Powered by Deep Web Technologies
Note: This page contains sample records for the topic "river geothermal reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Borehole geophysics evaluation of the Raft River geothermal reservoir,  

Open Energy Info (EERE)

reservoir, reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; GEOPHYSICAL SURVEYS; RAFT RIVER VALLEY; GEOTHERMAL EXPLORATION; BOREHOLES; EVALUATION; HOT-WATER SYSTEMS; IDAHO; MATHEMATICAL MODELS; WELL LOGGING; CAVITIES; EXPLORATION; GEOTHERMAL SYSTEMS; HYDROTHERMAL SYSTEMS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace, T.L. Published: Geophysics, 2/1/1977 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Geophysical Method At Raft River Geothermal Area (1977) Raft River Geothermal Area

2

Update on the Raft River Geothermal Reservoir | Open Energy Information  

Open Energy Info (EERE)

on the Raft River Geothermal Reservoir on the Raft River Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Update on the Raft River Geothermal Reservoir Details Activities (1) Areas (1) Regions (0) Abstract: Since the last conference, a fourth well has been drilled to an intermediate depth and tested as a production well, with plans to use this well in the long term for injection of fluids into the strata above the production strata. The third, triple legged well has been fully pump tested, and the recovery of the second well from an injection well back to production status has revealed very interesting data on the reservoir conditions around that well. Both interference testing and geochemistry analysis shows that the third well is producing from a different aquifer

3

Borehole geophysics evaluation of the Raft River geothermal reservoir |  

Open Energy Info (EERE)

reservoir reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Borehole geophysics evaluation of the Raft River geothermal reservoir Details Activities (1) Areas (1) Regions (0) Abstract: Borehole geophysics techniques were used in evaluating the Raft River geothermal reservoir to establish a viable model for the system. The assumed model for the hot water (145/sup 0/C) reservoir was a zone of higher conductivity, increased porosity, decreased density, and lower sonic velocity. It was believed that the long term contact with the hot water would cause alteration producing these effects. With this model in mind, cross-plots of the above parameters were made to attempt to delineate the reservoir. It appears that the most meaningful data include smoothed and

4

Two-dimensional simulation of the Raft River geothermal reservoir and  

Open Energy Info (EERE)

dimensional simulation of the Raft River geothermal reservoir and dimensional simulation of the Raft River geothermal reservoir and wells. (SINDA-3G program) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Two-dimensional simulation of the Raft River geothermal reservoir and wells. (SINDA-3G program) Details Activities (1) Areas (1) Regions (0) Abstract: Computer models describing both the transient reservoir pressure behavior and the time dependent temperature response of the wells at the Raft River, Idaho, Geothermal Resource were developed. A horizontal, two-dimensional, finite-difference model for calculating pressure effects was constructed to simulate reservoir performance. Vertical, two-dimensional, finite-difference, axisymmetric models for each of the three existing wells at Raft River were also constructed to describe the

5

Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal  

Open Energy Info (EERE)

evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Results of the production and interference tests conducted on the geothermal wells RRGE 1 and RRGE 2 in Raft River Valley, Idaho during September--November, 1975 are presented. In all, three tests were conducted, two of them being short-duration production tests and one, a long duration interference test. In addition to providing estimates on the permeability and storage parameters of the geothermal reservoir, the tests also indicated the possible existence of barrier boundaries. The data

6

Borehole geophysics evaluation of the Raft River geothermal reservoir...  

Open Energy Info (EERE)

GEOTHERMAL SYSTEMS; HYDROTHERMAL SYSTEMS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Authors Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace and T.L. Published...

7

Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry  

SciTech Connect

The U.S. Geological survey has estimated that there are up to 4,900 MWe of undiscovered geothermal resources and 92,000 MWe of enhanced geothermal potential within the state of Idaho. Of particular interest are the resources of the Eastern Snake River Plain (ESRP) which was formed by volcanic activity associated with the relative movement of the Yellowstone Hot Spot across the state of Idaho. This region is characterized by a high geothermal gradient and thermal springs occurring along the margins of the ESRP. Masking much of the deep thermal potential of the ESRP is a regionally extensive and productive cold-water aquifer. We have undertaken a study to infer the temperature of the geothermal system hidden beneath the cold-water aquifer of the ESRP. Our approach is to estimate reservoir temperatures from measured water compositions using an inverse modeling technique (RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. In the initial stages of this study, we apply the RTEst model to water compositions measured from a limited number of wells and thermal springs to estimate the regionally extensive geothermal system in the ESRP.

Ghanashyam Neupane; Earl D. Mattson; Travis L. McLing; Carl D. Palmer; Robert W. Smith; Thomas R. Wood

2014-02-01T23:59:59.000Z

8

Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal...  

Open Energy Info (EERE)

response to the changes in the Earth's gravitational field caused by the passage of the sun and the moon. Overall, the results of the tests indicate that the geothermal reservoir...

9

Snake River Geothermal Project - Innovative Approaches to Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration DOE Geothermal...

10

Evaluation of testing and reservoir parameters in geothermal...  

Open Energy Info (EERE)

testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

11

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area (Redirected from New River Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

12

Analysis of Geothermal Reservoir Stimulation Using Geomechanics...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology...

13

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

14

Concept Testing and Development at the Raft River Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

at the Raft River Geothermal Field, Idaho The Role of Geochemistry and Stress on Fracture Development and Proppant Behavior in EGS Reservoirs Economic Impact Analysis for EGS...

15

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

16

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area (Redirected from Blackfoot Reservoir Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

17

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCES  

E-Print Network (OSTI)

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCES Paul Kruger and Henry J . Ramey, Jr . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 THE GEOTHERMAL CHIMNEY MODEL . . . . . . . . . . . . . . . . . . . 3 Current Design of t h e . . . . . . . . . . . . . . . 67 Geothermal Reservoir Phy.Sica1 PIodels . . . . . . . . . . . . 73 RAD3N I N GEOTHERMAL RESERVOIRS

Stanford University

18

Exploratory Well At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

7) 7) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes Raft River Geothermal Exploratory Hole No. 4, RRGE-4 drilled. During this time Raft River geothermal exploration well sidetrack-C also completed. References Kunze, J. F.; Stoker, R. C.; Allen, C. A. (14 December 1977) Update on the Raft River Geothermal Reservoir Covington, H.R. (1 January 1978) Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Retrieved from "http://en.openei.org/w/index.php?title=Exploratory_Well_At_Raft_River_Geothermal_Area_(1977)&oldid=473847"

19

Geothermal Reservoir Evaluation Considering Fluid Adsorption  

E-Print Network (OSTI)

SGP-"R- 68 Geothermal Reservoir Evaluation Considering Fluid Adsorption and Composition Michael J. Economides September, 1983 Financial support was provided through the Stanford Geothermal Program Contract No Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford

Stanford University

20

Chelated Indium Activable Tracers for Geothermal Reservoirs  

E-Print Network (OSTI)

SGP-TR-99 Chelated Indium Activable Tracers for Geothermal Reservoirs Constantinos V. Chrysikopoulos Paul Kruger June 1986 Financial support was provided through the Stanford Geothermal Program under University Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD

Stanford University

Note: This page contains sample records for the topic "river geothermal reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network (OSTI)

Modeling f o r Geothermal Reservoirs and Power- plants. I'Fumaroles Hunt, 1970 Geothermal power James, 1978 FusionGood a lated perfo : Geothermal Power Systems Compared. 'I

Sudo!, G.A

2012-01-01T23:59:59.000Z

22

Use Of Electrical Surveys For Geothermal Reservoir Characterization...  

Open Energy Info (EERE)

Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Abstract The STAR geothermal reservoir simulator was used to model the natural state of...

23

Modeling of Geothermal Reservoirs: Fundamental Processes, Computer  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Modeling of Geothermal Reservoirs: Fundamental Processes, Computer Simulation and Field Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Modeling of Geothermal Reservoirs: Fundamental Processes, Computer Simulation and Field Applications Abstract This article attempts to critically evaluate the present state of the art of geothermal reservoir simulation. Methodological aspects of geothermal reservoir modeling are briefly reviewed, with special emphasis on flow in fractured media. We then examine some applications of numerical simulation to studies of reservoir dynamics, well test design and analysis, and modeling of specific fields. Tangible impacts of reservoir simulation

24

Geophysical Method At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Geophysical Method At Raft River Geothermal Area (1977) Geophysical Method At Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geophysical Method At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Geophysical Techniques Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes Borehole geophysics were completed at the Raft River valley, Idaho. References Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace, T.L. (1 February 1977) Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Geophysical_Method_At_Raft_River_Geothermal_Area_(1977)&oldid=594349" Category: Exploration Activities

25

Application of thermal depletion model to geothermal reservoirs with  

Open Energy Info (EERE)

thermal depletion model to geothermal reservoirs with thermal depletion model to geothermal reservoirs with fracture and pore permeability Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Application of thermal depletion model to geothermal reservoirs with fracture and pore permeability Details Activities (2) Areas (2) Regions (0) Abstract: If reinjection and production wells intersect connected fractures, it is expected that reinjected fluid would cool the production well much sooner than would be predicted from calculations of flow in a porous medium. A method for calculating how much sooner that cooling will occur was developed. Basic assumptions of the method are presented, and possible application to the Salton Sea Geothermal Field, the Raft River System, and to reinjection of supersaturated fluids is discussed.

26

Fifteenth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect

The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

Not Available

1990-01-01T23:59:59.000Z

27

Geothermal: Sponsored by OSTI -- Reservoir Pressure Management  

Office of Scientific and Technical Information (OSTI)

Reservoir Pressure Management Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot...

28

INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS  

E-Print Network (OSTI)

geothermal reservoirs (except those in the Imperial Valley)Geothermal resource and reservoir investigation of U.S. Bureau of Reclamation Leaseholds at East Mesa, Imperial Valley,

Bodvarsson, Gudmundur S.

2012-01-01T23:59:59.000Z

29

An Updated Conceptual Model Of The Los Humeros Geothermal Reservoir...  

Open Energy Info (EERE)

Humeros Geothermal Reservoir (Mexico) Abstract An analysis of production and reservoir engineering data of 42 wells from the Los Humeros geothermal field (Mexico) allowed...

30

Conceptual Model At Raft River Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

6) 6) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine productive zones in the reservoir Notes Borehole geophysics techniques were used in evaluating the Raft River geothermal reservoir to establish a viable model for the system. The assumed model for the hot water 1450C reservoir was a zone of higher conductivity, increased porosity, decreased density, and lower sonic velocity. References Applegate, J.K.; Donaldson, P.R.; Kinkley, D.L.; Wallace, T.L. (1 January 1976) Borehole geophysics evaluation of the Raft River geothermal reservoir Retrieved from "http://en.openei.org/w/index.php?title=Conceptual_Model_At_Raft_River_Geothermal_Area_(1976)&oldid=473821

31

Development Wells At Raft River Geothermal Area (2004) | Open Energy  

Open Energy Info (EERE)

Development Wells At Raft River Geothermal Area (2004) Development Wells At Raft River Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Raft River Geothermal Area (2004) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Development Wells Activity Date 2004 Usefulness not indicated DOE-funding GRED II Notes Geothermal Resource Exploration and Definition Projects Raft River (GRED II): Re-assessment and testing of previously abandoned production wells. The objective of the U.S. Geothermal effort is to re-access the available wellbores, assess their condition, perform extensive testing of the reservoir to determine its productive capacity, and perform a resource utilization assessment. At the time of this paper, all five wells had been

32

Conceptual Model At Raft River Geothermal Area (1981) | Open Energy  

Open Energy Info (EERE)

Conceptual Model At Raft River Geothermal Area (1981) Conceptual Model At Raft River Geothermal Area (1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Raft River Geothermal Area (1981) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1981 Usefulness not indicated DOE-funding Unknown Exploration Basis Use geoscience data to develop a conceptual model of the reservoir. Notes The geoscience data gathered in the drilling and testing of seven geothermal wells suggest that the thermal reservoir is: (a) produced from fractures found at the contact metamorphic zone, apparently the base of detached normal faulting from the Bridge and Horse Well Fault zones of the Jim Sage Mountains; (b) anisotropic, with the major axis of hydraulic

33

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCXS  

E-Print Network (OSTI)

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCXS Henry J. Ramey, Jr., and A. Louis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Stanford Geothermal Project Reports . . . . . . . . . . . . . . 69 Papers Presented a t the Second United Nations Symposium on t h e Development and Use of Geothermal Resources, May 19-29, 1975, San

Stanford University

34

Modeling-Computer Simulations At Raft River Geothermal Area (1977) | Open  

Open Energy Info (EERE)

Raft River Geothermal Area (1977) Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Simulate reservoir performance Notes Computer models describing both the transient reservoir pressure behavior and the time dependent temperature response of the wells were developed. A horizontal, two-dimensional, finite-difference model for calculating pressure effects was constructed to simulate reservoir performance. Vertical, two-dimensional, finite-difference, axisymmetric models for each

35

Exploratory Well At Raft River Geothermal Area (1950) | Open Energy  

Open Energy Info (EERE)

50) 50) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1950) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1950 Usefulness not indicated DOE-funding Unknown Exploration Basis Agricultural Wells Notes The geothermal resource at Raft River was discovered sometime prior to 1950 when two shallow agricultural wells, the Bridge and Crank wells, encountered boiling water. References Diek, A.; White, L.; Roegiers, J.-C.; Moore, J.; McLennan, J. D. (1 January 2012) BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Retrieved from "http://en.openei.org/w/index.php?title=Exploratory_Well_At_Raft_River_Geothermal_Area_(1950)&oldid=473844

36

Conceptual Model At Raft River Geothermal Area (1988) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Conceptual Model At Raft River Geothermal Area (1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Raft River Geothermal Area (1988) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1988 Usefulness not indicated DOE-funding Unknown Exploration Basis Use geophysical logs to determine the reservoir transmissivity Notes Seven fracture orientation sets are recognized in the sedimentary and metamorphic rock units. Although the conventional geophysical logs showed

37

Tracer Testing At Raft River Geothermal Area (1983) | Open Energy  

Open Energy Info (EERE)

3) 3) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Tracer Testing Activity Date 1983 Usefulness not indicated DOE-funding Unknown Exploration Basis To develop chemical tracing procedures for geothermal areas. Notes Two field experiments were conducted to develop chemical tracer procedures for use with injection-backflow testing, one on the fracture-permeability Raft River reservoir and the other on the matrix-permeability East Mesa reservoir. Results from tests conducted with incremental increases in the injection volume at both East Mesa and Raft River suggests that, for both reservoirs, permeability remained uniform with increasing distance from the well bore. Increased mixing during quiescent periods, between injection and

38

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM,  

Open Energy Info (EERE)

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Details Activities (3) Areas (1) Regions (0) Abstract: The Raft River geothermal system is located in southern Idaho, near the Utah-Idaho state boarder in the Raft River Valley. The field, which is owned and operated by U.S. Geothermal, has been selected as an EGS demonstration site by the U. S. Department of Energy. This paper summarizes ongoing geologic and petrologic investigations being conducted in support of this project. The reservoir is developed in fractured Proterozoic schist and quartzite, and Archean quartz monzonite cut by younger diabase

39

Heat deliverability of homogeneous geothermal reservoirs  

SciTech Connect

For the last two decades, the petroleum industry has been successfully using simple inflow performance relationships (IPR's) to predict oil deliverability. In contrast, the geothermal industry lacked a simple and reliable method to estimate geothermal wells' heat deliverability. To address this gap in the standard geothermal-reservoir-assessment arsenal, we developed generalized dimensionless geothermal inflow performance relationships (GIPR's). These ''reference curves'' may be regarded as an approximate general solution of the equations describing the practically important case of radial 2-phase inflow. Based on this approximate solution, we outline a straightforward approach to estimate the reservoir contribution to geothermal wells heat and mass deliverability for 2-phase reservoirs. This approach is far less costly and in most cases as reliable as numerically modeling the reservoir, which is the alternative for 2-phase inflow.

Iglesias, Eduardo R.; Moya, Sara L.

1991-01-01T23:59:59.000Z

40

Reducing temperature uncertainties by stochastic geothermal reservoir modelling  

Science Journals Connector (OSTI)

......economically successful geothermal reservoirs. To this...An increased use of geothermal energy requires reliable estimates...exploration and development of geothermal reservoirs. Suitable...risk of failure and cost may be reduced and estimated......

C. Vogt; D. Mottaghy; A. Wolf; V. Rath; R. Pechnig; C. Clauser

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "river geothermal reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Reducing temperature uncertainties by stochastic geothermal reservoir modelling  

Science Journals Connector (OSTI)

......Section 4) for a current geothermal district heating project in The Hague...Geothermal Reservoir A geothermal district heating project in The Hague...2008. The Den Haag Geothermal District Heating Project-3-D Models......

C. Vogt; D. Mottaghy; A. Wolf; V. Rath; R. Pechnig; C. Clauser

2010-04-01T23:59:59.000Z

42

Injectivity Test At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

Injectivity Test At Raft River Geothermal Area (1979) Injectivity Test At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Injectivity Test Activity Date 1979 Usefulness useful DOE-funding Unknown Notes Quantification of the pressure response prior to 600 minutes is not always possible. Short-duration (< 24-hour) injection or pump tests are conducted with the drilling rig equipment, and long-duration (21-day) injection and pump tests are then conducted with the permanent pumping facilities. References Allman, D. W.; Goldman, D.; Niemi, W. L. (1 January 1979) Evaluation of testing and reservoir parameters in geothermal wells at Raft

43

Magic Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Magic Reservoir Geothermal Area Magic Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Magic Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.32833333,"lon":-114.3983333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

Field Mapping At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Field Mapping At Raft River Geothermal Area (1977) Field Mapping At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Field Mapping Activity Date 1977 Usefulness useful DOE-funding Unknown Exploration Basis To estimate the permeability and storage parameters of the geothermal reservoir, and the possible existence of barrier boundaries. Notes Production and interference tests were conducted on the geothermal wells RRGE 1 and RRGE 2 during September--November, 1975. In all, three tests were conducted, two of them being short-duration production tests and one, a long duration interference test. The data collected during the tests also indicated that the reservoir pressure varies systematically in response to the changes in the Earth's gravitational field caused by the passage of the

45

Acoustic Logs At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1979) Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Acoustic Logs Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To permit the lateral and vertical extrapolation of core and test data and bridged the gap between surface geophysical data and core analyses. Notes Televiewer logs permitted the location and orientation of numerous fractures and several features that may be faults. References Keys, W. S.; Sullivan, J. K. (1 June 1979) Role of borehole geophysics in defining the physical characteristics of the Raft River geothermal reservoir, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Acoustic_Logs_At_Raft_River_Geothermal_Area_(1979)&oldid=473816"

46

Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal  

Open Energy Info (EERE)

Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Details Activities (1) Areas (1) Regions (0) Abstract: Cassia County Idaho; data; geophysical surveys; Idaho; Raft River geothermal area; surveys; United States; USGS; Well No. 3; well-logging Author(s): Covington, H.R. Published: Open-File Report - U. S. Geological Survey, 1/1/1978 Document Number: Unavailable DOI: Unavailable Exploratory Well At Raft River Geothermal Area (1977) Raft River Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Deep_drilling_data,_Raft_River_geothermal_area,_Idaho-Raft_River_geothermal_exploration_well_sidetrack-C&oldid=473365"

47

Geotechnical studies of geothermal reservoirs | Open Energy Information  

Open Energy Info (EERE)

Geotechnical studies of geothermal reservoirs Geotechnical studies of geothermal reservoirs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geotechnical studies of geothermal reservoirs Details Activities (7) Areas (7) Regions (0) Abstract: It is proposed to delineate the important factors in the geothermal environment that will affect drilling. The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. The geologic environment and reservoir characteristics of several geothermal areas were studied, and drill bits were obtained from most of the areas. The geothermal areas studied are: (1) Geysers, California, (2) Imperial Valley, California, (3) Roosevelt Hot

48

Exploring the Raft River geothermal area, Idaho, with the dc...  

Open Energy Info (EERE)

geothermal area, Idaho, with the dc resistivity method (Abstract) Abstract GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER...

49

Concept Testing and Development at the Raft River Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concept Testing and Development at the Raft River Geothermal Field, Idaho Concept Testing and Development at the Raft River Geothermal Field, Idaho DOE 2010 Geothermal Technologies...

50

Earth Tidal Analysis At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Earth Tidal Analysis At Raft River Geothermal Earth Tidal Analysis At Raft River Geothermal Area(1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the reservoir response to tidal and barometric effects Notes Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters. References Hanson, J. M. (29 May 1980) Reservoir response to tidal and barometric effects

51

Geothermal reservoir engineering code: comparison and validation  

SciTech Connect

INTERCOMP has simulated six geothermal reservoir problems. INTERCOMP's geothermal reservoir model was used for all problems. No modifications were made to this model except to provide tabular output of the simulation results in the units used in RFP No. DE-RP03-80SF-10844. No difficulty was encountered in performing the problems described herein, although setting up the boundary and grid conditions exactly as specified were sometimes awkward, and minor modifications to the grid system were necessitated. The results of each problem are presented in tabular and (for many) graphical form.

Not Available

1981-02-27T23:59:59.000Z

52

Geothermal Modeling of the Raft River Geothermal Field | Open Energy  

Open Energy Info (EERE)

Geothermal Modeling of the Raft River Geothermal Field Geothermal Modeling of the Raft River Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Modeling of the Raft River Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: This interim report presents the results to date of chemical modeling of the Raft River KGRA. Earlier work indicated a northwest-southeast anomaly in the contours. Modeling techniques applied to more complete data allowed further definition of the anomaly. Models described in this report show the source of various minerals in the geothermal water. There appears to be a regional heat source that gives rise to uniform conductive heat flow in the region, but convective flow is concentrated near the upwelling in the Crook well vicinity. Recommendations

53

Concept Testing and Development at the Raft River Geothermal Field, Idaho  

Energy.gov (U.S. Department of Energy (DOE))

Geothermal Technologies Program 2010 Peer Review Concept Testing and Development at the Raft River Geothermal Field, Idaho, for the Engineered Geothermal Systems Demonstration Projects and Low Temperature Exploration and Demonstrations Project Track. Objective to Develop and demonstrate the techniques required to form and sustain EGS reservoirs including combined thermal and hydraulic stimulation and numerical modeling and Improve the performance and output of the Raft River geothermal field by increasing production or injectivity.

54

Evaluation of testing and reservoir parameters in geothermal wells at Raft  

Open Energy Info (EERE)

testing and reservoir parameters in geothermal wells at Raft testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Evaluation of testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Evaluating the Raft River and Boise, Idaho, resources by pump and injection tests require information on the geology, geochemistry, surficial and borehole geophysics, and well construction and development methods. Nonideal test conditions and a complex hydrogeologic system prevent the use of idealized mathematical models for data evaluation in a one-phase fluid system. An empirical approach is successfully used since it was observed that all valid pump and injection well pressure data for constant discharge

55

Fourteenth workshop geothermal reservoir engineering: Proceedings  

SciTech Connect

The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

1989-01-01T23:59:59.000Z

56

Fourteenth workshop geothermal reservoir engineering: Proceedings  

SciTech Connect

The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

1989-12-31T23:59:59.000Z

57

Modeling-Computer Simulations At Raft River Geothermal Area (1980) | Open  

Open Energy Info (EERE)

80) 80) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis From refined estimates of reservoir coefficients better predictions of interference effects and long-term drawdown in the wells can be made. Notes Analytic methods have been used during reservoir testing to calculate reservoir coefficients. However, anisotropy of the reservoir due to fractures has not been taken into account in these calculations and estimates of these coefficients need to be refined. In conjunction with the

58

Geothermal reservoir well stimulation program. First-year progress report  

SciTech Connect

The Geothermal Reservoir Well Stimulation Program (GRWSP) group planned and executed two field experiments at the Raft River KGRA during 1979. Well RRGP-4 was stimulated using a dendritic (Kiel) hydraulic fracture technique and Well RRGP-5 was stimulated using a conventional massive hydraulic fracture technique. Both experiments were technically successful; however, the post-stimulation productivity of the wells was disappointing. Even though the artificially induced fractures probably successfully connected with the natural fracture system, reservoir performance data suggest that productivity remained low due to the fundamentally limited flow capacity of the natural fractures in the affected region of the reservoir. Other accomplishments during the first year of the program may be summarized as follows: An assessment was made of current well stimulation technology upon which to base geothermal applications. Numerous reservoirs were evaluated as potential candidates for field experiments. A recommended list of candidates was developed which includes Raft River, East Mesa, Westmorland, Baca, Brawley, The Geysers and Roosevelt Hot Springs. Stimulation materials (fracture fluids, proppants, RA tracer chemicals, etc.) were screened for high temperature properties, and promising materials selected for further laboratory testing. Numerical models were developed to aid in predicting and evaluating stimulation experiments. (MHR)

Not Available

1980-02-01T23:59:59.000Z

59

An Updated Conceptual Model Of The Los Humeros Geothermal Reservoir  

Open Energy Info (EERE)

Humeros Geothermal Reservoir Humeros Geothermal Reservoir (Mexico) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Updated Conceptual Model Of The Los Humeros Geothermal Reservoir (Mexico) Details Activities (0) Areas (0) Regions (0) Abstract: An analysis of production and reservoir engineering data of 42 wells from the Los Humeros geothermal field (Mexico) allowed obtaining the pressure and temperature profiles for the unperturbed reservoir fluids and developing 1-D and 2-D models for the reservoir. Results showed the existence of at least two reservoirs in the system: a relatively shallow liquid-dominant reservoir located between 1025 and 1600 m above sea level (a.s.l.) the pressure profile of which corresponds to a 300-330°C boiling water column and a deeper low-liquid-saturation reservoir located between

60

ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS  

E-Print Network (OSTI)

their Application to Geothermal Well Testing, in Geothermalthe Performance of Geothermal Wells, Geothermal Res.of Production Data from Geothermal Wells, Geothermal Res.

Zais, E.J.; Bodvarsson, G.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "river geothermal reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Sixth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect

INTRODUCTION TO THE PROCEEDINGS OF THE SIXTH GEOTHERMAL RESERVOIR ENGINEERING WORKSHOP, STANFORD GEOTHERMAL PROGRAM Henry J. Ramey, Jr., and Paul Kruger Co-Principal Investigators Ian G. Donaldson Program Manager Stanford Geothermal Program The Sixth Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 16, 1980. As with previous Workshops the attendance was around 100 with a significant participation from countries other than the United States (18 attendees from 6 countries). In addition, there were a number of papers from foreign contributors not able to attend. Because of the success of all the earlier workshops there was only one format change, a new scheduling of Tuesday to Thursday rather than the earlier Wednesday through Friday. This change was in general considered for the better and will be retained for the Seventh Workshop. Papers were presented on two and a half of the three days, the panel session, this year on the numerical modeling intercomparison study sponsored by the Department of Energy, being held on the second afternoon. This panel discussion is described in a separate Stanford Geothermal Program Report (SGP-TR42). This year there was a shift in subject of the papers. There was a reduction in the number of papers offered on pressure transients and well testing and an introduction of several new subjects. After overviews by Bob Gray of the Department of Energy and Jack Howard of Lawrence Berkeley Laboratory, we had papers on field development, geopressured systems, production engineering, well testing, modeling, reservoir physics, reservoir chemistry, and risk analysis. A total of 51 papers were contributed and are printed in these Proceedings. It was, however, necessary to restrict the presentations and not all papers printed were presented. Although the content of the Workshop has changed over the years, the format to date has proved to be satisfactory. The objectives of the Workshop, the bringing together of researchers, engineers and managers involved in geothermal reservoir study and development and the provision of a forum for the prompt and open reporting of progress and for the exchange of ideas, continue to be met . Active discussion by the majority of the participants is apparent both in and outside the workshop arena. The Workshop Proceedings now contain some of the most highly cited geothermal literature. Unfortunately, the popularity of the Workshop for the presentation and exchange of ideas does have some less welcome side effects. The major one is the developing necessity for a limitation of the number of papers that are actually presented. We will continue to include all offered papers in the Summaries and Proceedings. As in the recent past, this sixth Workshop was supported by a grant from the Department of Energy. This grant is now made directly to Stanford as part of the support for the Stanford Geothermal Program (Contract No. DE-AT03-80SF11459). We are certain that all participants join us in our appreciation of this continuing support. Thanks are also due to all those individuals who helped in so many ways: The members of the program committee who had to work so hard to keep the program to a manageable size - George Frye (Aminoil USA), Paul G. Atkinson (Union Oil Company). Michael L. Sorey (U.S.G.S.), Frank G. Miller (Stanford Geothermal Program), and Roland N. Horne (Stanford Geothermal Program). The session chairmen who contributed so much to the organization and operation of the technical sessions - George Frye (Aminoil USA), Phillip H. Messer (Union Oil Company), Leland L. Mink (Department of Energy), Manuel Nathenson (U.S.G.S.), Gunnar Bodvarsson (Oregon State University), Mohindar S. Gulati (Union Oil Company), George F. Pinder (Princeton University), Paul A. Witherspoon (Lawrence Berkeley Laboratory), Frank G. Miller (Stanford Geothermal Program) and Michael J. O'Sullivan (Lawrence Berkeley Laboratory). The many people who assisted behind the scenes, making sure that everything was prepared and organized - in particular we would like to t

Ramey, H.J. Jr.; Kruger, P. (eds.)

1980-12-18T23:59:59.000Z

62

Use Of Electrical Surveys For Geothermal Reservoir Characterization-  

Open Energy Info (EERE)

Use Of Electrical Surveys For Geothermal Reservoir Characterization- Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Details Activities (4) Areas (1) Regions (0) Abstract: The STAR geothermal reservoir simulator was used to model the natural state of the Beowawe geothermal field, and to compute the subsurface distributions of temperature and salinity which were in turn employed to calculate pore-fluid resistivity. Archie's law, which relates formation resistivity to porosity and pore-fluid resistivity, was adopted to infer formation resistivity distribution. Subsequently, DC, MT and SP postprocessors were used to compute the expected response corresponding to

63

Flow Test At Raft River Geothermal Area (2004) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (2004) Flow Test At Raft River Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2004) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 2004 Usefulness useful DOE-funding GRED II Notes Geothermal Resource Exploration and Definition Projects Raft River (GRED II): Re-assessment and testing of previously abandoned production wells. The objective of the U.S. Geothermal effort is to re-access the available wellbores, assess their condition, perform extensive testing of the reservoir to determine its productive capacity, and perform a resource utilization assessment. At the time of this paper, all five wells had been

64

Sixteenth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect

The Sixteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23-25, 1991. The Workshop Banquet Speaker was Dr. Mohinder Gulati of UNOCAL Geothermal. Dr. Gulati gave an inspiring talk on the impact of numerical simulation on development of geothermal energy both in The Geysers and the Philippines. Dr. Gulati was the first recipient of The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy. Dr. Frank Miller presented the award. The registered attendance figure of one hundred fifteen participants was up slightly from last year. There were seven foreign countries represented: Iceland, Italy, Philippines, Kenya, the United Kingdom, Mexico, and Japan. As last year, papers on about a dozen geothermal fields outside the United States were presented. There were thirty-six papers presented at the Workshop, and two papers were submitted for publication only. Attendees were welcomed by Dr. Khalid Aziz, Chairman of the Petroleum Engineering Department at Stanford. Opening remarks were presented by Dr. Roland Horne, followed by a discussion of the California Energy Commission's Geothermal Activities by Barbara Crowley, Vice Chairman; and J.E. ''Ted'' Mock's presentation of the DOE Geothermal Program: New Emphasis on Industrial Participation. Technical papers were organized in twelve sessions concerning: hot dry rock, geochemistry, tracer injection, field performance, modeling, and chemistry/gas. As in previous workshops, session chairpersons made major contributions to the program. Special thanks are due to Joel Renner, Jeff Tester, Jim Combs, Kathy Enedy, Elwood Baldwin, Sabodh Garg, Marcel0 Lippman, John Counsil, and Eduardo Iglesias. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Angharad Jones, Rosalee Benelli, Jeanne Mankinen, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate the audiovisual equipment and to Michael Riley who coordinated the meeting arrangements for a second year. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program) [Stanford Geothermal Program

1991-01-25T23:59:59.000Z

65

Conceptual Model At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

) ) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine time to cool the geothermal field with reinjection Notes If reinjection and production wells intersect connected fractures, it is expected that reinjected fluid would cool the production well much sooner than would be predicted from calculations of flow in a porous medium. A method for calculating how much sooner that cooling will occur was developed. References Kasameyer, P. W.; Schroeder, R. C. (1 January 1977) Application of thermal depletion model to geothermal reservoirs with fracture and pore permeability Retrieved from "http://en.openei.org/w/index.php?title=Conceptual_Model_At_Raft_River_Geothermal_Area_(1977)&oldid=473822

66

Concept Testing and Development at the Raft River Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concept Testing and Development at the Raft River Geothermal Field, Idaho Concept Testing and Development at the Raft River Geothermal Field, Idaho Concept Testing and Development...

67

Aeromagnetic Survey At Raft River Geothermal Area (1981) | Open...  

Open Energy Info (EERE)

at the Raft River geothermal area by the USGS. References Geological Survey, Denver, CO (USA) (1 January 1981) Total field aeromagnetic map of the Raft River known Geothermal...

68

Hydraulics and Well Testing of Engineered Geothermal Reservoirs...  

Open Energy Info (EERE)

Hydraulics and Well Testing of Engineered Geothermal Reservoirs Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Hydraulics and Well Testing of...

69

Application of thermal depletion model to geothermal reservoirs...  

Open Energy Info (EERE)

of thermal depletion model to geothermal reservoirs with fracture and pore permeability Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

70

Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

71

Eighteenth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect

PREFACE The Eighteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 26-28, 1993. There were one hundred and seventeen registered participants which was greater than the attendance last year. Participants were from eight foreign countries: Italy, Japan, United Kingdom, Mexico, New Zealand, the Philippines, Guatemala, and Iceland. Performance of many geothermal fields outside the United States was described in several of the papers. Dean Gary Ernst opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a brief overview of the Department of Energy's current plan. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Mock who also spoke at the banquet. Thirty-nine papers were presented at the Workshop with two papers submitted for publication only. Technical papers were organized in twelve sessions concerning: field operations, The Geysers, geoscience, hot-dry-rock, injection, modeling, slim hole wells, geochemistry, well test and wellbore. Session chairmen were major contributors to the program and we thank: John Counsil, Kathleen Enedy, Harry Olson, Eduardo Iglesias, Marcelo Lippmann, Paul Atkinson, Jim Lovekin, Marshall Reed, Antonio Correa, and David Faulder. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to John Hornbrook who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

1993-01-28T23:59:59.000Z

72

Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada |  

Open Energy Info (EERE)

Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: A 3-D surface seismic reflection survey, covering an area of over 3 square miles, was conducted at the Rye Patch geothermal reservoir (Nevada) to explore the structural features that may control geothermal production in the area. In addition to the surface sources and receivers, a high-temperature three-component seismometer was deployed in a borehole at a depth of 3900 ft within the basement below the reservoir, which recorded the waves generated by all surface sources. A total of 1959 first-arrival travel times were determined out of 2134 possible traces. Two-dimensional

73

Twentieth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect

PREFACE The Twentieth Workshop on Geothermal Reservoir Engineering, dedicated to the memory of Professor Hank Ramey, was held at Stanford University on January 24-26, 1995. There were ninety-five registered participants. Participants came from six foreign countries: Japan, Mexico, England, Italy, New Zealand and Iceland. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors to the campus. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Thirty-two papers were presented in the technical sessions of the workshop. Technical papers were organized into eleven sessions concerning: field development, modeling, well tesubore, injection, geoscience, geochemistry and field operations. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bob Fournier, Mark Walters, John Counsil, Marcelo Lippmann, Keshav Goyal, Joel Renner and Mike Shook. In addition to the technical sessions, a panel discussion was held on ''What have we learned in 20 years?'' Panel speakers included Patrick Muffler, George Frye, Alfred Truesdell and John Pritchett. The subject was further discussed by Subir Sanyal, who gave the post-dinner speech at the banquet. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager

None

1995-01-26T23:59:59.000Z

74

FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR | Open Energy  

Open Energy Info (EERE)

FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR Details Activities (1) Areas (1) Regions (0) Abstract: A fluid model for the Coso geothermal reservoir is developed from Fluid Inclusion Stratigraphy (FIS) analyses. Fluid inclusion gas chemistry in well cuttings collected at 20 ft intervals is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow, fluid processes and reservoir seals. Boiling and condensate zones are distinguished. Models are created using cross-sections and fence diagrams. A thick condensate and boiling zone is indicated across the western portion

75

Fluid Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir |  

Open Energy Info (EERE)

Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Fluid Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Details Activities (1) Areas (1) Regions (0) Abstract: A fence-diagram for the Coso geothermal reservoir is developed from Fluid Inclusion Stratigraphy (FIS) analyses. Fluid inclusion gas chemistry in well cuttings collected at 20 ft intervals is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow, fluid processes and reservoir seals. Boiling and condensate zones are distinguished. Permeable zones are indicated by a large change in

76

Twelfth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect

Preface The Twelfth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 20-22, 1987. The year ending December 1986 was very difficult for the domestic geothermal industry. Low oil prices caused a sharp drop in geothermal steam prices. We expected to see some effect upon attendance at the Twelfth Workshop. To our surprise, the attendance was up by thirteen from previous years, with one hundred and fifty-seven registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, Japan, Mexico, New Zealand, and Turkey. Despite a worldwide surplus of oil, international geothermal interest and development is growing at a remarkable pace. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Seven technical papers not presented at the Workshop are also published; they concern geothermal developments and research in Iceland, Italy, and New Zealand. In addition to these forty-eight technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was John R. Berg from the Department of Energy. We thank him for sharing with the Workshop participants his thoughts on the expectations of this agency in the role of alternative energy resources, specifically geothermal, within the country???s energy framework. His talk is represented as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: M. Gulati, K. Goyal, G.S. Bodvarsson, A.S. Batchelor, H. Dykstra, M.J. Reed, A. Truesdell, J.S. Gudmundsson, and J.R. Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank Jean Cook, Marilyn King, Amy Osugi, Terri Ramey, and Rosalee Benelli for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment, specially Jim Lovekin. The Twelfth Workshop was supported by the Geothermal Technology Division of the U. S. Department of Energy through Contract Nos. DE-AS03-80SF11459 and DE-AS07- 84ID12529. We deeply appreciate this continued support. January 1987 Henry J. Ramey, Jr. Paul Kruger Roland N. Horne William E. Brigham Frank G. Miller Jesus Rivera

Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Rivera, J. (Stanford Geothermal Program)

1987-01-22T23:59:59.000Z

77

Modeling-Computer Simulations At Raft River Geothermal Area (1983) | Open  

Open Energy Info (EERE)

Modeling-Computer Simulations At Raft River Geothermal Area (1983) Modeling-Computer Simulations At Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1983 Usefulness useful DOE-funding Unknown Exploration Basis Predict flow rate and porosity Notes The objectives of the physical modeling effort are to: (1) evaluate injection-backflow testing for fractured reservoirs under conditions of known reservoir parameters (porosity, fracture width, etc.); (2) study the mechanisms controlling solute transport in fracture systems; and (3) provide data for validation of numerical models that explicitly simulate

78

Characterization of geothermal reservoir crack patterns using shear-wave  

Open Energy Info (EERE)

geothermal reservoir crack patterns using shear-wave geothermal reservoir crack patterns using shear-wave splitting Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Characterization of geothermal reservoir crack patterns using shear-wave splitting Details Activities (1) Areas (1) Regions (0) Abstract: Microearthquakes recorded by a downhole, three-component seismic network deployed around the Coso, California, geothermal reservoir since 1992 display distinctive shear-wave splitting and clear polarization directions. From the polarizations the authors estimated three predominant subsurface fracture directions, and from the time delays of the split waves they determined tomographically the 3-D fracture density distribution in the reservoir. Author(s): Lou, M.; Rial, J.A. Published: Geophysics, 3/1/1997

79

Tectonic setting of the Coso geothermal reservoir | Open Energy Information  

Open Energy Info (EERE)

Tectonic setting of the Coso geothermal reservoir Tectonic setting of the Coso geothermal reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Tectonic setting of the Coso geothermal reservoir Details Activities (1) Areas (1) Regions (0) Abstract: The Coso geothermal reservoir is being developed in Sierran-type crystalline bedrock of the Coso Mountains, a small desert mountain range just to the east of the Sierra Nevada and Rose Valley, which is the southern extension of the Owens Valley of eastern California Optimum development of this reservoir requires an understanding of the fracture hydrology of the Coso Mountains crystalline terrain and its hydrologic connection to regional groundwater and thermal sources. An interpreted, conceptually balanced regional cross section that extends from the Sierra

80

Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal  

Open Energy Info (EERE)

Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Area, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Area, California Details Activities (1) Areas (1) Regions (0) Abstract: Coso is one of several high-temperature geothermal systems associated with recent volcanic activity in the Basin and Range province. Chemical and fluid inclusion data demonstrate that production is from a narrow, asymmetric plume of thermal water that originates from a deep reservoir to the south and then flows laterally to the north. Geologic controls on the geometry of the upwelling plume were investigated using petrographic and analytical analyses of reservoir rock and vein material.

Note: This page contains sample records for the topic "river geothermal reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Comparative Evaluation of Generalized River/Reservoir System Models  

E-Print Network (OSTI)

This report reviews user-oriented generalized reservoir/river system models. The terms reservoir/river system, reservoir system, reservoir operation, or river basin management "model" or "modeling system" are used synonymously to refer to computer...

Wurbs, Ralph A.

82

Thirteenth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect

PREFACE The Thirteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 19-21, 1988. Although 1987 continued to be difficult for the domestic geothermal industry, world-wide activities continued to expand. Two invited presentations on mature geothermal systems were a keynote of the meeting. Malcolm Grant presented a detailed review of Wairakei, New Zealand and highlighted plans for new development. G. Neri summarized experience on flow rate decline and well test analysis in Larderello, Italy. Attendance continued to be high with 128 registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, New Zealand, Japan, Mexico and The Philippines. A discussion of future workshops produced a strong recommendation that the Stanford Workshop program continue for the future. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Four technical papers not presented at the Workshop are also published. In addition to these forty five technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was Gustavo Calderon from the Inter-American Development Bank. We thank him for sharing with the Workshop participants a description of the Bank???s operations in Costa Rica developing alternative energy resources, specifically Geothermal, to improve the country???s economic basis. His talk appears as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: J. Combs, G. T. Cole, J. Counsil, A. Drenick, H. Dykstra, K. Goyal, P. Muffler, K. Pruess, and S. K. Sanyal. The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Marilyn King, Pat Oto, Terri Ramey, Bronwyn Jones, Yasmin Gulamani, and Rosalee Benelli for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment, especially Jeralyn Luetkehans. The Thirteenth Workshop was supported by the Geothermal Technology Division of the U.S. Department of Energy through Contract No. DE-AS07-84ID12529. We deeply appreciate this continued support. Henry J. Ramey, Jr. Paul Kruger Roland N. Horne William E. Brigham Frank G. Miller Jean W. Cook

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.; Cook, J.W. (Stanford Geothermal Program)

1988-01-21T23:59:59.000Z

83

Conceptual Model At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

79) 79) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis Recommendations are made concerning field expansion and additional work needed to refine the overall reservoir model. Notes Models described in this report show the source of various minerals in the geothermal water. There appears to be a regional heat source that gives rise to uniform conductive heat flow in the region, but convective flow is concentrated near the upwelling in the Crook well vicinity. References Overton, H. L.; Chaney, R. E.; Mcatee, R. E.; Graham, D. L. (1 November 1979) Geochemical modeling of the Raft River geothermal field Overton, H. L.; Chaney, R. E.; Mcatee, D. L.; Graham, D. L. (1

84

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network (OSTI)

Scien- Producing Geothermal Wells. (LA 6 5 5 3 x ) t i f i cSteam-Water Flow i n Geothermal Wells. Journal o f Petroleumo f a Hawaii Geothermal Well-- HGP-A. It Geothermal

Sudo!, G.A

2012-01-01T23:59:59.000Z

85

Geophysical logging case history of the Raft River geothermal system, Idaho  

Open Energy Info (EERE)

Geophysical logging case history of the Raft River geothermal system, Idaho Geophysical logging case history of the Raft River geothermal system, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geophysical logging case history of the Raft River geothermal system, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Drilling to evaluate the geothermal resource in the Raft River Valley began in 1974 and resulted in the discovery of a geothermal reservoir at a depth of approximately 1523 m (500 ft). Several organizations and companies have been involved in the geophysical logging program. There is no comprehensive report on the geophysical logging, nor has there been a complete interpretation. The objectives of this study are to make an integrated interpretation of the available data and compile a case history. Emphasis has been on developing a simple interpretation

86

Isotopic Analysis-Fluid At Raft River Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

Analysis-Fluid At Raft River Geothermal Area Analysis-Fluid At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1982 Usefulness not useful DOE-funding Unknown Exploration Basis Determine which reservoir model best matches the isotope data. Notes 1) Chemical and light-stable isotope data are presented for water samples from the Raft River geothermal area and nearby. On the basis of chemical character, as defined by a trilinear plot of per cent milliequivalents, and light-stable isotope data, the waters in the geothermal area can be divided into waters that have and have not mixed with cold water. 2) Helium isotope ratios have been measured in geothermal fluids. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic

87

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network (OSTI)

f the Mesa Geothermal Anomaly, Imperial Valley, California.Pioneering Geothermal Test Work i n the Imperial Valley o f

Sudo!, G.A

2012-01-01T23:59:59.000Z

88

Audio-Magnetotellurics At Raft River Geothermal Area (1978) | Open Energy  

Open Energy Info (EERE)

Audio-Magnetotellurics At Raft River Geothermal Area Audio-Magnetotellurics At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Audio-Magnetotellurics Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration Basis To infer the structure and the general lithology underlying the valley Notes An area of low apparent resistivity values defined by the audiomagnetotelluric (AMT) survey appears to outline the extent of the geothermal reservoir even though the reservoir is deeper than the penetration of the survey. Self-potential anomalies relate to near surface hydrology. Upward leakage from the reservoir produces shallower effects that were measured by the AMT survey. References Mabey, D.R.; Hoover, D.B.; O'Donnell, J.E.; Wilson, C.W. (1

89

Geothermal Exploration And Reservoir Monitoring Using Earthquakes And The  

Open Energy Info (EERE)

Geothermal Exploration And Reservoir Monitoring Using Earthquakes And The Geothermal Exploration And Reservoir Monitoring Using Earthquakes And The Passive Seismic Method Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geothermal Exploration And Reservoir Monitoring Using Earthquakes And The Passive Seismic Method Details Activities (1) Areas (1) Regions (0) Abstract: This paper reviews the use of earthquake studies in the field of geothermal exploration. Local, regional and teleseismic events can all provide useful information about a geothermal area on various scales. It is imperative that data collection is conducted in properly designed, realistic experiments. Ground noise is still of limited usefulness as a prospecting tool. The utility of the method cannot yet be assessed because of its undeveloped methodology and the paucity of case histories.

90

FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR  

Open Energy Info (EERE)

FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR ASSESSMENT PRELIMINARY RESULTS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR ASSESSMENT PRELIMINARY RESULTS Details Activities (1) Areas (1) Regions (0) Abstract: Fluid Inclusion Stratigraphy (FIS) is a new technique developed for the oil industry in order to map borehole fluids. This method is being studied for application to geothermal wells and is funded by the California Energy Commission. Fluid inclusion gas geochemistry is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow

91

Characterization of Fractures in Geothermal Reservoirs Using Resistivity |  

Open Energy Info (EERE)

Characterization of Fractures in Geothermal Reservoirs Using Resistivity Characterization of Fractures in Geothermal Reservoirs Using Resistivity Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Characterization of Fractures in Geothermal Reservoirs Using Resistivity Abstract The optimal design of production in fractured geothermal reservoirs requires knowledge of the resource's connectivity, therefore making fracture characterization highly important. This study aims to develop methodologies to use resistivity measurements to infer fracture properties in geothermal fields. The resistivity distribution in the field can be estimated by measuring potential differences between various points and the data can then be used to infer fracture properties due to the contrast in resistivity between water and rock.

92

Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir  

Open Energy Info (EERE)

Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Abstract Temperature, pressure, and spinner (TPS) logs have been recorded in several wells from the Dixie Valley Geothermal Reservoir in west central Nevada. A variety of well-test analyses has been performed with these data to quantify the hydrologic properties of this fault-dominated geothermal resource. Four complementary analytical techniques were employed, their individual application depending upon availability and quality of data and validity of scientific assumptions. In some instances, redundancy in

93

Exploration model for possible geothermal reservoir, Coso Hot Springs KGRA,  

Open Energy Info (EERE)

model for possible geothermal reservoir, Coso Hot Springs KGRA, model for possible geothermal reservoir, Coso Hot Springs KGRA, Inyo Co. , California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Exploration model for possible geothermal reservoir, Coso Hot Springs KGRA, Inyo Co. , California Details Activities (1) Areas (1) Regions (0) Abstract: The purpose of this study was to test the hypothesis that a steam-filled fracture geothermal reservoir exists at Coso Hot Springs KGRA, as proposed by Combs and Jarzabek (1977). Gravity data collected by the USGS (Isherwood and Plouff, 1978) was plotted and compared with the geology of the area, which is well known. An east-west trending Bouguer gravity profile was constructed through the center of the heat flow anomaly described by Combs (1976). The best fit model for the observed gravity at

94

Carson River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

River Geothermal Area River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Carson River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.77,"lon":-119.715,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

95

Raft River Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home GEOTHERMAL ENERGYGeothermal Home Raft River Geothermal Facility General Information Name Raft River Geothermal Facility Facility Raft River Sector Geothermal energy Location Information Location Cassia County, Idaho Coordinates 42.358036°, -113.5728501° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.358036,"lon":-113.5728501,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

96

Milky River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Milky River Geothermal Area Milky River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Milky River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.32,"lon":-174.1472,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

97

Reese River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Reese River Geothermal Area Reese River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Reese River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (10) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.89,"lon":-117.14,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

Raft River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Raft River Geothermal Area Raft River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Raft River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 DOE Involvement 4 Timeline 5 Regulatory and Environmental Issues 6 Future Plans 7 Raft River Unit II (26 MW) and Raft River Unit III (32 MW) 8 Enhanced Geothermal System Demonstration 9 Exploration History 10 Well Field Description 11 Technical Problems and Solutions 12 Geology of the Area 12.1 Regional Setting 12.2 Structure 12.3 Stratigraphy 12.3.1 Raft River Formation 12.3.2 Salt Lake Formation 12.3.3 Precambrian Rocks 13 Hydrothermal System 14 Heat Source 15 Geofluid Geochemistry 16 NEPA-Related Analyses (1) 17 Exploration Activities (77) 18 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.10166667,"lon":-113.38,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

99

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network (OSTI)

F i r s t Geopressured Geothermal Energy Conference. Austin,I 2nd Geopressured Geothermal Energy Conference. UniversityExperiment t o Extract Geothermal Energy From Hot Dry Rock."

Sudo!, G.A

2012-01-01T23:59:59.000Z

100

True-Temperature Determination Of Geothermal Reservoirs | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » True-Temperature Determination Of Geothermal Reservoirs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: True-Temperature Determination Of Geothermal Reservoirs Details Activities (0) Areas (0) Regions (0) Abstract: Parameters governing the resistivity in geothermal areas are analyzed. A method for the calculation of the true temperature of geothermal reservoirs is explained, and the effectiveness of the method is evidenced. Author(s): Jin Doo Jung Published: Geoexploration, 1977 Document Number: Unavailable DOI: 10.1016/0016-7142(77)90002-3 Source: View Original Journal Article

Note: This page contains sample records for the topic "river geothermal reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Characterization Of Fracture Patterns In The Geysers Geothermal Reservoir  

Open Energy Info (EERE)

Patterns In The Geysers Geothermal Reservoir Patterns In The Geysers Geothermal Reservoir By Shear-Wave Splitting Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Characterization Of Fracture Patterns In The Geysers Geothermal Reservoir By Shear-Wave Splitting Details Activities (1) Areas (1) Regions (0) Abstract: The authors have analyzed the splitting of shear waves from microearthquakes recorded by a 16-station three-component seismic network at the Northwest Geysers geothermal field, Geysers, California, to determine the preferred orientation of subsurface fractures and cracks. Average polarization crack directions with standard deviation were computed for each station. Also, graphical fracture characterizations in the form of equal-area projections and rose diagrams were created to depict the

102

3-D Seismic Methods For Geothermal Reservoir Exploration And  

Open Energy Info (EERE)

Methods For Geothermal Reservoir Exploration And Methods For Geothermal Reservoir Exploration And Assessment-Summary Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: 3-D Seismic Methods For Geothermal Reservoir Exploration And Assessment-Summary Details Activities (5) Areas (1) Regions (0) Abstract: A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally

103

Exploration model for possible geothermal reservoir, Coso Hot...  

Open Energy Info (EERE)

Abstract The purpose of this study was to test the hypothesis that a steam-filled fracture geothermal reservoir exists at Coso Hot Springs KGRA, as proposed by Combs and...

104

Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs  

Energy.gov (U.S. Department of Energy (DOE))

Project objective: to develop a 3-D numerical model for simulating mode I; II; and III (tensile; shear; and tearing propagation of multiple fractures using the virtual multi-dimensional internal bond (VMIB); to predict geothermal reservoir stimulation.

105

Integrated seismic studies at the Rye Patch geothermal reservoir...  

Open Energy Info (EERE)

studies at the Rye Patch geothermal reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Integrated seismic studies at the Rye Patch...

106

Fault and joint geometry at Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

and joint geometry at Raft River geothermal area, Idaho and joint geometry at Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Fault and joint geometry at Raft River geothermal area, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Raft River geothermal reservoir is formed by fractures in sedimentary strata of the Miocene and Pliocene Salt Lake Formation. The fracturing is most intense at the base of the Salt Lake Formation, along a decollement that dips eastward at less than 5 0 on top of metamorphosed Precambrian and Lower Paleozoic rocks. Core taken from less than 200 m above the decollement contains two sets of normal faults. The major set of faults dips between 50 0 and 70 0. These faults occur as conjugate pairs that are bisected by vertical extension fractures. The second set of faults

107

Mary's River Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

River Geothermal Project River Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Mary's River Geothermal Project Project Location Information Coordinates 41.750555555556°, -115.30194444444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.750555555556,"lon":-115.30194444444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

108

Geothermal Reservoir Assessment Case Study, Northern Basin and Range  

Open Energy Info (EERE)

Reservoir Assessment Case Study, Northern Basin and Range Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Abstract N/A Authors Elaine J. Bell, Lawrence T. Larson and Russell W. Juncal Published U.S. Department of Energy, 1980 Report Number GLO2386 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Citation Elaine J. Bell,Lawrence T. Larson,Russell W. Juncal. 1980. Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province,

109

Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation-  

Open Energy Info (EERE)

Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation- Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation- Results From The Alum 25-29 Well, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation- Results From The Alum 25-29 Well, Nevada Details Activities (6) Areas (1) Regions (0) Abstract: This paper presents the results of analysis of a state of the art set of wireline petrophysical and wellbore image logs recorded in the Alum 25-29 well, southwestern Nevada. The Alum well penetrated nearly 2000 ft (610 m) of volcano-clastic rocks and more than 1000 ft of basement, separated from the sediments by a shallowly dipping detachment fault. The logs were acquired both to characterize the site and also to select the

110

State of Seismic Methods For Geothermal Reservoir Exploration and Assessment  

Office of Scientific and Technical Information (OSTI)

3-D Seismic Methods For Geothermal Reservoir Exploration 3-D Seismic Methods For Geothermal Reservoir Exploration and Assessment - Summary E.L Majer Lawrence Berkeley National Laboratory Introduction A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally fractured reservoirs. The application could be for exploration of new resources or for in-fill/step-out drilling in existing fields. In most geothermal environments the

111

Statistical study of seismicity associated with geothermal reservoirs in  

Open Energy Info (EERE)

study of seismicity associated with geothermal reservoirs in study of seismicity associated with geothermal reservoirs in California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Statistical study of seismicity associated with geothermal reservoirs in California Details Activities (5) Areas (5) Regions (0) Abstract: Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson distribution. Temporally related events are identified by the distribution of the interoccurrence times. The regions studied to date include the Imperial Valley, Coso, The Geysers, Lassen, and the San Jacinto fault. The spatial characteristics of the random and clustered components of the seismicity

112

Using precision gravity data in geothermal reservoir engineering modeling studies  

SciTech Connect

Precision gravity measurements taken at various times over a geothermal field can be used to derive information about influx into the reservoir. Output from a reservoir simulation program can be used to compute surface gravity fields and time histories. Comparison of such computer results with field-measured gravity data can add confidence to simulation models, and provide insight into reservoir processes. Such a comparison is made for the Bulalo field in the Philippines.

Atkinson, Paul G.; Pederseen, Jens R.

1988-01-01T23:59:59.000Z

113

Geothermal Reservoir Technology Research Program: Abstracts of selected research projects  

SciTech Connect

Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

Reed, M.J. (ed.)

1993-03-01T23:59:59.000Z

114

Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report |  

Open Energy Info (EERE)

Hole No. 2, RRGE-2. Completion report Hole No. 2, RRGE-2. Completion report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River Geothermal Exploratory Hole No. 2 (RRGE-2) is the second exploratory hole drilled in the Raft River Valley location of the Idaho Geothermal R and D Project for the purpose of determining the existence of hot water in quantities suitable for commercial power generation and nonelectric applications. This well was drilled to a depth of 6,543 feet below ground level to obtain additional geological information for evaluation of the deep geothermal reservoir system. The drilling and completion of RRGE-2 are described. The daily drilling

115

Raft river geothermal pump disassembly and inspection  

SciTech Connect

The disassembly and postoperation inspection of the Peerless geothermal water pump used in teh RRGE-1 well at the Raft River Geothermal Test Site are summarized. Disassembly was hampered by scale that froze some of the pump bearings onto the impeller shaft after operation ceased. The pump appeared otherwise in generally excellent condition after more than 1600 h running time in a geothermal environment. Most postoperation diameters of rotating parts were still within factory tolerance. The few out-of-tolerance bearing diameters could not be attributed to wear and could have been out of tolerance when received. This possibility points to a need for preoperation quality-control inspection of the bearings.

Van Treeck, R.

1983-02-01T23:59:59.000Z

116

Analysis of Geothermal Reservoir Stimulation Using Geomechanics...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

into estimates of seismic hazard relationships between induced seismicity, changes in fracture density, fluid injectionwithdrawal, background stress, and geothermal production....

117

ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS  

E-Print Network (OSTI)

geothermal, and hydrological litera- ture. The data sets examined include Wairakei, New Zealand - 141 wells Cerro Prieto, Mexico -

Zais, E.J.; Bodvarsson, G.

2008-01-01T23:59:59.000Z

118

New River Geothermal Research Program  

Energy.gov (U.S. Department of Energy (DOE))

DOE Geothermal Peer Review 2010 - Presentation: Project objectives: Demonstration of an innovative blend of modern tectonic research applied to the Imperial Valley with a proprietary compilation of existing thermal and drilling data. The developed geologic model will guide the targeting of two test wells and the identification of permeable zones capable of commercial geothermal power production.

119

Reese River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Reese River Geothermal Area Reese River Geothermal Area (Redirected from Reese River Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Reese River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (10) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.89,"lon":-117.14,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

120

Petrography of late cenozoic sediments, Raft River geothermal field, Idaho  

Open Energy Info (EERE)

of late cenozoic sediments, Raft River geothermal field, Idaho of late cenozoic sediments, Raft River geothermal field, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Petrography of late cenozoic sediments, Raft River geothermal field, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; RAFT RIVER VALLEY; GEOTHERMAL FIELDS; PETROGRAPHY; BIOTITE; CALCITE; CLAYS; LIMESTONE; PYRITE; SANDSTONES; SEDIMENTS; SHALES; VOLCANIC ROCKS; ZEOLITES; ALKALINE EARTH METAL COMPOUNDS; CALCIUM CARBONATES; CALCIUM COMPOUNDS; CARBON COMPOUNDS; CARBONATE ROCKS; CARBONATES; CHALCOGENIDES; IDAHO; IGNEOUS ROCKS; INORGANIC ION EXCHANGERS; ION EXCHANGE MATERIALS; IRON COMPOUNDS; IRON SULFIDES; MICA; MINERALS; NORTH AMERICA; ORES; OXYGEN COMPOUNDS; PACIFIC NORTHWEST REGION; PYRITES; ROCKS; SEDIMENTARY ROCKS; SULFIDES; SULFUR COMPOUNDS;

Note: This page contains sample records for the topic "river geothermal reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Final Technical Resource Confirmation Testing at the Raft River Geothermal  

Open Energy Info (EERE)

Final Technical Resource Confirmation Testing at the Raft River Geothermal Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield. Author(s): Glaspey, Douglas J. Published: DOE Information Bridge, 1/30/2008 Document Number: Unavailable DOI: 10.2172/922630 Source: View Original Report Flow Test At Raft River Geothermal Area (2008) Raft River Geothermal Area Retrieved from

122

Deep drilling data Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

drilling data Raft River geothermal area, Idaho drilling data Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep drilling data Raft River geothermal area, Idaho Details Activities (2) Areas (1) Regions (0) Abstract: Stratigraphy and geophysical logs of three petroleum test boreholes in the Raft River Valley are presented. The geophysical logs include: temperature, resistivity, spontaneous potential, gamma, caliper, and acoustic logs. Author(s): Oriel, S. S.; Williams, P. L.; Covington, H. R.; Keys, W. S.; Shaver, K. C. Published: DOE Information Bridge, 1/1/1978 Document Number: Unavailable DOI: 10.2172/6272996 Source: View Original Report Exploratory Well At Raft River Geothermal Area (1975) Exploratory Well At Raft River Geothermal Area (1976) Raft River Geothermal Area

123

Geophysical Method At Raft River Geothermal Area (1975) | Open Energy  

Open Energy Info (EERE)

Method At Raft River Geothermal Area (1975) Method At Raft River Geothermal Area (1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geophysical Method At Raft River Geothermal Area (1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Geophysical Techniques Activity Date 1975 Usefulness not indicated DOE-funding Unknown Notes Geologic and geophysics studies were completed at the Raft River valley. References Williams, P.L.; Mabey, D.R.; Pierce, K.L.; Zohdy, A.A.R.; Ackermann, H.; Hoover, D.B. (1 May 1975) Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Geophysical_Method_At_Raft_River_Geothermal_Area_(1975)&oldid=59434

124

Precise Gravimetry and Geothermal Reservoir Management | Open Energy  

Open Energy Info (EERE)

Precise Gravimetry and Geothermal Reservoir Management Precise Gravimetry and Geothermal Reservoir Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Precise Gravimetry and Geothermal Reservoir Management Abstract Modern portable gravimeters can routinely achieve a5 ugal uncertainty with careful measurementprocedures involving multiple station occupations inthe same day, and stacking of readings over at least15 minutes during each occupation. Although furtherimprovements in gravimeter accuracy are feasible,other practical factors relating to repeat surveys ofgeothermal fields make such improvements oflimited value. The two most important factors arebenchmark elevation variations (3 ugal/cm) andgroundwater level fluctuations (5-10 ugal/m). Dualfrequency GPS receivers can give elevations

125

Conceptual Model At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

0) 0) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the relevant data necessary to assess a geothermal reservoir in similar rock types and use cross plots to potentially define the producing zones. Notes A conceptual model was developed that uses all geophysical data that has been collected on the area to determine the rock types and reasonable values of the parameters of interest. Emphasis has been on developing a simple interpretation scheme from a minimum of data sets. However, the cross plotting of various parameters has allowed a determination of rock types and an analysis of the degree of alteration and the density of

126

CALCULATION AND USE OF STEAM/WATER RELATIVE PERMEABILITIES IN GEOTHERMAL RESERVOIRS  

E-Print Network (OSTI)

c c c i i c I CALCULATION AND USE OF STEAM/WATER RELATIVE PERMEABILITIES IN GEOTHERMAL RESERVOIRS to calculate the steam/water relative permeabilities in geothermal reservoirs was developed and applied curves as a basis for analysis of future well tests for geothermal reservoirs. c ii #12;TABLE OF CONTENTS

Stanford University

127

Reconnaissance geothermal exploration at Raft River, Idaho from thermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; INFRARED SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; TEMPERATURE DISTRIBUTION; EXPLORATION; GEOPHYSICAL SURVEYS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Watson, K. Published: Geophysics, 4/1/1976

128

Tenth workshop on geothermal reservoir engineering: proceedings  

SciTech Connect

The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

Not Available

1985-01-22T23:59:59.000Z

129

Geothermal reservoir temperatures estimated from the oxygen isotope  

Open Energy Info (EERE)

reservoir temperatures estimated from the oxygen isotope reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes Details Activities (3) Areas (3) Regions (0) Abstract: The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested as a geothermometer in three areas of the western United States. Limited analyses of spring and borehole fluids and existing experimental rate studies suggest that dissolved sulfate and water are probably in isotopic equilibrium in all reservoirs of significant size with temperatures above

130

Geothermal reservoir engineering computer code comparison and validation  

SciTech Connect

The results of computer simulations for a set of six problems typical of geothermal reservoir engineering applications are presented. These results are compared to those obtained by others using similar geothermal reservoir simulators on the same problem set. The purpose of this code comparison is to check the performance of participating codes on a set of typical reservoir problems. The results provide a measure of the validity and appropriateness of the simulators in terms of major assumptions, governing equations, numerical accuracy, and computational procedures. A description is given of the general reservoir simulator - its major assumptions, mathematical formulation, and numerical techniques. Following the description of the model is the presentation of the results for the six problems. Included with the results for each problem is a discussion of the results; problem descriptions and result tabulations are included in appendixes. Each of the six problems specified in the contract was successfully simulated. (MHR)

Faust, C.R.; Mercer, J.W.; Miller, W.J.

1980-11-12T23:59:59.000Z

131

West Valley Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Valley Reservoir Geothermal Area Valley Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: West Valley Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.19166667,"lon":-120.385,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

Geysers Hi-T Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Geysers Hi-T Reservoir Geothermal Area Geysers Hi-T Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Geysers Hi-T Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8,"lon":-122.8,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

133

Exploratory Well At Raft River Geothermal Area (1975) | Open Energy  

Open Energy Info (EERE)

5) 5) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1975 Usefulness not indicated DOE-funding Unknown Exploration Basis First exploratory well Notes Raft River Geothermal Exploratory Hole No. 1 (RRGE-1) is drilled. References Reynolds Electrical and Engineering Co., Inc., Las Vegas, Nev. (USA) (1 October 1975) Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report Kunze, J.F. (1 May 1977) Geothermal R and D project report, October 1, 1976--March 31, 1977 Oriel, S. S.; Williams, P. L.; Covington, H. R.; Keys, W. S.; Shaver, K. C. (1 January 1978) Deep drilling data Raft River geothermal

134

Telluric Survey At Raft River Geothermal Area (1978) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1978) Raft River Geothermal Area (1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Telluric Survey At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Telluric Survey Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration Basis Infer the structure and the general lithology underlying the valley Notes The relative ellipse area contour map compiled from the telluric current survey generally conforms to the gravity map except for lower values in the area of the geothermal system. References Mabey, D.R.; Hoover, D.B.; O'Donnell, J.E.; Wilson, C.W. (1 December 1978) Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho

135

Mapping Diffuse Seismicity for Geothermal Reservoir Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Templeton David B. Harris Lawrence Livermore Natl. Lab. Seismicity and Reservoir Fracture Characterization May 18, 2010 This presentation does not contain any proprietary...

136

Numerical Modeling At Raft River Geothermal Area (1983) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1983) Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Numerical Modeling Activity Date 1983 Usefulness not indicated DOE-funding Unknown Notes The numerical modeling of the resistivity data is marginal for changes as small as those observed but the results suggest that changes of a few percent could be expected from a fracture zone extending from depth to within 100 m of the surface. References Sill, W. R. (1 September 1983) Resistivity measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Retrieved from "http://en.openei.org/w/index.php?title=Numerical_Modeling_At_Raft_River_Geothermal_Area_(1983)&oldid=47387

137

Ray River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Ray River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Ray River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.96202521,"lon":-150.9200119,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

138

Reese River Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Reese River Geothermal Project Reese River Geothermal Project Project Location Information Coordinates 39.034444444444°, -116.67666666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.034444444444,"lon":-116.67666666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

Simulation of Radon Transport in Geothermal Reservoirs  

SciTech Connect

Numerical simulation of radon transport is a useful adjunct in the study of radon as an in situ tracer of hydrodynamic and thermodynamic numerical model has been developed to assist in the interpretation of field experiments. The model simulates transient response of radon concentration in wellhead geofluid as a function of prevailing reservoir conditions. The radon simulation model has been used to simulate radon concentration response during production drawdown and two flowrate transient tests in vapor-dominated systems. Comparison of model simulation with experimental data from field tests provides insight in the analysis of reservoir phenomena such as propagation of boiling fronts, and estimates of reservoir properties of porosity and permeability thickness.

Semprini, Lewis; Kruger, Paul

1983-12-15T23:59:59.000Z

140

Simulation analysis of the unconfined aquifer, Raft River Geothermal...  

Open Energy Info (EERE)

the southern Raft River Valley that includes the known Geothermal Resource Area near Bridge, Idaho, was modelled numerically to evaluate the hydrodynamics of the unconfined...

Note: This page contains sample records for the topic "river geothermal reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Concept Testing and Development at the Raft River Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 4.1.2 Concept Testing and Development at the Raft River Geothermal Field, Idaho Presentation Number: 007 Investigator: Moore, Joseph (University of Utah) Objectives: Develop and...

142

Chemical Logging At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

Logging At Raft River Geothermal Area (1979) Logging At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Chemical Logging At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Chemical Logging Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To use new methods to assist geothermal well drilling. Notes Chemical logging resulted in the development of a technique to assist in geothermal well drilling and resource development. Calcium-alkalinity ratios plotted versus drill depth assisted in defining warm and hot water aquifers. Correlations between the calcium-alkalinity log and lithologic logs were used to determine aquifer types and detection of hot water zones

143

THE ROLE OF CAPILLARY FORCES IN THE NATURAL STATE OF FRACTURED GEOTHERMAL RESERVOIRS  

E-Print Network (OSTI)

THE ROLE OF CAPILLARY FORCES IN THE NATURAL STATE OF FRACTURED GEOTHERMAL RESERVOIRS A REPORT of experiments into the natural state of geothermal reservoirs have been conducted using porous medium models, even though geothermal systems are usually highly fractured. It is unclear whether a porous medium

Stanford University

144

Well-test data from geothermal reservoirs  

SciTech Connect

Extensive well testing in geothermal resources has been carried out throughout the western United States and in northern Mexico since 1975. Each resource tested and each well test conducted by LBL during the eight-year period are covered in brief. The information, collected from published reports and memoranda, includes test particulars, special instrumentation, data interpretation when available, and plots of actual data. Brief geologic and hydrologic descriptions of the geothermal resources are also presented. The format is such that well test descriptions are grouped, in the order performed, into major sections according to resource, each section containing a short resource description followed by individual test details. Additional information regarding instrumentation is provided. Source documentation is provided throughout to facilitate access to further information and raw data.

Bodvarsson, M.G.; Benson, S.M.

1982-09-01T23:59:59.000Z

145

Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 | Open Energy  

Open Energy Info (EERE)

Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Details Activities (3) Areas (1) Regions (0) Abstract: The Phase I Hot Dry Rock Geothermal Energy reservoirs at the Fenton Hill field site grew continuously during Run Segments 2 through 5 (January 1978 to December 1980). Reservoir growth was caused not only by pressurization and hydraulic fracturing, but also by heat-extraction and thermal-contraction effects. Reservoir heat-transfer area grew from 8000 to 50,000 m2 and reservoir fracture volume grew from 11 to 266 m3. Despite this reservoir growth, the water loss rate increased only 30%, under similar pressure environments. For comparable temperature and pressure

146

Earth Tidal Analysis At Raft River Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

Tidal Analysis At Raft River Geothermal Area Tidal Analysis At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis To estimate subsurface fracture orientation based on an analysis of solid earth tidal strains. Notes A new practical method has been developed. The tidal strain fracture orientation technique is a passive method which has no depth limitation. The orientation of either natural or hydraulically stimulated fractures can be measured using either new or old static observation wells. Estimates for total compressibility and areal interconnected porosity can also be developed for reservoirs with matrix permeability using a combination of

147

Micro-Earthquake At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

Micro-Earthquake At Raft River Geothermal Area (2011) Micro-Earthquake At Raft River Geothermal Area (2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Micro-Earthquake Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine seismicity before and after reservoir stimulation for EGS Notes The overall goal is to gather high resolution seismicity data before, during and after stimulation activities at the EGS projects. This will include both surface and borehole deployments to provide high quality seismic data for improved processing and interpretation methodologies. This will allow the development and testing of seismic methods for understanding the performance of the EGS systems, as well as aid in developing induced seismicity mitigation techniques that can be used for a variety of EGS

148

Earth Tidal Analysis At Raft River Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Earth Tidal Analysis At Raft River Geothermal Area Earth Tidal Analysis At Raft River Geothermal Area (1984) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous medium compressibility if porosity is known. In the present work, change in external stress is estimated from

149

Simple numerical simulation for liquid dominated geothermal reservoir  

SciTech Connect

A numerical model for geothermal reservoir has been developed. The model used is based on an idealized, two-dimensional case, where the porous medium is isotropic, nonhomogeneous, filled with saturated liquid. The fluids are assumed to have constant and temperature dependent viscosity. A Boussinesq approximation and Darcy`s law are used. The model will utilize a simple hypothetical geothermal system, i.e. graben within horsts structure, with three layers of different permeabilities. Vorticity plays an importance roles in the natural convection process, and its generation and development do not depend only on the buoyancy, but also on the magnitude and direction relation between the flow velocity and the local gradient of permeability to viscosity ratio. This model is currently used together with a physical, scaled-down reservoir model to help conceptual modeling.

Wintolo, D.; Sutrisno; Sudjamiko [Gadjah Mada Univ., Yogyakarta (Indonesia)] [and others

1996-12-31T23:59:59.000Z

150

Simple numerical simulation for liquid dominated geothermal reservoir  

SciTech Connect

A numerical model for geothermal reservoir has been developed. The model used is based on an idealized, two-dimensional case, where the porous medium is isotropic, nonhomogeneous, filled with saturated liquid. The fluids are assumed to have constant and temperature dependent viscosity. A Boussinesq approximation and Darcys law are used. The model will utilize a simple hypothetical geothermal system, i.e. graben within horsts structure, with three layers of different permeabilities. Vorticity plays an importance roles in the natural convection process, and its generation and development do not depend only on the buoyancy, but also on the magnitude and direction relation between the flow velocity and the local gradient of permeability to viscosity ratio. This model is currently used together with a physical, scaled-down reservoir model to help conceptual modeling.

Wintolo, Djoko; Sutrisno; Sudjatmiko; Sudarman, S.

1996-01-24T23:59:59.000Z

151

New River Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: New River Geothermal Project Project Location Information Coordinates 33.131388888889°, -115.69444444444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.131388888889,"lon":-115.69444444444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

152

Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir |  

Open Energy Info (EERE)

Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir Details Activities (3) Areas (1) Regions (0) Abstract: A 3-D surface seismic survey was conducted to explore the structure of the Rye Patch geothermal reservoir (Nevada), to determine if modern seismic techniques could be successfully applied in geothermal environments. Furthermore, it was intended to map the structural features which may control geothermal production in the reservoir. The seismic survey covered an area of 3.03 square miles and was designed with 12 north-south receiver lines and 25 east-west source lines. The receiver group interval was 100 feet and the receiver line spacing was 800 feet. The

153

Exploratory Well At Raft River Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

76) 76) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1976) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Second and third exploratory wells drilled Notes Raft River Geothermal Exploratory Hole No. 2, RRGE-2 drilled. During this period, a third well, RRGE-3 was also drilled and well production was tested. Down-hole data was obtained from RRGE-3. References Speake, J.L. (1 August 1976) Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report Kunze, J.F. (1 October 1976) Geothermal R and D Project report for period April 1, 1976 to June 30, 1976

154

Airborne Electromagnetic Survey At Raft River Geothermal Area (1979) | Open  

Open Energy Info (EERE)

Electromagnetic Survey At Raft River Electromagnetic Survey At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Airborne Electromagnetic Survey Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis To show that AEM methods can be useful in exploration for and defining geothermal systems Notes Extensive audio-magnetotelluric (AMT) work by the USGS in KGRA's showed that many geothermal systems do have a near-surface electrical signature which should be detectable by an AEM system. References Christopherson, K.R.; Long, C.L.; Hoover, D.B. (1 September 1980) Airborne electromagnetic surveys as a reconnaissance technique for geothermal exploration Retrieved from "http://en.openei.org/w/index.php?title=Airborne_Electromagnetic_Survey_At_Raft_River_Geothermal_Area_(1979)&oldid=510231

155

Petrography Analysis At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

Petrography Analysis At Raft River Geothermal Area (2011) Petrography Analysis At Raft River Geothermal Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Petrography Analysis At Raft River Geothermal Area (2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Petrography Analysis Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Explore for development of an EGS demonstration project Notes X-ray diffraction and thin section analyses are being conducted on samples from 5 deep wells, RRG- 1, 2, 3, 7 and 9, to determine the characteristics of the rock types and hydrothermal alteration within the geothermal system. Thin section analyses of samples from RRG-9 document the presence of strong alteration and brecciation at the contact between the Tertiary and basement

156

Imaging the Soultz Enhanced Geothermal Reservoir using double-difference tomography and microseismic data  

E-Print Network (OSTI)

We applied the double-difference tomography method to image the P and S-wave velocity structure of the European Hot Dry Rock geothermal reservoir (also known as the Soultz Enhanced Geothermal System) at Soultz-sous-Forets, ...

Pieros Concha, Diego Alvaro

2010-01-01T23:59:59.000Z

157

Simulation analysis of the unconfined aquifer, Raft River Geothermal Area,  

Open Energy Info (EERE)

Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Details Activities (1) Areas (1) Regions (0) Abstract: This study covers about 1000 mi2 (2600 km2) of the southern Raft River drainage basin in south-central Idaho and northwest Utah. The main area of interest, approximately 200 mi2 (520 km2) of semiarid agricultural and rangeland in the southern Raft River Valley that includes the known Geothermal Resource Area near Bridge, Idaho, was modelled numerically to evaluate the hydrodynamics of the unconfined aquifer. Computed and estimated transmissivity values range from 1200 feet squared per day (110

158

Self Potential Measurements At Raft River Geothermal Area (1983) | Open  

Open Energy Info (EERE)

Measurements At Raft River Geothermal Area (1983) Measurements At Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential Measurements At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Self Potential Measurements Activity Date 1983 Usefulness not indicated DOE-funding Unknown Notes Self-potential measurements before and during injection tests at Raft River KGRA, Idaho indicate a small negative change. The magnitude of the change (5 to 10 mV) is near the noise level (5 mV) but they extend over a fairly broad area. The presence of a cathodic protection system clouds the issue of the validity of the changes, however the form of the observed changes cannot be explained by any simple change in the current strength of the

159

Field Mapping At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1980) Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Field Mapping Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Delineate the subsurface geology Notes The Raft River Valley occupies an upper Cenozoic structural basin filled with nearly 1600 m of fluvial silt, sand, and gravel. Rapid facies and thickness changes, steep initial dips (30 0C), and alteration make correlation of basin-fill depositional units very difficult. The Raft River geothermal system is a hot water convective system relying on deep circulation of meteoric water in a region of high geothermal gradients and open fractures near the base of the Tertiary basin fill. References Covington, H. R. (1 September 1980) Subsurface geology of the

160

Conceptual Model At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

2011) 2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Explore for development of an EGS demonstration project Notes The reservoir is developed in fractured Proterozoic schist and quartzite, and Archean quartz monzonite cut by younger diabase intrusions. The basement complex was deformed during the mid Tertiary and covered by approximately 5000 ft of late Tertiary sedimentary and volcanic deposits. Listric normal faults of Cenozoic age disrupt the Tertiary deposits but do not offset the basement rocks. RRG-9, the target well, was drilled southwest of the main well field to a measured depth (MD) of 6089 ft. The well is deviated to the west and cased to a depth of 2316 ft MD. It

Note: This page contains sample records for the topic "river geothermal reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA  

E-Print Network (OSTI)

of geothermal resources in the Imperial Valley ofO N GEOTHERMAL RESOURCE INVESTIGATIONS IMPERIAL VALLEY. C Ageothermal reservoir underlying the East Mesa area, Imperial Valley,

2009-01-01T23:59:59.000Z

162

New River Geothermal Exploration (Ram Power Inc.)  

DOE Data Explorer (OSTI)

The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

Clay Miller

163

New River Geothermal Exploration (Ram Power Inc.)  

SciTech Connect

The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

Clay Miller

2013-11-15T23:59:59.000Z

164

Reservoir-Stimulation Optimization with Operational Monitoring for Creation of Enhanced Geothermal Systems  

Energy.gov (U.S. Department of Energy (DOE))

Reservoir-Stimulation Optimization with Operational Monitoring for Creation of Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

165

Magnetotellurics At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Magnetotellurics At Raft River Geothermal Area (1977) Magnetotellurics At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Magnetotellurics Activity Date 1977 Usefulness useful DOE-funding Unknown Notes Magnetotelluric soundings along a profile extending from the Raft River geothermal area in southern Idaho in Yellowstone National Park in Wyoming reveal a highly anomalous crustal structure involving a conductive zone at depths that range from 18 km in the central part of the eastern Snake River Plain to 7 km beneath the Raft River thermal area and as little as 5 km in Yellowstone. Resistivities in this conductive zone are less than 10 ohm-m and at some sites than 1 ohm-m. References Stanley, W.D.; Boehl, J.E.; Bostick, F.X.; Smith, H.W. (10 June

166

Snake River Plain Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Snake River Plain Geothermal Region Snake River Plain Geothermal Region (Redirected from Snake River Plain) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Snake River Plain Geothermal Region Details Areas (8) Power Plants (1) Projects (2) Techniques (11) Map: {{{Name}}} "The Snake River Plain is a large arcuate structural trough that characterizes the topography of southern Idaho that can be divided into three sections: western, central, and eastern. The western Snake River Plain is a large tectonic graben or rift valley filled with several km of lacustrine (lake) sediments; the sediments are underlain by rhyolite and basalt, and overlain by basalt. The western plain began to form around 11-12 Ma with the eruption of rhyolite lavas and ignimbrites. The western plain is not parallel to North American Plate motion, and lies at a high

167

Fault Mapping At Raft River Geothermal Area (1993) | Open Energy  

Open Energy Info (EERE)

Fault Mapping At Raft River Geothermal Area (1993) Fault Mapping At Raft River Geothermal Area (1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fault Mapping At Raft River Geothermal Area (1993) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Fault Mapping Activity Date 1993 Usefulness useful DOE-funding Unknown Exploration Basis Geologic mapping, strain and kinematic analysis Notes The mountains expose a detachment fault that separates a hanging wall of Paleozoic rocks from Proterozoic and Archean rocks of the footwall. Beneath the detachment lies a 100 to 300m-thick top-to-the-east extensional shear zone. Geologic mapping, strain and kinematic analysis, and 40Ar/39Ar thermochronology suggest that the shear zone and detachment fault had an

168

Aeromagnetic Survey At Raft River Geothermal Area (1978) | Open Energy  

Open Energy Info (EERE)

Area (1978) Area (1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Aeromagnetic Survey Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration Basis To infer the structure and the general lithology underlying the valley Notes The aeromagnetic data indicate the extent of the major Cenozoic volcanic units. References Mabey, D.R.; Hoover, D.B.; O'Donnell, J.E.; Wilson, C.W. (1 December 1978) Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Aeromagnetic_Survey_At_Raft_River_Geothermal_Area_(1978)&oldid=473817"

169

Field Mapping At Raft River Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

Field Mapping At Raft River Geothermal Area (1990) Field Mapping At Raft River Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Raft River Geothermal Area (1990) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Field Mapping Activity Date 1990 Usefulness not indicated DOE-funding Unknown Notes Together, field and 40Ar/39Ar results suggest that Late Cretaceous extension occurred in the Sevier belt hinterland at the same time as shortening in the eastern foreland and at depth in the hinterland. Sufficient topography must have been present to drive upper-crustal extension in the eastern hinterland. References Wells, M.L.; Allmendinger, R.W.; Dallmeyer, R.D. (1 October 1990) Late Cretaceous extension in the hinterland of the Sevier thrust belt,

170

Electromagnetic Soundings At Raft River Geothermal Area (1977) | Open  

Open Energy Info (EERE)

Electromagnetic Soundings At Raft River Geothermal Area (1977) Electromagnetic Soundings At Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Electromagnetic Sounding Techniques Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis The purpose of the survey was: (1) to field test U.S. Geological Survey extra-low-frequency (ELF) equipment using a grounded wire source and receiver loop configuration (which is designed to measure the vertical magnetic field (Hz) at the loop center for various frequencies); (2) to present an example of the EM sounding data and interpretations using a

171

A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir  

Open Energy Info (EERE)

Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir Evaluation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir Evaluation Details Activities (0) Areas (0) Regions (0) Abstract: A two-dimensional numerical model of coupled fluid flow, heat transfer and rock mechanics in naturally fractured rock is developed. The model is applicable to assessments of hot dry rock (HDR) geothermal reservoir characterisation experiments, and to the study of hydraulic stimulations and the heat extraction potential of HDR reservoirs. Modelling assumptions are based on the characteristics of the experimental HDR reservoir in the Carnmenellis granite in Cornwall, S. W. England. In

172

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979  

E-Print Network (OSTI)

DOE), Division of Geothermal Energy (DGE) proposed thatof Energy, Division of Geothermal Energy, through Lawrence

Howard, J. H.

2012-01-01T23:59:59.000Z

173

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

from low permeability and/or porosity geothermal resources. Existing geochemical reactive transport reservoir characterization and present example analyses of the pore systems of representative rocks fromPROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University

Stanford University

174

Snake River Geothermal Project- Innovative Approaches to Geothermal Exploration  

Energy.gov (U.S. Department of Energy (DOE))

DOE Geothermal Peer Review 2010 - Presentation. Project objective: To Implement and Test Geological and Geophysical Techniques for Geothermal Exploration. Project seeks to lower the cost of geothermal energy development by identifying which surface and borehole techniques are most efficient at identifying hidden resources.

175

EXPERIMENTAL VERIFICATION OF THE LOAD-FOLLOWING POTENTIAL OF A HOT DRY ROCK GEOTHERMAL RESERVOIR  

E-Print Network (OSTI)

was about 2 minutes. INTRODUCTION The Hot Dry Rock (HDR) geothermal reservoir at Fenton Hill, New MexicoEXPERIMENTAL VERIFICATION OF THE LOAD-FOLLOWING POTENTIAL OF A HOT DRY ROCK GEOTHERMAL RESERVOIR Mexico 87545 ABSTRACT A recent 6-day flow experiment conducted at the Los Alamos National Laboratory

176

Detailed Joint Structure in a Geothermal Reservoir from Studies of Induced Microearthquake Clusters  

E-Print Network (OSTI)

microearthquake data collected from a geothermal reservoir at Fenton Hill, New Mexico, provide an opportunityDetailed Joint Structure in a Geothermal Reservoir from Studies of Induced Microearthquake Clusters Alamos National Laboratory, Los Alamos, New Mexico LAUR 94-3846 #12;2 Abstract Microearthquake clusters

177

Induced Microearthquake Patterns in Hydrocarbon and Geothermal Reservoirs: W. Scott Phillips  

E-Print Network (OSTI)

Induced Microearthquake Patterns in Hydrocarbon and Geothermal Reservoirs: A Review W. Scott or production of fluids can induce microseismic events in hydrocarbon and geothermal reservoirs. By deploying sensors downhole, data sets have been collected that consist of a few hundred to well over 10,000 induced

178

Base Technologies and Tools for Supercritical Reservoirs Geothermal Lab  

Open Energy Info (EERE)

Technologies and Tools for Supercritical Reservoirs Geothermal Lab Technologies and Tools for Supercritical Reservoirs Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Base Technologies and Tools for Supercritical Reservoirs Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 High-Temperature Downhole Tools Project Description Development of downhole tools capable of reliable operation in supercritical environments is a significant challenge with a number of technical and operational hurdles related to both the hardware and electronics design. Hardware designs require the elimination of all elastomer seals and the use of advanced materials. Electronics must be hardened to the extent practicable since no electronics system can survive supercritical temperatures. To develop systems capable of logging in these environments will require a number of developments. More robust packaging of electronics is needed. Sandia will design and develop innovated, highly integrated, high-temperature (HT) data loggers. These data loggers will be designed and developed using silicon-on-insulator/silicon carbide (SOI/SiC) technologies integrated into a MultiChip Module (MCM); greatly increasing the reliability of the overall system (eliminating hundreds of board-level innerconnects) and decreasing the size of the electronics package. Tools employing these electronics will be capable of operating continuously at temperatures up to 240 °C and by using advanced Dewar flasks, will operate in a supercritical reservoir with temperatures over 450 °C and pressures above 70 MPa. Dewar flasks are needed to protect the electronic components, but those currently available are only reliable in temperature regimes in the range of 350 °C; promising advances in materials will be investigated to improve Dewar technologies. HT wireline currently used for logging operations is compromised at temperatures above 300 °C; along with exploring the development of a HT wireline for logging purposes, alternative approaches that employ HT batteries (e.g., those awarded a recent R&D 100) will also be investigated, and if available will enable deployment using slickline, which is not subject to the same temperature limitations as wireline. To demonstrate the capability provided by these improvements, tools will be developed and fielded. The developed base technologies and working tool designs will be available to industry throughout the project period. The developed techniques and subsystems will help to further the advancement of HT tools needed in the geothermal industry.

179

Deep geothermal reservoirs evolution: from a modeling perspective BRGM, 3 Avenue Claude Guillemin, BP 36009 -45060 Orlans Cedex 2, France  

E-Print Network (OSTI)

Deep geothermal reservoirs evolution: from a modeling perspective S. Lopez1 1 BRGM, 3 Avenue Claude deep geothermal reservoirs evolution and management based on examples ranging from direct use of geothermal heat to geothermal electricity production. We will try to focus on French experiences

Paris-Sud XI, Université de

180

Using Parallel MCMC Sampling to Calibrate a Computer Model of a Geothermal Reservoir  

E-Print Network (OSTI)

Using Parallel MCMC Sampling to Calibrate a Computer Model of a Geothermal Reservoir by T. Cui, C. 686 ISSN 1178-360 #12;Using Parallel MCMC Sampling to Calibrate a Computer Model of a Geothermal of a geothermal field to achieve model `calibration' from measured well-test data. We explore three scenarios

Fox, Colin

Note: This page contains sample records for the topic "river geothermal reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hydraulic fracturing in a sedimentary geothermal reservoir: Results and implications  

Science Journals Connector (OSTI)

Field experiments in a geothermal research well were conducted to enhance the inflow performance of a clastic sedimentary reservoir section. Due to depths exceeding 4050m, bottom hole temperatures exceeding 140C, and open hole section (dual zone), technically demanding and somewhat unprecedented conditions had to be managed. The fracturing operations were successful. Fractures were created in two isolated borehole intervals and the inflow behaviour of the reservoir was decisively enhanced. The effective pressures applied for fracture initiation and propagation were only slightly above in situ pore pressures. Nevertheless, the stimulation ratio predicted by fracture performance modelling could not be achieved. Multiple reasons could be identified that account for the mismatch. An insufficient fracture tie-back, as well as chemical and mechanical processes during closure, led to reduced fracture conductivities and therefore diminished productivity. The insights gained are the basis for further fracture design concepts at the given and geologic comparable sites.

B. Legarth; E. Huenges; G. Zimmermann

2005-01-01T23:59:59.000Z

182

GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)  

E-Print Network (OSTI)

2 Mission of Division of Geothermal Energy . . . . .of the Division of Geothermal Energy and these directoratesof Energy, Division of Geothermal Energy effort is the

Bloomster, C.H.

2010-01-01T23:59:59.000Z

183

GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)  

E-Print Network (OSTI)

2 Mission of Division of Geothermal Energy . . . . .of Energy, Division of Geothermal Energy effort is theMission of Division of Geothermal Energy The mission of the

Bloomster, C.H.

2010-01-01T23:59:59.000Z

184

INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS  

E-Print Network (OSTI)

Applications & Operations, Geothermal Energy Division of theP. , and Otte, C. , Geothermal energy: Stanford, California,Applications & Operations, Geothermal Energy Division of the

Bodvarsson, Gudmundur S.

2012-01-01T23:59:59.000Z

185

OUTDOOR RECREATION DEMAND AND EXPENDITURES: LOWER SNAKE RIVER RESERVOIRS  

E-Print Network (OSTI)

i OUTDOOR RECREATION DEMAND AND EXPENDITURES: LOWER SNAKE RIVER RESERVOIRS John R. Mc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v SECTION ONE - OUTDOOR RECREATION DEMAND . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Recreation Demand Methods

O'Laughlin, Jay

186

Lower Watts Bar Reservoir Clinch River/Poplar Creek  

Energy.gov (U.S. Department of Energy (DOE))

This document explains the cleanup activities and any use limitations for the land surrounding the Lower Watts Bar Reservoir Clinch River/Poplar Creek.

187

Interpretation of electromagnetic soundings in the Raft River geothermal  

Open Energy Info (EERE)

Interpretation of electromagnetic soundings in the Raft River geothermal Interpretation of electromagnetic soundings in the Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Interpretation of electromagnetic soundings in the Raft River geothermal area, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: An electromagnetic (EM) controlled source survey was conducted in the Raft River Valley, near Malta, Idaho. The purpose of the survey was: to field test U.S. Geological Survey extra-low-frequency (ELF) equipment using a grounded wire source and receiver loop configuration (which is designed to measure the vertical magnetic field (Hz) at the loop center for various frequencies); to present an example of the EM sounding data and interpretations using a previously developed inversion program; and (3) to

188

Conceptual Model At Raft River Geothermal Area (1983) | Open...  

Open Energy Info (EERE)

that helps determine the geology and alteration References Blackett, R.E.; Kolesar, P.T. (1 January 1983) Geology and alteration of the Raft River geothermal system, Idaho...

189

Tracer Testing At Raft River Geothermal Area (1984) | Open Energy...  

Open Energy Info (EERE)

84 Usefulness not indicated DOE-funding Unknown Notes Tracer testing was undertaken at Raft River geothermal area. References Kroneman, R. L.; Yorgason, K. R.; Moore, J. N. (1...

190

Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models  

SciTech Connect

Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

David Cuyler

2012-07-19T23:59:59.000Z

191

Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models  

DOE Data Explorer (OSTI)

Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

David Cuyler

192

Snake River Geothermal Project - Innovative Approaches to Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

will document detailed stratigraphy of each site. 8 | US DOE Geothermal Program eere.energy.gov ScientificTechnical Approach * Detailed Gravity & Magnetics: US Geological...

193

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979  

E-Print Network (OSTI)

ment methods for geothermal well system param- eters,on calcite-fouled geothermal wells (Michaels, 1979). An

Howard, J. H.

2012-01-01T23:59:59.000Z

194

INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS  

E-Print Network (OSTI)

geology of three geothermal wells, Klamath Falls, Oregon,evaluation of five geothermal wells: in Proceedings Second

Bodvarsson, Gudmundur S.

2012-01-01T23:59:59.000Z

195

Core Analysis At Raft River Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

6) 6) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Core Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Fracture analysis to determine if sealing or open fractures exist Notes Core samples show diagenesis superimposed on episodic fracturing and fracture sealing. The minerals that fill fractures show significant temporal variations. Fracture sealing and low fracture porosity imply that only the most recently formed fractures are open to fluids. References Michael L. Batzle; Gene Simmons (1 January 1976) Microfractures in rocks from two geothermal areas Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Raft_River_Geothermal_Area_(1976)&oldid=47383

196

DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area  

Open Energy Info (EERE)

Area Area (1974-1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area (1974-1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique DC Resistivity Survey (Schlumberger Array) Activity Date 1974 - 1975 Usefulness not indicated DOE-funding Unknown Exploration Basis Hydrogeologic study of the area Notes In 1975, the U.S. Geological Survey made 70 Schlumberger resistivity soundings in the Upper Raft River Valley and in parts of the Raft River Valley. These soundings complement the 79 soundings made previously in the Raft River Valley and bring the total number of soundings to 149. This work was done as part of a hydrogeologic study of the area. The location,

197

The Snake River Geothermal Drilling Project - Innovative Approaches to  

Open Energy Info (EERE)

Snake River Geothermal Drilling Project - Innovative Approaches to Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description This project will implement and test a series of innovative geothermal exploration strategies in two phases. Phase 1 studies will comprise surface mapping, shallow seismic surveys, potential field surveys (gravity and magnetics), compilation of existing well data, and the construction of three dimension structure sections. Phase 2 will comprise two intermediate depth (1.5-1.6 km) slim-hole exploration wells with a full suite of geophysical borehole logs and a vertical seismic profile to extrapolate stratigraphy encountered in the well into the surrounding terrain. Both of the exploration wells will be fully cored to preserve a complete record of the volcanic stratigraphy that can be used in complementary science projects. This project will function in tandem with Project Hotspot, a continental scientific drilling project that focuses on the origin and evolution of the Yellowstone hotspot.

198

Coso: example of a complex geothermal reservoir. Final report, 1984-1985 |  

Open Energy Info (EERE)

Coso: example of a complex geothermal reservoir. Final report, 1984-1985 Coso: example of a complex geothermal reservoir. Final report, 1984-1985 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Coso: example of a complex geothermal reservoir. Final report, 1984-1985 Details Activities (1) Areas (1) Regions (0) Abstract: The Coso geothermal system has been widely studied and reported by scientists through the past several years, but there is still a considerable divergence of opinion regarding the structural setting, origin, and internal structure of this energy resource. Because of accelerating exploration and development drilling that is taking place, there is a need for a reservoir model that is consistent with the limited geologic facts available regarding the area. Author(s): Austin, C.F.; Durbin, W.F.

199

Geochemical modeling of the Raft River geothermal field | Open Energy  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Geochemical modeling of the Raft River geothermal field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geochemical modeling of the Raft River geothermal field Details Activities (1) Areas (1) Regions (0) Abstract: The results to date of chemical modeling of the Raft River KGRA are presented. Earlier work indicated a northwest-southeast anomaly in the contours. Modeling techniques applied to more complete data allowed further definition of the anomaly. Models described in this report show the source of various minerals in the geothermal water. There appears to be a regional heat source that gives rise to uniform conductive heat flow in the region, but convective flow is concentrated near the upwelling in the Crook well

200

Conceptual Model At Raft River Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

Conceptual Model At Raft River Geothermal Area (1990) Conceptual Model At Raft River Geothermal Area (1990) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Develop a conceptual model to explain the exposed rocks. Notes Although commonly obscured by simple shear, pure shear fabrics occur locally within many metamorphic core complexes. The cover rocks of the Raft River metamorphic core complex exposed within the Black Pine Mountains display an early coaxial strain history which developed prior to the formation of low-angle fault-bounded allochthons. At higher structural levels this is documented by pressure shadows with straight sutures, and oppositely-rotated antitaxial calcite veins.

Note: This page contains sample records for the topic "river geothermal reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

SUMMARY OF RESERVOIR ENGINEERING DATA: WAIRAKEI GEOTHERMAL FIELD, NEW ZEALAND  

E-Print Network (OSTI)

mental Effects of Geothermal Power Production Phase IIA,"its development as a geothermal power system, Wairakei andI. (Compiler), Geothermal Steam for Power i n N e w Zealand,

Pritchett, J.W.

2012-01-01T23:59:59.000Z

202

SUMMARY OF RESERVOIR ENGINEERING DATA: WAIRAKEI GEOTHERMAL FIELD, NEW ZEALAND  

E-Print Network (OSTI)

mental Effects of Geothermal Power Production Phase IIA,"its development as a geothermal power system, Wairakei andI. (Compiler), Geothermal Steam for Power i n N e w Zealand,

Pritchett, J.W.

2010-01-01T23:59:59.000Z

203

GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)  

E-Print Network (OSTI)

2 Mission of Division of Geothermal Energy . . . . .Nations Symposium on Geothermal Energy, Vol. 1 , p. 487-494.Nations Symposium on Geothermal Energy, Vol. 1 p . l i i i -

Bloomster, C.H.

2010-01-01T23:59:59.000Z

204

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

geothermal resource in the US Gulf of Mexico region. In particular, geopressured sandstones near salt domesPROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University INJECTION IN STIMULATION OF GEOPRESSURED GEOTHERMAL RESERVOIRS Tatyana Plaksina,1 Christopher White,1

Stanford University

205

The Ahuachapan geothermal field, El Salvador: Reservoir analysis  

SciTech Connect

The Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) is conducting a reservoir evaluation study of the Ahuachapan geothermal field in El Salvador. This work is being performed in cooperation with the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) and the Los Alamos National Laboratory (LANL). This report describes the work done during the first year of the study (FY 1988--89), and includes the (1) development of geological and conceptual models of the field, (2) evaluation of the initial thermodynamic and chemical conditions and their changes during exploitation, (3) evaluation of interference test data and the observed reservoir pressure decline, and (4) the development of a natural state model for the field. The geological model of the field indicates that there are seven (7) major and five (5) minor faults that control the fluid movement in the Ahuachapan area. Some of the faults act as a barrier to flow as indicated by large temperature declines towards the north and west. Other faults act as preferential pathways to flow. The Ahuachapan Andesites provide good horizontal permeability to flow and provide most of the fluids to the wells. The underlying Older Agglomerates also contribute to well production, but considerably less than the Andesites. 84 refs.

Aunzo, Z.; Bodvarsson, G.S.; Laky, C.; Lippmann, M.J.; Steingrimsson, B.; Truesdell, A.H.; Witherspoon, P.A. (Lawrence Berkeley Lab., CA (USA); Icelandic National Energy Authority, Reykjavik (Iceland); Geological Survey, Menlo Park, CA (USA); Lawrence Berkeley Lab., CA (USA))

1989-08-01T23:59:59.000Z

206

Interest in using microearthquakes for characterizing petro-leum and geothermal reservoirs and the region surround-  

E-Print Network (OSTI)

Interest in using microearthquakes for characterizing petro- leum and geothermal reservoirs can be obtained from well logs, but they only provide direct information about conditions near the well. Microseismic (MS) monitoring techniques can be pri- mary methods for obtaining detailed

207

Core Analysis At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

2011) 2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Core Analysis Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Explore for development of an EGS demonstration project Notes Core was obtained from RRG-3C. The sample is a brecciated and altered siltstone from the base of the Tertiary sequence and is similar to rocks at the base of the Tertiary deposits in RRG-9. The results of thermal and quasi-static mechanical property measurements that were conducted on the core sample are presented. References Jones, C.; Moore, J.; Teplow, W.; Craig, S. (1 January 2011) GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Raft_River_Geothermal_Area_(2011)&oldid=473834

208

Thermochronometry At Raft River Geothermal Area (1993) | Open Energy  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Raft River Geothermal Area (1993) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Thermochronometry Activity Date 1993 Usefulness not indicated DOE-funding Unknown Notes Constraints on the initial orientation and crustal position of the shear zone have been derived from 40Ar/39Ar thermochronology of mineral suites (hornblende, muscovite, biotite, and k-feldspar) collected within and beneath the shear zone along a 27 km transect parallel to the transport direction. References Wells, M.L.; Snee, L.W. (1 April 1993) Geologic and thermochronologic constraints on the initial orientation of the Raft River detachment and footwall shear zone

209

Geothermometry At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Raft River Geothermal Area (1980) Geothermometry At Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Geothermometry Activity Date 1980 Usefulness not indicated DOE-funding Unknown Notes Geothermometer temperatures of shallow samples suggest significant re-equilibration at temperatures below those found in the deep wells. Silica geothermometer temperatures of water samples from the deep wells are in reasonable agreement with measured temperatures, whereas Na-K-Ca temperatures are significantly higher than measured temperatures. The chemical characteristics of the water, as indicated by chloride concentration, are extremely variable in shallow and deep samples. Chloride concentrations of the deep samples range from 580 to 2200 mg/kg.

210

Field Mapping At Raft River Geothermal Area (1993) | Open Energy  

Open Energy Info (EERE)

Exploration Activity: Field Mapping At Raft River Geothermal Area (1993) Exploration Activity: Field Mapping At Raft River Geothermal Area (1993) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Field Mapping Activity Date 1993 Usefulness not indicated DOE-funding Unknown Exploration Basis To determine the importance of Early to Middle Miocene period in the northern Basin and Range region. Notes New apatite fission track cooling age and track length data, supplemented by other information, point to the Early to Middle Miocene as an additional time of very significant extension-induced uplift and range formation. Many ranges in a 700-km-long north-south corridor from the Utah-Nevada-Idaho border to southernmost Nevada experience extension and major exhumation in Early to Middle Miocene time. Reconnaissance apatite ages from the Toiyabe

211

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

Energy Geothermal Wayang Windu Ltd., 2. Geothermal Laboratory ITB, Bandung. mulyadiPROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University-DOMINATED TWO-PHASE ZONE OF THE WAYANG WINDU GEOTHERMAL FIELD, JAVA, INDONESIA Mulyadi1 and Ali Ashat2 1. Star

Stanford University

212

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network (OSTI)

an Enhanced Geothermal System (EGS) power generation project in Desert Peak (Nevada) geothermal field. As partPROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University GEOTHERMAL SYSTEM K.M. Kovac1 , Susan J. Lutz2 , Peter S. Drakos3 , Joel Byersdorfer4 , and Ann Robertson

Stanford University

213

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network (OSTI)

a mismatch between rough surfaces that will enhance reservoir porosity and permeability. In the early daysPROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University the performance of EGS reservoirs. Geothermal injection wells are often drilled into formations containing

Stanford University

214

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network (OSTI)

not to the permeability but to the porosity of the medium, the contribution of the drag current through the matrix regionPROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University TO GEOTHERMAL RESERVOIR ENGINEERING: CHARACTERIZATION OF FRACTURED RESERVOIRS Tsuneo Ishido1 , Yuji Nishi2

Stanford University

215

Geology and alteration of the Raft River geothermal system, Idaho | Open  

Open Energy Info (EERE)

alteration of the Raft River geothermal system, Idaho alteration of the Raft River geothermal system, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geology and alteration of the Raft River geothermal system, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: analcime; Cassia County Idaho; Cenozoic; chlorite; chlorite group; clay minerals; economic geology; exploration; framework silicates; geothermal energy; Idaho; illite; kaolinite; laumontite; montmorillonite; Neogene; Precambrian; Raft Formation; Raft River KGRA; Salt Lake Formation; sheet silicates; silicates; Tertiary; United States; wairakite; wells; zeolite group Author(s): Blackett, R.E.; Kolesar, P.T. Published: Geothermal Resource Council Transactions 1983, 1/1/1983 Document Number: Unavailable DOI: Unavailable

216

Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) |  

Open Energy Info (EERE)

Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Thermal And-Or Near Infrared Activity Date 1974 - 1976 Usefulness useful DOE-funding Unknown Exploration Basis Reconnaissance geothermal exploration Notes A TIR survey of the Raft River geothermal area prospect in Idaho where thermal waters move laterally in an alluvial plain and have no visible surface manifestations was undertaken as part of geothermal exploration. References K. Watson (1974) Geothermal Reconnaissance From Quantitative Analysis Of Thermal Infrared Imagery

217

Total field aeromagnetic map of the Raft River known Geothermal Resource  

Open Energy Info (EERE)

field aeromagnetic map of the Raft River known Geothermal Resource field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Total field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; MAGNETIC SURVEYS; MAPS; RAFT RIVER VALLEY; AERIAL SURVEYING; GEOTHERMAL RESOURCES; IDAHO; KGRA; FEDERAL REGION X; GEOPHYSICAL SURVEYS; NORTH AMERICA; RESOURCES; SURVEYS; USA Author(s): Geological Survey, Denver, CO (USA) Published: DOE Information Bridge, 1/1/1981 Document Number: Unavailable DOI: 10.2172/5456508 Source: View Original Report Aeromagnetic Survey At Raft River Geothermal Area (1981) Raft River Geothermal Area

218

Geothermal field case studies that document the usefulness of models in predicting reservoir and well behavior  

SciTech Connect

The geothermal industry has shown significant interest in case histories that document field production histories and demonstrate the techniques which work best in the characterization and evaluation of geothermal systems. In response to this interest, LBL has devoted a significant art of its geothermal program to the compilation and analysis of data from US and foreign fields (e.g., East Mesa, The Geysers, Susanville, and Long Valley in California; Klamath Falls in Oregon; Valles Caldera, New Mexico; Cerro Prieto and Los Azufres in Mexico; Krafla and Nesjavellir in Iceland; Larderello in Italy; Olkaria in Kenya). In each of these case studies we have been able to test and validate in the field, or against field data, the methodology and instrumentation developed under the Reservoir Technology Task of the DOE Geothermal Program, and to add to the understanding of the characteristics and processes occurring in geothermal reservoirs. Case study results of the producing Cerro Prieto and Olkaria geothermal fields are discussed in this paper. These examples were chosen because they illustrate the value of conceptual and numerical models to predict changes in reservoir conditions, reservoir processes, and well performance that accompany field exploitation, as well as to reduce the costs associated with the development and exploitation of geothermal resources. 14 refs., 6 figs.

Lippmann, M.J.

1989-03-01T23:59:59.000Z

219

Geothermal Field Case Studies that Document the Usefulness of Models in Predicting Reservoir and Well Behavior  

SciTech Connect

The geothermal industry has shown significant interest in case histories that document field production histories and demonstrate the techniques which work best in the characterization and evaluation of geothermal systems. In response to this interest, LBL has devoted a significant part of its geothermal program to the compilation and analysis of data from US and foreign fields (e.g., East Mesa, The Geysers, Susanville, and Long Valley in California; Klamath Fall in Oregon; Valles Caldera, New Mexico; Cerro Prieto and Los Azufres in Mexico; Krafla and Nesjavellir in Iceland; Larderello in Italy; Olkaria in Kenya). In each of these case studies we have been able to test and validate in the field, or against field data, the methodology and instrumentation developed under the Reservoir Technology Task of the DOE Geothermal Program, and to add to the understanding of the characteristics and processes occurring in geothermal reservoirs. Case study results of the producing Cerro Prieto and Olkaria geothermal fields are discussed in this paper. These examples were chosen because they illustrate the value of conceptual and numerical models to predict changes in reservoir conditions, reservoir processes, and well performance that accompany field exploitation, as well as to reduce the costs associated with the development and exploitation of geothermal resources.

Lippmann, Marcelo J.

1989-03-21T23:59:59.000Z

220

Snake River Plain Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Region Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Snake River Plain Geothermal Region Details Areas (8) Power Plants (1) Projects (2) Techniques (11) Map: {{{Name}}} "The Snake River Plain is a large arcuate structural trough that characterizes the topography of southern Idaho that can be divided into three sections: western, central, and eastern. The western Snake River Plain is a large tectonic graben or rift valley filled with several km of lacustrine (lake) sediments; the sediments are underlain by rhyolite and basalt, and overlain by basalt. The western plain began to form around 11-12 Ma with the eruption of rhyolite lavas and ignimbrites. The western plain is not parallel to North American Plate motion, and lies at a high angle to the central and eastern Snake River Plains. Its morphology is

Note: This page contains sample records for the topic "river geothermal reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Lower Ray River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lower Ray River Geothermal Area Lower Ray River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lower Ray River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.9839,"lon":-150.5797,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

222

Red River Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Red River Hot Springs Geothermal Area Red River Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Red River Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.7878,"lon":-115.1978,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

223

Geothermal Resource-Reservoir Investigations Based On Heat Flow And Thermal  

Open Energy Info (EERE)

Resource-Reservoir Investigations Based On Heat Flow And Thermal Resource-Reservoir Investigations Based On Heat Flow And Thermal Gradient Data For The United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Resource-Reservoir Investigations Based On Heat Flow And Thermal Gradient Data For The United States Details Activities (2) Areas (2) Regions (0) Abstract: Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of

224

Introduction to the Proceedings of the Sixth Geothermal Reservoir Engineering Workshop, Stanford Geothermal Program  

SciTech Connect

The Sixth Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 16, 1980. As with previous Workshops the attendance was around 100 with a significant participation from countries other than the United States (18 attendees from 6 countries). In addition, there were a number of papers from foreign contributors not able to attend. Because of the success of all the earlier workshops there was only one format change, a new scheduling of Tuesday to Thursday rather than the earlier Wednesday through Friday. This change was in general considered for the better and will be retained for the Seventh Workshop. Papers were presented on two and a half of the three days, the panel session, this year on thenumerical modeling intercomparison study sponsored by the Department of Energy, being held on the second afternoon. This panel discussion is described in a separate Stanford Geothermal Program Report (SGP-TR42). This year there was a shift in subject of the papers. There was a reduction in the number of papers offered on pressure transients and well testing and an introduction of several new subjects. After overviews by Bob Gray of the Department of Energy and Jack Howard of Lawrence Berkeley Laboratory, we had papers on field development, geopressured systems, production engineering, well testing, modeling, reservoir physics, reservoir chemistry, and risk analysis. A total of 51 papers were contributed and are printed i n these Proceedings. It was, however, necessary to restrict the presentations and not all papers printed were presented . Although the content of the Workshop has changed over the years, the format to date has proved to be satisfactory. The objectives of the Workshop, the bringing together of researchers, engineers and managers involved in geothermal reservoir study and development and the provision of a forum for the prompt and open reporting of progress and for the exchange of ideas, continue to be met . Active discussion by the majority of the participants is apparent both in and outside the workshop arena. The Workshop Proceedings now contain some of the most highly cited geothermal literature. Unfortunately, the popularity of the Workshop for the presentation and exchange of ideas does have some less welcome side effects. The major one is the developing necessity for a limitation of the number of papers that are actually presented. We will continue to include all offered papers in the Summaries and Proceedings. As in the recent past, this sixth Workshop was supported by a grant from the Department of Energy. This grant is now made directly to Stanford as part of the support for the Stanford Geothermal Program (Contract No. DE-AT03-80SF11459). We are certain that all participants join us in our appreciation of this continuing support. Thanks are also due to all those individuals who helped in so many ways: The members of the program committee who had to work so hard to keep the program to a manageable size - George Frye (Aminoil USA), Paul G. Atkinson (Union Oil Company). Michael L. Sorey ( U.S.G.S.) , Frank G. Miller (Stanford Geothermal Program), and Roland N. Horne (Stanford Geothermal Program). The session chairmen who contributed so much to the organization and operation of the technical sessions - George Frye (Aminoil USA), Phillip H. Messer (Union Oil Company), Leland L. Mink (Department of Energy), Manuel Nathenson (U.S.G.S.), Gunnar Bodvarsson (Oregon State University), Mohindar S. Gulati (Union Oil Company), George F. Pinder (Princeton University), Paul A. Witherspoon (Lawrence Berkeley Laboratory), Frank G. Miller (Stanford Geothermal Program) and Michael J. O'Sullivan (Lawrence Berkeley Laboratory). The many people who assisted behind the scenes, making sure that everything was prepared and organized - in particular we would l i k e t o thank Jean Cook and Joanne Hartford (Petroleum Engineering Department, Stanford University) without whom there may never have been a Sixth Workshop. Henry J. Ramey, Jr. Paul Kruger Ian G. Donaldson Stanford University December 31, 1980

Ramey, Henry J. Jr.; Kruger, Paul; Donaldson, Ian G.

1980-12-18T23:59:59.000Z

225

Mary's River SW Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Mary's River SW Geothermal Project Project Location Information Coordinates 41.750555555556°, -115.30194444444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.750555555556,"lon":-115.30194444444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

Raft River III Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Raft River III Geothermal Project Project Location Information Coordinates 42.099444444444°, -113.38222222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.099444444444,"lon":-113.38222222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

New River Geothermal Research Project, Imperial Valley, California  

Open Energy Info (EERE)

Research Project, Imperial Valley, California Research Project, Imperial Valley, California Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title New River Geothermal Research Project, Imperial Valley, California Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Current models for the tectonic evolution of the Salton Trough provide a refined geologic model to be tested within the New River system and subsequently applied to additional rift dominated settings. Specific concepts to be included in model development include: rifting as expressed by the Brawley Seismic zone setting, northwest extensional migration, detachment faulting and a zone of tectonic subsidence as defining permeability zones; and evaluation and signature identification of diabase dike systems. Lateral continuous permeable sand units will be demonstrated through integration of existing well records with results of drilling new wells in the area.

228

Core Analysis At Raft River Geothermal Area (1981) | Open Energy  

Open Energy Info (EERE)

81) 81) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Raft River Geothermal Area (1981) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Core Analysis Activity Date 1981 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine fault and joint geometry Notes Core taken from less than 200 m above the decollement contains two sets of normal faults. The major set of faults dips between 500 and 70 0. These faults occur as conjugate pairs that are bisected by vertical extension fractures. The second set of faults dips 100 to 200 and may parallel part of the basal decollement or reflect the presence of listric normal faults in the upper plate. References Guth, L. R.; Bruhn, R. L.; Beck, S. L. (1 July 1981) Fault and

229

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING RESEARCH PROJECTS SUPPORTED BY USDOE/DIVISION OF GEOTHERMAL ENERGY  

E-Print Network (OSTI)

BY USDOE/DIVISION OF GEOTHERMAL ENERGY J J. H. Howard and W.BY USWE/DIVISION O GEOTHERMAL ENERGY F Berkeley, CaliforniaWE), Division of Geothermal Energy (mS) proposed that

Howard, J.H.

2011-01-01T23:59:59.000Z

230

Flow Test At Raft River Geothermal Area (2008) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (2008) Flow Test At Raft River Geothermal Area (2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2008) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis To confirm resource using flow tests Notes Both production and injection wells were flow tested. Aslo includes interference testing across the well field. References Glaspey, Douglas J. (30 January 2008) Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Flow_Test_At_Raft_River_Geothermal_Area_(2008)&oldid=473856

231

Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations  

DOE Data Explorer (OSTI)

The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. Based on a range of well schemes, techno-economic analyses of the levelized cost of electricity (LCOE) are conducted to determine the economic benefits of integrating GCS with geothermal energy production. In addition to considering CO2 injection, reservoir analyses are conducted for nitrogen (N2) injection to investigate the potential benefits of incorporating N2 injection with integrated geothermal-GCS, as well as the use of N2 injection as a potential pressure-support and working-fluid option. Phase 1 includes preliminary environmental risk assessments of integrated geothermal-GCS, with the focus on managing reservoir overpressure. Phase 1 also includes an economic survey of pipeline costs, which will be applied in Phase 2 to the analysis of CO2 conveyance costs for techno-economics analyses of integrated geothermal-GCS reservoir sites. Phase 1 also includes a geospatial GIS survey of potential integrated geothermal-GCS reservoir sites, which will be used in Phase 2 to conduct sweet-spot analyses that determine where promising geothermal resources are co-located in sedimentary settings conducive to safe CO2 storage, as well as being in adequate proximity to large stationary CO2 sources.

Buscheck, Thomas A.

232

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING RESEARCH PROJECTS SUPPORTED BY USDOE/DIVISION OF GEOTHERMAL ENERGY  

E-Print Network (OSTI)

RESEARCH PROJECPS SUPPORTED BY USWE/DIVISION O GEOTHERMAL ENERGY F Berkeley, California 94720 ABSTRACT

Howard, J.H.

2011-01-01T23:59:59.000Z

233

FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND  

Open Energy Info (EERE)

FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND HYDROGEOLOGICAL IMPLICATIONS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND HYDROGEOLOGICAL IMPLICATIONS Details Activities (1) Areas (1) Regions (0) Abstract: Following a period of exploration and development in the mid-late 1970's, there was little activity at the Raft River geothermal field for the next ~20 years. US Geothermal Inc. acquired the project in 2002, and began commercial power generation in January 2008. From mid-2004 to present, US Geothermal Inc. has collected geochemical data from geothermal and monitoring wells in the field, as well as other shallow wells in the

234

Exploring the Raft River geothermal area, Idaho, with the dc resistivity  

Open Energy Info (EERE)

Exploring the Raft River geothermal area, Idaho, with the dc resistivity Exploring the Raft River geothermal area, Idaho, with the dc resistivity method (Abstract) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Exploring the Raft River geothermal area, Idaho, with the dc resistivity method (Abstract) Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY; GEOTHERMAL WELLS; KGRA; TEMPERATURE MEASUREMENT; ELECTRICAL PROPERTIES; EXPLORATION; GEOPHYSICAL SURVEYS; NORTH AMERICA; PACIFIC NORTHWEST REGION; PHYSICAL PROPERTIES; USA; WELLS Author(s): Zohdy, A.A.R.; Jackson, D.B.; Bisdorf, R.J. Published: Geophysics, 10/12/1975 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article

235

Groundwater Sampling At Raft River Geothermal Area (2004-2011) | Open  

Open Energy Info (EERE)

Groundwater Sampling At Raft River Geothermal Area (2004-2011) Groundwater Sampling At Raft River Geothermal Area (2004-2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Groundwater Sampling At Raft River Geothermal Area (2004-2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Groundwater Sampling Activity Date 2004 - 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Collect new water chemistry data on geothermal field Notes From mid-2004 to present, US Geothermal Inc. has collected geochemical data from geothermal and monitoring wells in the field, as well as other shallow wells in the area. An additional sampling program was completed in July 2010 to measure a wider range of trace elements and key water isotopes (δ18O, δD, and 3H (Tritium)) in the field. The data indicate that the

236

Geothermal reservoir temperatures estimated from the oxygen isotope...  

Open Energy Info (EERE)

temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes Jump to: navigation, search GEOTHERMAL...

237

Thermal And-Or Near Infrared At Raft River Geothermal Area (1997) | Open  

Open Energy Info (EERE)

Raft River Geothermal Area (1997) Raft River Geothermal Area (1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Raft River Geothermal Area (1997) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Thermal And-Or Near Infrared Activity Date 1997 Usefulness not indicated DOE-funding Unknown Exploration Basis Locate geothermal surface manifestations Notes Several examples of the use of TIR to locate geothermal surface manifestations and notes that TIR is more useful in remote areas. The analysis of three TIR images acquired during a diurnal cycle at Raft River is presented. The purpose of these images was to minimize the masking of temperature variations by vegetation and topography. References

238

Flow Test At Raft River Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (2006) Flow Test At Raft River Geothermal Area (2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2006) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 2006 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine field hydraulic conductivity using borehole impeller flowmeter data Notes A quantitative evaluation of borehole-impeller flowmeter data leads to estimated field hydraulic conductivity. Data were obtained during an injection test of a geothermal well at the Raft River geothermal test site in Idaho. Both stationary and trolling calibrations of the flowmeter were made in the well. Methods were developed to adjust for variations in hole

239

Proceedings of the technical review on advances in geothermal reservoir technology---Research in progress  

SciTech Connect

This proceedings contains 20 technical papers and abstracts describing most of the research activities funded by the Department of Energy (DOE's) Geothermal Reservoir Technology Program, which is under the management of Marshall Reed. The meeting was organized in response to several requests made by geothermal industry representatives who wanted to learn more about technical details of the projects supported by the DOE program. Also, this gives them an opportunity to personally discuss research topics with colleagues in the national laboratories and universities.

Lippmann, M.J. (ed.)

1988-09-01T23:59:59.000Z

240

Hydraulic fracture stimulation treatment of Well Baca 23. Geothermal Reservoir Well-Stimulation Program  

SciTech Connect

Well Stimulation Experiment No. 5 of the Geothermal Reservoir Well Stimulation Program (GRWSP) was performed on March 22, 1981 in Baca 23, located in Union's Redondo Creek Project Area in Sandoval County, New Mexico. The treatment selected was a large hydraulic fracture job designed specifically for, and utilizing frac materials chosen for, the high temperature geothermal environment. The well selection, fracture treatment, experiment evaluation, and summary of the job costs are presented herein.

Not Available

1981-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "river geothermal reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network (OSTI)

and lithologies. This method promises to lower the cost of geothermal energy production in several ways. Knowledge is funded by the Department of Energy, Enhanced Geothermal Systems Technology Development program. The DOEPROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University

Stanford University

242

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

their untapped geothermal resources) for cost effective power production and direct-use applications. As part for further study). INTRODUCTION Geothermal energy is an under exploited resource throughout the world, yetPROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University

Stanford University

243

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network (OSTI)

for the generation of electrical energy at the Los Azufres geothermal system, Mexico (Ruíz et al., 2010). The projectPROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University IN A PIPELINE NETWORK OF GEOTHERMAL SYSTEM Mahendra P. Verma Geotermia, Instituto de Investigaciones Eléctricas

Stanford University

244

Core Analysis At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

9) 9) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Core Analysis Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis Permitted the lateral and vertical extrapolation of core and test data and bridged the gap between surface geophysical data and core analyses. Notes 1) Microcracks were observed in core samples. A set of observable characteristics of microcracks were discovered in racks from geothermal regions that appears to be unique and to have considerable potential for exploration for geothermal regions. Both permeability and electrical conductivity were measured for a suite of samples with a range of microcracks characteristics. A partial set of samples were collected to study migration of radioactive elements. 2) Laboratory analyses of cores

245

Well Log Techniques At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Well Log Techniques At Raft River Geothermal Area Well Log Techniques At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Well Log Techniques Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Characterize the rock using well log data. Notes Information is given on the following logs: dual-induction focused log, including resistivity, sp, and conductivity; acoustic log; compensated neutron; compensated densilog; and caliper. Lithologic breaks for a drill core to a depth of 2840 ft are illustrated. References Covington, H.R. (1 January 1978) Deep drilling data, Raft River geothermal area, Idaho Raft River geothermal exploration well No. 4 Retrieved from "http://en.openei.org/w/index.php?title=Well_Log_Techniques_At_Raft_River_Geothermal_Area_(1977)&oldid=6004

246

Groundwater Sampling At Raft River Geothermal Area (1974-1982) | Open  

Open Energy Info (EERE)

Groundwater Sampling At Raft River Geothermal Area (1974-1982) Groundwater Sampling At Raft River Geothermal Area (1974-1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Groundwater Sampling At Raft River Geothermal Area (1974-1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Groundwater Sampling Activity Date 1974 - 1982 Usefulness useful DOE-funding Unknown Exploration Basis Collect baseline chemical data Notes Ground-water monitoring near the Raft River site was initiated in 1974 by the IDWR. This effort consisted of semiannual chemical sampling of 22 irrigation wells near the Raft River geothermal development area. This program yielded useful baseline chemical data; however, several problems were inherent. For example, access to water pumped from the wells is

247

Reed River Hot Spring Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Reed River Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Reed River Hot Spring Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":67.26650701,"lon":-155.0521524,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

248

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis  

SciTech Connect

This report highlights the work that was done to characterize fractured geothermal reservoirs using production data. That includes methods that were developed to infer characteristic functions from production data and models that were designed to optimize reinjection scheduling into geothermal reservoirs, based on these characteristic functions. The characterization method provides a robust way of interpreting tracer and flow rate data from fractured reservoirs. The flow-rate data are used to infer the interwell connectivity, which describes how injected fluids are divided between producers in the reservoir. The tracer data are used to find the tracer kernel for each injector-producer connection. The tracer kernel describes the volume and dispersive properties of the interwell flow path. A combination of parametric and nonparametric regression methods were developed to estimate the tracer kernels for situations where data is collected at variable flow-rate or variable injected concentration conditions. The characteristic functions can be used to calibrate thermal transport models, which can in turn be used to predict the productivity of geothermal systems. This predictive model can be used to optimize injection scheduling in a geothermal reservoir, as is illustrated in this report.

Roland N. Horne, Kewen Li, Mohammed Alaskar, Morgan Ames, Carla Co, Egill Juliusson, Lilja Magnusdottir

2012-06-30T23:59:59.000Z

249

Raft River II Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Raft River II Geothermal Project Raft River II Geothermal Project Project Location Information Coordinates 42.605555555556°, -113.24055555556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.605555555556,"lon":-113.24055555556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

Numerical Code Comparison Project - A Necessary Step Towards Confidence in Geothermal Reservoir Simulators  

SciTech Connect

A necessary first step in resolving differences and in evaluating the usefulness of numerical simulators for geothermal reservoir analysis is the comparison of simulator results for a set of well-specified problems involving processes applicable in reservoir analysis. Under the direction of DOE'S Geothermal Reservoir Engineering Management Program (GREMP), a set of six test problems has been developed in an attempt to meet this need. The problem set covers a range of reservoir situations including single- and two-phase flow under 1, 2, and 3 dimensional conditions. Each problem has been test run to insure that the parameter specifications will yield workable solutions, and in several cases analytical solutions are available for comparison. Brief descriptions of the problems are given in each problem, the desired grid and time-step sizes were specified to minimize differences in results due to numerical discretization.

Sorey, Michael L.

1980-12-16T23:59:59.000Z

251

Concept Testing and Development at the Raft River Geothermal Field, Idaho  

Energy.gov (U.S. Department of Energy (DOE))

Concept Testing and Development at the Raft River Geothermal Field, Idaho presentation at the April 2013 peer review meeting held in Denver, Colorado.

252

Integrated Geothermal-CO2 Storage Reservoirs: FY1 Final Report  

SciTech Connect

The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

Thomas A. Buscheck

2012-01-01T23:59:59.000Z

253

Reservoir Investigations on the Hot Dry Rock Geothermal System...  

Open Energy Info (EERE)

Investigations on the Hot Dry Rock Geothermal System, Fenton Hill, New Mexico- Tracer Test Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

254

Reducing temperature uncertainties by stochastic geothermal reservoir modelling  

Science Journals Connector (OSTI)

......reducing risk of failure and cost. In addition, the stochastic...Clauser C. , 2006. Geothermal Energy, inLandolt-Bornstein...and Technologies, Vol. 3: Energy Technologies, Subvol. C: Renewable Energies, pp. 480-595, ed. Heinloth......

C. Vogt; D. Mottaghy; A. Wolf; V. Rath; R. Pechnig; C. Clauser

2010-04-01T23:59:59.000Z

255

Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing  

Open Energy Info (EERE)

Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Details Activities (6) Areas (1) Regions (0) Abstract: This report covers the drilling and testing of the slim well 56-4 at the Reese River Geothermal Project in Lander County, Nevada. This well was partially funded through a GRED III Cooperative Funding Agreement # DE-FC36-04GO14344, from USDOE. Author(s): William R. Henkle, Joel Ronne Published: Geothermal Technologies Legacy Collection, 2008 Document Number: Unavailable DOI: Unavailable Source: View Original Report Compound and Elemental Analysis At Reese River Area (Henkle & Ronne, 2008)

256

Geothermal reservoir simulation to enhance confidence in predictions for nuclear waste disposal  

SciTech Connect

Numerical simulation of geothermal reservoirs is useful and necessary in understanding and evaluating reservoir structure and behavior, designing field development, and predicting performance. Models vary in complexity depending on processes considered, heterogeneity, data availability, and study objectives. They are evaluated using computer codes written and tested to study single and multiphase flow and transport under nonisothermal conditions. Many flow and heat transfer processes modeled in geothermal reservoirs are expected to occur in anthropogenic thermal (AT) systems created by geologic disposal of heat-generating nuclear waste. We examine and compare geothermal systems and the AT system expected at Yucca Mountain, Nevada, and their modeling. Time frames and spatial scales are similar in both systems, but increased precision is necessary for modeling the AT system, because flow through specific repository locations will affect long-term ability radionuclide retention. Geothermal modeling experience has generated a methodology, used in the AT modeling for Yucca Mountain, yielding good predictive results if sufficient reliable data are available and an experienced modeler is involved. Codes used in geothermal and AT modeling have been tested extensively and successfully on a variety of analytical and laboratory problems.

Kneafsey, Timothy J.; Pruess, Karsten; O'Sullivan, Michael J.; Bodvarsson, Gudmundur S.

2002-06-15T23:59:59.000Z

257

Reservoir Simulation on the Cerro Prieto Geothermal Field: A Continuing Study  

SciTech Connect

The Cerro Prieto geothermal field is a liquid-dominated geothermal reservoir of complex geological and hydrological structure. It is located at the southern end of the Salton-Mexicali trough which includes other geothermal anomalies as Heber and East Mesa. Although in 1973, the initial power plant installed capacity was 75 MW of electrical power, this amount increased to 180 MW in 1981 as field development continued. It is expected to have a generating capacity of 620 MW by the end of 1985, when two new plants will be completely in operation. Questions about field deliverability, reservoir life and ultimate recovery related to planned installations are being presently asked. Numerical modeling studies can give very valuable answers to these questions, even at the early stages in the development of a field. An effort to simulate the Cerro Prieto geothermal reservoir has been undergoing for almost two years. A joint project among Comision Federal de Electricidad (CFE), Instituto de Investigaciones Electricas (IIE) and Intercomp of Houstin, Texas, was created to perform reservoir engineering and simulation studies on this field. The final project objective is tosimulate the behavior of the old field region when production from additional wells located in the undeveloped field zones will be used for feeding the new power plants.

Castaneda, M.; Marquez, R.; Arellano, V.; Esquer, C.A.

1983-12-15T23:59:59.000Z

258

FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR...  

Open Energy Info (EERE)

RESERVOIR ASSESSMENT PRELIMINARY RESULTS Abstract Fluid Inclusion Stratigraphy (FIS) is a new technique developed for the oil industry in order to map borehole fluids....

259

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network (OSTI)

the reservoir rocks to the working fluid. A key assumption associated with reservoir creation with evolving porosity and permeability for each element that depends on the local structure of the discretePROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University

Stanford University

260

Factors controlling reservoir quality in tertiary sandstones and their significance to geopressured geothermal production  

SciTech Connect

Variable intensity of diagenesis is the factor primarily responsible for contrasting regional reservoir quality of Tertiary sandstones from the upper and lower Texas coast. Detailed comparison of Frio sandstone from the Chocolate Bayou/Danbury Dome area, Brazoria County, and Vicksburg sandstones from the McAllen Ranch Field area, Hidalgo County, reveals that extent of diagenetic modification is most strongly influenced by (1) detrital mineralogy and (2) regional geothermal gradients. The regional reservoir quality of Frio sandstones from Brazoria County is far better than that characterizing Vicksburg sandstones from Hidalgo County, especially at depths suitable for geopressured geothermal energy production. However, in predicting reservoir quality on a site-specific basis, locally variable factors such as relative proportions for porosity types, pore geometry as related to permeability, and local depositional environment must also be considered. Even in an area of regionally favorable reservoir quality, such local factors can significantly affect reservoir quality and, hence, the geothermal production potential of a specific sandstone unit.

Loucks, R.G.; Richmann, D.L.; Milliken, K.L.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "river geothermal reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Conceptual Model At Raft River Geothermal Area (1987) | Open Energy  

Open Energy Info (EERE)

Exploration Activity Details Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1987 Usefulness not indicated DOE-funding Unknown Exploration Basis To model the kinematics of compressional and extensional ductile shearing deformation Notes Analysis of shear criteria enables the kinematics of two main ductile-shearing events (D1 and D2) to be established in the Raft River, Grouse Creek and Albion 'metamorphic core complex'. The first event (D1) is a NNE-thrusting and corresponds to Mesozoic shortening. A well developed non-coaxial ductile deformation (D2), of Cenozoic age, is marked by the occurrence of opposing eastward (in Raft River) and westward shear criteria (in Albion-Grouse Creek). These characterize an arch structure

262

Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report |  

Open Energy Info (EERE)

Exploratory Hole No. 1 (RRGE-1). Completion report Exploratory Hole No. 1 (RRGE-1). Completion report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; BOREHOLES; WELL DRILLING; GEOTHERMAL EXPLORATION; GEOTHERMAL WELLS; IDAHO; EQUIPMENT; GEOLOGICAL SURVEYS; WELL CASINGS; WELL LOGGING; CAVITIES; DRILLING; EXPLORATION; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA; WELLS Author(s): Reynolds Electrical and Engineering Co., Inc., Las Vegas, Nev. (USA) Published: DOE Information Bridge, 10/1/1975 Document Number: Unavailable DOI: 10.2172/5091938 Source: View Original Report Exploratory Well At Raft River Geothermal Area (1975) Raft River Geothermal Area Retrieved from

263

Snake River Plain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Snake River Plain Geothermal Project Project Location Information Coordinates 43.136944444444°, -115° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.136944444444,"lon":-115,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

264

Micro-Earthquake At Raft River Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis Develop a background seismicity before power production begins Notes Local seismic networks were established to monitor the background seismicity prior to initiation of geothermal power production. The Raft River study area is currently seismically quiet down to the level of approximately magnitude one. References Zandt, G.; Mcpherson, L.; Schaff, S.; Olsen, S. (1 May 1982) Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and

265

Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California  

E-Print Network (OSTI)

and Renewable Energy, Geothermal Technologies Program, ofwith energy extraction at The Geysers geothermal field. We

Rutqvist, J.

2008-01-01T23:59:59.000Z

266

An updated conceptual model of the Los Humeros geothermal reservoir (Mexico)  

Science Journals Connector (OSTI)

An analysis of production and reservoir engineering data of 42 wells from the Los Humeros geothermal field (Mexico) allowed obtaining the pressure and temperature profiles for the unperturbed reservoir fluids and developing 1-D and 2-D models for the reservoir. Results showed the existence of at least two reservoirs in the system: a relatively shallow liquid-dominant reservoir located between 1025 and 1600 m above sea level (a.s.l.) the pressure profile of which corresponds to a 300330C boiling water column and a deeper low-liquid-saturation reservoir located between 850 and 100 m a.s.l. with temperatures between 300 and 400C. Both reservoirs seem to be separated by a vitreous tuff lithological unit, but hydraulic connectivity occurs through faults and fractures of the system, allowing deep steam to ascend while condensate flows down (porous heat pipe). The geochemical and isotopic (?18O, ?D) composition of the produced fluids can be explained as the result of a boiling process with reservoir steam separation and partial condensation, a fact that agrees with the proposed reservoir engineering model.

V.M Arellano; A Garc??a; R.M Barragn; G Izquierdo; A Aragn; D Nieva

2003-01-01T23:59:59.000Z

267

Fluid Inclusion Analysis At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Raft River Geothermal Area (2011) Fluid Inclusion Analysis At Raft River Geothermal Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Raft River Geothermal Area (2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2011 Usefulness not indicated DOE-funding Unknown Notes Hydrogen isotope values of muscovite (δDMs ∼-100‰) and fluid inclusions in quartz (δDFluid ∼-85‰) indicate the presence of meteoric fluids during detachment dynamics. Recrystallized grain-shape fabrics and quartz c-axis fabric patterns reveal a large component of coaxial strain (pure shear), consistent with thinning of the detachment section. Therefore, the high thermal gradient preserved in the Raft River

268

Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity and Productivity in Enhanced Geothermal Systems  

Energy.gov (U.S. Department of Energy (DOE))

Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity and Productivity in Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

269

A History of Geothermal Energy Research and Development in the United States: Reservoir Engineering 1976-2006  

Energy.gov (U.S. Department of Energy (DOE))

This report summarizes significant research projects performed by the U.S. Department of Energy (DOE) over 30 years to overcome challenges in reservoir engineering and to make generation of electricity from geothermal resources more cost-competitive.

270

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, 94720, USA ABSTRACT Interactions between hydrothermal fluids and rock alter mineralogy, leading permeability reduction in fractured and intact Westerly granite due to high-temperature fluid flow through core

Stanford University

271

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, proppant will need to withstand high temperatures, acidified fluids, acid treatments, and cleanouts while in equilibrium with fluids of varying composition. TOUGHREACT was used to model one dimensional flow

Stanford University

272

Julian, B.R. and G.R. Foulger, Improved Methods for Mapping Permeability and Heat sources in Geothermal Areas using Microearthquake Data, Thirty-Fifth Workshop on Geothermal Reservoir Engineering, Stanford University,  

E-Print Network (OSTI)

Systems (EGS) experiments and other geothermal operations. With support from the Dept. of Energy, we in Geothermal Areas using Microearthquake Data, Thirty-Fifth Workshop on Geothermal Reservoir Engineering and Heat sources in Geothermal Areas using Microearthquake Data Bruce R. Julian§ U. S. Geological Survey

Foulger, G. R.

273

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs utilize a variety of techniques to identify geothermal reservoirs as well

274

Geothermal reservoir assessment case study: Northern Dixie Valley, Nevada  

SciTech Connect

Two 1500 foot temperature gradient holes and two deep exploratory wells were drilled and tested. Hydrologic-hydrochemical, shallow temperature survey, structural-tectonic, petrologic alteration, and solid-sample geochemistry studies were completed. Eighteen miles of high resolution reflection seismic data were gathered over the area. The study indicates that a geothermal regime with temperatures greater than 400/sup 0/F may exist at a depth of approximately 7500' to 10,000' over an area more than ten miles in length.

Denton, J.M.; Bell, E.J.; Jodry, R.L.

1980-11-01T23:59:59.000Z

275

Electromagnetic soundings over a geothermal reservoir in Dixie Valley, Nevada  

SciTech Connect

An electromagnetic (EM) sounding survey was performed over a region encompassing the Dixie Valley geothermal field with the purpose of mapping the subsurface resistivity in the geothermal field and its surroundings. The EM survey consisted of 19 frequency-domain depth soundings made with the EM-60 system using three separate horizontal-loop transmitters, and was designed to explore a narrow region adjacent to the Stillwater Range to a depth of 2 to 3 k. Most sounding curves could be fitted to three-layer resistivity models. The surface layer is moderately conductive (10 to 15 ohm-m), has a maximum thickness of 500 m, and consists mainly of alluvial fan and lake sediments. More conductive zones are associated with hydrothermally altered rocks; a resistivity high may be associated with siliceous hot spring deposits. The conductive second layer (2 to 5 ohm-m) varies in thickness from 400 to 800 m and thickens toward the center of the valley. This layer probably consists of lacustrine sediments saturated with saline waters. Local resistivity lows observed in the second layer may be related to elevated subsurface temperatures. This layer may act as a cap rock for the geothermal system. Resistivities of the third layer are high (50 to 100 ohm-m) except in a narrow 5-km band paralleling the range front. This low-resistivity zone, within volcanic rocks, correlates well in depth and location with reported zones of geothermal fluid production. It also seems to correlate with the western margin of a concealed graben structure previously inferred from other geophysical data.

Wilt, M.J.; Goldstein, N.E.

1983-04-01T23:59:59.000Z

276

Use of Slim Holes for Geothermal Reservoir Assessment: An Update  

SciTech Connect

Production and injection data from slim holes and large-diameter wells in three (3) geothermal fields (Oguni, Sumikawa, Steamboat Hills) were examined to determine the effect of borehole diameter (1) on the discharge rate and (2) on the productivity/injectivity indices. For boreholes with liquid feedzones, maximum discharge rates scale with diameter according to a relationship previously derived by Pritchett. The latter scaling rule does not apply to discharge data for boreholes with two-phase feedzones. Data from Oguni and Sumikawa geothermal fields indicate that the productivity (for boreholes with liquid feeds) and injectivity indices are more or less equal. The injectivity indices for Sumikawa boreholes are essentially independent of borehole diameter. The latter result is at variance with Oguni data; both the productivity and injectivity indices for Oguni boreholes display a strong variation with borehole diameter. Based on the discharge and injection data from these three geothermal fields, the flow rate of large-diameter production wells with liquid feedzones can be predicted using data from slim holes.

Garg, S.K.; Combs, J.; Goranson, C.

1995-01-01T23:59:59.000Z

277

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University plants, a pipe system is used to gather fluids from production wells and transport them to a power plant, or to steam separators. In the case of hydrothermal systems, where the geothermal fluid is a mixture of steam

Stanford University

278

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, which produces fluid at temperatures in the range of 100-130 °C. Since 1979, the geothermal resource has the fluids from the entire region into distinctive units. This characterization provided valuable clues

Stanford University

279

Advancing Reactive Tracer Methods for Measurement of Thermal Evolution in Geothermal Reservoirs: Final Report  

SciTech Connect

The injection of cold fluids into engineered geothermal system (EGS) and conventional geothermal reservoirs may be done to help extract heat from the subsurface or to maintain pressures within the reservoir (e.g., Rose et al., 2001). As these injected fluids move along fractures, they acquire heat from the rock matrix and remove it from the reservoir as they are extracted to the surface. A consequence of such injection is the migration of a cold-fluid front through the reservoir (Figure 1) that could eventually reach the production well and result in the lowering of the temperature of the produced fluids (thermal breakthrough). Efficient operation of an EGS as well as conventional geothermal systems involving cold-fluid injection requires accurate and timely information about thermal depletion of the reservoir in response to operation. In particular, accurate predictions of the time to thermal breakthrough and subsequent rate of thermal drawdown are necessary for reservoir management, design of fracture stimulation and well drilling programs, and forecasting of economic return. A potential method for estimating migration of a cold front between an injection well and a production well is through application of reactive tracer tests, using chemical whose rate of degradation is dependent on the reservoir temperature between the two wells (e.g., Robinson 1985). With repeated tests, the rate of migration of the thermal front can be determined, and the time to thermal breakthrough calculated. While the basic theory behind the concept of thermal tracers has been understood for some time, effective application of the method has yet to be demonstrated. This report describes results of a study that used several methods to investigate application of reactive tracers to monitoring the thermal evolution of a geothermal reservoir. These methods included (1) mathematical investigation of the sensitivity of known and hypothetical reactive tracers, (2) laboratory testing of novel tracers that would improve method sensitivity, (3) development of a software tool for design and interpretation of reactive tracer tests and (4) field testing of the reactive tracer temperature monitoring concept.

Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; Laurence C. Hull; George D. Redden

2011-07-01T23:59:59.000Z

280

EFFECTS OF WATER INJECTION INTO FRACTURED GEOTHERMAL RESERVOIRS  

E-Print Network (OSTI)

DIVISION OF THE DEPARTMENT OF ENERGY STANFORD-DOE CONTRACT DE-AT03-80SF11459 #12;EFFECTS OF WATER INJECTION improvement and degradation of total energy recovery. placement of reservoir f l u i d can mean support of waste water disposal and %proved re- source recovery. I n order t o correctly apportion importance

Stanford University

Note: This page contains sample records for the topic "river geothermal reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Preservation of an extreme transient geotherm in the Raft River detachment  

Open Energy Info (EERE)

Preservation of an extreme transient geotherm in the Raft River detachment Preservation of an extreme transient geotherm in the Raft River detachment shear zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Preservation of an extreme transient geotherm in the Raft River detachment shear zone Details Activities (1) Areas (1) Regions (0) Abstract: Extensional detachment systems separate hot footwalls from cool hanging walls, but the degree to which this thermal gradient is the product of ductile or brittle deformation or a preserved original transient geotherm is unclear. Oxygen isotope thermometry using recrystallized quartz-muscovite pairs indicates a smooth thermal gradient (140 °C/100 m) across the gently dipping, quartzite-dominated detachment zone that bounds the Raft River core complex in northwest Utah (United States). Hydrogen

282

Flow Test At Raft River Geothermal Area (1979) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (1979) Flow Test At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To allow for the lateral and vertical extrapolation of core and test data and bridged the gap between surface geophysical data and core analyses. Notes Temperature and flowmeter logs provide evidence that these fractures and faults are conduits that conduct hot water to the wells. One of the intermediate depth core holes penetrated a hydrothermally altered zone that includes several fractures producing hot water. This altered production

283

Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and  

Open Energy Info (EERE)

Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Details Activities (3) Areas (3) Regions (0) Abstract: Helium isotope ratios have been measured in geothermal fluids from Iceland, The Geysers, Raft River, Steamboat Springs and Hawaii. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic ratios (i.e. magmatic He, ~10 Ra; atmospheric He, R,sub>a; and crustal He, ~0.1 Ra) and in terms of the processes which can alter the isotopic ratio (hydrologic mixing, U-Th series alpha production and weathering release of crustal He, magma aging and

284

Direct-Current Resistivity Survey At Raft River Geothermal Area (1983) |  

Open Energy Info (EERE)

Raft River Geothermal Area (1983) Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date 1983 Usefulness not indicated DOE-funding Unknown Notes The objectives of the resistivity measurements were to determine if measureable changes could be observed and whether they could be used to infer the direction of fluid flow. Most of the apparent resistivity changes observed after the injection phase of Test 5 are smaller than the estimated standard deviation of the measurements. However, the contour map of the changes suggest an anomalous trend to the northeast which is similar to the

285

Seismic refraction study of the Raft River geothermal area, Idaho | Open  

Open Energy Info (EERE)

refraction study of the Raft River geothermal area, Idaho refraction study of the Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Seismic refraction study of the Raft River geothermal area, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River geothermal system in southeastern Idaho is a convective hot water system, presently being developed to demonstrate the production of electricity from low-temperature (approx. 150 0C) water. Interpretation of seismic refraction recordings in the area yielded compressional velocities from near the surface to the crystalline basement at a maximum depth of approximately 1600 m. The results show a complex sequence of sediments and volcanic flows overlying basement. Velocities in the sedimentary section vary laterally. Correlation with well data suggests

286

Ground Gravity Survey At Raft River Geothermal Area (1957-1961) | Open  

Open Energy Info (EERE)

Ground Gravity Survey At Raft River Geothermal Area (1957-1961) Ground Gravity Survey At Raft River Geothermal Area (1957-1961) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Raft River Geothermal Area (1957-1961) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1957 - 1961 Usefulness not indicated DOE-funding Unknown Notes From 1957 to 1961 a regional gravity survey was made over the northern part of the Great Salt Lake Desert and adjacent areas in Utah, eastern Nevada, and southeastern Idaho. A total of 1040 stations were taken over an area of about 7000 square miles. The results were compiled as a Bouguer gravity anomaly map with a contour interval of 2 mgal. The Bouguer values ranged

287

Surface Water Sampling At Raft River Geothermal Area (1973) | Open Energy  

Open Energy Info (EERE)

Surface Water Sampling At Raft River Geothermal Area (1973) Surface Water Sampling At Raft River Geothermal Area (1973) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Water Sampling At Raft River Geothermal Area (1973) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Surface Water Sampling Activity Date 1973 Usefulness not indicated DOE-funding Unknown Exploration Basis At least 380 hot springs and wells are known to occur throughout the central and southern parts of Idaho. Notes One hundred twenty-four of 380 hot springs and wells in the central and southern parts of Idaho were inventoried as a part of the study reported on herein. At the spring vents and wells visited, the thermal waters flow from rocks ranging in age from Precambrian to Holocene and from a wide range of

288

Gamma Log At Raft River Geothermal Area (1979) | Open Energy Information  

Open Energy Info (EERE)

Gamma Log At Raft River Geothermal Area (1979) Gamma Log At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gamma Log At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Gamma Log Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To allow for the lateral and vertical extrapolation of core and test data and bridged the gap between surface geophysical data and core analyses. Notes Borehole gamma spectrometry can be used to identify anomalous concentration of uranium, thorium, and potassium which are probably due to transportation by hydrothermal solutions. Computer crossplotting was used as an aid to the identification of such rock types as quartzite, quartz monzonite, and

289

Calculation of geothermal reservoir temperatures and steam fractions from gas compositions  

SciTech Connect

This paper deals with the chemical equilibria and physical characteristics of the fluid in the reservoir (temperature, steam fraction with respect to total water, gas/steam ratio, redox conditions), which seem to be responsible for the observed concentrations of some reactive species found in the geothermal fluids (CO2, H2, H2S and CH4). Gas geochemistry is of particular interest in vapor-dominated fields where the fluid discharged consists of almost pure steam containing a limited number of volatile chemical species. Considering several geothermal systems, a good correlation has been obtained among the temperatures calculated from the gas geothermometers and the temperatures measured in the reservoir of evaluated by other physical or chemical methods. 24 refs., 5 figs.

D'Amore, F.; Truesdell, A.H.

1985-01-01T23:59:59.000Z

290

Laboratory study of acid stimulation of drilling-mud-damaged geothermal-reservoir materials. Final report  

SciTech Connect

Presented here are the results of laboratory testing performed to provide site specific information in support of geothermal reservoir acidizing programs. The testing program included laboratory tests performed to determine the effectiveness of acid treatments in restoring permeability of geologic materials infiltrated with hydrothermally altered sepiolite drilling mud. Additionally, autoclave tests were performed to determine the degree of hydrothermal alteration and effects of acid digestion on drilling muds and drill cuttings from two KGRA's. Four laboratory scale permeability/acidizing tests were conducted on specimens prepared from drill cuttings taken from two geothermal formations. Two tests were performed on material from the East Mesa KGRA Well No. 78-30, from a depth of approximately 5500 feet, and two tests were performed on material from the Roosevelt KGRA Well No. 52-21, from depths of approximately 7000 to 7500 feet. Tests were performed at simulated in situ geothermal conditions of temperature and pressure.

Not Available

1983-05-01T23:59:59.000Z

291

Geothermal low-temperature reservoir assessment in Dona Ana County, New Mexico. Final report  

SciTech Connect

Sixty-four shallow temperature gradient holes were drilled on the Mesilla Valley East Mesa (east of Interstate Highways 10 and 25), stretching from US Highway 70 north of Las Cruces to NM Highway 404 adjacent to Anthony, New Mexico. Using these data as part of the site selection process, Chaffee Geothermal, Ltd. of Denver, Colorado, drilled two low-temperature geothermal production wells to the immediate north and south of Tortugas Mountain and encountered a significant low-temperature reservoir, with a temperature of about 150{sup 0}F and flow rates of 750 to 1500 gallons per minute at depths from 650 to 1250 feet. These joint exploration activities resulted in the discovery and confirmation of a 30-square-mile low-temperature geothermal anomaly just a few miles to the east of Las Cruces that has been newly named as the Las Cruces east Mesa Geothermal Field. Elevated temperature and heat flow data suggest that the thermal anomaly is fault controlled and extends southward to the Texas border covering a 100-square-mile area. With the exception of some localized perturbations, the anomaly appears to decrease in temperature from the north to the south. Deeper drilling is required in the southern part of the anomaly to confirm the existence of commercially-exploitable geothermal waters.

Icerman, L.; Lohse, R.L.

1983-04-01T23:59:59.000Z

292

Potential Impact of Reservoir Engineering R&D on Geothermal Energy Costs  

SciTech Connect

A tutorial program for use on personal computers is being developed to evaluate the sensitivity of geothermal energy costs to potential technological improvements. Reservoir engineering R&D will reduce risk to the funding organization and in turn reduce the risk premium paid on a loan. The use of a risk premium was described as an investment bankers option at the November 1986 Future of Geothermal Energy Conference in San Diego, California. In the sensitivity analysis, we propose to calculate an energy cost: (1) at the predicted production parameters of temperature, drawdown rate, etc., and (2) at the most likely worse case values. The differential higher cost of the worse case over the predicted case is the risk premium. Thus R&D that improves reservoir definition will reduce the worse-case-minus-predicted-case difference and the financial risk premium. Improvements in reservoir engineering can then be quantified in terms of reduced energy costs. This paper will discuss the proposed approach to obtain critique of the procedure and provide the best logic for use in evaluating the potential impact of reservoir engineering R&D.

Traeger, Richard K.; Entingh, Daniel

1987-01-20T23:59:59.000Z

293

Woody's Feather River Hot Springs Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Woody's Feather River Hot Springs Pool & Spa Low Temperature Geothermal Woody's Feather River Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Woody's Feather River Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Woody's Feather River Hot Springs Sector Geothermal energy Type Pool and Spa Location Twain, California Coordinates 40.0201673°, -121.0719031° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

294

Modeling-Computer Simulations At Raft River Geothermal Area (1979) | Open  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To evaluate the hydrodynamics of the unconfined aquifer. Notes This study covers about 1000 mi2 (2600 km2) of the southern Raft River drainage basin in south-central Idaho and northwest Utah. The main area of interest, approximately 200 mi2 (520 km2) of semiarid agricultural and rangeland in the southern Raft River Valley that includes the known Geothermal Resource Area near Bridge, Idaho, was modelled numerically. Computed and estimated transmissivity values range from 1200 ft2 per day

295

Subsurface geology of the Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

geology of the Raft River geothermal area, Idaho geology of the Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Subsurface geology of the Raft River geothermal area, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River Valley occupies an upper Cenozoic structural basin filled with nearly 1600 m of fluvial silt, sand, and gravel. Rapid facies and thickness changes, steep initial dips (30 0C), and alteration make correlation of basin-fill depositional units very difficult. Hydrothermal alteration products in the form of clays and zeolites, and deposition of secondary calcite and silica increase with depth. The abundance of near-vertical open fractures also increases with depth, allowing greater movement of hydrothermal fluids near the base of the Cenozoic basin fill.

296

Double Difference Earthquake Locations at the Salton Sea Geothermal Reservoir  

SciTech Connect

The purpose of this paper is to report on processing of raw waveform data from 4547 events recorded at 12 stations between 2001 and 2005 by the Salton Sea Geothermal Field (SSGF) seismic network. We identified a central region of the network where vertically elongated distributions of hypocenters have previously been located from regional network analysis. We process the data from the local network by first autopicking first P and S arrivals; second, improving these with hand picks when necessary; then, using cross-correlation to provide very precise P and S relative arrival times. We used the HypoDD earthquake location algorithm to locate the events. We found that the originally elongated distributions of hypocenters became more tightly clustered and extend down the extent of the study volume at 10 Km. However, we found the shapes to depend on choices of location parameters. We speculate that these narrow elongated zones of seismicity may be due to stress release caused by fluid flow.

Boyle, K L; Hutchings, L J; Bonner, B P; Foxall, W; Kasameyer, P W

2007-08-08T23:59:59.000Z

297

Geothermal-Reservoir Well-Stimulation Program. Program status report  

SciTech Connect

Seven experimental fracture stimulation treatments completed to date and the laboratory work performed to develop the stimulation technology are described. A discussion of the pre-stimulation and post-stimulation data and their evaluation is provided for each experiment. Six of the seven stimulation experiments were at least technically successful in stimulating the wells. The two fracture treatments in East Mesa 58-30 more than doubled the producing rate of the previously marginal producer. The two fracture treatments in Raft River and the two in Baca were all successful in obtaining significant production from previously nonproductive intervals. However, these treatments failed to establish commercial production due to deficiencies in either fluid temperature or flow rate. The acid etching treatment in the well at The Geysers did not have any material effect on producing rate.

Not Available

1982-05-01T23:59:59.000Z

298

Micro-Earthquake At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

9) 9) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis Refraction Survey Notes Interpretation of seismic refraction recordings in the area yielded compressional velocities from near the surface to the crystalline basement at a maximum depth of approximately 1600 m. The results show a complex sequence of sediments and volcanic flows overlying basement. Velocities in the sedimentary section vary laterally. Correlation with well data suggests that zones of higher velocities may correspond to zones where sediments are

299

Julian, B.R. and G.R. Foulger, Monitoring Geothermal Processes with Microearthquake Mechanisms, Thirty-Fourth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 9-  

E-Print Network (OSTI)

Julian, B.R. and G.R. Foulger, Monitoring Geothermal Processes with Microearthquake Mechanisms, Thirty- Fourth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 9- 11, 2009. Monitoring Geothermal Processes with Microearthquake Mechanisms Bruce R. Julian, U. S

Foulger, G. R.

300

Two-dimensional simulation of the Raft River geothermal reservoir...  

Open Energy Info (EERE)

favorably with the test data. Authors Kettenacker and W. C. Published DOE Information Bridge, 311977 DOI 10.21727290699 Citation Kettenacker, W. C. . 311977. Two-dimensional...

Note: This page contains sample records for the topic "river geothermal reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

3-D Seismic Methods for Geothermal Reservoir Exploration and Assessment--Summary  

SciTech Connect

A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally fractured reservoirs. The application could be for exploration of new resources or for in-fill/step-out drilling in existing fields. In most geothermal environments the challenge has been to separate the ''background'' natural complexity and heterogeneity of the matrix from the fracture/fault heterogeneity controlling the fluid flow. Ideally one not only wants to find the fractures, but the fractures that are controlling the flow of the fluids. Evaluated in this work is current state-of-the-art surface (seismic reflection) and borehole seismic methods (Vertical Seismic Profiling (VSP), Crosswell and Single Well) to locate and quantify geothermal reservoir characteristics. The focus is on active methods; the assumption being that accuracy is needed for successful well siting. Passive methods are useful for exploration and detailed monitoring for in-fill drilling, but in general the passive methods lack the precision and accuracy for well siting in new or step out areas. In addition, MEQ activity is usually associated with production, after the field has been taken to a mature state, thus in most cases it is assumed that there is not enough MEQ activity in unproduced areas to accurately find the permeable pathways. The premise of this review is that there may new developments in theory and modeling, as well as in data acquisition and processing, which could make it possible to image the subsurface in much more detail than 15 years ago. New understanding of the effect of fractures on seismic wave propagation are now being applied to image fractures in gas and oil environments. It now may be appropriate to apply these methods, with modifications, to geothermal applications. It is assumed that to implement the appropriate methods an industry coupled program tightly linked to actual field cases, iterating between development and application will be pursued. The goal of this work is to evaluate the most promising methods and approaches that may be used for improved geothermal exploration and reservoir assessment. It is not a comprehensive review of all seismic methods used to date in geothermal environments. This work was motivated by a need to assess current and developing seismic technology that if applied in geothermal cases may greatly improve the chances for locating new geothermal resources and/or improve assessment of current ones.

Majer, E.L.

2003-07-14T23:59:59.000Z

302

Pressure analysis of the hydromechanical fracture behaviour in stimulated tight sedimentary geothermal reservoirs  

E-Print Network (OSTI)

The future of Geothermal Energy. Massachusetts Institute ofthe exploitation of geothermal energy from such rocks. Wemethod to extract geothermal energy from tight sedimentary

Wessling, S.

2009-01-01T23:59:59.000Z

303

Effects of non-condensible gases on fluid recovery in fractured geothermal reservoirs  

E-Print Network (OSTI)

1). In most canes, geothermal wells have only a few majorhigh temperature geothermal wells. For the fracture relative

Bodvarsson, Gudmundur S.; Gaulke, Scott

1986-01-01T23:59:59.000Z

304

Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels  

SciTech Connect

In enhanced geothermal systems (EGS) the reservoir permeability is often enhanced or created using hydraulic fracturing. In hydraulic fracturing, high fluid pressures are applied to confined zones in the subsurface usually using packers to fracture the host rock. This enhances rock permeability and therefore conductive heat transfer to the circulating geothermal fluid (e.g. water or supercritical carbon dioxide). The ultimate goal is to increase or improve the thermal energy production from the subsurface by either optimal designs of injection and production wells or by altering the fracture permeability to create different zones of circulation that can be exploited in geothermal heat extraction. Moreover, hydraulic fracturing can lead to the creation of undesirable short-circuits or fast flow-paths between the injection and extraction wells leading to a short thermal residence time, low heat recovery, and thus a short-life of the EGS. A potential remedy to these problems is to deploy a cementing (blocking, diverting) agent to minimize short-cuts and/or create new circulation cells for heat extraction. A potential diverting agent is the colloidal silica by-product that can be co-produced from geothermal fluids. Silica gels are abundant in various surface and subsurface applications, yet they have not been evaluated for EGS applications. In this study we are investigating the benefits of silica gel deployment on thermal response of an EGS, either by blocking short-circuiting undesirable pathways as a result of diverting the geofluid to other fractures; or creating, within fractures, new circulation cells for harvesting heat through newly active surface area contact. A significant advantage of colloidal silica is that it can be co-produced from geothermal fluids using an inexpensive membrane-based separation technology that was developed previously using DOE-GTP funding. This co-produced silica has properties that potentially make it useful as a fluid diversion agent for subsurface applications. Colloidal silica solutions exist as low-viscosity fluids during their induction period but then undergo a rapid increase in viscosity (gelation) to form a solid gel. The length of the induction period can be manipulated by varying the properties of the solution, such as silica concentration and colloid size. We believe it is possible to produce colloidal silica gels suitable for use as diverting agents for blocking undesirable fast-paths which result in short-circuiting the EGS once hydraulic fracturing has been deployed. In addition, the gels could be used in conventional geothermal fields to increase overall energy recovery by modifying flow.

Hunt, Jonathan

2013-01-31T23:59:59.000Z

305

Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels  

DOE Data Explorer (OSTI)

In enhanced geothermal systems (EGS) the reservoir permeability is often enhanced or created using hydraulic fracturing. In hydraulic fracturing, high fluid pressures are applied to confined zones in the subsurface usually using packers to fracture the host rock. This enhances rock permeability and therefore conductive heat transfer to the circulating geothermal fluid (e.g. water or supercritical carbon dioxide). The ultimate goal is to increase or improve the thermal energy production from the subsurface by either optimal designs of injection and production wells or by altering the fracture permeability to create different zones of circulation that can be exploited in geothermal heat extraction. Moreover, hydraulic fracturing can lead to the creation of undesirable short-circuits or fast flow-paths between the injection and extraction wells leading to a short thermal residence time, low heat recovery, and thus a short-life of the EGS. A potential remedy to these problems is to deploy a cementing (blocking, diverting) agent to minimize short-cuts and/or create new circulation cells for heat extraction. A potential diverting agent is the colloidal silica by-product that can be co-produced from geothermal fluids. Silica gels are abundant in various surface and subsurface applications, yet they have not been evaluated for EGS applications. In this study we are investigating the benefits of silica gel deployment on thermal response of an EGS, either by blocking short-circuiting undesirable pathways as a result of diverting the geofluid to other fractures; or creating, within fractures, new circulation cells for harvesting heat through newly active surface area contact. A significant advantage of colloidal silica is that it can be co-produced from geothermal fluids using an inexpensive membrane-based separation technology that was developed previously using DOE-GTP funding. This co-produced silica has properties that potentially make it useful as a fluid diversion agent for subsurface applications. Colloidal silica solutions exist as low-viscosity fluids during their induction period but then undergo a rapid increase in viscosity (gelation) to form a solid gel. The length of the induction period can be manipulated by varying the properties of the solution, such as silica concentration and colloid size. We believe it is possible to produce colloidal silica gels suitable for use as diverting agents for blocking undesirable fast-paths which result in short-circuiting the EGS once hydraulic fracturing has been deployed. In addition, the gels could be used in conventional geothermal fields to increase overall energy recovery by modifying flow.

Hunt, Jonathan

306

Red River Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Pool & Spa Low Temperature Geothermal Facility Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Red River Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Red River Hot Springs Sector Geothermal energy Type Pool and Spa Location Elk City, Idaho Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

307

River Inn Natural Hot Spring Pool & Spa Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Inn Natural Hot Spring Pool & Spa Low Temperature Geothermal Facility Inn Natural Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name River Inn Natural Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility River Inn Natural Hot Spring Sector Geothermal energy Type Pool and Spa Location Reno, Nevada Coordinates 39.5296329°, -119.8138027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

308

Preservation of an extreme transient geotherm in the Raft River...  

Open Energy Info (EERE)

or brittle deformation or a preserved original transient geotherm is unclear. Oxygen isotope thermometry using recrystallized quartz-muscovite pairs indicates a smooth thermal...

309

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

. In addition on volcanic rocks collumnar and sheet joints occured caused the rocks have a good porosityPROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University area underneath cause the densities difference between rocks and its surrounding. The difference

Stanford University

310

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network (OSTI)

for frictional failure often dominate fluid flow in low-porosity crystalline rocks (Barton, 1995; Ito and Zoback (i.e., shearing) fractures help maintain geothermal reservoir permeability despite crack sealing and other geochemical fluid- rock interactions that should destroy that permeability. By analogy

Stanford University

311

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

in the derived porosity-permeability relationship. This first step will be applied to every single wellPROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University and the resulting probability distributions of permeability, net-to-gross ratio and temperature are combined

Stanford University

312

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

strategies involve reservoir stimulation to overcome the lack of porosity and/or permeability of the rock of geological conditions such as presence of hydrothermal fluid, high heat flux, high rock permeability and/or high rock porosity. Enhanced (or Engineered) Geothermal systems (EGS) are an attempt to exploit

Stanford University

313

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network (OSTI)

using continuum models. Despite the fundamental uncertainties inherited within the probabilistic the circulation loop and installing operating equipment (DOE, 2008). Figure 1: Logical steps to complete an EGS reservoir project (DOE, 2008) Despite that geothermal energy is a mature geosciences energy technology

Stanford University

314

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University MWe. A geochemical assessment of the field is made based on analytical data of fluids sampled in the initial aquifer fluids were modeled. Results indicate that "excess enthalpy" discharged by some wells

Stanford University

315

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University (the better the fluid flow, the lower the calcite content). This suggests that the fracture zones acting as flow pathways for the circulation of deep and hot fluids. These are crucial conditions

Stanford University

316

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

317

Geothermal Basics  

Energy.gov (U.S. Department of Energy (DOE))

Geothermal energygeo (earth) + thermal (heat)is heat energy from the earth. What is a geothermal resource? To understand the basics of geothermal energy production, geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Mile-or-more-deep wells can be drilled into underground reservoirs to tap steam and very hot water that can be brought to the surface for use in a variety of applications, including electricity generation, direct use, and heating and cooling. In the United States, most geothermal reservoirs are located in the western states. This page represents how geothermal energy can be harnessed to generate electricity.

318

HEAT AND MASS TRANSFER IN A FAULT-CONTROLLED GEOTHERMAL RESERVOIR CHARGED AT CONSTANT PRESSURE  

E-Print Network (OSTI)

Subsurface Study of Imperial Valley Geothermal Anomalies,of the Mesa Geothermal Anomaly, Imperial Valley, California,geothermal systems such as those at Wairakei (Grindley [19]), Broadlands (Grindley [20]), Long Valley (Rinehart and Ross [21]), Imperial

Goyal, K.P.

2013-01-01T23:59:59.000Z

319

Property:Geothermal/Partner6Website | Open Energy Information  

Open Energy Info (EERE)

Partner6Website Partner6Website Jump to: navigation, search Property Name Geothermal/Partner6Website Property Type URL Description Partner 6 Website (URL) Pages using the property "Geothermal/Partner6Website" Showing 4 pages using this property. C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://www.sensortran.com/ + I Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Geothermal Project + http://www.pitt.edu/ + S Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Geothermal Project + http://www.sercel.com/ + T The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration Geothermal Project + http://www.icdp-online.org/contenido/icdp/front_content.php +

320

Compound and Elemental Analysis At Raft River Geothermal Area (1981) | Open  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Raft River Geothermal Area (1981) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date 1981 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the validity of data from multiple sources to develop a better conceptual model Notes Five analytical laboratories have conducted analyses on waters from the KGRA. Charge-balance error calculations conducted on the data produced from these laboratories indicated that data from three laboratories were reliable while two were not. A method of equating all data was established by using linear regression analyses on sets of paired data from various

Note: This page contains sample records for the topic "river geothermal reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Geothermal fluxes of alkalinity in the Narayani river system of central Nepal  

E-Print Network (OSTI)

Geothermal fluxes of alkalinity in the Narayani river system of central Nepal Matthew J. Evans hot springs flow within the steeply incised gorges of the central Nepal Himalayan front. The spring of central Nepal, Geochem. Geophys. Geosyst., 5, Q08011, doi:10.1029/2004GC000719. G 3 G 3Geochemistry

Derry, Louis A.

322

Aquatic Studies at the Proposed George Parkhouse I Reservoir Site on the South Sulphur River in Northeast Texas  

E-Print Network (OSTI)

In 1997, the Texas Water Development Board identified George Parkhouse I on the South Sulphur River in northeast Texas as a potential reservoir site. This aquatic survey of a future reservoir site is designed to provide information about stream fish...

Gelwick, Frances P.; Burgess, Christine C.

2002-12-31T23:59:59.000Z

323

International Partnership for Geothermal Technology - 2012 Peer...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River Geothermal Drilling Project Canada The Snake River Geothermal Drilling Project GermanyEU Toward the Understanding of Induced Seismicity in Enhanced Geothermal Systems...

324

Tracer Testing At East Mesa Geothermal Area (1983) | Open Energy  

Open Energy Info (EERE)

Tracer Testing At East Mesa Geothermal Area (1983) Tracer Testing At East Mesa Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At East Mesa Geothermal Area (1983) Exploration Activity Details Location East Mesa Geothermal Area Exploration Technique Tracer Testing Activity Date 1983 Usefulness not indicated DOE-funding Unknown Notes Two field experiments were conducted to develop chemical tracer procedures for use with injection-backflow testing, one on the fracture-permeability Raft River reservoir and the other on the matrix-permeability East Mesa reservoir. Results from tests conducted with incremental increases in the injection volume at both East Mesa and Raft River suggests that, for both reservoirs, permeability remained uniform with increasing distance from the

325

Origin And Characterization Of Geothermal Waters At Desert Queen, Nevada |  

Open Energy Info (EERE)

Origin And Characterization Of Geothermal Waters At Desert Queen, Nevada Origin And Characterization Of Geothermal Waters At Desert Queen, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Origin And Characterization Of Geothermal Waters At Desert Queen, Nevada Details Activities (1) Areas (1) Regions (0) Abstract: The Desert Queen geothermal system, which is in close proximity to two locations where geothermal energy is currently being harnessed, may host an additional reservoir. A _18O vs _D plot indicates that Desert Queen waters likely originate from the Humboldt River, and reflects Humboldt River water that is clearly evaporated. Temperatures of the reservoir at depth are estimated to be between 92-141°C and were calculated using the _18O(SO4-H2O) geothermometer. It is unclear whether these temperatures

326

Recreation land policies of Texas river authorities operating reservoirs  

E-Print Network (OSTI)

for future water in Texas by the Texas Department of Water Resources: Present use of lakes and reservoirs for water- oriented recreation demonstrates the need to include recreation as one of the many purposes of water 13 development projects... by the reservoir owner. 26 3. Another factor is that most reservoir owners do not let the1r land stand idle. Uses are found which either increase the benefits of the project' to the owner or public, or at least balance the costs of holding the land pending...

Ruesink, Lou Ellen

1979-01-01T23:59:59.000Z

327

New River Geothermal Research Project, Imperial Valley, California...  

Open Energy Info (EERE)

Share 9,339,420.00 Total Project Cost 14,339,420.00 Principal Investigator(s) Stuart Johnson Location of Project Imperial Valley, CA About the Area The shallow New River thermal...

328

Microearthquake surveys of Snake River plain and Northwest Basin and Range  

Open Energy Info (EERE)

surveys of Snake River plain and Northwest Basin and Range surveys of Snake River plain and Northwest Basin and Range geothermal areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Microearthquake surveys of Snake River plain and Northwest Basin and Range geothermal areas Details Activities (2) Areas (2) Regions (0) Abstract: applications; Basin and Range Province; Black Rock Desert; Cassia County Idaho; earthquakes; economic geology; exploration; fracture zones; geophysical methods; geophysical surveys; geothermal energy; Humboldt County Nevada; Idaho; microearthquakes; Nevada; North America; passive systems; Pershing County Nevada; Raft River; reservoir rocks; seismic methods; seismicity; seismology; Snake River plain; surveys; United States; Western U.S. Author(s): Kumamoto, L.H.

329

Geothermal energy resource investigations in the Eastern Copper River Basin, Alaska  

SciTech Connect

This report consists of a review of the geological, geochemical and geophysical data available for the Eastern Copper River basin with emphasis on the mud volcanoes, and the results of geophysical and geochemical studies carried out in the summers of 1982 and 1984. The purpose was to determine if there are geothermal energy resources in the Copper River Basin. The Eastern Copper River basin is situated on the flanks of a major volcano, Mt. Drum, which was active as late as 200,000 years ago and which is thought to have retained significant amounts of residual heat at high levels. Mt. Wrangell, farther to the east, has been volcanically active up to the present time. The 1982 geophysical and geochemical surveys located three principal areas of possible geothermal interest, one near Tazlina and two near the Klawasi mud volcanoes. The intensive survey work of 1984 was concentrated on those areas. We have integrated the results of soil helium, soil mercury, gravity, aeromagnetic, electrical, self-potential, and controlled-source audio magnetotelluric (CSAMT) surveys to evaluate the geothermal potential of the areas studied. 36 figs.

Wescott, E.M.; Turner, D.L.

1985-06-01T23:59:59.000Z

330

Geothermal Basics  

Energy.gov (U.S. Department of Energy (DOE))

Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

331

Environmental Alteration Analysis of a Large System of Reservoirs: Application to the Connecticut River Watershed  

E-Print Network (OSTI)

i Environmental Alteration Analysis of a Large System of Reservoirs: Application to the Connecticut bring me on to the Connecticut River project and guided me through all the many aspects of the work that went into both the Connecticut Project and this thesis. I would also like to thank employees at New

Pasternack, Gregory B.

332

Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal Reservoir  

Energy.gov (U.S. Department of Energy (DOE))

Project objectives: Joint inversion of geophysical data for ground water flow imaging; Reduced the cost in geothermal exploration and monitoring; & Combined passive and active geophysical methods.

333

Numerical Study of Downhole Heat Exchanger Concept in Geothermal Energy Extraction from Saturated and Fractured Reservoirs.  

E-Print Network (OSTI)

??Geothermal energy has gained a lot of attention recently due to several favorable aspects such as ubiquitously distributed, renewable, low emission resources while leveraging the (more)

Feng, Yin

2012-01-01T23:59:59.000Z

334

Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho  

SciTech Connect

The Snake River volcanic province overlies a thermal anomaly that extends deep into the mantle and represents one of the highest heat flow provinces in North America (Blackwell and Richards, 2004). This makes the Snake River Plain (SRP) one of the most under-developed and potentially highest producing geothermal districts in the United States. Elevated heat flow is typically highest along the margins of the topographic SRP and lowest along the axis of the plain, where thermal gradients are suppressed by the Snake River aquifer. Beneath this aquifer, however, thermal gradients rise again and may tap even higher heat flows associated with the intrusion of mafic magmas into the mid-crustal sill complex (e.g., Blackwell, 1989).

Robert K Podgorney; Thomas R. Wood; Travis L McLing; Gregory Mines; Mitchell A Plummer; Michael McCurry; Ahmad Ghassemi; John Welhan; Joseph Moore; Jerry Fairley; Rachel Wood

2013-09-01T23:59:59.000Z

335

GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA  

E-Print Network (OSTI)

on the Republic geothermal wells, East Mesa, California.evalu- ation of five geothermal wells, Proc. second UNhydrologic continuity Geothermal Well Inferred barrier

2009-01-01T23:59:59.000Z

336

Radon Transect Studies in Vapor- and Liquid-Dominated Geothermal Reservoirs  

SciTech Connect

This communication describes the transect analysis conducted at the vapor-dominated reservoirs at The Geysers in California and the liquid-dominated reservoirs at Cerro Prieto in Baja, California.

Semprini, Lewis; Kruger, Paul

1980-12-16T23:59:59.000Z

337

Summary of Hot-Dry-Rock Geothermal Reservoir Testing 1978-1980...  

Open Energy Info (EERE)

fracturing, but also by heat extraction and thermal contraction effects. Reservoir heat- transfer area grew from 8000 to 50 000 m2 and reservoir fracture volume grew from 11...

338

Geothermal: Sponsored by OSTI -- Two-Stage, Integrated, Geothermal...  

Office of Scientific and Technical Information (OSTI)

Two-Stage, Integrated, Geothermal-CO2 Storage Reservoirs: An Approach for Sustainable Energy Production, CO2-Sequestration Security, and Reduced Environmental Risk Geothermal...

339

Modeling shear failure and permeability enhancement due to coupled Thermal-Hydrological-Mechanical processes in Enhanced Geothermal Reservoirs  

SciTech Connect

The connectivity and accessible surface area of flowing fractures, whether natural or man-made, is possibly the single most important factor, after temperature, which determines the feasibility of an Enhanced Geothermal System (EGS). Rock deformation and in-situ stress changes induced by injected fluids can lead to shear failure on preexisting fractures which can generate microseismic events, and also enhance the permeability and accessible surface area of the geothermal formation. Hence, the ability to accurately model the coupled thermal-hydrologic-mechanical (THM) processes in fractured geological formations is critical in effective EGS reservoir development and management strategies. The locations of the microseismic events can serve as indicators of the zones of enhanced permeability, thus providing vital information for verification of the coupled THM models. We will describe a general purpose computational code, FEHM, developed for this purpose, that models coupled THM processes during multiphase fluid flow and transport in fractured porous media. The code incorporates several models of fracture aperture and stress behavior combined with permeability relationships. We provide field scale examples of applications to geothermal systems to demonstrate the utility of the method.

Kelkar, Sharad [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

340

Frio sandstone reservoirs in the deep subsurface along the Texas Gulf Coast: their potential for production of geopressured geothermal energy  

SciTech Connect

Detailed geological, geophysical, and engineering studies conducted on the Frio Formation have delineated a geothermal test well site in the Austin Bayou Prospect which extends over an area of 60 square miles. A total of 800 to 900 feet of sandstone will occur between the depths of 13,500 and 16,500 feet. At leat 30 percent of the sand will have core permeabilities of 20 to 60 millidarcys. Temperature at the top of the sandstone section will be 300/sup 0/F. Water, produced at a rate of 20,000 to 40,000 barrels per day, will probably have to be disposed of by injection into shallower sandstone reservoirs. More than 10 billion barrels of water are in place in these sandstone reservoirs of the Austin Bayou Prospect; there should be approximately 400 billion cubic feet of methane in solution in this water. Only 10 percent of the water and methane (1 billion barrels of water and 40 billion cubic feet of methane) will be produced without reinjection of the waste water into the producing formation. Reservoir simulation studies indicate that 90 percent of the methane can be produced with reinjection. 106 figures.

Bebout, D.G.; Loucks, R.G.; Gregory, A.R.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "river geothermal reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Two-Stage, Integrated, Geothermal-CO2 Storage Reservoirs: An Approach for Sustainable Energy Production, CO2-Sequestration Security, and Reduced Environmental Risk  

SciTech Connect

We introduce a hybrid two-stage energy-recovery approach to sequester CO{sub 2} and produce geothermal energy at low environmental risk and low cost by integrating geothermal production with CO{sub 2} capture and sequestration (CCS) in saline, sedimentary formations. Our approach combines the benefits of the approach proposed by Buscheck et al. (2011b), which uses brine as the working fluid, with those of the approach first suggested by Brown (2000) and analyzed by Pruess (2006), using CO{sub 2} as the working fluid, and then extended to saline-formation CCS by Randolph and Saar (2011a). During stage one of our hybrid approach, formation brine, which is extracted to provide pressure relief for CO{sub 2} injection, is the working fluid for energy recovery. Produced brine is applied to a consumptive beneficial use: feedstock for fresh water production through desalination, saline cooling water, or make-up water to be injected into a neighboring reservoir operation, such as in Enhanced Geothermal Systems (EGS), where there is often a shortage of a working fluid. For stage one, it is important to find economically feasible disposition options to reduce the volume of brine requiring reinjection in the integrated geothermal-CCS reservoir (Buscheck et al. 2012a). During stage two, which begins as CO{sub 2} reaches the production wells; coproduced brine and CO{sub 2} are the working fluids. We present preliminary reservoir engineering analyses of this approach, using a simple conceptual model of a homogeneous, permeable CO{sub 2} storage formation/geothermal reservoir, bounded by relatively impermeable sealing units. We assess both the CO{sub 2} sequestration capacity and geothermal energy production potential as a function of well spacing between CO{sub 2} injectors and brine/CO{sub 2} producers for various well patterns and for a range of subsurface conditions.

Buscheck, T A; Chen, M; Sun, Y; Hao, Y; Elliot, T R

2012-02-02T23:59:59.000Z

342

MASSIVELY PARALLEL FULLY COUPLED IMPLICIT MODELING OF COUPLED THERMAL-HYDROLOGICAL-MECHANICAL PROCESSES FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIRS  

SciTech Connect

Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing) to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid system and our ability to reliably predict how reservoirs behave under stimulation and production. In order to increase our understanding of how reservoirs behave under these conditions, we have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a continuum multiphase flow and heat transport model. In DEM simulations, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external load is applied. DEM models have been applied to a very wide range of fracturing processes from the molecular scale (where thermal fluctuations play an important role) to scales on the order of 1 km or greater. In this approach, the continuum flow and heat transport equations are solved on an underlying fixed finite element grid with evolving porosity and permeability for each grid cell that depends on the local structure of the discrete element network (such as DEM particle density). The fluid pressure gradient exerts forces on individual elements of the DEM network, which therefore deforms and fractures. Such deformation/fracturing in turn changes the permeability, which again changes the evolution of fluid pressure, coupling the two phenomena. The intimate coupling between fracturing and fluid flow makes the meso-scale DEM simulations necessary, as these methods have substantial advantages over conventional continuum mechanical models of elastic rock deformation. The challenges that must be overcome to simulate EGS reservoir stimulation, preliminary results, progress to date and near future research directions and opportunities will be discussed.

Robert Podgorney; Hai Huang; Derek Gaston

2010-02-01T23:59:59.000Z

343

Fracture Characterization in Enhanced Geothermal Systems by Wellbore...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir...

344

RESERVOIR CHARACTERIZATION OF THE LOWER GREEN RIVER FORMATION, SOUTHWEST UINTA BASIN, UTAH  

SciTech Connect

Reservoir simulations of different fields in the Green River Formation are reported. Most extensive simulations were performed on the Monument Butte Northeast unit. Log data were used to construct detailed geostatistical models, which were upscaled to obtain reasonable number of grid blocks for reservoir simulation. Porosities, permeabilities, and water saturations required for reservoir simulation were thus generated. Comparison of the production results with the field data revealed that there was a phenomenological deficiency in the model. This was addressed by incorporating hydraulic fractures into the models. With this change, much better agreement between simulation results and field data was obtained. Two other fields, Brundage Canyon and Uteland Butte, were simulated in primary production. Only preliminary simulations were undertaken since a number of critical data elements were missing and could not be obtained from the operators. These studies revealed that the production performance of the Brundage Canyon field is much better than what can be predicted from simulations of a typical non-fractured, undersaturated reservoir. Uteland Butte field performance was that of a typical undersaturated reservoir.

Milind D. Deo

2003-02-11T23:59:59.000Z

345

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM  

Open Energy Info (EERE)

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Details Activities (1) Areas (1) Regions (0) Abstract: Thermal stimulation can be utilized to precondition a well to optimize fracturing and production during Enhanced Geothermal System (EGS) reservoir development. A finite element model was developed for the fully coupled processes consisting of: thermoporoelastic deformation, hydraulic conduction, thermal osmosis, heat conduction, pressure thermal effect, and the interconvertibility of mechanical and thermal energy. The model has

346

Testing geopressured geothermal reservoirs in existing wells. Wells of Opportunity Program final contract report, 1980-1981  

SciTech Connect

The geopressured-geothermal candidates for the Wells of Opportunity program were located by the screening of published information on oil industry activity and through direct contact with the oil and gas operators. This process resulted in the recommendation to the DOE of 33 candidate wells for the program. Seven of the 33 recommended wells were accepted for testing. Of these seven wells, six were actually tested. The first well, the No. 1 Kennedy, was acquired but not tested. The seventh well, the No. 1 Godchaux, was abandoned due to mechanical problems during re-entry. The well search activities, which culminated in the acceptance by the DOE of 7 recommended wells, were substantial. A total of 90,270 well reports were reviewed, leading to 1990 wells selected for thorough geological analysis. All of the reservoirs tested in this program have been restricted by one or more faults or permeability barriers. A comprehensive discussion of test results is presented.

Not Available

1982-01-01T23:59:59.000Z

347

Preliminary study of discharge characteristics of slim holes compared to production wells in liquid-dominated geothermal reservoirs  

SciTech Connect

There is current interest in using slim holes for geothermal exploration and reservoir assessment. A major question that must be addressed is whether results from flow or injection testing of slim holes can be scaled to predict large diameter production well performance. This brief report describes a preliminary examination of this question from a purely theoretical point of view. The WELBOR computer program was used to perform a series of calculations of the steady flow of fluid up geothermal boreholes of various diameters at various discharge rates. Starting with prescribed bottomhole conditions (pressure, enthalpy), the WELBOR code integrates the equations expressing conservation of mass, momentum and energy (together with fluid constitutive properties obtained from the steam tables) upwards towards the wellhead using numerical techniques. This results in computed profiles of conditions (pressure, temperature, steam volume fraction, etc.) as functions of depth within the flowing well, and also in a forecast of wellhead conditions (pressure, temperature, enthalpy, etc.). From these results, scaling rules are developed and discussed.

Pritchett, J.W. [S-Cubed, La Jolla, CA (United States)

1993-06-01T23:59:59.000Z

348

Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) |  

Open Energy Info (EERE)

Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Isotopic Analysis-Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

349

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

350

Resource investigation of low- and moderate-temperature geothermal areas in San Bernardino, California. Part of the third year report, 1980-81, of the US Department of Energy-California State-Coupled Program for Reservoir Assessment and Confirmation  

SciTech Connect

Ninety-seven geothermal wells and springs were identified and plotted on a compiled geologic map of the 40-square-mile study area. These wells and springs were concentrated in three distinguishable resource areas: Arrowhead Hot Springs; South San Bernardino; and Harlem Hot Springs - in each of which detailed geophysical, geochemical, and geological surveys were conducted. The Arrowhead Hot Springs geothermal area lies just north of the City of San Bernardino in the San Bernardino Mountains astride a shear zone (offshoot of the San Andreas fault) in pre-Cambrian gneiss and schist. The Harlem Hot Springs geothermal area, on the east side of the City, and the south San Bernardino geothermal area, on the south side, have geothermal reservoirs in Quaternary alluvial material which overlies a moderately deep sedimentary basin bound on the southwest by the San Jacinto fault (a ground water barrier). Geothermometry calculations suggest that the Arrowhead Hot Springs geothermal area, with a maximum reservoir temperature of 142/sup 0/C, may have the highest maximum reservoir temperature of the three geothermal areas. The maximum temperature recorded by CDMG in the south San Bernardino geothermal area was 56/sup 0/C from an artesian well, while the maximum temperature recorded in the Harlem Hot Springs geothermal area was 49.5/sup 0/C at 174 meters (570 feet) in an abandoned water well. The geophysical and geological surveys delineated fault traces in association with all three of the designated geothermal areas.

Youngs, L.G.; Bezore, S.P.; Chapman, R.H.; Chase, G.W.

1981-08-01T23:59:59.000Z

351

Geothermal Case Studies  

SciTech Connect

The US Geological Survey (USGS) resource assessment (Williams et al., 2009) outlined a mean 30GWe of undiscovered hydrothermal resource in the western US. One goal of the Geothermal Technologies Office (GTO) is to accelerate the development of this undiscovered resource. The Geothermal Technologies Program (GTP) Blue Ribbon Panel (GTO, 2011) recommended that DOE focus efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont, et al, 1990) will give operators a single point of information to gather clean, unbiased information on which to build geothermal drilling prospects. To support this effort, the National Renewable Energy laboratory (NREL) has been working with the Department of Energy (DOE) to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In fiscal year 2013, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In fiscal year 2014, ten additional case studies were completed, and additional features were added to the template to allow for more data and the direct citations of data. The template allows for: Data - a variety of data can be collected for each area, including power production information, well field information, geologic information, reservoir information, and geochemistry information. Narratives ? general (e.g. area overview, history and infrastructure), technical (e.g. exploration history, well field description, R&D activities) and geologic narratives (e.g. area geology, hydrothermal system, heat source, geochemistry.) Exploration Activity Catalog - catalog of exploration activities conducted in the area (with dates and references.) NEPA Analysis ? a query of NEPA analyses conducted in the area (that have been catalogued in the OpenEI NEPA database.) In fiscal year 2015, NREL is working with universities to populate additional case studies on OpenEI. The goal is to provide a large enough dataset to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

Young, Katherine

2014-09-30T23:59:59.000Z

352

Issues surrounding fracturing of geothermal systems - predicting thermal conductivity of reservoir rocks and evaluating performance of fracture proppants.  

E-Print Network (OSTI)

??Traditional geothermal systems have been limited to geologic systems in which elevated temperatures, abundant water, and high porosity and permeability are found. Engineered geothermal systems (more)

Brinton, Daniel

2011-01-01T23:59:59.000Z

353

Advancing reactive tracer methods for measuring thermal evolution in CO2-and water-based geothermal reservoirs  

Energy.gov (U.S. Department of Energy (DOE))

DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop reactive tracer method for monitoring thermal drawdown in enhanced geothermal systems.

354

3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming  

SciTech Connect

The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

La Pointe, Paul; Parney, Robert; Eiben, Thorsten; Dunleavy, Mike; Whitney, John; Eubanks, Darrel

2002-09-09T23:59:59.000Z

355

Idaho/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Idaho/Geothermal Idaho/Geothermal < Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Idaho Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Idaho Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Raft River II Geothermal Project U.S. Geothermal Raft River, AK 114 MW114,000 kW 114,000,000 W 114,000,000,000 mW 0.114 GW 1.14e-4 TW Phase III - Permitting and Initial Development Raft River Geothermal Area Northern Basin and Range Geothermal Region Raft River III Geothermal Project U.S. Geothermal Raft River, ID 114 MW114,000 kW 114,000,000 W 114,000,000,000 mW 0.114 GW 1.14e-4 TW Phase I - Resource Procurement and Identification Raft River Geothermal Area Northern Basin and Range Geothermal Region

356

Tracer Recovery and Mixing from Two Geothermal Injection-Backflow Studies |  

Open Energy Info (EERE)

Tracer Recovery and Mixing from Two Geothermal Injection-Backflow Studies Tracer Recovery and Mixing from Two Geothermal Injection-Backflow Studies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Tracer Recovery and Mixing from Two Geothermal Injection-Backflow Studies Details Activities (2) Areas (2) Regions (0) Abstract: Injection-backflow tracer testing on a single well is not a commonly used procedure for geothermal reservoir evaluation, and, consequently, there is little published information on the character or interpretation of tracer recovery curves. Two field experiments were conducted to develop chemical tracer procedures for use with injection-backflow testing, one on the fracture-permeability Raft River reservoir and the other on the matrix-permeability East Mesa reservoir. Results from tests conducted with incremental increases in the injection

357

Applications of Geothermal Energy  

Science Journals Connector (OSTI)

The distinction between near surface and deep geothermal systems follows from the different depth levels of the geothermal reservoirs and different techniques of utilization (Fig ... smooth. Distinguishing the tw...

Ingrid Stober; Kurt Bucher

2013-01-01T23:59:59.000Z

358

Hydraulic stimulation of geothermal reservoirs: fluid flow, electric potential and microseismicity relationships  

Science Journals Connector (OSTI)

......represents the reservoir relaxation process occurring around the openhole...Li (1987), it is a slow process and, therefore, it may not...to observe fluid diffusion processes is useful for the understanding...Abstracts of Papers , EAGE-56th Mtg. Tech. Exhib., I004. Li......

Mathieu Darnet; Guy Marquis; Pascal Sailhac

2006-07-01T23:59:59.000Z

359

Integrated Chemical Geothermometry System for Geothermal Exploration  

Energy.gov (U.S. Department of Energy (DOE))

DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids.

360

Geothermal: Sponsored by OSTI -- Fracture Characterization in...  

Office of Scientific and Technical Information (OSTI)

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log...

Note: This page contains sample records for the topic "river geothermal reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Productivity of the aquatic macrophyte community of the Holston River: implications to hypolimnetic oxygen depletions of Cherokee Reservoir  

SciTech Connect

Studies were initiated in 1979 to evaluate the extensive aquatic macrophyte beds on the Holston River in upper east Tennessee. The primary aim of these studies was to determine if allochthonous input from drifting aquatic plant debris was a significant factor contributing to low dissolved oxygen (DO) levels in Cherokee Reservoir located downstream. This report presents the results of studies conducted in 1979-1980 to obtain refined estimate of the impact of allochthonous aquatic macrophyte input on DO levels in Cherokee Reservoir. The report also details phenological aspects of the growth and reproduction of the various species that comprise the submersed aquatic macrophyte community of the Holston River above Cherokee Reservoir and discusses the contribution of each to net primary productivity of the river. 31 references, 9 figures, 4 tables.

Young, R.C.; Dennis, W.M.

1983-02-01T23:59:59.000Z

362

Collection and Analysis of Reservoir Data from Testing and Operation of the  

Open Energy Info (EERE)

Collection and Analysis of Reservoir Data from Testing and Operation of the Collection and Analysis of Reservoir Data from Testing and Operation of the Raft River 5 MW Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Collection and Analysis of Reservoir Data from Testing and Operation of the Raft River 5 MW Power Plant Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River 5 MW power plant will be on-line some time this spring. During testing of the supply and injection system prior to plant start-up and during testing of the plant itself, data can be collected and used to calibrate computer models, refine predicted drawdowns and interference effects, monitor changing temperatures, and recalculate reservoir parameters. Analytic methods have been used during reservoir testing at Raft River to calculate reservoir coefficients. However,

363

OPTIMIZATION OF INJECTION INTO VAPOR-DOMINATED GEOTHERMAL  

E-Print Network (OSTI)

given by U.S. Department of Energy, Geothermal Division. #12;vii Table of Contents ABSTRACTOPTIMIZATION OF INJECTION INTO VAPOR-DOMINATED GEOTHERMAL RESERVOIRS CONSIDERING ADSORPTION governing the behavior of vapor- dominated geothermal reservoirs. These mechanisms affect both

Stanford University

364

Stress and Permeability Heterogeneity within the Dixie Valley Geothermal Reservoir: Recent Results from Well 82-5  

SciTech Connect

We collected borehole televiewer, temperature and flowmeter logs and conducted a hydraulic fracturing test in a well (82-5) that penetrated the SFZ within the known boundaries of the geothermal field but which failed to encounter significant permeability. Although stuck drill pipe prevented direct access to the SFZ, borehole breakouts and cooling cracks indicated a {approximately}90 degree rotation in the azimuth of the least horizontal principal stress (Shmin) in well 82-5 at about 2.7 km depth. This rotation, together with the low (Shmin) magnitude measured at 2.5 km depth in well 82-5, is most readily explained through the occurrences of one or more normal faulting earthquakes in the hanging wall of the SFZ in the northern part of the reservoir. The orientation of (Shmin) below 2.7 km (i.e., {approximately}20 to 50 m above the top of the SFZ) is such that both the overall SFZ and natural fractures directly above the SFZ are optimally oriented for normal faulting failure. If these fracture and stress orient ations persist into the SFZ itself, then the existence of a local stress relief zone (i.e., anormalously high (Shmin) magnitude) is the most likely explanation for the very low fault zone permeability encountered in well 82-5.

S. H. Hickman; M. D. Zoback; C. A. Barton; R. Benoit; J. Svitek; R. Summers

1999-12-01T23:59:59.000Z

365

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

, through mud temperatures. In this study formation temperatures of the five geothermal wells in Germencik and analyze the formation temperatures at geothermal wells. For the methods Curve fitting, Horner plot

Stanford University

366

PROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30 -February 1, 2012  

E-Print Network (OSTI)

: Organic Rankine Cycle) with maximal installed net capacity of 1.5MWe (Figure 1). Several deep geothermal

Boyer, Edmond

367

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

for the geothermal district heating (GDH) of approximately 150 000 dwellings. As of late 2010, thirty four GDH

Paris-Sud XI, Université de

368

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network (OSTI)

, Stanford, California, February 1-3, 2010 SGP-TR-188 THE SUPPRESSION OF SONIC SHOCKS IN GEOTHERMAL WELLS

Stanford University

369

Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Reservoir at Previously Explored Sites at McGee Mountain, Nevada  

Energy.gov (U.S. Department of Energy (DOE))

DOE Geothermal Peer Review 2010 - Presentation. Project Objectives: To evaluate the cost-effectiveness of two innovative technologies in early-stage geothermal exploration:a) shallow (2m) survey; b) hydroprobe; and Identify a geothermal resource at the project site.

370

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network (OSTI)

of geothermal wells that are effectively cemented and durable poses a significant operational challenge used is critical to the long-term durability of a geothermal well. Conventional cement systems are high systems, they typically fail. More ductile cement systems have been introduced and applied in geothermal

Stanford University

371

Oregon/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Oregon/Geothermal Oregon/Geothermal < Oregon Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oregon Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oregon Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Crump Geyser Geothermal Project Nevada Geo Power, Ormat Utah 80 MW80,000 kW 80,000,000 W 80,000,000,000 mW 0.08 GW 8.0e-5 TW Phase II - Resource Exploration and Confirmation Crump's Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Neal Hot Springs Geothermal Project U.S. Geothermal Vale, Oregon Phase III - Permitting and Initial Development Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region Neal Hot Springs II Geothermal Project U.S. Geothermal Vale, Oregon Phase I - Resource Procurement and Identification Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region

372

Geothermal resource analysis in the Big Wood River Valley, Blaine County, Idaho  

SciTech Connect

A geochemical investigation of both thermal and nonthermal springs in the Wood River area was conducted to determine possible flowpaths, ages of the waters, and environmental implications. Seven thermal springs and five cold springs were sampled for major cations and anions along with arsenic, lithium, boron, deuterium and oxygen-18. Eight rocks, representative of outcrops at or near the thermal occurrences were sampled and analyzed for major and trace elements. The Wood River area hydrothermal springs are dilute Na-HCO{sub 3}-SiO{sub 2} type waters. Calculated reservoir temperatures do not exceed 100{degree}C, except for Magic Hot Springs Landing well (108{degree}C with Mg correction). The isotope data suggest that the thermal water is not derived from present-day precipitation, but from precipitation when the climate was much colder and wetter. Intrusive igneous rocks of the Idaho batholith have reacted with the hydrothermal fluids at depth. The co-location of the thermal springs and mining districts suggests that the structures acting as conduits for the present-day hydrothermal fluids were also active during the emplacement of the ore bodies.

Street, L.V.

1990-10-01T23:59:59.000Z

373

Enhanced Geothermal Systems (EGS) | Open Energy Information  

Open Energy Info (EERE)

Enhanced Geothermal Systems (EGS) Enhanced Geothermal Systems (EGS) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Enhanced Geothermal Systems (EGS) Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps EGS Links Related documents and websites DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation) EGS Schematic.jpg ] Dictionary.png Enhanced Geothermal Systems: Enhanced Geothermal Systems (EGS) are human engineered hydrothermal reservoirs developed for commercial use as an alternative to naturally

374

Priority Based Reservoir Optimization using Linear Programming: Application to Flood Operation of the Iowa/Des Moines River System  

E-Print Network (OSTI)

for preservation of selected operating priorities and the effect that operating constraints have on systemPriority Based Reservoir Optimization using Linear Programming: Application to Flood Operation of the Iowa/Des Moines River System By MATTHEW JASON BROWN B.S. (The Pennsylvania State University) 1995

Lund, Jay R.

375

STATE-OF-THE-ART OF MODELS FOR GEOTHERMAL RECOVERY PROCESSES  

E-Print Network (OSTI)

Recent interest in geothermal energy development hasassociated with a geothermal energy reservoir are describeddevelopment and use of geothermal energy. Many ex- periments

Tsang, C.F.

2012-01-01T23:59:59.000Z

376

Factors controlling reservoir quality in tertiary sandstones and their significance to geopressured geothermal production. Annual report, May 1, 1979-May 31, 1980  

SciTech Connect

Differing extents of diagenetic modification is the factor primarily responsible for contrasting regional reservoir quality of Tertiary sandstones from the Upper and Lower Texas Gulf Coast. Detailed comparison of Frio sandstones from the Chocolate Bayou/Danbury Dome area, Brazoria County, and Vicksburg sandstones from the McAllen Ranch Field area, Hidalgo County, reveals that extent of diagenetic modification is most strongly influenced by (1) detrital mineralogy and (2) regional geothermal gradients. Vicksburg sandstones from the McAllen Ranch Field area are less stable, chemically and mechanically, than Frio sandstones from the Chocolate Bayou/Danbury dome area. Vicksburg sandstones are mineralogically immature and contain greater proportions of feldspars and rock fragments than do Frio sandstones. Thr reactive detrital assemblage of Vicksubrg sandstones is highly susceptible to diagenetic modification. Susceptibility is enhanced by higher than normal geothermal gradients in the McAllen Ranch Field area. Thus, consolidation of Vicksburg sandstones began at shallower depth of burial and precipitation of authigenic phases (especially calcite) was more pervasive than in Frio sandstones. Moreover, the late-stage episode of ferroan calcite precipitation that occluded most secondary porosity in Vicksburg sandstones did not occur significantly in Frio sandstones. Therefore, regional reservoir quality of Frio sandstones from Brazoria County is far better than that characterizing Vicksburg sandstones from Hidalgo County, especially at depths suitable for geopressured geothermal energy production.

Loucks, R.G.; Richmann, D.L.; Milliken, K.L.

1980-07-01T23:59:59.000Z

377

Stanford Geothermal Program Tnterdisciplinary Research  

E-Print Network (OSTI)

Stanford Geothermal Program Tnterdisciplinary Research in Engineering and Earth Sciences Stanford University Stanford, California A LABORATORY MODEL OF STWLATED GEOTHERMAL RESERVOIRS by A. Hunsbedt P. Kruger created by artificial stimulation of geothermal reservoirs has been con- structed. The model has been used

Stanford University

378

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

-mail: hector.carlos.pulido@pemex.com ABSTRACT Complex reservoir geometries can influence the results obtained

Stanford University

379

Geothermal resources of southern Idaho  

SciTech Connect

The geothermal resource of southern Idaho as assessed by the U.S. Geological Survey in 1978 is large. Most of the known hydrothermal systems in southern Idaho have calculated reservoir temperatures of less than 150 C. Water from many of these systems is valuable for direct heat applications. A majority of the known and inferred geothermal resources of southern Idaho underlie the Snake River Plain. However, major uncertainties exist concerning the geology and temperatures beneath the plain. The largest hydrothermal system in Idaho is in the Bruneau-Grang View area of the western Snake River Plain with a calculated reservoir temperature of 107 C and an energy of 4.5 x 10 to the 20th power joules. No evidence of higher temperature water associated with this system was found. Although the geology of the eastern Snake River Plain suggests that a large thermal anomaly may underlie this area of the plain, direct evidence of high temperatures was not found. Large volumes of water at temperatures between 90 and 150 C probably exist along the margins of the Snake River Plain and in local areas north and south of the plain.

Mabey, D.R.

1983-01-01T23:59:59.000Z

380

The Cerro Prieto IV (Mexico) geothermal reservoir: Pre-exploitation thermodynamic conditions and main processes related to exploitation (20002005)  

Science Journals Connector (OSTI)

The Cerro Prieto IV (CP IV) reservoir, located in the northeastern part of the Cerro Prieto (Mexico) geothermal field, was studied in order to define its pre-exploitation conditions and initial (20002005) response to exploitation. Bottomhole thermodynamic conditions were estimated by modeling heat and fluid flows using the WELLSIM program and well production data. Produced fluid chemical and isotopic data were also analyzed to investigate characteristic patterns of behavior over time, which were then compared against simulation results to obtain a conceptual model of the CP IV reservoir. According to the proposed model, two zones in the reservoir separated by Fault H and producing fluids of different characteristics were identified under pre-exploitation conditions. Wells in the area to the east-southeast (south block) produce very high-enthalpy fluids (?2000kJ/kg), with very low chloride (?7000mg/kg) and high CO2 (>6 molar) and ?D (wells toward the west-northwest (north block) show moderate-enthalpy fluids (14001800kJ/kg), with high chloride (?12,000mg/kg) and relatively low CO2 (<6 molar) and ?D (reservoir processes associated with exploitation. Also, it was found that the dynamics of the CP IV reservoir is controlled by the Fault H system.

Vctor Manuel Arellano; Rosa Mara Barragn; Alfonso Aragn; Marco Helio Rodrguez; Alfredo Prez

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "river geothermal reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) |  

Open Energy Info (EERE)

Fluid At Long Valley Caldera Geothermal Area (1977) Fluid At Long Valley Caldera Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Isotopic Analysis-Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

382

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Mean br Capacity Mean br Reservoir br Temp Amedee Geothermal Area Amedee Geothermal Area Walker Lane Transition Zone Geothermal Region Extensional Tectonics Mesozoic granite granodiorite MW K Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Central Nevada Seismic Zone Geothermal Region Extensional Tectonics MW K Blue Mountain Geothermal Area Blue Mountain Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics triassic metasedimentary MW K Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics MW Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone

383

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network (OSTI)

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 34105 Stanford Geothermal, California SGP-TR-72 A RESERVOIR ENGINEERING ANALYSIS OF A VAPOR-DOMINATED GEOTHERMAL FIELD BY John Forrest Dee June 1983 Financial support was provided through the Stanford Geothermal Program under Department

Stanford University

384

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network (OSTI)

was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 heat sweep model for estimating energy recovery from fractured geothermal reservoirs based on earlySTANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY Stanford Geothermal Program Interdisciplinary

Stanford University

385

Geothermal Direct Use | Open Energy Information  

Open Energy Info (EERE)

Direct Use Direct Use Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF [edit] Geothermal Direct Use Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Direct Use Links Related documents and websites EERE's Direct Use Report National Institute of Building Science's Whole Building Design Guide Policy Makers' Guidebook for Geothermal Heating and Cooling Dictionary.png Geothermal Direct Use: Low- to moderate-temperature water from geothermal reservoirs can be used to provide heat directly to buildings, or other applications that require

386

US Geothermal Inc | Open Energy Information  

Open Energy Info (EERE)

Boise, Idaho Zip: 83706 Sector: Geothermal energy Product: Former Idaho-based project developer that held the rights to the Raft River Geothermal Project. Website: http:...

387

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network (OSTI)

of 2015 nine units of geothermal electric power plants with a total capacity 450 MW are planned to be set of Mutnovsky volcano was studied by the method of numerical simulation. The distribution of temperature of natural heat carrier extraction to obtain geothermal energy are the subject of studying of mining thermal

Stanford University

388

Geothermal-reservoir engineering research at Stanford University. Second annual report, October 1, 1981-September 30, 1982  

SciTech Connect

Progress in the following tasks is discussed: heat extraction from hydrothermal reservoirs, noncondensable gas reservoir engineering, well test analysis and bench-scale experiments, DOE-ENEL Cooperative Research, Stanford-IIE Cooperative Research, and workshop and seminars. (MHR)

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.

1982-09-01T23:59:59.000Z

389

Session: Reservoir Technology  

SciTech Connect

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael

1992-01-01T23:59:59.000Z

390

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL...  

Open Energy Info (EERE)

Abstract Thermal stimulation can be utilized to precondition a well to optimize fracturing and production during Enhanced Geothermal System (EGS) reservoir development. A...

391

Geothermal: Sponsored by OSTI -- Integrated, Geothermal-CO2 Storage...  

Office of Scientific and Technical Information (OSTI)

Integrated, Geothermal-CO2 Storage Reservoirs: Adaptable, Multi-Stage, Sustainable, Energy-Recovery Strategies that Reduce Carbon Intensity and Environmental Risk...

392

Using ArcGIS to extrapolate greenhouse gas emissions on the Pengxi River, a tributary of the Three Gorges Reservoir in China  

E-Print Network (OSTI)

Using ArcGIS to extrapolate greenhouse gas emissions on the Pengxi River, a tributary of the Three Gorges Reservoir in China Lindsey MW Yasarer, PhD Candidate, University of Kansas Dr. Zhe Li, Associate Professor, Chongqing University Dr.... Belinda Sturm, Associate Professor, University of Kansas RESERVOIR GREENHOUSE GAS EMISSIONS (Image from FURNAS www.dsr.inpe.br) HOW TO SCALE UP GHG EMISSIONS? PROJECT OBJECTIVE: Estimate overall greenhouse gas emissions from the Pengxi River Backwater...

Yasarer, Lindsey

2014-11-19T23:59:59.000Z

393

Geothermal resources in Southwestern Utah: gravity and magnetotelluric investigations.  

E-Print Network (OSTI)

??Recent geothermal studies on sedimentary basins in Western Utah suggest the possibility of significant geothermal reservoirs at depths of 3 to 5 km. This research (more)

Hardwick, Christian Lynn

2013-01-01T23:59:59.000Z

394

Geothermal Direct-Use Minimizing Land Use and Impact  

Energy.gov (U.S. Department of Energy (DOE))

With geothermal direct-use applications, land use issues usually only arise during exploration and development when geothermal reservoirs are located in or near urbanized areas, critical habitat...

395

Fracture Characterization in Enhanced Geothermal Systems by Wellbore...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report Fracture Characterization in...

396

Three-dimensional Modeling of Fracture Clusters in Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs; 2010 Geothermal Technology Program Peer Review Report Three-dimensional Modeling of Fracture Clusters in...

397

Oregon: DOE Advances Game-Changing EGS Geothermal Technology...  

Office of Environmental Management (EM)

demonstration project, at Newberry Volcano near Bend, Oregon, represents a key step in geothermal energy development, demonstrating that an engineered geothermal reservoir can...

398

Water information bulletin No. 30, part 13: geothermal investigations in Idaho. Preliminary geologic reconnaissance of the geothermal occurrences of the Wood River Drainage Area  

SciTech Connect

Pre-tertiary sediments of the Milligen and Wood River Formations consisting primarily of argillite, quartzite, shale and dolomite are, for the most part, exposed throughout the area and are cut locally by outliers of the Idaho Batholith. At some locations, Tertiary-age Challis Volcanics overlay these formations. Structurally the area is complex with major folding and faulting visible in many exposures. Many of the stream drainages appear to be fault controlled. Hydrologic studies indicate hot spring occurrences are related to major structural trends, as rock permeabilities are generally low. Geochemical studies using stable isotopes of hydrogen and oxygen indicate the thermal water in the Wood River region to be depleted by about 10 0/00 in D and by 1 to 2 0/00 in /sup 18/0 relative to cold water. This suggests the water could be meteoric water that fell during the late Pleistocene. The geological data, as well as the chemical data, indicate the geothermal waters are heated at depth, and subsequently migrate along permeable structural zones. In almost all cases the chemical data suggest slightly different thermal histories and recharge areas for the water issuing from the hot springs. Sustained use of the thermal water at any of the identified springs is probably limited to flow rates approximating the existing spring discharge. 28 refs., 16 figs., 3 tabs.

Anderson, J.E.; Bideganeta, K.; Mitchell, J.C.

1985-04-01T23:59:59.000Z

399

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network (OSTI)

GEOTHERMAL PRODUCTION FIELD, PHILIPPINES R. N. Colina, J. B. Omagbon, G. E. Parayno, R. P. Andrino, D. M. Yglopaz, R. C. M. Malate, F. X. M. Sta. Ana and J. J. C. Austria Energy Development Corporation Merritt

Stanford University

400

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

using continuum models. Despite the fundamental uncertainties inherited within the probabilistic loop and installing operating equipment (DOE, 2008). Despite that geothermal energy is a mature gained from the geological site characterization and the fundamental uncertainties inherited within

Stanford University

Note: This page contains sample records for the topic "river geothermal reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation  

Energy.gov (U.S. Department of Energy (DOE))

DOE Geothermal Peer Review 2010 - Presentation. Project objective: to characterize the geothermal reservoir using novel technologies and integrating this information into a 3D geologic and reservoir model numerical model to determine the efficacy of future geothermal production.

402

Honokowai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Honokowai Geothermal Area Honokowai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Honokowai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

403

Mokapu Penninsula Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mokapu Penninsula Geothermal Area Mokapu Penninsula Geothermal Area (Redirected from Mokapu Penninsula Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mokapu Penninsula Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

404

Kilauea Summit Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea Summit Geothermal Area Kilauea Summit Geothermal Area (Redirected from Kilauea Summit Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Summit Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

405

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

406

Geothermal Reservoir Dynamics - TOUGHREACT  

E-Print Network (OSTI)

analysis of fluid flow, heat transfer, and rock-mechanicalof the coupling between fluid flow, heat transfer, chemical

2005-01-01T23:59:59.000Z

407

Quantitative analysis of existing conditions and production strategies for the Baca geothermal system, New Mexico  

SciTech Connect

The Baca geothermal reservoir and adjacent aquifers in the Jemez Mountains of New Mexico comprise an integrated hydrogeologic system. Analysis of the geothermal reservoir either under natural conditions or subject to proposed development should account for the mass (water) and energy (heat) balances of adjacent aquifers as well as the reservoir itself. A three-dimensional model based on finite difference approximation is applied to this integrated system. The model simulates heat transport associated with the flow of steam and water through an equivalent porous medium. The Baca geothermal reservoir is dominated by flow in fractures and distinct strata, but at the scale of application the equivalent porous media concept is appropriate. The geothermal reservoir and adjacent aquifers are simulated under both natural conditions and proposed production strategies. Simulation of natural conditions compares favorably with observed pressure, temperature, and thermal discharge data. The history matching simulations show that the results used for comparison are most sensitive to vertical permeability and the area of an assumed high-permeability zone connecting the reservoir to a deep hydrothermal source. Simulations using proposed production strategies and optimistic estimates of certain hydrologic parameters and reservoir extent indicate that a 50-MW power plant could be maintained for a period greater than 30 years. This production, however, will result in significant decreases in the total water discharge to the Jemez River.

Faust, C.R.; Mercer, J.W.; Thomas, S.D.; Balleau, W.A.

1984-05-01T23:59:59.000Z

408

Geothermal energy abstract sets. Special report No. 14  

SciTech Connect

This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

Stone, C. (comp.)

1985-01-01T23:59:59.000Z

409

3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING  

SciTech Connect

This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge of matrix properties was greatly extended by calibrating wireline logs from 113 wells with incomplete or older-vintage logging suites to wells with a full suite of modern logs. The model for the fault block architecture was derived by 3D palinspastic reconstruction. This involved field work to construct three new cross-sections at key areas in the Field; creation of horizon and fault surface maps from well penetrations and tops; and numerical modeling to derive the geometry, chronology, fault movement and folding history of the Field through a 3D restoration of the reservoir units to their original undeformed state. The methodology for predicting fracture intensity and orientation variations throughout the Field was accomplished by gathering outcrop and subsurface image log fracture data, and comparing it to the strain field produced by the various folding and faulting events determined through the 3D palinspastic reconstruction. It was found that the strains produced during the initial folding of the Tensleep and Phosphoria Formations corresponded well without both the orientations and relative fracture intensity measured in outcrop and in the subsurface. The results have led to a 15% to 20% increase in estimated matrix pore volume, and to the plan to drill two horizontal drain holes located and oriented based on the modeling results. Marathon Oil is also evaluating alternative tertiary recovery processes based on the quantitative 3D integrated reservoir model.

Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

2002-11-18T23:59:59.000Z

410

Raft River geoscience case study | Open Energy Information  

Open Energy Info (EERE)

study study Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Raft River geoscience case study Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River Geothermal Site has been evaluated over the past eight years by the United States Geological Survey and the Idaho National Engineering Laboratory as a moderate-temperature geothermal resource. The geoscience data gathered in the drilling and testing of seven geothermal wells suggest that the Raft River thermal reservoir is: (a) produced from fractures found at the contact metamorphic zone, apparently the base of detached normal faulting from the Bridge and Horse Well Fault zones of the Jim Sage Mountains; (b) anisotropic, with the major axis of hydraulic conductivity coincident to the Bridge Fault Zone; (c) hydraulically

411

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

to capture the alterations in reservoir properties (mainly porosity and permeability) due to changes water into a hot water reservoir will contract the rock, however the surrounding rock will constrain conditions are employed. In particular, porosity and permeability were coupled through the changes

Stanford University

412

Simulation of Sediment and Cesium Transport in the Ukedo River and the Ogi Dam Reservoir during a Rainfall Event using the TODAM Code  

SciTech Connect

The accident at the Fukushima Daiichi Nuclear Power Plant in March 2011 caused widespread environmental contamination. Although decontamination activities have been performed in residential areas of the Fukushima area, decontamination of forests, rivers, and reservoirs is still controversial because of the economical, ecological, and technical difficulties. Thus, an evaluation of contaminant transport in such an environment is important for safety assessment and for implementation of possible countermeasures to reduce radiation exposure to the public. The investigation revealed that heavy rainfall events play a significant role in transporting radioactive cesium deposited on the land surface, via soil erosion and sediment transport in rivers. Therefore, we simulated the sediment and cesium transport in the Ukedo River and its tributaries in Fukushima Prefecture, including the Ogaki Dam Reservoir, and the Ogi Dam Reservoir of the Oginosawa River in Fukushima Prefecture during and after a heavy rainfall event by using the TODAM (Time-dependent, One-dimensional Degradation And Migration) code. The main outcomes are the following: Suspended sand is mostly deposited on the river bottom. Suspended silt and clay, on the other hand, are hardly deposited in the Ukedo River and its tributaries except in the Ogaki Dam Reservoir in the Ukedo River even in low river discharge conditions. Cesium migrates mainly during high river discharge periods during heavy rainfall events. Silt and clay play more important roles in cesium transport to the sea than sand does. The simulation results explain variations in the field data on cesium distributions in the river. Additional field data currently being collected and further modeling with these data may shed more light on the cesium distribution variations. Effects of 40-hour heavy rainfall events on clay and cesium transport continue for more than a month. This is because these reservoirs slow down the storm-induced high flow moving through these reservoirs. The reservoirs play a major role as a sink of sediment and cesium in the river systems. Some amounts of sediment pass through them along with cesium in dissolved and clay-sorbed cesium forms. Effects of countermeasures such as overland decontamination, dam control and sorbent injection were tentatively estimated. The simulation suggested that overland decontamination and sorbent injection would be effective for decreasing the contamination of water in the reservoir and in the river below the dam.

Onishi, Yasuo; Yokuda, Satoru T.; Kurikami, Hiroshi

2014-03-28T23:59:59.000Z

413

Validation of Geothermal Tracer Methods in Highly Constrained...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

methods for measuring thermal evolution in CO2-and water-based geothermal reservoirs Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir Quantum Dot...

414

A History of Geothermal Energy Research and Development in the...  

Energy Savers (EERE)

Reservoir Engineering 1976-2006 A History of Geothermal Energy Research and Development in the United States: Reservoir Engineering 1976-2006 This report summarizes significant...

415

Hydrothermal Reservoirs | Open Energy Information  

Open Energy Info (EERE)

Hydrothermal Reservoirs Hydrothermal Reservoirs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hydrothermal Reservoirs Dictionary.png Hydrothermal Reservoir: Hydrothermal Reservoirs are underground zones of porous rock containing hot water and steam, and can be naturally occurring or human-made. Other definitions:Wikipedia Reegle Natural, shallow hydrothermal reservoirs naturally occurring hot water reservoirs, typically found at depths of less than 5 km below the Earth's surface where there is heat, water and a permeable material (permeability in rock formations results from fractures, joints, pores, etc.). Often, hydrothermal reservoirs have an overlying layer that bounds the reservoir and also serves as a thermal insulator, allowing greater heat retention. If hydrothermal reservoirs

416

Reservoir response to tidal and barometric effects | Open Energy  

Open Energy Info (EERE)

to tidal and barometric effects to tidal and barometric effects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Reservoir response to tidal and barometric effects Details Activities (2) Areas (2) Regions (0) Abstract: Solid earth tidal strain and surface loading due to fluctuations in barometric pressure have the effect, although extremely minute, of dilating or contracting the effective pore volume in a porous reservoir. If a well intersects the formation, the change in pore pressure can be measured with sensitive quartz pressure gauges. Mathematical models of the relevant fluid dynamics of the well-reservoir system have been generated and tested against conventional well pumping results or core data at the Salton Sea Geothermal Field (SSGF), California and at the Raft River,

417

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

to geothermal heat mining using carbon dioxide instead of water. While manometric, volumetric, and gravimetric techniques have been used successfully to investigate adsorption of low-density subcritical vapors demonstrated using propane at subcritical and supercritical temperatures between 35 °C and 97 °C confined

Stanford University

418

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

in the turbine is in the range of 1-6 mol%. Some condensation is likely to always occur in surface cooling generation equipment, similar to traditional steam geothermal power plants. Carbon-dioxide-based EGS systems water is present in the carbon dioxide, a water-rich phase will condense in surface equipment

Stanford University

419

Information retrieval system: impacts of water-level changes on uses of federal storage reservoirs of the Columbia River.  

SciTech Connect

A project undertaken to provide the Bonneville Power Administration (BPA) with information needed to conduct environmental assessments and meet requirements of the National Environmental Policy Act (NEPA) and the Pacific Northwest Electric Power Planning and Conservation Act (Regional Act) is described. Access to information on environmental effects would help BPA fulfill its responsibilities to coordinate power generation on the Columbia River system, protect uses of the river system (e.g., irrigation, recreation, navigation), and enhance fish and wildlife production. Staff members at BPA identified the need to compile and index information resources that would help answer environmental impact questions. A computer retrieval system that would provide ready access to the information was envisioned. This project was supported by BPA to provide an initial step toward a compilation of environmental impact information. Scientists at Pacific Northwest Laboratory (PNL) identified, gathered, and evaluated information related to environmental effects of water level on uses of five study reservoirs and developed and implemented and environmental data retrieval system, which provides for automated storage and retrieval of annotated citations to published and unpublished information. The data retrieval system is operating on BPA's computer facility and includes the reservoir water-level environmental data. This project was divided into several tasks, some of which were conducted simultaneously to meet project deadlines. The tasks were to identify uses of the five study reservoirs, compile and evaluate reservoir information, develop a data entry and retrieval system, identify and analyze research needs, and document the data retrieval system and train users. Additional details of the project are described in several appendixes.

Fickeisen, D.H.; Cowley, P.J.; Neitzel, D.A.; Simmons, M.A.

1982-09-01T23:59:59.000Z

420

Stanford Geothermal Program Final Report  

E-Print Network (OSTI)

of Energy under grant number DE-FG07-95ID13370 Stanford Geothermal Program Department of PetroleumStanford Geothermal Program Final Report July 1996 - June 1999 Funded by the U.S. Department ....................................................................................................................6 2. THE ROLE OF CAPILLARY FORCES IN THE NATURAL STATE OF FRACTURED GEOTHERMAL RESERVOIRS

Stanford University

Note: This page contains sample records for the topic "river geothermal reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area (Redirected from Wister Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

422

White Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

White Mountains Geothermal Area White Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: White Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Hampshire Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

423

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

424

Teels Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Teels Marsh Geothermal Area Teels Marsh Geothermal Area (Redirected from Teels Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Teels Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

425

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area (Redirected from Truckhaven Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

426

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

427

Geothermal alteration of basaltic core from the Snake River Plain, Idaho.  

E-Print Network (OSTI)

?? The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is (more)

Sant, Christopher J.

2013-01-01T23:59:59.000Z

428

Development of a dual-porosity model for vapor-dominated fractured geothermal reservoirs using a semi-analytical fracture/matrix interaction term  

SciTech Connect

A new type of dual-porosity model is being developed to simulate two-phase flow processes in fractured geothermal reservoirs. At this time it is assumed that the liquid phase in the matrix blocks remains immobile. By utilizing the effective compressibility of a two-phase water/steam mixture in a porous rock, flow within the matrix blocks can be modeled by a single diffusion equation. This equation in turn is replaced by a non-linear ordinary differential equation that utilizes the mean pressure and mean saturation in the matrix blocks to calculate the rate of fluid flow between the matrix blocks and fractures. This equation has been incorporated into the numerical simulator TOUGH to serve as a source/sink term for computational gridblocks that represent the fracture system. The new method has been compared with solutions obtained using fully-discretized matrix blocks, on a problem involving a three-dimensional vapor-dominated reservoir containing an injection and a production well, and has been found to be quite accurate.

Zimmerman, R.W.; Hadgu, T.; Bodvarsson, G.S.

1993-02-01T23:59:59.000Z

429

U.S. Geothermal Announces Successful Completion  

Energy.gov (U.S. Department of Energy (DOE))

U.S. Geothermal Inc. (U.S. Geothermal), a renewable energy company focused on the production of electricity from geothermal energy, announced today that the first full size production well (NHS-1) at the Neal Hot Springs Project was successfully completed on May 23 and an initial flow test confirms the presence of a geothermal reservoir.

430

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network (OSTI)

Cambridge, MA, 02139, USA e-mail: dconcha@mit.edu ABSTRACT We used the double-difference tomography method-sous-Forets, France with 45000 m3 of water resulted in over 12,000 microseismic events (also known as microearthquakes the reservoir. The 1993 stimulations at Soultz consisted of the injection of 45,000 m3 of water into an open

Stanford University

431

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network (OSTI)

to hydraulic short-circuiting and inefficient heat transfer. The establishment of hydraulic connectivity geochemical and thermodynamic conditions in the reservoir to avoid degradation or adsorption of the tracer pumping tests conducted in heterogeneous transmissivity fields result in an overestimation of storativity

Stanford University

432

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

in water, as can be observed in carbonated beverages. Furthermore, you can observe that the CO2 gas comes warm (the gas is less soluble at high temperatures). These simple observations illustrate a significant impact on ultimate reservoir performance. During simulation of water- alternating-gas floods

Stanford University

433

DOE-project on geothermal reservoir engineering computer code comparison and validation: evaluation of results for Problem 6  

SciTech Connect

Three of the four simulators used in computing a difficult three-dimensional problem show excellent quantitative agreement. This demonstrates that numerical simulators are capable of producing accurate results for field-wide reservoir depletion problems, involving phase transitions, gravitationally induced steam/water counterflow, and recharge.

Pruess, K.

1980-12-01T23:59:59.000Z

434

E-Print Network 3.0 - annual interagency geothermal Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

on Geothermal Reservoir Engineering Stanford University... Keyan Zheng1 Fang He2 1 Geothermal Council of China Energy Society 20 Da Hui Si Road, Haidian District... of...

435

The Patuha geothermal system: a numerical model of a vapor-dominated system.  

E-Print Network (OSTI)

??The Patuha geothermal system is a vapor-dominated reservoir located about 40 kilometers southwest of Bandung on western Java, Indonesia. The geothermal system consists of a (more)

Schotanus, M.R.J.

2013-01-01T23:59:59.000Z

436

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Principal Investigator: John H. Queen Hi-Q Geophysical Inc. Track Name: Seismicity and Reservoir Fracture...

437

Development of Enhanced Geothermal Systems Technologies Workshops...  

Energy Savers (EERE)

in the report by the Massachusetts Institute of Technology (MIT) titled The Future of Geothermal Energy (MIT 2006). Three of the presentations (in the areas of Reservoir...

438

Comprehensive Evaluation of the Geothermal Resource Potential...  

Open Energy Info (EERE)

American Recovery and Reinvestment Act of 2009. State Nevada Objectives Characterize the geothermal reservoir, the Astor Pass Site, using novel technologies and integrating this...

439

Magmatic Geothermal Play Type | Open Energy Information  

Open Energy Info (EERE)

Making. In: Proceedings. Thirty-Ninth Workshop on Geothermal Reservoir Engineering; 20140224; Stanford, California. Stanford, California: Stanford University; p. 8 Inga...

440

Geothermal Literature Review At Coso Geothermal Area (1985) | Open Energy  

Open Energy Info (EERE)

5) 5) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1985 Usefulness not indicated DOE-funding Unknown Exploration Basis Need to develop a reservoir model for Coso Notes Analysis of complex geothermal system was done by looking at the available data on the Coso Geothermal Field References Austin, C.F.; Durbin, W.F. (1 September 1985) Coso: example of a complex geothermal reservoir. Final report, 1984-1985 Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Coso_Geothermal_Area_(1985)&oldid=510801" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers

Note: This page contains sample records for the topic "river geothermal reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Lualualei Valley Geothermal Area (Redirected from Lualualei Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

442

Salinity Budget and WRAP Salinity Simulation Studies of the Brazos River/Reservoir System  

E-Print Network (OSTI)

the Dennis Gage to the Glen Rose Gage ................................................................ 35 Reach from the Glen Rose Gage to the Whitney Gage .............................................................. 37 Chapter 3 Volume and Load Budget... Load for South Bend to Graford Reach ............ 71 Alternative Methods for Distributing Excess Load for Glen Rose to Whitney Reach ............. 80 Chapter 5 Relationships between Concentrations of Reservoir Outflow and Storage ......... 83 Mean...

Wurbs, Ralph; Lee, Chihun

443

DOE-Funded Research at Stanford Sees Results in Reservoir Characteriza...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Systems (EGS). This research will help developers learn more about the fracture systems in geothermal reservoirs, so that they may better predict the results of...

444

Reservoir/River System Reliability Considering Water Rights and Water Quality  

E-Print Network (OSTI)

Effective management of the highly variable water resources of a river basin requires an understanding of the amount of suitable quality water that can be provided under various conditions within institutional constraints. Although much research has...

Wurbs, Ralph A.; Sanchez-Torres, Gerardo; Dunn, David D.

445

A survey of DDT residues in fish from the Brazos and Navasota Rivers and Somerville Reservoir  

E-Print Network (OSTI)

residues found in fish. Land along the Navasota River bottom is almost exclusively rangeland. The soil has not been exposed to agrochemicals, at least not in the last 37 50 years. In general, samples of fish reflect this absence of extensive... residues found in fish. Land along the Navasota River bottom is almost exclusively rangeland. The soil has not been exposed to agrochemicals, at least not in the last 37 50 years. In general, samples of fish reflect this absence of extensive...

Kramer, Robert Edwin

2012-06-07T23:59:59.000Z

446

In-situ stress and fracture permeability in a fault-hosted geothermal reservoir at Dixie Valley, Nevada  

SciTech Connect

As part of a study relating fractured rock hydrology to in-situ stress and recent deformation within the Dixie Valley Geothermal Field, borehole televiewer logging and hydraulic fracturing stress measurements were conducted in a 2.7-km-deep geothermal production well (73B-7) drilled into the Stillwater fault zone. Borehole televiewer logs from well 73B-7 show numerous drilling-induced tensile fractures, indicating that the direction of the minimum horizontal principal stress, S{sub hmin}, is S57{degrees}E. As the Stillwater fault at this location dips S50{degrees}E at {approximately}53{degrees}, it is nearly at the optimal orientation for normal faulting in the current stress field. Analysis of the hydraulic fracturing data shows that the magnitude of S{sub hmin} is 24.1 and 25.9 MPa at 1.7 and 2.5 km, respectively. In addition, analysis of a hydraulic fracturing test from a shallow well 1.5 km northeast of 73B-7 indicates that the magnitude of S{sub hmin} is 5.6 MPa at 0.4 km depth. Coulomb failure analysis shows that the magnitude of S{sub hmin} in these wells is close to that predicted for incipient normal faulting on the Stillwater and subparallel faults, using coefficients of friction of 0.6-1.0 and estimates of the in-situ fluid pressure and overburden stress. Spinner flowmeter and temperature logs were also acquired in well 73B-7 and were used to identify hydraulically conductive fractures.

Hickman, S. [Geological Survey, Menlo Park, CA (United States); Barton, C.; Zoback, M. [Stanford Univ., CA (United States)] [and others

1997-12-31T23:59:59.000Z

447

Survival Estimates for the Passage of Juvenile Salmonids through Snake River Dams and Reservoirs, 1997 Annual Report.  

SciTech Connect

This report consists of two parts describing research activities completed during 1997 under Bonneville Power Administration Project Number 93-29. Part 1 provides reach survival and travel time estimates for 1997 for PIT-tagged hatchery steelhead and yearling chinook salmon in the Snake and Columbia Rivers. The results are reported primarily in the form of tables and figures with a minimum of text. More detailed information on methodology and the statistical models used in the analysis are provided in previous annual reports cited in the text. Analysis of the relationships among travel time, survival, and environmental factors for 1997 and previous years of the study will be reported elsewhere. Part 2 of this report describes research to determine areas of loss and delay for juvenile hatchery salmonids above Lower Granite Reservoir.

Hockersmith, Eric E.

1999-03-01T23:59:59.000Z

448

Evaluation Of Chemical Geothermometers For Calculating Reservoir...  

Open Energy Info (EERE)

Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

449

Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Well Field < Geothermal(Redirected from Well Field) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Well Fields and Reservoirs General Techniques Tree Techniques Table Regulatory Roadmap NEPA (45) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating hydrothermal geothermal development. Copyright © 1995 Warren Gretz Geothermal Well Fields discussion Groups of Well Field Techniques

450

Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant  

SciTech Connect

The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

1981-11-17T23:59:59.000Z

451

Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Well Field Geothermal/Well Field < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Well Fields and Reservoirs General Techniques Tree Techniques Table Regulatory Roadmap NEPA (42) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating hydrothermal geothermal development. Copyright © 1995 Warren Gretz Geothermal Well Fields discussion Groups of Well Field Techniques There are many different techniques that are utilized in geothermal well field development and reservoir maintenance depending on the region's geology, economic considerations, project maturity, and other considerations such as land access and permitting requirements. Well field

452

Definition: Geothermal Direct Use | Open Energy Information  

Open Energy Info (EERE)

Geothermal Direct Use Geothermal Direct Use Jump to: navigation, search Dictionary.png Geothermal Direct Use Low- to moderate-temperature water from geothermal reservoirs can be used to provide heat directly to buildings, or other applications that require heat. Generally, the water in the geothermal reservoirs withdrawn for direct use is between 68° F to 302° F. In addition to residential, commercial and industrial buildings, homes, pools and spas, greenhouses, fish farms, and even mining operations utilize direct use of geothermal resources for heat[1][2] View on Wikipedia Wikipedia Definition Geothermal heating is the direct use of geothermal energy for heating applications. Humans have taken advantage of geothermal heat this way since the Paleolithic era. Approximately seventy countries made direct

453

Geothermal well log interpretation state of the art. Final report  

SciTech Connect

An in-depth study of the state of the art in Geothermal Well Log Interpretation has been made encompassing case histories, technical papers, computerized literature searches, and actual processing of geothermal wells from New Mexico, Idaho, and California. A classification scheme of geothermal reservoir types was defined which distinguishes fluid phase and temperature, lithology, geologic province, pore geometry, salinity, and fluid chemistry. Major deficiencies of Geothermal Well Log Interpretation are defined and discussed with recommendations of possible solutions or research for solutions. The Geothermal Well Log Interpretation study and report has concentrated primarily on Western US reservoirs. Geopressured geothermal reservoirs are not considered.

Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

1980-01-01T23:59:59.000Z

454

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

Geothermal power) Geothermal power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting & Policy Links Geothermal Energy The Sierra Nevada Mountains provide a spectacular backdrop for a cooling tower array at the ORMAT Mammoth Geothermal Power Plant in Central California. Geothermal energy is heat extracted from the Earth. A wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from various depths, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and

455

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Geothermal Power) (Redirected from Geothermal Power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Energy RSF GeothermalPowerStation.jpg Geothermal energy is heat extracted from the Earth [Geo (Earth) + thermal (heat)].The temperature of the Earth varies widely, and a wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from several sources, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and steam located both near the Earth's surface as well as several miles deep into the Earth, even reaching the Earth's magma.[2][3] Geothermal

456

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

Geothermal) Geothermal) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting & Policy Links Geothermal Energy The Sierra Nevada Mountains provide a spectacular backdrop for a cooling tower array at the ORMAT Mammoth Geothermal Power Plant in Central California. Geothermal energy is heat extracted from the Earth. A wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from various depths, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and

457

Stanford geothermal program. Final report, July 1990--June 1996  

SciTech Connect

This report discusses the following: (1) improving models of vapor-dominated geothermal fields: the effects of adsorption; (2) adsorption characteristics of rocks from vapor-dominated geothermal reservoir at the Geysers, CA; (3) optimizing reinjection strategy at Palinpinon, Philippines based on chloride data; (4) optimization of water injection into vapor-dominated geothermal reservoirs; and (5) steam-water relative permeability.

NONE

1998-03-01T23:59:59.000Z

458

Testing geopressured geothermal reservoirs in existing wells: Pauline Kraft Well No. 1, Nueces County, Texas. Final report  

SciTech Connect

The Pauline Kraft Well No. 1 was originally drilled to a depth of 13,001 feet and abandoned as a dry hole. The well was re-entered in an effort to obtain a source of GEO/sup 2/ energy for a proposed gasohol manufacturing plant. The well was tested through a 5-inch by 2-3/8 inch annulus. The geological section tested was the Frio-Anderson sand of Mid-Oligocene age. The interval tested was from 12,750 to 12,860 feet. A saltwater disposal well was drilled on the site and completed in a Micocene sand section. The disposal interval was perforated from 4710 to 4770 feet and from 4500 to 4542 feet. The test well failed to produce water at substantial rates. Initial production was 34 BWPD. A large acid stimulation treatment increased productivity to 132 BWPD, which was still far from an acceptable rate. During the acid treatment, a failure of the 5-inch production casing occurred. The poor production rates are attributed to a reservoir with very low permeability and possible formation damage. The casing failure is related to increased tensile strain resulting from cooling of the casing by acid and from the high surface injection pressure. The location of the casing failure is now known at this time, but it is not at the surface. Failure as a result of a defect in a crossover joint at 723 feet is suspected.

Not Available

1981-01-01T23:59:59.000Z

459

NREL: Learning - Geothermal Direct Use  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Use Direct Use Photo of alligators on a farm. Geothermally heated waters allow alligators to thrive on a farm in Colorado, where temperatures can drop below freezing. Geothermal reservoirs of hot water, which are found a few miles or more beneath the Earth's surface, can be used to provide heat directly. This is called the direct use of geothermal energy. Geothermal direct use has a long history, going back to when people began using hot springs for bathing, cooking food, and loosening feathers and skin from game. Today, hot springs are still used as spas. But there are now more sophisticated ways of using this geothermal resource. In modern direct-use systems, a well is drilled into a geothermal reservoir to provide a steady stream of hot water. The water is brought up through

460

Geothermal Energy Development annual report 1979  

SciTech Connect

This report is an exerpt from Earth Sciences Division Annual Report 1979 (LBL-10686). Progress in thirty-four research projects is reported including the following area: geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, and geothermal environmental research. Separate entries were prepared for each project. (MHR)

Not Available

1980-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "river geothermal reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

THERMO-HYDRO-MECHANICAL SIMULATION OF GEOTHERMAL  

E-Print Network (OSTI)

THERMO-HYDRO-MECHANICAL SIMULATION OF GEOTHERMAL RESERVOIR STIMULATIONRESERVOIR STIMULATION Silvia Seminario del Grupo de Hidrologìa Subterrànea - UPC, Barcelona #12;INTRODUCTION Enhanced geothermal systems Geothermal gradient ~ 33 °C/Km Hydraulic stimulation enhances fracture permeability (energy

Politècnica de Catalunya, Universitat

462

. Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network (OSTI)

. Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford, California SGP-TR- 80 DEPLETION MODELING OF LIQUID DOMINATED GEOTHERMAL RESERVOIRS BY Gudmund 01sen June 1984 Financial support was provided through the Stanford Geothermal Program under

Stanford University

463

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network (OSTI)

was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORTI UNIVERSITY Stanford, California SGP-TR-85 ANALYSIS OF THE STANFORD GEOTHERMAL RESERVOIR MODEL EXPERIMENTS

Stanford University

464

Hualalai Northwest Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hualalai Northwest Rift Geothermal Area Hualalai Northwest Rift Geothermal Area (Redirected from Hualalai Northwest Rift Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hualalai Northwest Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

465

Under Steamboat Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Under Steamboat Springs Geothermal Area Under Steamboat Springs Geothermal Area (Redirected from Under Steamboat Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Under Steamboat Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

466

Columbus Salt Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Columbus Salt Marsh Geothermal Area Columbus Salt Marsh Geothermal Area (Redirected from Columbus Salt Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Columbus Salt Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

467

Obsidian Cliff Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Obsidian Cliff Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Obsidian Cliff Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

468

Petrography and prediction of reservoir rock properties in the Sussex Sandstone, Powder River Basin, Wyoming  

E-Print Network (OSTI)

, and taken at room temperature. 100 90 KAOLINITE (OOIj 7 ~ A 60 6 ~ 50 KAOLINITE IOOZI 5 55 5 WOODS EM, IRE I C 0 0 (25'0 5 I -2 10 60 , (6 II I 51 ll QUARTZ I 425 A 4 5AARUW 165ZAt CHLORITE (OOS) 471 A ILL I TE (OOZI 4 98 A SIIIECT TE...PETPOGJVPHY AND PREDICTION OF 1'L'SERVO IR R(. &CJ; PROPER IFS IN 1HE SIJSSFX SAvDSTOXE, POXDEJ& RIVER BASIM, EYOMIiA A Thesis by RICIIARD HOYT SHIRLEY JR. Submitted to the Graduate College of Texas A(M University in partial fulfillment...

Shirley, Richard Hoyt

1977-01-01T23:59:59.000Z

469

Stanford Geothermal Workshop - Geothermal Technologies Office...  

Energy Savers (EERE)

- Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford...

470

STANFORD GEOTHERMAL PR0GRAh.I STANFORD UNIVERSITY  

E-Print Network (OSTI)

Department of Energy since 1975. research i n geothermal r e s e r v o i r engineering techniques t h a t w iSTANFORD GEOTHERMAL PR0GRAh.I STANFORD UNIVERSITY STANFORD,CALIFORNIA 94305 SGP-TR-5 1 GEOTHERMAL Implications of Adsorption and Formation Fluid Composition on Geothermal Reservoir Evaluation . . 40 TASK 5

Stanford University

471

Kilauea Summit Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea Summit Geothermal Area Kilauea Summit Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Summit Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

472

Molokai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Molokai Geothermal Area Molokai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Molokai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

473

Maui Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maui Geothermal Area Maui Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maui Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

474

Kauai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kauai Geothermal Area Kauai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kauai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

475

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Rhodes Marsh Geothermal Area Rhodes Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

476

Kawaihae Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kawaihae Geothermal Area Kawaihae Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kawaihae Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

477

Mokapu Penninsula Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mokapu Penninsula Geothermal Area Mokapu Penninsula Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mokapu Penninsula Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

478

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lualualei Valley Geothermal Area Lualualei Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

479

Kawaihae Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kawaihae Geothermal Area Kawaihae Geothermal Area (Redirected from Kawaihae Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kawaihae Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geolo