (Puna) (operated by Puna Geothermal Venture [PGV], an Ormat subsidiary) will be used as a standard by which to compare both geophysical and geochemical results.

270

Geothermal Environmental Impact Assessment: Subsurface Environmental Assessment for Four Geothermal Systems  

DOE Green Energy (OSTI)

Geothermal systems are described for Imperial Valley and The Geysers, California; Klamath Falls, Oregon; and the Rio Grande Rift Zone, New Mexico; including information on location, area, depth, temperature, fluid phase and composition, resource base and status of development. The subsurface environmental assessment evaluates potential groundwater degradation, seismicity and subsidence. A general discussion on geothermal systems, pollution potential, chemical characteristics of geothermal fluids and environmental effects of geothermal water pollutants is presented as background material. For the Imperial Valley, all publicly available water quality and location data for geothermal and nongeothermal wells in and near the East Mesa, Salton Sea, Heber, Brawley, Dunes and Glamis KGRAs have been compiled and plotted. The geothermal fluids which will be reinjected range in salinity from a few thousand to more than a quarter million ppm. Although Imperial Valley is a major agricultural center, groundwater use in and near most of these KGRAs is minimal. Extensive seismicity and subsidence monitoring networks have been established in this area of high natural seismicity and subsidence. The vapor-dominated Geysers geothermal field is the largest electricity producer in the world. Groundwater in this mountainous region flows with poor hydraulic continuity in fractured rock. Ground and surface water quality is generally good, but high boron concentrations in hot springs and geothermal effluents is of significant concern; however, spent condensate is reinjected. High microearthquake activity is noted around the geothermal reservoir and potential subsidence effects are considered minimal. In Klamath Falls, geothermal fluids up to 113 C (235 F) are used for space heating, mostly through downhole heat exchangers with only minor, relatively benign, geothermal fluid being produced at the surface. Seismicity is low and is not expected to increase. Subsidence is not recognized. Of all geothermal occurrences in the Rio Grande Rift, the Valles Caldera is currently of primary interest. injection of geothermal effluent from hydrothermal production wells should remove any hydrologic hazard due to some potentially noxious constituents. Waters circulating in the LASL Hot Dry Rock experiment are potable. Seismic effects are expected to be minimal. Subsidence effects could develop.

Sanyal, Subir; Weiss, Richard

1978-11-01T23:59:59.000Z

271

Preliminary Evaluation of Geothermal Potential at the Cheyenee River Sioux Reservation, South Dakota  

DOE Green Energy (OSTI)

A geochemical investigation of well waters from the Cheyenne River Sioux Reservation in South Dakota revealed considerable diversity in the chemistry of the fluids and indicated that waters from the Dakota Formation were the best candidates for direct-use geothermal applications. Geothermometry calculations for all wells suggest that formation temperatures are <90 C. Potential scaling problems from utilization of the waters would most likely be restricted to carbonate scale and could be offset by maintaining CO{sub 2} gas in solution.

Bergfeld, D.; Bruton, C.; Goff, F.; Counce, D.

1999-10-01T23:59:59.000Z

272

Strategies To Detect Hidden Geothermal Systems Based On Monitoring and  

Open Energy Info (EERE)

To Detect Hidden Geothermal Systems Based On Monitoring and To Detect Hidden Geothermal Systems Based On Monitoring and Analysis Of CO2 In The Near-Surface Environment Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Strategies To Detect Hidden Geothermal Systems Based On Monitoring and Analysis Of CO2 In The Near-Surface Environment Details Activities (5) Areas (1) Regions (0) Abstract: We investigate the potential for CO2 monitoring in thenear-surface environment as an approach to exploration for hiddengeothermal systems. Numerical simulations of CO2 migration from a modelhidden geothermal system show that CO2 concentrations can reach highlevels in the shallow subsurface even for relatively low CO2 fluxes.Therefore, subsurface measurements offer an advantage over above-groundmeasurements which are affected by winds that rapidly disperse

273

Behavior of Rare Earth Elements in Geothermal Systems- A New  

Open Energy Info (EERE)

Behavior of Rare Earth Elements in Geothermal Systems- A New Behavior of Rare Earth Elements in Geothermal Systems- A New Exploration/Exploitation Tool? Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Behavior of Rare Earth Elements in Geothermal Systems- A New Exploration/Exploitation Tool? Abstract N/A Author Department of Geology and Geological Engineering niversity of Idaho Published Publisher Not Provided, 2001 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Behavior of Rare Earth Elements in Geothermal Systems- A New Exploration/Exploitation Tool? Citation Department of Geology and Geological Engineering niversity of Idaho. 2001. Behavior of Rare Earth Elements in Geothermal Systems- A New Exploration/Exploitation Tool?. (!) : (!) . Retrieved from

274

Development of Exploration Methods for Engineered Geothermal Systems  

Open Energy Info (EERE)

Development of Exploration Methods for Engineered Geothermal Systems Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation Abstract N/A Author U.S. Department of Energy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation Citation U.S. Department of Energy. Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and

275

Assessment of Favorable Structural Settings of Geothermal Systems in the  

Open Energy Info (EERE)

Assessment of Favorable Structural Settings of Geothermal Systems in the Assessment of Favorable Structural Settings of Geothermal Systems in the Great Basin, Western USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Assessment of Favorable Structural Settings of Geothermal Systems in the Great Basin, Western USA Abstract We have undertaken a thorough inventory of the structural settings of known geothermal systems (>400 total) in the extensional to transtensional terrane of the Great Basin in the western USA. Of the more than 200 geothermal fields catalogued to date, we found that step-overs or relay ramps in normal fault zones served as the most favorable structural setting, hosting ~32% of the systems. Such areas are characterized by multiple, commonly overlapping fault strands, increased fracture density,

276

Geothermal energy control system and method  

DOE Patents (OSTI)

A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system.

Matthews, Hugh B. (Acton, MA)

1976-01-01T23:59:59.000Z

277

Geothermal energy resource investigations in the Eastern Copper River Basin, Alaska  

DOE Green Energy (OSTI)

This report consists of a review of the geological, geochemical and geophysical data available for the Eastern Copper River basin with emphasis on the mud volcanoes, and the results of geophysical and geochemical studies carried out in the summers of 1982 and 1984. The purpose was to determine if there are geothermal energy resources in the Copper River Basin. The Eastern Copper River basin is situated on the flanks of a major volcano, Mt. Drum, which was active as late as 200,000 years ago and which is thought to have retained significant amounts of residual heat at high levels. Mt. Wrangell, farther to the east, has been volcanically active up to the present time. The 1982 geophysical and geochemical surveys located three principal areas of possible geothermal interest, one near Tazlina and two near the Klawasi mud volcanoes. The intensive survey work of 1984 was concentrated on those areas. We have integrated the results of soil helium, soil mercury, gravity, aeromagnetic, electrical, self-potential, and controlled-source audio magnetotelluric (CSAMT) surveys to evaluate the geothermal potential of the areas studied. 36 figs.

Wescott, E.M.; Turner, D.L.

1985-06-01T23:59:59.000Z

278

The Krafla Geothermal System. A Review of Geothermal Research and Revision  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » The Krafla Geothermal System. A Review of Geothermal Research and Revision of the Conceptual Model Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: The Krafla Geothermal System. A Review of Geothermal Research and Revision of the Conceptual Model Authors Mortensen A.K., Gudmundsson Á., Steingrímsson B., Sigmundsson F., Axelsson G., Ármannsson H., Björnsson H., Ágústsson K., Saemundsson K., Ólafsson M., Karlsdóttir R., Halldórsdóttir S. and Hauksson T. Organization Iceland GeoSurvey Published Iceland GeoSurvey, 2009

279

Isotope Transport and Exchange within the Coso Geothermal System | Open  

Open Energy Info (EERE)

Transport and Exchange within the Coso Geothermal System Transport and Exchange within the Coso Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Isotope Transport and Exchange within the Coso Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: We are investigating the plumbing of the Coso geothermal system and the nearby Coso Hot Springs using finite element models of single-phase, variable-density fluid flow, conductive- convective heat transfer, fluid-rock isotope exchange, and groundwater residence times. Using detailed seismic reflection data and geologic mapping, we constructed a regional crosssectional model that extends laterally from the Sierra Nevada to Wildhorse Mesa, west of the Argus Range. The base of the model terminates at the brittle-ductile transition zone. A sensitivity study was

280

Overview Of The Lake City, California Geothermal System | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Overview Of The Lake City, California Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Overview Of The Lake City, California Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: Following a spectacular mud volcano eruption in 1951, the Lake City geothermal system has been intermittently explored for 44 years. A discovery well was drilled 30 years ago. The geothermal system is associated with a two mile-long, north-south trending, abnormally complex section of the active Surprise Valley fault zone that has uplifted the

Note: This page contains sample records for the topic "river geothermal system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Geothermal Progress Monitor: system status and operational experience  

SciTech Connect

The Geothermal Progress Monitor (GPM) is an information system designed and implemented by the MITRE Corporation on behalf of the Division of Geothermal and Hydropower Technology (DGHT, formerly Division of Geothermal Energy) of the US Department of Energy (DOE). Its purpose is to keep track of and to report significant events and trends in the US geothermal industry and the federal geothermal program. The information sources of the GPM system are paper and computerized files maintained by a number of organizations throughout the United States. Trade and technical publications are also used to supplement the information-gathering network. Periodic reports from the GPM system consist mainly of manual and computerized analyses of the collected data. In addition, significant events and activities are usually highlighted. The GPM serves a dual function for DGHT and other members of the Interagency Geothermal Coordinating Council (IGCC). It supports effective management of the federal geothermal program and it provides information for executive, legislative, statutory, and public needs. This paper is a report on the current status of the GPM system and a summary of MITRE's operational experience during calendar year 1981 and the first quarter of 1982. It includes a description of the required output and the mechanism by which the information is gathered, integrated, and published as a Geothermal Progress Monitor Report.

Gerstein, R.E.; Kenkeremath, L.D.; Murphy, M.B.; Entingh, D.J.

1982-03-01T23:59:59.000Z

282

Geothermal Progress Monitor: system status and operational experience  

DOE Green Energy (OSTI)

The Geothermal Progress Monitor (GPM) is an information system designed and implemented by the MITRE Corporation on behalf of the Division of Geothermal and Hydropower Technology (DGHT, formerly Division of Geothermal Energy) of the US Department of Energy (DOE). Its purpose is to keep track of and to report significant events and trends in the US geothermal industry and the federal geothermal program. The information sources of the GPM system are paper and computerized files maintained by a number of organizations throughout the United States. Trade and technical publications are also used to supplement the information-gathering network. Periodic reports from the GPM system consist mainly of manual and computerized analyses of the collected data. In addition, significant events and activities are usually highlighted. The GPM serves a dual function for DGHT and other members of the Interagency Geothermal Coordinating Council (IGCC). It supports effective management of the federal geothermal program and it provides information for executive, legislative, statutory, and public needs. This paper is a report on the current status of the GPM system and a summary of MITRE's operational experience during calendar year 1981 and the first quarter of 1982. It includes a description of the required output and the mechanism by which the information is gathered, integrated, and published as a Geothermal Progress Monitor Report.

Gerstein, R.E.; Kenkeremath, L.D.; Murphy, M.B.; Entingh, D.J.

1982-03-01T23:59:59.000Z

283

Chemical Geothermometers And Mixing Models For Geothermal Systems | Open  

Open Energy Info (EERE)

Geothermometers And Mixing Models For Geothermal Systems Geothermometers And Mixing Models For Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Chemical Geothermometers And Mixing Models For Geothermal Systems Details Activities (1) Areas (1) Regions (0) Abstract: Qualitative chemical geothermometers utilize anomalous concentrations of various "indicator" elements in groundwaters, streams, soils, and soil gases to outline favorable places to explore for geothermal energy. Some of the qualitative methods, such as the delineation of mercury and helium anomalies in soil gases, do not require the presence of hot springs or fumaroles. However, these techniques may also outline fossil thermal areas that are now cold. Quantitative chemical geothermometers and mixing models can provide information about present probable minimum

284

A Demonstration System for Capturing Geothermal Energy from Mine Waters  

Open Energy Info (EERE)

System for Capturing Geothermal Energy from Mine Waters System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description Butte, Montana, like many other mining towns that developed because of either hard-rock minerals or coal, is underlain by now-inactive water-filled mines. In Butte's case, over 10,000 miles of underground workings have been documented, but as in many other mining communities these waters are regarded as more of a liability than asset. Mine waters offer several advantages:

285

Regional Systems Development for Geothermal Energy Resources Pacific Region  

Open Energy Info (EERE)

Systems Development for Geothermal Energy Resources Pacific Region Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii). Task 3: water resources evaluation. Topical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii). Task 3: water resources evaluation. Topical report Details Activities (1) Areas (1) Regions (0) Abstract: The fundamental objective of the water resources analysis was to assess the availability of surface and ground water for potential use as power plant make-up water in the major geothermal areas of California. The analysis was concentrated on identifying the major sources of surface and ground water, potential limitations on the usage of this water, and the

286

GRC Workshop: The Power of the National Geothermal Data System | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GRC Workshop: The Power of the National Geothermal Data System GRC Workshop: The Power of the National Geothermal Data System GRC Workshop: The Power of the National Geothermal Data System October 2, 2013 (All day) Flyer for the National Geothermal Data System workshop at the Geothermal Resources Council Annual Meeting on October 2, 2013 in Las Vegas. Drilling Down: How Legacy and New Research Data Can Advance Geothermal Development-The Power of the National Geothermal Data System (NGDS) A workshop at the Geothermal Resources Council Annual Meeting in Las Vegas, Nevada Abstract: The National Geothermal Data System's (NGDS) launch in 2014 will provide open access to millions of datasets, sharing technical geothermal-relevant data across the geosciences to propel geothermal development and production forward. By aggregating findings from the Energy Department's RD&D projects

287

Conceptual Models of Geothermal Systems - Introduction | Open Energy  

Open Energy Info (EERE)

Conceptual Models of Geothermal Systems - Introduction Conceptual Models of Geothermal Systems - Introduction Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Conceptual Models of Geothermal Systems - Introduction Abstract The key to the successful exploration, development (incl. drilling) and utilization of any type of geothermal system is a clear definition and understanding of the nature and characteristics of the system in question. This is best achieved through the development of a conceptual model of the system, which is a descriptive or qualitative model incorporating, and unifying, the essential physical features of the system. Conceptual models are mainly based on analysis of geological and geophysical information, temperature and pressure data, information on reservoir properties as well

288

Enhanced Geothermal Systems (EGS) R&D Program: US Geothermal Resources Review and Needs Assessment  

DOE Green Energy (OSTI)

The purpose of this report is to lay the groundwork for an emerging process to assess U.S. geothermal resources that might be suitable for development as Enhanced Geothermal Systems (EGS). Interviews of leading geothermists indicate that doing that will be intertwined with updating assessments of U.S. higher-quality hydrothermal resources and reviewing methods for discovering ''hidden'' hydrothermal and EGS resources. The report reviews the history and status of assessment of high-temperature geothermal resources in the United States. Hydrothermal, Enhanced, and Hot Dry Rock resources are addressed. Geopressured geothermal resources are not. There are three main uses of geothermal resource assessments: (1) They inform industry and other interest parties of reasonable estimates of the amounts and likely locations of known and prospective geothermal resources. This provides a basis for private-sector decisions whether or not to enter the geothermal energy business at all, and for where to look for useful resources. (2) They inform government agencies (Federal, State, local) of the same kinds of information. This can inform strategic decisions, such as whether to continue to invest in creating and stimulating a geothermal industry--e.g., through research or financial incentives. And it informs certain agencies, e.g., Department of Interior, about what kinds of tactical operations might be required to support such activities as exploration and leasing. (3) They help the experts who are performing the assessment(s) to clarify their procedures and data, and in turn, provide the other two kinds of users with a more accurate interpretation of what the resulting estimates mean. The process of conducting this assessment brings a spotlight to bear on what has been accomplished in the domain of detecting and understanding reservoirs, in the period since the last major assessment was conducted.

Entingh, Dan; McLarty, Lynn

2000-11-30T23:59:59.000Z

289

Design, construction and evaluation of a simulated geothermal flow system  

Science Conference Proceedings (OSTI)

A system was designed and built to simulate the flow from a geothermal well. The simulated flow will be used to power a Lysholm engine, the performance of which will then be evaluated for different simulated geothermal flows. Two main subjects are covered: 1) the design, construction and evaluation of the behavior of the system that simulates the geothermal flow; included in that topic is a discussion of the probable behavior of the Lysholm engine when it is put into operation, and 2) the investigation of the use of dynamic modeling techniques to determine whether they can provide a suitable means for predicting the behavior of the system.

Mackanic, J.C.

1980-07-28T23:59:59.000Z

290

Hybrid Cooling Systems for Low-Temperature Geothermal Power Production  

NLE Websites -- All DOE Office Websites (Extended Search)

LLC. Contract No. DE-AC36-08GO28308 Hybrid Cooling Systems for Low-Temperature Geothermal Power Production Andrea Ashwood and Desikan Bharathan Technical Report NREL...

291

NUMERICAL SIMULATION OF RESERVOIR COMPACTION IN LIQUID DOMINATED GEOTHERMAL SYSTEMS  

E-Print Network (OSTI)

4 x 104 kg/day of water were produced and 3.2 x 104 kg/dayand water through a porous geothermal system, including the vertical deformations produced

Lippmann, M.J.

2010-01-01T23:59:59.000Z

292

Further Developments on the Geothermal System Scoping Model: Preprint  

Science Conference Proceedings (OSTI)

This paper discusses further developments and refinements for the uses of the Geothermal System Scoping Model in an effort to provide a means for performing a variety of trade-off analyses of surface and subsurface parameters, sensitivity analyses, and other systems engineering studies in order to better inform R&D direction and investment for the development of geothermal power into a major contributor to the U.S. energy supply.

Antkowiak, M.; Sargent, R.; Geiger, J. W.

2010-07-01T23:59:59.000Z

293

Heat pump assisted geothermal heating system for Felix Spa, Romania  

Science Conference Proceedings (OSTI)

The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

Rosca, Marcel; Maghiar, Teodor

1996-01-24T23:59:59.000Z

294

Environmental assessment: Raft River geothermal project pilot plant, Cassia County, Idaho  

DOE Green Energy (OSTI)

The action assessed here is the construction and operation of a 5- to 6-MW(e) (gross) geothermal pilot plant in the Raft River Valley of southern Idaho. This project was originally planned as a thermal test loop using a turbine simulator valve. The test loop facility (without the simulator valve) is now under construction. The current environmental assessment addresses the complete system including the addition of a turbine-generator and its associated switching gear in place of the simulator valve. The addition of the turbine-generator will result in a net production of 2.5 to 3.5 MW(e) with a commensurate reduction in waste heat to the cooling tower and will require the upgrading of existing transmission lines for offsite delivery of generated power. Construction of the facility will require disturbance of approximately 20 ha (50 acres) for the facility itself and approximately 22.5 ha (57 acres) for construction of drilling pads and ponds, pipelines, and roads. Existing transmission lines will be upgraded for the utility system interface. Interference with alternate land uses will be minimal. Loss of wildlife habitat will be acceptable, and US Fish and Wildlife Service recommendations for protection of raptor nesting sites, riparian vegetation, and other important habitats will be observed. During construction, noise levels may reach 100 dBA at 15 m (50 ft) from well sites, but wildlife and local residents should not be significantly affected if extended construction is not carried out within 0.5 km (0.3 miles) of residences or sensitive wildlife habitat. Water use during construction will not be large and impacts on competing uses are unlikely.

Not Available

1979-09-01T23:59:59.000Z

295

Engineered Geothermal Systems Energy Return On Energy Investment  

NLE Websites -- All DOE Office Websites (Extended Search)

EGS EROI - 1 EGS EROI - 1 Engineered Geothermal Systems Energy Return On Energy Investment A.J. Mansure, Geothermal Consultant, ajm@q.com Albuquerque, NM 12/10/2012 Key Words: energy, EROI, EGS, efficiency, energy investment, energy return, input energy, energy payback, and net energy. Abstract Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. Too often comparisons of energy systems use "efficiency" when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electricity delivered to the consumer compared to the energy consumed to construct, operate, and decommission the facility. Critical factors in determining the EROI of Engineered Geothermal Systems (EGS

296

Identification of a New Blind Geothermal System with Hyperspectral Remote  

Open Energy Info (EERE)

Identification of a New Blind Geothermal System with Hyperspectral Remote Identification of a New Blind Geothermal System with Hyperspectral Remote Sensing and Shallow Temperature Measurements at Columbus Salt Marsh, Esmeralda County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Identification of a New Blind Geothermal System with Hyperspectral Remote Sensing and Shallow Temperature Measurements at Columbus Salt Marsh, Esmeralda County, Nevada Abstract Hyperspectral remote sensing-derived mineral maps and follow-up shallow temperature measurements were used to identify a new blind geothermal target in the Columbus Salt Marsh playa, Esmeralda County, Nevada. The hyperspectral survey was conducted with the ProSpecTIR VS2 instrument and consists of 380 km2 of 4-meter spatial resolution data acquired on October

297

A Geochemical Model Of The Platanares Geothermal System, Honduras | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » A Geochemical Model Of The Platanares Geothermal System, Honduras Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Geochemical Model Of The Platanares Geothermal System, Honduras Details Activities (0) Areas (0) Regions (0) Abstract: Results of exploration drilling combined with results of geologic, geophysical, and hydrogeochemical investigations have been used to construct a geochemical model of the Platanares geothermal system, Honduras. Three coreholes were drilled, two of which produced fluids from fractured Miocene andesite and altered Cretaceous to Eocene conglomerate at

298

Monitoring well systems in geothermal areas  

DOE Green Energy (OSTI)

The ability to monitor the injection of spent geothermal fluids at reasonable cost might be greatly improved by use of multiple-completion techniques. Several such techniques, identified through contact with a broad range of experts from the groundwater and petroleum industries, are evaluated relative to application in the typical geologic and hydrologic conditions of the Basin and Range Province of the Western United States. Three basic monitor well designs are suggested for collection of pressure and temperature data: Single standpipe, multiple standpipe, and closed-system piezometers. A fourth design, monitor well/injection well dual completions, is determined to be inadvisable. Also, while it is recognized that water quality data is equally important, designs to allow water sampling greatly increase costs of construction, and so such designs are not included in this review. The single standpipe piezometer is recommended for use at depths less than 152 m (500 ft); several can be clustered in one area to provide information on vertical flow conditions. At depths greater than 152 m (500 ft), the multiple-completion standpipe and closed-system piezometers are likely to be more cost effective. Unique conditions at each monitor well site may necessitate consideration of the single standpipe piezometer even for deeper completions.

Lofgren, B.E.; O'Rourke, J.; Sterrett, R.; Thackston, J.; Fain, D.

1982-03-01T23:59:59.000Z

299

Geothermal heating system and method of installing the same  

SciTech Connect

A geothermal system and method of installing the same comprises the steps successively driving a drive pipe structure vertically into the ground at a plurality of locations so that a major portion of the length of the drive pipe structure is located below the frost line. An elongate geothermal pipe having closed ends is inserted into the drive pipe structure and its lower end is interlocked with a drive point device located at the lower end of the drive pipe structure. Thereafter, when the drive pipe is removed, the geothermal pipe remains anchored to the drive point. The geothermal pipes are connected together by conduits and connected to a heat pump so that a heat exchange liquid will be circulated through the system.

Kees, E.J.; Steiger, D.W.

1981-09-01T23:59:59.000Z

300

Two-dimensional simulation of the Raft River geothermal reservoir and wells. [SINDA-3G program  

DOE Green Energy (OSTI)

Computer models describing both the transient reservoir pressure behavior and the time dependent temperature response of the wells at the Raft River, Idaho, Geothermal Resource were developed. A horizontal, two-dimensional, finite-difference model for calculating pressure effects was constructed to simulate reservoir performance. Vertical, two-dimensional, finite-difference, axisymmetric models for each of the three existing wells at Raft River were also constructed to describe the transient temperature and hydraulic behavior in the vicinity of the wells. All modeling was done with the use of the thermal hydraulics computer program SINDA-3G. The models are solved simultaneously with one input deck so that reservoir-well interaction may occur. The model predicted results agree favorably with the test data.

Kettenacker, W.C.

1977-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "river geothermal system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Environmental Development Plan (EDP). Geothermal energy systems, 1977  

DOE Green Energy (OSTI)

The Geothermal Energy Systems Environmental Development Plan (EDP) identifies the environmental, health, safety, social, and economic issues which are associated with the development, demonstration, and commercialization of geothermal resources and conversion technology. The EDP also describes the actions and implementation strategy required to resolve the issues identified. These actions may include the initiation of R and D activities, operations monitoring, baseline characterization studies, or activities leading to the development of standards and criteria in concert with other responsible agencies.

Not Available

1978-03-01T23:59:59.000Z

302

High-Temperature-High-Volume Lifting For Enhanced Geothermal Systems  

Open Energy Info (EERE)

Temperature-High-Volume Lifting For Enhanced Geothermal Systems Temperature-High-Volume Lifting For Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High-Temperature-High-Volume Lifting For Enhanced Geothermal Systems Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 High-Temperature-High-Volume Lifting Project Description The proposed scope of work is divided into three Phases. Overall system requirements will be established in Phase 1, along with an evaluation of existing lifting system capability, identification of technology limitations, and a conceptual design of an overall lifting system. In developing the system components in Phase 2, component-level tests will be conducted using GE facilities. Areas of development will include high-temperature drive system materials, journal and thrust bearings, and corrosion and erosion-resistant lifting pump components. Finally, in Phase 3, the overall lab-scale lifting system will be demonstrated in a flow loop that will be constructed at GE Global Research.

303

The Newcastle geothermal system, Iron County, Utah  

DOE Green Energy (OSTI)

Geological, geophysical and geochemical studies contributed to conceptual hydrologic model of the blind'' (no surface expression), moderate-temperature (greater than 130{degree}C) Newcastle geothermal system, located in the Basin and Range-Colorado Plateau transition zone of southwestern Utah. Temperature gradient measurements define a thermal anomaly centered near the surface trace of the range-bounding Antelope Range fault with and elongate dissipative plume extending north into the adjacent Escalante Valley. Spontaneous potential and resistivity surveys sharply define the geometry of the dominant upflow zone (not yet explored), indicating that most of the thermal fluid issues form a short segment along the Antelope Range fault and discharges into a gently-dipping aquifer. Production wells show that this aquifer lies at a depth between 85 and 95 meter. Electrical surveys also show that some leakage of thermal fluid occurs over a 1.5 km (minimum) interval along the trace of the Antelope Range fault. Major element, oxygen and hydrogen isotopic analyses of water samples indicate that the thermal fluid is a mixture of meteoric water derived from recharge areas in the Pine Valley Mountains and cold, shallow groundwater. A northwest-southeast trending system of faults, encompassing a zone of increased fracture permeability, collects meteoric water from the recharge area, allows circulation to a depth of 3 to 5 kilometers, and intersects the northeast-striking Antelope Range fault. We postulate that mineral precipitates form a seal along the Antelope Range fault, preventing the discharge of thermal fluids into basin-fill sediments at depth, and allowing heated fluid to approach the surface. Eventually, continued mineral deposition could result in the development of hot springs at the ground surface.

Blackett, R.E.; Shubat, M.A.; Bishop, C.E. (Utah Geological and Mineral Survey, Salt Lake City, UT (USA)); Chapman, D.S.; Forster, C.B.; Schlinger, C.M. (Utah Univ., Salt Lake City, UT (USA). Dept. of Geology and Geophysics)

1990-03-01T23:59:59.000Z

304

Temporary Cementitious Sealers in Enhanced Geothermal Systems  

DOE Green Energy (OSTI)

Unlike conventional hydrothennal geothermal technology that utilizes hot water as the energy conversion resources tapped from natural hydrothermal reservoir located at {approx}10 km below the ground surface, Enhanced Geothermal System (EGS) must create a hydrothermal reservoir in a hot rock stratum at temperatures {ge}200 C, present in {approx}5 km deep underground by employing hydraulic fracturing. This is the process of initiating and propagating a fracture as well as opening pre-existing fractures in a rock layer. In this operation, a considerable attention is paid to the pre-existing fractures and pressure-generated ones made in the underground foundation during drilling and logging. These fractures in terms of lost circulation zones often cause the wastage of a substantial amount of the circulated water-based drilling fluid or mud. Thus, such lost circulation zones must be plugged by sealing materials, so that the drilling operation can resume and continue. Next, one important consideration is the fact that the sealers must be disintegrated by highly pressured water to reopen the plugged fractures and to promote the propagation of reopened fractures. In response to this need, the objective of this phase I project in FYs 2009-2011 was to develop temporary cementitious fracture sealing materials possessing self-degradable properties generating when {ge} 200 C-heated scalers came in contact with water. At BNL, we formulated two types of non-Portland cementitious systems using inexpensive industrial by-products with pozzolanic properties, such as granulated blast-furnace slag from the steel industries, and fly ashes from coal-combustion power plants. These byproducts were activated by sodium silicate to initiate their pozzolanic reactions, and to create a cemetitious structure. One developed system was sodium silicate alkali-activated slag/Class C fly ash (AASC); the other was sodium silicate alkali-activated slag/Class F fly ash (AASF) as the binder of temper-try sealers. Two specific additives without sodium silicate as alkaline additive were developed in this project: One additive was the sodium carboxymethyl cellulose (CMC) as self-degradation promoting additive; the other was the hard-burned magnesium oxide (MgO) made from calcinating at 1,000-1,500 C as an expansive additive. The AASC and AASF cementitious sealers made by incorporating an appropriate amount of these additives met the following six criteria: 1) One dry mix component product; 2) plastic viscosity, 20 to 70 cp at 300 rpm; 3) maintenance of pumpability for at least 1 hour at 85 C; 4) compressive strength >2000 psi; 5) self-degradable by injection with water at a certain pressure; and 6) expandable and swelling properties; {ge}0.5% of total volume of the sealer.

Sugama T.; Pyatina, T.; Butcher, T.; Brothers, L.; Bour, D.

2011-12-31T23:59:59.000Z

305

Geothermal assessment of the lower Bear River drainage and northern East Shore ground-water areas, Box Elder County, Utah  

DOE Green Energy (OSTI)

The Utah Geological and Mineral Survey (UGMS) has been researching the low-temperature geothermal resource potential in Utah. This report, part of an area-wide geothermal research program along the Wasatch Front, concerns the study conducted in the lower Bear River drainage and northern East Shore ground-water areas in Box Elder County, Utah. The primary purpose of the study is to identify new areas of geothermal resource potential. There are seven known low-temperature geothermal areas in this part of Box Elder County. Geothermal reconnaissance techniques used in the study include a temperature survey, chemical analysis of well and spring waters, and temperature-depth measurements in accessible wells. The geothermal reconnaissance techniques identified three areas which need further evaluation of their low-temperature geothermal resource potential. Area 1 is located in the area surrounding Little Mountain, area 2 is west and southwest of Plymouth, and area 3 is west and south of the Cutler Dam. 5 figures, 4 tables.

Klauk, R.H.; Budding, K.E.

1984-07-01T23:59:59.000Z

306

Beneficial uses of geothermal energy description and preliminary results for phase 1 of the Raft River irrigation experiment  

DOE Green Energy (OSTI)

The first phase of an experiment using geothermal water for irrigation is described and preliminary results are discussed. The water was from a moderate temperature well, having salinity of about 2000 ppM, and is considered characteristic of the types of geothermal fluids that will be obtained from the young volcanic/young sediment formations of the northern intermountain west. The activity was completed at a location adjacent to ERDA's Raft River Geothermal Project in southern Idaho. About 12.5 acres, of which part had no previous cultivation, were subdivided by crops and irrigation practices for investigation with the geothermal water and a control comparison water from the relatively pure Raft River. Flood and sprinkler application techniques were used and wheat, barley, oats, grasses, alfalfa, potatoes, and garden vegetables were successfully grown. An accompanying experiment evaluated the behavior of an established alfalfa crop located nearby, when most of the irrigation water was geothermal. The experiment addressed heavy metal uptake in plants, plant fluoride retention and damage, plant tolerances to salts, soil alterations and other behavior as a result of the geothermal fluids, all of which were largely believed to eliminate geothermal water from contention for crop growing utilization. Not all analyses and results are complete in this reporting, but first results indicate no apparent difference between the geothermal watered crops and those obtained using the fresh water control. Extensive chemical analyses, neutron activation analyses, and other evaluations of crop samples are discussed, and some of the findings are presented. Although evaluation of crop yields was not an objective, extrapolations from samples indicate that yield results were comparable to those commonly found in the area, and the yield varied little between water sources. (JGB)

Schmitt, R.C.; Spencer, S.G.

1977-01-01T23:59:59.000Z

307

Higher-order differencing for front propagation in geothermal systems  

E-Print Network (OSTI)

and Renewable Energy, Geothermal Division, U.S. Departmentorder differencing for geothermal reservoir simulation,Proc. 22nd Workshop on Geothermal Reservoir Engineering,

Oldenburg, Curtis; Pruess, Karsten

1998-01-01T23:59:59.000Z

308

MATHEMATICAL MODELING OF THE BEHAVIOR OF GEOTHERMAL SYSTEMS UNDER EXPLOITATION  

E-Print Network (OSTI)

and momentum transfer i n a geothermal reservoir, Summaries2nd Work- shop Geothermal Reservoir Engineering, StanfordSchroeder, W e l l tests, Geothermal Resource and Reservoir

Bodvarsson, G.S.

2010-01-01T23:59:59.000Z

309

Development of Exploration Methods for Engineered Geothermal Systems  

Open Energy Info (EERE)

Exploration Methods for Engineered Geothermal Systems Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation. Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation. Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geophysical Exploration Technologies Project Description A comprehensive, interdisciplinary approach is proposed using existing geophysical exploration technology coupled with new seismic techniques and subject matter experts to determine the combination of geoscience data that demonstrates the greatest potential for identifying EGS drilling targets using non-invasive techniques. This proposed exploration methodology is expected to increase spatial resolution and reduce the non-uniqueness that is inherent in geological data, thereby reducing the uncertainty in the primary selection criteria for identifying EGS drilling targets. These criteria are, in order of importance: (1) temperatures greater than 200-250°C at 1-5 km depth; (2) rock type at the depth of interest, and; (3) stress regime.

310

Seismic Technology Adapted to Analyzing and Developing Geothermal Systems  

Open Energy Info (EERE)

Technology Adapted to Analyzing and Developing Geothermal Systems Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geophysical Exploration Technologies Project Description Historically, areas where the Earth surface is covered by an exposed high-velocity rock layer have been locations where conventional, single-component, seismic P-waves have failed to provide usable geological information. The research will use new seismic sources that emphasize shear waves and new seismic data-acquisition technology based on cable-free data recording to acquire seismic research data across two sites covered with surface-exposed highvelocity rocks. Research tasks will involve acquiring, processing, and interpreting both conventional seismic data and multicomponent seismic data. Scientists at BEG will analyze well logs, cores, and reservoir test data to construct geological models of the targeted geology across each study site.

311

Residential Vertical Geothermal Heat Pump System Models: Calibration to Data:  

SciTech Connect

A detailed component-based simulation model of a geothermal heat pump system has been calibrated to monitored data taken from a family housing unit located at Fort Polk, Louisiana. The simulation model represents the housing unit, geothermal heat pump, ground heat exchanger, thermostat, blower, and ground-loop pump. Each of these component models was 'tuned' to better match the measured data from the site. These tuned models were then interconnect to form the system model. The system model was then exercised in order to demonatrate its capabilities.

Thornton, Jeff W. [Thermal Energy Systems Specialists, Inc.; McDowell, T. P. [Thermal Energy Systems Specialists, Inc.; Shonder, John A [ORNL; Hughes, Patrick [ORNL; Pahud, D. [University of Applied Sciences of Southern Switzerland; Hellstrom, G. [Lund University

1997-06-01T23:59:59.000Z

312

Environmental impact directory system: preliminary implementation for geothermal energy  

DOE Green Energy (OSTI)

An Environmental Impact Directory System (EIDS) was proposed as a method for a computerized search of the widely distributed data files and models pertaining to energy-related environmental effects. To define the scope and content of the system, an example was prepared for the case of geothermal energy. The resulting sub-directory is known as GEIDs (Geothermal Environmental Impact Directory System). In preparing or reviewing an Environmental Impact Statement (EIS), the user may employ GEIDS as an extensive checklist to make sure he has taken into account all predictable impacts at any level of severity.

Hess, F.D.; Hall, R.T.; Fullenwider, E.D.

1976-07-01T23:59:59.000Z

313

Category:Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Geothermal Systems (EGS) G Geothermal Direct Use G cont. GeothermalExploration Ground Source Heat Pumps H Hydrothermal System S Sedimentary Geothermal Systems Retrieved from...

314

Evaluation of C-14 as a natural tracer for injected fluids at the Aidlin sector of The Geysers geothermal system through modeling of mineral-water-gas Reactions  

E-Print Network (OSTI)

breakthrough observed in geothermal systems (e.g. , Shook,recharge project, Geysers geothermal field, California, USA,media: Applications to geothermal injectivity and CO 2

Dobson, Patrick; Sonnenthal, Eric; Lewicki, Jennifer; Kennedy, Mack

2006-01-01T23:59:59.000Z

315

Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2  

E-Print Network (OSTI)

Interactions in Enhanced Geothermal Systems (EGS) with CO 2Fluid, Proceedings, World Geothermal Congress 2010, Bali,Remain? Transactions, Geothermal Resources Council, Vol. 17,

Pruess, K.

2010-01-01T23:59:59.000Z

316

A Phase-Partitioning Model for CO2Brine Mixtures at Elevated Temperatures and Pressures: Application to CO2-Enhanced Geothermal Systems  

E-Print Network (OSTI)

D.W. : A hot dry rock geothermal energy concept utilizingtwenty-?fth workshop on geothermal reservoir engineering,the development of enhanced geothermal systems? In: Paper

Spycher, Nicolas; Pruess, Karsten

2010-01-01T23:59:59.000Z

317

Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring  

E-Print Network (OSTI)

Propulsion Laboratory, National Rev. 1.2 Strategies for Detection of Hidden Geothermal Systems Aeronautics and Space

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2004-01-01T23:59:59.000Z

318

Property:Geothermal/Partner6Website | Open Energy Information  

Open Energy Info (EERE)

Partner6Website Partner6Website Jump to: navigation, search Property Name Geothermal/Partner6Website Property Type URL Description Partner 6 Website (URL) Pages using the property "Geothermal/Partner6Website" Showing 4 pages using this property. C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://www.sensortran.com/ + I Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Geothermal Project + http://www.pitt.edu/ + S Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Geothermal Project + http://www.sercel.com/ + T The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration Geothermal Project + http://www.icdp-online.org/contenido/icdp/front_content.php +

319

Progress Toward an Advanced Geothermal Deep-Drilling System  

DOE Green Energy (OSTI)

A previously developed concept for an advanced geothermal drilling system (AGDS) has been extended toward a feasibility design stage. Hardware projects for two percussion, air and hydraulic, hammer drills are underway. Two drill string options and an unique nitrogen supply system are described.

Rowley, J.; Saito, S.; Long, R.

1995-01-01T23:59:59.000Z

320

Recommendations of the workshop on advanced geothermal drilling systems  

DOE Green Energy (OSTI)

At the request of the U.S. Department of Energy, Office of Geothermal Technologies, Sandia National Laboratories convened a group of drilling experts in Berkeley, CA, on April 15-16, 1997, to discuss advanced geothermal drilling systems. The objective of the workshop was to develop one or more conceptual designs for an advanced geothermal drilling system that meets all of the criteria necessary to drill a model geothermal well. The drilling process was divided into ten essential functions. Each function was examined, and discussions were held on the conventional methods used to accomplish each function and the problems commonly encountered. Alternative methods of performing each function were then listed and evaluated by the group. Alternative methods considered feasible or at least worth further investigation were identified, while methods considered impractical or not potentially cost-saving were eliminated from further discussion. This report summarizes the recommendations of the workshop participants. For each of the ten functions, the conventional methods, common problems, and recommended alternative technologies and methods are listed. Each recommended alternative is discussed, and a description is given of the process by which this information will be used by the U.S. DOE to develop an advanced geothermal drilling research program.

Glowka, D.A.

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "river geothermal system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Incidence of human dental fluorosis in the Raft River geothermal area in southern Idaho. Final report  

DOE Green Energy (OSTI)

A total of 270 school aged individuals representing 151 families living in the vicinity of the Raft River Geothermal area of Idaho were examined for evidence of dental fluorosis. Of these 132 had some dental anomaly. Fifty-two individuals from 45 families had lesions classified as typical dental fluorosis. Eleven of these, some of which had severe dental fluorosis recently moved into the area from other locations. Samples of the drinking waters that were likely consumed by the individuals with dental fluorosis were collected for analyses. In most instances the fluoride content of the waters were low and would not account for the tooth lesions. Possible reasons for lack of correlation are changing of the composition of the water, other sources of fluoride in the diet, and possibly analytical errors.

Shupe, J.L.; Olson, A.E.; Peterson, H.B.

1978-09-01T23:59:59.000Z

322

Mathematical modeling of the behavior of geothermal systems under exploitation  

DOE Green Energy (OSTI)

Analytical and numerical methods have been used in this investigation to model the behavior of geothermal systems under exploitation. The work is divided into three parts: (1) development of a numerical code, (2) theoretical studies of geothermal systems, and (3) field applications. A new single-phase three-dimensional simulator, capable of solving heat and mass flow problems in a saturated, heterogeneous porous or fractured medium has been developed. The simulator uses the integrated finite difference method for formulating the governing equations and an efficient sparse solver for the solution of the linearized equations. In the theoretical studies, various reservoir engineering problems have been examined. These include (a) well-test analysis, (b) exploitation strategies, (c) injection into fractured rocks, and (d) fault-charged geothermal reservoirs.

Bodvarsson, G.S.

1982-01-01T23:59:59.000Z

323

Assessment of the Geothermal System Near Stanley, Idaho  

SciTech Connect

The City of Stanley, Idaho (population 63) is situated in the Salmon River valley of the central Idaho highlands. Due to its location and elevation (6270 feet amsl) it is one of the coldest locales in the continental U.S., on average experiencing frost 290 days of the year as well as 60 days of below zero (oF) temperatures. Because of high snowfall (76 inches on average) and the fact that it is at the terminus of its rural grid, the city also frequently endures extended power outages during the winter. To evaluate its options for reducing heating costs and possible local power generation, the city obtained a rural development grant from the USDA and commissioned a feasibility study through author Roy Mink to determine whether a comprehensive site characterization and/or test drilling program was warranted. Geoscience students and faculty at Idaho State University (ISU), together with scientists from the Idaho Geological Survey (IGS) and Idaho National Laboratory (INL) conducted three field data collection campaigns between June, 2011 and November, 2012 with the assistance of author Beckwith who arranged for food, lodging and local property access throughout the field campaigns. Some of the information collected by ISU and the IGS were compiled by author Mink and Boise State University in a series of progress reports (Makovsky et al., 2011a, b, c, d). This communication summarizes all of the data collected by ISU including data that were compiled as part of the IGSs effort for the National Geothermal Data Systems (NGDS) data compilation project funded by the Department of Energy and coordinated by the Arizona Geological Survey.

Trent Armstrong; John Welhan; Mike McCurry

2012-06-01T23:59:59.000Z

324

Idaho/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Idaho/Geothermal Idaho/Geothermal < Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Idaho Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Idaho Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Raft River II Geothermal Project U.S. Geothermal Raft River, AK 114 MW114,000 kW 114,000,000 W 114,000,000,000 mW 0.114 GW 1.14e-4 TW Phase III - Permitting and Initial Development Raft River Geothermal Area Northern Basin and Range Geothermal Region Raft River III Geothermal Project U.S. Geothermal Raft River, ID 114 MW114,000 kW 114,000,000 W 114,000,000,000 mW 0.114 GW 1.14e-4 TW Phase I - Resource Procurement and Identification Raft River Geothermal Area Northern Basin and Range Geothermal Region

325

Geothermal System Saves Dollars, Makes Sense for Maryland Family |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System Saves Dollars, Makes Sense for Maryland Family System Saves Dollars, Makes Sense for Maryland Family Geothermal System Saves Dollars, Makes Sense for Maryland Family April 16, 2010 - 5:15pm Addthis A 36-foot-tall drill was needed to install the geothermal system at the Gearon’s house in Derwood, MD. | Photo courtesy of Chris Gearon | A 36-foot-tall drill was needed to install the geothermal system at the Gearon's house in Derwood, MD. | Photo courtesy of Chris Gearon | Lindsay Gsell "At the end of the day, it cost us about the same as if we just replaced our furnace and AC with another furnace and AC, but the big difference is that we're not spending $3,000 on oil bills anymore." Chris Gearon, Derwood, MD resident who recently installed a geothermal system to heal and cool his home Chris Gearon's 24-year old oil furnace was tired. What happened if the

326

Dual-temperature Kalina cycle for geothermal-solar hybrid power systems  

E-Print Network (OSTI)

This thesis analyzes the thermodynamics of a power system coupling two renewable heat sources: low-temperature geothermal and a high-temperature solar. The process, referred to as a dual-temperature geothermal-solar Kalina ...

Boghossian, John G

2011-01-01T23:59:59.000Z

327

Modeling and analysis of hybrid geothermal-solar thermal energy conversion systems  

E-Print Network (OSTI)

Innovative solar-geothermal hybrid energy conversion systems were developed for low enthalpy geothermal resources augmented with solar energy. The goal is to find cost-effective hybrid power cycles that take advantage of ...

Greenhut, Andrew David

2010-01-01T23:59:59.000Z

328

Energy analysis of geothermal-electric systems  

DOE Green Energy (OSTI)

Standard energy analysis was applied to 4 types of geothermal-electric technologies: liquid dominated, hot dry rock, geopressure, and vapor dominated. It was found that all are net energy producers. Expected uncertainties are not large enough to threaten this conclusion. Vapor dominated, the only technology in current commercial use to produce electricity in the US, has the highest energy ratio (13 +- 4). These results for energy ratio are equal to or less than some from other workers. In the case of liquid dominated, environmental control technology has a considerable energy requirement.

Herendeen, R.A.; Plant, R.

1979-12-01T23:59:59.000Z

329

Analysis of Power Cycles for Geothermal Wellhead Conversion Systems  

Science Conference Proceedings (OSTI)

Using the guidelines and data developed from 240 representative cases, utility engineers can make preliminary estimates of the performance of alternative energy conversion systems proposed for specific geothermal sites. This approach can reduce the cost and scope of initial engineering studies.

1985-06-14T23:59:59.000Z

330

Description and operation of Haakon School geothermal-heating system  

SciTech Connect

To encourage the development of hydrothermal energy, twenty-three demonstration projects were funded. The Haakon School project is one of twelve such projects. The geothermal direct-use heating system at the Haakon School complex in Philip, South Dakota is described and information gained during approximately three heating seasons of operation is presented.

Childs, F.W.; Kirol, L.D.; Sanders, R.D.; McLatchy, M.J.

1983-10-01T23:59:59.000Z

331

Fluid origin, gas fluxes and plumbing system in the sediment-hosted Salton Sea Geothermal System (California, USA)  

E-Print Network (OSTI)

Fluid origin, gas fluxes and plumbing system in the sediment-hosted Salton Sea Geothermal System Available online 12 June 2011 Keywords: Salton Sea Geothermal System hydrothermal seeps gas and water geochemistry flux measurements mantle The Salton Sea Geothermal System (California) is an easily accessible

Mazzini, Adriano

332

Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas  

Open Energy Info (EERE)

Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas Monitoring Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas Monitoring Details Activities (6) Areas (1) Regions (0) Abstract: Hidden geothermal systems are those systems above which hydrothermal surface features (e.g., hot springs, fumaroles, elevated ground temperatures, hydrothermal alteration) are lacking. Emissions of moderate to low solubility gases (e.g., CO2, CH4, He) may be one of the primary near-surface signals from these systems. Detection of anomalous gas emissions related to hidden geothermal systems may therefore be an important tool to discover new geothermal resources. This study investigates the potential for CO2 detection and monitoring in the

333

Modeling Studies of Geothermal Systems with a Free Water Surface  

DOE Green Energy (OSTI)

Numerical simulators developed for geothermal reservoir engineering applications generally only consider systems which are saturated with liquid water and/or steam. However, most geothermal fields are in hydraulic communicatino with shallow ground water aquifers having free surface (water level), so that production or injection operations will cause movement of the surface, and of the air in the pore spaces above the water level. In some geothermal fields the water level is located hundreds of meters below the surface (e.g. Olkaria, Kenya; Bjornsson, 1978), so that an extensive so that an extensive unsaturated zone is present. In other the caprock may be very leaky or nonexistent [e.g., Klamath Falls, oregon (Sammel, 1976)]; Cerro Prieto, Mexico; (Grant et al., 1984) in which case ther eis good hydraulic communication between the geothermal reservoir and the shallow unconfined aquifers. Thus, there is a need to explore the effect of shallow free-surface aquifers on reservoir behavior during production or injection operations. In a free-surface aquifer the water table moves depending upon the rate of recharge or discharge. This results in a high overall storativity; typically two orders of magnitude higher than that of compressed liquid systems, but one or two orders of magnitude lower than that for liquid-steam reservoirs. As a consequence, various data analysis methods developed for compressed liquid aquifers (such as conventional well test analysis methods) are not applicable to aquifer with a free surface.

Bodvarsson, Gudmundur S.; Pruess, K.

1983-12-15T23:59:59.000Z

334

Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems  

DOE Green Energy (OSTI)

The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber, and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ???±5???°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.

William A. Challener

2014-12-04T23:59:59.000Z

335

Numerical modeling of geothermal systems with applications to Krafla, Iceland and Olkaria, Kenya  

SciTech Connect

The use of numerical models for the evaluation of the generating potential of high temperature geothermal fields has increased rapidly in recent years. In the present paper a unified numerical approach to the modeling of geothermal systems is discussed and the results of recent modeling of the Krafla geothermal field in Iceland and the Olkaria, Kenya, are described. Emphasis is placed on describing the methodology using examples from the two geothermal fields.

Bodvarsson, G.S.

1987-08-01T23:59:59.000Z

336

36Cl/Cl ratios in geothermal systems- preliminary measurements from the  

Open Energy Info (EERE)

Cl/Cl ratios in geothermal systems- preliminary measurements from the Cl/Cl ratios in geothermal systems- preliminary measurements from the Coso Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: 36Cl/Cl ratios in geothermal systems- preliminary measurements from the Coso Field Details Activities (1) Areas (1) Regions (0) Abstract: The {sub 36}Cl/Cl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic structure, in determining the origins and age of waters within the systems, and in differentiating the sources of chlorine (and other solutes) in the thermal waters. The {sub 36}Cl/Cl values for several geothermal water samples and reservoir host rock samples from the Coso, California geothermal field have been measured for these purposes. The results

337

Seal/lubricant systems for geothermal drilling equipment  

DOE Green Energy (OSTI)

The development and testing of seals and lubricants for journal-type roller-cone rock bits for drilling into geothermal reservoirs at temperatures over 260/sup 0/C (500/sup 0/F) are described. The conditions experienced by seals and lubricants subjected to geothermal drilling are reviewed along with the basic design requirements for roller-cone bit seals and journal bearing lubricants. Two unique test facilities are described: a seal test machine which simulates pressures, temperatures, and mechanical eccentricities, and a lubricant tester capable of evaluating load-bearing ability at temperature and pressure. Three candidate elastomeric compounds demonstrated 288/sup 0/C (550/sup 0/F) capability and several others demonstrated 260/sup 0/C (500/sup 0/F) or greater capability. Successful elastomeric seal candidates were proprietary compounds based on EPDM, Kalrez, and/or Viton polymers. Three mechanical seals for reservoir temperatures over 288/sup 0/C (550/sup 0/F) are presented. Lubricant screening tests on more than 50 products are summarized, and several newly developed lubricants which meet both the compatibility and lubrication requirements are described. Several seal/lubricant systems are recommended for laboratory or field geothermal drilling tests in roller-cone drill bits. The future availability of drill bits for geothermal use is discussed, as well as the potential spinoffs of the program findings for nongeothermal roller-cone bits.

Hendrickson, R.R.; Winzenried, R.W.

1980-07-01T23:59:59.000Z

338

Introduction to electric energy conversion systems for geothermal energy resources  

SciTech Connect

The types of geothermal energy conversion systems in use are classified as follows: direct, dry steam; separated steam; single-flash steam; double-flash steam; multi-flash steam; brine/Freon binary cycle; and brine/isobutane binary cycle. The thermodynamics of each of these is discussed with reference to simplified flow diagrams. Typical existing power plants are identified for each type of system. (MHR)

DiPippo, R.

1978-06-01T23:59:59.000Z

339

Geothermal Heat Pump Systems: Applications and Technology Development  

Science Conference Proceedings (OSTI)

This report discusses a hybrid geothermal heat pump system, an efficient, all-electric heating and cooling option for small and large commercial buildings. In this system, the ground loop heat exchanger is sized for winter heating and supplemented by auxiliary heat rejection devices (such as fluid coolers or cooling towers) for summer operation that prevent performance-impeding heat buildup in the earth surrounding the ground loop.

2003-11-03T23:59:59.000Z

340

Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function  

Open Energy Info (EERE)

Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geothermal Analysis Project Description This effort will support the expansion of Enhanced Geothermal Systems (EGS), supporting DOE Strategic Themes of "energy security" and sub goal of "energy diversity"; reducing the Nation's dependence on foreign oil while improving our environment. A 50 MW has been chosen as a design point, so that the project may also assess how different machinery approaches will change the costing - it is a mid point in size where multiple solutions exist that will allow the team to effectively explore the options in the design space and understand the cost.

Note: This page contains sample records for the topic "river geothermal system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Development of a Hydrothermal Spallation Drilling System for EGS Geothermal  

Open Energy Info (EERE)

Hydrothermal Spallation Drilling System for EGS Geothermal Hydrothermal Spallation Drilling System for EGS Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Development of a Hydrothermal Spallation Drilling System for EGS Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Drilling Systems Project Description Potter Drilling has recently demonstrated hydrothermal spallation drilling in the laboratory. Hydrothermal spallation drilling creates boreholes using a focused jet of superheated water, separating individual grains ("spalls") from the rock surface without contact between the rock and the drill head. This process virtually eliminates the need for tripping. Previous tests of flame-jet spallation achieved ROP of 50 ft/hr and higher in hard rock with minimal wear on the drilling assembly, but operating this technology in an air-filled borehole created challenges related to cuttings transport and borehole stability. The Potter Drilling system uses a water based jet technology in a fluid-filled borehole and as a result has the potential to achieve similarly high ROP that is uncompromised by stability or cuttings transport issues.

342

Engineered Geothermal Systems Energy Return On Energy Investment  

SciTech Connect

Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. Too often comparisons of energy systems use ??efficiency? when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electricity delivered to the consumer compared to the energy consumed to construct, operate, and decommission the facility. Critical factors in determining the EROI of Engineered Geothermal Systems (EGS) are examined in this work. These include the input energy embodied into the system. Embodied energy includes the energy contained in the materials, as well as, that consumed in each stage of manufacturing from mining the raw materials to assembling the finished system. Also critical are the system boundaries and value of the energy ?? heat is not as valuable as electrical energy. The EROI of an EGS depends upon a number of factors that are currently unknown, for example what will be typical EGS well productivity, as well as, reservoir depth, temperature, and temperature decline rate. Thus the approach developed is to consider these factors as parameters determining EROI as a function of number of wells needed. Since the energy needed to construct a geothermal well is a function of depth, results are provided as a function of well depth. Parametric determination of EGS EROI is calculated using existing information on EGS and US Department of Energy (DOE) targets and is compared to the ??minimum? EROI an energy production system should have to be an asset rather than a liability.

Mansure, A J

2012-12-10T23:59:59.000Z

343

Community Geothermal Technology Program: Bottom heating system using geothermal power for propagation. Final report, Phases 1 and 2  

DOE Green Energy (OSTI)

The objective is to develop and study a bottom-heating system in a greenhouse utilizing geothermal energy to aid germination and speed growth of palms. Source of heat was geothermal brine from HGP-A well. The project was successful; the heat made a dramatic difference with certain varieties, such as Areca catechu (betelnut) with 82% germination with heat, zero without. For other varieties, germination rates were much closer. Quality of seed is important. Tabs, figs.

Downing, J.C.

1990-01-01T23:59:59.000Z

344

Isotope hydrology of a basin and range geothermal system  

Science Conference Proceedings (OSTI)

If the geothermal resources in Dixie Valley are exploited, a complete understanding of the hydrologic system is essential in managing the geothermal system. As a reconnaissance study in an area of minimal hydrologic research, it is necessary to examine many facets of the local hydrologic cycle in Dixie Valley. To this end, this paper will discuss the isotopic composition of local precipitation, the age and origin of the hot spring waters and the type of water most important for recharge of both the thermal and nonthermal systems. This study was accomplished by using stable and radioactive environmental isotopes, and to a lesser extent, water chemistry. Dueterium and oxygen-18 were heavily relied upon in formulating conclusions, but some tritium and carbon-14 sampling were also performed.

Jacobson, R.L.; Ingraham, N.L.; Campana, M.E.

1983-08-01T23:59:59.000Z

345

Geothermal Systems of the Yellowstone Caldera Field Trip Guide  

Science Conference Proceedings (OSTI)

Geothermal studies are proceedings on two fronts in the West Yellowstone area. High-temperature resources for the generation of electricity are being sought in the Island Park area, and lower temperatures resources for direct applications, primarily space heating, are being explored for near the town of West Yellowstone. Potential electric geothermal development in the Island Park area has been the subject of widespread publicity over fears of damage to thermal features in Yellowstone Park. At the time of writing this guide, companies have applied for geothermal leases in the Island Park area, but these leases have not yet been granted by the US Forest Service. The Senate is now discussing a bill that would regulate geothermal development in Island Park; outcome of this debate will determine the course of action on the lease applications. The Island Park area was the site of two cycles of caldera activity, with major eruptions at 2.0 and 1.2 million years ago. The US Geological Survey estimates that 16,850 x 10{sup 18} joules of energy may remain in the system. Geothermal resources suitable for direct applications are being sought in the West Yellowstone vicinity by the Montana Bureau of Mines and Geology, under funding from the US Department of Energy. West Yellowstone has a mean annual temperature of 1-2 C. Research thus far suggests that basement rocks in the vicinity are at a depth of about 600 m and are probably similar to the rocks exposed north of Hebgen Lake, where Precambrian, Paleozoic and Mesozoic rocks have been mapped. A few sites with anomalously warm water have been identified near the town. Work is continuing on this project.

Foley, Duncan; Neilson, Dennis L.; Nichols, Clayton R.

1980-09-08T23:59:59.000Z

346

Oregon/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Oregon/Geothermal Oregon/Geothermal < Oregon Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oregon Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oregon Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Crump Geyser Geothermal Project Nevada Geo Power, Ormat Utah 80 MW80,000 kW 80,000,000 W 80,000,000,000 mW 0.08 GW 8.0e-5 TW Phase II - Resource Exploration and Confirmation Crump's Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Neal Hot Springs Geothermal Project U.S. Geothermal Vale, Oregon Phase III - Permitting and Initial Development Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region Neal Hot Springs II Geothermal Project U.S. Geothermal Vale, Oregon Phase I - Resource Procurement and Identification Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region

347

Aspects of forced convective heat transfer in geothermal systems  

DOE Green Energy (OSTI)

A knowledge of convective heat transfer is essential to understanding geothermal systems and other systems of moving groundwater. A simple, kinematic approach toward convective heat transfer is taken here. Concern is not with the cause of the groundwater motion but only with the fact that the water is moving and transferring heat. The mathematical basis of convective heat transfer is the energy equation which is a statement of the first law of thermodynamics. The general solution of this equation for a specific model of groundwater flow has to be done numerically. The numerical algorithm used here employs a finite difference approximation to the energy equation that uses central differences for the heat conduction terms and one-sided differences for the heat convection terms. Gauss--Seidel iteration is then used to solve the finite difference equation at each node of a non-uniform mesh. The Monroe and Red Hill hot springs, a small hydrothermal system in central Utah, provide an example to illustrate the application of convective heat transfer theory to a geophysical problem. Two important conclusions regarding small geothermal systems follow immediately from the results of this application. First, the most rapid temperature rise in the convecting part of a geothermal system is near the surface. Below this initially rapid temperature increase the temperature increases very slowly, and thus temperatures extrapolated from shallow boreholes can be seriously in error. Second, the temperatures and heat flows observed at Monroe and Red Hill, and probably at many other small geothermal areas, can easily result from moderate vertical groundwater velocities in faults and fracture zones in an area of normal heat flow.

Kilty, K.; Chapman, D.S.; Mase, C.

1978-07-01T23:59:59.000Z

348

Thermally conductive cementitious grout for geothermal heat pump systems  

DOE Patents (OSTI)

A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

Allan, Marita (Old Field, NY)

2001-01-01T23:59:59.000Z

349

High Temperature Components of Magma-Related Geothermal Systems: An Experimental and Theoretical Approach  

DOE Green Energy (OSTI)

This summarizes select components of a multi-faceted study of high temperature magmatic fluid behavior in shallow, silicic, volcano-plutonic geothermal systems. This work built on a foundation provided by DOE-supported advances made in our lab in understanding the physics and chemistry of the addition of HCI and other chlorides into the high temperature regions of geothermal systems. The emphasis of this project was to produce a model of the bolatile contributions from felsic magmatic systems to geothermal systems

Philip A. Candela; Philip M. Piccoli

2004-03-15T23:59:59.000Z

350

Enthalpy transients in fractured two-phase geothermal systems  

DOE Green Energy (OSTI)

Numerical modeling techniques are used to study the changes in flowing enthalpy of fluids produced from a well completed in a fractured two-phase geothermal reservoir. Complex interactions between different fracture and porous matrix parameters control the enthalpy transients. The results show that the flowing enthalpy is most sensitive to the characteristics of the relative permeability curves, the magnitude of the matrix permeability and the effective fracture porosity. Other parameters such as the thermal conductivity and fracture spacing also significantly affect the flowing enthalpy. In spite of the complex phenomena associated with enthalpy transients in fractured two-phase systems, it is possible to infer useful information about the producing geothermal reservoirs from field data. 15 refs., 13 figs., 2 tabs.

Lippmann, M.J.; Bodvarsson, G.S.; Gaulke, S.W.

1985-03-01T23:59:59.000Z

351

The Columbia River System : the Inside Story.  

DOE Green Energy (OSTI)

The Columbia Ricer is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Northwest-from providing the world-famous Pacific salmon to supplying the clean natural fuel for over 75 percent of the region's electrical generation. Since early in the century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system. And through cooperative efforts, the floods that periodically threaten developments near the river can be controlled. This publication presents a detailed explanation of the planning and operation of the multiple-use dams and reservoirs of the Columbia River system. It describes the river system, those who operate and use it, the agreements and policies that guide system operation, and annual planning for multiple-use operation.

United States. Bonneville Power Administration.

1991-09-01T23:59:59.000Z

352

Geothermal Heat Pump Systems in Schools: Construction, Maintenance and Operating Costs  

Science Conference Proceedings (OSTI)

Geothermal heat pumping and cooling systems are still not widely used to heat and cool buildings. They are an unknown to most architects and engineers. The electric utility industry has recognized them as being a very energy-efficient way to heat and cool buildings using electricity. The Tennessee Valley Authority (TVA) has assisted in design and installation of many geothermal systems, particularly in school buildings. With a number of geothermal heat pump systems in schools in operation in the TVA regi...

2000-12-13T23:59:59.000Z

353

An AHP approach for evaluating geothermal district energy systems[Analytical Hierarchy Process  

SciTech Connect

In the rating and design of the geothermal district energy (DE) systems the technology, cost, benefits, and environmental effects of the alternatives need to be carefully compared. This study deals with the evaluation of several alternatives of district energy systems for the city of Denizli. These alternatives vary from the existing geothermal plant to the hybrid cycle, totally integrated geothermal energy system. In the comparative evaluation of the alternative projects, Analytical Hierarchy Process (AHP) was utilized.

Eltez, A.; Kilkis, I.B.; Eltez, M.

1999-07-01T23:59:59.000Z

354

An Updated Numerical Model Of The Larderello-Travale Geothermal System,  

Open Energy Info (EERE)

Of The Larderello-Travale Geothermal System, Of The Larderello-Travale Geothermal System, Italy Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Updated Numerical Model Of The Larderello-Travale Geothermal System, Italy Details Activities (0) Areas (0) Regions (0) Abstract: Larderello-Travale is one of the few geothermal systems in the world that is characterized by a reservoir pressure much lower than hydrostatic. This is a consequence of its natural evolution from an initial liquid-dominated to the current steam-dominated system. Beneath a nearly impermeable cover, the geothermal reservoir consists of carbonate-anhydrite formations and, at greater depth, by metamorphic rocks. The shallow reservoir has temperatures in the range of 220-250°C, and pressures of about 20 bar at a depth of 1000 m, while the deep metamorphic reservoir has

355

Geology of Injection Well 46A-19RD in the Coso Enhanced Geothermal Systems  

Open Energy Info (EERE)

of Injection Well 46A-19RD in the Coso Enhanced Geothermal Systems of Injection Well 46A-19RD in the Coso Enhanced Geothermal Systems Experiment Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geology of Injection Well 46A-19RD in the Coso Enhanced Geothermal Systems Experiment Details Activities (1) Areas (1) Regions (0) Abstract: The Coso Geothermal Field is a large, high temperature system located in California on the western edge of the Basin and Range province. Well 46A-19RD, located in the southwestern portion of this field is currently the focus of a DOE-funded Enhanced Geothermal Systems (EGS) project. Petrologic and petrographic investigations of the well show that quartz diorite and granodiorite are dominant lithologies. Dikes of granophyre, containing phenocrysts of plagioclase, potassium feldspar, and

356

Modeling brine-rock interactions in an enhanced geothermal system deep fractured reservoir at Soultz-Sous-Forets (France): a joint approach using two geochemical codes: frachem and toughreact  

E-Print Network (OSTI)

rock interactions in enhanced geothermal systems (EGS).31 th Workshop on Geothermal Reservoir Engineering, 301998). Computer modeling for geothermal systems: predicting

Andre, Laurent; Spycher, Nicolas; Xu, Tianfu; Vuataz, Francois-D.; Pruess, Karsten.

2006-01-01T23:59:59.000Z

357

On the production behavior of enhanced geothermal systems with CO2 as working fluid  

E-Print Network (OSTI)

temperature pressure Production/Injection pattern area (Fig.injection pressure (downhole) production pressure (downhole)On the Production Behavior of Enhanced Geothermal Systems

Pruess, K.

2008-01-01T23:59:59.000Z

358

A New Gold Pan For The West- Discovering Blind Geothermal Systems...  

Open Energy Info (EERE)

blind geothermal systems in Nevada, USA and has helped to define the spatial extent of thermal anomalies at two other locations. At Teels Marsh, two shallow temperature anomalies...

359

Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ...

360

Geothermal energy  

DOE Green Energy (OSTI)

The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

White, D.E.

1965-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "river geothermal system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A Geothermal District-Heating System and Alternative Energy Research Park  

Open Energy Info (EERE)

Geothermal District-Heating System and Alternative Energy Research Park Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description With prior support from the Department of Energy (GRED III Program), New Mexico Institute of Mining and Technology (NM Tech) has established that this resource likely has sufficient permeability (3000 Darcies) and temperatures (80-112 oC) to develop a campus-wide district heating system.

362

DOE REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES | Open  

Open Energy Info (EERE)

REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: DOE REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES Details Activities (6) Areas (6) Regions (0) Abstract: Lawrence Berkeley National Laboratory (LBNL) at the direction of the United States Department of Energy (DOE) Geothermal Technologies EGS Program is installing, operating, and/or interfacing seismic arrays at multiple Enhanced Geothermal Systems (EGS) sites. The overall goal is to gather high resolution seismicity data before, during and after stimulation activities at the EGS projects. This will include both surface and borehole deployments (as necessary in available boreholes) to provide high quality

363

Active Geothermal Systems And Associated Gold Deposits In The Great Basin |  

Open Energy Info (EERE)

Geothermal Systems And Associated Gold Deposits In The Great Basin Geothermal Systems And Associated Gold Deposits In The Great Basin Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Active Geothermal Systems And Associated Gold Deposits In The Great Basin Details Activities (0) Areas (0) Regions (0) Abstract: In western North America, a number of geothermal systems derive their heat from magmas or cooling intrusions. The interior of the Great Basin however, is characterized by widespread amagmatic geothermal activity that owes its existence to high crustal heat flow and active extensional tectonics. Both the magmatically heated and extensional fluid types in the Great Basin have recently, or are currently, depositing gold. Quaternary to Pliocene-aged gold deposits with adjacent high-temperature (≤ 150°C)

364

Active metasomatism in the Cerro Prieto geothermal system, Baja California, Mexico: a telescoped low pressure/temperature metamorphic facies series  

DOE Green Energy (OSTI)

In the Cerro Prieto geothermal field, carbonate-cemented, quartzofeldspathic sediments of the Colorado River delta are being actively metasomatized into calc-silicate metamorphic rocks by reaction with alkali chloride brines between 200/sup 0/ and 370/sup 0/C, low fluid and lithostatic pressures, and low oxygen fugacities. Petrologic investigations of drill cores and cutting from over 50 wells in this field identified a prograde series of calc-silicate mineral zones which include as index minerals: wairakite, epidote, prehnite, and clinopyroxene. Associated divariant mineral assemblages are indicative of a very low pressure/temperature metamorphic facies series which encompasses the clay-carbonate, zeolite, greenschist, and amphibolite facies. This hydrothermal metamorphic facies series, which is becoming increasingly recognized in other active geothermal systems, is characterized by temperature-telescoped dehydration and decarbonation mineral equilibria. Its equivalent should now be sought in fossil hydrothermal systems.

Schiffman, P.; Elders, W.A.; Williams, A.E.; McDowell, S.D.; Bird, D.K.

1983-01-01T23:59:59.000Z

365

MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring  

E-Print Network (OSTI)

geothermal power plants. US DOE EERE Geothermal Technologieswas made for the US DOE EERE Geothermal Technologies

Wodin-Schwartz, Sarah

2013-01-01T23:59:59.000Z

366

Numerical simulation of reservoir compaction in liquid dominated geothermal systems  

DOE Green Energy (OSTI)

A numerical model is introduced which simulates the effects of fluid production as well as reinjection on the vertical deformation of water dominated geothermal reservoirs. This program, based on an Integrated Finite Difference technique and Terzaghi's one-dimensional consolidation model, computes the transport of heat and water through porous media, and resulting pore volume changes. Examples are presented to show the effects of reservoir heterogeneities on the compaction of these hot water systems, as well as the effects of different production-injection schemes. The use of isothermal models to simulate the deformation of non-isothermal systems was also investigated.

Lippmann, M.J.; Narasimhan, T.N.; Witherspoon, P.A.

1976-12-01T23:59:59.000Z

367

Estimating Well Costs for Enhanced Geothermal System Applications  

SciTech Connect

The objective of the work reported was to investigate the costs of drilling and completing wells and to relate those costs to the economic viability of enhanced geothermal systems (EGS). This is part of a larger parametric study of major cost components in an EGS. The possibility of improving the economics of EGS can be determined by analyzing the major cost components of the system, which include well drilling and completion. Determining what costs in developing an EGS are most sensitive will determine the areas of research to reduce those costs. The results of the well cost analysis will help determine the cost of a well for EGS development.

K. K. Bloomfield; P. T. Laney

2005-08-01T23:59:59.000Z

368

COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL SITE  

DOE Green Energy (OSTI)

Three conservative tracer tests have been conducted through the Bridge Fault fracture zone at the Raft River Geothermal (RRG) site. All three tests were conducted between injection well RRG-5 and production wells RRG-1 (790 m distance) and RRG-4 (740 m distance). The injection well is used during the summer months to provide pressure support to the production wells. The first test was conducted in 2008 using 136 kg of fluorescein tracer. Two additional tracers were injected in 2010. The first 2010 tracer injected was 100 kg fluorescein disodium hydrate salt on June, 21. The second tracer (100 kg 2,6-naphthalene disulfonic acid sodium salt) was injected one month later on July 21. Sampling of the two productions wells is still being performed to obtain the tail end of the second 2010 tracer test. Tracer concentrations were measured using HPLC with a fluorescence detector. Results for the 2008 test, suggest 80% tracer recover at the two production wells. Of the tracer recovered, 85% of tracer mass was recovered in well RRG-4 indicating a greater flow pathway connection between injection well and RRG-4 than RRG-1. Fluorescein tracer results appear to be similar between the 2008 and 2010 tests for well RRG-4 with peak concentrations arriving approximately 20 days after injection despite the differences between the injection rates for the two tests (~950 gpm to 475 gpm) between the 2008 and 2010. The two 2010 tracer tests will be compared to determine if the results support the hypothesis that rock contraction along the flow pathway due to the 55 oC cooler water injection alters the flow through the ~140 oC reservoir.

Earl D Mattson; Mitchell Plummer; Carl Palmer; Larry Hull; Samantha Miller; Randy Nye

2011-02-01T23:59:59.000Z

369

Microearthquake surveys of Snake River plain and Northwest Basin and Range  

Open Energy Info (EERE)

surveys of Snake River plain and Northwest Basin and Range surveys of Snake River plain and Northwest Basin and Range geothermal areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Microearthquake surveys of Snake River plain and Northwest Basin and Range geothermal areas Details Activities (2) Areas (2) Regions (0) Abstract: applications; Basin and Range Province; Black Rock Desert; Cassia County Idaho; earthquakes; economic geology; exploration; fracture zones; geophysical methods; geophysical surveys; geothermal energy; Humboldt County Nevada; Idaho; microearthquakes; Nevada; North America; passive systems; Pershing County Nevada; Raft River; reservoir rocks; seismic methods; seismicity; seismology; Snake River plain; surveys; United States; Western U.S. Author(s): Kumamoto, L.H.

370

US Geothermal Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Place Boise, Idaho Zip 83706 Sector Geothermal energy Product Former Idaho-based project developer that held the rights to the Raft River Geothermal Project. Website http:...

371

Geothermal System Overview ASHRAE Headquarters Building  

E-Print Network (OSTI)

and a corridor zone on floor 1 · Heating / cooling area for VRF ­ 18,226 sq. ft. ­ All zones on floor 1 (minus: 288.6 kBtu/hr · All zones on floor 2 and a corridor zone on floor 1 · Loads for VRF system ­ Heating,000.0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Geo HP vs VRF 2010 System Power (kWh) Geo HP VRF #12

Oak Ridge National Laboratory

372

Engineered Geothermal Systems Energy Return On Energy Investment  

DOE Green Energy (OSTI)

Critical factors in determining the EROI of Engineered Geothermal Systems (EGS) are examined in this work. These include the input energy embodied into the system. Embodied energy includes the energy contained in the materials, as well as, that consumed in each stage of manufacturing from mining the raw materials to assembling the finished system. Also critical are the system boundaries and value of the energy ?? heat is not as valuable as electrical energy. The EROI of an EGS depends upon a number of factors that are currently unknown, for example what will be typical EGS well productivity, as well as, reservoir depth, temperature, and temperature decline rate. Thus the approach developed is to consider these factors as parameters determining EROI as a function of number of wells needed. Since the energy needed to construct a geothermal well is a function of depth, results are provided as a function of well depth. Parametric determination of EGS EROI is calculated using existing information on EGS and US Department of Energy (DOE) targets and is compared to the ??minimum? EROI an energy production system should have to be an asset rather than a liability.

Mansure, A J

2012-12-10T23:59:59.000Z

373

Integrated Geophysical Exploration of a Known Geothermal Resource: Neal Hot  

Open Energy Info (EERE)

Geophysical Exploration of a Known Geothermal Resource: Neal Hot Geophysical Exploration of a Known Geothermal Resource: Neal Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Book Section: Integrated Geophysical Exploration of a Known Geothermal Resource: Neal Hot Springs Abstract We present integrated geophysical data to characterize a geothermal system at Neal Hot Springs in eastern Oregon. This system is currently being developed for geothermal energy production. The hot springs are in a region of complex and intersecting fault trends associated with two major extensional events, the Oregon-Idaho Graben and the Western Snake River Plain. The intersection of these two fault systems, coupled with high geothermal gradients from thin continental crust produces pathways for surface water and deep geothermal water interactions at Neal Hot Springs.

374

Geothermal pump down-hole energy regeneration system  

DOE Patents (OSTI)

Geothermal deep well energy extraction apparatus is provided of the general kind in which solute-bearing hot water is pumped to the earth's surface from a subterranean location by utilizing thermal energy extracted from the hot water for operating a turbine motor for driving an electrical power generator at the earth 3 s surface, the solute bearing water being returned into the earth by a reinjection well. Efficiency of operation of the total system is increased by an arrangement of coaxial conduits for greatly reducing the flow of heat from the rising brine into the rising exhaust of the down-well turbine motor.

Matthews, Hugh B. (Boylston, MA)

1982-01-01T23:59:59.000Z

375

Precipitation and scaling in dynamic geothermal systems. [Titanium loop facility  

DOE Green Energy (OSTI)

A dynamic loop facility for studying scaling in simulated geothermal brines--under conditions such as will be encountered in engineering scale heat transfer equipment is being constructed. The first phase of the program consists of two principal efforts: (1) modification of an existing 100 gpm titanium loop to provide the engineering scaling test facility and (2) operation of an approximately 1 gph once-through (experimental) system to provide design data for titanium loop modifications to provide experience with scale formation and characterization. This experience is being used in planning the scaling studies to be conducted in the dynamic loop facility. The status of the project is described.

Bohlmann, E.G.; Shor, A.J.; Berlinski, P.

1976-10-01T23:59:59.000Z

376

Blind Geothermal System Exploration in Active Volcanic Environments...  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

377

RIVER PROTECTION PROJECT SYSTEM PLAN  

SciTech Connect

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste management and treatment facilities, (8) Developing and implementing technical solutions to mitigate the impact from substantial1y increased estimates of Na added during the pretreatment of the tank waste solids, This involves a combination of: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, or (4) accepting an increase in mission duration, ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks, Key elements of the implementation of this strategy are included within the scope of the Tank Operations Contract, currently in procurement Since 2003, the ORP has conducted over 30 design oversight assessments of the Waste Treatment and Immobilization Plant (WTP). The estimated cost at completion has increased and the schedule for construction and commissioning of the WTP has extended, The DOE, Office of Environmental Management (EM), sanctioned a comprehensive review of the WTP flowsheet, focusing on throughput. In 2005, the TFC completed interim stabilization of the SSTs and as of March 2007, has completed the retrieval of seven selected SSTs. Demonstration of supplemental treatment technologies continues. The ongoing tank waste retrieval experience, progress with supplemental treatment technologies, and changes in WTP schedule led to the FY 2007 TFC baseline submittal in November 2006. The TFC baseline submittal was developed before the WTP schedule was fully understood and approved by ORP, and therefore reflects an earlier start date for the WTP facilities. This System Plan is aligned with the current WTP schedule with hot commissioning beginning in 2018 and full operations beginning in 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of

CERTA PJ

2008-07-10T23:59:59.000Z

378

RIVER PROTECTION PROJECT SYSTEM PLAN  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. (6) Deploying interim storage capacity for the immobilized high-level waste (IHLW) pending determination of the final disposal pathway. (7) Closing the SST and DST tank farms, ancillary facilities, and all associated waste management and treatment facilities. (8) Optimizing the overall mission by resolution of technical and programmatic uncertainties, configuring the tank farms to provide a steady, well-balanced feed to the WTP, and performing trade-offs of the required amount and type of supplemental treatment and of the amount of HLW glass versus LAW glass. ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks. Key elements needed to implement the strategy described above are included within the scope of the Tank Operations Contract (TOC). Interim stabilization of the SSTs was completed in March 2004. As of April 2009, retrieval of seven SSTs has been completed and retrieval of four additional SSTs has been completed to the limits of technology. Demonstration of supplemental LAW treatment technologies has stopped temporarily pending revision of mission need requirements. Award of a new contract for tank operations (TOC), the ongoing tank waste retrieval experience, HLW disposal issues, and uncertainties in waste feed delivery and waste treatment led to the revision of the Performance Measurement Baseline (PM B), which is currently under review prior to approval. 6 This System Plan is aligned with the current WTP schedule, with hot commissioning beginning in 2018, and full operations beginning in late 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of these decisions will be to provide a second LAW vitrification facility. No final implementation decisions regarding supplemental technology can be made until the Tank Closure and

CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

2009-09-15T23:59:59.000Z

379

RIVER PROTECTION PROJECT SYSTEM PLAN  

SciTech Connect

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. (6) Deploying interim storage capacity for the immobilized high-level waste (IHLW) pending determination of the final disposal pathway. (7) Closing the SST and DST tank farms, ancillary facilities, and all associated waste management and treatment facilities. (8) Optimizing the overall mission by resolution of technical and programmatic uncertainties, configuring the tank farms to provide a steady, well-balanced feed to the WTP, and performing trade-offs of the required amount and type of supplemental treatment and of the amount of HLW glass versus LAW glass. ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks. Key elements needed to implement the strategy described above are included within the scope of the Tank Operations Contract (TOC). Interim stabilization of the SSTs was completed in March 2004. As of April 2009, retrieval of seven SSTs has been completed and retrieval of four additional SSTs has been completed to the limits of technology. Demonstration of supplemental LAW treatment technologies has stopped temporarily pending revision of mission need requirements. Award of a new contract for tank operations (TOC), the ongoing tank waste retrieval experience, HLW disposal issues, and uncertainties in waste feed delivery and waste treatment led to the revision of the Performance Measurement Baseline (PM B), which is currently under review prior to approval. 6 This System Plan is aligned with the current WTP schedule, with hot commissioning beginning in 2018, and full operations beginning in late 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of these decisions will be to provide a second LAW vitrification facility. No final implementation decisions regarding supplemental technology can be made until the Tank Closure and

CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

2009-09-15T23:59:59.000Z

380

RIVER PROTECTION PROJECT SYSTEM PLAN  

SciTech Connect

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste management and treatment facilities, (8) Developing and implementing technical solutions to mitigate the impact from substantial1y increased estimates of Na added during the pretreatment of the tank waste solids, This involves a combination of: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, or (4) accepting an increase in mission duration, ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks, Key elements of the implementation of this strategy are included within the scope of the Tank Operations Contract, currently in procurement Since 2003, the ORP has conducted over 30 design oversight assessments of the Waste Treatment and Immobilization Plant (WTP). The estimated cost at completion has increased and the schedule for construction and commissioning of the WTP has extended, The DOE, Office of Environmental Management (EM), sanctioned a comprehensive review of the WTP flowsheet, focusing on throughput. In 2005, the TFC completed interim stabilization of the SSTs and as of March 2007, has completed the retrieval of seven selected SSTs. Demonstration of supplemental treatment technologies continues. The ongoing tank waste retrieval experience, progress with supplemental treatment technologies, and changes in WTP schedule led to the FY 2007 TFC baseline submittal in November 2006. The TFC baseline submittal was developed before the WTP schedule was fully understood and approved by ORP, and therefore reflects an earlier start date for the WTP facilities. This System Plan is aligned with the current WTP schedule with hot commissioning beginning in 2018 and full operations beginning in 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcom

CERTA PJ

2008-07-10T23:59:59.000Z

Note: This page contains sample records for the topic "river geothermal system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Water information bulletin No. 30, part 13: geothermal investigations in Idaho. Preliminary geologic reconnaissance of the geothermal occurrences of the Wood River Drainage Area  

DOE Green Energy (OSTI)

Pre-tertiary sediments of the Milligen and Wood River Formations consisting primarily of argillite, quartzite, shale and dolomite are, for the most part, exposed throughout the area and are cut locally by outliers of the Idaho Batholith. At some locations, Tertiary-age Challis Volcanics overlay these formations. Structurally the area is complex with major folding and faulting visible in many exposures. Many of the stream drainages appear to be fault controlled. Hydrologic studies indicate hot spring occurrences are related to major structural trends, as rock permeabilities are generally low. Geochemical studies using stable isotopes of hydrogen and oxygen indicate the thermal water in the Wood River region to be depleted by about 10 0/00 in D and by 1 to 2 0/00 in /sup 18/0 relative to cold water. This suggests the water could be meteoric water that fell during the late Pleistocene. The geological data, as well as the chemical data, indicate the geothermal waters are heated at depth, and subsequently migrate along permeable structural zones. In almost all cases the chemical data suggest slightly different thermal histories and recharge areas for the water issuing from the hot springs. Sustained use of the thermal water at any of the identified springs is probably limited to flow rates approximating the existing spring discharge. 28 refs., 16 figs., 3 tabs.

Anderson, J.E.; Bideganeta, K.; Mitchell, J.C.

1985-04-01T23:59:59.000Z

382

The Geysers Geothermal Field Update1990/2010  

E-Print Network (OSTI)

in The Geysers. GeothermalResourcesCouncilA planned Enhanced Geothermal System demonstrationproject. Geothermal Resources Council Transactions33,

Brophy, P.

2012-01-01T23:59:59.000Z

383

NREL: Financing Geothermal Power Projects - Planning and Timing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Technology Deployment Energy Systems Integration Financing Geothermal Power Projects Geothermal Technologies Financing Geothermal Power Projects Search...

384

GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)  

E-Print Network (OSTI)

2 Mission of Division of Geothermal Energy . . . . .Coordination with Other Geothermal Programs . . . . . . 6the Behavior of Geothermal Systems . . . . . . . . . 1 6

Bloomster, C.H.

2010-01-01T23:59:59.000Z

385

Parametric Analysis of the Factors Controlling the Costs of Sedimentary Geothermal Systems - Preliminary Results (Poster)  

SciTech Connect

Parametric analysis of the factors controlling the costs of sedimentary geothermal systems was carried out using a modified version of the Geothermal Electricity Technology Evaluation Model (GETEM). The sedimentary system modeled assumed production from and injection into a single sedimentary formation.

Augustine, C.

2013-10-01T23:59:59.000Z

386

Field tests of a vertical-fluted-tube condenser in the prototype power plant at the Raft River Geothermal Test Site  

DOE Green Energy (OSTI)

A vertical-fluted-tube condenser was designed, fabricated, and tested with isobutane as the shell-side working fluid in a binary prototype power plant at the Raft River Geothermal Test Site. After shakedown and contamination removal operations were completed, the four-pass water-cooled unit (with 102 outside-fluted Admiralty tubes) achieved performance predictions while operating with the plant surface evaporator on-line. A sample comparison shows that use of this enhanced condenser concept offers the potential for a reduction of about 65% from the size suggested by corresponding designs using conventional horizontal-smooth-tube concepts. Subsequent substitution of a direct-contact evaporator for the surface evaporator brought drastic reductions in system performance, the apparent consequence of high concentrations of noncondensible gases introduced by the brine/working-fluid interaction.

Murphy, R.W.

1983-04-01T23:59:59.000Z

387

Raft River monitor well potentiometric head responses and water quality as related to the conceptual ground-water flow system  

DOE Green Energy (OSTI)

Ground-water monitoring near the Raft River site was initiated in 1974 by the IDWR. This effort consisted of semiannual chemical sampling of 22 irrigation wells near the Raft River geothermal development area. This program yielded useful baseline chemical data; however, several problems were inherent. For example, access to water pumped from the wells is limited to the irrigation season (April through September). All the wells are not continuously pumped; thus, some wells that are sampled one season cannot be sampled the next. In addition, information on well construction, completion, and production is often unreliable or not available. These data are to be supplemented by establishing a series of monitor wells in the proposed geothermal withdrawal and injection area. These wells were to be located and designed to provide data necessary for evaluating and predicting the impact of geothermal development on the Shallow Aquifer system.

Allman, D.W.; Tullis, J.A.; Dolenc, M.R.; Thurow, T.L.; Skiba, P.A.

1982-09-01T23:59:59.000Z

388

Enhanced Geothermal Systems (EGS) R&D Program  

DOE Green Energy (OSTI)

The purpose of this workshop was to develop technical background facts necessary for planning continued research and development of Enhanced Geothermal Systems (EGS). EGS are geothermal reservoirs that require improvement of their permeability or fluid contents in order to achieve economic energy production. The initial focus of this R&D program is devising and testing means to extract additional economic energy from marginal volumes of hydrothermal reservoirs that are already producing commercial energy. By mid-1999, the evolution of the EGS R&D Program, begun in FY 1988 by the U.S. Department of Energy (DOE), reached the stage where considerable expertise had to be brought to bear on what technical goals should be pursued. The main purpose of this Workshop was to do that. The Workshop was sponsored by the Office of Geothermal Technologies of the Department of Energy. Its purpose and timing were endorsed by the EGS National Coordinating Committee, through which the EGS R&D Program receives guidance from members of the U.S. geothermal industry. Section 1.0 of this report documents the EGS R&D Program Review Session. There, managers and researchers described the goals and activities of the program. Recent experience with injection at The Geysers and analysis of downhole conditions at Dixie Valley highlighted this session. Section 2.0 contains a number of technical presentations that were invited or volunteered to illuminate important technical and economic facts and opportunities for research. The emphasis here was on fi.acture creation, detection, and analysis. Section 3.0 documents the initial general discussions of the participants. Important topics that emerged were: Specificity of defined projects, Optimizing cost effectiveness, Main technical areas to work on, Overlaps between EGS and Reservoir Technology R&D areas, Relationship of microseismic events to hydraulic fractures, and Defining criteria for prioritizing research thrusts. Sections 4.0 and 5.0 report the meat of the Workshop. Section 4.0 describes the nomination and clarification of technical thrusts, and Section 5.0 reports the results of prioritizing those thrusts via voting by the participants. Section 6.0 contains two discussions conducted after the work on research thrusts. The topics were ''Simulation'' and ''Stimulation''. A number of technical points that emerged here provide important guidance for both practical field work on EGS systems and for research.

Entingh, Daniel J.

1999-08-18T23:59:59.000Z

389

Mercury In Soils Of The Long Valley, California, Geothermal System | Open  

Open Energy Info (EERE)

In Soils Of The Long Valley, California, Geothermal System In Soils Of The Long Valley, California, Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Mercury In Soils Of The Long Valley, California, Geothermal System Details Activities (3) Areas (1) Regions (0) Abstract: An evaluation of the Hg distribution in soils of the Long Valley, California, geothermal area, was made. A1-horizon soil samples were collected utilizing a grid system from the resurgent dome area and the Long Valley area. In addition, samples were collected in five traverses across three fault systems and four traverses across east-west-oriented gullies to measure the importance of aspect. Additional samples were collected in an analysis of variance design to evaluate natural variability in soil composition with sampling interval distance. The primary objectives of this

390

Geothermal Systems are a Breath of Fresh Air for Illinois School District |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Systems are a Breath of Fresh Air for Illinois School Geothermal Systems are a Breath of Fresh Air for Illinois School District Geothermal Systems are a Breath of Fresh Air for Illinois School District May 24, 2010 - 11:01am Addthis Each classroom has a geothermal unit installed. Although large, the units blend into surroundings and don’t produce excess noise. | Photo Courtesy of Sterling Public Schools Each classroom has a geothermal unit installed. Although large, the units blend into surroundings and don't produce excess noise. | Photo Courtesy of Sterling Public Schools Lindsay Gsell Superintendent Tad Everett had two priorities when deciding on a new system to replace the aging oil-based boiler heating and cooling systems for the seven schools in his district: improving learning environments and saving

391

Geothermal Systems are a Breath of Fresh Air for Illinois School District |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Systems are a Breath of Fresh Air for Illinois School Geothermal Systems are a Breath of Fresh Air for Illinois School District Geothermal Systems are a Breath of Fresh Air for Illinois School District May 24, 2010 - 11:01am Addthis Each classroom has a geothermal unit installed. Although large, the units blend into surroundings and don’t produce excess noise. | Photo Courtesy of Sterling Public Schools Each classroom has a geothermal unit installed. Although large, the units blend into surroundings and don't produce excess noise. | Photo Courtesy of Sterling Public Schools Lindsay Gsell Superintendent Tad Everett had two priorities when deciding on a new system to replace the aging oil-based boiler heating and cooling systems for the seven schools in his district: improving learning environments and saving

392

Development of geothermal logging systems in the United States  

DOE Green Energy (OSTI)

Logging technologies developed for hydrocarbon resource evaluation have not migrated into geothermal applications even though data so obtained would strengthen reservoir characterization efforts. Two causative issues have impeded progress: (1) there is a general lack of vetted, high-temperature instrumentation, and (2) the interpretation of log data generated in a geothermal formation is in its infancy. Memory-logging tools provide a path around the first obstacle by providing quality data at a low cost. These tools feature on-board computers that process and store data, and newer systems may be programmed to make decisions. Since memory tools are completely self-contained, they are readily deployed using the slick line found on most drilling locations. They have proven to be rugged, and a minimum training program is required for operator personnel. Present tools measure properties such as temperature and pressure, and the development of noise, deviation, and fluid conductivity logs based on existing hardware is relatively easy. A more complex geochemical tool aimed at a quantitative analysis of (potassium, uranium and thorium) is in the calibration phase, and it is expandable into all nuclear measurements common in the hydrocarbon industry. A fluid sampling tool is in the design phase. All tools are designed for operation at conditions exceeding 400 C, and for deployment in the slim holes produced by mining-coring operations. Partnerships are being formed between the geothermal industry and scientific drilling programs to define and develop inversion algorithms relating raw tool data to more pertinent information. These cooperative efforts depend upon quality guidelines such as those under development within the international Ocean Drilling Program.

Lysne, P.

1994-04-01T23:59:59.000Z

393

2nd Quarterly technical progress report for geothermal system temperature-depth database  

DOE Green Energy (OSTI)

At the Southern Methodist University Geothermal Laboratory in Dallas, Texas, the Earth`s surface and internal temperature are studied. With financial support from the U.S. Department of Energy, a data base containing geothermal temperature well information for the United States is being developed. During this calendar quarter, activity with this project has continued involving several different tasks: planning and development of the geothermal system thermal-well data base and temperature-depth data, development of the specifications for the data base, and completion of an initial inventory of the geothermal areas for which data are available.

Blackwell, D.D.

1997-07-30T23:59:59.000Z

394

Origin And Characterization Of Geothermal Waters At Desert Queen, Nevada |  

Open Energy Info (EERE)

Origin And Characterization Of Geothermal Waters At Desert Queen, Nevada Origin And Characterization Of Geothermal Waters At Desert Queen, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Origin And Characterization Of Geothermal Waters At Desert Queen, Nevada Details Activities (1) Areas (1) Regions (0) Abstract: The Desert Queen geothermal system, which is in close proximity to two locations where geothermal energy is currently being harnessed, may host an additional reservoir. A _18O vs _D plot indicates that Desert Queen waters likely originate from the Humboldt River, and reflects Humboldt River water that is clearly evaporated. Temperatures of the reservoir at depth are estimated to be between 92-141°C and were calculated using the _18O(SO4-H2O) geothermometer. It is unclear whether these temperatures

395

NREL: Geothermal Technologies - News  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Geothermal News...

396

Enhanced Geothermal Systems (EGS) well construction technology evaluation report.  

DOE Green Energy (OSTI)

Electricity production from geothermal resources is currently based on the exploitation of hydrothermal reservoirs. Hydrothermal reservoirs possess three ingredients critical to present day commercial extraction of subsurface heat: high temperature, in-situ fluid and high permeability. Relative to the total subsurface heat resource available, hydrothermal resources are geographically and quantitatively limited. A 2006 DOE sponsored study led by MIT entitled 'The Future of Geothermal Energy' estimates the thermal resource underlying the United States at depths between 3 km and 10 km to be on the order of 14 million EJ. For comparison purposes, total U.S. energy consumption in 2005 was 100 EJ. The overwhelming majority of this resource is present in geological formations which lack either in-situ fluid, permeability or both. Economical extraction of the heat in non-hydrothermal situations is termed Enhanced or Engineered Geothermal Systems (EGS). The technologies and processes required for EGS are currently in a developmental stage. Accessing the vast thermal resource between 3 km and 10 km in particular requires a significant extension of current hydrothermal practice, where wells rarely reach 3 km in depth. This report provides an assessment of well construction technology for EGS with two primary objectives: (1) Determining the ability of existing technologies to develop EGS wells. (2) Identifying critical well construction research lines and development technologies that are likely to enhance prospects for EGS viability and improve overall economics. Towards these ends, a methodology is followed in which a case study is developed to systematically and quantitatively evaluate EGS well construction technology needs. A baseline EGS well specification is first formulated. The steps, tasks and tools involved in the construction of this prospective baseline EGS well are then explicitly defined by a geothermal drilling contractor in terms of sequence, time and cost. A task and cost based analysis of the exercise is subsequently conducted to develop a deeper understanding of the key technical and economic drivers of the well construction process. Finally, future research & development recommendations are provided and ranked based on their economic and technical significance.

Capuano, Louis, Jr. (Thermasource Inc.); Huh, Michael; Swanson, Robert (Thermasource Inc.); Raymond, David Wayne; Finger, John Travis; Mansure, Arthur James; Polsky, Yarom; Knudsen, Steven Dell

2008-12-01T23:59:59.000Z

397

A New Gold Pan For The West- Discovering Blind Geothermal Systems With  

Open Energy Info (EERE)

Gold Pan For The West- Discovering Blind Geothermal Systems With Gold Pan For The West- Discovering Blind Geothermal Systems With Shallow Temperature Surveys Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: A New Gold Pan For The West- Discovering Blind Geothermal Systems With Shallow Temperature Surveys Details Activities (6) Areas (4) Regions (0) Abstract: The use of rapidly deployable 2-meter-deep shallow temperature surveys has led to the discovery of at least two blind geothermal systems in Nevada, USA and has helped to define the spatial extent of thermal anomalies at two other locations. At Teels Marsh, two shallow temperature anomalies with a combined strike length of almost 4 km were identified adjacent to a Quaternary fault on the west side of the playa. At Rhodes Marsh, a thermal anomaly at least 5 km long was located adjacent to

398

Geothermal Energy Summary  

DOE Green Energy (OSTI)

Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followed by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75C water from shallow wells. Power production is assisted by the availability of gravity fed, 7C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non-traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earths crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th

J. L. Renner

2007-08-01T23:59:59.000Z

399

Marketing the Klamath Falls Geothermal District Heating system  

DOE Green Energy (OSTI)

The new marketing strategy for the Klamath Falls system has concentrated on offering the customer an attractive and easy to understand rate structure, reduced retrofit cost and complexity for his building along with an attractive package of financing and tax credits. Initial retrofit costs and life-cycle cost analysis have been conducted on 22 buildings to date. For some, the retrofit costs are simply too high for the conversion to make sense at current geothermal rates. For many, however, the prospects are good. At this writing, two new customers are now connected and operating with 5 to 8 more buildings committed to connect this construction season after line extensions are completed. This represents nearly a 60% increase in the number of buildings connected to the system and a 40% increase in system revenue.

Rafferty, K.

1993-06-01T23:59:59.000Z

400

Total Energy Recovery System for Agribusiness. [Geothermally heated]. Final Report  

DOE Green Energy (OSTI)

An engineering and economic study was made to determine a practical balance of selected agribusiness subsystems resulting in realistic estimated produce yields for a geothermally heated system known as the Total Energy Recovery System for Agribusiness. The subsystem cycles for an average application at an unspecified hydrothermal resources site in the western United States utilize waste and by-products from their companion cycles insofar as practicable. Based on conservative estimates of current controlled environment yields, produce wholesale market prices, production costs, and capital investment required, it appears that the family-operation-sized TERSA module presents the potential for marginal recovery of all capital investment costs. In addition to family- or small-cooperative-farming groups, TERSA has potential users in food-oriented corporations and large-cooperative-agribusiness operations. The following topics are considered in detail: greenhouse tomatoes and cucumbers; fish farming; mushroom culture; biogas generation; integration methodology; hydrothermal fluids and heat exchanger selection; and the system. 133 references. (MHR)

Fogleman, S.F.; Fisher, L.A.; Black, A.R.; Singh, D.P.

1977-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "river geothermal system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Modeling studies of geothermal systems with a free water surface  

DOE Green Energy (OSTI)

A numerical simulator was developed for the modeling of air-steam-water systems. The simulator was applied to various problems involving injection into or production from a geothermal reservoir in hydraulic communication with a shallow free-surface aquifer. First, a one-dimensional column problem is considered and the water level movement during exploitation is studied using different capillary pressure functions. Second, a two-dimensional radial model is used to study and compare reservoir depletion for cases with and without a free-surface aquifer. Finally, the contamination of a shallow free-surface aquifer due to cold water injection is investigated. The primary aim of these studies is to obtain an understanding of the response of a reservoir in hydraulic communication with a unconfined aquifer during exploitation or injection and to determine under which circumstances conventional modeling techniques (fully saturated systems) can be applied to such systems.

Bodvarsson, G.S.; Pruess, K.

1983-12-01T23:59:59.000Z

402

Geothermal News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System http://energy.gov/articles/nevada-deploys-first-us-commercial-grid-connected-enhanced-geothermal-system geothermal-system" class="title-link">Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System

403

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

404

Gravity and magnetic features and their relationship to the geothermal system in southwestern South Dakota  

SciTech Connect

An attempt is made to determine the sources that are responsible for producing geothermal anomalies observed within the southern Black Hills region. Lithologic and structural boundaries residing in the upper crust and their relationship to the geothermal system are discussed. A regional gravity survey was supplemented by a regional aeromagnetic survey.

Hildenbrand, T.G.; Kucks, R.P.

1981-01-01T23:59:59.000Z

405

Optimization of non-condensable gas removal system in geothermal power plant  

SciTech Connect

Optimization of non-condensable gas (hereinafter called N.C.G.) removal system in geothermal power station, in a special case that the geothermal steam contains large amount of noncondensable gas, is discussed. Four different alternative N.C.G. removal systems are studied, which are steam jet gas ejectors, centrifugal gas compressors, combined systems of steam ejectors and centrifugal compressors and back pressure turbine-without N.C.G. removal system. This report summarizes the results and gives recommendations as to the most suitable gas removal system and also as to optimum condenser pressure, in cases of large quantity N.C.G. content in geothermal steam.

Tajima, S.; Nomura, M.

1982-10-01T23:59:59.000Z

406

Optimization of design and control strategies for geothermal space heating systems. Final report  

DOE Green Energy (OSTI)

The efficient design and operation of geothermal space heating systems requires careful analysis and departure from normal design practices. Since geothermal source temperatures are much lower than either fossil fuel or electrical source temperatures, the temperature of the delivered energy becomes more critical. Also, since the geothermal water is rejected after heat exchange, it is necessary to extract all of the energy that is practical in one pass; there is no second change for energy recovery. The present work examines several heating system configurations and describes the desired design and control characteristics for operation on geothermal sources. Specific design methods are outlined as well as several generalized guidelines that should significantly improve the operation of any geothermally heated system.

Batdorf, J.A.; Simmons, G.M.

1984-07-01T23:59:59.000Z

407

Single-Well Enhanced Geothermal System Front-End Engineering and Design: Optimization of a Renewable Geothermal System for Harvesting Heat from Hot, Dry Rock  

Science Conference Proceedings (OSTI)

In 2009, GTherm and the Thayer School of Engineering at Dartmouth College, under an EPRI Polaris grant, evaluated the potential for a GTherm single-well enhanced geothermal system (SWEGS) and bottom-hole HeatNest to produce enough heat from deep geothermal wells to be an effective alternative for generating electric power. The research focused on the thermodynamic properties of the SWEGS design and the optimal geologic conditions. The results indicated that, given the right conditions, the SWEGS can extr...

2011-08-12T23:59:59.000Z

408

Residential Tax Credits Boost Maryland Geothermal Business | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Tax Credits Boost Maryland Geothermal Business Residential Tax Credits Boost Maryland Geothermal Business Residential Tax Credits Boost Maryland Geothermal Business June 18, 2010 - 12:09pm Addthis Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy As more budget-savvy Americans turn to renewable energy to power their homes and cut expenses, business is booming for small companies such as Earth River Geothermal, Inc. Mark Schultz, owner of the Annapolis, Maryland-based geothermal heat pump installation company, has worked on 30 geothermal projects in the past two years. Schultz says "the word is getting out" about geothermal systems, which use the stable temperature located just beneath the Earth's surface to heat and cool homes. A 30 percent renewable energy tax credit - extended by the American

409

Residential Tax Credits Boost Maryland Geothermal Business | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Tax Credits Boost Maryland Geothermal Business Residential Tax Credits Boost Maryland Geothermal Business Residential Tax Credits Boost Maryland Geothermal Business June 18, 2010 - 12:09pm Addthis Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy As more budget-savvy Americans turn to renewable energy to power their homes and cut expenses, business is booming for small companies such as Earth River Geothermal, Inc. Mark Schultz, owner of the Annapolis, Maryland-based geothermal heat pump installation company, has worked on 30 geothermal projects in the past two years. Schultz says "the word is getting out" about geothermal systems, which use the stable temperature located just beneath the Earth's surface to heat and cool homes. A 30 percent renewable energy tax credit - extended by the American

410

Life-cycle analysis results of geothermal systems in comparison to other power systems.  

DOE Green Energy (OSTI)

A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET model shows that fossil thermal plants have fossil energy use and GHG emissions per kWh of electricity output about one order of magnitude higher than renewable power systems, including geothermal power.

Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

2010-10-11T23:59:59.000Z

411

Geothermal energy  

SciTech Connect

The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

White, D.E.

1965-01-01T23:59:59.000Z

412

GRR/Section 7-HI-a - Geothermal and Cable System Development Permit | Open  

Open Energy Info (EERE)

GRR/Section 7-HI-a - Geothermal and Cable System Development Permit GRR/Section 7-HI-a - Geothermal and Cable System Development Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-HI-a - Geothermal and Cable System Development Permit 07HIAGeothermalAndCableSystemDevelopmentPermitting.pdf Click to View Fullscreen Contact Agencies Hawaii Department of Land and Natural Resources Engineering Division Regulations & Policies Hawaii Revised Statute 196D Hawaii Administrative Rules 13-185 Hawaii Revised Statute 205-3.1 Revised Statute 205-5. Triggers None specified Click "Edit With Form" above to add content 07HIAGeothermalAndCableSystemDevelopmentPermitting.pdf 07HIAGeothermalAndCableSystemDevelopmentPermitting.pdf Error creating thumbnail: Page number not in range.

413

Sales and Use Tax Exemption for Solar and Geothermal Systems | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Geothermal Systems Solar and Geothermal Systems Sales and Use Tax Exemption for Solar and Geothermal Systems < Back Eligibility Commercial General Public/Consumer Installer/Contractor Residential Savings Category Energy Sources Buying & Making Electricity Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Program Info Start Date 7/1/2007 State Connecticut Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider Connecticut Department of Revenue Services Connecticut enacted legislation in June 2007 (H.B. 7432) that established a sales and use tax exemption for solar energy equipment and geothermal resource systems. H.B. 7432 added passive and active solar water-heating systems, passive and active solar space-heating systems, and solar-electric

414

Materials selection guidelines for geothermal power systems. First edition  

DOE Green Energy (OSTI)

Nine potential power cycles are defined and diagrammed for the generation of electricity from geothermal fluids. General fluid properties that influence the applicability of power cycles to a particular geothermal resource are discussed. The corrosivity of individual process streams in power cycles is described based on variations in chemical composition and temperature. Results of materials performance tests are analyzed based on the chemical composition of the corrosive medium and physical factors such as temperature, duration of exposure, and fluid velocity. The key chemical components in geothermal fluids that are significant in determining corrosivity are identified. Both summarized and detailed results of materials performance tests in U.S. liquid-dominated resources are given. Seven U.S. liquid-dominated KGRA's are classified according to relative corrosiveness and their key chemical components are defined. The various forms and mechanisms of corrosive attack that can occur in geothermal process streams are described. The application of nonmetallic materials in geothermal environments is discussed. The appendices contain information on (1) operating experience at geothermal power plants, (2) corrosion in desalination facilities, (3) reliability of geothermal plants, (4) elastomeric materials, (5) comparative alloy costs, and (6) geothermal equipment manufacturers. (MHR)

DeBerry, D.W.; Ellis, P.F.; Thomas, C.C.

1978-09-01T23:59:59.000Z

415

System design verification of a hybrid geothermal/coal fired power plant  

DOE Green Energy (OSTI)

This hybrid plant utilizes geothermal fluid for feedwater heating. With respect to the extraction of available work from the geothermal fluids, this cycle is approximately two times as efficient as the all geothermal plant. The System Design Verification Study presented verifies the technical and economic feasibility of the hybrid plant. This report is comprised of a conceptual design, cost estimate, and economic analysis of a one-unit 715 MW hybrid geothermal/coal fired power plant. In addition to the use of geothermal fluid for feedwater heating, its use is also investigated for additional power generation, condensate and cooling tower makeup water, coal beneficiation, air preheating, flue gas reheating and plant space heating requirements. An engineering and construction schedule for the hybrid plant is also included.

Not Available

1978-09-01T23:59:59.000Z

416

Flood Forecasting in River System Using ANFIS  

Science Conference Proceedings (OSTI)

The aim of the present study is to investigate applicability of artificial intelligence techniques such as ANFIS (Adaptive Neuro-Fuzzy Inference System) in forecasting flood flow in a river system. The proposed technique combines the learning ability of neural network with the transparent linguistic representation of fuzzy system. The technique is applied to forecast discharge at a downstream station using flow information at various upstream stations. A total of three years data has been selected for the implementation of this model. ANFIS models with various input structures and membership functions are constructed, trained and tested to evaluate efficiency of the models. Statistical indices such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and Coefficient of Efficiency (CE) are used to evaluate performance of the ANFIS models in forecasting river flood. The values of the indices show that ANFIS model can accurately and reliably be used to forecast flood in a river system.

Ullah, Nazrin; Choudhury, P. [Dept. of Civil Eng., NIT, Silchar (India)

2010-10-26T23:59:59.000Z

417

Characterization of hot dry rock geothermal energy extraction systems  

DOE Green Energy (OSTI)

The engineering of heat exchange systems by which geothermal heat can be efficiently extracted from hot impermeable rocks is studied. The system currently under investigation at Fenton Hill, New Mexico consists of a network of large fractures created through the hydraulic pressurization of a well penetrating hot basement rocks and subsequently intersected by a second well drilled to form a flow-thru system. Cool water pumped into the fractures through one well, once heated in the reservoir, returns to the surface through the second well, is cooled, and then recirculated. While much is known about the performance parameters of the fracture network from short-term flow tests, little is understood concerning the spatial dimensions and geometrical relationship of individual fractures comprising the network. Ultimately, the success one has in estimating the long-term performance of such a system where commercialization is an issue, and in engineering future systems with optimal performance, depends on the success in characterizing the flow-thru fracture networks. To date only nonconventional application of oil field logging techniques and acoustic emissions studies have been used in the characterization of the fracture network.

Albright, J.N.; Newton, C.A.

1981-01-01T23:59:59.000Z

418

Serious pitting hazard in the raft river 5MW(e) Geothermal Power Plant isobutane cooling loop  

DOE Green Energy (OSTI)

The 5MW(e) Dual Boiling Cycle Geothermal Power Plant, hence referred to as the Raft River plant, is being developed for DOE by EG and G, Inc., Idaho Falls, Idaho. This pilot power plant is of the binary concept and utilizes isobutane as the working second fluid. The plant will demonstrate the feasibility of power generation from an intermediate temperature ({approx} 290 F) resource. The plant is schematically diagrammed in Figure 1. During the final design phase and after the major components were specified to be made of carbon steel, and ordered, various conditions forced the power plant design to switch from surface water to geothermal fluid for the condenser cooling loop make-up water. Because the geothermal fluid contains significant concentrations of chlorides and sulfates, about 1000 ppm and 65 ppm respectively, aeration in the cooling tower causes this water to become extremely aggressive, especially in the pitting of carbon steel components. Although essentially all of the condenser cooling loop materials are carbon steel, the isobutane condenser and turbine lube oil cooler are the most vulnerable. These components are tubed with carbon steel tubes of 0.085 and 0.075 inch wall thickness. These two components are extremely leak critical heat exchangers. For example, even a single pit perforation in the isobutane condenser can cause plant shutdown through loss of isobutane. Such a leak also poses an explosion or fire hazard. As isobutane pressure falls, the incursion of cooling water into the isobutane loop could occur, causing damage to anhydrous service seals. Under a DOE contract for geothermal failure analysis, Radian Corporation has made a preliminary investigation of the pitting hazard presented by the aggressive cooling fluid and the corrosion inhibition treatment that has thus far been proposed. This report documents Radian's understanding of the present situation and the results of its investigation on possible mitigation of this hazard. Finally, various conclusions and recommendations are made that may, if pursued, lead to a satisfactory solution that will avert a certain early prolonged plant shutdown due to failure of the thin walled isobutane and turbine lube oil cooler tubes.

Ellis, Peter F.

1980-02-25T23:59:59.000Z

419

Geochemistry of the Wendel-Amedee Geothermal System-California | Open  

Open Energy Info (EERE)

Geochemistry of the Wendel-Amedee Geothermal System-California Geochemistry of the Wendel-Amedee Geothermal System-California Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geochemistry of the Wendel-Amedee Geothermal System-California Abstract The fluid chemistry of the geothermal system that feed Amedee and Wendel Hot Springs in eastern California is complex. Two thermal fluids have been identified based on the concentrations of the conservative elements C1 and B, fluid enthalpies, and the application of chemical geothermometers. One is characterized by temperatures above 120°C and a TDS content of 1300 ppm, and will be used by GeoProducts Corporation to produce electricity. The second did lower in temperature, 75°C, and has a TDS content of 650 ppm. This fluid may be used fore direct heat application at the Susanville

420

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal...  

Open Energy Info (EERE)

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Air-Cooled...

Note: This page contains sample records for the topic "river geothermal system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

COO-3904-1 I GEOTHERMAL SYSTEMS MATERIALS: A WO RKsHOPlSY MPOSl...  

NLE Websites -- All DOE Office Websites (Extended Search)

563 COO-3904-1 I GEOTHERMAL SYSTEMS MATERIALS: A WO RKsHOPlSY MPOSl U M . Proceedings, May 23-25, 1978 Work Performed Under Contract No. EG-774-04-3904 Radian Corporation Austin,...

422

Method for inhibiting silica precipitation and scaling in geothermal flow systems  

DOE Patents (OSTI)

A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds.

Harrar, Jackson E. (Castro Valley, CA); Lorensen, Lyman E. (Orinda, CA); Locke, Frank E. (Lafayette, CA)

1982-01-01T23:59:59.000Z

423

Method for inhibiting silica precipitation and scaling in geothermal flow systems  

DOE Patents (OSTI)

A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds is described.

Harrar, J.E.; Lorensen, L.E.; Locke, F.E.

1980-06-13T23:59:59.000Z

424

Hydrothermal spallation drilling and advanced energy conversion technologies for Engineered Geothermal Systems  

E-Print Network (OSTI)

The purpose of this research was to study the various factors affecting the economic and technical feasibility of Engineered Geothermal Systems, with a special emphasis on advanced drilling technologies. The first part of ...

Augustine, Chad R

2009-01-01T23:59:59.000Z

425

Geothermal HVAC System Performance in a Quick Service Restaurant: Field Experience From McDonald's Demonstration  

Science Conference Proceedings (OSTI)

This report summarizes the monitored results from a geothermal heat pump system installed at a new McDonald's restaurant in Westland, Michigan, a suburb 23 miles west of Detroit.

1999-12-15T23:59:59.000Z

426

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab  

Open Energy Info (EERE)

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Air-Cooled Condensers in Next-Generation Conversion Systems Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Air-Cooling Project Description As the geothermal industry moves to use geothermal resources that are more expensive to develop, there will be increased incentive to use more efficient power plants. Because of increasing demand on finite supplies of water, this next generation of more efficient plants will likely need to reject heat sensibly to the ambient (air-cooling). This will be especially true in western states having higher grade Enhanced Geothermal Systems (EGS) resources, as well as most hydrothermal resources. If one had a choice, an evaporative heat rejection system would be selected because it would provide both cost and performance advantages. The evaporative system, however, consumes a significant amount of water during heat rejection that would require makeup. Though they use no water, air-cooling systems have higher capital costs, reduced power output (heat is rejected at a higher temperature), lower power sales due to higher parasitics (fan power), and greater variability in power output (because of large variation in the dry-bulb temperature).

427

The origin of high-temperature zones in vapor-dominated geothermal systems  

DOE Green Energy (OSTI)

Vapor-dominated geothermal systems are proposed to originate by downward extension (by the ''heat pipe'' mechanism) into hot dry fractured rock above a large cooling igneous intrusion. High temperature zones found by drilling are shallow parts of the original hot dry rock where the penetration of the vapor reservoir was limited, and hot dry rock may extend under much of these reservoirs. An earlier hot water geothermal system may have formed during an early phase of the heating episode.

Truesdell, Alfred H.

1991-01-01T23:59:59.000Z

428

Evaluation of testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho  

DOE Green Energy (OSTI)

Evaluating the Raft River and Boise, Idaho, resources by pump and injection tests require information on the geology, geochemistry, surficial and borehole geophysics, and well construction and development methods. Nonideal test conditions and a complex hydrogeologic system prevent the use of idealized mathematical models for data evaluation in a one-phase fluid system. An empirical approach is successfully used since it was observed that all valid pump and injection well pressure data for constant discharge tests plotted as linear trends on semilogarithmic plots of borehole pressure versus time since pumping or injection began. Quantification of the pressure response prior to 600 minutes is not always possible. Short-duration (< 24-hour) injection or pump tests are conducted with the drilling rig equipment, and long-duration (21-day) injection and pump tests are then conducted with the permanent pumping facilities. Replicate instrumentation for pressure, temperature, and flow rates is necessary to ensure quality data. Water quality and monitor well data are also collected.

Allman, D.W.; Goldman, D.; Niemi, W.L.

1979-01-01T23:59:59.000Z

429

Evaluation of testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho  

DOE Green Energy (OSTI)

Evaluating the Raft River and Boise, Idaho, resources by pump and injection tests requires information on the geology, geochemistry, surficial and borehole geophysics, and well construction and development methods. Nonideal test conditions and a complex hydrogeologic system prevent the use of idealized mathematical models for data evaluation in a one-phase fluid system. An empirical approach is successfully used since it was observed that all valid pump and injection well pressure data for constant discharge tests plotted as linear trends on semilogarithmic plots of borehole pressure versus time since pumping or injection began. Quantification of the pressure response prior to 600 minutes is not always possible. Short-duration (< 24-hour) injection or pump tests are conducted with the drilling rig equipment, and long-duration (21-day) injection and pump tests are then conducted with the permanent pumping facilities. Replicate instrumentation for pressure, temperature, and flow rates are necessary to ensure quality data. Water quality and monitor well data are also collected.

Allman, D.W.; Goldman, D.; Niemi, W.L.

1979-01-01T23:59:59.000Z

430

Energy extraction characteristics of hot dry rock geothermal systems  

DOE Green Energy (OSTI)

The LASL Hot Dry Rock Geothermal Energy Project is investigating methods to extract energy at useful temperatures and rates from naturally heated crustal rock in locations where the rock does not spontaneously yield natural steam or hot water at a rate sufficient to support commercial utilization. Several concepts are discussed for application to low and high permeability formations. The method being investigated first is intended for use in formations of low initial permeability. It involves producing a circulation system within the hot rock by hydraulic fracturing to create a large crack connecting two drilled holes, then operating the system as a closed pressurized-water heat-extration loop. With the best input assumptions that present knowledge provides, the fluid-flow and heat-exchange calculations indicate that unpumped (buoyant) circulation through a large hydraulic fracture can maintain a commercially useful rate of heat extraction throughout a usefully long system life. With a power cycle designed for the temperature of the fluid produced, total capital investment and generating costs are estimated to be at least competitive with those of fossil-fuel-fired and nuclear electric plants. This paper discusses the potential of the hot dry rock resource, various heat extraction concepts, prediction of reservoir performance, and economic factors, and summarizes recent progress in the LASL field program.

Tester, J.W.; Smith, M.C.

1977-01-01T23:59:59.000Z

431

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION  

Open Energy Info (EERE)

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Details Activities (1) Areas (1) Regions (0) Abstract: Vein and alteration assemblages from eight Coso wells have been collected and their fluid-inclusion gases analyzed by quadrupole mass spectrometry. Four major types of alteration were sampled: 1) young calcite-hematite-pyrite veins; 2) wairakite or epidote veins and alteration that are spatially associated with deep reservoirs in the main field and eastern wells; 3) older sericite and pyrite wallrock alteration; and 4) stilbite-calcite veins that are common in cooler or marginal portions of

432

Torbett-Hutchings-Smith Memorial Hospital geothermal-system demonstration at Marlin, Texas. Final design report  

SciTech Connect

The final design and economics of the Torbett-Hutchings-Smith (THS) Memorial Hospital geothermal heating system at Marlin, Texas are outlined. A brief description of the existing heating system, an overview of the geothermal retrofit, and the results of an economic analysis are included. It is estimated that the geothermal heating system will displace approximately 84 percent of the hospital's average annual natural gas consumption. In summer conditions, approximately 45 gpm of geothermal fluid will be utilized at a wellhead temperature of 139/sup 0/F. In peak demand winter conditions, approximately 160 gpm will be utilized at a wellhead temperature of 148/sup 0/F. The geothermal fluid temperature drop across the system will range from about 5/sup 0/F in summer to over 45/sup 0/F during winter. Total capital costs for the system are estimated to be $673,000, including the production well, a geothermal equipment room, engineering and architectural costs, and all equipment. The average annual natural gas savings are expected to be $28,200 while average annual operating and maintenance costs are estimated to be $7750. A before tax life cycle economic analysis of the THS system shows the breakeven period (BEP) of 29 years falling slightly below the 30 year expected life. This BEP is significantly influenced by the developmental nature of this project and by its lack of tax incentives.

1980-09-17T23:59:59.000Z

433

Enhanced Geothermal Systems (EGS) R&D Program: Monitoring EGS-Related Research  

DOE Green Energy (OSTI)

This report reviews technologies that could be applicable to Enhanced Geothermal Systems development. EGS covers the spectrum of geothermal resources from hydrothermal to hot dry rock. We monitored recent and ongoing research, as reported in the technical literature, that would be useful in expanding current and future geothermal fields. The literature review was supplemented by input obtained through contacts with researchers throughout the United States. Technologies are emerging that have exceptional promise for finding fractures in nonhomogeneous rock, especially during a