Sample records for river fisheries project

  1. Fraser River Hydro and Fisheries Research Project fonds

    E-Print Network [OSTI]

    Handy, Todd C.

    Fraser River Hydro and Fisheries Research Project fonds Revised by Erwin Wodarczak (1998 Fraser River Hydro and Fisheries Research Project fonds. ­ 19561961. 13 cm of textual records. Administrative History The Fraser River Hydro and Fisheries Research Project was established in 1956, financed

  2. Lower Columbia River Terminal Fisheries Research Project : Final Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1995-04-01T23:59:59.000Z

    This notice announces BPA`S`s decision to fund the Oregon Department of Fish and Wildlife (ODFW), the Washington Department of Fish and Wildlife (WDFW), and the Clatsop Economic Development Committee for the Lower Columbia River Terminal Fisheries Research Project (Project). The Project will continue the testing of various species/stocks, rearing regimes, and harvest options for terminal fisheries, as a means to increase lower river sport and commercial harvest of hatchery fish, while providing both greater protection of weaker wild stocks and increasing the return of upriver salmon runs to potential Zone 6 Treaty fisheries. The Project involves relocating hatchery smolts to new, additional pen locations in three bays/sloughs in the lower Columbia River along both the Oregon and Washington sides. The sites are Blind Slough and Tongue Point in Clatsop County, Oregon, and Grays Bay/Deep River, Wahkiakum County, Washington. The smolts will be acclimated for various lengths of time in the net pens and released from these sites. The Project will expand upon an existing terminal fisheries project in Youngs Bay, Oregon. The Project may be expanded to other sites in the future, depending on the results of this initial expansion. BPA`S has determined the project is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and BPA`S is issuing this FONSI.

  3. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    SciTech Connect (OSTI)

    Hoverson, Eric D.; Amonette, Alexandra

    2009-02-09T23:59:59.000Z

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2008 Fiscal Year (FY) reporting period (February 1, 2008-January 31, 2009) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight primary fisheries habitat enhancement projects were implemented on Meacham Creek, Birch Creek, West Birch Creek, McKay Creek, West Fork Spring Hollow, and the Umatilla River. Specific restoration actions included: (1) rectifying one fish passage barrier on West Birch Creek; (2) participating in six projects planting 10,000 trees and seeding 3225 pounds of native grasses; (3) donating 1000 ft of fencing and 1208 fence posts and associated hardware for 3.6 miles of livestock exclusion fencing projects in riparian areas of West Birch and Meacham Creek, and for tree screens to protect against beaver damage on West Fork Spring Hollow Creek; (4) using biological control (insects) to reduce noxious weeds on three treatment areas covering five acres on Meacham Creek; (5) planning activities for a levee setback project on Meacham Creek. We participated in additional secondary projects as opportunities arose. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at additional easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Proper selection and implementation of the most effective site-specific habitat restoration plan, taking into consideration the unique characteristics of each project site, and conducted in cooperation with landowners and project partners, was of paramount importance to ensure each project's success. An Aquatic Habitat Inventory was conducted from river mile 0-8 on Isquulktpe Creek and the data collected was compared with data collected in 1994. Monitoring plans will continue throughout the duration of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a variety of fisheries monitoring techniques and habitat assessments used to determine existing conditions and identify factors limiting anadromous salmonid abundance in accordance with the Umatilla River Subbasin Salmon and Steelhead Production Plan (NPPC 1990) and the Final Umatilla Willow Subbasin Plan (Umatilla/Willow Subbasin Planning Team 2005).

  4. EIS-0241-SA-01: Supplement Analysis for the Hood River Fisheries...

    Energy Savers [EERE]

    Fisheries Project The project is consistent with the Northwest Power Planning Council's Fish and Wildlife Program, as well as BPA's Hood River Fisheries Project EIS (DOEEIS-0241)...

  5. Kootenai River Fisheries Investigations: Salmonid Studies Project Progress Report, 2007-2008 Annual Report.

    SciTech Connect (OSTI)

    Paragamian, Vaughn L.; Walters, Jody; Maiolie, Melo [Idaho Department of Fish and Game

    2009-04-09T23:59:59.000Z

    This research report addresses bull trout Salvelinus confluentus and Redband trout Oncorhynchus mykiss redd surveys, population monitoring, trout distribution, and abundance surveys in the Kootenai River drainage of Idaho. The bull trout is one of several sport fish native to the Kootenai River, Idaho that no longer supports a fishery. Because bull trout are listed under the Endangered Species Act, population data will be vital to monitoring status relative to recovery goals. Thirty-three bull trout redds were found in North and South Callahan creeks and Boulder Creek in 2007. This is a decrease from 2006 and 2005 and less than the high count in 2003. However, because redd numbers have only been monitored since 2002, the data series is too short to determine bull trout population trends based on redd counts. Redband trout still provide an important Kootenai River sport fishery, but densities are low, at least partly due to limited recruitment. The redband trout proportional stock density (PSD) in 2007 increased from 2006 for a second year after a two-year decline in 2004 and 2005. This may indicate increased recruitment to or survival in the 201-305 mm length group due to the minimum 406 mm (16 inches) length limit initiated in 2002. We conducted 13 redd surveys and counted 44 redband trout redds from May 7 to June 3, 2007 in a 3.8 km survey reach on Twentymile Creek. We surveyed streams in the Kootenai River valley to look for barriers to trout migration. Man-made barriers, for at least part of the year, were found on Caboose, Debt, Fisher, and Twenty Mile creeks. Removing these barriers would increase spawning and rearing habitat for trout and help to restore trout fisheries in the Kootenai River.

  6. Confederated Tribes Umatilla Indian Reservation (CTUIR) Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project : Annual Report Fiscal Year 2007.

    SciTech Connect (OSTI)

    Hoverson, Eric D.; Amonette, Alexandra

    2008-12-02T23:59:59.000Z

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2007 Fiscal Year (FY) reporting period (February 1, 2007-January 31, 2008) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight fisheries habitat enhancement projects were implemented on Meacham Creek, Camp Creek, Greasewood Creek, Birch Creek, West Birch Creek, and the Umatilla River. Specific restoration actions included: (1) rectifying five fish passage barriers on four creeks, (2) planting 1,275 saplings and seeding 130 pounds of native grasses, (3) constructing two miles of riparian fencing for livestock exclusion, (4) coordinating activities related to the installation of two off-channel, solar-powered watering areas for livestock, and (5) developing eight water gap access sites to reduce impacts from livestock. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at all existing easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Monitoring plans will continue throughout the life of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a variety of fisheries monitoring techniques and habitat assessments used to determine existing conditions and identify factors limiting anadromous salmonid abundance. Proper selection and implementation of the most effective site-specific habitat restoration plan, taking into consideration the unique characteristics of each project site, and conducted in cooperation with landowners and project partners, was of paramount importance to ensure each project's success.

  7. Columbia River : Select Area Fishery Evaluation project : 1995-96 Annual Reports.

    SciTech Connect (OSTI)

    Hirose, Paul; Miller, Marc; Hill, Jim

    1998-06-01T23:59:59.000Z

    Water quality monitoring was conducted from November 1994 through October 1996 at five Oregon and three Washington select area study sites in the lower Columbia River. Physicochemical monitoring and aquatic biomonitoring programs were established to profile baseline parameters at each study site and document differences between study sites. Data collected at study sites where fish rearing operations were initiated indicate a potential negative impact on the surrounding benthic invertebrate communities.

  8. Yakima River Species Interactions Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Pearsons, Todd N.; Temple, Gabriel M.; Fritts, Anthony L. (Washington Department of Fish and Wildlife, Olympia, WA)

    2005-05-01T23:59:59.000Z

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from the Washington Department of Fish and Wildlife (WDFW) to the Bonneville Power Administration (BPA), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the thirteenth of a series of progress reports that address species interactions research and supplementation monitoring of fishes in response to supplementation of salmon and steelhead in the upper Yakima River basin (Hindman et al. 1991; McMichael et al. 1992; Pearsons et al. 1993; Pearsons et al. 1994; Pearsons et al. 1996; Pearsons et al. 1998, Pearsons et al. 1999, Pearsons et al. 2001a, Pearsons et al. 2001b, Pearsons et al. 2002, Pearsons et al. 2003, Pearsons et al. 2004). Journal articles and book chapters have also been published from our work (McMichael 1993; Martin et al. 1995; McMichael et al. 1997; McMichael and Pearsons 1998; McMichael et al. 1998; Pearsons and Fritts 1999; McMichael et al. 1999; McMichael et al. 1999; Pearsons and Hopley 1999; Ham and Pearsons 2000; Ham and Pearsons 2001; Amaral et al. 2001; McMichael and Pearsons 2001; Pearsons 2002, Fritts and Pearsons 2004, Pearsons et al. in press, Major et al. in press). This progress report summarizes data collected between January 1, 2004 and December 31, 2004. These data were compared to findings from previous years to identify general trends and make preliminary comparisons. Interactions between fish produced as part of the YKFP, termed target species or stocks, and other species or stocks (non-target taxa) may alter the population status of non-target species or stocks. This may occur through a variety of mechanisms, such as competition, predation, and interbreeding (Pearsons et al. 1994; Busack et al. 1997; Pearsons and Hopley 1999). Furthermore, the success of a supplementation program may be limited by strong ecological interactions such as predation or competition (Busack et al. 1997). Our work has adapted to new information needs as the YKFP has evolved. Initially, our work focused on interactions between anadromous steelhead and resident rainbow trout (for explanation see Pearsons et al. 1993), then interactions between spring chinook salmon and rainbow trout, and recently interactions between spring chinook salmon and highly valued non-target taxa (NTT; e.g., bull trout); and interactions between strong interactor taxa (e.g., those that may strongly influence the abundance of spring chinook salmon; e.g., smallmouth bass) and spring chinook salmon. The change in emphasis to spring chinook salmon has largely been influenced by the shift in the target species planned for supplementation (Bonneville Power Administration et al. 1996; Fast and Craig 1997). Originally, steelhead and spring chinook salmon were proposed to be supplemented simultaneously (Clune and Dauble 1991). However, due in part to the uncertainties associated with interactions between steelhead and rainbow trout, spring chinook and coho salmon were supplemented before steelhead. This redirection in the species to be supplemented has prompted us to prioritize interactions between spring chinook and rainbow trout, while beginning to investigate other ecological interactions of concern. Prefacility monitoring of variables such as rainbow trout density, distribution, and size structure was continued and monitoring of other NTT was initiated in 1997. This report is organized into five chapters that represent major topics associated with monitoring stewardship, utilization, and strong interactor taxa. Chapter 1 reports the results of non-target taxa monitoring after the sixth release of hatchery salmon smolts in the upper Yakima River Basin. Chapter 2 reports on the impacts of supplementation and reintroduction of salmon to trout. Chapter 2 was submitted as a manuscript to the North American Journal of Fisheries Management. Chapter 3 is an essay that describes the problems associated

  9. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Knudsen, Curtis M. (Oncorh Consulting, Olympia, WA)

    2003-05-01T23:59:59.000Z

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the second in a series of reports that address reproductive ecological research and monitoring of spring chinook in the Yakima River basin. In addition to within-year comparisons, between-year comparisons will be made to determine if traits of the wild Naches basin control population, the naturally spawning population in the upper Yakima River and the hatchery control population are diverging over time. This annual report summarizes data collected between April 1, 2002 and March 31, 2003. In the future, these data will be compared to previous years to identify general trends and make preliminary comparisons. Supplementation success in the Yakima Klickitat Fishery Project's (YKFP) spring chinook (Oncorhynchus tshawytscha) program is defined as increasing natural production and harvest opportunities, while keeping adverse ecological interactions and genetic impacts within acceptable bounds (Busack et al. 1997). Within this context demographics, phenotypic traits, and reproductive ecology have significance because they directly affect natural productivity. In addition, significant changes in locally adapted traits due to hatchery influence, i.e. domestication, would likely be maladaptive resulting in reduced population productivity and fitness (Taylor 1991; Hard 1995). Thus, there is a need to study demographic and phenotypic traits in the YKFP in order to understand hatchery and wild population productivity, reproductive ecology, and the effects of domestication (Busack et al. 1997). Tracking trends in these traits over time is also a critical aspect of domestication monitoring (Busack et al. 2002) to determine whether trait changes have a genetic component and, if so, are they within acceptable limits. Each chapter of this report deals with monitoring phenotypic and demographic traits of Yakima River basin spring chinook comparing hatchery and wild returns in 2002; the second year of adult hatchery returns. The first chapter deals specifically with adult traits of American River, Naches basin (excluding the American River), and upper Yakima River spring chinook, excluding gametes. The second chapter examines the gametic traits and progeny produced by upper Yakima River wild and hatchery origin fish. In the third chapter, we describe work begun initially in 2002 to characterize and compare redds of naturally spawning wild and hatchery fish in the upper Yakima River.

  10. EFFECTS OF NAVAL ORDNANCE TESTS ON THE PATUXENT RIVER FISHERY

    E-Print Network [OSTI]

    EFFECTS OF NAVAL ORDNANCE TESTS ON THE PATUXENT RIVER FISHERY Marine Biological Laboratory t, T "B and Wildlife Service, John L. Farley, Director EFFECTS OF NAVAL ORDNANCE TESTS ON THE PATUXENT RIVER FISHERY of Medicine, Univ. of Puerto Rico. #12;#12;EFFECTS OF NAVAL ORDNANCE TESTS ON THE PATUXENT RIVER FISHERY

  11. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Knudsen, Curtis M. (Oncorh Consulting, Olympia, WA); Schroder, Steven L. (Washington Department of Fish and Wildlife, Olympia, WA); Johnston, Mark V. (yakama Nation, Toppenish, WA)

    2005-05-01T23:59:59.000Z

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning and (2) summarize results of research that have broader scientific relevance. This is the fourth in a series of reports that address reproductive ecological research and monitoring of spring chinook populations in the Yakima River basin. This annual report summarizes data collected between April 1, 2004 and March 31, 2005 and includes analyses of historical baseline data, as well. Supplementation success in the Yakima Klickitat Fishery Project's (YKFP) spring chinook (Oncorhynchus tshawytscha) program is defined as increasing natural production and harvest opportunities, while keeping adverse ecological interactions and genetic impacts within acceptable bounds (Busack et al. 1997). Within this context demographics, phenotypic traits, and reproductive ecology have significance because they directly affect natural productivity. In addition, significant changes in locally adapted traits due to hatchery influence, i.e. domestication, would likely be maladaptive resulting in reduced population productivity and fitness (Taylor 1991; Hard 1995). Thus, there is a need to study demographic and phenotypic traits in the YKFP in order to understand hatchery and wild population productivity, reproductive ecology, and the effects of domestication (Busack et al. 1997). Tracking trends in these traits over time is also a critical aspect of domestication monitoring (Busack et al. 2004) to determine whether trait changes have a genetic component and, if so, are they within acceptable limits. The first chapter of this report compares first generation hatchery and wild upper Yakima River spring chinook returns over a suite of life-history, phenotypic and demographic traits. The second chapter deals specifically with identification of putative populations of wild spring chinook in the Yakima River basin based on differences in quantitative and genetic traits. The third chapter is a progress report on gametic traits and progeny produced by upper Yakima River wild and hatchery origin fish spawned in 2004 including some comparisons with Little Naches River fish. In the fourth chapter, we present a progress report on comparisons naturally spawning wild and hatchery fish in the upper Yakima River and in an experimental spawning channel at CESRF in 2004. The chapters in this report are in various stages of development. Chapters One and Two will be submitted for peer reviewed publication. Chapters Three and Four should be considered preliminary and additional fieldwork and/or analysis are in progress related to these topics. Readers are cautioned that any preliminary conclusions are subject to future revision as more data and analytical results become available.

  12. Yakima Fisheries Project : Final Environmental Impact Statement.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration; Washington (State). Dept. of Fish and Wildlife; Confederated Tribes and Bands of the Yakama Nation, Washington.

    1996-01-01T23:59:59.000Z

    BPA proposes to fund several fishery-related activities in the Yakima River Basin. These activities, known as the Yakima Fisheries Project (YFP), would be jointly managed by the State of Washington and the Yakima Indian Nation. The YFP is included in the Northwest Power Planning Council`s (Council`s) fish and wildlife program. The Council selected the Yakima River system for attention because fisheries resources are severely reduced from historical levels and because there is a significant potential for enhancement of these resources. BPA`s proposed action is to fund (1) information gathering on the implementation of supplementation techniques and on feasibility of reintroducing coho salmon in an environment where native populations have become extinct; (2) research activities based on continuous assessment, feedback and improvement of research design and activities ({open_quotes}adaptive management{close_quotes}); and (3) die construction, operation, and maintenance of facilities for supplementing populations of upper Yakima spring chinook salmon. Examined in addition to No Action are two alternatives for action: (1) supplementation of depressed natural populations of upper Yakima spring chinook and (2) that same supplementation plus a study to determine the feasibility of reestablishing naturally spawning population and a significant fall fishery for coho in the Yakima Basin. Alternative 2 is the preferred action. A central hatchery would be built for either alternative, as well as three sites with six raceways each for acclimation and release of spring chinook smolts. Major issues examined in the Revised Draft EIS include potential impacts of the project on genetic and ecological resources of existing fish populations, on water quality and quantity, on threatened and endangered species listed under the Endangered Species Act, and on the recreational fishery.

  13. Yakima Fisheries Project : Final Environmental Impact Statement : Summary.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration; Washington (State). Dept. of Fish and Wildlife; Confederated Tribes and Bands of the Yakama Nation, Washington.

    1996-01-01T23:59:59.000Z

    The Bonneville Power Administration (BPA) proposes to fund the Yakima Fisheries Project (YFP) to undertake fishery research and mitigation activities in the Yakima River Basin. The State of Washington and the Yakama Indian Nation (YIN) would jointly direct the project. In cooperation with BPA, the project managers propose to construct, operate and maintain anadromous (e.g. salmon) fish production facilities The goal is to conduct research activities designed to increase knowledge of supplementation techniques. These techniques would be applied to rebuild naturally spawning anadromous fish stocks historically present in the Yakima River Basin and, ultimately, those throughout the Columbia River Basin. Eventually, the YFP might involve the supplementation of all stocks of anadromous fish known to have occurred in the Yakima Basin. However, at this time only two action alternatives have been proposed, in addition to the No Action alternative: Alternative (1) would supplement depressed naturally spawning populations of upper Yakima spring chinook salmon; Alternative (2) (preferred) would include all actions under Alternative 1; it would also add a study to determine the feasibility of re-establishing a naturally spawning population and a significant fall fishery for coho salmon in the Yakima Basin (Coho smolts are currently being imported from another basin under the Columbia River Basin Fish Management Plan; the stock is now virtually eliminated from the Basin.)

  14. Yakima Fisheries Project : Revised Draft Environmental Impact Statement.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1995-05-01T23:59:59.000Z

    BPA proposes to fund several fishery-related activities in the Yakima River Basin. The Yakima Fisheries Project (YFP), included in the Northwest Power Planning Council`s fish and wildlife program, would be jointly managed by the State of Washington and the Yakima Indian Nation. Fisheries resources in the Yakima River are severely reduced from historical levels and there is a significant potential for enhancement of these resources. BPA`s proposed action is to fund (1) information gathering on the implementation of supplementation techniques and on feasibility of reintroducing coho salmon in an environment where native populations have become extinct; (2) research activities based on continuous assessment, feedback and improvement of research design and activities ({open_quotes}adaptive management{close_quotes}); and (3) the construction, operation, and maintenance of facilities for supplementing populations of upper Yakima spring chinook salmon. The project has been considerably revised from the original proposal described in the first draft EIS. Examined in addition to No Action (which would leave present anadromous fisheries resources unchanged in the, Basin) are two alternatives for action: (1) supplementation of depressed natural populations of upper Yakima spring chinook and (2) that same supplementation plus a study to determine the feasibility of re-establishing (via stock imported from another basin) naturally spawning population and a significant fall fishery for coho in the Yakima Basin. Alternative 2 has been identified as the preferred action. Major issues examined in the Revised Draft EIS include potential impacts of the project on genetic and ecological resources of existing fish populations, on water quality and quantity, on threatened and endangered species listed under the Endangered Species Act, and on the recreational fishery.

  15. Yakima River Species Interactions Study; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 7 of 7, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Pearsons, Todd N.; Fritts, Anthony L.; Temple, Gabriel M. (Washington Department of Fish and Wildlife, Olympia, WA)

    2004-05-01T23:59:59.000Z

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from the Washington Department of Fish and Wildlife (WDFW) to the Bonneville Power Administration (BPA), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the twelfth of a series of progress reports that address species interactions research and supplementation monitoring of fishes in response to supplementation of salmon and steelhead in the upper Yakima River basin (Hindman et al. 1991; McMichael et al. 1992; Pearsons et al. 1993; Pearsons et al. 1994; Pearsons et al. 1996; Pearsons et al. 1998, Pearsons et al. 1999, Pearsons et al. 2001a, Pearsons et al. 2001b, Pearsons et al. 2002, Pearsons et al. 2003). Journal articles and book chapters have also been published from our work (McMichael 1993; Martin et al. 1995; McMichael et al. 1997; McMichael and Pearsons 1998; McMichael et al. 1998; Pearsons and Fritts 1999; McMichael et al. 1999; McMichael et al. 1999; Pearsons and Hopley 1999; Ham and Pearsons 2000; Ham and Pearsons 2001; Amaral et al. 2001; McMichael and Pearsons 2001; Pearsons 2002, Fritts and Pearsons 2004, Pearsons et al. in press, Major et al. in press). This progress report summarizes data collected between January 1, 2003 and December 31, 2003. These data were compared to findings from previous years to identify general trends and make preliminary comparisons. Interactions between fish produced as part of the YKFP, termed target species or stocks, and other species or stocks (non-target taxa) may alter the population status of non-target species or stocks. This may occur through a variety of mechanisms, such as competition, predation, and interbreeding (Pearsons et al. 1994; Busack et al. 1997; Pearsons and Hopley 1999). Furthermore, the success of a supplementation program may be limited by strong ecological interactions such as predation or competition (Busack et al. 1997). Our work has adapted to new information needs as the YKFP has evolved. Initially, our work focused on interactions between anadromous steelhead and resident rainbow trout (for explanation see Pearsons et al. 1993), then interactions between spring chinook salmon and rainbow trout, and recently interactions between spring chinook salmon and highly valued non-target taxa (NTT; e.g., bull trout); and interactions between strong interactor taxa (e.g., those that may strongly influence the abundance of spring chinook salmon; e.g., smallmouth bass) and spring chinook salmon. The change in emphasis to spring chinook salmon has largely been influenced by the shift in the target species planned for supplementation (Bonneville Power Administration et al. 1996; Fast and Craig 1997). Originally, steelhead and spring chinook salmon were proposed to be supplemented simultaneously (Clune and Dauble 1991). However, due in part to the uncertainties associated with interactions between steelhead and rainbow trout, spring chinook and coho salmon were supplemented before steelhead. This redirection in the species to be supplemented has prompted us to prioritize interactions between spring chinook and rainbow trout, while beginning to investigate other ecological interactions of concern. Prefacility monitoring of variables such as rainbow trout density, distribution, and size structure was continued and monitoring of other NTT was initiated in 1997. This report is organized into three chapters that represent major topics associated with monitoring stewardship, utilization, and strong interactor taxa. Chapter 1 reports the results of non-target taxa monitoring after the fifth release of hatchery salmon smolts in the upper Yakima River basin. Chapter 2 describes our tributary sampling methodology for monitoring the status of tributary NTT. Chapter 3 describes predation on juvenile salmonids by smallmouth bass and channel catfish in the lower Yakima River. The chapters in this report are in various stages of d

  16. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook and Juvenile-to-Adult PIT-tag Retention; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001 Annual Report.

    SciTech Connect (OSTI)

    Knudsen, Curtis M. (Washington Department of Fish and Wildlife, Olympia, WA)

    2002-11-01T23:59:59.000Z

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the first in an anticipated series of reports that address reproductive ecological research and monitoring of spring chinook in the Yakima River basin. In addition to within-year comparisons, between-year comparisons will be made to determine if traits of the wild Naches basin control population, the naturally spawning population in the upper Yakima River and the hatchery control population are diverging over time. This annual report summarizes data collected between April 1, 2001 and March 31, 2002. In the future, these data will be compared to previous years to identify general trends and make preliminary comparisons.

  17. Development of a Network-Based Information Infrastructure for Fisheries and Hydropower Information in the Columbia River Basin : Final Project Report.

    SciTech Connect (OSTI)

    Scheibe, Timothy D.; Johnson, Gary E.; Perkins, Bill

    1997-05-01T23:59:59.000Z

    The goal of this project was to help develop technology and a unified structure to access and disseminate information related to the Bonneville Power Administration's fish and wildlife responsibility in the Pacific Northwest. BPA desires to increase access to, and exchange of, information produced by the Environment Fish, and Wildlife Group in concert with regional partners. Historically, data and information have been managed through numerous centralized, controlled information systems. Fisheries information has been fragmented and not widely exchanged. Where exchange has occurred, it often is not timely enough to allow resource managers to effectively use the information to guide planning and decision making. This project (and related projects) have successfully developed and piloted a network-based infrastructure that will serve as a vehicle to transparently connect existing information systems in a manner that makes information exchange efficient and inexpensive. This project was designed to provide a mechanism to help BPA address measures in the Northwest Power Planning Council's (NPPC) Fish and Wildlife program: 3.2H Disseminate Research and Monitoring Information and 5.1A.5 manage water supplies in accordance with the Annual Implementation Work Plan. This project also provided resources that can be used to assist monitoring and evaluation of the Program.

  18. Muddy River Restoration Project Begins

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Muddy River Restoration Project Begins Page 5 #12;2 YANKEE ENGINEER February 2013 Yankee Voices of the Muddy River Restoration project. Inset photo: Flooding at the Muddy River. Materials provided by Mike Project Manager, on the passing of his father in law, Francis James (Jim) Murray, Jan. 9. ... to Laura

  19. GREAT LAKES FISHERY COMMISSION 2008 Project Completion Report1

    E-Print Network [OSTI]

    . Whitledge Fisheries and Illinois Aquaculture Center Southern Illinois University Carbondale, IL 62901 River (Fox, Des Plaines and DuPage Rivers) and to determine whether otolith isotopic and elemental in the Fox and Des Plaines Rivers could be distinguished from one another and from fish captured

  20. Pecos River Ecosystem Monitoring Project

    E-Print Network [OSTI]

    McDonald, A.; Hart, C.

    2004-01-01T23:59:59.000Z

    TR- 272 2004 Pecos River Ecosystem Monitoring Project C. Hart A. McDonald Texas Water Resources Institute Texas A&M University - 146 - 2003 Pecos River Ecosystem Monitoring Project... Charles R. Hart, Extension Range Specialist, Fort Stockton Alyson McDonald, Extension Assistant – Hydrology, Fort Stockton SUMMARY The Pecos River Ecosystem Project is attempting to minimize the negative impacts of saltcedar on the river ecosystem...

  1. Columbia River Channel Improvement Project Rock Removal Blasting: Monitoring Plan

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Johnson, Gary E.

    2010-01-29T23:59:59.000Z

    This document provides a monitoring plan to evaluate take as outlined in the National Marine Fisheries Service 2002 Biological Opinion for underwater blasting to remove rock from the navigation channel for the Columbia River Channel Improvement Project. The plan was prepared by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers (USACE), Portland District.

  2. Moses Lake Fishery Restoration Project : FY 1999 Annual Report.

    SciTech Connect (OSTI)

    None given

    2000-12-01T23:59:59.000Z

    The Moses Lake Project consists of 3 phases. Phase 1 is the assessment of all currently available physical and biological information, the collection of baseline biological data, the formulation of testable hypotheses, and the development of a detailed study plan to test the hypotheses. Phase 2 is dedicated to the implementation of the study plan including data collection, hypotheses testing, and the formulation of a management plan. Phase 3 of the project is the implementation of the management plan, monitoring and evaluation of the implemented recommendations. The project intends to restore the failed recreational fishery for panfish species (black crappie, bluegill and yellow perch) in Moses Lake as off site mitigation for lost recreational fishing opportunities for anadromous species in the upper Columbia River. This report summarizes the results of Phase 1 investigations and presents the study plan directed at initiating Phase 2 of the project. Phase 1of the project culminates with the formulation of testable hypotheses directed at investigating possible limiting factors to the production of panfish in Moses Lake. The limiting factors to be investigated will include water quality, habitat quantity and quality, food limitations, competition, recruitment, predation, over harvest, environmental requirements, and the physical and chemical limitations of the system in relation to the fishes.

  3. Lower Flathead River Fisheries Study, 1983 Annual Report.

    SciTech Connect (OSTI)

    DosSantos, Joseph M.; Darling, James E.; Cross, Paul D.

    1986-07-01T23:59:59.000Z

    In January of 1983 a two-phase study of the lower Flathead River was initiated by the Confederated Salish and Kootenai Tribes with funding provided by the Bonneville Power Administration. The study fulfills program measure 804 (a) (3) of the Columbia River Basin Fish and Wildlife Program. During 1983 Phase I of the study was completed resulting in a detailed study plan for the next four years and the methods to be employed during the study. Preliminary observations suggest the present operation of Kerr hydroelectric facility and land use practices within the drainage have combined to significantly reduce spawning success of salmonids and northern pike, and thus recruitment to the fisheries of the main river and tributaries. Main river spawning marshes were observed to be drained frequently during the northern pike spawning season which would result in desiccation of eggs and loss of attached fry. Water level fluctuations also caused trapping of juvenile fish and may be an important source of juvenile mortality.

  4. EIS-0169: Yakima River Basin Fisheries Project

    Broader source: Energy.gov [DOE]

    This EIS assesses the potential impacts of the Bangor Hydro-electric Tranmission Line and associated infrastructure, including adding an alternative acclimation site, water rights issues and discussion of irrigation water availability, adding more information on recreation impacts, and clarifying agency roles and responsibilities.

  5. River Protection Project (RPP) Project Management Plan

    SciTech Connect (OSTI)

    SEEMAN, S.E.

    2000-04-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), in accordance with the Strom Thurmond National Defense Authorization Act for Fiscal Year 1999, established the Office of River Protection (ORP) to successfully execute and manage the River Protection Project (RPP), formerly known as the Tank Waste Remediation System (TWRS). The mission of the RPP is to store, retrieve, treat, and dispose of the highly radioactive Hanford tank waste in an environmentally sound, safe, and cost-effective manner. The team shown in Figure 1-1 is accomplishing the project. The ORP is providing the management and integration of the project; the Tank Farm Contractor (TFC) is responsible for providing tank waste storage, retrieval, and disposal; and the Privatization Contractor (PC) is responsible for providing tank waste treatment.

  6. The CHPRC Columbia River Protection Project Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-11-30T23:59:59.000Z

    Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.

  7. River Protection Project (RPP) Project Management Plan

    SciTech Connect (OSTI)

    NAVARRO, J.E.

    2001-03-07T23:59:59.000Z

    The Office of River Protection (ORP) Project Management Plan (PMP) for the River Protection Project (RPP) describes the process for developing and operating a Waste Treatment Complex (WTC) to clean up Hanford Site tank waste. The Plan describes the scope of the project, the institutional setting within which the project must be completed, and the management processes and structure planned for implementation. The Plan is written from the perspective of the ORP as the taxpayers' representative. The Hanford Site, in southeastern Washington State, has one of the largest concentrations of radioactive waste in the world, as a result of producing plutonium for national defense for more than 40 years. Approximately 53 million gallons of waste stored in 177 aging underground tanks represent major environmental, social, and political challenges for the U.S. Department of Energy (DOE). These challenges require numerous interfaces with state and federal environmental officials, Tribal Nations, stakeholders, Congress, and the US Department of Energy-Headquarters (DOE-HQ). The cleanup of the Site's tank waste is a national issue with the potential for environmental and economic impacts to the region and the nation.

  8. RIVER PROTECTION PROJECT SYSTEM PLAN

    SciTech Connect (OSTI)

    CERTA PJ

    2008-07-10T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste management and treatment facilities, (8) Developing and implementing technical solutions to mitigate the impact from substantial1y increased estimates of Na added during the pretreatment of the tank waste solids, This involves a combination of: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, or (4) accepting an increase in mission duration, ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks, Key elements of the implementation of this strategy are included within the scope of the Tank Operations Contract, currently in procurement Since 2003, the ORP has conducted over 30 design oversight assessments of the Waste Treatment and Immobilization Plant (WTP). The estimated cost at completion has increased and the schedule for construction and commissioning of the WTP has extended, The DOE, Office of Environmental Management (EM), sanctioned a comprehensive review of the WTP flowsheet, focusing on throughput. In 2005, the TFC completed interim stabilization of the SSTs and as of March 2007, has completed the retrieval of seven selected SSTs. Demonstration of supplemental treatment technologies continues. The ongoing tank waste retrieval experience, progress with supplemental treatment technologies, and changes in WTP schedule led to the FY 2007 TFC baseline submittal in November 2006. The TFC baseline submittal was developed before the WTP schedule was fully understood and approved by ORP, and therefore reflects an earlier start date for the WTP facilities. This System Plan is aligned with the current WTP schedule with hot commissioning beginning in 2018 and full operations beginning in 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of

  9. RIVER PROTECTION PROJECT SYSTEM PLAN

    SciTech Connect (OSTI)

    CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

    2009-09-15T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. (6) Deploying interim storage capacity for the immobilized high-level waste (IHLW) pending determination of the final disposal pathway. (7) Closing the SST and DST tank farms, ancillary facilities, and all associated waste management and treatment facilities. (8) Optimizing the overall mission by resolution of technical and programmatic uncertainties, configuring the tank farms to provide a steady, well-balanced feed to the WTP, and performing trade-offs of the required amount and type of supplemental treatment and of the amount of HLW glass versus LAW glass. ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks. Key elements needed to implement the strategy described above are included within the scope of the Tank Operations Contract (TOC). Interim stabilization of the SSTs was completed in March 2004. As of April 2009, retrieval of seven SSTs has been completed and retrieval of four additional SSTs has been completed to the limits of technology. Demonstration of supplemental LAW treatment technologies has stopped temporarily pending revision of mission need requirements. Award of a new contract for tank operations (TOC), the ongoing tank waste retrieval experience, HLW disposal issues, and uncertainties in waste feed delivery and waste treatment led to the revision of the Performance Measurement Baseline (PM B), which is currently under review prior to approval. 6 This System Plan is aligned with the current WTP schedule, with hot commissioning beginning in 2018, and full operations beginning in late 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of these decisions will be to provide a second LAW vitrification facility. No final implementation decisions regarding supplemental technology can be made until the Tank Closure and

  10. Yakima/Klickitat Fisheries Project Genetic Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2005-2006 Annual Report.

    SciTech Connect (OSTI)

    Busack, Craig A.; Fritts, Anthony L.; Kassler, Todd (Washington Department of Fish and Wildlife, Olympia, WA)

    2006-05-01T23:59:59.000Z

    This report covers one of many topics under the Yakima/Klickitat Fisheries Project's Monitoring and Evaluation Program (YKFPME). The YKFPME is funded under two BPA contracts, one for the Yakama Nation and the other for the Washington Department of Fish and Wildlife (Contract number 22370, Project Number 1995-063-25). A comprehensive summary report for all of the monitoring and evaluation topics will be submitted after all of the topical reports are completed. This approach to reporting enhances the ability of people to get the information they want, enhances timely reporting of results, and provides a condensed synthesis of the whole YKFPME. The current report was completed by the Washington Department of Fish and Wildlife.

  11. Yakima/Klickitat Fisheries Project - Klickitat Monitoring and Evaluation, 2007 Annual Report.

    SciTech Connect (OSTI)

    Zendt, Joe; Babcock, Mike [Yakama Nation Fisheries Resource Management

    2006-04-02T23:59:59.000Z

    This report describes the results of monitoring and evaluation (M&E) activities for salmonid fish populations and habitat in the Klickitat River subbasin in south-central Washington. The M&E activities described here were conducted as a part of the Bonneville Power Administration (BPA)-funded Yakima/Klickitat Fisheries Project (YKFP) and were designed by consensus of the scientists with the Yakama Nation (YN) Fisheries Program. YKFP is a joint project between YN and Washington Department of Fish and Wildlife (WDFW). Overall YKFP goals are to increase natural production of and opportunity to harvest salmon and steelhead in the Yakima and Klickitat subbasins using hatchery supplementation, harvest augmentation and habitat improvements. Klickitat subbasin M&E activities have been subjected to scientific and technical review by members of the YKFP Science/Technical Advisory Committee (STAC) as part of the YKFP's overall M&E proposal. Yakama Nation YKFP biologists have transformed the conceptual design into the tasks described. YKFP biologists have also been involved with the Collaborative Systemwide Monitoring and Evaluation Project (CSMEP - a project aimed at improving the quality, consistency, and focus of fish population and habitat data to answer key M&E questions relevant to major decisions in the Columbia Basin) and are working towards keeping Klickitat M&E activities consistent with CSMEP recommendations. This report summarizes progress and results for the following major categories of YN-managed tasks under this contract: (1) Monitoring and Evaluation - to gather baseline information in order to characterize habitat and salmonid populations pre- and post-habitat restoration and pre-supplementation. (2) Ecological Interactions - to determine presence of pathogens in wild and naturally produced salmonids in the Klickitat Basin and develop supplementation strategies using this information. (3) Genetics - to develop YKFP supplementation broodstock collection protocols for the preservation of genetic variability, by refining methods of detecting within-stock genetic variability and between-stock genetic variability.

  12. Kootenai River Fisheries Investigation[s]; Stock Status of Burbot, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Paragamian, Vaughn L.; Hoyle, Genevieve

    2005-09-01T23:59:59.000Z

    The Kootenai River Fisheries Investigation Project planned to monitor burbot Lota lota movement in the winter of 2002-2003 and test a hypothesis regarding the relationship of winter flow to upstream spawning migration success. The U.S. Army Corps of Engineers and the Bonneville Power Administration were unable to provide the consistent low winter flows needed to meet the experimental design criteria in that monitoring and evaluation plan (approximately 170 m{sup 3}/s from Libby Dam). Although conditions consistent with management for sustained minimum flows persisted throughout the winter, and stable low flows were maintained below Libby Dam from September 1 through November 24, 2002 (158 m{sup 3}/s average) and from January 1, 2003 until May 1 (144 m{sup 3}/s average), flows in the intervening 37 d period from November 25 to December 31 were increased significantly by the U.S. Army Corps of Engineers. During that important December spawning migration period for burbot, flows were well above those proposed in the monitoring and evaluation plan and peaked at 741 m{sup 3}/s on December 21, 2002. Furthermore, despite the low flow conditions for much of the winter, our capture of 10 burbot was the lowest since this investigation began in 1993, evidence that the stock is extremely depressed and the numbers of burbot are declining. We captured a single burbot in 2002-2003 that provided circumstantial evidence reproduction occurred during the winter of 2000-2001. This burbot of 352 mm TL was among the smallest captured since sampling began in 1993. Seven burbot were monitored with sonic telemetry; two of those were tagged the previous winter. The capture of a female burbot at Ambush Rock during the spawning period supports results of previous findings that low flows during winter enhances burbot migration and spawning. Sampling for larval burbot was conducted, but no larval burbot were captured.

  13. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Willamette River Basin, 1934-1942, Final Report.

    SciTech Connect (OSTI)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01T23:59:59.000Z

    This document contains summary reports of stream habitat-surveys, conducted in the Willamette River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1934-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al., 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries contained in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database should be used to assess pool and substrate conditions. This data is available from the Bonneville Power Administration. The Bureau of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960), inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the basis to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

  14. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Yakima River Basin, 1934-1942, Final Report.

    SciTech Connect (OSTI)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1996-01-01T23:59:59.000Z

    This document contains summary reports of stream habitat surveys, conducted in the Yakima River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1934-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al., 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database should be used to assess pool and substrate conditions. This data is available from the Bonneville Power Administration. The Bureau of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960), inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of the past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the baseline information to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

  15. Urban Fisheries Project Principal Investigator: Dr. Joseph E. Morris

    E-Print Network [OSTI]

    Koford, Rolf R.

    overall potential as a sustainable fishery for the widest range of users. Using historical data from built, in part, by historical data. Each site was then ranked and delineated into priority groups Heritage Pond, Altoona. While the matrix is structured to efficiently capture metrics used in fisheries

  16. River Protection Project (RPP) Dangerous Waste Training Plan

    SciTech Connect (OSTI)

    POHTO, R.E.

    1999-09-28T23:59:59.000Z

    This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units.

  17. Little Big Horn River Water Quality Project

    SciTech Connect (OSTI)

    Bad Bear, D.J.; Hooker, D. [Little Big Horn Coll., Crow Agency, MT (United States)

    1995-10-01T23:59:59.000Z

    This report summarizes the accomplishments of the Water Quality Project on the Little Big horn River during the summer of 1995. The majority of the summer was spent collecting data on the Little Big Horn River, then testing the water samples for a number of different tests which was done at the Little Big Horn College in Crow Agency, Montana. The intention of this study is to preform stream quality analysis to gain an understanding of the quality of selected portion of the river, to assess any impact that the existing developments may be causing to the environment and to gather base-line data which will serve to provide information concerning the proposed development. Citizens of the reservation have expressed a concern of the quality of the water on the reservation; surface waters, ground water, and well waters.

  18. A study of Texas rivers with attention to river access and recreational fisheries

    E-Print Network [OSTI]

    Baker, Troy L

    2013-02-22T23:59:59.000Z

    Any angler can legally use a navigable Texas river or stream for recreational fishing. Often, however, the very definition of what navigability means is in question and private property boundaries are unclear. Over 98% of property adjacent to Texas...

  19. Environmental concerns in Kern River Project

    SciTech Connect (OSTI)

    Hargis, D. (Dames and Moore, Los Angeles, CA (US))

    1991-10-01T23:59:59.000Z

    This paper reports that the US natural gas transmission network will soon gain an important and much-needed link---the Kern River Pipeline. The project is the culmination of a massive 6-year planning, permitting and design effort of kern River Gas Transmission Co., a joint venture of Tenneco Inc. and Williams Western Pipeline Co. The Kern River Pipeline will have an initial capacity of 700 MMcfd. Total construction costs are estimated at $925 million, with completion set by the end of the year. The pipeline extends 904 miles from Opal, Wyo., to oil fields in the San Joaquin Valley, Kern Country, Calif. A 230-mile segment from Daggett, Calif., to its terminus at Kern County is shared with, and being built by, Mojave Pipeline Co. Extending across four states -- Wyoming, Utah, Nevada and California -- the Kern River Pipeline is the largest gas pipeline to be built in the US for more than 10 years. it will link the high energy demand areas of Southern California with the natural gas-rich territories of the Rocky Mountains.

  20. Walla Walla River Basin Fish Habitat Enhancement Project, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Volkman, Jed (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2005-12-01T23:59:59.000Z

    In 2002 and 2003, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts on private properties in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of this effort is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled nine properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and four properties on the mainstem Walla Walla River. Major accomplishments during the reporting period include the following: (1) Secured approximately $229,000 in project cost share; (2) Purchase of 46 acres on the mainstem Walla Walla River to be protected perpetually for native fish and wildlife; (3) Developed three new 15 year conservation easements with private landowners; (4) Installed 3000 feet of weed barrier tarp with new plantings within project area on the mainstem Walla Walla River; (5) Expanded easement area on Couse Creek to include an additional 0.5 miles of stream corridor and 32 acres of upland habitat; (6) Restored 12 acres on the mainstem Walla Walla River and 32 acres on Couse Creek to native perennial grasses; and (7) Installed 50,000+ new native plants/cuttings within project areas.

  1. Yakima/Klickitat Fisheries Project; Washington Department of Fish and Wildlife Policy/Technical Involvement and Planning, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Easterbrooks, John A.; Pearsons, Todd N. (Washington Department of Fish and Wildlife, Olympia, WA)

    2003-03-01T23:59:59.000Z

    The Yakima/Klickitat Fisheries Project (YKFP) is a supplementation project sponsored by the Northwest Power Planning Council (Columbia River Basin Fish and Wildlife Program 1994, Measure 7.4K). The objectives of the YKFP are: (1) to test the hypothesis that new supplementation techniques can be used in the Yakima River Basin to increase natural production and to improve harvest opportunities while maintaining the long-term genetic fitness of the wild and native salmonid populations and keeping adverse ecological interactions within acceptable limits (Yakima Fisheries Project Final Environment Impact Statement, 1996); (2) provide knowledge about the use of supplementation, so that it may be used to mitigate effects on anadromous fisheries throughout the Columbia River Basin; (3) to maintain and improve the quantity and productivity of salmon and steelhead habitat, including those areas made accessible by habitat improvements; (4) to ensure that Project implementation remains consistent with the Council's Fish and Wildlife Program; and (5) to implement the Project in a prudent and environmentally sound manner. Current YKFP operations have been designed to test the principles of supplementation (Busack et al. 1997). The Project's experimental design has focused on the following critical uncertainties affecting supplementation: (1) The survival and reproductive success of hatchery fish after release from the hatchery; (2) The impacts of hatchery fish as they interact with non-target species and stocks; and, (3) The effects of supplementation on the long-term genetic fitness of fish stocks. The YKFP endorses an adaptive management policy applied through a project management framework as described in the Yakima/Klickitat Fisheries Project Planning Status Report (1995), Fast and Craig (1997), Clune and Dauble 1991. The project is managed by a Policy Group consisting of a representative of the Yakama Nation (YN, lead agency) and a representative of the Washington Department of Fish and Wildlife (WDFW). The functions of the parties are described in an MOU between the YN and the WDFW. A Scientific and Technical Advisory Committee (STAC) consisting of one representative from each management entity reports to the Policy Group and provides technical input on policy and other issues. Additional committee's, such as the Monitoring Implementation and Planning Team (MIPT), serve as the discretion of STAC. The Policy Group and STAC meet periodically (usually monthly) to conduct the business of the YKFP. Although the YKFP is an all stocks initiative (BPA 1996), most effort to date has been directed at spring chinook salmon and coho salmon. This report is a compilation of the year's activities between August 1, 2001 and July 31, 2002. All findings should be considered preliminary until data collection is completed or the information is published in a peer-reviewed journal.

  2. Salt River Project SRP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY) JumpLandSRTHelena:Sakti3River Project

  3. River Protection Project (RPP) Dangerous Waste Training Plan

    SciTech Connect (OSTI)

    POHTO, R.E.

    1999-12-28T23:59:59.000Z

    This supporting document contains the training plan for dangerous waste management at River Protection Project treatment, storage or disposal facility (TSD) Units.

  4. Colorado River Storage Project Management Center Customer Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    River Storage Project Management Center Customer Meeting May 21, 2015 TABLE OF CONTENTS RATES 1 RATES PRESENTATION HANDOUTS 2 REPAYMENT MILESTONE AND STATUS OF REPAYMENT 3 CURRENT...

  5. Dungeness Crab Dredging Entrainment Studies in the Lower Columbia River, 2002 – 2004: Loss Projections, Salinity Model, and Scenario Analysis

    SciTech Connect (OSTI)

    Pearson, Walter H.; Williams, Greg D.; Skalski, John R.

    2005-01-01T23:59:59.000Z

    Dungeness crab studies conducted in 2002 for the Portland District of the U.S. Army Corps of Engineers (Corps) constituted a major step forward in quantifying crab entrainment through statistical projections of adult equivalent loss (AEL) and loss to the fishery (LF) from proposed construction and maintenance dredging in the Columbia River navigation channel (Pearson et al. 2002, 2003). These studies also examined the influence of bottom salinity on crab abundance and entrainment rates. Additional sampling was conducted in 2004 to tighten loss projections, further develop the crab salinity model, and apply the model to assess correlations of entrainment rates and projected losses with seasonal salinity changes.

  6. River Protection Project information systems assessment

    SciTech Connect (OSTI)

    JOHNSON, A.L.

    1999-07-28T23:59:59.000Z

    The Information Systems Assessment Report documents the results from assessing the Project Hanford Management Contract (PHMC) Hanford Data Integrator 2000 (HANDI 2000) system, Business Management System (BMS) and Work Management System phases (WMS), with respect to the System Engineering Capability Assessment Model (CAM). The assessment was performed in accordance with the expectations stated in the fiscal year (FY) 1999 Performance Agreement 7.1.1, item (2) which reads, ''Provide an assessment report on the selected Integrated Information System by July 31, 1999.'' This report assesses the BMS and WMS as implemented and planned for the River Protection Project (RPP). The systems implementation is being performed under the PHMC HANDI 2000 information system project. The project began in FY 1998 with the BMS, proceeded in FY 1999 with the Master Equipment List portion of the WMS, and will continue the WMS implementation as funding provides. This report constitutes an interim quality assessment providing information necessary for planning RPP's information systems activities. To avoid confusion, HANDI 2000 will be used when referring to the entire system, encompassing both the BMS and WMS. A graphical depiction of the system is shown in Figure 2-1 of this report.

  7. The Pecos River Ecosystem Project Progress Report

    E-Print Network [OSTI]

    Hart, C.

    planting saltcedar for stream bank erosion control along such rivers as the Pecos River in New Mexico. The plant has spread down the Pecos River into Texas and is now known to occur along the river south of Interstate 10. More recently the plant has become...

  8. Evaluating Cumulative Ecosystem Response to Restoration Projects in the Columbia River Estuary, Annual Report 2006

    SciTech Connect (OSTI)

    Johnson, Gary E.; Borde, Amy B.; Dawley, Earl; Diefenderfer, Heida L.; Ebberts, Blaine D.; Putman, Douglas A.; Roegner, G. C.; Thom, Ronald M.; Vavrinec, John; Whiting, Allan H.

    2007-12-06T23:59:59.000Z

    This report is the third annual report of a six-year project to evaluate the cumulative effects of habitat restoration action in the Columbia River Estuary (CRE). The project is being conducted for the U.S. Army Corps of Engineers (Corps) by the Marine Sciences Laboratory of the Pacific Northwest National Laboratory, the Pt. Adams Biological Field Station of the National Marine Fisheries Service, and the Columbia River Estuary Study Taskforce. Measurement of the cumulative effects of ecological restoration projects in the Columbia River estuary is a formidable task because of the size and complexity of the estuarine landscape and the meta-populations of salmonids in the Columbia River basin. Despite the challenges presented by this system, developing and implementing appropriate indicators and methods to measure cumulative effects is the best way to enable estuary managers to track the overall effectiveness of investments in estuarine restoration projects. This project is developing methods to quantify the cumulative effects of multiple restoration activities in the CRE. The overall objectives of the 2006 study were to continue to develop techniques to assess cumulative effects, refine the standard monitoring protocols, and initiate development of an adaptive management system for Corps of Engineers’ habitat restoration monitoring efforts in the CRE. (The adaptive management effort will be reported at a later date.) Field studies during 2006 were conducted in tidal freshwater at Kandoll Farm on the lower Grays River and tidal brackish water at Vera Slough on Youngs Bay. Within each of area, we sampled one natural reference site and one restoration site. We addressed the overall objectives with field work in 2006 that, coupled with previous field data, had specific objectives and resulted in some important findings that are summarized here by chapter in this report. Each chapter of the report contains data on particular monitored variables for pre- and post-restoration conditions at both the Kandoll and Vera study areas.

  9. WABASH RIVER COAL GASIFICATION REPOWERING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2000-09-01T23:59:59.000Z

    The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

  10. River Protection Project (RPP) Environmental Program Plan

    SciTech Connect (OSTI)

    POWELL, P.A.

    2000-03-29T23:59:59.000Z

    This Environmental Program Plan was developed in support of the Integrated Environment, Safety, and Health Management System Plan (ISMS) (RPP-MP-003), which establishes a single, defined environmental, safety, and health management system that integrates requirements into the work planning and execution processes to protect workers, the public, and the environment. The ISMS also provides mechanisms for increasing worker involvement in work planning, including hazard and environmental impact identification, analysis, and control; work execution; and feedback/improvement processes. The ISMS plan consists of six core functions. Each section of this plan describes the activities of the River Protection Project (RPP) (formerly known as the Tank Waste Remediation System) Environmental organization according to the following core functions: Establish Environmental Policy; Define the Scope of Work; Identify Hazards, Environmental Impacts, and Requirements; Analyze Hazards and Environmental Impacts and Implement Controls; Perform Work within Controls; and Provide Feedback and Continuous Improvement.

  11. Report on the Predation Index, Predator Control Fisheries, and Program Evaluation for the Columbia River Basin Experimental Northern Pikeminnow Management Program, 2008 Annual Report.

    SciTech Connect (OSTI)

    Porter, Russell [Pacific States Marine Fisheries Commission].

    2009-09-10T23:59:59.000Z

    This report presents results for year seventeen in the basin-wide Experimental Northern Pikeminnow Management Program to harvest northern pikeminnow1 (Ptychocheilus oregonensis) in the Columbia and Snake Rivers. This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991 - a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and dam-angling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional effective harvest techniques. During 1991 and 1992, we developed and tested a modified (small-sized) Merwin trapnet. We found this floating trapnet to be very effective in catching northern pikeminnow at specific sites. Consequently, in 1993 we examined a system-wide fishery using floating trapnets, but found this fishery to be ineffective at harvesting large numbers of northern pikeminnow on a system-wide scale. In 1994, we investigated the use of trap nets and gillnets at specific locations where concentrations of northern pikeminnow were known or suspected to occur during the spring season (i.e., March through early June). In addition, we initiated a concerted effort to increase public participation in the sport-reward fishery through a series of promotional and incentive activities. In 1995, 1996, and 1997, promotional activities and incentives were further improved based on the favorable response in 1994. Results of these efforts are subjects of this annual report. Evaluation of the success of test fisheries in achieving our target goal of a 10-20% annual exploitation rate on northern pikeminnow is presented in Report C of this report. Overall program success in terms of altering the size and age composition of the northern pikeminnow population and in terms of potential reductions in loss of juvenile salmonids to northern pikeminnow predation is also discussed in Report C. Program cooperators include the Pacific States Marine Fisheries Commission (PSMFC), Oregon Department of Fish and Wildlife (ODFW), and Washington Department of Fish and Wildlife (WDFW), and the U. S. Department of Agriculture (USDA), Animal Damage Unit as a contractor to test Dam Angling. The PSMFC was responsible for coordination and administration of the program; PSMFC subcontracted various tasks and activities to ODFW and WDFW based on the expertise each brought to the tasks involved in implementing the program and dam angling to the USDA.

  12. Evaluating Cumulative Ecosystem Response to Restoration Projects in the Columbia River Estuary, Annual Report 2005

    SciTech Connect (OSTI)

    Diefenderfer, Heida L.; Thom, Ronald M.; Borde, Amy B.; Roegner, G. C.; Whiting, Allan H.; Johnson, Gary E.; Dawley, Earl; Skalski, John R.; Vavrinec, John; Ebberts, Blaine D.

    2006-12-20T23:59:59.000Z

    This report is the second annual report of a six-year project to evaluate the cumulative effects of habitat restoration projects in the Columbia River Estuary, conducted by Pacific Northwest National Laboratory's Marine Sciences Laboratory, NOAA's National Marine Fisheries Service Pt. Adams Biological Field Station, and the Columbia River Estuary Study Taskforce for the US Army Corps of Engineers. In 2005, baseline data were collected on two restoration sites and two associated reference sites in the Columbia River estuary. The sites represent two habitat types of the estuary--brackish marsh and freshwater swamp--that have sustained substantial losses in area and that may play important roles for salmonids. Baseline data collected included vegetation and elevation surveys, above and below-ground biomass, water depth and temperature, nutrient flux, fish species composition, and channel geometry. Following baseline data collection, three kinds of restoration actions for hydrological reconnection were implemented in several locations on the sites: tidegate replacements (2) at Vera Slough, near the city of Astoria in Oregon State, and culvert replacements (2) and dike breaches (3) at Kandoll Farm in the Grays River watershed in Washington State. Limited post-restoration data were collected: photo points, nutrient flux, water depth and temperature, and channel cross-sections. In subsequent work, this and additional post-restoration data will be used in conjunction with data from other sites to estimate net effects of hydrological reconnection restoration projects throughout the estuary. This project is establishing methods for evaluating the effectiveness of individual projects and a framework for assessing estuary-wide cumulative effects including a protocol manual for monitoring restoration and reference sites.

  13. Determining Columbia and Snake River Project Tailrace and Forebay Zones of Hydraulic Influence using MASS2 Modeling

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.; Perkins, William A.

    2010-12-01T23:59:59.000Z

    Although fisheries biology studies are frequently performed at US Army Corps of Engineers (USACE) projects along the Columbia and Snake Rivers, there is currently no consistent definition of the ``forebay'' and ``tailrace'' regions for these studies. At this time, each study may use somewhat arbitrary lines (e.g., the Boat Restriction Zone) to define the upstream and downstream limits of the study, which may be significantly different at each project. Fisheries researchers are interested in establishing a consistent definition of project forebay and tailrace regions for the hydroelectric projects on the lower Columbia and Snake rivers. The Hydraulic Extent of a project was defined by USACE (Brad Eppard, USACE-CENWP) as follows: The river reach directly upstream (forebay) and downstream (tailrace) of a project that is influenced by the normal range of dam operations. Outside this reach, for a particular river discharge, changes in dam operations cannot be detected by hydraulic measurement. The purpose of this study was to, in consultation with USACE and regional representatives, develop and apply a consistent set of criteria for determining the hydraulic extent of each of the projects in the lower Columbia and Snake rivers. A 2D depth-averaged river model, MASS2, was applied to the Snake and Columbia Rivers. New computational meshes were developed most reaches and the underlying bathymetric data updated to the most current survey data. The computational meshes resolved each spillway bay and turbine unit at each project and extended from project to project. MASS2 was run for a range of total river flows and each flow for a range of project operations at each project. The modeled flow was analyzed to determine the range of velocity magnitude differences and the range of flow direction differences at each location in the computational mesh for each total river flow. Maps of the differences in flow direction and velocity magnitude were created. USACE fishery biologists requested data analysis to determine the project hydraulic extent based on the following criteria: 1) For areas where the mean velocities are less than 4 ft/s, the water velocity differences between operations are not greater than 0.5 ft/sec and /or the differences in water flow direction are not greater than 10 degrees, 2) If mean water velocity is 4.0 ft/second or greater the boundary is determined using the differences in water flow direction (i.e., not greater than 10 degrees). Based on these criteria, and excluding areas with a mean velocity of less than 0.1 ft/s (within the error of the model), a final set of graphics were developed that included data from all flows and all operations. Although each hydroelectric project has a different physical setting, there were some common results. The downstream hydraulic extent tended to be greater than the hydraulic extent in the forebay. The hydraulic extent of the projects tended to be larger at the mid-range flows. At higher flows, the channel geometry tends to reduce the impact of project operations.

  14. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Clearwater, Salmon, Weiser, and Payette River Basins, 1934-1942, Final Report.

    SciTech Connect (OSTI)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01T23:59:59.000Z

    This document contains summary reports of stream habitat surveys, conducted in Idaho, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1938-1942.. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. The Idaho portion of the survey consisted of extensive surveys of the Clearwater, Salmon, Weiser, and Payette River Subbasins. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al., 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries contained in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database should be used to assess pool and substrate conditions. This data is available from the Bonneville Power Administration. The Bureau of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960), inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of the past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the baseline information to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

  15. SAVANNAH RIVER NATIONAL LABORATORYREGENERATIVE FUEL CELL PROJECT

    SciTech Connect (OSTI)

    Motyka, T

    2008-11-11T23:59:59.000Z

    A team comprised of governmental, academic and industrial partners led by the Savannah River National Laboratory developed and demonstrated a regenerative fuel cell system for backup power applications. Recent market assessments have identified emergency response and telecommunication applications as promising near-term markets for fuel cell backup power systems. The Regenerative Fuel Cell System (RFC) consisted of a 2 kg-per-day electrolyzer, metal-hydride based hydrogen storage units and a 5 kW fuel cell. Coupling these components together created a system that can produce and store its own energy from the power grid much like a rechargeable battery. A series of test were conducted to evaluate the performance of the RFC system under both steady-state and transit conditions that might be encountered in typical backup power applications. In almost all cases the RFC functioned effectively. Test results from the demonstration project will be used to support recommendations for future fuel cell and hydrogen component and system designs and support potential commercialization activities. In addition to the work presented in this report, further testing of the RFC system at the Center for Hydrogen Research in Aiken County, SC is planned including evaluating the system as a renewable system coupled with a 20kW-peak solar photovoltaic array.

  16. Greater Green River Basin Production Improvement Project

    SciTech Connect (OSTI)

    DeJarnett, B.B.; Lim, F.H.; Calogero, D.

    1997-10-01T23:59:59.000Z

    The Greater Green River Basin (GGRB) of Wyoming has produced abundant oil and gas out of multiple reservoirs for over 60 years, and large quantities of gas remain untapped in tight gas sandstone reservoirs. Even though GGRB production has been established in formations from the Paleozoic to the Tertiary, recent activity has focused on several Cretaceous reservoirs. Two of these formations, the Ahnond and the Frontier Formations, have been classified as tight sands and are prolific producers in the GGRB. The formations typically naturally fractured and have been exploited using conventional well technology. In most cases, hydraulic fracture treatments must be performed when completing these wells to to increase gas production rates to economic levels. The objectives of the GGRB production improvement project were to apply the concept of horizontal and directional drilling to the Second Frontier Formation on the western flank of the Rock Springs Uplift and to compare production improvements by drilling, completing, and testing vertical, horizontal and directionally-drilled wellbores at a common site.

  17. Project Management Institute Highlights Savannah River Nuclear...

    Office of Environmental Management (EM)

    employee Matthew Gay uses critical electronic rounds to take a reading at the Savannah River National Laboratory. In one Continuous Improvement initiative, SRNS switched to...

  18. Estimated Entrainment of Dungeness Crab During Dredging For The Columbia River Channel Improvement Project

    SciTech Connect (OSTI)

    Pearson, Walter H.; Williams, Greg D.; Skalski, John R.

    2002-12-01T23:59:59.000Z

    The studies reported here focus on issues regarding the entrainment of Dungeness crab related to the proposed Columbia River Channel Improvement Project and provided direct measurements of crab entrainment rates at three locations (Desdomona Shoals, Upper Sands, and Miller Sands) from RM4 to RM24 during summer 2002. Entrainment rates for all age classes of crabs ranged from zero at Miller Sands to 0.224 crabs per cy at Desdemona Shoals in June 2002. The overall entrainment rate at Desdomona Shoals in September was 0.120 crabs per cy. A modified Dredge Impact Model (DIM) used the summer 2002 entrainment rates to project crab entrainment and adult equivalent loss and loss to the fishery for the Channel Improvement Project. To improve the projections, entrainment data from Flavel Bar is needed. The literature, analyses of salinity intrusion scenarios, and the summer 2002 site-specific data on entrainment and salinity all indicate that bottom salinity influences crab distribution and entrainment, especially at lower salinities. It is now clear from field measurements of entrainment rates and salinity during a period of low river flow (90-150 Kcfs) and high salinity intrusion that entrainment rates are zero where bottom salinity is less than 16 o/oo most of the time. Further, entrainment rates of 2+ and older crab fall with decreasing salinity in a clear and consistent manner. More elaboration of the crab distribution- salinity model, especially concerning salinity and the movements of 1+ crab, is needed.

  19. Impacts of the Snake River drawdown experiment on fisheries resources in Little Goose and Lower Granite Reservoirs, 1992

    SciTech Connect (OSTI)

    Dauble, D D; Geist, D R

    1992-09-01T23:59:59.000Z

    In March 1992, the US Army Corps of Engineers initiated a test to help evaluate physical and environmental impacts resulting from the proposed future drawdown of Snake River reservoirs. Drawdown would reduce water levels in Snake River reservoirs and is being proposed as a solution to decrease the time it takes for salmon and steelhead smolts to migrate to the ocean. The Pacific Northwest Laboratory evaluated impacts to specific fisheries resources during the drawdown experiment by surveying Lower Granite Reservoir to determine if fall chinook salmon (Oncorhynchus tshawytscha) spawning areas and steelhead (0. mykiss) access to tributary creeks were affected. In addition, shoreline areas of Little Goose Reservoir were monitored to evaluate the suitability of these areas for spawning by fall chinook salmon. Relative abundance of fish species in nearshore areas was also determined during the drawdown, and stranded resident fish and other aquatic organisms were observed.

  20. The Kootenai Tribe's Kootenai River Ecosystem

    E-Print Network [OSTI]

    The Kootenai Tribe's Kootenai River Ecosystem Restoration Project 1994-2012 Project # 199404900 · PURPOSE: TO ADDRESS FISHERIES RELATED PROBLEMS AT AN ECOSYSTEM LEVEL AND PROVIDE RESTORATION SOLUTIONS Kootenai River OBJ-2: Restore Ecosystem Productivity OBJ-3: Restore Ecosystem Productivity to Kootenay Lake

  1. Evaluating Cumulative Ecosystem Response to Restoration Projects in the Lower Columbia River and Estuary, 2009

    SciTech Connect (OSTI)

    Johnson, Gary E.; Diefenderfer, Heida L.; Borde, Amy B.; Bryson, Amanda J.; Cameron, April; Coleman, Andre M.; Corbett, C.; Dawley, Earl M.; Ebberts, Blaine D.; Kauffman, Ronald; Roegner, G. Curtis; Russell, Micah T.; Silva, April; Skalski, John R.; Thom, Ronald M.; Vavrinec, John; Woodruff, Dana L.; Zimmerman, Shon A.

    2010-10-26T23:59:59.000Z

    This is the sixth annual report of a seven-year project (2004 through 2010) to evaluate the cumulative effects of habitat restoration actions in the lower Columbia River and estuary (LCRE). The project, called the Cumulative Effects Study, is being conducted for the U.S. Army Corps of Engineers Portland District (USACE) by the Marine Sciences Laboratory of the Pacific Northwest National Laboratory (PNNL), the Pt. Adams Biological Field Station of the National Marine Fisheries Service (NMFS), the Columbia River Estuary Study Taskforce (CREST), and the University of Washington. The goal of the Cumulative Effects Study is to develop a methodology to evaluate the cumulative effects of multiple habitat restoration projects intended to benefit ecosystems supporting juvenile salmonids in the 235-km-long LCRE. Literature review in 2004 revealed no existing methods for such an evaluation and suggested that cumulative effects could be additive or synergistic. From 2005 through 2009, annual field research involved intensive, comparative studies paired by habitat type (tidal swamp versus marsh), trajectory (restoration versus reference site), and restoration action (tidegate replacement vs. culvert replacement vs. dike breach).

  2. Math 360 Sample Project: River Crossing

    E-Print Network [OSTI]

    Linner, Anders

    corresponding to the east-west difference between the entry and the exit points at the river. Assume the crossing is from north to south, so g is positive if the exit point is east of the entry point

  3. Snake and Columbia Rivers Sediment Sampling Project

    SciTech Connect (OSTI)

    Pinza, M. R.; Word, J. Q.; Barrows, E. S.; Mayhew, H. L.; Clark, D. R. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1992-12-01T23:59:59.000Z

    The disposal of dredged material in water is defined as a discharge under Section 404 of the Clean Water Act and must be evaluated in accordance with US Environmental Protection Agency regulation 40 CFR 230. Because contaminant loads in the dredged sediment or resuspended sediment may affect water quality or contaminant loading, the US Army Corps of Engineers (USACE), Walla Walla District, has requested Battelle/Marine Sciences Laboratory to collect and chemically analyze sediment samples from areas that may be dredged near the Port Authority piers on the Snake and Columbia rivers. Sediment samples were also collected at River Mile (RM) stations along the Snake River that may undergo resuspension of sediment as a result of the drawdown. Chemical analysis included grain size, total organic carbon, total volatile solids, ammonia, phosphorus, sulfides, oil and grease, total petroleum hydrocarbons, metals, polynuclear aromatic hydrocarbons, pesticides, polychlorinated biphenyls, and 21 congeners of polychlorinated dibenzodioxins and dibenzofurans.

  4. Four Rivers second generation Pressurized Circulating Fluidized Bed Combustion Project

    SciTech Connect (OSTI)

    Holley, E.P.; Lewnard, J.J. [Air Products and Chemicals, Inc. (United States); von Wedel, G. [LLB Lurgi Lentjes Babcock Energietechnik (GmbH); Richardson, K.W. [Foster Wheeler Energy Corp. (United States); Morehead, H.T. [Westinghouse Electric Corp. (United States)

    1995-04-01T23:59:59.000Z

    Air Products has been selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second generation Pressurized Circulating Fluidized Bed (PCFB) combustion technology. The four Rivers Energy Project (Four Rivers) will produce up to 400,000 lb/hr steam, or an equivalent gross capacity of 95 MWe. The unit will be used to repower an Air Products chemicals manufacturing facility in Calvert City, Kentucky.

  5. Measuring Benefits from a Marketing Cooperative in the Copper River Fishery Sunny L. Jardinea

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    of inferior-quality fish. Specifically, we use a difference-in-differences estimation strategy to measure, however, is the presence of market failures that lead to the production of inferior- quality fish rights in fisheries, which creates incentives for fishermen to engage in a race to fish and neglect

  6. Yakima/Klickitat Fisheries Project Genetic Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2000-2001 Annual Report.

    SciTech Connect (OSTI)

    Busack, Craig A.; Schroder, Steven L.; Young, Sewall F. (Washington Department of Fish and Wildlife, Olympia, WA)

    2002-11-01T23:59:59.000Z

    Genetic work for 2001 consisted of two major phases, both reported on here. The first is a DNA microsatellite analysis of several hundred juveniles from the experimental spawning channel at the Cle Elum Supplementation Research Facility, using the genetic markers to assign the juveniles to parents, and thus judge reproductive success of individual fish. The second is a reevaluation and revision of plans for studying domestication in the spring chinook supplementation effort. The pedigree analysis was significant in three respects. First, it showed that this approach can be successfully applied to the spawning channel research. Secondly it showed that this approach does indeed yield very useful information about the relative reproductive success of fish in the channel. Finally, it showed that this information can yield additional information about the experimental design. Of the 961 juveniles on which analysis was attempted, 774 yielded enough genetic information to be used in the pedigree analysis. Of these, 754 were assigned to males and females known to have been placed into the channel. Of the other 20, all were assignable to females, but sires were unknown. The genotypes of 17 of these were consistent with a single theoretical male genotype, suggesting a single precocial male sired them. The inferred parentage of the fish demonstrated that there had been substantial leakage of juveniles from one section of the channel into another. Reproductive success of females was fairly even, but success of males varied considerably. In a group of seven males (including the hypothetical one), one contributed 79% of the progeny analyzed, and three contributed none. The domestication experimental design evaluation was prompted by a critical review of the project by the Independent Scientific Review Panel (ISRP). The ISRP review set into motion a design revision process which extended beyond the contract period; the report presented here is intended to be an account of our work through the end of the contract period, so does not include developments beyond that point. As such, combined with the upcoming 2002 report, it will provide a complete record of our process through the experimental design revision process. The current report contains the following: (1) An explanation of the general concept of domestication, and why domestication is a concern in the YKFP spring chinook program; (2) A discussion of the basics of experimental design for domestication; (3) A history of domestication experimental design for domestication in the YKFP; (4) A review of potential designs that would answer the ISRP's criticisms; (5) A revised design containing the following elements--A control line under continuous hatchery culture (i.e.; no spawning in the wild); use of the Naches population, where appropriate, as a wild control line; (6) Cryopreservation of sperm for later evaluation of long-term genetic trend; and (7) Continuous monitoring of phenotypic trend in the supplemented line.

  7. Yakima/Klickitat Fisheries Project; Washington Department of Fish and Wildlife Policy/Technical Involvement and Planning, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Pearsons, Todd N.; Easterbrooks, John A. (Washington Department of Fish and Wildlife, Olympia, WA)

    2003-09-01T23:59:59.000Z

    The Yakima/Klickitat Fisheries Project (YKFP) is a supplementation project sponsored by the Northwest Power Planning Council and funded by the Bonneville Power Administration. The YKFP has adopted the definition of supplementation described by Regional Assessment of Supplementation Program (1992), which is ''the use of artificial propagation in an attempt to maintain or increase natural production while maintaining the long-term fitness of the target population, and keeping the ecological and genetic impacts on nontarget populations within specified biological limits''. Recent scientific reviews of hatchery supplementation continue to highlight the experimental nature and risk of supplementation (Independent Scientific Group 1996; National Research Council 1996; Lichatowich 1999; Independent Multidisciplinary Science Team 2000; Independent Scientific Advisory Board 2003; Hatchery Scientific Review Group 2003). In addition, many of these reviews included recommendations about the best ways to operate a supplementation program. Most of these recommendations were already being done or have been incorporated into the YKFP. The objectives of the YKFP are: (1) to test the hypothesis that new supplementation techniques can be used in the Yakima River Basin to increase natural production and to improve harvest opportunities while maintaining the long-term genetic fitness of the wild and native salmonid populations and keeping adverse ecological interactions within acceptable limits (Yakima Fisheries Project Final Environment Impact Statement, 1996); (2) provide knowledge about the use of supplementation, so that it may be used to mitigate effects on anadromous fisheries throughout the Columbia River Basin; (3) to maintain and improve the quantity and productivity of salmon and steelhead habitat, including those areas made accessible by habitat improvements; (4) to ensure that Project implementation remains consistent with the Council's Fish and Wildlife Program; and (5) to implement the Project in a prudent and environmentally sound manner. Current YKFP operations have been designed to test the principles of supplementation (Busack et al. 1997). The Project's experimental design has focused on the following critical uncertainties affecting supplementation: (1) The survival and reproductive success of hatchery fish after release from the hatchery; (2) The impacts of hatchery fish as they interact with non-target species and stocks; and, (3) The effects of supplementation on the long-term genetic fitness of fish stocks. The YKFP endorses an adaptive management policy applied through a project management framework as described in the Yakima/Klickitat Fisheries Project Planning Status Report (1995), Fast and Craig (1997), and Clune and Dauble 1991. The project is managed by a Policy Group consisting of a representative of the Yakama Nation (YN, lead agency) and a representative of the Washington Department of Fish and Wildlife (WDFW). The functions of the parties are described in an MOU between the YN and the WDFW. A Scientific and Technical Advisory Committee (STAC) consisting of one representative from each management entity reports to the Policy Group and provides technical input on policy and other issues. Additional committee's, such as the Monitoring Implementation and Planning Team (MIPT), serve at the discretion of STAC. The Policy Group and STAC meet periodically (usually monthly) to conduct the business of the YKFP. Although the YKFP is an all stocks initiative (BPA 1996), most effort to date has been directed at spring chinook salmon and coho salmon. This report is a compilation of the year's activities between August 1, 2002 and July 31, 2003. The Yakama Nation's portion of the YKFP is presented in another report. All findings should be considered preliminary until data collection is completed or the information is published in a peer-reviewed journal. Pearsons and Easterbrooks (2003) described last year's activities.

  8. Reese River Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreview of the58393°,Reese River

  9. EIS-0184: South Fork Tolt River Hydroelectric Project

    Broader source: Energy.gov [DOE]

    This EIS analyzes the Seattle City Light, a Department of the City of Seattle proposal to construct a hydroelectric project with an installed capacity of 15 MW on the South Fork Tolt River near the town of Carnation located in King County in the State of Washington.

  10. New River Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania:Information Operating PermitGeothermal Project Project

  11. The River Team Corridor Project The Gateshead area of North East England contains some

    E-Print Network [OSTI]

    The River Team Corridor Project objectives The Gateshead area of North East England contains some of a wider project to regenerate the River Team area, the River Team Corridor Project seeks to enhance Reserve, the Team Valley Trading Estate, riverbanks and the Bowes Railway Path. · Expand involvement

  12. Wabash River coal gasification repowering project: Public design report

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    The Wabash River Coal Gasification Repowering Project (the Project), conceived in October of 1990 and selected by the US Department of Energy as a Clean Coal IV demonstration project in September 1991, is expected to begin commercial operations in August of 1995. The Participants, Destec Energy, Inc., (Destec) of Houston, Texas and PSI Energy, Inc., (PSI) of Plainfield, Indiana, formed the Wabash River Coal Gasification Repowering Project Joint Venture (the JV) to participate in the DOE`s Clean Coal Technology (CCT) program by demonstrating the coal gasification repowering of an existing 1950`s vintage generating unit affected by the Clean Air Act Amendments (CAAA). The Participants, acting through the JV, signed the Cooperative Agreement with the DOE in July 1992. The Participants jointly developed, and separately designed, constructed, own, and will operate an integrated coal gasification combined cycle (CGCC) power plant using Destec`s coal gasification technology to repower Unit {number_sign}1 at PSI`s Wabash River Generating Station located in Terre Haute, Indiana. PSI is responsible for the new power generation facilities and modification of the existing unit, while Destec is responsible for the coal gasification plant. The Project demonstrates integration of the pre-existing steam turbine generator, auxiliaries, and coal handling facilities with a new combustion turbine generator/heat recovery steam generator tandem and the coal gasification facilities.

  13. Four Rivers second generation pressurized circulating fluidized bed combustion project

    SciTech Connect (OSTI)

    Holley, E.P.; Lewnard, J.J. [Air Products and Chemicals, Inc., Allentown, PA (United States); Wedel, G. von; Richardson, K.W.; Morehead, H.T.

    1995-12-31T23:59:59.000Z

    Air Products has been selected in the DOE Clean Coal Technology Round 5 program to build, own, and operate the first commercial power plant using second generation Pressurized Circulating Fluidized Bed (PCFB) combustion technology. The Four Rivers Energy Project (Four Rivers) will produce approximately 70 MW electricity, and will produce up to 400,000 lb/hr steam, or an equivalent gross capacity of 95 MWe. The unit will be used to repower an Air Products chemicals manufacturing facility in Calvert City, Kentucky.

  14. Malheur River Wildlife Mitigation Project : 2008 Annual Report.

    SciTech Connect (OSTI)

    Kesling, Jason; Abel, Chad; Schwabe, Laurence

    2009-01-01T23:59:59.000Z

    In 1998, the Burns Paiute Tribe (BPT) submitted a proposal to Bonneville Power Administration (BPA) for the acquisition of the Malheur River Wildlife Mitigation Project (Project). The proposed mitigation site was for the Denny Jones Ranch and included Bureau of Land Management (BLM) and Oregon Division of State Lands (DSL) leases and grazing allotments. The Project approval process and acquisition negotiations continued for several years until the BPT and BPA entered into a Memorandum of Agreement, which allowed for purchase of the Project in November 2000. The 31,781 acre Project is located seven miles east of Juntura, Oregon and is adjacent to the Malheur River (Figure 1). Six thousand three hundred eighty-five acres are deeded to BPT, 4,154 acres are leased from DSL, and 21,242 acres are leased from BLM (Figure 2). In total 11 grazing allotments are leased between the two agencies. Deeded land stretches for seven miles along the Malheur River. It is the largest private landholding on the river between Riverside and Harper, Oregon. Approximately 938 acres of senior water rights are included with the Ranch. The Project is comprised of meadow, wetland, riparian and shrub-steppe habitats. The BLM grazing allotment, located south of the ranch, is largely shrub-steppe habitat punctuated by springs and seeps. Hunter Creek, a perennial stream, flows through both private and BLM lands. Similarly, the DSL grazing allotment, which lies north of the Ranch, is predominantly shrub/juniper steppe habitat with springs and seeps dispersed throughout the upper end of draws (Figure 2).

  15. Salt River Project Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY) JumpLandSRTHelena:Sakti3River

  16. Malheur River Wildlife Mitigation Project, Annual Report 2003.

    SciTech Connect (OSTI)

    Ashley, Paul

    2004-01-01T23:59:59.000Z

    Hydropower development within the Columbia and Snake River Basins has significantly affected riparian, riverine, and adjacent upland habitats and the fish and wildlife species dependent upon them. Hydroelectric dams played a major role in the extinction or major loss of both anadromous and resident salmonid populations and altered instream and adjacent upland habitats, water quality, and riparian/riverine function. Hydroelectric facility construction and inundation directly affected fish and wildlife species and habitats. Secondary and tertiary impacts including road construction, urban development, irrigation, and conversion of native habitats to agriculture, due in part to the availability of irrigation water, continue to affect wildlife and fish populations throughout the Columbia and Snake River Basins. Fluctuating water levels resulting from facility operations have created exposed sand, cobble, and/or rock zones. These zones are generally devoid of vegetation with little opportunity to re-establish riparian plant communities. To address the habitat and wildlife losses, the United States Congress in 1980 passed the Pacific Northwest Electric Power Planning and Conservation Act (Act) (P.L. 96-501), which authorized the states of Idaho, Montana, Oregon, and Washington to create the Northwest Power Planning Council (Council). The Act directed the Council to prepare a program in conjunction with federal, state, and tribal wildlife resource authorities to protect, mitigate, and enhance fish and wildlife species affected by the construction, inundation and operation of hydroelectric dams in the Columbia River Basin (NPPC 2000). Under the Columbia Basin Fish and Wildlife Program (Program), the region's fish and wildlife agencies, tribes, non-government organizations (NGOs), and the public propose fish and wildlife projects that address wildlife and fish losses resulting from dam construction and subsequent inundation. As directed by the Council, project proposals are subjected to a rigorous review process prior to receiving final approval. An eleven-member panel of scientists referred to as the Independent Scientific Review Panel (ISRP) examines project proposals. The ISRP recommends project approval based on scientific merit. The Bonneville Power Administration (BPA), the Columbia Basin Fish and Wildlife Authority (CBFWA), Council staff, the U.S. Fish and Wildlife Service (USFWS), the National Oceanic and Atmospheric Administration (NOAA), and subbasin groups also review project proposals to ensure each project meets regional and subbasin goals and objectives. The Program also includes a public involvement component that gives the public an opportunity to provide meaningful input on management proposals. After a thorough review, the Burns Paiute Tribe (BPT) acquired the Malheur River Mitigation Project (Project) with BPA funds to compensate, in part, for the loss of fish and wildlife resources in the Columbia and Snake River Basins and to address a portion of the mitigation goals identified in the Council's Program (NPPC 2000).

  17. Yakima River Spring Chinook Enhancement Study, Fisheries Resource Management, Yakima Indian Nation1983 Annual Report.

    SciTech Connect (OSTI)

    Wasserman, Larry

    1984-02-01T23:59:59.000Z

    The purpose was to evaluate enhancement methodologies that can be used to rebuild runs of spring chinook to the Yakima River system. In January, 1983, 100,000 fish raised at Leavenworth National Fish Hatchery were transported to Nile Springs Rearing Ponds on the Naches River. These fish were allowed a volitional release as smolts in April. An additional 100,000 smolts were transported from Leavenworth Hatchery in April and immediately released to the Upper Yakima River. Relative survival of smolts from their points of release to a trap at Prosser (RM48) was 1.69:1 for fish from Nile Springs, versus the trucked smolts. The fish from Nile Springs arrived at Prosser and McNary Dam approximately 1 week earlier than the transported fish. To better determine the magnitude and location of releases, distribution and abundance studies were undertaken. There is a decrease in abundance from upstream areas over time, indicating a general downstream movement. In the Naches System, the lower Naches River is heavily utilized by juvenile spring chinook during the early summer. A preliminary study evaluated physical limitations of production. On a single evening 67 fish were killed on diversion screens at Chandler Canal. This constituted 5.7% of the wild spring chinook entering the canal and 8.2% of the fall chinook. The larger hatchery spring chinook sustained a 2.3% loss. Adult returns resulted in 443 redds in the Yakima System, with 360 in the Yakima River and 83 in the Naches System.

  18. MHK Projects/Atchafalaya River Hydrokinetic Project II | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AK ProjectMS Project

  19. EIS-0506: Crooked River Valley Rehabilitation Project, Idaho County, Idaho

    Broader source: Energy.gov [DOE]

    The U.S. Forest Service, with DOE’s Bonneville Power Administration (BPA) as a cooperating agency, is preparing an EIS that evaluates the potential environmental impacts of a proposal to improve fish habitat by restoring stream and floodplain functions, restoring instream fish habitat complexity, and improving water quality along approximately 2 miles of the Crooked River. BPA’s proposed action is to fund the project. Additional information is available at http://www.fs.fed.us/nepa/fs-usda-pop.php/?project=40648.

  20. Yakima/Klickitat Fisheries Project YKFP M&E Project description

    E-Print Network [OSTI]

    by indices of predation, competition, prey abundance, mutualism and disease. b. Technical and/or scientific indices before and after supplementation. Impacts of nontarget species on project fish will be assessed

  1. Hood River Fish Habitat Project; Confederated Tribes of the Warm Springs Reservation of Oregon, Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Vaivoda, Alexis

    2004-02-01T23:59:59.000Z

    This report summarizes the project implementation and monitoring of all habitat activities in the Hood River basin that occurred over the October 1, 2002 to September 30, 2003 period (FY 03). Some of the objectives in the corresponding statement of work for this contract were not completed within FY 03. A description of the progress during FY 03 and reasoning for deviation from the original tasks and timeline are provided. OBJECTIVE 1 - Provide coordination of all activities, administrative oversight and assist in project implementation and monitoring activities. Administrative oversight and coordination of the habitat statement of work, budget, subcontracts, personnel, implementation, and monitoring was provided. OBJECTIVE 2 - Continue to coordinate, implement, and revise, as needed, the Hood River Fish Habitat Protection, Restoration, and Monitoring Plan. The Hood River Fish Habitat Protection, Restoration, and Monitoring Plan was completed in 2000 (Coccoli et al., 2000). This document was utilized for many purposes including: drafting the Watershed Action Plan (Coccoli, 2002), ranking projects for funding, and prioritizing projects to target in the future. This document has been reviewed by many, including stakeholders, agencies, and interested parties. The Hood River Watershed Group Coordinator and author of the Hood River Fish Habitat Protection, Restoration, and Monitoring Plan, Holly Coccoli, has updated and revised the plan. Changes will be reflected in the Hood River Subbasin Plan, and after submission of the Subbasin Plan, a formally revised version of the Monitoring Plan will be put out for review. This will more specifically address changes in the Hood River subbasin since 2000, and reflect changes to fish habitat and needs in the Hood River subbasin regarding monitoring. OBJECTIVE 3 - Evaluate and monitor the habitat, accessibility, and presence of winter steelhead, coho salmon, and resident trout upstream of the Middle Fork Irrigation District water sources on Evans Creek. Through this project, BPA funded the Middle Fork Irrigation District (MFID) a total of $194,000 in FY 03 for the Glacier Ditch- Evans Creek project. BPA funds accounted for approximately 30% of the project while the remaining 70% was cost-shared by the MFID, the US Forest Service, and the Oregon Watershed Enhancement Board. The MFID operated irrigation diversions on Evans Creek (Hutson pond RM 4.0 and the Evans Creek diversion RM 5.5), a tributary to the East Fork Hood River. Both diversions had inadequate upstream fish passage, and utilized Evans Creek to transport Eliot Branch water to distribute irrigation water lower in the basin. This project consisted of: piping a portion of the Glacier ditch to create a pressurized irrigation pipeline system, piping the Hutson extension, removing the culvert on Evans Creek near the Glacier ditch, removing the culvert above the Hutson pond, revegetating the disturbed areas, and providing adequate and approved fish passage on Evans Creek. Prior to any work, Brian Connors with MFID completed a NEPA checklist. Some of the key regulatory points of this project included wetland delineations, a cultural resources survey, and consultations with NOAA Fisheries, U.S. Fish and Wildlife, Oregon Department of Fish and Wildlife (ODFW), and the U.S. Army Corps of Engineers. This project will eliminate the overflow of silty water into Evans Creek and West Fork Evans Creek. Upon completion of this project, access to 2.5 miles of winter steelhead, coho salmon, and resident trout habitat will be restored. Elimination of the interbasin transfer of water will discontinue the conveyance of silty Eliot Branch water into clear East Fork tributaries. Additionally, less water taken from Coe Branch, Eliot Branch, and Laurance Lake which will benefit listed steelhead and bull trout. The Glacier Ditch provided irrigation water from the Eliot Branch to upper valley orchards and agriculture for more than 100 years. The Glacier Ditch served approximately 1,438 acres with 18 cfs of water. The Glacier Ditch portion of this project

  2. MHK Projects/Sakonnet River Hydrokinetic Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet.7413°, -155.488° Project PhaseSakonnet

  3. MHK Projects/Yukon River Hydrokinetic Turbine Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects Jump to:Vicksburg BendWillapaInformation

  4. Yakima/Klickitat Fisheries Project Monitoring and Evaluation, Final Report For the Performance Period May 1, 2008 through April 30, 2009.

    SciTech Connect (OSTI)

    Sampson, Melvin R. [The Confederated Tribes and Bands of the Yakama Nation

    2009-07-30T23:59:59.000Z

    The Yakima-Klickitat Fisheries Project (YKFP) is a joint project of the Yakama Nation (lead entity) and the Washington State Department of Fish and Wildlife (WDFW) and is sponsored in large part by the Bonneville Power Administration (BPA) with oversight and guidance from the Northwest Power and Conservation Council (NPCC). It is among the largest and most complex fisheries management projects in the Columbia Basin in terms of data collection and management, physical facilities, habitat enhancement and management, and experimental design and research on fisheries resources. Using principles of adaptive management, the YKFP is attempting to evaluate all stocks historically present in the Yakima subbasin and apply a combination of habitat restoration and hatchery supplementation or reintroduction, to restore the Yakima Subbasin ecosystem with sustainable and harvestable populations of salmon, steelhead and other at-risk species. The original impetus for the YKFP resulted from the landmark fishing disputes of the 1970s, the ensuing legal decisions in United States versus Washington and United States versus Oregon, and the region's realization that lost natural production needed to be mitigated in upriver areas where these losses primarily occurred. The YKFP was first identified in the NPCC's 1982 Fish and Wildlife Program (FWP) and supported in the U.S. v Oregon 1988 Columbia River Fish Management Plan (CRFMP). A draft Master Plan was presented to the NPCC in 1987 and the Preliminary Design Report was presented in 1990. In both circumstances, the NPCC instructed the Yakama Nation, WDFW and BPA to carry out planning functions that addressed uncertainties in regard to the adequacy of hatchery supplementation for meeting production objectives and limiting adverse ecological and genetic impacts. At the same time, the NPCC underscored the importance of using adaptive management principles to manage the direction of the Project. The 1994 FWP reiterated the importance of proceeding with the YKFP because of the added production and learning potential the project would provide. The YKFP is unique in having been designed to rigorously test the efficacy of hatchery supplementation. Given the current dire situation of many salmon and steelhead stocks, and the heavy reliance on artificial propagation as a recovery tool, YKFP monitoring results will have great region-wide significance. Supplementation is envisioned as a means to enhance and sustain the abundance of wild and naturally-spawning populations at levels exceeding the cumulative mortality burden imposed on those populations by habitat degradation and by natural cycles in environmental conditions. A supplementation hatchery is properly operated as an adjunct to the natural production system in a watershed. By fully integrating the hatchery with a naturally-producing population, high survival rates for the component of the population in the hatchery can raise the average abundance of the total population (hatchery component + naturally-producing component) to a level that compensates for the high mortalities imposed by human development activities and fully seeds the natural environment. The objectives of the YKFP are to: use Ecosystem Diagnosis and Treatment (EDT) and other modeling tools to facilitate planning for project activities, enhance existing stocks, re-introduce extirpated stocks, protect and restore habitat in the Yakima Subbasin, and operate using a scientifically rigorous process that will foster application of the knowledge gained about hatchery supplementation and habitat restoration throughout the Columbia River Basin. The YKFP is still in the early stages of evaluation, and as such the data and findings presented in this report should be considered preliminary until results are published in the peer-reviewed literature. The following is a brief summary of current YKFP activities by species.

  5. Yakima/Klickitat Fisheries Project Genetic Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 1 of 7, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Busack, Craig A.; Frye, Alice; Kassler, Todd (Washington Department of Fish and Wildlife, Olympia, WA)

    2004-05-01T23:59:59.000Z

    Genetic work for 2003, as in previous years, was quite diverse. In chapter 1 we report on the use of DNA microsatellite markers to sex spring chinook collected at Roza. We have learned through comparison of sex determinations at Roza and then at CESRF that sexing green fish on the basis of morphology is somewhat inaccurate, and accurate sexing of fish at Roza is needed to estimate sex ratios of fish on the spawning grounds. Using DNA microsatellite markers, sexing accuracy was high, but not perfect. In chapter 2 we report on new genetic risk concepts currently being developed and their implications for the YKFP spring chinook program. The impact on domestication of gene flow between the natural and hatchery spawning components is now much better understood. It is now possible to compare the risk of different hatchery programs much more quantitatively in the past. Thus, we can now make good predictions of how much less domesticating the Yakima spring chinook supplementation effort is than other programs. In chapter 3 we present the initial results of morphological comparisons of adult (1) hatchery-origin Upper Yakima spring chinook, (2) natural-origin U. Yakima spring chinook, and (3) Naches spring chinook. Canonical variate analysis allowed both sexes of the three groups to be classified correctly with over accuracy. The differences are subtle, but hatchery-origin fish appear to be someone thinner than natural-origin fish. This is consistent with observations of hatchery vs wild morphology in coho. In chapter 4 we describe the ongoing work to refine the Domestication Research/Monitoring Plan. Work for last year included analysis of the impact of HC line precocious males spawning in the wild, development of a misting incubation system for off-site incubation of Naches eggs, and refinement of some aspects of experimental design. The misting incubation system has broad applicability outside the project. The most recent version of the domestication monitoring plan is included as an appendix. In chapter 5 we present a final report on computer simulations of factorial mating designs. Using three different schemes for combining breeding values of fish, we found that full factorial mating offers a substantial increase in effective size over single-pair mating. Although full factorial mating may be too difficult logistically, but a significant proportion of the full factorial mating advantage can be obtained by using 2 x 2 partial factorials. We have developed a method that allows us to determine the relative effective size advantage of mixed partial factorial designs. In chapter 6 we report on an analysis of stock origin of smolts collected at Chandler. The 702 Chinook salmon smolts collected at the Chandler trap in 2003 were screened at 12 microsatellite DNA loci. A new Yakima basin baseline, consisting of spring chinook from the upper Yakima, Naches, and American River populations and fall chinook from the Marion Drain and lower Yakima populations, was created for these same 12 loci. DNA template problems with the tissue collections from the Naches, and American River populations prompted the omission of four loci prior to analysis. The results indicated: 80% Naches spring, 13% American River spring, 7% upper Yakima spring, and less than 1% for the two fall populations combined. The estimated stock proportions in the 2003 Chandler collection differed substantially from those for the 2002 collection. The temporal pattern of sampling in both Chandler smolt collections was not proportional to the observed outmigration in each year, suggesting that both of these estimates should be regarded with caution. Strengthening of the baseline data set will be a high priority for future work with Chandler smolts.

  6. Effects of Domestication on Predation Mortality and Competitive Dominance; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Pearsons, Todd N.; Fritts, Anthony L.; Scott, Jennifer L. (Washington Department of Fish and Wildlife, Olympia, WA)

    2005-05-01T23:59:59.000Z

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from the Washington Department of Fish and Wildlife (WDFW) to the Bonneville Power Administration (BPA), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the second of a series of progress reports that address the effects of hatchery domestication on predation mortality and competitive dominance in the upper Yakima River basin (Pearsons et al. 2004). This progress report summarizes data collected between January 1, 2004 and December 31, 2004. Raising fish in hatcheries can cause unintended behavioral, physiological, or morphological changes in chinook salmon due to domestication selection. Domestication selection is defined by Busack and Currens 1995 as, ''changes in quantity, variety, or combination of alleles within a captive population or between a captive population and its source population in the wild as a result of selection in an artificial environment''. Selection in artificial environments could be due to intentional or artificial selection, biased sampling during some stage of culture, or unintentional selection (Busack and Currens 1995). Genetic changes can result in lowered survival in the natural environment (Reisenbichler and Rubin 1999). The goal of supplementation or conservation hatcheries is to produce fish that will integrate into natural populations. Conservation hatcheries attempt to minimize intentional or biased sampling so that the hatchery fish are similar to naturally produced fish. However, the selective pressures in hatcheries are dramatically different than in the wild, which can result in genetic differences between hatchery and wild fish. The selective pressures may be particularly prominent during the freshwater rearing stage where most mortality of wild fish occurs. The Yakima Fisheries Project is studying the effects of domestication on a variety of adult and juvenile traits of spring chinook salmon (Busack et al. 2003). The overall experimental design is to compare a variety of traits, across generations, from three lines of Yakima basin chinook, a hatchery control, supplementation line, and a wild control. The hatchery line was derived from wild upper Yakima broodstock and is only allowed to spawn in the hatchery. The supplementation line is upper Yakima stock that spawns in the upper Yakima River. This stock is an integration of wild and hatchery supplementation fish. Starting in 2005, we plan to use a wild control line of fish that will be the offspring of wild broodstock collected in the Naches River system, a tributary to the Yakima River. The Naches River is not stocked with hatchery fish, and there is minimal stray from Upper Yakima supplementation, so we believe that these will serve as a control to compare any genotypic changes in the hatchery and the supplementation line. As generations of fish are tested, we believe we will be able to analyze the data using an analysis of covariance to test the hypothesis that the hatchery line will exhibit greater domestication over generations, the wild line will remain at baseline levels, and the supplementation line will be somewhere in between. In this report, we have used the terms ''hatchery'' or ''supplementation'' to refer to upper Yakima fish that are progeny of fish that spent one generation in the hatchery, and ''wild'' to refer to fish that have had no exposure to the hatchery other than the matings for this experiment. The terms are relative to the parents that produced the fish for these experiments. All progeny of these fish were mated and reared under the same laboratory conditions. This report addresses two juvenile traits: predation mortality, and competitive dominance. Other traits will be presented in other project reports. It is anticipated that it will take at least two to five generations to detect measurable responses in many domestication response variables (Busack et

  7. Dworshak Dam Impact Assessment and Fishery Investigation and Trout, Bass and Forage Species: Combined Project Completion Report.

    SciTech Connect (OSTI)

    Maiolie, Melo; Statler, David P.; Elam, Steve

    1992-10-01T23:59:59.000Z

    The Nez Perce Tribe (NPT) and the Idaho Department of Fish and Game (IDFG) entered into separate intergovernmental agreements with the Bonneville Power Administration in a cooperative four-year effort to study impacts of Dworshak Dam operation on resident fisheries. The NPT Department of Fisheries Management focused on rainbow trout, smallmouth bass and forage fish. The IDFG's segment of the project was to document kokanee population dynamics, relate it to the changing nutrient status of the reservoir, evaluate kokanee losses through Dworshak Dam, and make kokanee management recommendations. This final report includes findings for 1990 and 1991 and relates these data to information previously presented in annual reports for 1987, 1988 and 1989.

  8. Salmon River Habitat Enhancement, 1990 Annual Report.

    SciTech Connect (OSTI)

    Rowe, Mike

    1991-12-01T23:59:59.000Z

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  9. River Protection Project (RPP) Dangerous Waste Training Plan

    SciTech Connect (OSTI)

    POHTO, R.E.

    2000-03-09T23:59:59.000Z

    This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units. This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by River Protection Project (RPP) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units managed by RPP are: the Double-Shell Tank (DST) System, 204-AR Waste Unloading Facility, Grout, and the Single-Shell Tank (SST) System. The program is designed in compliance with the requirements of Washington Administrative Code (WAC) 173-303-330 and Title 40 Code of Federal Regulations (CFR) 265.16 for the development of a written dangerous waste training program and the Hanford Facility Permit. Training requirements were determined by an assessment of employee duties and responsibilities. The RPP training program is designed to prepare employees to operate and maintain the Tank Farms in a safe, effective, efficient, and environmentally sound manner. In addition to preparing employees to operate and maintain the Tank Farms under normal conditions, the training program ensures that employees are prepared to respond in a prompt and effective manner should abnormal or emergency conditions occur. Emergency response training is consistent with emergency responses outlined in the following Building Emergency Plans: HNF-IP-0263-TF and HNF-=IP-0263-209E.

  10. Office of River Protection: Simplifying Project management tools

    SciTech Connect (OSTI)

    TAYLOR, D.G.

    2000-09-24T23:59:59.000Z

    The primary approach to the effort was to form a multi-organizational team comprised of federal and contractor staff to develop and implement the necessary tools and systems to manage the project. In late 1999 the DOE Manager of the Office of River Protection formed the Project Integration Office to achieve the objective of managing the efforts as a single project. The first major task, and the foundation upon which to base the development of all other tools, was the establishment of a single baseline of activities. However, defining a single scope schedule and cost was a difficult matter indeed. Work scopes were available throughout the project, but the level of detail and the integration of the activities existed primarily between working groups and individuals and not on a project-wide basis. This creates a situation where technical needs, logic flaws, resource balancing, and other similar integration needs are not elevated for management attention and resolution. It should be noted that probably 90% of the interface issues were known and being addressed. The key is simplifying the process and providing tangible assurance that the other 10% does not contain issues that can delay the project. Fortunately all of the contractors employed a common scheduling tool, which served as the basis for first communicating and then integrating baseline activities. Utilizing a powerful computer-based scheduling tool, it was soon possible to integrate the various schedules after the following was accomplished: Establishment of a scheduling specification (standardized input, coding, and approach to logic); and Clearly defined project assumptions.

  11. Fisheries of the Hudson River Karin E. Limburg, Kathryn A. Hattala, Andrew W. Kahnle, and John R. Waldman

    E-Print Network [OSTI]

    Limburg, Karin E.

    took the radical steps of (1) instituting a net lift period and (2) artificial propagation, which of various habitats within the system. Here, we concentrate on the fisheries themselves, focusing on key

  12. CERP, C&SF, Caloosahatchee River (C-43) West Basin Storage Project, Hendry County, Florida

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Selected Plan provides approximately 170,000 acre-feet of above-ground storage volume in a twoCERP, C&SF, Caloosahatchee River (C-43) West Basin Storage Project, Hendry County, Florida 23 August 2007 Abstract: The purpose of the Caloosahatchee River (C-43) West Basin Storage Reservoir project

  13. Lynnhaven River Basin Ecosystem Restoration Project Virginia Beach, Virginia

    E-Print Network [OSTI]

    US Army Corps of Engineers

    150 miles of shoreline and hundreds of acres of marsh, mudflat, and shallow water habitats. The river

  14. Phase I Water Rental Pilot Project : Snake River Resident Fish and Wildlife Resources and Management Recommendations.

    SciTech Connect (OSTI)

    Riggin, Stacey H.; Hansen, H. Jerome

    1992-10-01T23:59:59.000Z

    The Idaho Water Rental Pilot Project was implemented as a part of the Non-Treaty Storage Fish and Wildlife Agreement (NTSA) between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to improve juvenile and adult salmon and steelhead passage in the lower Snake River with the use of rented water for flow augmentation. The primary purpose of this project is to summarize existing resource information and provide recommendations to protect or enhance resident fish and wildlife resources in Idaho with actions achieving flow augmentation for anadromous fish. Potential impacts of an annual flow augmentation program on Idaho reservoirs and streams are modeled. Potential sources of water for flow augmentation and operational or institutional constraints to the use of that water are identified. This report does not advocate flow augmentation as the preferred long-term recovery action for salmon. The state of Idaho strongly believes that annual drawdown of the four lower Snake reservoirs is critical to the long-term enhancement and recovery of salmon (Andrus 1990). Existing water level management includes balancing the needs of hydropower production, irrigated agriculture, municipalities and industries with fish, wildlife and recreation. Reservoir minimum pool maintenance, water quality and instream flows are issues of public concern that will be directly affected by the timing and quantity of water rental releases for salmon flow augmentation, The potential of renting water from Idaho rental pools for salmon flow augmentation is complicated by institutional impediments, competition from other water users, and dry year shortages. Water rental will contribute to a reduction in carryover storage in a series of dry years when salmon flow augmentation is most critical. Such a reduction in carryover can have negative impacts on reservoir fisheries by eliminating shoreline spawning beds, reducing available fish habitat, and exacerbating adverse water quality conditions. A reduction in carry over can lead to seasonal reductions in instream flows, which may also negatively affect fish, wildlife, and recreation in Idaho. The Idaho Water Rental Pilot Project does provide opportunities to protect and enhance resident fish and wildlife habitat by improving water quality and instream flows. Control of point sources, such as sewage and industrial discharges, alone will not achieve water quality goals in Idaho reservoirs and streams. Slow, continuous releases of rented water can increase and stabilize instream flows, increase available fish and wildlife habitat, decrease fish displacement, and improve water quality. Island integrity, requisite for waterfowl protection from mainland predators, can be maintained with improved timing of water releases. Rebuilding Snake River salmon and steelhead runs requires a cooperative commitment and increased flexibility in system operations to increase flow velocities for fish passage and migration. Idaho's resident fish and wildlife resources require judicious management and a willingness by all parties to liberate water supplies equitably.

  15. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    SciTech Connect (OSTI)

    Howerton, Jack; Hwang, Diana

    1984-11-01T23:59:59.000Z

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  16. The effects of the Colorado River project on longshore sediment transport at Matagorda Peninsula, Texas

    E-Print Network [OSTI]

    Heilman, Daniel Jon

    1995-01-01T23:59:59.000Z

    In 1968, federal authorization was given for the mouth of the Colorado River project in response to a need for a dependable, navigable channel connecting the Gulf Intracoastal Waterway to the Gulf of Mexico near the town of Matagorda, Texas...

  17. The Snake River Geothermal Drilling Project - Innovative Approaches...

    Open Energy Info (EERE)

    a complete record of the volcanic stratigraphy that can be used in complementary science projects. This project will function in tandem with Project Hotspot, a continental...

  18. Project EARTH-12-PPS1: Weathering Rates in the Critical Zone: Soil Erosion, River Chemistry and Climate

    E-Print Network [OSTI]

    Henderson, Gideon

    Project EARTH-12-PPS1: Weathering Rates in the Critical Zone: Soil Erosion, River Chemistry., Assessing the role of climate on uranium and lithium isotope behaviour in rivers draining a basaltic terrain

  19. EIS-0241-SA-01: Supplement Analysis for the Hood River Fisheries Project,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of98-F, Western22,EERE: Record| DepartmentRecord of-SA-01::

  20. EIS-0241-SA-02: Supplement Analysis for the Hood River Fisheries Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of98-F, Western22,EERE: Record| DepartmentRecord

  1. Response to ISRP comments about Project 35018: Evaluate recreational and commercial mark-selective fisheries.

    E-Print Network [OSTI]

    Hoffman, WDFW. To better coordinate the evaluation of selective fishing gears and techniques between the Washington Department of Fish and Wildlife and the Oregon Department of Fish and Wildlife, we have combined in case fish tagged at the dam migrate back down the river. Comment: Reconcile the definitions for soak

  2. EIS-0351: Operation of Flaming Gorge Dam, Colorado River Storage Project, Colorado River, UT

    Broader source: Energy.gov [DOE]

    The Secretary of the United States Department of the Interior (Secretary), acting through the Bureau of Reclamation (Reclamation), is considering whether to implement a proposed action under which Flaming Gorge Dam would be operated to achieve the flow and temperature regimes recommended in the September 2000 report Flow and Temperature Recommendations for Endangered Fishes in the Green River Downstream of Flaming Gorge Dam (2000 Flow and Temperature Recommendations), published by the Upper Colorado River Endangered Fish Recovery Program (Recovery Program).

  3. Banks Lake Fishery Evaluation Project Annual Report : Fiscal Year 2008 (March 1, 2008 to February 1, 2009).

    SciTech Connect (OSTI)

    Polacek, Matt [Washington Department of Fish and Wildlife

    2009-07-15T23:59:59.000Z

    The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration, and continued project tasks in 2008. The objective was to evaluate factors that could limit kokanee in Banks Lake, including water quality, prey availability, harvest, and acute predation during hatchery releases. Water quality parameters were collected twice monthly from March through November. Banks Lake water temperatures began to increase in May and stratification was apparent by July. By late August, the thermocline had dropped to 15 meters deep, with temperatures of 21-23 C in the epilimnion and 16-19 C in the hypolimnion. Dissolved oxygen levels were generally above 8 mg/L until August when they dropped near or below 5 mg/L deeper than 20-meters. Secchi depths ranged from 3.2 to 6.2 meters and varied spatially and temporally. Daphnia and copepod densities were the highest in May and June, reaching densities of 26 copepods/liter and 9 Daphnia/liter. Fish surveys were conducted in July and October 2008 using boat electrofishing, gill netting, and hydroacoustic surveys. Lake whitefish (71%) and yellow perch (16%) dominated the limnetic fish assemblage in the summer, while lake whitefish (46%) and walleye (22%) were the most abundant in gill net catch during the fall survey. Piscivore diets switched from crayfish prior to the release of rainbow trout to crayfish and rainbow trout following the release. The highest angling pressure occurred in May, when anglers were primarily targeting walleye and smallmouth bass. Boat anglers utilized Steamboat State Park more frequently than any other boat ramp on Banks Lake. Shore anglers used the rock jetty at Coulee City Park 45% of the time, with highest use occurring from November through April. Ice fishing occurred in January and February at the south end of the lake. An estimated total of 4,397 smallmouth bass, 11,106 walleye, 371 rainbow trout, and 509 yellow perch were harvested from Banks Lake in 2008. No kokanee were reported in the creel; however, local reports indicated that anglers were targeting and catching kokanee. The economic benefit of the Banks Lake fishery was estimated at $2,288,005 during 2008. Abundance estimates from the hydroacoustic survey in July were 514,435 lake whitefish and 10,662 kokanee, with an overall abundance estimate of 626,061 limnetic fish greater than 100 mm. When comparing spring fry, fall fingerling and yearling net pen release strategies of kokanee, 95% were of hatchery origin, with the highest recaptures coming from the fall fingerling release group.

  4. Hanford Site River Protection Project (RPP) High Level Waste Storage

    SciTech Connect (OSTI)

    KRISTOFZSKI, J.G.

    2000-01-31T23:59:59.000Z

    The CH2M HILL Hanford Group (CHG) conducts business to achieve the goals of the U.S. Department of Energy's (DOE) Office of River Protection at the Hanford Site. The CHG is organized to manage and perform work to safely store, retrieve, etc.

  5. Lake Roosevelt Fisheries Evaluation Program : Limnological and Fisheries Monitoring Annual Report 1999.

    SciTech Connect (OSTI)

    McLellan, Holly; Lee, Chuck; Scofield, Ben; Pavlik, Deanne

    1999-08-01T23:59:59.000Z

    The Grand Coulee Dam was constructed in 1939 without a fish ladder, which eliminated steelhead (Onchorhynchus mykiss), chinook salmon (O. twshwastica), coho salmon (O. kisutch) and sockeye salmon (O. nerka) from returning to approximately 1,835 km (1,140 miles) of natal streams and tributaries found in the upper Columbia River Drainage in the United States and Canada. The Pacific Northwest Electric Power Planning and Conservation Act of 1980 gave the Bonneville Power Administration (BPA), the authority and responsibility to use its legal and financial resources, 'to protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries. This is to be done in a manner consistent with the program adopted by the Northwest Power Planning Council (NWPPC), and the purposes of the Act' (NWPPC, 1987). With the phrase 'protect, mitigate and enhance', Congress signaled its intent that the NWPPC's fish and wildlife program should do more than avoid future hydroelectric damage to the basin's fish and wildlife. The program must also counter past damage, work toward rebuilding those fish and wildlife populations that have been harmed by the hydropower system, protect the Columbia Basin's fish and wildlife resources, and mitigate for harm caused by decades of hydroelectric development and operations. By law, this program is limited to measures that deal with impacts created by the development, operation and management of hydroelectric facilities on the Columbia River and its tributaries. However, off-site enhancement projects are used to address the effects of the hydropower system on fish and wildlife (NWPPC 1987). Resident game fish populations have been established in Franklin D. Roosevelt Lake, the reservoir behind Grand Coulee Dam, since the extirpation of anadromous fish species. The resident game fish populations are now responsible for attracting a large percentage of the recreational visits to the region. An increase in popularity has placed Lake Roosevelt fifth amongst the most visited State and Federal parks in Washington. Increased use of the reservoir prompted amplified efforts to enhance the Native American subsistence fishery and the resident sport fishery in 1984 with hatchery supplementation of rainbow trout (O. mykiss) and kokanee salmon (O. nerka). This was followed by the formation of the Spokane Tribal Lake Roosevelt Monitoring Project (LRMP) in 1988 and later by formation of the Lake Roosevelt Data Collection Project in 1991. The Lake Roosevelt Data Collection Project began in July 1991 as part of the BPA, Bureau of Reclamation, and U.S. Army Corps of Engineers System Operation Review process. This process sought to develop an operational scenario for the federal Columbia River hydropower system to maximize the in-reservoir fisheries with minimal impacts to all other stakeholders in the management of the Columbia River. The Lake Roosevelt Monitoring/Data Collection Program (LRMP) is the result of a merger between the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 forming the Lake Roosevelt Monitoring Program (LRMP), which continues the work historically completed under the separate projects. The LRMP has two main goals. The first is to develop a biological model for Lake Roosevelt that will predict in-reservoir biological responses to a range of water management operational scenarios, and to develop fisheries and reservoir management strategies accordingly. The model will allow identification of lake operations that minimize impacts on lake biota while addressing the needs of other interests (e.g. flood control, hydropower generation, irrigation, and downstream resident and anadromous fisheries). Major components of the model will include: (1) quantification of entrainment and other impacts to phytoplankton, zooplankton and fish caused by reservoir drawdowns and low water retention times; (2) quantification

  6. Oregon Trust Agreement Planning Project : Potential Mitigations to the Impacts on Oregon Wildlife Resources Associated with Relevant Mainstem Columbia River and Willamette River Hydroelectric Projects.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-10-01T23:59:59.000Z

    A coalition of the Oregon wildlife agencies and tribes (the Oregon Wildlife Mitigation Coalition) have forged a cooperative effort to promote wildlife mitigation from losses to Oregon wildlife resources associated with the four mainstream Columbia River and the eight Willamette River Basin hydroelectric projects. This coalition formed a Joint Advisory Committee, made up of technical representatives from all of the tribes and agencies, to develop this report. The goal was to create a list of potential mitigation opportunities by priority, and to attempt to determine the costs of mitigating the wildlife losses. The information and analysis was completed for all projects in Oregon, but was gathered separately for the Lower Columbia and Willamette Basin projects. The coalition developed a procedure to gather information on potential mitigation projects and opportunities. All tribes, agencies and interested parties were contacted in an attempt to evaluate all proposed or potential mitigation. A database was developed and minimum criteria were established for opportunities to be considered. These criteria included the location of the mitigation site within a defined area, as well as other criteria established by the Northwest Power Planning Council. Costs were established for general habitats within the mitigation area, based on estimates from certified appraisers. An analysis of the cost effectiveness of various types of mitigation projects was completed. Estimates of operation and maintenance costs were also developed. The report outlines strategies for gathering mitigation potentials, evaluating them, determining their costs, and attempting to move towards their implementation.

  7. Abundance, Distribution and Estimated Consumption (kg fish) of Piscivorous Birds Along the Yakima River, Washington State; Implications for Fisheries Management, 2002 Annual Report.

    SciTech Connect (OSTI)

    Major, III, Walter; Grassley, James M.; Ryding, Kristen E. (University of Washington, Quantitive Ecology Program, Seattle, WA)

    2003-05-01T23:59:59.000Z

    This report is divided into two chapters. The abstract for chapter one is--Understanding of the abundance and spatial and temporal distributions of piscivorous birds and their potential consumption of fish is an increasingly important aspect of fisheries management. During 1999-2002, we determined the abundance and distribution and estimated the maximum consumption (kg biomass) of fish-eating birds along the length of the Yakima River in Washington State. Sixteen different species were observed during the 4-yr study, but only half of those were observed during all years. Abundance and estimated consumption of fish within the upper and middle sections of the river were dominated by common mergansers (Mergus merganser) which are known to breed in those reaches. Common mergansers accounted for 78 to 94% of the estimated total fish take for the upper river or approximately 28,383 {+-} 1,041 kg over the 4 yrs. A greater diversity of avian piscivores occurred in the lower river and potential impacts to fish populations was more evenly distributed among the species. In 1999-2000, great blue herons potentially accounted for 29 and 36% of the fish consumed, whereas in 2001-2002 American white pelicans accounted for 53 and 55%. We estimated that approximately 75,878 {+-} 6,616 kg of fish were consumed by piscivorous birds in the lower sections of the river during the study. Bird assemblages differed spatially along the river with a greater abundance of colonial nesting species within the lower sections of the river, especially during spring and the nesting season. The abundance of avian piscivores and consumption estimates are discussed within the context of salmonid supplementation efforts on the river and juvenile out-migration. The abstract for chapter two is--Consumption of fish by piscivorous birds may be a significant constraint on efforts to enhance salmonid populations within tributaries to the Columbia River in Washington State. During 1999-2002, we determined the abundance of fish-eating birds, primarily ring-billed (Larus delawarensis) and California (L. californicus) gulls and monitored their behavior at two man-made structures within the Yakima River in eastern Washington: Horn Rapids Dam, a low-head irrigation dam, and the return pipe for the Chandler Juvenile Fish Handling Facility. Earlier observations of congregations of gulls at these structures suggested an increased likelihood of predation of out-migrating juvenile salmonids. We estimated the number of fish consumed and examined the relationship between river flow and gull numbers and fish taken. Numbers of gulls at the structures varied daily between their arrival in Late March-early April and departure in late June (mean ({+-}SE) - Horn Rapids: 11.7 ({+-}2.0), Chandler: 20.1 ({+-}1.5) ). During the 4-yr study, numbers at Horn Rapids peaked dramatically during the last 2 weeks in May (between 132.9 ({+-}4.2) to 36.6 ({+-}2.2) gulls/day) and appeared to the associated with the release of > 1-mil hatchery juvenile fall chinook (Oncorhynchus tshawytscha) above the 2 study sites. A comparable peak in gull abundance was not observed at Chandler. Diurnal patterns of gull abundance also varied among years and sites. The relationship between foraging efficiency and gull numbers was not consistent among years or sites. Gull numbers were not correlated with river flow when year was considered. However, variations in flow among years appeared to be associated with average gull numbers at each site, but trends were not consistent between sites. Low seasonal flows were associated with increased predation at Chandler, whereas high seasonal flows were associated with increased predation at Horn Rapids. Assuming all fish taken were salmonids, we estimate gulls consumed between 0.1-10.3 % of the juvenile salmonids passing or being released from the Chandler Juvenile Fish Monitoring Facility located above the two structures. Staggered releases of hatchery fish, nocturnal releases of fish entrained in the Chandler facility, changes in the orientation of the outflow from the f

  8. Evaluation of dredged material proposed for ocean disposal from Shark River Project area

    SciTech Connect (OSTI)

    Antrim, L.D.; Gardiner, W.W.; Barrows, E.S.; Borde, A.B. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1996-09-01T23:59:59.000Z

    The objective of the Shark River Project was to evaluate proposed dredged material to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Tests and analyses were conducted on the Shark River sediments. The evaluation of proposed dredged material consisted of bulk sediment chemical and physical analysis, chemical analyses of dredging site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation tests. Individual sediment core samples collected from the Shark River were analyzed for grain size, moisture content, and total organic carbon (TOC). One sediment composite was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAHs), and 1,4- dichlorobenzene. Dredging site water and elutriate, prepared from suspended-particulate phase (SPP) of the Shark River sediment composite, were analyzed for metals, pesticides, and PCBs. Benthic acute toxicity tests and bioaccumulation tests were performed.

  9. Evaluation of dredged material proposed for ocean disposal from Bronx River Project Area, New York

    SciTech Connect (OSTI)

    Gruendell, B.D.; Gardiner, W.W.; Antrim, L.D.; Pinza, M.R.; Barrows, E.S.; Borde, A.B. [Battelle Marine Research Lab., Sequim, WA (United States)

    1996-12-01T23:59:59.000Z

    The objective of the Bronx River project was to evaluate proposed dredged material from the Bronx River project area in Bronx, New York, to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Bronx River was one of five waterways that the US Army Corps of Engineers-New York District (USAGE-NYD) requested the Battelle Marine Sciences Laboratory (MSL) to sample and to evaluate for dredging and disposal. Sediment samples were submitted for physical and chemical analyses, chemical analyses of dredging site water and elutriate, benthic and water-column acute toxicity tests, and bioaccumulation studies. Fifteen individual sediment core samples collected from the Bronx River project area were analyzed for grain size, moisture content, and total organic carbon (TOC). One composite sediment sample, representing the entire reach of the area proposed for dredging, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4- dichlorobenzene. Dredging site water and elutriate water, which was prepared from the suspended-particulate phase (SPP) of the Bronx River sediment composite, were analyzed for metals, pesticides, and PCBS.

  10. Snake River Geothermal Project- Innovative Approaches to Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: To Implement and Test Geological and Geophysical Techniques for Geothermal Exploration. Project seeks to lower the cost of geothermal energy development by identifying which surface and borehole techniques are most efficient at identifying hidden resources.

  11. Wabash River Coal Gasification Repowering Project Final Technical Report

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not FoundInformation DOEInformation Summary Big*Theea DynamicWabash River

  12. Potomac River Project Outage Schedule Clarification | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T enAmount forDecontaminationComments and Protests |ofRiver

  13. Powder River Energy Corporation Smart Grid Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation to ReducePoseidonPowder River

  14. MHK Projects/Miette River | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <| OpenMarisol Peru SHPMiette River <

  15. Workplace Charging Challenge Partner: Salt River Project | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | DepartmentDepartment of Energy Lewis &DepartmentEnergy Salt River

  16. Savannah River Site Contractor Receives Project Management Institute Award

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmentalEfficiency | DepartmentSavannah River41-HW State|

  17. Bonneville Project Act, Federal Columbia River Transmission System Act and Other Related Legislation.

    SciTech Connect (OSTI)

    Not Available

    1985-01-01T23:59:59.000Z

    Legislative texts are provided for: Bonneville Project Act which authorizes the completion, maintenance, and operation of Bonneville project for navigation, and for other purposes; Federal Columbia River Transmission system Act which enables the Secretary of the Interior to provide for operation, maintenance, and continued construction of the Federal transmission system in the Pacific Northwest by use of the revenues of the Federal Columbia River Power System and the proceeds of revenue bonds, and for other purposes; public law 88--552 which guarantees electric consumers of the Pacific Northwest first call on electric energy generated at Federal hydroelectric plants in that regions and reciprocal priority, and for other purposes; and public law 78--329 which provides for the partial construction of the Hungary Horse Dam on the South Fork of the Flathead River in the state of Montana, and for other purposes

  18. Hood River Monitoring and Evaluation Project, Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Vaivoda, Alexis

    2004-02-01T23:59:59.000Z

    The Hood River Production Program Monitoring and Evaluation Project is co-managed by the Confederated Tribes of Warm Springs (CTWSRO) and the Oregon Department of Fish and Wildlife. The program is divided up to share responsibilities, provide efficiency, and avoid duplication. From October 2002 to September 2003 (FY 03) project strategies were implemented to monitor, protect, and restore anadromous fish and fish habitat in the Hood River subbasin. A description of the progress during FY 03 is reported here. Additionally an independent review of the entire program was completed in 2003. The purpose of the review was to determine if project goals and actions were achieved, look at critical uncertainties for present and future actions, determine cost effectiveness, and choose remedies that would increase program success. There were some immediate changes to the implementation of the project, but the bulk of the recommendations will be realized in coming years.

  19. Evaluation of dredged material proposed for ocean disposal from Hackensack River Project Area, New York

    SciTech Connect (OSTI)

    Gruendell, B.D.; Barrows, E.S.; Borde, A.B. [Battelle Marine Sciences Lab., Sequim, WA (United States)

    1997-01-01T23:59:59.000Z

    The objective of the bioassay reevaluation of the Hackensack River Federal Project was to reperform toxicity testing on proposed dredged material with current ammonia reduction protocols. Hackensack River was one of four waterways sampled and evaluated for dredging and disposal in April 1993. Sediment samples were re-collected from the Hackensack River Project area in August 1995. Tests and analyses were conducted according to the manual developed by the USACE and the U.S. Environmental Protection Agency (EPA), Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual), commonly referred to as the {open_quotes}Green Book,{close_quotes} and the regional manual developed by the USACE-NYD and EPA Region II, Guidance for Performing Tests on Dredged Material to be Disposed of in Ocean Waters. The reevaluation of proposed dredged material from the Hackensack River project area consisted of benthic acute toxicity tests. Thirty-three individual sediment core samples were collected from the Hackensack River project area. Three composite sediments, representing each reach of the area proposed for dredging, were used in benthic acute toxicity testing. Benthic acute toxicity tests were performed with the amphipod Ampelisca abdita and the mysid Mysidopsis bahia. The amphipod and mysid benthic toxicity test procedures followed EPA guidance for reduction of total ammonia concentrations in test systems prior to test initiation. Statistically significant acute toxicity was found in all three Hackensack River composites in the static renewal tests with A. abdita, but not in the static tests with M. bahia. Statistically significant acute toxicity and a greater than 20% increase in mortality over the reference sediment was found in the static renewal tests with A. abdita. Statistically significant mortality 10% over reference sediment was observed in the M. bahia static tests. 5 refs., 2 figs., 2 tabs.

  20. DOWNSTREAM PASSAGE FOR SALMON AT HYDROELECTRIC PROJECTS IN THE COLUMBIA RIVER BASIN

    E-Print Network [OSTI]

    DOWNSTREAM PASSAGE FOR SALMON AT HYDROELECTRIC PROJECTS IN THE COLUMBIA RIVER BASIN: DEVELOPMENT Prepared for the Northwest Power Planning Council October 1997 97-15 #12;Published October 1997 by the Northwest Power Planning Council 851 SW 6th Avenue, Suite 1100 Portland, Oregon 97204 503-222-5161 Toll Free

  1. Protocols for Monitoring Habitat Restoration Projects in the Lower Columbia River and Estuary

    SciTech Connect (OSTI)

    Roegner, G. Curtis; Diefenderfer, Heida L.; Borde, Amy B.; Thom, Ronald M.; Dawley, Earl M.; Whiting, Allan H.; Zimmerman, Shon A.; Johnson, Gary E.

    2008-04-25T23:59:59.000Z

    Protocols for monitoring salmon habitat restoration projects are essential for the U.S. Army Corps of Engineers' environmental efforts in the Columbia River estuary. This manual provides state-of-the science data collection and analysis methods for landscape features, water quality, and fish species composition, among others.

  2. Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan

    SciTech Connect (OSTI)

    Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C.; Walker, Darrell D.

    2001-10-31T23:59:59.000Z

    This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report

  3. Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling and Testing

    SciTech Connect (OSTI)

    Henkle, William R.; Ronne, Joel

    2008-06-15T23:59:59.000Z

    This report covers the drilling and testing of the slim well 56-4 at the Reese River Geothermal Project in Lander County, Nevada. This well was partially funded through a GRED III Cooperative Funding Agreement # DE-FC36-04GO14344, from USDOE.

  4. Climate change projection of snowfall in the Colorado River Basin using dynamical downscaling

    E-Print Network [OSTI]

    Castro, Christopher L.

    . Dominguez, M. Durcik, J. Valdes, H. F. Diaz, and C. L. Castro (2012), Climate change projection of snowfall Sungwook Wi,1 Francina Dominguez,2,3 Matej Durcik,3 Juan Valdes,1,3 Henry F. Diaz,4 and Christopher L approximately 85% of the river's 17.2 Ă? 109 m3 annual flow [Christensen and Lettenmaier, 2007; Serreze et al

  5. The Navruz Project: Transboundary Monitoring for Radionuclides and Metals in Central Asia Rivers

    SciTech Connect (OSTI)

    PASSELL, HOWARD D.; BARBER, DAVID S.; BETSILL, J. DAVID; LITTLEFIELD, ADRIANE C.; MOHAGHEGHI, AMIR H.; SHANKS, SONOYA T.; YULDASHEV, BEKHZAD; SALIKHBAEV, UMAR; RADYUK, RAISA; DJURAEV, AKRAM; DJURAEV, ANWAR; VASILIEV, IVAN; TOLONGUTOV,BAJGABYL; VALENTINA,ALEKHINA; SOLODUKHIN,VLADIMIR; POZNIAK,VICTOR

    2002-04-02T23:59:59.000Z

    The transboundary nature of water resources demands a transboundary approach to their monitoring and management. However, transboundary water projects raise a challenging set of problems related to communication issues, and standardization of sampling, analysis and data management methods. This manual addresses those challenges and provides the information and guidance needed to perform the Navruz Project, a cooperative, transboundary, river monitoring project involving rivers and institutions in Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan facilitated by Sandia National Laboratories in the U.S. The Navruz Project focuses on waterborne radionuclides and metals because of their importance to public health and nuclear materials proliferation concerns in the region. This manual provides guidelines for participants on sample and data collection, field equipment operations and procedures, sample handling, laboratory analysis, and data management. Also included are descriptions of rivers, sampling sites and parameters on which data are collected. Data obtained in this project are shared among all participating countries and the public through an internet web site and are available for use in further studies and in regional transboundary water resource management efforts. Overall, the project addresses three main goals: to help increase capabilities in Central Asian nations for sustainable water resources management; to provide a scientific basis for supporting nuclear transparency and non-proliferation in the region; and to help reduce the threat of conflict in Central Asia over water resources, proliferation concerns, or other factors.

  6. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TANK FARM CLOSURE

    SciTech Connect (OSTI)

    JARAYSI, M.N.; SMITH, Z.; QUINTERO, R.; BURANDT, M.B.; HEWITT, W.

    2006-01-30T23:59:59.000Z

    The U. S. Department of Energy, Office of River Protection and the CH2M HILL Hanford Group, Inc. are responsible for the operations, cleanup, and closure activities at the Hanford Tank Farms. There are 177 tanks overall in the tank farms, 149 single-shell tanks (see Figure 1), and 28 double-shell tanks (see Figure 2). The single-shell tanks were constructed 40 to 60 years ago and all have exceeded their design life. The single-shell tanks do not meet Resource Conservation and Recovery Act of 1976 [1] requirements. Accordingly, radioactive waste is being retrieved from the single-shell tanks and transferred to double-shell tanks for storage prior to treatment through vitrification and disposal. Following retrieval of as much waste as is technically possible from the single-shell tanks, the Office of River Protection plans to close the single-shell tanks in accordance with the Hanford Federal Facility Agreement and Consent Order [2] and the Atomic Energy Act of 1954 [3] requirements. The double-shell tanks will remain in operation through much of the cleanup mission until sufficient waste has been treated such that the Office of River Protection can commence closing the double-shell tanks. At the current time, however, the focus is on retrieving waste and closing the single-shell tanks. The single-shell tanks are being managed and will be closed in accordance with the pertinent requirements in: Resource Conservation and Recovery Act of 1976 and its Washington State-authorized Dangerous Waste Regulations [4], US DOE Order 435.1 Radioactive Waste Management [5], the National Environmental Policy Act of 1969 [6], and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [7]. The Hanford Federal Facility Agreement and Consent Order, which is commonly referred to as the Tri-Party Agreement or TPA, was originally signed by Department of Energy, the State of Washington, and the U. S. Environmental Protection Agency in 1989. Meanwhile, the retrieval of the waste is under way and is being conducted to achieve the completion criteria established in the Hanford Federal Facility Agreement and Consent Order.

  7. Yakima/Klickitat Fisheries Project; Klickitat Only Monitoring and Evaluation, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Sampson, Melvin; Evenson, Rolf

    2003-12-01T23:59:59.000Z

    The monitoring and evaluation activities described in this report were determined by consensus of the scientists from the Yakama Nation (YN). Klickitat Subbasin Monitoring and Evaluation (M&E) activities have been subjected to scientific and technical review by members of YKFP's Science/Technical Advisory Committee (STAC) as part of the YKFP's overall M&E proposal. Yakama Nation YKFP project biologists have transformed the conceptual design into the tasks described. This report summarizes progress and results for the following major categories of YN-managed tasks under this contract: (1) Monitoring and Evaluation - Accurately characterize baseline available habitat and salmonid populations pre-habitat restoration and pre-supplementation. (2) EDT Modeling - Identify and evaluate habitat and artificial production enhancement options. (3) Genetics - Characterize the genetic profile of wild steelhead in the Klickitat Basin. (4) Ecological Interactions - Determine the presence of pathogens in wild and naturally produced salmonids in the Klickitat Basin and develop supplementation strategies using this information.

  8. Captive Rearing Program for Salmon River Chinook Salmon, 2000 Project Progress Report.

    SciTech Connect (OSTI)

    Venditti, David A.

    2002-04-01T23:59:59.000Z

    During 2000, the Idaho Department of Fish and Game (IDFG) continued to develop techniques to rear chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were collected to establish captive cohorts from three study streams and included 503 eyed-eggs from East Fork Salmon River (EFSR), 250 from the Yankee Fork Salmon River, and 304 from the West Fork Yankee Fork Salmon River (WFYF). After collection, the eyed-eggs were immediately transferred to the Eagle Fish Hatchery, where they were incubated and reared by family group. Juveniles collected the previous summer were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidney disease before the majority (approximately 75%) were transferred to the National Marine Fisheries Service, Manchester Marine Experimental Station for saltwater rearing through sexual maturity. Smolt transfers included 158 individuals from the Lemhi River (LEM), 193 from the WFYF, and 372 from the EFSR. Maturing fish transfers from the Manchester facility to the Eagle Fish Hatchery included 77 individuals from the LEM, 45 from the WFYF, and 11 from the EFSR. Two mature females from the WFYF were spawned in captivity with four males in 2000. Only one of the females produced viable eggs (N = 1,266), which were placed in in-stream incubators by personnel from the Shoshone-Bannock Tribe. Mature adults (N = 70) from the Lemhi River were released into Big Springs Creek to evaluate their reproductive performance. After release, fish distributed themselves throughout the study section and displayed a progression of habitat associations and behavior consistent with progressing maturation and the onset of spawning. Fifteen of the 17 suspected redds spawned by captive-reared parents in Big Springs Creek were hydraulically sampled to assess survival to the eyed stage of development. Eyed-eggs were collected from 13 of these, and survival ranged from 0% to 96%, although there was evidence that some eggs had died after reaching the eyed stage. Six redds were capped in an attempt to document fry emergence, but none were collected. A final hydraulic sampling of the capped redds yielded nothing from five of the six, but 75 dead eggs and one dead fry were found in the sixth. Smothering by fine sediment is the suspected cause of the observed mortality between the eyed stage and fry emergence.

  9. The Kings River Sustainable Forest Ecosystems Project: Inception, Objectives,

    E-Print Network [OSTI]

    Standiford, Richard B.

    , especially with controversies over the effects of even-aged timber harvest on old-growth forests, with minimal "zonation" for special needs, will sustain all key resources (soil, water, vegetation levels of commodity extraction, and supporting recreational use by the public. Inception of the Project

  10. CEDAR RIVER, CEDAR RAPIDS, IOWA, FLOOD RISK MANAGEMENT PROJECT

    E-Print Network [OSTI]

    US Army Corps of Engineers

    developed as standard designs in order to minimize estimated construction cost. The estimated total cost: The purpose of the Project is to provide cost effective, environmentally-sensitive, and technically feasible lies within the 100-year floodplain. Historically, major floods have resulted from a combination

  11. PORTSMOUTH HARBOR AND PISCATAQUA RIVER, NH & ME NAVIGATION IMPROVEMENT PROJECT

    E-Print Network [OSTI]

    US Army Corps of Engineers

    on the terminals located above Interstate 95. Cargoes include petroleum fuels, cement, gypsum, and liquid propane. The study evaluated project benefits based on reduction in transportation costs generated from a shift. The Recommended Plan will generate significant economic benefits for the nation, and is the National Economic

  12. Wabash River Coal Gasification Repowering Project. Topical report, July 1992--December 1993

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The Wabash River Coal Gasification Repowering Project (WRCGRP, or Wabash Project) is a joint venture of Destec Energy, Inc. of Houston, Texas and PSI Energy, Inc. of Plainfield, Indiana, who will jointly repower an existing 1950 vintage coal-fired steam generating plant with coal gasification combined cycle technology. The Project is located in West Terre Haute, Indiana at PSI`s existing Wabash River Generating Station. The Project will process locally-mined Indiana high-sulfur coal to produce 262 megawatts of electricity. PSI and Destec are participating in the Department of Energy Clean Coal Technology Program to demonstrate coal gasification repowering of an existing generating unit affected by the Clean Air Act Amendments. As a Clean Coal Round IV selection, the project will demonstrate integration of an existing PSI steam turbine generator and auxiliaries, a new combustion turbine generator, heat recovery steam generator tandem, and a coal gasification facility to achieve improved efficiency, reduced emissions, and reduced installation costs. Upon completion in 1995, the Project will not only represent the largest coal gasification combined cycle power plant in the United States, but will also emit lower emissions than other high sulfur coal-fired power plants and will result in a heat rate improvement of approximately 20% over the existing plant configuration. As of the end of December 1993, construction work is approximately 20% complete for the gasification portion of the Project and 25% complete for the power generation portion.

  13. New River Geothermal Research Project, Imperial Valley, California

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania:Information Operating PermitGeothermal Project

  14. Green River Formation water flood demonstration project. Final report

    SciTech Connect (OSTI)

    Pennington, B.I.; Dyer, J.E.; Lomax, J.D. [Inland Resources, Inc. (United States); [Lomax Exploration Co., Salt Lake City, UT (United States); Deo, M.D. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical and Fuels Engineering

    1996-11-01T23:59:59.000Z

    The objectives of the project were to understand the oil production mechanisms in the Monument Butte unit via reservoir characterization and reservoir simulations and to transfer the water flooding technology to similar units in the vicinity, particularly the Travis and the Boundary units. The reservoir characterization activity in the project basically consisted of extraction and analysis of a full diameter core, Formation Micro Imaging (FMI) logs from several wells and Magnetic Resonance Imaging (MRI) logs from two wells. In addition, several side-wall cores were drilled and analyzed, oil samples from a number of wells were physically and chemically characterized (using high-temperature gas chromatography), oil-water relative permeabilities were measured and pour points and cloud points of a few oil samples were determined. The reservoir modeling activity comprised of reservoir simulation of all the three units at different scales and near well-bore modeling of the wax precipitation effects. The reservoir simulation activities established the extent of pressurization of the sections of the reservoirs in the immediate vicinity of the Monument Butte unit. This resulted in a major expansion of the unit and the production from this expanded unit increased from about 300 barrels per day to about 2,000 barrels per day.

  15. Banks Lake Fishery Evaluation Project Annual Report : Fiscal Year 2001 (September 1, 2001 to August 31, 2002).

    SciTech Connect (OSTI)

    Polacek, Matt; Knuttgen, Kamia; Baldwin, Casey; Woller, Heather

    2003-03-01T23:59:59.000Z

    The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration. The first year of the BLFEP was used to gather historic information, establish methods and protocols, collect limnology data, and conduct the first seasonal fish surveys. Water quality parameters were collected monthly from February to May and bi-monthly from June to August. Banks Lake water temperatures began to increase in April and stratification was apparent by June at all 3 limnology collection sites. By late August, the thermocline had dropped to nearly 20 m deep, with 19-20 C temperatures throughout the epilimnion. Dissolved oxygen levels were generally above 10 mg/L until mid summer when dissolved oxygen dropped near or below 5 mg/L below 20-m deep. Secchi depths ranged from 3-10 m and varied by location and date. Nearshore and offshore fish surveys were conducted in May and July using boat electrofishing, fyke net, gill net, and hydroacoustic surveys. Smallmouth bass Micropterous dolomieui (24%) and lake whitefish Coregonus clupeaformis (20%) dominated the nearshore species composition in May; however, by July yellow perch Perca flavescens (26%) were the second most common species to smallmouth bass (30%). Lake whitefish dominated the offshore catch during May (72%) and July (90%). The May hydroacoustic survey revealed highest densities of fish in the upper 1/3 of the water column in the mid- to northern sections of the reservoir near Steamboat Rock. In the future, data from seasonal surveys will be used to identify potential factors that may limit the production and harvest of kokanee, rainbow trout, and various spiny-rayed fishes in Banks Lake. The limiting factors that will be examined consist of: abiotic factors including water temperature, dissolved oxygen levels, habitat, exploitation and entrainment; and biotic factors including food limitation and predation. The BLFEP will also evaluate the success of several rearing and stocking strategies for hatchery kokanee in Banks Lake.

  16. Columbia River pathway report: phase I of the Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Not Available

    1991-07-01T23:59:59.000Z

    This report summarizes the river-pathway portion of the first phase of the Hanford Environmental Dose Reconstruction (HEDR) Project. The HEDR Project is estimating radiation doses that could have been received by the public from the Department of Energy's Hanford Site, in southeastern Washington State. Phase 1 of the river-pathway dose reconstruction effort sought to determine whether dose estimates could be calculated for populations in the area from above the Hanford Site at Priest Rapids Dam to below the site at McNary Dam from January 1964 to December 1966. Of the potential sources of radionuclides from the river, fish consumption was the most important. Doses from drinking water were lower at Pasco than at Richland and lower at Kennewick than at Pasco. The median values of preliminary dose estimates calculated by HEDR are similar to independent, previously published estimates of average doses to Richland residents. Later phases of the HEDR Project will address dose estimates for periods other than 1964--1966 and for populations downstream of McNary Dam. 17 refs., 19 figs., 1 tab.

  17. FISHERY STATISTICS UNITED STATES

    E-Print Network [OSTI]

    of processed fishery product s, data on freez- ings and cold storage holdings, and on foreign trade in fishery fisheries. There is also information on the pack of canned tuna and industrial prod ucts for Puerto Rico, mollusks, etc . , by countries Processed fishery products . Canned fishery products Industrial fishery

  18. AN ECONOMIC EVALUATION OF THE ST. LAWRENCE RIVER-EASTERN

    E-Print Network [OSTI]

    AN ECONOMIC EVALUATION OF THE ST. LAWRENCE RIVER-EASTERN LAKE ONTARIO BASS FISHERY The St. Lawrence information on the economic importance of the bass fishery, considered by many to be one of the best smallmouth bass fisheries in the world. The economic value of this recreational fishery should be taken

  19. Phase II Water Rental Pilot Project: Snake River Resident Fish and Wildlife Resources and Management Recommendations.

    SciTech Connect (OSTI)

    Stovall, Stacey H.

    1994-08-01T23:59:59.000Z

    The Idaho Water Rental Pilot Project was implemented in 1991 as part of the Non-Treaty Storage Fish and Wildlife Agreement between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to quantify resident fish and wildlife impacts resulting from salmon flow augmentation releases made from the upper Snake River Basin. Phase I summarized existing resource information and provided management recommendations to protect and enhance resident fish and wildlife habitat resulting from storage releases for the I improvement of an adromous fish migration. Phase II includes the following: (1) a summary of recent biological, legal, and political developments within the basin as they relate to water management issues, (2) a biological appraisal of the Snake River between American Falls Reservoir and the city of Blackfoot to examine the effects of flow fluctuation on fish and wildlife habitat, and (3) a preliminary accounting of 1993--1994 flow augmentation releases out of the upper Snake, Boise, and Payette river systems. Phase III will include the development of a model in which annual flow requests and resident fish and wildlife suitability information are interfaced with habitat time series analysis to provide an estimate of resident fish and wildlife resources.

  20. Proposed modifications to the Lower Mokelumne River Project, California: FERC Project No. 2916-004. Final environmental impact statement

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    This final environmental impact statement (FEIS) has been prepared for the Federal Energy Regulatory Commission (Commission) to consider modifications to the existing Lower Mokelumne River Project (LMRP) (FERC Project No. 2916-004) in California. Chinook salmon and steelhead trout populations in the lower Mokelumne River have experienced recent declines and fish kills associated, in part, with discharges from Camanche Dam. The California Department of Fish and Game and the California Sportfishing Protection Alliance have asked the Commission to investigate and correct these problems. A wide range of different mitigation actions has been proposed by parties participating in the scoping of this proceeding, and staff has evaluated these proposed actions in this assessment. The staff is recommending a combination of flow and non-flow modifications to the existing license, including new minimum flow and minimum pool elevation requirements at Camanche Reservoir, ramping rates on dam releases, interim attraction and out-migrant spike flows, instream habitat improvements, and a series of studies and monitoring to determine feasible means for solving off-site fish passage problems.

  1. Umatilla River Fish Passage Operations Project : Annual Progress Report October 2007 - September 2008.

    SciTech Connect (OSTI)

    Bronson, James P.; Loffink, Ken; Duke, Bill

    2008-12-31T23:59:59.000Z

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were enumerated at Threemile Dam from June 7, 2007 to August 11, 2008. A total of 3,133 summer steelhead (Oncorhynchus mykiss); 1,487 adult, 1,067 jack, and 999 subjack fall Chinook (O. tshawytscha); 5,140 adult and 150 jack coho (O. kisutch); and 2,009 adult, 517 jack, and 128 subjack spring Chinook (O. tshawytscha) were counted. All fish were enumerated at the east bank facility. Of the fish counted, 1,442 summer steelhead and 88 adult and 84 jack spring Chinook were hauled upstream from Threemile Dam. There were 1,497 summer steelhead; 609 adult, 1,018 jack and 979 subjack fall Chinook; 5,036 adult and 144 jack coho; and 1,117 adult, 386 jack and 125 subjack spring Chinook either released at, or allowed to volitionally migrate past, Threemile Dam. Also, 110 summer steelhead; 878 adult and 43 jack fall Chinook; and 560 adult and 28 jack spring Chinook were collected as broodstock for the Umatilla River hatchery program. In addition, there were 241 adult and 15 jack spring Chinook collected at Threemile Dam for outplanting in the South Fork Walla Walla River and Mill Cr, a tributary of the mainstem Walla Walla River. The Westland Canal juvenile facility (Westland), located near the town of Echo at river mile (RM) 27, is the major collection point for out-migrating juvenile salmonids and steelhead kelts. The canal was open for 158 days between February 11, 2008 and July 18, 2008. During that period, fish were bypassed back to the river 150 days and were trapped 6 days. There were also 2 days when fish were directed into and held in the canal forebay between the time the bypass was closed and the trap opened. An estimated 64 pounds of fish were transported from the Westland trapping facility. Approximately 25.8% of the fish transported were salmonids. In addition, one adult Pacific lamprey was trapped and released above the Westland ladder this year. The Threemile Dam west bank juvenile bypass was opened on March 11, 2008 in conjunction with water deliveries and continued through the summer. West Extension Irrigation District (WEID) discontinued diverting live flow on June 24, 2008 but the bypass remained open throughout the project year. The juvenile trap was not operated this project year.

  2. Research and development activities in support of Hanford River protection project privatization -- SRTC program

    SciTech Connect (OSTI)

    Sturm, H.

    2000-01-11T23:59:59.000Z

    A team led by BNFL was awarded the contract to remediate and immobilize the Hanford radioactive tank waste in support of the Hanford River Protection Program. BNFL and team members will develop and design integrated facilities for pretreatment and vitrification in support of this program. This facility will pretreat and immobilize approximately 0.375 MT/day of high level waste and approximately 4.5 MT/day of low activity waste. As part of the overall project, BNFL has contracted Savannah River Technology Center (SRTC) to provide research and development services in characterization, pretreatment, and immobilization of actual Hanford tank wastes. SRTC is conducting tests, radioactive and non-radioactive, to confirm all major processing steps for the pretreatment flowsheet. During this testing, SRTC has identified and developed alternate or additional processing steps to address significant processing concerns. Additionally, SRTC is developing design basis data using simulants of Hanford tank wastes in areas of ion exchange, filtration, precipitation, glass former blending, evaporation, and slurry mixing. This paper will provide an overview of SRTC activities completed during the initial phase of the project, flowsheet modifications resulting from SRTC's identification and development of alternate or modified processing steps, as well as a description of the SRTC development program for the next phase of the project.

  3. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    SciTech Connect (OSTI)

    Neeraj Gupta

    2009-01-07T23:59:59.000Z

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site characterization phase was completed, laying the groundwork for moving the project towards a potential injection phase. Feasibility and design assessment activities included an assessment of the CO{sub 2} source options (a slip-stream capture system or transported CO{sub 2}); development of the injection and monitoring system design; preparation of regulatory permits; and continued stakeholder outreach.

  4. Compliance Monitoring of Underwater Blasting for Rock Removal at Warrior Point, Columbia River Channel Improvement Project, 2009/2010

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Johnson, Gary E.; Woodley, Christa M.; Skalski, J. R.; Seaburg, Adam

    2011-05-10T23:59:59.000Z

    The U.S. Army Corps of Engineers, Portland District (USACE) conducted the 20-year Columbia River Channel Improvement Project (CRCIP) to deepen the navigation channel between Portland, Oregon, and the Pacific Ocean to allow transit of fully loaded Panamax ships (100 ft wide, 600 to 700 ft long, and draft 45 to 50 ft). In the vicinity of Warrior Point, between river miles (RM) 87 and 88 near St. Helens, Oregon, the USACE conducted underwater blasting and dredging to remove 300,000 yd3 of a basalt rock formation to reach a depth of 44 ft in the Columbia River navigation channel. The purpose of this report is to document methods and results of the compliance monitoring study for the blasting project at Warrior Point in the Columbia River.

  5. Behind the scenes of Trinity Waters project: Partnerships and technology deliver cooperative conservation in the Trinity River Basin

    E-Print Network [OSTI]

    Alldredge, Blake; Kalisek, Danielle

    2012-01-01T23:59:59.000Z

    coming soon. Native Grassland Restoration in the Middle Trinity River Basin was published early in August #30;#29;#28;#30; for landowners in the Blackland Prairie and Post Oak Savannah ecoregions. Publications currently available in the Texas A...20 tx H2O Fall 2012 Story by Blake Alldredge and Danielle Kalisek Behind the scenes of Trinity Waters project Partnerships and technology deliver cooperative conservation in the Trinity River Basin Fall 2012 tx H2O 21 ] The shores of Lake...

  6. Radionuclide releases to the Columbia River from Hanford Operations, 1944--1971. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Heeb, C.M.; Bates, D.J.

    1994-01-01T23:59:59.000Z

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of radionuclide emissions since 1944 from the Hanford Site. One source of radionuclide releases to the Columbia River was from production reactor operations. This report provides a quantitative estimate of the amount of radioactivity released each month (1944--1971) to the Columbia River from eleven radionuclides as well as from gross beta activity.

  7. Radionuclide releases to the Columbia River from Hanford Operations, 1944--1971. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Heeb, C.M.; Bates, D.J.

    1994-05-01T23:59:59.000Z

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of radionuclide emissions since 1944 from the Hanford Site. One source of radionuclide releases to the Columbia River was from production reactor operations. This report provides a quantitative estimate of the amount of radioactivity released each month (1944--1971) to the Columbia River from eleven radionuclides as well as from gross beta activity.

  8. Snake River Sockeye Salmon Sawtooth Valley Project Conservation and Rebuilding Program : Supplemental Fnal Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1995-03-01T23:59:59.000Z

    This document announces Bonneville Power Administration`s (BPA) proposal to fund three separate but interrelated actions which are integral components of the overall Sawtooth Valley Project to conserve and rebuild the Snake River Sockeye salmon run in the Sawtooth Valley of south-central Idaho. The three actions are as follows: (1) removing a rough fish barrier dam on Pettit Lake Creek and constructing a weir and trapping facilities to monitor future sockeye salmon adult and smolt migration into and out of Pettit Lake; (2) artificially fertilizing Readfish Lake to enhance the food supply for Snake River sockeye salmon juveniles released into the lake; and (3) trapping kokanee fry and adults to monitor the fry population and to reduce the population of kokanee in Redfish Lake. BPA has prepared a supplemental EA (included) which builds on an EA compled in 1994 on the Sawtooth Valley Project. Based on the analysis in this Supplemental EA, BPA has determined that the proposed actions are not major Federal actions significantly affecting the quality of the human environment. Therefore an Environmental Impact Statement is not required.

  9. Evaluation of Cumulative Ecosystem Response to Restoration Projects in the Lower Columbia River and Estuary, 2010

    SciTech Connect (OSTI)

    Johnson, Gary E.; Diefenderfer, Heida L.; Thom, Ronald M.; Roegner, G. Curtis; Ebberts, Blaine D.; Skalski, John R.; Borde, Amy B.; Dawley, Earl; Coleman, Andre M.; Woodruff, Dana L.; Breithaupt, Stephen A.; Cameron, April; Corbett, C.; Donley, Erin E.; Jay, D. A.; Ke, Yinghai; Leffler, K.; McNeil, C.; Studebaker, Cindy; Tagestad, Jerry D.

    2012-05-01T23:59:59.000Z

    This is the seventh and final annual report of a project (2004–2010) addressing evaluation of the cumulative effects of habitat restoration actions in the 235-km-long lower Columbia River and estuary. The project, called the Cumulative Effects (CE) study, was conducted for the U.S. Army Corps of Engineers Portland District by a collaboration of research agencies led by the Pacific Northwest National Laboratory. We achieved the primary goal of the CE study to develop a methodology to evaluate the cumulative effects of habitat actions in the Columbia Estuary Ecosystem Restoration Program. We delivered 1) standard monitoring protocols and methods to prioritize monitoring activities; 2) the theoretical and empirical basis for a CE methodology using levels-of-evidence; 3) evaluations of cumulative effects using ecological relationships, geo-referenced data, hydrodynamic modeling, and meta-analyses; and 4) an adaptive management process to coordinate and coalesce restoration efforts in the LCRE. A solid foundation has been laid for future comprehensive evaluations of progress made by the Columbia Estuary Ecosystem Restoration Program to understand, conserve, and restore ecosystems in the lower Columbia River and estuary.

  10. Kootenai River Resident Fish Assessment, FY2008 KTOI Progress Report.

    SciTech Connect (OSTI)

    Holderman, Charles

    2009-06-26T23:59:59.000Z

    The overarching goal of project 1994-049-00 is to recover a productive, healthy and biologically diverse Kootenai River ecosystem, with emphasis on native fish species rehabilitation. It is especially designed to aid the recovery of important fish stocks, i.e. white sturgeon, burbot, bull trout, kokanee and several other salmonids important to the Kootenai Tribe of Idaho and regional sport-fisheries. The objectives of the project have been to address factors limiting key fish species within an ecosystem perspective. Major objectives include: establishment of a comprehensive and thorough biomonitoring program, investigate ecosystem--level in-river productivity, test the feasibility of a large-scale Kootenai River nutrient addition experiment (completed), to evaluate and rehabilitate key Kootenai River tributaries important to the health of the lower Kootenai River ecosystem, to provide funding for Canadian implementation of nutrient addition and monitoring in the Kootenai River ecosystem (Kootenay Lake) due to lost system productivity created by construction and operation of Libby Dam, mitigate the cost of monitoring nutrient additions in Arrow Lakes due to lost system productivity created by the Libby-Arrow water swap, provide written summaries of all research and activities of the project, and, hold a yearly workshop to convene with other agencies and institutions to discuss management, research, and monitoring strategies for this project and to provide a forum to coordinate and disseminate data with other projects involved in the Kootenai River basin.

  11. DEPARTMENT OF COMMERCE BUREAU OF FISHERIES

    E-Print Network [OSTI]

    . .. ...... . . . . . . . . . . .......... . Fisheries, by apparatus ............. .. . ................... . ... ... . Wholesale fishery trade.............. . ... . ...... .. ........ . ...... . Wholesale fishery trade... . .. . .. ........................... . ...... . Fishf'ries of Lake ilmon .. ............ .. . .... . .................... . Wholesale fishery trade ... .. .... ... ....... ...... . ..... .. ... ..... . Fisheries of Lake t. ('lair

  12. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam; Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1995-1996 Annual Report.

    SciTech Connect (OSTI)

    Rien, Thomas A.; Beiningen, Kirk T. (Oregon Department of Fish and Wildlife, Portland, OR)

    1997-07-01T23:59:59.000Z

    This project began in July 1986 and is a cooperative effort of federal, state, and tribal fisheries entities to determine (1) the status and habitat requirements, and (2) effects of mitigative measures on productivity of white sturgeon populations in the lower Colombia and Snake rivers.

  13. Hazardous materials in Aquatic environments of the Mississippi River basin. Quarterly project status report, 1 January 1994--30 March 1994

    SciTech Connect (OSTI)

    Abdelghani, A.

    1994-06-01T23:59:59.000Z

    Projects associated with this grant for studying hazardous materials in aquatic environments of the Mississippi River Basin are reviewed and goals, progress and research results are discussed. New, one-year initiation projects are described briefly.

  14. Introduction The St. Mary's River Project (SMRP) is a state funded program that

    E-Print Network [OSTI]

    Boynton, Walter R.

    -DNR) throughout the St. Mary's River, Patuxent River, and numerous other water bodies in the Chesapeake Bay the Patuxent River and nearby water bodies for many years using high speed mapping techniques and continuous monitoring. They monitored the water quality in the Patuxent River after one particular storm event in June

  15. Lower Red River Meadow Restoration Project : Biennial Report 1996-97.

    SciTech Connect (OSTI)

    LRK Communications; Wildlife Habitat Institute; Pocket Water, Inc.

    2003-07-01T23:59:59.000Z

    The Red River has been straightened and the riparian vegetation corridor eliminated in several reaches within the watershed. The river responded by incision resulting in over-steepened banks, increased sedimentation, elevated water temperatures, depressed groundwater levels, reduced floodplain function, and degraded fish habitat. The Lower Red River Meadow Restoration Project is a multi-phase ecosystem enhancement effort that restores natural physical and biological processes and functions to stabilize the stream channel and establish high quality habitats for fish and wildlife. A natural channel restoration philosophy guides the design and on the ground activities, allowing the channel to evolve into a state of dynamic equilibrium. Two years of planning, two years of restoration in Phases I and II, and one year post-restoration monitoring are complete. By excavating new bends and reconnecting historic meanders, Phase I and II channel realignment increased channel length by 3,060 feet, decreased channel gradient by 25 percent, and increased sinuosity from 1.7 to 2.3. Cross-sectional shapes and point bars were modified to maintain deep pool habitat at low flow and to reconnect the meadow floodplain. Improved soil moisture conditions will help sustain the 31,500 native riparian plantings reestablished within these two phases. Overall, short-term restoration performance was successful. Analyses of long-term parameters document either post-restoration baseline conditions or early stages of evolution toward desired conditions. An adaptive management strategy has helped to improve restoration designs, methods, and monitoring. Lessons learned are being transferred to a variety of audiences to advance the knowledge of ecological restoration and wise management of watersheds.

  16. Evaluating Cumulative Ecosystem Response to Restoration Projects in the Columbia River Estuary, Annual Report 2004

    SciTech Connect (OSTI)

    Diefenderfer, Heida L.; Roegner, Curtis; Thom, Ronald M.; Dawley, Earl M.; Whiting, Allan H.; Johnson, Gary E.; Sobocinski, Kathryn L.; Anderson, Michael G.; Ebberts, Blaine

    2005-12-15T23:59:59.000Z

    The restoration of wetland salmon habitat in the tidal portion of the Columbia River is occurring at an accelerating pace and is anticipated to improve habitat quality and effect hydrological reconnection between existing and restored habitats. Currently multiple groups are applying a variety of restoration strategies in an attempt to emulate historic estuarine processes. However, the region lacks both a standardized means of evaluating the effectiveness of individual projects as well as methods for determining the cumulative effects of all restoration projects on a regional scale. This project is working to establish a framework to evaluate individual and cumulative ecosystem responses to restoration activities in order to validate the effectiveness of habitat restoration activities designed to benefit salmon through improvements to habitat quality and habitat opportunity (i.e. access) in the Columbia River from Bonneville Dam to the ocean. The review and synthesis of approaches to measure the cumulative effects of multiple restoration projects focused on defining methods and metrics of relevance to the CRE, and, in particular, juvenile salmon use of this system. An extensive literature review found no previous study assessing the cumulative effects of multiple restoration projects on the fundamental processes and functions of a large estuarine system, although studies are underway in other large land-margin ecosystems including the Florida Everglades and the Louisiana coastal wetlands. Literature from a variety of scientific disciplines was consulted to identify the ways that effects can accumulate (e.g., delayed effects, cross-boundary effects, compounding effects, indirect effects, triggers and thresholds) as well as standard and innovative tools and methods utilized in cumulative effects analyses: conceptual models, matrices, checklists, modeling, trends analysis, geographic information systems, carrying capacity analysis, and ecosystem analysis. Potential indicators for detecting a signal in the estuarine system resulting from the multiple projects were also reviewed, i.e. organic matter production, nutrient cycling, sedimentation, food webs, biodiversity, salmon habitat usage, habitat opportunity, and allometry. In subsequent work, this information will be used to calculate the over net effect on the ecosystem. To evaluate the effectiveness of habitat restoration actions in the lower Columbia River and estuary, a priority of this study has been to develop a set of minimum ecosystem monitoring protocols based on metrics important for the CRE. The metrics include a suite of physical measurements designed to evaluate changes in hydrological and topographic features, as well as biological metrics that will quantify vegetation and fish community structure. These basic measurements, intended to be conducted at all restoration sites in the CRE, will be used to (1) evaluate the effectiveness of various restoration procedures on target metrics, and (2) provide the data to determine the cumulative effects of many restoration projects on the overall system. A protocol manual is being developed for managers, professional researchers, and informed volunteers, and is intended to be a practical technical guide for the design and implementation of monitoring for the effects of restoration activities. The guidelines are intended to standardize the collection of data critical for analyzing the anticipated ecological change resulting from restoration treatments. Field studies in 2005 are planned to initiate the testing and evaluation of these monitoring metrics and protocols and initiate the evaluation of higher order metrics for cumulative effects.

  17. Cutting-Edge Savannah River Site Project Avoids Millions in Costs, Removes Chemical Solvents from Underground: Project avoided costs totaling more than $15 million, removed tons of chemical solvents from beneath the Savannah River Site

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – Workers recently completed a multiyear project that removed more than 33,000 gallons of non-radioactive chemical solvents from beneath a portion of the Savannah River Site (SRS), preventing those pollutants from entering the local water table and helping the site avoid costs of more than $15 million.

  18. Evaluating Cumulative Ecosystem Response to Restoration Projects in the Columbia River Estuary, Annual Report 2007

    SciTech Connect (OSTI)

    Johnson, Gary E.; Diefenderfer, Heida L.; Borde, Amy B.; Dawley, Earl M.; Ebberts, Blaine D.; Putman, Douglas A.; Roegner, G. C.; Russell, Micah; Skalski, John R.; Thom, Ronald M.; Vavrinec, John

    2008-10-01T23:59:59.000Z

    The goal of this multi-year study (2004-2010) is to develop a methodology to evaluate the cumulative effects of multiple habitat restoration projects intended to benefit ecosystems supporting juvenile salmonids in the lower Columbia River and estuary. Literature review in 2004 revealed no existing methods for such an evaluation and suggested that cumulative effects could be additive or synergistic. Field research in 2005, 2006, and 2007 involved intensive, comparative studies paired by habitat type (tidal swamp vs. marsh), trajectory (restoration vs. reference site), and restoration action (tide gate vs. culvert vs. dike breach). The field work established two kinds of monitoring indicators for eventual cumulative effects analysis: core and higher-order indicators. Management implications of limitations and applications of site-specific effectiveness monitoring and cumulative effects analysis were identified.

  19. Environmental assessment for the A-01 outfall constructed wetlands project at the Savannah River Site

    SciTech Connect (OSTI)

    NONE

    1998-10-01T23:59:59.000Z

    The Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed A-01 outfall constructed wetlands project at the Savannah River site (SRS), located near aiken, South Carolina. The proposed action would include the construction and operation of an artificial wetland to treat effluent from the A-01 outfall located in A Area at SRS. The proposed action would reduce the outfall effluent concentrations in order to meet future outfall limits before these go into effect on October 1, 1999. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended; the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Parts 1500--1508); and the DOE Regulations for Implementing NEPA (10 CFR Part 1021).

  20. River Protection Project Integrated safety management system phase II verification review plan - 7/29/99

    SciTech Connect (OSTI)

    SHOOP, D.S.

    1999-09-10T23:59:59.000Z

    The purpose of this review is to verify the implementation status of the Integrated Safety Management System (ISMS) for the River Protection Project (RPP) facilities managed by Fluor Daniel Hanford, Inc. (FDH) and operated by Lockheed Martin Hanford Company (LMHC). This review will also ascertain whether within RPP facilities and operations the work planning and execution processes are in place and functioning to effectively protect the health and safety of the workers, public, environment, and federal property over the RPP life cycle. The RPP ISMS should support the Hanford Strategic Plan (DOERL-96-92) to safely clean up and manage the site's legacy waste and deploy science and technology while incorporating the ISMS central theme to ''Do work safely'' and protect human health and the environment.

  1. Data management for the Clinch River Breeder Reactor Plant Project by use of document status and hold systems

    SciTech Connect (OSTI)

    Hunt, C S; Beck, A E; Akhtar, M S

    1982-01-01T23:59:59.000Z

    This paper describes the development, framework, and scope of the Document Status System and the Document Hold System for the Clinch River Breeder Reactor Plant Project. It shows how data are generated at five locations and transmitted to a central computer for processing and storage. The resulting computerized data bank provides reports needed to perform day-to-day management and engineering planning. Those reports also partially satisfy the requirements of the Project's Quality Assurance Program.

  2. Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, 1 April--30 June 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This report contains a cluster of twenty separate project reports concerning the fate, environmental transport, and toxicity of hazardous wastes in the Mississippi River Basin. Some of topics investigated involve: biological uptake and metabolism; heavy metal immobilization; biological indicators; toxicity; and mathematical models.

  3. Hanford Waste Simulants Created to Support the Research and Development on the River Protection Project - Waste Treatment Plant

    SciTech Connect (OSTI)

    Eibling, R.E.

    2001-07-26T23:59:59.000Z

    The development of nonradioactive waste simulants to support the River Protection Project - Waste Treatment Plant bench and pilot-scale testing is crucial to the design of the facility. The report documents the simulants development to support the SRTC programs and the strategies used to produce the simulants.

  4. FISHERY STATISTICS UNITED STATES

    E-Print Network [OSTI]

    fishery products, free zings and cold storage holdings, and for- eign trade in fishery commodities and caught in international waters ... 0 U, S. landings for human food and industrial use Relative volume., by countries Processed fisher y produc ts. Canned fishery products . . . . . · . Industrial fishery products

  5. Fishery Biology Graduate Programs

    E-Print Network [OSTI]

    Fishery Biology Graduate Programs University of Alaska Fairbanks, Alaska 997750820 Program/degrees/index.html University of Arizona Tucson, Arizona 95721 Program: Fisheries Conservation and Management http://ag.arizona.edu/srnr/academicprograms/wildlifefisheries/gradstudiesFisheries.html Auburn University Auburn, Alabama 368490001 Programs: Aquaculture, Aquatic Ecology, Fishery Management

  6. Evaluation of Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2006 Project Completion Summary.

    SciTech Connect (OSTI)

    Faler, Michael P. [U.S. Fish and Wildlife Service; Mendel, Glen; Fulton, Carl [Washington Department of Fish and Wildlife

    2008-11-20T23:59:59.000Z

    The Columbia River Distinct Population Segment of bull trout (Salvelinus confluentus) was listed as threatened under the Endangered Species Act in 1998. One of the identified major threats to the species is fragmentation resulting from dams on over-wintering habitats of migratory subpopulations. A migratory subgroup in the Tucannon River appeared to utilize the Snake River reservoirs for adult rearing on a seasonal basis. As a result, a radio telemetry study was conducted on this subgroup from 2002-2006, to help meet Reasonable and Prudent Measures, and Conservation Recommendations associated with the lower Snake River dams in the FCRPS Biological Opinion, and to increase understanding of bull trout movements within the Tucannon River drainage. We sampled 1,109 bull trout in the Tucannon River; 124 of these were surgically implanted with radio tags and PIT tagged, and 681 were only PIT tagged. The remaining 304 fish were either recaptures, or released unmarked. Bull trout seasonal movements within the Tucannon River were similar to those described for other migratory bull trout populations. Bull trout migrated upstream in spring and early summer to the spawning areas in upper portions of the Tucannon River watershed. They quickly moved off the spawning areas in the fall, and either held or continued a slower migration downstream through the winter until early the following spring. During late fall and winter, bull trout were distributed in the lower half of the Tucannon River basin, down to and including the mainstem Snake River below Little Goose Dam. We were unable to adequately radio track bull trout in the Snake River and evaluate their movements or interactions with the federal hydroelectric dams for the following reasons: (1) none of our radio-tagged fish were detected attempting to pass a Snake River dam, (2) our radio tags had poor transmission capability at depths greater than 12.2 m, and (3) the sample size of fish that actually entered the Snake River was small (n=6). In spite of this project's shortcomings, bull trout continue to be observed in low numbers at Snake River dam fish facilities. It is highly possible that bull trout observed at the Snake River dam fish facilities are originating from sources other than the Tucannon River. We suggest that these fish might come from upstream sources like the Clearwater or Salmon rivers in Idaho, and are simply following the outmigration of juvenile anadromous fish (a food supply) as they emigrate toward the Pacific Ocean. Based on our study results, we recommend abandoning radio telemetry as a tool to monitor bull trout movements in the mainstem Snake River. We do recommend continuing PIT tagging and tag interrogation activities to help determine the origin of bull trout using the Snake River hydropower facilities. As a complementary approach, we also suggest the use of genetic assignment tests to help determine the origin of these fish. Lastly, several recommendations are included in the report to help manage and recover bull trout in the Tucannon subbasin.

  7. FISHERY STATISTICAL PUBLICATIONS OF THE BUREAU OF COMMERCIAL FISHERIES

    E-Print Network [OSTI]

    and Cold Storage Bulletins ................. .. .. ... ........ ......... 7 Manufactured Fishery Products

  8. Solar energy system performance evaluation - final report for Honeywell OTS 45, Salt River Project, Phoenix, Arizona

    SciTech Connect (OSTI)

    Mathur, A K

    1983-09-01T23:59:59.000Z

    This report describes the operation and technical performance of the Solar Operational Test Site (OTS 45) at Salt River Project in Phoenix, Arizona, based on the analysis of data collected between April 1981 and March 31, 1982. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 45 is a hydronic heating and cooling system consisting of 8208 square feet of liquid-cooled flat-plate collectors; a 2500-gallon thermal storage tank; two 25-ton capacity organic Rankine-cycle-engine-assisted water chillers; a forced-draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics. Based on the instrumented test data monitored and collected during the 8 months of the Operational Test Period, the solar system collected 1143 MMBtu of thermal energy of the total incident solar energy of 3440 MMBtu and provided 241 MMBtu for cooling and 64 MMBtu for heating. The projected net annual electrical energy savings due to the solar system was approximately 40,000 kWh(e).

  9. NOAA Fisheries Service National Cooperative Research Program

    E-Print Network [OSTI]

    COOPERATIVE RESEARCH 12 Project Title: Personnel and Associated Management Costs 12 Project Title: Development Title: Equipment and Operating Costs to Support Cooperative Research Projects 17 NORTHEAST REGIONAL of Trawling & Dredging on Sea Floor Habitat (2002), and Cooperative Research in the National Marine Fisheries

  10. Greater Green River Basin production improvement project, Phase 1: Site characterization report

    SciTech Connect (OSTI)

    DeJarnett, B.B.; Krystinik, L.F.; Mead, R.H.; Poe, S.C.

    1996-05-01T23:59:59.000Z

    Several tight, naturally-fractured, gas-productive formations in the Greater Green River Basin (GGRB) in Wyoming have been exploited using conventional vertical well technology. Typically, hydraulic fracture treatments must be performed in completing these wells to increase gas production rates to economic levels. However, with the maturation of horizontal drilling technology hydraulic fracture treatments may not be the most effective method for improving gas production from these tight reservoirs. Two of the most prolific tight gas reservoirs in the Green River Basin, the Frontier and the Mesaverde, are candidates for the application of horizontal well completion technology. The objective of the proposed project is to apply the DOE`s technical concept to the Second Frontier Formation on the western flank of the Rock Springs Uplift. Previous industry attempts to produce in commercial quantities from the Second Frontier Formation have been hampered by lack of understanding of both the in-situ natural fracture system and lack of adequate stimulation treatments. The proposed technical approach involves drilling a vertical characterization well to the Second Frontier Formation at a depth of approximately 16,000 ft. from a site located about 18 miles northwest of Rock Springs, Wyoming. Logging, coring, and well testing information from the vertical well will be used to design a hydraulic fracturing treatment and to assess the resulting production performance. Data from the vertical drilling phase will be used to design a 2,500 to 3,000-ft lateral wellbore which will be kicked off from the vertical hole and extend into the blanket marine sandstone bench of the Second Frontier Formation. The trajectory of this wellbore will be designed to intersect the maximum number of natural fractures to maximize production rates. Production testing of the resulting completion will provide an assessment of reserve potential related to horizontal lateral completions.

  11. Salmon River Habitat Enhancement, 1989 Annual Report.

    SciTech Connect (OSTI)

    Rowe, Mike

    1989-04-01T23:59:59.000Z

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  12. The Nuvruz Project: Monitoring for Radionuclides and Metals in Central Asia Transboundary Rivers End of Year One Reports

    SciTech Connect (OSTI)

    YULDASHEV, BEKHZAD; SALIKHBAEV, UMAR; RADYUK, RAISA; DJURAEV, AKRAM; DJURAEV, ANWAR; VASILIEV, IVAN; TOLONGUTOV, BAJGABYL; VALENTINA, ALEKHINA; SOLODUKHIN, VLADIMIR; POZNIAK, VICTOR; LITTLEFIELD, ADRIANE C.

    2002-09-01T23:59:59.000Z

    The Navruz Project is a cooperative, transboundary, river monitoring project involving rivers and institutions in Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan facilitated by Sandia National Laboratories in the U.S. The Navruz Project focuses on waterborne radionuclides and metals because of their importance to public health and nuclear materials proliferation concerns in the region. Data obtained in this project are shared among all participating countries and the public through an internet web site and are available for use in further studies and in regional transboundary water resource management efforts. Overall, the project addresses three main goals: to help increase capabilities in Central Asian nations for sustainable water resources management; to provide a scientific basis for supporting nuclear transparency and non-proliferation in the region; and to help reduce the threat of conflict in Central Asia over water resources, proliferation concerns, or other factors. The Navruz project has a duration of three years. This document contains the reports from each of the participating institutions following the first year of data collection. While a majority of samples from the Navruz project are within normal limits, a preliminary analysis does indicate a high concentration of selenium in the Kazakhstan samples. Uzbekistan samples contain high uranium and thorium concentrations, as well as elevated levels of chromium, antimony and cesium. Additionally, elevated concentrations of radioactive isotopes have been detected at one Tajikistan sampling location. Further analysis will be published in a subsequent report.

  13. South Fork Tolt River Hydroelectric Project : Adopted Portions of a 1987 Federal Energy Regulatory Commission`s Final Environmental Impact Statement.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1992-07-01T23:59:59.000Z

    The South Fork Tolt River Hydroelectric Project that world produce 6.55 average megawatts of firm energy per year and would be sited in the Snohomish River Basin, Washington, was evaluated by the Federal Energy Regulatory commission (FERC) along with six other proposed projects for environmental effects and economic feasibility Based on its economic analysis and environmental evaluation of the project, the FERC staff found that the South Fork Tolt River Project would be economically feasible and would result in insignificant Impacts if sedimentation issues could be resolved. Upon review, the BPA is adopting portions of the 1987 FERC FEIS that concern the South Fork Tolt River Hydroelectric Project and updating specific sections in an Attachment.

  14. Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2009

    SciTech Connect (OSTI)

    Diefenderfer, Heida L.; Johnson, Gary E.; Sather, Nichole K.; Skalski, John R.; Dawley, Earl M.; Coleman, Andre M.

    2010-08-01T23:59:59.000Z

    This report describes the 2009 research conducted under the U.S. Army Corps of Engineers (USACE or Corps) project EST-09-P-01, titled “Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary.” The research was conducted by the Pacific Northwest National Laboratory, Marine Science Laboratory and Hydrology Group, in partnership with the University of Washington, School of Aquatic and Fishery Sciences, Columbia Basin Research, and Earl Dawley (NOAA Fisheries, retired). This Columbia River Fish Mitigation Program project, referred to as “Salmonid Benefits,” was started in FY 2009 to evaluate the state-of-the science regarding the ability to quantify the benefits to listed salmonids1 of habitat restoration actions in the lower Columbia River and estuary.

  15. Fisheries and Aquatic Sciences University of Florida

    E-Print Network [OSTI]

    Watson, Craig A.

    ......................................................................................................... 5 Sustainable FisheriesLink................................................................................................................... 12 Libraries

  16. Wind River Watershed Restoration: 1999 Annual Report.

    SciTech Connect (OSTI)

    Connolly, Patrick J.

    2001-09-01T23:59:59.000Z

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey--Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination--Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring--Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment--Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration--Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education--Objective 8: Promote watershed stewardship among students, the community, private landowners, and local governments. Progress towards six of eight of these objectives is described within nine separate reports included in a four-volume document.

  17. Platte River Cooperative Agreement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agreement Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Platte River Cooperative Agreement PEIS, NE, WY, CO, DOE...

  18. EIS-0116: Blue River-Gore Pass Portion of the Hayden-Blue River Transmission Line Project

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration (WAPA) adopted this U.S. Department of Agriculture Rural Electrification Administration so that WAPA could supplement it in support of WAPA’s National Environmental Policy Act requirements for a related project.

  19. Assessment of Subyearling Chinook Salmon Survival through the Federal Hydropower Projects in the Main-Stem Columbia River

    SciTech Connect (OSTI)

    Skalski, J. R.; Eppard, M. B.; Ploskey, Gene R.; Weiland, Mark A.; Carlson, Thomas J.; Townsend, Richard L.

    2014-07-11T23:59:59.000Z

    High survival through hydropower projects is an essential element in the recovery of salmonid populations in the Columbia River. It is also a regulatory requirement under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) established under the Endangered Species Act. It requires dam passage survival to be ?0.96 and ?0.93 for spring and summer outmigrating juvenile salmonids, respectively, and estimated with a standard error ? 0.015. An innovative virtual/paired-release design was used to estimate dam passage survival, defined as survival from the face of a dam to the tailrace mixing zone. A coordinated four-dam study was conducted during the 2012 summer outmigration using 14,026 run-of-river subyearling Chinook salmon surgically implanted with acoustic micro-transmitter (AMT) tags released at 9 different locations, and monitored on 14 different detection arrays. Each of the four estimates of dam passage survival exceeded BiOp requirements with values ranging from 0.9414 to 0.9747 and standard errors, 0.0031 to 0.0114. Two consecutive years of survival estimates must meet BiOp standards in order for a hydropower project to be in compliance with recovery requirements for a fish stock.

  20. NOVEL CONCEPTS RESEARCH IN GEOLOGIC STORAGE OF CO2 PHASE III THE OHIO RIVER VALLEY CO2 STORAGE PROJECT

    SciTech Connect (OSTI)

    Neeraj Gupta

    2005-05-26T23:59:59.000Z

    As part of the Department of Energy's (DOE) initiation on developing new technologies for storage of carbon dioxide in geologic reservoir, Battelle has been awarded a project to investigate the feasibility of CO{sub 2} sequestration in the deep saline reservoirs in the Ohio River Valley region. This project is the Phase III of Battelle's work under the Novel Concepts in Greenhouse Gas Management grant. The main objective of the project is to demonstrate that CO{sub 2} sequestration in deep formations is feasible from engineering and economic perspectives, as well as being an inherently safe practice and one that will be acceptable to the public. In addition, the project is designed to evaluate the geology of deep formations in the Ohio River Valley region in general and in the vicinity of AEP's Mountaineer Power Plant in particular, in order to determine their potential use for conducting a long-term test of CO{sub 2} disposal in deep saline formations and potentially in nearby deep coal seams. The current technical progress report summarizes activities completed for the January through March 2005 period of the project. As discussed in the report, the technical activities focused on development of injection well design, preparing a Class V Underground Injection Control permit, assessment of monitoring technologies, analysis of coal samples for testing the capture system by Mitsubishi Heavy Industry, and presentation of project progress at several venues. In addition, related work has progressed on a collaborative risk assessment project with Japan research institute CREIPI and technical application for the Midwest Regional Carbon Sequestration Partnership.

  1. Native American fishery issues: Hanford involvement in evaluation of the Zone 6 fishery

    SciTech Connect (OSTI)

    Abernethy, C.S.; Neitzel, D.A. (Pacific Northwest Lab., Richland, WA (United States)); Strom, G. (Yakima Indian Nation, Toppenish, WA (United States))

    1992-07-01T23:59:59.000Z

    Native American fishers are concerned about the deteriorating quality of salmon and other fish caught from the Columbia River. They fear salmon are not healthy and that eating the fish could Jeopardize the health of Native Americans. In 1991, the Pacific Northwest Laboratory (PNL). with the assistance of the Yakima Indian Nation (YIN). monitored the salmon and steelhead fishery in the lower Columbia River (Zone 6 fishery). PNL biologists set up a hot-line'' for Native American fishers to call if they caught fish they suspected were diseased or contaminated. Fish reported to the hot-line were examined by a fish disease pathologist. Additionally. PNL and YIN staff reviewed water-quality data of the lower Columbia River. Water-quality data collected from 1949 through 1990. Results are described.

  2. EA-0956: South Fork Snake River/Palisades Wildlife Mitigation Project, Bonneville County, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the U.S. Department of Energy's Bonneville Power Administration proposal to fund the implementation of the South Fork Snake River Programmatic...

  3. EA-1969: Clark Fork River Delta Restoration Project, Bonner County, Idaho

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration prepared an environmental assessment to analyze the potential effects of a proposal to restore wetland and riparian (riverbank) habitat and to reduce erosion in the Clark Fork River delta located in Bonner County, Idaho.

  4. Integrated Project Management Planning for the Deactivation of the Savannah River Site F-Canyon Complex

    SciTech Connect (OSTI)

    Clark, T.G.

    2000-12-01T23:59:59.000Z

    This paper explains the planning process that is being utilized by the Westinghouse Savannah River Company to take the F-Canyon Complex facilities from operations to a deactivated condition awaiting final decommissioning.

  5. Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho

    SciTech Connect (OSTI)

    Glaspey, Douglas J.

    2008-01-30T23:59:59.000Z

    Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

  6. Statistical Digest No. 70 Fishery Statistics of

    E-Print Network [OSTI]

    fishery products, freezings and cold storage holdings, and foreign trade in fishery commodities. Landings

  7. EA-2003: Sandy River Delta Section 536 Ecosystem Restoration Project, Multnomah County, Oregon

    Broader source: Energy.gov [DOE]

    The U.S. Army Corps of Engineers, with DOE’s Bonneville Power Administration as a cooperating agency, prepared an EA that assessed the potential environmental impacts of the proposed removal of a dam from the east channel of the Sandy River. The proposal would help fulfill a portion of the 2010-2013 Federal Columbia River Power System Biological Opinion Implementation Plan to improve estuary habitat for salmon and steelhead species listed under the Endangered Species Act.

  8. EA-1901: Kootenai River White Sturgeon and Burbot Hatcheries Project, Bonners Ferry, Boundary County, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal for DOE’s Bonneville Power Administration to support the Kootenai Tribe of Idaho’s construction of a new hatchery on property owned by the Tribe at the confluence of the Moyie and Kootenai Rivers, approximately eight miles upstream from Bonners Ferry, Idaho. The proposed location of the new hatchery facility is currently the site of the Twin Rivers Canyon Resort.

  9. Yakima River Basin Phase II Fish Screen Evaluations, 2003

    SciTech Connect (OSTI)

    Vucelick, Jessica A.; McMichael, Geoffrey A.; Chamness, Mickie A.

    2004-05-01T23:59:59.000Z

    In 2003, the Pacific Northwest National Laboratory (PNNL) evaluated 23 Phase II fish screen sites in the Yakima River Basin as part of a multi-year project for the Bonneville Power Administration on the effectiveness of fish screening devices. PNNL collected data to determine whether velocities in front of the screens and in the bypasses met the Nation Oceanic and Atmospheric Administration Fisheries (NOAA Fisheries, formerly the National Marine Fisheries Service (NMFS)) criteria to promote safe and timely fish passage. In addition, PNNL conducted underwater video surveys to evaluate the environmental and operational conditions of the screen sites with respect to fish passage. Based on evaluations in 2003, PNNL concluded that: (1) In general, water velocity conditions at the screen sites met fish passage criteria set by the National Oceanic and Atmospheric Administration Fisheries. (2) Conditions at most facilities would be expected to provide for safe juvenile fish passage. (3) Conditions at some facilities indicate that operation and/or maintenance should be modified to improve juvenile fish passage conditions. (4) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well greased and operative. (5) Removal of sediment buildup and accumulated leafy and woody debris could be improved at some sites.

  10. MINISTRY OF AGRICULTURE, FISHERIES AND FOOD DIRECTORATE OF FISHERIES RESEARCH

    E-Print Network [OSTI]

    #12;#12;1 MINISTRY OF AGRICULTURE, FISHERIES AND FOOD DIRECTORATE OF FISHERIES RESEARCH AQUATIC .................................................................................................... 15 4. British Nuclear Fuels plc (BNFL

  11. MINISTRY OF AGRICULTURE, FISHERIES AND FOOD DIRECTORATE OF FISHERIES RESEARCH

    E-Print Network [OSTI]

    #12;#12;1 MINISTRY OF AGRICULTURE, FISHERIES AND FOOD DIRECTORATE OF FISHERIES RESEARCH AQUATIC .................................................................................................... 16 4. British Nuclear Fuels plc (BNFL

  12. The Effect of the Recovery Act on the River Corridor Closure Project: Lessons Learned

    SciTech Connect (OSTI)

    Mackay, S. M.

    2012-07-31T23:59:59.000Z

    This summary report provides a high-level lessons learned by WCH of the impact to its project performance. The context is limited to the WCH project alone.

  13. DOE/EIS-0169-SA-03: Supplement Analysis for Yakima Fisheries...

    Broader source: Energy.gov (indexed) [DOE]

    - KEWN-4 Proposed Action: Yakima Fisheries Project - Use of Washington Department of Fish and Wildlife's Yakima Hatchery and Acclimation and Research Activities PL-6: F3204...

  14. 100-N Area Strontium-90 Treatability Demonstration Project: Phytoextraction Along the 100-N Columbia River Riparian Zone – Field Treatability Study

    SciTech Connect (OSTI)

    Fellows, Robert J.; Fruchter, Jonathan S.; Driver, Crystal J.; Ainsworth, Calvin C.

    2010-01-11T23:59:59.000Z

    Strontium-90 (90Sr) is present both in the aquifer near the river and in the vadose and riparian zones of the river’s shore at 100-NR-2. Phytoextraction of 90Sr is being considered as a potential remediation system along the riparian zone of the Columbia River. Phytoextraction would employ coyote willow (Salix exigua). Past studies have shown that willow roots share uptake mechanisms for Sr with Ca, a plant macronutrient as well as no discrimination between Sr and 90Sr. Willow 90Sr concentration ratios [CR’s; (pCi 90Sr/g dry wt. of new growth tissue)/(pCi 90Sr/g soil porewater)] were consistently greater than 65 with three-quarters of the assimilated label partitioned into the above ground shoot. Insect herbivore experiments also demonstrated no significant potential for bioaccumulation or food chain transfer from their natural activities. The objectives of this field study were three-fold: (1) to demonstrate that a viable, “managed” plot of coyote willows can be established on the shoreline of the Columbia River that would survive the same microenvironment to be encountered at the 100-NR-2 shoreline; (2) to show through engineered barriers that large and small animal herbivores can be prevented from feeding on these plants; and (3) to show that once established, the plants will provide sufficient biomass annually to support the phytoextraction technology. A field treatability demonstration plot was established on the Columbia River shoreline alongside the 100-K West water intake at the end of January 2007. The plot was delimited by a 3.05 m high chain-link fence and was approximately 10 x 25 m in size. A layer of fine mesh metal small animal screening was placed around the plot at the base of the fencing to a depth of 45 cm. A total of sixty plants were placed in six slightly staggered rows with 1-m spacing between plants. The actual plot size was 0.00461 hectare (ha). At the time of planting (March 12, 2007), the plot was located about 10 m from the river’s edge. Less than two weeks later (March 21), the river began the spring rise. Periodic (daily) or continuous flooding occurred at the site over the next 3 to 4 months. River levels at times were over the top of the enclosure’s fence. This same pattern was repeated for the next 2 years. It was however evident that even submerged for part, or all of the day, that the plants continued to flourish. There were no indications of herbivory or animal tracks observed within the plot although animals were present in the area. Biomass production over the three years followed a typical growth curve with a yield of about 1 kg for the first year when the trees were establishing themselves, 4 kg for the second, and over 20 kg for the third when the trees were entering the exponential phase of growth. On a metric Ton per hectare (mT/ha) basis this would be 0.2 mT/ha in 2007, 0.87 mT/ha in 2008, and 4.3 mT/ha in 2009. Growth curve extrapolation predicts 13.2 mT/ha during a fourth year and potentially 29.5 mT/ha following a fifth year. Using the observed Ca and Sr concentrations found in the plant tissues, and Sr CR’s calculated from groundwater analysis, projected biomass yields suggest the trees could prove effective in removing the contaminant from the 100-NR-2 riparian zone.

  15. Voices from the Fisheries NOAA FISHERIES SERVICE

    E-Print Network [OSTI]

    Fisheries Knowledge,LinkingGenerations,and Improving Environmental Literacy Julie Bartsch Susan Abbott School and Community Trust #12;Julie Bartsch The Rural School and Community Trust 1530 Wilson Boulevard

  16. HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT

    SciTech Connect (OSTI)

    Jolly, R; Bruce Martin, B

    2008-01-15T23:59:59.000Z

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea transfers utilizing STPs from July 2006 to August 2007. This operation and successful removal of sludge material meets requirement of approximately 19,000 to 28,000 liters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. Removal of the last 35% of sludge was exponentially more difficult, as less and less sludge was available to mobilize and the lighter sludge particles were likely removed during the early mixing campaigns. The removal of the 72,000 liters (19,000 gallons) of sludge was challenging due to a number factors. One primary factor was the complex internal cooling coil array within Tank 6 that obstructed mixer discharge jets and impacted the Effective Cleaning Radius (ECR) of the Submersible Mixer Pumps. Minimal access locations into the tank through tank openings (risers) presented a challenge because the available options for equipment locations were very limited. Mechanical Sludge Removal activities using SMPs caused the sludge to migrate to areas of the tank that were outside of the SMP ECR. Various SMP operational strategies were used to address the challenge of moving sludge from remote areas of the tank to the transfer pump. This paper describes in detail the Mechanical Sludge Removal activities and mitigative solutions to cooling coil obstructions and other challenges. The performance of the WOW system and SMP operational strategies were evaluated and the resulting lessons learned are described for application to future Mechanical Sludge Removal operations.

  17. Snake River Sockeye Salmon Habitat and Limnological Research; 2002 Annual Report.

    SciTech Connect (OSTI)

    Kohler, Andre E.; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-08-01T23:59:59.000Z

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2002 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake (3) conduct kokanee salmon (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; and (6) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.

  18. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    SciTech Connect (OSTI)

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01T23:59:59.000Z

    This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1,100 ft above the basal sandstone and is 100-200 ft thick. The storage capacity estimates for a 20-mile radius from the injection well ranged from 39-78 million tons (Mt) for each formation. Several other oil and gas plays have hydraulic properties conducive for injection, but the formations are generally only 5-50 ft thick in the study area. Overlying the injection reservoirs are thick sequences of dense, impermeable dolomite, limestone, and shale. These layers provide containment above the potential injection reservoirs. In general, it appears that the containment layers are much thicker and extensive than the injection intervals. Other physical parameters for the study area appear to be typical for the region. Anticipated pressures at maximum depths are approximately 4,100 psi based on a 0.45 psi/ft pressure gradient. Temperatures are likely to be 150 F. Groundwater flow is slow and complex in deep formations. Regional flow directions appear to be toward the west-northwest at less than 1 ft per year within the basal sandstone. Vertical gradients are downward in the study area. A review of brine geochemistry indicates that formation fluids have high salinity and dissolved solids. Total dissolved solids ranges from 200,000-325,000 mg/L in the deep reservoirs. Brine chemistry is similar throughout the different formations, suggesting extensive mixing in a mature basin. Unconsolidated sediments in the Ohio River Valley are the primary source of drinking water in the study area.

  19. Piloting A Monitoring Program For CCC LWD Projects

    E-Print Network [OSTI]

    Atherton, Shanna; Zhu, Bingyao

    2013-01-01T23:59:59.000Z

    wetlands: a 5 year post-operation survey on the Rhone River,operations through the WSP member or the CCC Fisheries Intern program existing creek survey

  20. White River Falls Fish Passage Project, Tygh Valley, Oregon : Final Technical Report, Volume I..

    SciTech Connect (OSTI)

    Oregon. Dept. of Fish and Wildlife; Mount Hood National Forest (Or.)

    1985-06-01T23:59:59.000Z

    Studies were conducted to describe current habitat conditions in the White River basin above White River Falls and to evaluate the potential to produce anadromous fish. An inventory of spawning and rearing habitats, irrigation diversions, and enhancement opportunities for anadromous fish in the White River drainage was conducted. Survival of juvenile fish at White River Falls was estimated by releasing juvenile chinook and steelhead above the falls during high and low flow periods and recapturing them below the falls in 1983 and 1984. Four alternatives to provide upstream passage for adult salmon and steelhead were developed to a predesign level. The cost of adult passage and the estimated run size of anadromous fish were used to determine the benefit/cost ratio of the preferred alternative. Possible effects of the introduction of anadromous fish on resident fish and on nearby Oak Springs Hatchery were evaluated. This included an inventory of resident species, a genetic study of native rainbow, and the identification of fish diseases in the basin. 28 figs., 23 tabs.

  1. Small-scale hydroelectric power demonstration project: Broad River Electric Cooperative, Inc. , Cherokee Falls Hydroelectric Project: Final technical and construction cost report

    SciTech Connect (OSTI)

    Not Available

    1988-06-01T23:59:59.000Z

    The purpose of this report is to fulfill part of the requirement of the US Department of Energy (DOE) Cooperative Agreement Number FC07-80ID12125 of the Small Scale Hydropower Program and is submitted on behalf of the Broad River Electric Cooperative, Inc. of Gaffney, South Carolina. The project was initially studied in 1978 with construction commencing in January, 1984. The primary work elements of the project consisted of the renovation of an existing dam and a new powerhouse. The dam was rehabilitated and flashboards were installed along the top of the structure. The powerhouse was supplied with a single open pit turbine and a new substation was constructed. The project generated power in December of 1985 but has been plagued with numerous problems compounded by a flood in March, 1987 causing extensive damages. The flood of March, 1987 resulted in filing of litigative action by the developers against their project managers and engineers which has yet to reach settlement and will possibly culminate in court sometime during the fall of 1988.

  2. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Pearsons, Todd N.; James, Brenda B.; Johnson, Christopher L. (Washington Department of Fish and Wildlife, Olympia, WA)

    2003-05-01T23:59:59.000Z

    This report examines some of the factors that can influence the success of supplementation, which is currently being tested in the Yakima Basin using upper Yakima stock of spring chinook salmon. Supplementation success in the Yakima Basin is defined relative to four topic areas: natural production, genetics, ecological interactions, and harvest (Busack et al. 1997). The success of spring chinook salmon supplementation in the Yakima Basin is dependent, in part, upon fish culture practices and favorable physical and biological conditions in the natural environment (Busack et al. 1997). Shortfalls in either of these two topics (i.e., failure in culturing many fish that have high long-term fitness or environmental conditions that constrain spring chinook salmon production) will cause supplementation success to be limited. For example, inadvertent selection or propagation of spring chinook that residualize or precocially mature may hinder supplementation success. Spring chinook salmon that residualize (do not migrate during the normal migration period) may have lower survival rates than migrants and, additionally, may interact with wild fish and cause unacceptable impacts to non-target taxa. Large numbers of precocials (nonanadromous spawners) may increase competition for females and significantly skew ratios of offspring sired by nonanadromous males, which could result in more nonanadromous spring chinook in future generations. Conditions in the natural environment may also limit the success of spring chinook supplementation. For example, intra or interspecific competition may constrain spring chinook salmon production. Spring chinook salmon juveniles may compete with each other for food or space or compete with other species that have similar ecological requirements. Monitoring of spring chinook salmon residuals, precocials, prey abundance, carrying capacity, and competition will help researchers interpret why supplementation is working or not working (Busack et al. 1997). Monitoring ecological interactions will be accomplished using interactions indices. Interactions indices will be used to index the availability of prey and competition for food and space. The tasks described below represent various subject areas of juvenile spring chinook salmon monitoring but are treated together because they can be accomplished using similar methods and are therefore more cost efficient than if treated separately. Three areas of investigation we pursued in this work were: (1) strong interactor monitoring (competition index and prey index), (2) carrying capacity monitoring (microhabitat monitoring); (3) residual and precocial salmon monitoring (abundance). This report is organized into three chapters to represent these three areas of investigation. Data were collected during the summer and fall, 2002 in index sections of the upper Yakima Basin (Figure 1). Hatchery reared spring chinook salmon were first released during the spring of 1999. The monitoring plan for the Yakima/Klickitat Fisheries Project calls for the continued monitoring of the variables covered in this report. All findings in this report should be considered preliminary and subject to further revision as more data and analytical results become available.

  3. Couse/Tenmile Creeks Watershed Project Implementation : 2007 Conservtion Projects. [2007 Habitat Projects Completed].

    SciTech Connect (OSTI)

    Asotin County Conservation District

    2008-12-10T23:59:59.000Z

    The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on private lands within Asotin County watersheds. The Tenmile Creek watershed is a 42 square mile tributary to the Snake River, located between Asotin Creek and the Grande Ronde River. Couse Creek watershed is a 24 square mile tributary to the Snake River, located between Tenmile Creek and the Grande Ronde River. Both watersheds are almost exclusively under private ownership. The Washington Department of Fish and Wildlife has documented wild steelhead and rainbow/redband trout spawning and rearing in Tenmile Creek and Couse Creek. The project also provides Best Management Practice (BMP) implementation throughout Asotin County, but the primary focus is for the Couse and Tenmile Creek watersheds. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Farm Service Agency (FSA), Salmon Recovery Funding Board (SRFB), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe (NPT), Washington Department of Ecology (DOE), National Marine Fisheries Service (NOAA Fisheries), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. The Asotin Subbasin Plan identified priority areas and actions for ESA listed streams within Asotin County. Couse Creek and Tenmile Creek are identified as protection areas in the plan. The Conservation Reserve Enhancement Program (CREP) has been successful in working with landowners to protect riparian areas throughout Asotin County. Funding from BPA and other agencies has also been instrumental in protecting streams throughout Asotin County by utilizing the ridge top to ridge top approach.

  4. FISHERY STATISTICS UNITED STATES

    E-Print Network [OSTI]

    of the production of processed fishery products, data on free zings and cold storage holdings, and on foreign trade fisheries. There is also information on the pack of canned tuna and industrial products for Puerto Rico for human food and industrial use. Relative volume of the landings, by species. Relative value

  5. FISHERY STATISTICS UNITED STATES

    E-Print Network [OSTI]

    FISHERY STATISTICS OF THE UNITED STATES 1972 STATISTICAL DIGEST NO. 66 Prepared by STATISTICS;ACKNOWLEDGMENTS The data in this edition of "Fishery Statistics of the United States" were collected in co- operation with the various States and tabulated by the staff of the Statistics and Market News Division

  6. FISHERIES ADMINISTRATION Scope and Diversity of Privatized Services

    E-Print Network [OSTI]

    . Interjurisdictional agency partnerships form the cornerstones of basin- wide management strategies for integrated, compre- hensive management of rivers, lakes, and reservoirs throughout North America. Although fisheries administrators was that wide-scale privatization of management activities is counter to the long

  7. Wildlife and Wildlife Habitat Loss Assessment at Hills Creek Dam and Reservoir Project, Middle Fork Willamette River, Oregon, 1985 Final Report.

    SciTech Connect (OSTI)

    Noyes, J.H.

    1985-09-01T23:59:59.000Z

    A habitat based assessment was conducted of the US Army Corps of Engineers' Hills Creek Dam and Reservoir Project on the Middle Fork Willamette River, Oregon, to determine losses or gains resulting from the development and operation of the hydroelectric related components of the project. Preconstruction, postconstruction, and recent vegetation cover types of the project site were mapped based on aerial photographs from 1944, 1964, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Fifteen wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Hills Creek Project extensively altered or affected 4662 acres of land and river in the Middle Fork Willamette River drainage. Impacts to wildlife centered around the loss of 2694 acres of old-growth forest and 207 acres of riparian habitat. Impacts resulting from the Hills Creek Project included the loss of winter range for Roosevelt elk, and the loss of year-round habitat for black-tailed deer, black bear, cougar, river otter, beaver, ruffed grouse, spotted owl, and other nongame species. Bald eagle and osprey were benefited by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Hills Creek Project, losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  8. Flathead River Creel Report, 1992-1993. Final Report.

    SciTech Connect (OSTI)

    Hanzel, Delano

    1995-09-01T23:59:59.000Z

    A roving creel survey was conducted on the Flathead River system, May 1992 through May 1993, as part of Hungry Horse Dam Fisheries Mitigation, funded by Bonneville Power Administration. The Flathead River system is a tributary to the Clarks Fork of the Columbia River originating in northwest Montana and southern British Columbia. The river creel survey was conducted in conjunction with a Flathead Lake creel survey. This document summarizes the creel survey on the river system. The purpose of these creel surveys was to quantify fishery status prior to mitigation efforts and provide replicative survey methodology to measure success of future mitigation activities. 4 figs., 21 tabs.

  9. Secure & Restore Critical Fisheries Habitat, Flathead Subbasin, FY2008 Annual Report.

    SciTech Connect (OSTI)

    DuCharme, Lynn [Confederated Salish and Kootenai Tribes; Tohtz, Joel [Montana Fish, Wildlife & Parks

    2008-11-12T23:59:59.000Z

    The construction of Hungry Horse Dam inundated 125 km of adfluvial trout habitat in the South Fork of the Flathead River and its tributaries, impacting natural fish reproduction and rearing. Rapid residential and commercial growth in the Flathead Watershed now threaten the best remaining habitats and restrict our opportunities to offset natural resource losses. Hydropower development and other land disturbances caused severe declines in the range and abundance of our focal resident fish species, bull trout and westslope cutthroat trout. Bull trout were listed as threatened in 1998 under the Endangered Species Act and westslope cutthroat were petitioned for listing under ESA. Westslope cutthroat are a species of special concern in Montana and a species of special consideration by the Confederated Salish and Kootenai Tribes. The Secure & Protect Fisheries Habitat project follows the logical progression towards habitat restoration outlined in the Hungry Horse Dam Fisheries Mitigation Implementation Plan approved by the NWPPC in 1993. This project is also consistent with the 2000 Fish and Wildlife Program and the Flathead River Subbasin Plan that identifies the protection of habitats for these populations as one of the most critical needs in the subbasin and directs actions to offset habitat losses. The Flathead basin is one of the fastest growing human population centers in Montana. Riparian habitats are being rapidly developed and subdivided, causing habitat degradation and altering ecosystem functions. Remaining critical habitats in the Flathead Watershed need to be purchased or protected with conservation easements if westslope cutthroat and bull trout are to persist and expand within the subbasin. In addition, habitats degraded by past land uses need to be restored to maximize the value of remaining habitats and offset losses caused by the construction of Hungry Horse Dam. Securing and restoring remaining riparian habitat will benefit fish by shading and moderating water temperatures, stabilizing banks and protecting the integrity of channel dimension, improving woody debris recruitment for in-channel habitat features, producing terrestrial insects and leaf litter for recruitment to the stream, and helping to accommodate and attenuate flood flows. The purpose of this project is to work with willing landowners to protect the best remaining habitats in the Flathead subbasin as identified in the Flathead River Subbasin Plan. The target areas for land protection activities follow the priorities established in the Flathead subbasin plan and include: (1) Class 1 waters as identified in the Flathead River Subbasin Plan; (2) Class 2 watersheds as identified in the Flathead River Subbasin Plan; and (3) 'Offsite mitigation' defined as those Class 1 and Class 2 watersheds that lack connectivity to the mainstem Flathead River or Flathead Lake. This program focuses on conserving the highest quality or most important riparian or fisheries habitat areas consistent with program criteria. The success of our efforts is subject to a property's actual availability and individual landowner negotiations. The program is guided using biological and project-based criteria that reflect not only the priority needs established in the Flathead subbasin plan, but also such factors as cost, credits, threats, and partners. The implementation of this project requires both an expense and a capital budget to allow work to be completed. This report addresses accomplishments under both budgets during FY08 as the two budgets are interrelated. The expense budget provided pre-acquisition funding to conduct activities such as surveys, appraisals, staff support, etc. The capital budget was used to purchase the interest in each parcel including closing costs. Both the pre-acquisition contract funds and the capital funds used to purchase fee title or conservation easements were spent in accordance with the terms negotiated within the FY08 through FY09 MOA between the Tribes, State, and BPA. In FY08, the focus of this project was to pursue all possible properties

  10. Clark Fork River Delta Restoration Project 1 Finding of No Significant Impact for Final Environmental Assessment

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. Feedstock &EnergyDepartmentCityClark Fork River

  11. California's Russian River: A Conservation Partnership

    E-Print Network [OSTI]

    . Improve weather and river flow forecasting to maximize water captured for reservoirs and fisheries support forecast-based reservoir operations and allow for improved water management. It may also provide's Russian River Habitat Blueprint #12;Restore floodplain habitat through reclamation of abandoned gravel

  12. Columbia River Hatchery Reform System-Wide Report.

    SciTech Connect (OSTI)

    Warren, Dan [Hatchery Scientific Review Group

    2009-04-16T23:59:59.000Z

    The US Congress funded the Puget Sound and Coastal Washington Hatchery Reform Project via annual appropriations to the US Fish and Wildlife Service (USFWS) beginning in fiscal year 2000. Congress established the project because it recognized that while hatcheries have a necessary role to play in meeting harvest and conservation goals for Pacific Northwest salmonids, the hatchery system was in need of comprehensive reform. Most hatcheries were producing fish for harvest primarily to mitigate for past habitat loss (rather than for conservation of at-risk populations) and were not taking into account the effects of their programs on naturally spawning populations. With numerous species listed as threatened or endangered under the Endangered Species Act (ESA), conservation of salmon in the Puget Sound area was a high priority. Genetic resources in the region were at risk and many hatchery programs as currently operated were contributing to those risks. Central to the project was the creation of a nine-member independent scientific review panel called the Hatchery Scientific Review Group (HSRG). The HSRG was charged by Congress with reviewing all state, tribal and federal hatchery programs in Puget Sound and Coastal Washington as part of a comprehensive hatchery reform effort to: conserve indigenous salmonid genetic resources; assist with the recovery of naturally spawning salmonid populations; provide sustainable fisheries; and improve the quality and cost-effectiveness of hatchery programs. The HSRG worked closely with the state, tribal and federal managers of the hatchery system, with facilitation provided by the non-profit organization Long Live the Kings and the law firm Gordon, Thomas, Honeywell, to successfully complete reviews of over 200 hatchery programs at more than 100 hatcheries across western Washington. That phase of the project culminated in 2004 with the publication of reports containing the HSRG's principles for hatchery reform and recommendations for Puget Sound/Coastal Washington hatchery programs, followed by the development in 2005 of a suite of analytical tools to support application of the principles (all reports and tools are available at www.hatcheryreform.us). In 2005, Congress directed the National Oceanic and Atmospheric Administration-Fisheries (NOAA Fisheries) to replicate the Puget Sound and Coastal Washington Hatchery Reform Project in the Columbia River Basin. The HSRG was expanded to 14 members to include individuals with specific knowledge about the Columbia River salmon and steelhead populations. This second phase was initially envisioned as a one-year review, with emphasis on the Lower Columbia River hatchery programs. It became clear however, that the Columbia River Basin needed to be viewed as an inter-connected ecosystem in order for the review to be useful. The project scope was subsequently expanded to include the entire Basin, with funding for a second year provided by the Bonneville Power Administration (BPA) under the auspices of the Northwest Power and Conservation Council's (NPCC) Fish and Wildlife Program. The objective of the HSRG's Columbia River Basin review was to change the focus of the Columbia River hatchery system. In the past, these hatchery programs have been aimed at supplying adequate numbers of fish for harvest as mitigation primarily for hydropower development in the Basin. A new, ecosystem-based approach is founded on the idea that harvest goals are sustainable only if they are compatible with conservation goals. The challenge before the HSRG was to determine whether or not conservation and harvest goals could be met by fishery managers and, if so, how. The HSRG determined that in order to address these twin goals, both hatchery and harvest reforms are necessary. The HSRG approach represents an important change of direction in managing hatcheries in the region. It provides a clear demonstration that current hatchery programs can indeed be redirected to better meet both conservation and harvest goals. For each Columbia River Basin Environmentally Significant Unit

  13. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TRANSURANIC (TRU) TANK WASTE IDENTIFICATION & PLANNING FOR REVRIEVAL TREATMENT & EVENTUAL DISPOSAL AT WIPP

    SciTech Connect (OSTI)

    KRISTOFZSKI, J.G.; TEDESCHI, R.; JOHNSON, M.E.; JENNINGS, M

    2006-01-18T23:59:59.000Z

    The CH2M HILL Manford Group, Inc. (CHG) conducts business to achieve the goals of the Office of River Protection (ORP) at Hanford. As an employee owned company, CHG employees have a strong motivation to develop innovative solutions to enhance project and company performance while ensuring protection of human health and the environment. CHG is responsible to manage and perform work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of legacy mixed radioactive waste currently at the Hanford Site tank farms. Safety and environmental awareness is integrated into all activities and work is accomplished in a manner that achieves high levels of quality while protecting the environment and the safety and health of workers and the public. This paper focuses on the innovative strategy to identify, retrieve, treat, and dispose of Hanford Transuranic (TRU) tank waste at the Waste Isolation Pilot Plant (WIPP).

  14. EA-1671: Big River Substation to Poston Substation 69-Kilovolt Transmission Line Project, Arizona and California

    Broader source: Energy.gov [DOE]

    The Department of the Interior’s Bureau of Indian Affairs considered preparing this EA, with DOE’s Western Area Power Administration as a cooperating agency. This project has been canceled.

  15. Snake River Sockeye Salmon Habitat and Limnological Research : 2008 Annual Progress Report.

    SciTech Connect (OSTI)

    Kohler, Andre E. [Shoshone-Bannock Tribes; Griswold, Robert G. [Biolines Environmental Consulting; Taki, Doug [Shoshone-Bannock Tribes

    2009-07-31T23:59:59.000Z

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Project was implemented. This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of Snake River sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: the immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the evolutionarily significant unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency Recovery effort. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2008 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit and Alturas lakes; (3) reduce the number of mature kokanee salmon spawning in Alturas Lake Creek; (4) monitor, enumerate, and evaluate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook and Alturas Lake creeks; (6) conduct sockeye and kokanee salmon population surveys; (7) evaluate potential competition and predation between stocked juvenile sockeye salmon and a variety of fish species in Redfish, Pettit, and Alturas lakes; and (8) assist IDFG with captive broodstock production activities.

  16. Lake Roosevelt Fisheries Monitoring Program; 1988-1989 Annual Report.

    SciTech Connect (OSTI)

    Peone, Tim L.; Scholz, Allan T.; Griffith, James R.

    1990-10-01T23:59:59.000Z

    In the Northwest Power Planning Council's 1987 Columbia River Basin Fish and Wildlife Program (NPPC 1987), the Council directed the Bonneville Power Administration (BPA) to construct two kokanee salmon (Oncorhynchus nerka) hatcheries as partial mitigation for the loss of anadromous salmon and steelhead incurred by construction of Grand Coulee Dam [Section 903 (g)(l)(C)]. The hatcheries will produce kokanee salmon for outplanting into Lake Roosevelt as well as rainbow trout (Oncorhynchus mykiss) for the Lake Roosevelt net-pen program. In section 903 (g)(l)(E), the Council also directed BPA to fund a monitoring program to evaluate the effectiveness of the kokanee hatcheries. The monitoring program included the following components: (1) a year-round, reservoir-wide, creel survey to determine angler use, catch rates and composition, and growth and condition of fish; (2) assessment of kokanee, rainbow, and walleye (Stizostedion vitreum) feeding habits and densities of their preferred prey, and; (3) a mark and recapture study designed to assess the effectiveness of different locations where hatchery-raised kokanee and net pen reared rainbow trout are released. The above measures were adopted by the Council based on a management plan, developed by the Upper Columbia United Tribes Fisheries Center, Spokane Indian Tribe, Colville Confederated Tribes, Washington Department of Wildlife, and National Park Service, that examined the feasibility of restoring and enhancing Lake Roosevelt fisheries (Scholz et al. 1986). In July 1988, BPA entered into a contract with the Spokane Indian Tribe to initiate the monitoring program. The projected duration of the monitoring program is through 1995. This report contains the results of the monitoring program from August 1988 to December 1989.

  17. Publications Foreign Fisheries

    E-Print Network [OSTI]

    .S. fishery products to Japan. Part one includes information on Japanese wholesale markets, major Japanese wholesale purchasers, Japa- nese packaging methods, and Japa- nese agents for U.S. exporters. Part two

  18. Design and construction of the defense waste processing facility project at the Savannah River Plant

    SciTech Connect (OSTI)

    Baxter, R G

    1986-01-01T23:59:59.000Z

    The Du Pont Company is building for the Department of Energy a facility to vitrify high-level radioactive waste at the Savannah River Plant (SRP) near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes by immobilizing the waste in Processing Facility (DWPF) will solidify existing and future radioactives wastes by immobilizing the waste in borosilicate glass contained in stainless steel canisters. The canisters will be sealed, decontaminated and stored, prior to emplacement in a federal repository. At the present time, engineering and design is 90% complete, construction is 25% complete, and radioactive processing in the $870 million facility is expected to begin by late 1989. This paper describes the SRP waste characteristics, the DWPF processing, building and equipment features, and construction progress of the facility.

  19. Water Resources Data. Ohio - Water Year 1992. Volume 1. Ohio River Basin excluding project data

    SciTech Connect (OSTI)

    H.L. Shindel; J.H. Klingler; J.P. Mangus; L.E. Trimble

    1993-03-01T23:59:59.000Z

    Water-resources data for the 1992 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 121 gaging stations, 336 wells, and 72 partial-record sites; and water levels at 312 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio. Volume 1 covers the central and southern parts of Ohio, emphasizing the Ohio River Basin. (See Order Number DE95010451 for Volume 2 covering the northern part of Ohio.)

  20. Fishery Resources of FISHERY LEAFLET 2 3 9

    E-Print Network [OSTI]

    limitations to establishing export fisheries 43 Shore facilities 43 Fresh water 43 Ice and cold storage 43 fishery 23 The fishing industry 25 Post-war status 27 Difficulty of establishing trade with Japan . . 27

  1. MINISTRY OF AGRICULTURE, FISHERIES AND FOOD DIRECTORATE OF FISHERIES RESEARCH

    E-Print Network [OSTI]

    #12;1 MINISTRY OF AGRICULTURE, FISHERIES AND FOOD DIRECTORATE OF FISHERIES RESEARCH AQUATIC................................................................................................12 4. British Nuclear Fuels plc (BNFL .....................................................................................................................37 6. Nuclear power stations operated by the electricity companies

  2. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River and Lower Snake River Reservoirs, 1997 Annual Report.

    SciTech Connect (OSTI)

    Muir, William D.; Connor, William P.; Arnsberg, Billy D.

    1999-03-01T23:59:59.000Z

    In 1997, the National Marine Fisheries Service, the U.S. Fish and Wildlife Service, and the Nez Perce Tribe completed the third year of research to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River Basin.

  3. Washington Phase II Fish Diversion Screen Evaluations in the Yakima River Basin, 2003 Annual Report.

    SciTech Connect (OSTI)

    Vucelick, J.; McMichael, G.; Chamness, M. (Pacific Northwest National Laboratory)

    2004-05-01T23:59:59.000Z

    In 2003, the Pacific Northwest National Laboratory (PNNL) evaluated 23 Phase II fish screen sites in the Yakima River Basin as part of a multi-year project for the Bonneville Power Administration on the effectiveness of fish screening devices. PNNL collected data to determine whether velocities in front of the screens and in the bypasses met the National Oceanic and Atmospheric Administration Fisheries (NOAA Fisheries, formerly the National Marine Fisheries Service [NMFS]) criteria to promote safe and timely fish passage. In addition, PNNL conducted underwater video surveys to evaluate the environmental and operational conditions of the screen sites with respect to fish passage. Based on evaluations in 2003, PNNL concluded that: (1) In general, water velocity conditions at the screen sites met fish passage criteria set by the NOAA Fisheries. (2) Conditions at most facilities would be expected to provide for safe juvenile fish passage. (3) Conditions at some facilities indicate that operation and/or maintenance should be modified to improve juvenile fish passage conditions. (4) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well greased and operative. (5) Removal of sediment buildup and accumulated leafy and woody debris could be improved at some sites.

  4. EIS-0202: Umatilla Basin Project Planning Report and Final Environmental Report

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA's proposed support for the Bureau of Reclamation proposal to assist in restoration of the Umatilla River anadromous fishery.

  5. Snake River Sockeye Salmon Habitat and Limnological Research; 2001 Annual Report.

    SciTech Connect (OSTI)

    Kohler, Andre E.; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-08-01T23:59:59.000Z

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon Oncorhynchus nerka as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (Council). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2001 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake, fertilization of Pettit and Alturas lakes was suspended for this year; (3) conduct kokanee (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.

  6. 46 Marine Fisheries Review Introduction

    E-Print Network [OSTI]

    :1) in tropical-water fisheries (Dredge, 1988; Harris and Poiner, 1990; Andrew and Pepperell, 1992; Pender et al of the fisheries, the high cost of freezing and storing the catch onboard, and the lack of orga- nized markets

  7. Yakima/Klickitat Fisheries Project: Short Project Overview of Spring Chinook Salmon Supplementation in the Upper Yakima Basin; Washington Department of Fish and Wildlife Policy/Technical Involvement and Planning, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Fast, David E.; Bosch, William J.

    2005-09-01T23:59:59.000Z

    The Yakima/Klickitat Fisheries Project (YKFP) is on schedule to ascertain whether new artificial production techniques can be used to increase harvest and natural production of spring Chinook salmon while maintaining the long-term genetic fitness of the fish population being supplemented and keeping adverse genetic and ecological interactions with non-target species or stocks within acceptable limits. The Cle Elum Supplementation and Research Facility (CESRF) collected its first spring chinook brood stock in 1997, released its first fish in 1999, and age-4 adults have been returning since 2001. In these initial years of CESRF operation, recruitment of hatchery origin fish has exceeded that of fish spawning in the natural environment, but early indications are that hatchery origin fish are not as successful at spawning in the natural environment as natural origin fish when competition is relatively high. When competition is reduced, hatchery fish produced similar numbers of progeny as their wild counterparts. Most demographic variables are similar between natural and hatchery origin fish, however hatchery origin fish were smaller-at-age than natural origin fish. Long-term fitness of the target population is being evaluated by a large-scale test of domestication. Slight changes in predation vulnerability and competitive dominance, caused by domestication, were documented. Distribution of spawners has increased as a result of acclimation site location and salmon homing fidelity. Semi-natural rearing and predator avoidance training have not resulted in significant increases in survival of hatchery fish. However, growth manipulations in the hatchery appear to be reducing the number of precocious males produced by the YKFP and consequently increasing the number of migrants. Genetic impacts to non-target populations appear to be low because of the low stray rates of YKFP fish. Ecological impacts to valued non-target taxa were within containment objectives or impacts that were outside of containment objectives were not caused by supplementation activities. Some fish and bird piscivores have been estimated to consume large numbers of salmonids in the Yakima Basin. Natural production of Chinook salmon in the upper Yakima Basin appears to be density dependent under current conditions and may constrain the benefits of supplementation. However, such constraints (if they exist) could be countered by YKFP habitat actions that have resulted in: the protection of over 900 acres of prime floodplain habitat, reconnection and screening of over 15 miles of tributary habitat, substantial water savings through irrigation improvements, and restoration of over 80 acres of floodplain and side channels. Harvest opportunities for tribal and non-tribal fishers have also been enhanced, but are variable among years. The YKFP is still in the early stages of evaluation, and as such the data and findings presented in this report should be considered preliminary until further data is collected and analyses completed. Nonetheless, the YKFP has produced significant findings, and produced methodologies that can be used to evaluate and improve supplementation. A summary table of topical area performance is presented.

  8. Hanford Site River Protection Project High-Level Waste Safe Storage and Retrieval

    SciTech Connect (OSTI)

    Aromi, E. S.; Raymond, R. E.; Allen, D. I.; Payne, M. A.; DeFigh-Price, C.; Kristofzski, J. G.; Wiegman, S. A.

    2002-02-25T23:59:59.000Z

    This paper provides an update from last year and describes project successes and issues associated with the management and work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of mixed and high-level waste currently in aging tanks at the Hanford Site. The Hanford Site is a 560 square-mile area in southeastern Washington State near Richland, Washington.

  9. STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PROJECT - 9225

    SciTech Connect (OSTI)

    Jolly, R

    2009-01-06T23:59:59.000Z

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed {approx} 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of {approx} 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the 'Status of Chemical Cleaning of Waste Tanks at the Savannah River Site--F Tank Farm Closure Project--Abstract 9114'. To support Tank 5 and Tank 6 cooling coil closure, cooling coil isolation and full scale cooling coil grout testing was completed to develop a strategy for grouting the horizontal and vertical cooling coils. This paper describes in detail the performance of the Mechanical Sludge Removal activities and SMP operational strategies within Tank 5. In addition, it will discuss the current status of Tank 5 & 6 cooling coil isolation activities and the results from the cooling coil grout fill tests.

  10. Green River Formation Water Flood Demonstration Project. Annual report, April 1, 1994--March 31, 1995

    SciTech Connect (OSTI)

    Lomax, J.

    1995-09-01T23:59:59.000Z

    The successful water flood of the Green River Formation in the Monument Butte unit was analyzed in detail in the last yearly report. It was shown that primary recovery and the water flood in the unit were typical of oil production from an undersaturated oil reservoir close its bubble point. The reservoir performance of the smaller Travis unit was also analyzed. The Monument Butte unit is currently producing at around 300 barrels per day of oil. Two of the new wells drilled in the unit had zones pressurized by the water flood. The third well produced from pressurized as well as from zones which were unaffected by the water flood. The water flood response of the Travis unit is slow possibly due to problems of reservoir continuity. Plans for water flooding the Boundary unit were drawn. Core description and Formation Micro Imaging log of well 14a-28 provided insight about the important Lower Douglas Creek sandstone. It was determined that this sandstone was extensively fractured and detailed fracture characteristics were obtained through comprehensive interpretation of the FMI log. Reservoir modeling and simulation studies of all the three units were also continued. A larger, more detailed model of the Monument Butte unit was built in order to study the performance of the new development wells being drilled. Three alternate models developed to explain the performance of the Travis flood revealed that intersecting hydraulic fractures may have also provided paths for water channeling observed in this unit. The reservoir characterization activities identified new reservoirs in the Travis unit. Reservoir simulations helped design an injection program in Travis, unit expansion plans on the west and north sides of the Monument Butte until and to evaluate the infill drilling. The reservoir simulations are being used to examine the role of the aquifer underlying the oil bearing D2 sandstone in Boundary on water flood strategies and injection patterns.

  11. FISHERY STATISTICS E UNITED STATES

    E-Print Network [OSTI]

    SH 11 .A443X FISH FISHERY STATISTICS E UNITED STATES ^ 1951 &ch 3. \\§^ ^/'· m:^ STATISTICAL DIGEST. Farley, Director Statistical Digest 30 FISHERY STATISTICS OF THE UNITED STATES 1951 BY A. W. ANDERSON;Fishery Statistics of the United States and Alaska are compiled and published annually to make available

  12. 32 Marine Fisheries Review Introduction

    E-Print Network [OSTI]

    fishery expanded rapidly due to an in- creasing demand for shark by-products (i.e. oil, liver, etc the Azores and Madeira (DGPA, 1998). Historically, fisheries have targeted elasmobranchs to supply the liver-oil.) and as the bycatch of an accelerated deep-sea teleost fishery (Nunes et al.1). In 1985, the demand for shark by

  13. Multi-Scale Action Effectiveness Research in the Lower Columbia River and Estuary, 2011 - FINAL ANNUAL REPORT

    SciTech Connect (OSTI)

    Sather, Nichole K.; Storch, Adam; Johnson, Gary E.; Teel, D. J.; Skalski, J. R.; Bryson, Amanda J.; Kaufmann, Ronald M.; Woodruff, Dana L.; Blaine, Jennifer; Kuligowski, D. R.; Kropp, Roy K.; Dawley, Earl M.

    2012-05-31T23:59:59.000Z

    The study reported here was conducted by researchers at Pacific Northwest National Laboratory (PNNL), the Oregon Department of Fish and Wildlife (ODFW), the University of Washington (UW), and the National Marine Fisheries Service (NMFS) for the U.S. Army Corps of Engineers, Portland District (USACE). This research project was initiated in 2007 by the Bonneville Power Administration to investigate critical uncertainties regarding juvenile salmon ecology in shallow tidal freshwater habitats of the lower Columbia River. However, as part of the Washington Memorandum of Agreement, the project was transferred to the USACE in 2010. In transferring from BPA to the USACE, the focus of the tidal freshwater research project shifted from fundamental ecology toward the effectiveness of restoration in the Lower Columbia River and estuary (LCRE). The research is conducted within the Action Agencies Columbia Estuary Ecosystem Restoration Program (CEERP). Data reported herein spans the time period May 2010 to September 2011.

  14. Wabash River Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The proposed project would result in a combined-cycle power plant with lower emissions and higher efficiency than most existing coal-fired power plants of comparable size. The net plant heat rate (energy content of the fuel input per useable electrical generation output; i.e., Btu/kilowatt hour) for the new repowered unit would be a 21% improvement over the existing unit, while reducing SO{sub 2} emissions by greater than 90% and limiting NO{sub x} emissions by greater than 85% over that produced by conventional coal-fired boilers. The technology, which relies on gasified coal, is capable of producing as much as 25% more electricity from a given amount of coal than today`s conventional coal-burning methods. Besides having the positive environmental benefit of producing less pollutants per unit of power generated, the higher overall efficiency of the proposed CGCC project encourages greater utilization to meet base load requirements in order to realize the associated economic benefits. This greater utilization (i.e., increased capacity factor) of a cleaner operating plant has global environmental benefits in that it is likely that such power would replace power currently being produced by less efficient plants emitting a greater volume of pollutants per unit of power generated.

  15. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plant, West Virginia Numerical Simulation and Risk Assessment Report

    SciTech Connect (OSTI)

    Neeraj Gupta

    2008-03-31T23:59:59.000Z

    A series of numerical simulations of carbon dioxide (CO{sub 2}) injection were conducted as part of a program to assess the potential for geologic sequestration in deep geologic reservoirs (the Rose Run and Copper Ridge formations), at the American Electric Power (AEP) Mountaineer Power Plant outside of New Haven, West Virginia. The simulations were executed using the H{sub 2}O-CO{sub 2}-NaCl operational mode of the Subsurface Transport Over Multiple Phases (STOMP) simulator (White and Oostrom, 2006). The objective of the Rose Run formation modeling was to predict CO{sub 2} injection rates using data from the core analysis conducted on the samples. A systematic screening procedure was applied to the Ohio River Valley CO{sub 2} storage site utilizing the Features, Elements, and Processes (FEP) database for geological storage of CO{sub 2} (Savage et al., 2004). The objective of the screening was to identify potential risk categories for the long-term geological storage of CO{sub 2} at the Mountaineer Power Plant in New Haven, West Virginia. Over 130 FEPs in seven main classes were assessed for the project based on site characterization information gathered in a geological background study, testing in a deep well drilled on the site, and general site conditions. In evaluating the database, it was apparent that many of the items were not applicable to the Mountaineer site based its geologic framework and environmental setting. Nine FEPs were identified for further consideration for the site. These FEPs generally fell into categories related to variations in subsurface geology, well completion materials, and the behavior of CO{sub 2} in the subsurface. Results from the screening were used to provide guidance on injection system design, developing a monitoring program, performing reservoir simulations, and other risk assessment efforts. Initial work indicates that the significant FEPs may be accounted for by focusing the storage program on these potential issues. The screening method was also useful in identifying unnecessary items that were not significant given the site-specific geology and proposed scale of the Ohio River Valley CO{sub 2} Storage Project. Overall, the FEP database approach provides a comprehensive methodology for assessing potential risk for a practical CO{sub 2} storage application. An integrated numerical fate and transport model was developed to enable risk and consequence assessment at field scale. Results show that such an integrated modeling effort would be helpful in meeting the project objectives (such as site characterization, engineering, permitting, monitoring and closure) during different stages. A reservoir-scale numerical model was extended further to develop an integrated assessment framework which can address the risk and consequence assessment, monitoring network design and permitting guidance needs. The method was used to simulate sequestration of CO{sub 2} in moderate quantities at the Mountaineer Power Plant. Results indicate that at the relatively low injection volumes planned for pilot scale demonstration at this site, the risks involved are minor to negligible, owing to a thick, low permeability caprock and overburden zones. Such integrated modeling approaches coupled with risk and consequence assessment modeling are valuable to project implementation, permitting, monitoring as well as site closure.

  16. Fall Chinook Acclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2003.

    SciTech Connect (OSTI)

    McLeod, Bruce

    2004-01-01T23:59:59.000Z

    Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, were located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, was located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, targeted to work towards achieving delisting goals established by National Marine Fisheries Service (NMFS or NOAA Fisheries) and ultimately to provide fall Chinook adults through the Lower Snake River Compensation Plan program as mitigation for construction and operation of the four lower Snake River dams. Complete adult returns (all age classes) for all three acclimation facilities occurred in the year 2002. Progeny (which would then be natural origin fish) would be counted towards achieving Endangered Species Act delisting criteria. In 2003, a total of 2,138,391 fish weighing 66,201 pounds were released from the three acclimation facilities. The total includes 437,633 yearling fish weighing 44,330 pounds and 1,700,758 sub-yearling fish weighing 21,871 pounds.

  17. Probabilistic evaluation of main coolant pipe break indirectly induced by earthquakes: Savannah River Project L and P Reactors

    SciTech Connect (OSTI)

    Short, S.A.; Wesley, D.A.; Awadalla, N.G.; Kennedy, R.P. (Impell Corp., Mission Viejo, CA (USA); Westinghouse Savannah River Co., Aiken, SC (USA); Structural Mechanics Consulting, Inc., Yorba Linda, CA (USA))

    1989-01-01T23:59:59.000Z

    A probabilistic evaluation of seismically-induced indirect pipe break for the Savannah River Project (SRP) L- and P-Reactor main coolant (process water) piping has been conducted. Seismically-induced indirect pipe break can result primarily from: (1) failure of the anchorage of one or more of the components to which the pipe is anchored; or (2) failure of the pipe due to collapse of the structure. The potential for both types of seismically-induced indirect failures was identified during a seismic walkdown of the main coolant piping. This work involved: (1) identifying components or structures whose failure could result in pipe failure; (2) developing seismic capacities or fragilities of these components; (3) combining component fragilities to develop plant damage state fragilities; and (4) convolving the plant seismic fragilities with a probabilistic seismic hazard estimate for the site in order to obtain estimates of seismic risk in terms of annual probability of seismic-induced indirect pipe break. 6 refs., 5 figs., 2 tabs.

  18. River Protection Project Integrated safety management system phase II verification report, volumes I and II - 8/19/99

    SciTech Connect (OSTI)

    SHOOP, D.S.

    1999-09-10T23:59:59.000Z

    The Department of Energy policy (DOE P 450.4) is that safety is integrated into all aspects of the management and operations of its facilities. In simple and straightforward terms, the Department will ''Do work safely.'' The purpose of this River Protection Project (RPP) Integrated Safety Management System (ISMS) Phase II Verification was to determine whether ISMS programs and processes are implemented within RFP to accomplish the goal of ''Do work safely.'' The goal of an implemented ISMS is to have a single integrated system that includes Environment, Safety, and Health (ES&H) requirements in the work planning and execution processes to ensure the protection of the worker, public, environment, and federal property over the RPP life cycle. The ISMS is comprised of the (1) described functions, components, processes, and interfaces (system map or blueprint) and (2) personnel who are executing those assigned roles and responsibilities to manage and control the ISMS. Therefore, this review evaluated both the ''paper'' and ''people'' aspects of the ISMS to ensure that the system is implemented within RPP. Richland Operations Office (RL) conducted an ISMS Phase I Verification of the TWRS from September 28-October 9, 1998. The resulting verification report recommended that TWRS-RL and the contractor proceed with Phase II of ISMS verification given that the concerns identified from the Phase I verification review are incorporated into the Phase II implementation plan.

  19. Hazardous materials in aquatic environments of the Mississippi River Basin Project management. Technical quarterly progress report, April 1, 1996--June 30, 1996

    SciTech Connect (OSTI)

    McLachlan, J.; Ide, C.F.; O`Connor, S.

    1996-08-01T23:59:59.000Z

    This quarterly report summarizes accomplishments for the Project examining hazardous materials in aquatic environments of the Mississippi River Basin. Among the many research areas summarized are the following: assessment of mechanisms of metal-induced reproductive toxicity in aquatic species as a biomarker of exposure; hazardous wastes in aquatic environment;ecological sentinels of aquatic contamination in the lower Mississippi River System; remediation of selected contaminants; rapid on-site immunassay for heavy metal contamination; molecular mechanisms of developmental toxicity induced by retinoids and retinoid-like molecules; resuseable synthetic membranes for the removal of aromatic and halogenated organic pollutants from waste water; Effects of steroid receptor activation in neurendocrine cell of the mammalian hypothalamus; modeling and assessment of environmental quality of louisiana bayous and swamps; enhancement of environmental education. The report also contains a summary of publications resulting from this project and an appendix with analytical core protocals and target compounds and metals.

  20. Mid-Columbia Coho Salmon Reintroduction Feasibility Project : Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration; Washington (State) Department of Fish and Wildlife; Confederated Tribes and Bands of the Yakama Nation

    1999-01-01T23:59:59.000Z

    Before the Bonneville Power Administration (BPA) decides whether to fund a program to reintroduce coho salmon to mid-Columbia River basin tributaries, research is needed to determine the ecological risks and biological feasibility of such an effort. Since the early 1900s, the native stock of coho has been decimated in the tributaries of the middle reach of the Columbia River. The four Columbia River Treaty Tribes identified coho reintroduction in the mid-Columbia as a priority in the Tribal Restoration Plan. It is a comprehensive plan put forward by the Tribes to restore the Columbia River fisheries. In 1996, the Northwest Power Planning Council (NPPC) recommended the tribal mid-Columbia reintroduction project for funding by BPA. It was identified as one of fifteen high-priority supplementation projects for the Columbia River basin, and was incorporated into the NPPC`s Fish and Wildlife Program. The release of coho from lower Columbia hatcheries into mid-Columbia tributaries is also recognized in the Columbia River Fish Management Plan.

  1. Fish Research Project, Oregon : Evaluation of the Success of Supplementing Imnaha River Steelhead with Hatchery Reared Smolts: Phase One : Completion Report.

    SciTech Connect (OSTI)

    Carmichael, Richard W.; Whitesel, Timothy A.; Jonasson, Brian C.

    1995-08-01T23:59:59.000Z

    Two streams in the Imnaha River subbasin (Camp Creek and Little Sheep Creek) and eight streams in the Grande Ronde River subbasin (Catherine, Deer, Five Points, Fly, Indian, Lookingglass, Meadow, and Sheep creeks) were selected as study streams to evaluate the success and impacts of steelhead supplementation in northeast Oregon. The habitat of the study streams was inventoried to compare streams and to evaluate whether habitat might influence the performance parameters we will measure in the study. The mean fecundity of hatchery and natural steelhead 1-salts returning to Little Sheep Creek fish facility in 1990 and 1991 ranged from 3,550 to 4,663 eggs/female; the mean fecundity of hatchery and natural steelhead 2-salts ranged from 5,020 to 5,879 eggs/female. Variation in length explained 57% of the variation in fecundity of natural steelhead, but only 41% to 51% of the variation in fecundity of hatchery steelhead. Adult steelhead males had an average spermatocrit of 43.9% at spawning. We were also able to stain sperm cells so that viable cells could be distinguished from dead cells. Large, red disc tags may be the most useful for observing adults on the spawning grounds. The density of wild, juvenile steelhead ranged from 0 fish/l00{sup 2} to 35.1 (age-0) and 14.0 (age-1) fish/l00m{sup 2}. Evidence provided from the National Marine Fisheries Service suggests that hatchery and wild fish within a subbasin are genetically similar. The long-term experimental design is presented as a component of this report.

  2. New Bedford Harbor Superfund Project, Acushnet River Estuary engineering feasibility study of dredging and dredged-material disposal alternatives. Report 3. Characterization and elutriate testing of Acushnet River Estuary sediment. Technical report, August 1985-March 1988

    SciTech Connect (OSTI)

    Averett, D.E.

    1989-03-01T23:59:59.000Z

    Several of the alternatives being considered for the New Bedford Harbor Superfund Project involve dredging of contaminated sediment from the Acushnet River Estuary and placement of the contaminated dredged material in confined disposal areas. Evaluation of these alternatives requires testing sediment from the site to determine chemical and physical characteristics, settling properties, contaminant releases for various migration pathways, and treatment requirements for disposal area effluent. The purpose of this report is to describe the estuary composite sediment sample and the hot-spot-sediment sample tested at the US Army Engineer Waterways Experiment Station as part of the US Army Corps of Engineers' Acushnet River Estuary Engineering Feasibility Study of Dredging and Dredged Material Disposal Alternatives. Bulk sediment chemistry, physical characteristics, and elutriate testing for the sediments are included.

  3. Ohio River Greenway Development Commission (Indiana)

    Broader source: Energy.gov [DOE]

    The Ohio River Greenway Development Commission administers the Ohio River Greenway Project, which is a park along a 7-mile stretch of the Ohio River. The Commission developed a master plan for the...

  4. Redwood Creek, Marin County 2010 Monitoring Study of a Salmonid Habitat Stream Restoration Project: Seven-­?Year Post-­?Project Evaluation

    E-Print Network [OSTI]

    Crockett, Richard; Cundy, Fiona; Hanley, Colin

    2010-01-01T23:59:59.000Z

    Salmonid  Habitat  Stream  Restoration  Project:   Seven-­?227  |  Stream  and  River  Restoration   Term  Project  |  in  the  Stream  and   River   Restoration  class  

  5. Lower Columbia River and Estuary Habitat Monitoring Study, 2011 - Final Report

    SciTech Connect (OSTI)

    Borde, Amy B.; Kaufmann, Ronald M.; Cullinan, Valerie I.; Zimmerman, Shon A.; Thom, Ronald M.; Wright, Cynthia L.

    2012-03-22T23:59:59.000Z

    The Ecosystem Monitoring Program is a collaborative effort between the Lower Columbia River Estuary Partnership (LCREP), University of Washington, Wetland Ecosystem Team (UW), US Geological Survey, Water Science Center (USGS), National Oceanic and Atmospheric Administration, National Marine Fisheries Service (NOAA-Fisheries, hereafter NOAA), and Pacific Northwest National Laboratory, Marine Sciences Laboratory (PNNL). The goal of the program is to conduct emergent wetland monitoring aimed at characterizing salmonid habitats in the lower Columbia River and estuary (LCRE) from the mouth of the estuary to Bonneville Dam (Figure 1). This is an ecosystem based monitoring program focused on evaluating status and trends in habitat and reducing uncertainties regarding these ecosystems to ultimately improve the survival of juvenile salmonids through the LCRE. This project comprehensively assesses habitat, fish, food web, and abiotic conditions in the lower river, focusing on shallow water and vegetated habitats used by juvenile salmonids for feeding, rearing and refugia. The information is intended to be used to guide management actions associated with species recovery, particularly that of threatened and endangered salmonids. PNNL’s role in this multi-year study is to monitor the habitat structure (e.g., vegetation, topography, channel morphology, and sediment type) as well as hydrologic patterns.

  6. Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 2000-2001 Annual Report.

    SciTech Connect (OSTI)

    Gonzales, Dan; Schwabe, Lawrence; Wenick, Jess (Burns Paiute Tribe, Department of Fish and Wildlife, Burns, OR)

    2001-08-01T23:59:59.000Z

    The Malheur basin lies within southeastern Oregon. The Malheur River is a tributary to the Snake River, entering at about River Kilometer (RK) 595. The hydrological drainage area of the Malheur River is approximately 12,950 km{sup 2} and is roughly 306 km in length. The headwaters of the Malheur River originate in the Blue Mountains at elevations of 6,500 to 7,500 feet, and drops to an elevation of 2000 feet at the confluence with the Snake River near Ontario, Oregon. The climate of the Malheur basin is characterized by hot dry summers, occasionally exceeding 38 C and cold winters that may drop below -29 C. Average annual precipitation is 300 centimeters and ranges from 100 centimeters in the upper mountains to less than 25 centimeters in the lower reaches (Gonzalez 1999). Wooded areas consist primarily of mixed fir and pine forest in the higher elevations. Sagebrush and grass communities dominate the flora in the lower elevations. Efforts to document salmonid life histories, water quality, and habitat conditions have continued in fiscal year 2000. The Burns Paiute Tribe (BPT), United States Forest Service (USFS), and Oregon Department of Fish and Wildlife (ODFW), have been working cooperatively to achieve this common goal. Bull trout ''Salvenlinus confluentus'' have specific environmental requirements and complex life histories making them especially susceptible to human activities that alter their habitat (Howell and Buchanan 1992). Bull trout are considered to be a cold-water species and are temperature dependent. This presents a challenge for managers, biologists, and private landowners in the Malheur basin. Because of the listing of bull trout under the Endangered Species Act as threatened and the current health of the landscape, a workgroup was formed to develop project objectives related to bull trout. This report will reflect work completed during the Bonneville Power contract period starting 1 April 2000 and ending 31 March 2001. The study area will include the North Fork Malheur River and the Upper Malheur River from Warm Springs Reservoir upstream to the headwaters.

  7. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008

    SciTech Connect (OSTI)

    Sather, Nichole K.; Johnson, Gary E.; Storch, Adam; Teel, David; Skalski, John R.; Jones, Tucker A.; Dawley, Earl M.; Zimmerman, Shon A.; Borde, Amy B.; Mallette, Christine; Farr, R.

    2009-05-29T23:59:59.000Z

    The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council’s Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington.

  8. Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.

    SciTech Connect (OSTI)

    Hillson, Todd D. [Washington Department of Fish and Wildlife

    2009-06-12T23:59:59.000Z

    The National Marine Fisheries Service (NMFS) listed Lower Columbia River (LCR) chum salmon as threatened under the Endangered Species Act (ESA) in March, 1999 (64 FR 14508, March 25, 1999). The listing was in response to the reduction in abundance from historical levels of more than one-half million returning adults to fewer than 10,000 present-day spawners. Harvest, habitat degradation, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for this decline. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of this species. This is especially true of the population located directly below Bonneville Dam, where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Prior to 1997, only two chum salmon populations were recognized as genetically distinct in the Columbia River, although spawning had been documented in many Lower Columbia River tributaries. The first population was in the Grays River (RKm 34), a tributary of the Columbia River, and the second was a group of spawners utilizing the mainstem Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks. Using additional DNA samples, Small et al. (2006) grouped chum salmon spawning in the mainstem Columbia River and the Washington State tributaries into three groups: the Coastal, the Cascade and the Gorge. The Coastal group comprises those spawning in the Grays River, Skamokawa Creek and the broodstock used at the Sea Resources facility on the Chinook River. The Cascade group comprises those spawning in the Cowlitz (both summer and fall stocks), Kalama, Lewis, and East Fork Lewis rivers, with most supporting unique populations. The Gorge group comprises those spawning in the mainstem Columbia River from the I-205 Bridge up to Bonneville Dam and those spawning in Hamilton and Hardy creeks. Response to the federal ESA listing has been primarily through direct-recovery actions: reducing harvest, hatchery supplementation using local broodstock for populations at catastrophic risk, habitat restoration (including construction of spawning channels) and flow agreements to protect spawning and rearing areas. Both state and federal agencies have built controlled spawning areas. In 1998, the Washington Department of Fish and Wildlife (WDFW) began a chum salmon supplementation program using native stock on the Grays River. This program was expanded during 1999 - 2001 to include reintroduction into the Chinook River using eggs from the Grays River Supplementation Program. These eggs are incubated at the Grays River Hatchery, reared to release size at the Sea Resources Hatchery on the Chinook River, and the fry are released at the mouth of the Chinook River. Native steelhead, chum, and coho salmon are present in Duncan Creek, and are recognized as subpopulations of the Lower Gorge population, and are focal species in the Lower Columbia Fish Recovery Board (LCFRB) plan. Steelhead, chum and coho salmon that spawn in Duncan Creek are listed as Threatened under the ESA. Duncan Creek is classified by the LCFRB plan as a watershed for intensive monitoring (LCFRB 2004). This project was identified in the 2004 Federal Columbia River Power System (FCRPS) revised Biological Opinion (revised BiOp) to increase survival of chum salmon, 'BPA will continue to fund the program to re-introduce Columbia River chum salmon into Duncan Creek as long as NOAA Fisheries determines it to be an essential and effective contribution to reducing the risk of extinction for this ESU'. (USACE et al. 2004, page 85-86). The Governors Forum on Monitoring and Salmon Recovery and Watershed Health recommends one major population from each ESU have adult and juvenile monitoring. Duncan Creek chum salmon are identified in this plan to be intensively monitored. Planners recommended that a combination of natural and hatchery production

  9. Adaptive Management for Decision Making at the Program and Project Levels of the Missouri River Recovery Program

    SciTech Connect (OSTI)

    Thom, Ronald M.; Anderson, Michael G.; Tyre, Drew; Fleming, Craig A.

    2009-02-28T23:59:59.000Z

    The paper, “Adaptive Management: Background for Stakeholders in the Missouri River Recovery Program,” introduced the concept of adaptive management (AM), its principles and how they relate to one-another, how AM is applied, and challenges for its implementation. This companion paper describes how the AM principles were applied to specific management actions within the Missouri River Recovery Program to facilitate understanding, decision-making, and stakeholder engagement. For context, we begin with a brief synopsis of the Missouri River Recovery Program (MRRP) and the strategy for implementing adaptive management (AM) within the program; we finish with an example of AM in action within Phase I of the MRPP.

  10. RETURN TO THE RIVER -2000 Return to Table of Contents

    E-Print Network [OSTI]

    impacts from development of the river's hydroelectric potential. The most recent fishery recovery program from the Columbia River hydroelectric system, contained important provisions regarding mitigation for the impacts of hydroelectric development on fish and wildlife in the basin. The act authorized the states of M

  11. Status Review of the Puntledge River Summer Chinook

    E-Print Network [OSTI]

    , but declined following expansion of hydroelectric development in the early 1950s. By 1965, only a few hundred of hydroelectric development on the river in the early 1950s(Dept. of Fisheries 1958). Enhancement effortswere, the fish must contend with the hydroelectric facilities built on the river, as well as with prevailing

  12. Seasonal Juvenile Salmonid Presence and Migratory Behavior in the Lower Columbia River

    SciTech Connect (OSTI)

    Carter, Jessica A.; McMichael, Geoffrey A.; Welch, Ian D.; Harnish, Ryan A.; Bellgraph, Brian J.

    2009-04-30T23:59:59.000Z

    To facilitate preparing Biological Assessments of proposed channel maintenance projects, the Portland District of the U.S. Army Corps of Engineers contracted the Pacific Northwest National Laboratory to consolidate and synthesize available information about the use of the lower Columbia River and estuary by juvenile anadromous salmonids. The information to be synthesized included existing published documents as well as data from five years (2004-2008) of acoustic telemetry studies conducted in the Columbia River estuary using the Juvenile Salmon Acoustic Telemetry System. For this synthesis, the Columbia River estuary includes the section of the Columbia River from Bonneville Dam at river kilometer (Rkm) 235 downstream to the mouth where it enters the Pacific Ocean. In this report, we summarize the seasonal salmonid presence and migration patterns in the Columbia River estuary based on information from published studies as well as relevant data from acoustic telemetry studies conducted by NOAA Fisheries and the Pacific Northwest National Laboratory (PNNL) between 2004 and 2008. Recent acoustic telemetry studies, conducted using the Juvenile Salmon Acoustic Telemetry System (JSATS; developed by the Portland District of the U.S. Army Corps of Engineers), provided information on the migratory behavior of juvenile steelhead (O. mykiss) and Chinook salmon in the Columbia River from Bonneville Dam to the Pacific Ocean. In this report, Section 2 provides a summary of information from published literature on the seasonal presence and migratory behavior of juvenile salmonids in the Columbia River estuary and plume. Section 3 presents a detailed synthesis of juvenile Chinook salmon and steelhead migratory behavior based on use of the JSATS between 2004 and 2008. Section 4 provides a discussion of the information summarized in the report as well as information drawn from literature reviews on potential effects of channel maintenance activities to juvenile salmonids rearing in or migrating through the Columbia River estuary and plume.

  13. MINISTRY OF AGRICULTURE, FISHERIES AND FOOD DIRECTORATE OF FISHERIES RESEARCH

    E-Print Network [OSTI]

    #12;MINISTRY OF AGRICULTURE, FISHERIES AND FOOD DIRECTORATE OF FISHERIES RESEARCH AQUATIC.3 Methods of presentation of measurements 3.4 Method of interpretation 4. British Nuclear Fuels plc (BNFL) 4 Establishment, Winfrith, Dorset 5.3 Dounreay Nuclear Power Development Establishment (DNPDE), Caithness 6

  14. Foreign Fishery Developments Aid Eyed for Italy's Ailing Marine Fishery

    E-Print Network [OSTI]

    wholesale market prices, exvessel prices, landings, imports, and move- ments of fishery products both in wholesale prices for fresh and frozen fishery products traded in New York merchandising centers. The Boston in selected New England ports, Chicago market receipts, and frozen wholesale prices for the New England

  15. FISHERY PRODUCTS SITUATION Consumption of fishery products is ex-

    E-Print Network [OSTI]

    . Per -capita sales likely will be near 11.2 pounds--down from 11.4 pounds in 1970. Consumption had beenFISHERY PRODUCTS SITUATION Consumption of fishery products is ex- pected to be off a little in 1971 to attract more imports in 1971 . Since U.S. fish consumption is about 550/0-de- pendent on imports

  16. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir : Summary of the Skookumchuck Creek Bull Trout Enumeration Project Final Report 2000-2002.

    SciTech Connect (OSTI)

    Baxter, Jeremy; Baxter, James S.

    2002-12-01T23:59:59.000Z

    This report summarizes the third and final year of a bull trout (Salvelinus confluentus) enumeration project on Skookumchuck Creek in southeastern British Columbia. The fence and traps were operated from September 6th to October 11th 2002 in order to enumerate post-spawning bull trout. During the study period a total of 309 bull trout were captured at the fence. In total, 16 fish of undetermined sex, 114 males and 179 females were processed at the fence. Length and weight data, as well as recapture information, were collected for these fish. An additional 41 bull trout were enumerated upstream of the fence by snorkeling prior to fence removal. Coupled with the fence count, the total bull trout enumerated during the project was 350 individuals. Several fish that were tagged in the lower Bull River were recaptured in 2002, as were repeat and alternate year spawners previously enumerated in past years at the fence. A total of 149 bull trout redds were enumerated on the ground in 2002, of which 143 were in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past six years. The results of the three year project are summarized, and population characteristics are discussed.

  17. Risk-based Prioritization of Facility Decommissioning and Environmental Restoration Projects in the National Nuclear Legacy Liabilities Program at the Chalk River Laboratory - 13564

    SciTech Connect (OSTI)

    Nelson, Jerel G.; Kruzic, Michael [WorleyParsons, Mississauga, ON, L4W 4H2 (United States)] [WorleyParsons, Mississauga, ON, L4W 4H2 (United States); Castillo, Carlos [WorleyParsons, Las Vegas, NV 89128 (United States)] [WorleyParsons, Las Vegas, NV 89128 (United States); Pavey, Todd [WorleyParsons, Idaho Falls, ID 83402 (United States)] [WorleyParsons, Idaho Falls, ID 83402 (United States); Alexan, Tamer [WorleyParsons, Burnaby, BC, V5C 6S7 (United States)] [WorleyParsons, Burnaby, BC, V5C 6S7 (United States); Bainbridge, Ian [Atomic Energy Canada Limited, Chalk River Laboratories, Chalk River, ON, K0J1J0 (Canada)] [Atomic Energy Canada Limited, Chalk River Laboratories, Chalk River, ON, K0J1J0 (Canada)

    2013-07-01T23:59:59.000Z

    Chalk River Laboratory (CRL), located in Ontario Canada, has a large number of remediation projects currently in the Nuclear Legacy Liabilities Program (NLLP), including hundreds of facility decommissioning projects and over one hundred environmental remediation projects, all to be executed over the next 70 years. Atomic Energy of Canada Limited (AECL) utilized WorleyParsons to prioritize the NLLP projects at the CRL through a risk-based prioritization and ranking process, using the WorleyParsons Sequencing Unit Prioritization and Estimating Risk Model (SUPERmodel). The prioritization project made use of the SUPERmodel which has been previously used for other large-scale site prioritization and sequencing of facilities at nuclear laboratories in the United States. The process included development and vetting of risk parameter matrices as well as confirmation/validation of project risks. Detailed sensitivity studies were also conducted to understand the impacts that risk parameter weighting and scoring had on prioritization. The repeatable prioritization process yielded an objective, risk-based and technically defendable process for prioritization that gained concurrence from all stakeholders, including Natural Resources Canada (NRCan) who is responsible for the oversight of the NLLP. (authors)

  18. The Social Networks of Hawaii's Longline Fishery a

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    The Social Networks of Hawaii's Longline Fishery ­ a preliminary assessment Michele Barnes, Shawn Future Outlook #12;Introduction Project Goal Examine the role of Social Networks on vessel economic) Vietnamese-American (57) source: panoramio.com #12;Methodology 1. Social Network Analysis Structured survey

  19. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-04-01T23:59:59.000Z

    As part of the Hanford Environmental Dose Reconstruction Project, Pacific Northwest Laboratory reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Certain radionuclide concentration data were used in preliminary estimates of individual dose for the 1964--1966 time period. This report summarizes the literature and database review and the results of the preliminary dose estimates.

  20. 20 Marine Fisheries Review Introduction

    E-Print Network [OSTI]

    - resource exploration and extraction into deep waters of the GOM is evidenced by many active oil and gas with market opportunities for a broader variety of consumer choices due to diverse ethnicity), harvesting expansion of directed fisheries, mineral exploration Fishery-independent Bottom Trawl Surveys for Deep-water

  1. The River Corridor Closure Contract How Washington Closure Hanford is Closing A Unique Department of Energy Project - 12425

    SciTech Connect (OSTI)

    Feist, E.T. [Washington Closure Hanford, 2620 Fermi Avenue, Richland, WA 99354 (United States)

    2012-07-01T23:59:59.000Z

    Cleanup of the Hanford River Corridor has been one of Hanford Site's top priorities since the early 1990's. This urgency is due to the proximity of hundreds of waste sites to the Columbia River and the groundwater that continues to threaten the Columbia River. In April 2005, the U.S. Department of Energy, Richland Operations Office (DOE-RL) awarded the Hanford River Corridor Closure Contract (RCCC), a cost-plus incentive-fee closure contract with a 2015 end date and first of its kind at Hanford Site, to Washington Closure Hanford (WCH), a limited-liability company owned by URS, Bechtel National, and CH2M HILL. WCH is a single-purpose company whose goal is to safely, compliantly, and efficiently accelerate cleanup in the Hanford River Corridor and reduce or eliminate future obligations to DOE-RL for maintaining long-term stewardship over the site. Accelerated performance of the work-scope while keeping a perspective on contract completion presents challenges that require proactive strategies to support the remaining work-scope through the end of the RCCC. This paper outlines the processes to address the challenges of completing work-scope while planning for contract termination. WCH is responsible for cleanup of the River Corridor 569.8 km{sup 2} (220 mi{sup 2}) of the 1,517.7 km{sup 2} (586 mi{sup 2}) Hanford Site's footprint reduction. At the end of calendar year 2011, WCH's closure implementation is well underway. Fieldwork is complete in three of the largest areas within the RCCC scope (Segments 1, 2, and 3), approximately 44.5% of the River Corridor (Figure 3). Working together, DOE-RL and WCH are in the process of completing the 'paper work' that will document the completion of the work-scope and allow DOE-RL to relieve WCH of contractual responsibilities and transition the completed areas to the Long-Term Stewardship Program, pending final action RODs. Within the next 4 years, WCH will continue to complete cleanup of the River Corridor following the completion goals. As field work-scope is completed, progressive reductions of business processes, physical facilities, and staff will occur. Organizations will collapse and flatten commensurate with workload. WCH employees will move on to new endeavors, proud of their accomplishments and the legacy they are leaving behind as being the first and largest environmental cleanup closure contract at Hanford. (authors)

  2. FISHERY STATISTICS OF THE UNITED STATES

    E-Print Network [OSTI]

    FISHERY STATISTICS OF THE UNITED STATES 1964 STATISTICAL DIGEST NO. 58 UNITED STATES DEPARTMENT Bureau of Commercial Fisheries, Donald L. McKernan, Director STATISTICAL DIGEST 58 FISHERY STATISTICS.S. Government Printing Office, Washington, D.C., 20402 - Price S2.50 (paper cover) #12;Fishery statistics

  3. FISHERY STATISTICS OF THE UNITED STATES

    E-Print Network [OSTI]

    FISHERY STATISTICS OF THE UNITED STATES 1963 STATISTICAL DIGEST NO. 57 UNITED STATES DEPARTMENT of Commercial Fisheries, Donald L. McKernan, Director STATISTICAL DIGEST 57 FISHERY STATISTICS OF THE UNITEDTernment Printing Office, Washington, D.C., 20402 - Price $2.25 (paper c #12;Fishery statistics of the United States

  4. FISHERY STATISTICS OF THE UNITED STATES

    E-Print Network [OSTI]

    FISHERY STATISTICS OF THE UNITED STATES 1962 STATISTICAL DIGEST NO. 56 UNITED STATES DEPARTMENT Fisheries, Donald L. McKernan, Director STATISTICAL DIGEST 56 FISHERY STATISTICS OF THE UNITED STATES 1962.S. Government Printing Office, Washington, D.C., 20402 - Price $2.25 (paper cover) #12;Fishery statistics

  5. FISHERY STATISTICS OF THE UNITED STATES

    E-Print Network [OSTI]

    FISHERY STATISTICS OF THE UNITED STATES 1966 STATISTICAL DIGEST NO. 60 UNITED STATES DEPARTMENT OF THE INTERIOR U.S. FISH AND WILDLIFE SERVICE Bureau of Commercial Fisheries STATISTICAL DIGEST 60 FISHERY STATISTICS OF THE UNITED STATES 1966 BY Charles H. Lyles PUBLISHED BY BUREAU OF COMMERCIAL FISHERIES

  6. FISHERY STATISTICS OF THE UNITED STATES

    E-Print Network [OSTI]

    pa%Mv--. FISHERY STATISTICS OF THE UNITED STATES 1965 STATISTICAL DIGEST NO. 59 UNITED STATES, Commissioner Bureau of Commercial Fisheries, H. E. Crowther, Director STATISTICAL DIGEST 59 FISHERY STATISTICS.S. Government Printing Office Washington, D.C. 20402 - Price $4 (Paper Cover) #12;Fishery statistics

  7. DEPARTMENT OF COMMERCE BUREAU OF FISHERIES

    E-Print Network [OSTI]

    . . . .. ....... . .... . ........... . . . .. . ........ .. .... . .. . . Wholesale fresh-fish trade .... . . . .... .. .......... ..... .. . ..... . .. . . . .. . Fishery products... . ... ... . . ............... . . . . ................. . Products by apparatus .............. . ... ...... ... .......... . ......... . Wholesale fresh-fish trade

  8. Guide to the BUREAU OF COMMERCIAL FISHERIES

    E-Print Network [OSTI]

    , houses a processing laboratory and pilot plant, freezing and cold storage fa cilities, fishery inspection

  9. Statistical Digest No. 71 Fishery Statistics of

    E-Print Network [OSTI]

    , freezings and cold storage holdings, and foreign trade in fishery commodities. Landings data do not include

  10. area fishery evaluation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    66 Present Fishery Industries 67 Enforcement 80 Exploration 80 Technology 81 Fish Culture 81 Potential Fishery Industries 83 Unused Resources 2 JAPANESE FISHERIES BASED...

  11. Pi i d Fi h I t tiPinniped-Fishery Interactions 2010 Effectiveness Evaluation Update

    E-Print Network [OSTI]

    be necessary to restore balance to the Columbia River ecosystem where threatened and endangered stocks or more States: 120(b)(1) ­ A State may apply to the Secretary to authorize the intentional lethal taking of salmonid fishery stock which ­ Has been listed as Threatened or Endangered under the ESA; Is approaching

  12. Falls Creek Hydroelectric Project

    SciTech Connect (OSTI)

    Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

    2007-06-12T23:59:59.000Z

    This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

  13. Columbia River Basin Fish and Wildlife Program Work Plan for Fiscal Year 1989.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration. Division of Fish and Wildlife.

    1988-11-01T23:59:59.000Z

    The FY 1989 Columbia River Basin Fish and Wildlife Program Work Plan (Work Plan) presents Bonneville Power Administration's plans for implementing the Columbia River Basin Fish and Wildlife Program (Program) in FY 1989. The Work Plan focuses on individual Action Items found in the 1987 Program for which Bonneville Power Administration (BPA) has determined that it has authority and responsibility to implement. Each of the entries in the Work Plan includes objectives, background, and progress to date in achieving those objectives, and a summary of plans for implementation in FY 1989. Most Action Items are implemented through one or more BPA-funded projects. Each Action Item entry is followed by a list of completed, ongoing, and planned projects, along with objectives, results, schedules, and milestones for each project. The FY 1989 Work Plan emphasizes continuation of 113 projects, most of which involve protection, mitigation, or enhancement of anadromous fishery resources. BPA also plans to start 20 new projects in FY 1989. The number of ongoing FY 1988 projects to be continued in FY 1989 and the number of new projects planned to start in FY 1989 are based on current (September 7, 1988) procurement expectations. Several projects presently in BPA's procurement process are expected to be contracted by September 30, 1988, the last day of FY 1988. Although these projects have not yet started, they have been listed in the Work Plan as ongoing FY 1988 projects, based on projected start dates in late September 1988. Throughout the Work Plan, those projects with projected start dates in September 1988 have been noted.

  14. Washington Phase II Fish Diversion Screen Evaluations in the Yakima River Basin, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Vucelick, Jessica; McMichael, Geoffrey; Chamness, Mickie [Pacific Northwest National Laboratory

    2006-02-01T23:59:59.000Z

    In 2004, the Pacific Northwest National Laboratory (PNNL) evaluated 25 Phase II fish screen sites in the Yakima River Basin as part of a multi-year project for the Bonneville Power Administration on the effectiveness of fish screening devices. PNNL collected data to determine whether velocities in front of the screens and in the bypasses met the National Oceanic and Atmospheric Administration Fisheries (NOAA Fisheries, formerly the National Marine Fisheries Service (NMFS)) criteria to promote safe and timely fish passage. In addition, PNNL conducted underwater video surveys to evaluate the environmental and operational conditions of the screen sites with respect to fish passage. Based on evaluations in 2004, PNNL concluded that: (1) In general, water velocity conditions at the screen sites met fish passage criteria set by NOAA Fisheries. (2) Conditions at most facilities would be expected to provide for safe juvenile fish passage. (3) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well-greased and operative. (4) Removal of sediment buildup and accumulated leafy and woody debris could be improved at some sites. (5) Conditions at some facilities indicate that operation and/or maintenance should be modified to improve passage conditions for juvenile fish. For example, Taylor has had problems meeting bypass flow and submergence operating criteria since the main river channel shifted away from the site 2 years ago, and Fruitvale consistently has had problems meeting bypass flow criteria when the water is low. (6) Continued problems at Gleed point to design flaws. This site should be considered for redesign or replacement.

  15. FURTHER STUDIES ON UNCERTAINTY, CONFOUNDING, AND VALIDATION OF THE DOSES IN THE TECHA RIVER DOSIMETRY SYSTEM: Concluding Progress Report on the Second Phase of Project 1.1

    SciTech Connect (OSTI)

    Degteva, M. O.; Anspaugh, L. R.; Napier, Bruce A.

    2009-10-23T23:59:59.000Z

    This is the concluding Progress Report for Project 1.1 of the U.S./Russia Joint Coordinating Committee on Radiation Effects Research (JCCRER). An overwhelming majority of our work this period has been to complete our primary obligation of providing a new version of the Techa River Dosimetry System (TRDS), which we call TRDS-2009D; the D denotes deterministic. This system provides estimates of individual doses to members of the Extended Techa River Cohort (ETRC) and post-natal doses to members of the Techa River Offspring Cohort (TROC). The latter doses were calculated with use of the TRDS-2009D. The doses for the members of the ETRC have been made available to the American and Russian epidemiologists in September for their studies in deriving radiogenic risk factors. Doses for members of the TROC are being provided to European and Russian epidemiologists, as partial input for studies of risk in this population. Two of our original goals for the completion of this nine-year phase of Project 1.1 were not completed. These are completion of TRDS-2009MC, which was to be a Monte Carlo version of TRDS-2009 that could be used for more explicit analysis of the impact of uncertainty in doses on uncertainty in radiogenic risk factors. The second incomplete goal was to be the provision of household specific external doses (rather than village average). This task was far along, but had to be delayed due to the lead investigator’s work on consideration of a revised source term.

  16. Intensive archaeological survey of the F/H Surface Enhancement Project Area, Savannah River Site, Aiken and Barnwell Counties, South Carolina

    SciTech Connect (OSTI)

    Sassaman, K.E.; Gillam, J.C.

    1993-08-01T23:59:59.000Z

    Twelve archaeological sites and four artifact occurrences were located by intensive survey of two tracts of land for the F and H Surface Enhancement Project on the Savannah River Site, Aiken and Barnwell Counties, South Carolina. Fieldwork in the 480-acre project area included surface reconnaissance of 3.6 linear kilometers of transects, 140 shovel tests along 4.2 linear kilometers of transects, an additional 162 shovel tests at sites and occurrences, and the excavation of six l {times} 2 m test units. All but one of the sites contained artifacts of the prehistoric era; the twelfth site consists of the remains of a twentieth-century home place. The historic site and six of the prehistoric sites consist of limited and/or disturbed contexts of archaeological deposits that have little research potential and are therefore considered ineligible for nomination to the National Register of Historic Places (NRHP). The remaining five sites have sufficient content and integrity to yield information important to ongoing investigations into upland site use. These sites (38AK146, 38AK535, 38AK539, 38AK541, and 38AK543) are thus deemed eligible for nomination to the NRHP and the Savannah River Archaeological Research Program (SRARP) recommends that they be preserved through avoidance or data recovery.

  17. A sociobioeconomic fisheries simulation model: the Texas inshore shrimp fishery

    E-Print Network [OSTI]

    Krauthamer, Judith T.

    1984-01-01T23:59:59.000Z

    A SO CIO BIO EC ONO MIC FISHERIES SIM ULATION MODEL: THE TEXAS INSHORE SHRIMP FISHERY A Thesis JUDITH T ERA UTHA M E R Submitted to the Graduate College of Texas A & M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 1984 Major Subject: Wildlife and Fisheries Sciences SO CIO BIOS COND MIC PISHERIES SIM ULATION MODEL: THE TEXAS INSHO RE SH RIM P FISHER 7 A Thesis by JUDITH T KRAUTHA MER Approved as to style and content by: b'C. ~ Wilham...

  18. assessment columbia river: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and disturbances may be ineffective are being spent in the United States on river and stream restoration projects. In the Columbia River basin Montgomery, David R. 311 A...

  19. Saving a Dwindling River

    E-Print Network [OSTI]

    Wythe, Kathy

    2007-01-01T23:59:59.000Z

    information on this research is available by downloading TWRI Technical Report 291, ?Reconnaissance Survey of Salt Sources and Loading into the Pecos River,? at http://twri.tamu.edu/reports.php. The research team has also compared flow and salinity data from... Water Act, Section 319 from the U.S. Environmental Protection Agency. ?The river?s importance?historically, biologically, hydrologically and economically?to the future of the entire Pecos River Basin and the Rio Grande is huge,? said Will Hatler, project...

  20. assessment palisades project: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    planning initiatives to improve the information base and facilitate integrative marine resource management1 PROJECT BRIEF SPATIAL ASSESSMENT OF COASTAL SPORT FISHERIES...

  1. assessment project iasap: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    planning initiatives to improve the information base and facilitate integrative marine resource management1 PROJECT BRIEF SPATIAL ASSESSMENT OF COASTAL SPORT FISHERIES...

  2. assessment project solrmap: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    planning initiatives to improve the information base and facilitate integrative marine resource management1 PROJECT BRIEF SPATIAL ASSESSMENT OF COASTAL SPORT FISHERIES...

  3. SPORT FISHERY PROJECTS, 1954 CIRCULAR 26

    E-Print Network [OSTI]

    Illinois University 2 3 Truax-Traer Coal Company 24 Forest Preserve District of Cook County 25 Indiana Jersey Division of Fish and Game 75 New Mexico Department of Game and Fish. ... 79 U. S. Fish

  4. Environmental Assessment and Finding of No Significant Impact: Pond B Dam Repair Project at the Savannah River Site

    SciTech Connect (OSTI)

    N /A

    1999-09-27T23:59:59.000Z

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1285) for the proposed repair of the Pond B dam at the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI) and Floodplain Statement of Findings.

  5. The Umatilla Basin Natural Production Monitoring and Evaluation Project, 2008 Annual Progress Report.

    SciTech Connect (OSTI)

    Contor, Craig R.; Harris, Robin; King, Marty [Confederated Tribes of the Umatilla Indian Reservation

    2009-06-10T23:59:59.000Z

    The Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPMEP) is funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P.L.96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). The UBNPMEP is coordinated with two Oregon Department of Fish and Wildlife (ODFW) research projects that also monitor and evaluate the success of the Umatilla Fisheries Restoration Plan. This project deals with the natural production component of the plan, and the ODFW projects evaluate hatchery operations (project No. 1990-005-00, Umatilla Hatchery M & E) and smolt outmigration (project No. 1989-024-01, Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River). Collectively these three projects monitor and evaluate natural and hatchery salmonid production in the Umatilla River Basin. The need for natural production monitoring has been identified in multiple planning documents including Wy-Kan-Ush-Mi Wa-Kish-Wit Volume I, 5b-13 (CRITFC 1996), the Umatilla Hatchery Master Plan (CTUIR & ODFW 1990), the Umatilla Basin Annual Operation Plan, the Umatilla Subbasin Summary (CTUIR & ODFW 2001), the Subbasin Plan (CTUIR & ODFW 2004), and the Comprehensive Research, Monitoring, and Evaluation Plan (CTUIR and ODFW 2006). Natural production monitoring and evaluation is also consistent with Section III, Basinwide Provisions, Strategy 9 of the 2000 Columbia River Basin Fish and Wildlife Program (NPPC 1994, NPCC 2004). The Umatilla Basin M&E plan developed along with efforts to restore natural populations of spring and fall Chinook salmon, (Oncorhynchus tshawytsha), coho salmon (O. kisutch), and enhance summer steelhead (O. mykiss). The need for restoration began with agricultural development in the early 1900's that extirpated salmon and reduced steelhead runs (Bureau of Reclamation, BOR 1988). The most notable development was the construction and operation of Three Mile Falls Dam (TMD) and other irrigation projects which dewatered the Umatilla River during salmon migrations. CTUIR and ODFW developed the Umatilla Hatchery Master Plan to restore fisheries to the basin. The plan was completed in 1990 and included the following objectives which were updated in 1999: (1) Establish hatchery and natural runs of Chinook and coho salmon. (2) Enhance existing summer steelhead populations through a hatchery program. (3) Provide sustainable tribal and non-tribal harvest of salmon and steelhead. (4) Maintain the genetic characteristics of salmonids in the Umatilla River Basin. (5) Increase annual returns to Three Mile Falls Dam to 31,500 adult salmon and steelhead. In the past the M&E project conducted long-term monitoring activities as well as two and three-year projects that address special needs for adaptive management. Examples of these projects include adult passage evaluations, habitat assessment surveys (Contor et al. 1995, Contor et al. 1996, Contor et al. 1997, Contor et al. 1998), and genetic monitoring (Currens & Schreck 1995, Narum et al. 2004). The project's goal is to provide quality information to managers and researchers working to restore anadromous salmonids to the Umatilla River Basin. The status of completion of each of BPA's standardized work element was reported in 'Pisces'(March 2008) and is summarized.

  6. StreamNet; Northwest Aquatic Resource Information Network - Status of Salmon and Steelhead in the Columbia River Basin, 1995 Final Report.

    SciTech Connect (OSTI)

    Anderson, Duane A.; Beamesderfer, Raymond C. [Oregon Dept. of Fish and Wildlife, Enterprise, OR (United States); Woodard, Bob [Washington Dept. of Fish and Wildlife, Olympia, WA (United States)

    1996-04-01T23:59:59.000Z

    Information on fish populations, fisheries, and fish habitat is crucial to the success of ongoing program to protect, recover, enhance, and manage fish resources in the Columbia River Basin. However, pertinent data are often difficult to locate because it is scattered among many agencies and is often unpublished. The goal of this annual report is to bring many diverse data types and sources into a single comprehensive report on the status of anadromous fish runs in the Columbia River Basin and the environmental conditions that may affect that status. Brief summaries are provided to identify the type and scope of available information. This synopsis is intended to complement other more detailed reports to which readers are referred for comprehensive treatment of specific subjects. This first report focuses mainly on anadromous salmon and steelhead (primarily through 1994) but the authors intend to expand the scope of future issues to include resident species. This is the first of what the authors intend to be an annual report. They welcome constructive suggestions for improvements. This report is a product of the StreamNet (formerly Coordinated Information System and Northwest Environmental Data Base) project which is a part of the Bonneville Power Administration`s program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The project is called for in the Fish and Wildlife Program of the Northwest Power Planning Council. The project`s objective is to promote exchange and dissemination of information in a standardized electronic format throughout the basin. This project is administered by the Pacific States Marine Fisheries Commission with active participation by tribal, state, and federal fish and wildlife agencies.

  7. Marine Fisheries On the cover: A corral

    E-Print Network [OSTI]

    Energy, Fish Muscle Changes, Aluminum in Fish, and Ludwig Named 21 The Tuna Fisheries of South Africa

  8. Marine Fisheries On the cover: Landing a

    E-Print Network [OSTI]

    (1),1991 A Review ofIndian Ocean Fisheries for Skipjack Tuna, Katsuwonus pelamis, and Yellowfin Tuna, Thunnus

  9. Grays River Watershed and Biological Assessment Final Report 2006.

    SciTech Connect (OSTI)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04T23:59:59.000Z

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat-forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within

  10. Grays River Watershed and Biological Assessment, 2006 Final Report.

    SciTech Connect (OSTI)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01T23:59:59.000Z

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within

  11. Spring Chinook Salmon Interactions Indices and Residual/Precocious Male Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Pearsons, Todd N.; Johnson, Christopher L. (Washington Department of Fish and Wildlife, Olympia, WA); James, Brenda B. (Cascade Aquatics, Ellensburg, WA)

    2005-05-01T23:59:59.000Z

    This report examines some of the factors that can influence the success of supplementation, which is currently being tested in the Yakima Basin using upper Yakima stock of spring chinook salmon. Supplementation success in the Yakima Basin is defined relative to four topic areas: natural production, genetics, ecological interactions, and harvest (Busack et al. 1997). The success of spring chinook salmon supplementation in the Yakima Basin is dependent, in part, upon fish culture practices and favorable physical and biological conditions in the natural environment (Busack et al. 1997; James et al. 1999; Pearsons et al., 2003; Pearsons et al. 2004). Shortfalls in either of these two topics (i.e., failure in culturing many fish that have high long-term fitness or environmental conditions that constrain spring chinook salmon production) will cause supplementation success to be limited. For example, inadvertent selection or propagation of spring chinook that residualize or precocially mature may hinder supplementation success. Spring chinook salmon that residualize (do not migrate during the normal migration period) may have lower survival rates than migrants and, additionally, may interact with wild fish and cause unacceptable impacts to non-target taxa. Large numbers of precocials (nonanadromous spawners) may increase competition for females and significantly skew ratios of offspring sired by nonanadromous males, which could result in more nonanadromous spring chinook in future generations. Conditions in the natural environment may also limit the success of spring chinook supplementation. For example, intra or interspecific competition may constrain spring chinook salmon production. Spring chinook salmon juveniles may compete with each other for food or space or compete with other species that have similar ecological requirements. Monitoring of spring chinook salmon residuals, precocials, prey abundance, carrying capacity, and competition will help researchers interpret why supplementation is working or not working (Busack et al. 1997). Monitoring ecological interactions will be accomplished using interactions indices. Interactions indices will be used to index the availability of prey and competition for food and space. The tasks described below represent various subject areas of juvenile spring chinook salmon monitoring but are treated together because they can be accomplished using similar methods and are therefore more cost efficient than if treated separately. Topics of investigation we pursued in this work were: (1) strong interactor monitoring (competition index and prey index), (2) carrying capacity monitoring (microhabitat monitoring); (3) residual and precocious male salmon monitoring (abundance); (4) performance of growth modulation in reducing precocious males during spawning; (5) incidence of predation by residualized chinook salmon; and (6) benefits of salmon carcasses to juvenile salmonids. This report is organized into six chapters to represent these topics of investigation. Data were collected during the summer and fall, 2004 in index sections of the upper Yakima Basin (Figure 1). Previous results on the topics in this report were reported in James et al. (1999), and Pearsons et al. (2003; 2004). Hatchery-reared spring chinook salmon were first released during the spring of 1999. The monitoring plan for the Yakima/Klickitat Fisheries Project calls for the continued monitoring of the variables covered in this report. All findings in this report should be considered preliminary and subject to further revision as more data and analytical results become available.

  12. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 5 of 7, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Pearsons, Todd N.; Johnson, Christopher L.; James, Brenda B. (Washington Department of Fish and Wildlife, Olympia, WA)

    2004-05-01T23:59:59.000Z

    This report examines some of the factors that can influence the success of supplementation, which is currently being tested in the Yakima Basin using upper Yakima stock of spring chinook salmon. Supplementation success in the Yakima Basin is defined relative to four topic areas: natural production, genetics, ecological interactions, and harvest (Busack et al. 1997). The success of spring chinook salmon supplementation in the Yakima Basin is dependent, in part, upon fish culture practices and favorable physical and biological conditions in the natural environment (Busack et al. 1997; James et al. 1999; Pearsons et al., 2003). Shortfalls in either of these two topics (i.e., failure in culturing many fish that have high long-term fitness or environmental conditions that constrain spring chinook salmon production) will cause supplementation success to be limited. For example, inadvertent selection or propagation of spring chinook that residualize or precocially mature may hinder supplementation success. Spring chinook salmon that residualize (do not migrate during the normal migration period) may have lower survival rates than migrants and, additionally, may interact with wild fish and cause unacceptable impacts to non-target taxa. Large numbers of precocials (nonanadromous spawners) may increase competition for females and significantly skew ratios of offspring sired by nonanadromous males, which could result in more nonanadromous spring chinook in future generations. Conditions in the natural environment may also limit the success of spring chinook supplementation. For example, intra or interspecific competition may constrain spring chinook salmon production. Spring chinook salmon juveniles may compete with each other for food or space or compete with other species that have similar ecological requirements. Monitoring of spring chinook salmon residuals, precocials, prey abundance, carrying capacity, and competition will help researchers interpret why supplementation is working or not working (Busack et al. 1997). Monitoring ecological interactions will be accomplished using interactions indices. Interactions indices will be used to index the availability of prey and competition for food and space. The tasks described below represent various subject areas of juvenile spring chinook salmon monitoring but are treated together because they can be accomplished using similar methods and are therefore more cost efficient than if treated separately. Three areas of investigation we pursued in this work were: (1) strong interactor monitoring (competition index and prey index), (2) carrying capacity monitoring (microhabitat monitoring); (3) residual and precocial salmon monitoring (abundance). This report is organized into three chapters to represent these three areas of investigation. Data were collected during the summer and fall, 2003 in index sections of the upper Yakima Basin (Figure 1). Previous results on the topics in this report were reported in James et al. (1999), and Pearsons et al. (2003). Hatchery-reared spring chinook salmon were first released during the spring of 1999. The monitoring plan for the Yakima/Klickitat Fisheries Project calls for the continued monitoring of the variables covered in this report. All findings in this report should be considered preliminary and subject to further revision as more data and analytical results become available.

  13. Historical Ecology of the lower santa clara river, Ventura river, and oxnard Plain

    E-Print Network [OSTI]

    Historical Ecology of the lower santa clara river, Ventura river, and oxnard Plain: an analysis. Historical ecology of the lower Santa Clara River,Ventura River, and Oxnard Plain: an analysis of terrestrial layers are available on SFEI's website, at www.sfei.org/projects/VenturaHE. Permissions rights for images

  14. DEPARTMENT OF COMMERCE BUREAU OF FISHERIES

    E-Print Network [OSTI]

    -products________ ___ _________ ______ 238 Menhaden industry_______________________ 238 Cold-storage holdings offrozell fish ____________ 239#12;DEPARTMENT OF COMMERCE BUREAU OF FISHERIES HENRY O'MALLEY, Conunissioner FISHERY INDUSTRIES OF THE UNITED STATES 1924 By OSCAR E. SETTE Assistant in Charge, Dioision of Fishery Industries ApPENDI X VII

  15. DEPARTMENT OF COMMERCE BUREAU OF FISHERIES

    E-Print Network [OSTI]

    of these canvasses are embodied in the present report, to- gether with a summary of the cold-storage holdings#12;DEPARTMENT OF COMMERCE BUREAU OF FISHERIES HENRY O 'MALLEY, Commissioner FISHERY INDUSTRIES OF THE UNITED STATES REPORT OF THE DIVISION OF FISHERY INDUSTRIES FOR 1921 By LEWIS RADCLIFFE Assistant

  16. Imports and Exports of Fishery Products

    E-Print Network [OSTI]

    Imports and Exports of Fishery Products Annual Summary, 2001 IMPORTS. U.S. imports of edible of fishery products were imported. EXPORTS. U.S. exports of edible fishery products of domestic origin were 1,139,744 tons valued at $3.1 billion, compared with 948,025 tons at $2.8 billion exported in 2000

  17. Imports and Exports of Fishery Products

    E-Print Network [OSTI]

    Imports and Exports of Fishery Products Annual Summary, 2000 IMPORTS. U.S. imports of edible.0 billion of fishery products were imported. EXPORTS. U.S. exports of edible fishery products of domestic origin were 948,025 tons valued at $2.8 billion, compared with 864,166 tons at $2.7 billion exported

  18. FISHERY STATISTICS QF THE UNITED STATES

    E-Print Network [OSTI]

    I FISHERY STATISTICS QF THE UNITED STATES 1942 By A. W, ANDERSON and E. A. POWER STATISTICAL DIGEST Statistical Digest No. 11 FISHERY STATISTICS OF THE UNITED STATES 1942 BY A. W. ANDERSON and E. A. POWER. S. Government Printing Offic Washington 25, D. C. - Price 60 cents #12;Fishery Statistics

  19. FISHERY STATISTICS OF THE UNITED STATES

    E-Print Network [OSTI]

    Div,, . FISHERY STATISTICS OF THE UNITED STATES 1961 STATISTICAL DIGEST NO. 54 UNITED STATES, Donald L. MeKernan, Director STATISTICAL DIGEST 54 FISHERY STATISTICS OF THE UNITED STATES 1961 BY E. A, Washington, D.C. 20402 - Price $2 (paper cover) #12;Fishery statistics of the United States are compiled

  20. FISHERY STATISTICS OF THE UNITED STATES

    E-Print Network [OSTI]

    FISHERY STATISTICS OF THE UNITED STATES 1959 ^mmi STATISTICAL DIGEST NO. 51 UNITED STATES DEPARTMl of Commercial Fisheries, Donald L. McKernan, Director jPANlELM COHEN FISH AND WILDLIFE SERVICE STATISTICAL DIGEST 51 FISHERY STATISTICS OF THE UNITED STATES 1959 BY E. A. POWER PUBLISHED BY BUREAU OF COMMERCIAL

  1. FISHERY STATISTICS )F THE UNITED STATES

    E-Print Network [OSTI]

    SH 11 .A443X FISH FISHERY STATISTICS )F THE UNITED STATES ^M=^. STATISTICAL DIGEST NO. 36 #12. Farley, Director i]EL M. COHEN Statistical Digest 36 FISHERY STATISTICS OF THE UNITED STATES 1953 BY A. W;Fishery Statistics of the I'nited States and Alaska are compiled and published an- nually to make

  2. FISHERY STATISTICS OF THE UNITED STATES

    E-Print Network [OSTI]

    FISHERY STATISTICS OF THE UNITED STATES 1950 STATISTICAL DIGEST NO. 27 Fish and Wildlife ServiceKay, Secretary FISH AND WILDLIFE SERVICE, John L. Farley, Director Statistical Digest 27 FISHERY STATISTICS 25, DC. - - Price $2.00 (paper) #12;Fishery Statistics of the United States and A] aska are corapi

  3. FISHERY STATISTICS OF THE UNITED STATES

    E-Print Network [OSTI]

    SH 11 A443X FISH FISHERY STATISTICS OF THE UNITED STATES 1943 STATISTICAL DIGEST NO. 14 Sll \\M AND WILDLIFE SERVICE Albert M. Day, Director CAMEL M. COHEN Statistical Digest No. 14 FISHERY STATISTICS. - Price 75 cents #12;Fishery Statistics of the United States and Alaska are compiled and published

  4. Foreign Fishery Developments United States-Spain

    E-Print Network [OSTI]

    Foreign Fishery Developments United States-Spain Fisheries Trade, 1980-85 Introduction The U though Spain was forced to become a net importer of fishery products in 1977. due to the extension of 200-mile Exclusive Economic Zones (EEZ) by coastal coun tries. U.S. exports of edible seafoods to Spain

  5. Fishery Notes EI Nino and Its Impact

    E-Print Network [OSTI]

    Fishery Notes EI Nino and Its Impact on Ecuadorean Fisheries Ecuadorean scientists report that an unusually powerful EI Nino in the eastern Pacific is adversely affecting Ecuador's pelagic fisheries. EI. The impact can be partic- ularly severe on larval and juvenile fish and, as a result, the effects of EI Nino

  6. WATER QUALITY STUDY OF WENATCHEE AND MIDDLE COLUMBIA RIVERS

    E-Print Network [OSTI]

    . Sylvester Project Supervisor University of Washington Seattle, Washington U. S. Fish and Wildlife Service Contract No. 14-19-008-2506 United States Fish and Wildlife Service Special Scientific Report --Fisheries

  7. Walla Walla River Fish Passage Operations Program, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Bronson, James P. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR); Duke, Bill B. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2004-03-01T23:59:59.000Z

    In the late 1990's, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and initiating trap and haul efforts. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2002-2003 project year, there were 545 adult summer steelhead (Oncorhynchus mykiss), 29 adult bull trout (Salvelinus confluentus); 1 adult and 1 jack spring chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway adult trap between January 1 and June 23, 2003. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. Operation of the Little Walla Walla River juvenile trap for trap and haul purposes was not necessary this year. The project transported 21 adult spring chinook from Ringold Springs Hatchery and 281 from Threemile Dam to the South Fork Walla Walla Brood Holding Facility. Of these, 290 were outplanted in August for natural spawning in the basin.

  8. CRSP Power Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    expenses of the project each year, and receive all of the energy it produces. Salt Lake City AreaIntegrated Projects: Power from the Colorado River Storage Project plants was...

  9. Hood River Production Program Review, Final Report 1991-2001.

    SciTech Connect (OSTI)

    Underwood, Keith; Chapman, Colin; Ackerman, Nicklaus

    2003-12-01T23:59:59.000Z

    This document provides a comprehensive review of Bonneville Power Administration (BPA) funded activities within the Hood River Basin from 1991 to 2001. These activities, known as the Hood River Production Program (HRPP), are intended to mitigate for fish losses related to operation of federal dams in the Columbia River Basin, and to contribute to recovery of endangered and/or threatened salmon and steelhead, as directed by Nation Oceanic and Atmospheric Administration - Fisheries (NOAA Fisheries). The Environmental Impact Statement (EIS) for the HRPP, which authorized BPA to fund salmon and steelhead enhancement activities in the Hood River Basin, was completed in 1996 (BPA 1996). The EIS specified seven years of monitoring and evaluation (1996-2002) after program implementation to determine if program actions needed modification to meet program objectives. The EIS also called for a program review after 2002, that review is reported here.

  10. RETURN OF THE RIVER -2000 Chapter 5 Freshwater Habitats131

    E-Print Network [OSTI]

    rivers of the world and also one of the most developed with ten major hydroelectric dams on the main the major hydroelectric projects and the owner-operator of each project. #12;RETURN OF THE RIVER - 2000

  11. Independent Oversight Review, Savannah River Site- August 2011

    Broader source: Energy.gov [DOE]

    Review of Commercial Grade Dedication Plans for the Safety Instrumented System at the Savannah River Site Waste Solidification Building Project

  12. Independent Oversight Review, Savannah River Site- July 2011

    Broader source: Energy.gov [DOE]

    Review of Electrical System Configuration Management and Design Change Control at the Savannah River Site, Waste Solidification Building Project

  13. Walla Walla River Fish Passage Operations Program, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Bronson, James P. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR); Duke, Bill B. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2006-02-01T23:59:59.000Z

    In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2004-2005 project year, there were 590 adult summer steelhead, 31 summer steelhead kelts (Oncorhynchus mykiss), 70 adult bull trout (Salvelinus confluentus); 80 adult and 1 jack spring Chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway video counting window between December 13, 2004, and June 16, 2005. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. In addition, the old ladder trap was operated by ODFW in order to enumerate fish passage. Of the total, 143 adult summer steelhead and 15 summer steelhead kelts were enumerated at the west ladder at Nursery Bridge Dam during the video efforts between February 4 and May 23, 2005. Operation of the Little Walla Walla River juvenile trap for trap and haul purposes was not necessary this year.

  14. Snake River Fall Chinook Salmon Productivity Nez Perce Tribe

    E-Print Network [OSTI]

    Snake River Fall Chinook Salmon Productivity Jay Hesse Nez Perce Tribe Department of Fisheries salmon abundance and productivity have been and continue to be influenced by construction and operation related to productivity; (1) adult abundance, (2) hatchery programs, (3) management actions, and (4

  15. Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River Basin, Annual Report 2003-2006.

    SciTech Connect (OSTI)

    White, Tara

    2007-02-01T23:59:59.000Z

    This report summarizes activities conducted by the Oregon Department of Fish and Wildlife's Juvenile Outmigration and Survival M&E project in the Umatilla River subbasin between 2004-2006. Information is used to make informed decisions on hatchery effectiveness, natural production success, passage improvement and flow enhancement strategies. Data collected includes annual estimates of smolt abundance, migration timing, and survival, life history characteristics and productivity status and trends for spring and fall Chinook salmon, coho salmon and summer steelhead. Productivity data provided is the key subbasin scale measure of the effectiveness of salmon and steelhead restoration actions in the Umatilla River. Information is also used for regional planning and recovery efforts of Mid-Columbia River (MCR) ESA-listed summer steelhead. Monitoring is conducted via smolt trapping and PIT-tag interrogation at Three Mile Falls Dam. The Umatilla Juvenile Outmigration and Survival Project was established in 1994 to evaluate the success of management actions and fisheries restoration efforts in the Umatilla River Basin. Project objectives for the 2004-2006 period were to: (1) operate the PIT tag detection system at Three Mile Falls Dam (TMFD), (2) enhance provisional PIT-tag interrogation equipment at the east bank adult fish ladder, (3) monitor the migration timing, abundance and survival of naturally-produced juvenile salmonids and trends in natural production, (4) determine migration parameters and survival of hatchery-produced fish representing various rearing, acclimation and release strategies, (5) evaluate the relative survival between transported and non-transported fish, (6) monitor juvenile life history characteristics and evaluate trends over time, (7) investigate the effects of river, canal, fishway operations and environmental conditions on smolt migration and survival, (8) document the temporal distribution and diversity of resident fish species, and (9) participate in planning and coordination activities within the basin and dissemination of results.

  16. Foreign Fishery Developments Japanese Joint

    E-Print Network [OSTI]

    -215. In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nationsForeign Fishery Developments Japanese Joint Fishing Ventures Stabilize Activity Trawling Skipjack tuna harvest Whaling Other harvests Aquaculture Refrigeration operations Fish processing Average $1

  17. LATIN AMERICA ARGENTINA HAS FISHERY

    E-Print Network [OSTI]

    LATIN AMERICA ARGENTINA HAS FISHERY INVESTMENT OPPORTUNITIES Argentina's largely dormant fishing in construction in Argentina with a total fish capacity of 36, 000 metric tons . The Min- istry has also) measure, taxes onforeign vessels fishing in Argentina waters were raised from US$70 per ton to US$200 per

  18. Natural Propagation and Habitat Improvement, Volume I, Oregon, 1984 Final and Annual Reports.

    SciTech Connect (OSTI)

    Miller, Rod

    1986-02-01T23:59:59.000Z

    This volume contains reports on habitat improvement and fisheries enhancement projects conducted in the following subbasins: (1) Clackamas River; (2) Hood River; :(3) Deschutes River; (4) John Day River; (5) Umatilla River; and (6) Grande Ronde River. (ACR)

  19. Columbia River Wildlife Mitigation Habitat Evaluation Procedures Report / Scotch Creek Wildlife Area, Berg Brothers, and Douglas County Pygmy Rabbit Projects.

    SciTech Connect (OSTI)

    Ashley, Paul R.

    1997-01-01T23:59:59.000Z

    This Habitat Evaluation Procedure study was conducted to determine baseline habitat units (HUs) on the Scotch Creek, Mineral Hill, Pogue Mountain, Chesaw and Tunk Valley Habitat Areas (collectively known as the Scotch Creek Wildlife Area) in Okanogan County, Sagebrush Flat and the Dormaler property in Douglas County, and the Berg Brothers ranch located in Okanogan County within the Colville Reservation. A HEP team comprised of individuals from the Washington Department of Fish and Wildlife, the Confederated Tribes of the Colville Reservation, and the Natural Resources Conservation Service (Appendix A) conducted baseline habitat surveys using the following HEP evaluation species: mule deer (Odocoileus hemionus), sharp-tailed grouse (Tympanuchus phasianellus), pygmy rabbit (Brachylagus idahoensis), white-tailed deer (Odocoileus virginiana), mink (Mustela vison), Canada goose (Branta canadensis), downy woodpecker (Picoides pubescens), Lewis woodpecker (Melanerpes lewis), and Yellow warbler (Dendroica petechia). Results of the HEP analysis are listed below. General ratings (poor, marginal, fair, etc.,) are described in Appendix B. Mule deer habitat was marginal lacking diversity and quantify of suitable browse species. Sharp-tailed grouse habitat was marginal lacking residual nesting cover and suitable winter habitat Pygmy rabbit habitat was in fair condition except for the Dormaier property which was rated marginal due to excessive shrub canopy closure at some sites. This report is an analysis of baseline habitat conditions on mitigation project lands and provides estimated habitat units for mitigation crediting purposes. In addition, information from this document could be used by wildlife habitat managers to develop management strategies for specific project sites.

  20. 24 N Fisheries Vol. 25, No. 6 FISHERIES PROFESSION--PERSPECTIVE

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    the following practical advice to help those entering the fisheries profession to survive and prosper fisheries specialist for the Nebraska Game and Parks Commission, Lincoln, NE 68503-0370. Getting a Job

  1. Evaluate Status of Pacific Lamprey in the Clearwater River and Salmon River Drainages, Idaho, 2009 Technical Report.

    SciTech Connect (OSTI)

    Cochnauer, Tim; Claire, Christopher [Idaho Department of Fish and Game

    2009-05-07T23:59:59.000Z

    Pacific lamprey Lampetra tridentata have received little attention in fishery science until recently, even though abundance has declined significantly along with other anadromous fish species in Idaho. Pacific lamprey in Idaho have to navigate over eight lower Snake River and Columbia River hydroelectric facilities for migration downstream as juveniles to the Pacific Ocean and again as adults migrating upstream to their freshwater spawning grounds in Idaho. The number of adult Pacific lamprey annually entering the Snake River basin at Ice Harbor Dam has declined from an average of over 18,000 during 1962-1969 to fewer than 600 during 1998-2006. Based on potential accessible streams and adult escapement over Lower Granite Dam on the lower Snake River, we estimate that no more than 200 Pacific lamprey adult spawners annually utilize the Clearwater River drainage in Idaho for spawning. We utilized electrofishing in 2000-2006 to capture, enumerate, and obtain biological information regarding rearing Pacific lamprey ammocoetes and macropthalmia to determine the distribution and status of the species in the Clearwater River drainage, Idaho. Present distribution in the Clearwater River drainage is limited to the lower sections of the Lochsa and Selway rivers, the Middle Fork Clearwater River, the mainstem Clearwater River, the South Fork Clearwater River, and the lower 7.5 km of the Red River. In 2006, younger age classes were absent from the Red River.

  2. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Achond, Stephen; Hockersmith, Eric E.; Sandford, Benjamin P. (National Marine Fisheries Service, Northwest Fisheries Science Center, Seattle, WA)

    2003-07-01T23:59:59.000Z

    This report details the 2002 results from an ongoing project to monitor the migration behavior of wild spring/summer chinook salmon smolts in the Snake River Basin. The report also discusses trends in the cumulative data collected for this project from Oregon and Idaho streams since 1989. The project was initiated after detection data from passive-integrated-transponder tags (PIT tags) had shown distinct differences in migration patterns between wild and hatchery fish for three consecutive years. National Marine Fisheries Service (NMFS) investigators first observed these differences in 1989. The data originated from tagging and interrogation operations begun in 1988 to evaluate smolt transportation for the U.S. Army Corps of Engineers. In 1991, the Bonneville Power Administration began a cooperative effort with NMFS to expand tagging and interrogation of wild fish. Project goals were to characterize the outmigration timing of these fish, to determine whether consistent migration patterns would emerge, and to investigate the influence of environmental factors on the timing and distribution of these migrations. In 1992, the Oregon Department of Fish and Wildlife (ODFW) began an independent program of PIT tagging wild chinook salmon parr in the Grande Ronde and Imnaha River Basins in northeast Oregon. Since then, ODFW has reported all tagging, detection, and timing information on fish from these streams. However, with ODFW concurrence, NMFS will continue to report arrival timing of these fish at Lower Granite Dam.

  3. Database of radionuclide measurements in Columbia River water, fish, waterfowl, gamebirds, and shellfish downstream of Hanford`s single-pass production reactors, 1960--1970. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Thiede, M.E.; Duncan, J.P.

    1994-03-01T23:59:59.000Z

    This report is a result of the Hanford Environmental Dose Reconstruction (HEDR) Project. The goal of the HEDR Project is to estimate the radiation dose that individuals could have received from radionuclide emissions since 1944 at the Hanford Site near Richland, Washington. The HEDR Project is conducted by Battelle, Pacific Northwest Laboratories. The time periods of greatest interest to the HEDR study vary depending on the type of environmental media concerned. Concentrations of radionuclides in Columbia River media from 1960--1970 provide the best historical data for validation of the Columbia River pathway computer models. This report provides the historical radionuclide measurements in Columbia River water (1960--1970), fish (1960--1967), waterfowl (1960--1970), gamebirds (1967--1970), and shellfish (1960--1970). Because of the large size of the databases (845 pages), this report is being published on diskette. A diskette of this report is available from the Technical Steering Panel (c/o K. CharLee, Office of Nuclear Waste Management, Department of Ecology, Technical Support and Publication Information Section, P.O. Box 47651, Olympia, Washington 98504-7651).

  4. artisanal commercial fisheries: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FISHERIES TECHNOLOGICAL LABORATORY SEATTLE, WASH. UNITED OF THE INTERIOn U.S. FISH AND WILDLIFE ERVleE BUEAU OF COMMERCIAL FISHERIES Guide to the Bureau of Commercial...

  5. Fall Chinook Acclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2002.

    SciTech Connect (OSTI)

    McLeod, Bruce

    2003-01-01T23:59:59.000Z

    Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, are located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, is located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, targeted to work towards achieving delisting goals established by National Marine Fisheries Service (NMFS or NOAA Fisheries) and ultimately to provide fall Chinook adults through the Lower Snake River Compensation Plan program as mitigation for construction and operation of the four lower Snake River dams. Complete adult returns (all age classes) for all three acclimation facilities occurred in the year 2002. Progeny (which would then be natural origin fish) would be counted towards achieving Endangered Species Act delisting criteria. In 2002, a total of 2,877,437 fish weighing 47,347 pounds were released from the three acclimation facilities. The total includes 479,358 yearling fish weighing 33,930 pounds and 2,398,079 sub-yearling fish weighing 19,115 pounds. This is the largest number of fish ever released in one year from the acclimation facilities.

  6. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008 Annual Report.

    SciTech Connect (OSTI)

    Sather, NK; Johnson, GE; Storch, AJ [Pacific Northwest National Laboratory

    2009-07-06T23:59:59.000Z

    The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington. The overarching goal of the TFM project is to bridge the gap in knowledge between tidal freshwater habitats and the early life history attributes of migrating salmon. The research questions include: In what types of habitats within the tidal freshwater area of the Columbia River are juvenile salmon found, when are they present, and under what environmental conditions? What is the ecological contribution of shallow (0-5 m) tidal freshwater habitats to the recovery of ESA-listed salmon in the Columbia River basin? Field data collection for the TFM project commenced in June 2007 and since then has continued monthly at six to nine sites in the vicinity of the Sandy River delta (river kilometer 192-208). While this report includes summary data spanning the 19-month period of study from June 2007 through December 2008, it highlights sampling conducted during calendar year 2008. Detailed data for calendar year 2007 were reported previously. The 2008 research objectives were as follows: (1) Characterize the vegetation composition and percent cover, conventional water quality, water surface elevation, substrate composition, bathymetry, and beach slope at the study sites within the vicinity of the Sandy River delta. (2) Characterize the fish community and juvenile salmon migration, including species composition, length-frequency distribution, density (number/m{sup 2}), and temporal and spatial distributions in the vicinity of the Sandy River delta in the lower Columbia River and estuary (LCRE). (3) Determine the stock of origin for juvenile Chinook salmon (Oncorhynchus tshawytscha) captured at sampling sites through genetic identification. (4) Characterize the diets of juvenile Chinook and coho (O. kisutch) salmon captured within the study area. (5) Estimate run timing, residence times, and migration pathways for acoustic-tagged fish in the study area. (6) Conduct a baseline evaluation of the potential restoration to reconnect the old Sandy River channel with the delta. (7) Apply fish density data to initiate a design for a juvenile salmon monitoring program for beach habitats within the tidal freshwater segment of the LCRE (river kilometer 56-234).

  7. Restoring our Rivers By Bridget Avila

    E-Print Network [OSTI]

    Palmer, Margaret A.

    , the first-ever comprehensive database of more than 37,000 stream and restoration projects nationwideRestoring our Rivers By Bridget Avila Maryland has the largest number of river restoration projects restoration and conservation. On a sweltering July afternoon, an assortment of men and women clad in T

  8. Design and Analysis of Salmonid Tagging Studies in the Columbia Basin : Evaluating Wetland Restoration Projects in the Columbia River Estuary using Hydroacoustic Telemetry Arrays to Estimate Movement, Survival, and Residence Times of Juvenile Salmonids, Volume XXII (22).

    SciTech Connect (OSTI)

    Perry, Russell W.; Skalski, John R.

    2008-08-01T23:59:59.000Z

    Wetlands in the Columbia River estuary are actively being restored by reconnecting these habitats to the estuary, making more wetland habitats available to rearing and migrating juvenile salmon. Concurrently, thousands of acoustically tagged juvenile salmonids are released into the Columbia River to estimate their survival as they migrate through the estuary. Here, we develop a release-recapture model that makes use of these tagged fish to measure the success of wetland restoration projects in terms of their contribution to populations of juvenile salmon. Specifically, our model estimates the fraction of the population that enter the wetland, survival within the wetland, and the mean residence time of fish within the wetland. Furthermore, survival in mainstem Columbia River downstream of the wetland can be compared between fish that remained the mainstem and entered the wetland. These conditional survival estimates provide a means of testing whether the wetland improves the subsequent survival of juvenile salmon by fostering growth or improving their condition. Implementing such a study requires little additional cost because it takes advantage of fish already released to estimate survival through the estuary. Thus, such a study extracts the maximum information at minimum cost from research projects that typically cost millions of dollars annually.

  9. EIS-0169-SA-01: Supplement Analysis

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration Yakima Fisheries Project- Fall Chinook and Coho Research Program, Yakima and Klickitat River Basins, Washington

  10. IMPORTS AND EXPORTS OF FISHERY PRODUCTS

    E-Print Network [OSTI]

    IMPORTS AND EXPORTS OF FISHERY PRODUCTS ANNUAL SUMMARY, 1996 IMPORTS. U.S. imports of edible higher than in 1995, when $12.5 billion of fishery products were imported. EXPORTS. U.S. exports,376 tons at $3.1 billion exported in 1995. Fresh and frozen items were 791,822 tons valued at $2.2 billion

  11. Imports and Exports of Fishery Products

    E-Print Network [OSTI]

    Imports and Exports of Fishery Products Annual Summary, 1998 IMPORTS. U.S. imports of edible higher than in 1997, when $14.5 billion of fishery products were imported. EXPORTS. U.S. exports,499 tons at $2.6 billion exported in 1997. Fresh and frozen items were 631,627 tons valued at $1.7 billion

  12. Imports and Exports of Fishery Products

    E-Print Network [OSTI]

    Imports and Exports of Fishery Products Annual Summary, 2002 IMPORTS. U.S. imports of edible. EXPORTS. U.S. exports of edible fishery products of domestic origin were 1,056,306 tons valued at $3.0 billion, compared with 1,139,744 tons at $3.1 billion exported in 2001. Fresh and frozen items were 883

  13. Imports and Exports of Fishery Products

    E-Print Network [OSTI]

    Imports and Exports of Fishery Products Annual Summary, 2003 IMPORTS. U.S. imports of edible imported. EXPORTS. U.S. exports of edible fishery products of domestic origin were 1,047,706 tons valued at $3.1 billion, compared with 1,056,303 tons at $3.0 billion exported in 2002. Fresh and frozen items

  14. IMPORTS AND EXPORTS OF FISHERY PRODUCTS

    E-Print Network [OSTI]

    IMPORTS AND EXPORTS OF FISHERY PRODUCTS ANNUAL SUMMARY, 1997 IMPORTS. U.S. imports of edible higher than in 1996, when $13.1 billion of fishery products were imported. EXPORTS. U.S. exports,720 tons at $2.9 billion exported in 1996. Fresh and frozen items were 782,767 tons valued at $2.0 billion

  15. Imports and Exports of Fishery Products

    E-Print Network [OSTI]

    Imports and Exports of Fishery Products Annual Summary, 1999 IMPORTS. U.S. imports of edible higher than in 1998, when $15.6 billion of fishery products were imported. EXPORTS. U.S. exports,067 tons at $2.2 billion exported in 1998. Fresh and frozen items were 725,050 tons valued at $2.1 billion

  16. FISHERY STATISTICS F THE UNITED STATES

    E-Print Network [OSTI]

    FISHERY STATISTICS »F THE UNITED STATES ^ 1954 ,M^,. 'M' . ' J*"'',-,'i''' ' STATISTICAL DIGEST NO DEPARTMENT OF THE INTERIOR, Fred A. Seaton, Secretary FISH AND WILDLIFE SERVICE PANIELM. COHEN Statistical Digest 39 FISHERY STATISTICS OF THE UNITED STATES 1954 BY A. W. ANDERSON and E. A. POWER UNITED STATES

  17. FISHERY STATISTICS OF THE UNITED STATES

    E-Print Network [OSTI]

    FISHERY STATISTICS OF THE UNITED STATES I 1952 .^Ł^ STATISTICAL DIGEST NO. 34 Fish and Wildlife McKay, Secretary FISH AND WILDLIFE SERVICE, John L. Farley, Director -iJ^EUW^ .COHEN Statistical Digest 34 FISHERY STATISTICS OF THE UNITED STATES 1952 BY A. W. ANDERSON and E. A. POWER UNITED STATES

  18. FISHERY STATISTICS OF THE UNITED STATES

    E-Print Network [OSTI]

    FISHERY STATISTICS OF THE UNITED STATES 1946 STATISTICAL DIGEST NO, 19 Fish and Wildlike Sekvice L. Chapman, Secretary FISH AND WILDLIFE SERVICE Albert M. Day, Director Statistical Digest 19 FISHERY STATISTICS OF THE UNITED STATES 1946 BY A. W. ANDERSON and E. A. POWER UNITED STATES GOVERNMENT

  19. FISHERY STATISTICS OF THE UNITED STATES

    E-Print Network [OSTI]

    FISHERY STATISTICS OF THE UNITED STATES 1944 STATISTICAL DIGEST ISO. 16 Fish and Wildlife Sekvh Albert M. Day, Director Statistical Digest No. 16 FISHERY STATISTICS OF THE UNITED STATES 1944 BY A. W Statistics of the United States and Alaska are coiip i I ed and published annually to make available

  20. FISHERY STATISTICS OF THE UNITED STATES

    E-Print Network [OSTI]

    FISHERY STATISTICS OF THE UNITED STATES SH 11 A443X FISH 1948 STATISTICAL DIGEST NO. 22 Fish OF THE INTERIOR, Oscar L. Chapman, Secretary FISH AND WILDLIFE SERVICE, Albert M. Day, Director Statistical Digest 22 FISHERY STATISTICS OF THE UNITED STATES 1948 BY A. W. ANDERSON and E. A. POWER UNITED STATES

  1. FISHERY STATISTICS OF THE UNITED STATES

    E-Print Network [OSTI]

    FISHERY STATISTICS OF THE UNITED STATES 1945 STATISTICAL DIGEST NO, 18 United States Dejtartment. Krug, Secretary FISH AND WILDLIFE SERVICE Albert M. Day, Director Statistical Digest 18 FISHERY STATISTICS OF THE UNITED STATES 1945 BY A. W. ANDERSON and E. A. POWER UNITED STATES GOVERNMENT PRINTING

  2. FISHERY STATISTICS OF THE UNITED STATES

    E-Print Network [OSTI]

    FISHERY STATISTICS OF THE UNITED STATES I 1947 cf^^v'^ml STATISTICAL DIGEST NO. 21 Fish Oscar L. Chapman, Secretary FISH AND WILDLIFE SERVICE Albert M. Day, Director Statistical Digest 21 PI^j^IELW' , COHEN FISHERY STATISTICS OF THE UNITED STATES 1947 BY A. W. ANDERSON and E. A. POWER UNITED STATES

  3. Columbia River System Operation Review : Final Environmental Impact Statement, Main Report.

    SciTech Connect (OSTI)

    Columbia River System Operation Review (U.S.); United States. Bonneville Power Administration; United States. Army. Corps of Engineers. North Pacific Division; United States. Bureau of Reclamation. Pacific Northwest Region.

    1995-11-01T23:59:59.000Z

    The System Operation Review (SOR) Final EIS addresses four actions: (a) need to develop coordinated strategy for managing the multiple uses of the Federal Columbia River system (System Operating Strategy [SOS]); (b) need to provide interested parties other than management agencies with a long-term role in system planning (Forum); (c) need to renew or change current Canadian Entitlement Allocation Agreements (CEAA); and (d) need to renegotiate and renew the Pacific Northwest Coordination Agreement (PNCA). SOS alternatives analyzed are: (1) operation prior to Endangered Species Act listings of salmon stocks; (2) current operations (no action); (3) stable storage project operation; (4) natural river operation; (5) fixed drawdown; (6) operating strategies proposed by the U.S. Fish and Wildlife Service, National Marine Fisheries Service, State fisheries agencies, Native American tribes, and Federal operating agencies; and (7) Preferred Alternative. The seven Forum alternatives analyzed are: (1) decisionmaking by the SOR lead agencies (preferred alternative); (2) decisionmaking by SOR lead agencies and recommendations by an existing regional entity; (3) decisionmaking by SOR lead agencies and recommendations by a new regional entity; (4) decisionmaking by a Federal consultation forum; (5) decisionmaking by a new entity; (6) decisionmaking by one Federal operating agency; (7) decisionmaking by a Federal agency other than an operating agency. PNCA alternatives analyzed are: (1) no replacement contract; (2) contract to maximize regional power benefits; (3) roll over existing PNCA; (4) current PNCA with modified operating procedures (preferred alternative); (5) current PNCA with nonpower modifications. CEAA alternatives include: (1) no action (no replacement of current allocation agreements); (2) entitlement allocation: 55 percent Federal; 45 percent non-Federal; (3) entitlement allocation: 70 percent Federal, 30 percent non-Federal (preferred alternative); (4) no agreement.

  4. CURRENT FISHERIES STATISTICS NO. 2006-2 IMPORTS AND EXPORTS

    E-Print Network [OSTI]

    CURRENT FISHERIES STATISTICS NO. 2006-2 IMPORTS AND EXPORTS OF FISHERY PRODUCTS ANNUAL SUMMARY, $2.6 billion more than in 2005, when $25.1 billion of fishery products were imported. EXPORTS. U.S. exports of edible fishery products of domestic origin were 1,306,706 tons valued at $3.9 billion, compared

  5. Marine Fisheries On the cover: A coho salmon smoll

    E-Print Network [OSTI]

    Fishery Management Council Members Named, Global Acid Rain Found, Chesapeake Bay Stripers Gain, Volcanic

  6. Perspective: Towards environmentally acceptable criteria for downstream fish passage through mini hydro and irrigation infrastructure in the Lower Mekong River Basin

    SciTech Connect (OSTI)

    Baumgartner, Lee J.; Deng, Zhiqun; Thorncraft, Garry; Boys, Craig A.; Brown, Richard S.; Singhanouvong, Douangkham; Phonekhampeng, Oudom

    2014-02-26T23:59:59.000Z

    Tropical rivers have high annual discharges optimal for hydropower and irrigation development. The Mekong River is one of the largest tropical river systems, supporting a unique mega-diverse fish community. Fish are an important commodity in the Mekong, contributing a large proportion of calcium, protein, and essential nutrients to the diet of the local people and providing a critical source of income for rural households. Many of these fish migrate not only upstream and downstream within main-channel habitats but also laterally into highly productive floodplain habitat to both feed and spawn. Most work to date has focused on providing for upstream fish passage, but downstream movement is an equally important process to protect. Expansion of hydropower and irrigation weirs can disrupt downstream migrations and it is important to ensure that passage through regulators or mini hydro systems is not harmful or fatal. Many new infrastructure projects (<6?m head) are proposed for the thousands of tributary streams throughout the Lower Mekong Basin and it is important that designs incorporate the best available science to protect downstream migrants. Recent advances in technology have provided new techniques which could be applied to Mekong fish species to obtain design criteria that can facilitate safe downstream passage. Obtaining and applying this knowledge to new infrastructure projects is essential in order to produce outcomes that are more favorable to local ecosystems and fisheries.

  7. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon, Hanford Reach, Columbia River : Final Report 1995 - 1998.

    SciTech Connect (OSTI)

    Geist, David R.

    1999-05-01T23:59:59.000Z

    This report summarizes results of research activities conducted from 1995 through 1998 on identifying the spawning habitat requirements of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The project investigated whether traditional spawning habitat models could be improved in order to make better predictions of available habitat for fall chinook salmon in the Snake River. Results suggest models could be improved if they used spawning area-specific, rather than river-specific, spawning characteristics; incorporated hyporheic discharge measurements; and gave further consideration to the geomorphic features that are present in the unconstrained segments of large alluvial rivers. Ultimately the recovery of endangered fall chinook salmon will depend on how well we are able to recreate the characteristics once common in alluvial floodplains of large rivers. The results from this research can be used to better define the relationship between these physical habitat characteristics and fall chinook salmon spawning site selection, and provide more efficient use of limited recovery resources. This report is divided into four chapters which were presented in the author's doctoral dissertation which he completed through the Department of Fisheries and Wildlife at Oregon State University. Each of the chapters has been published in peer reviewed journals or is currently under review. Chapter one is a conceptual spawning habitat model that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Chapter two describes the comparison of the physical factors associated with fall chinook salmon redd clusters located at two sites within the Reach. Spatial point pattern analysis of redds showed that redd clusters averaged approximately 10 hectares in area and their locations were consistent from year to year. The tendency to spawn in clusters suggests fall chinook salmon's use of spawning habitat is highly selective. Hydraulic characteristics of the redd clusters were significantly different than the habitat surrounding them. Velocity and lateral slope of the river bottom were the most important habitat variables in predicting redd site selection. While these variables explained a large proportion of the variance in redd site selection (86 to 96%), some unmeasured factors still accounted for a small percentage of actual spawning site selection. Chapter three describes the results from an investigation into the hyporheic characteristics of the two spawning areas studied in chapter two. This investigation showed that the magnitude and chemical characteristics of hyporheic discharge were different between and within two spawning areas. Apparently, fall chinook salmon used chemical and physical cues from the discharge to locate spawning areas. Finally, chapter four describes a unique method that was developed to install piezometers into the cobble bed of the Columbia River.

  8. Comparing the Reproductive Success of Yakima River Hatchery and Wild-Origin Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 4 of 7, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Schroder, S.L. (Washington Department of Fish and Wildlife, Olympia, WA); Knudsen, C.M. (Oncorh Consulting, Olympia, WA); Watson, B.D. (Yakama Nation, Toppenish, WA)

    2004-05-01T23:59:59.000Z

    In September of 2003, twenty-nine hatchery and twenty-eight wild spring chinook adults were placed into the observation stream located at the Cle Elum Supplementation Research Facility. In, addition 20 precocious males, 7 hatchery and 13 wild, were simultaneously released into the structure. As in previous years, the fish had small amounts of fin material removed prior to being introduced into the stream so that microsatellite DNA based pedigree analyses could be performed on their subsequent progeny. The entire 127 m long by 7.9 m wide stream was made available to this group of fish. Continuous behavioral observations were made while the females prepared nests and spawned. Moreover, standard measurements of adult longevity, spawning participation, water velocity, redd sizes, gravel composition, water temperature and flow were taken. Fry produced from these fish started to emigrate from the stream in early January 2004. They were trapped and sub-sampled for later microsatellite DNA analyses. In mid May of 2004 fry emergence from the channel was complete and residual fish were captured by seine and electro-fishing so that the entire juvenile population could be proportionately sampled. Audiotape records of the behavior of wild and hatchery adults spawning in the observation stream in 2001 were transcribed into continuous ethograms. Courting, agonistic, and location data were extracted from these chronological records and analyzed to characterize the reproductive behavior of both hatchery and wild fish. In addition, a ''gold standard'' pedigree analysis was completed on the fry originating from the adults placed into the observation stream in 2001. Behavioral and morphological data collected on hatchery and wild males were linked to the results of the pedigree analysis to ascertain what factors affected their reproductive success (RS) or capacity to produce fry. Individual RS values were calculated for each male placed into the observation stream and the coefficient of variation calculated from these values was greater than 100%. To determine what might be responsible for this degree of variation we examined the relative importance of a variety of physical and behavioral traits. Relative body size, for example, was found not be an important predictor of reproductive success. Instead, the capacity to court females and dominate sexual rivals was directly associated with male RS. However, males that had low dominance scores were also successful at producing offspring. These individuals utilized alternative behavioral strategies to gain close proximity to females and were successful in their attempts to fertilize eggs. Observations made on the color patterns of males showed dominance was closely linked with the possession of an overall black or dark brown color pattern. In addition, we discovered that males that had multiple mates achieved higher RS values than those who spawned with fewer females. The approach we are taking to compare the reproductive competency of hatchery and wild fish is to first determine the factors that are strongly linked to reproductive behavior and then assess whether significant differences occur in the expression of these traits based on the fish origin. Transcriptions of audiotapes are continuing and a second gold standard pedigree analyses on the fry produced from adults placed into the observation stream in 2002 is nearing completion. Future work will be directed at discovering the factors that affect female RS values. In the fall of 2004 we will again liberate hatchery and wild fish simultaneously into the entire observation stream to continue our efforts to objectively determine if differences in RS are caused by fish origin.

  9. Optimal Conventional and Semi-Natural Treatments for the Upper Yakima Spring Chinook Salmon Supplementation Project; Treatment Definitions and Descriptions and Biological Specifications for Facility Design, 1995-1999 Final Report.

    SciTech Connect (OSTI)

    Hager, Robert C. (Hatchery Operations Consulting); Costello, Ronald J. (Mobrand Biometrics, Inc., Vashon Island, WA)

    1999-10-01T23:59:59.000Z

    This report describes the Yakima Fisheries Project facilities (Cle Elum Hatchery and acclimation satellites) which provide the mechanism to conduct state-of-the-art research for addressing questions about spring chinook supplementation strategies. The definition, descriptions, and specifications for the Yakima spring chinook supplementation program permit evaluation of alternative fish culture techniques that should yield improved methods and procedures to produce wild-like fish with higher survival that can be used to rebuild depleted spring chinook stocks of the Columbia River Basin. The definition and description of three experimental treatments, Optimal Conventional (OCT), Semi-Natural (SNT), Limited Semi-Natural (LSNT), and the biological specifications for facilities have been completed for the upper Yakima spring chinook salmon stock of the Yakima Fisheries Project. The task was performed by the Biological Specifications Work Group (BSWG) represented by Yakama Indian Nation, Washington Department of Fish and Wildlife, National Marine Fisheries Service, and Bonneville Power Administration. The control and experimental variables of the experimental treatments (OCT, SNT, and LSNT) are described in sufficient detail to assure that the fish culture facilities will be designed and operated as a production scale laboratory to produce and test supplemented upper Yakima spring chinook salmon. Product specifications of the treatment groups are proposed to serve as the generic templates for developing greater specificity for measurements of product attributes. These product specifications will be used to monitor and evaluate treatment effects, with respect to the biological response variables (post release survival, long-term fitness, reproductive success and ecological interactions).

  10. Impacts to Dungeness Crab from the Southwest Washington Littoral Drift Restoration Project

    SciTech Connect (OSTI)

    Williams, Greg D.; Kohn, Nancy P.; Pearson, Walter H.; Skalski, J R.

    2005-11-09T23:59:59.000Z

    The Benson Beach littoral drift restoration project is a demonstration project that will replenish sand on Benson Beach, the public beach north of the North Jetty at the mouth of the Columbia River (MCR), using material dredged from the river during normal maintenance dredging of the navigational channel. A U.S. Army Corps of Engineers (Corps) proposal involves pumping the material from a sump area on the south side of the jetty to Benson Beach using a cutter suction dredge, also known as a pipeline dredge. If this one-time demonstration project proves feasible and successful, up to a million cubic yards of sediment could be used to replenish the outer coast littoral drift system in successive years by the same process. The primary goal of this study was to assess the potential risk of impacts to Dungeness crab from the proposed Benson Beach littoral drift restoration process of using the cutter suction dredge to move sediment from the proposed sump area on one side of the North Jetty to the beach on the other side of the jetty. Because there are no direct measurements of crab entrainment by pipeline dredge operating outside of the lower Columbia River navigation channel, dredge impacts for the proposed demonstration project were estimated using a modification of the dredge impact model (DIM) of Armstrong et al. (1987). The model estimates adult equivalent loss (AEL) of crabs using crab population density from trawl surveys, dredge project information (gear type, season, location, volume), and an entrainment function relating crab population density to entrainment by the dredge. The input used in applying the DIM to the Benson Beach littoral drift restoration included the specific dredging scenario provided by the Corps, existing data on crab density in previously proposed sump areas, and a series of entrainment functions. A total of fourteen scenarios were modeled and the outcomes compared with six reference scenarios intended to represent realistic to worst cases. Dungeness crab entrainment and subsequent loss of recruitment to adult age classes and the crab fishery estimated for the Benson Beach littoral drift restoration project varied widely (over three orders of magnitude) because of the range of assumptions about initial crab density, dredging scenarios, and entrainment functions. Although the comparison to reference scenarios helps put the results in perspective, losses to the crab fishery could still span two orders of magnitude. This uncertainty can only be assessed by direct measurements of crab entrainment during the demonstration project if crab losses are to be more accurately estimated for the demonstration, which is recommended in order to evaluate cumulative crab losses from successive replenishment efforts.

  11. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, D.

    2013-03-01T23:59:59.000Z

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

  12. Walla Walla River Fish Passage Operations Program, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Bronson, James P. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

    2004-12-01T23:59:59.000Z

    In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2003-2004 project year, there were 379 adult summer steelhead (Oncorhynchus mykiss), 36 adult bull trout (Salvelinus confluentus); 108 adult and 3 jack spring chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway video counting window between December 21, 2003, and June 30, 2004. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. In addition, the old ladder trap was operated by the WWBNPME project in order to radio tag spring chinook adults. A total of 2 adult summer steelhead, 4 bull trout, and 23 adult spring chinook were enumerated at the west ladder at Nursery Bridge Dam during the trapping operations between May 6 and May 23, 2004. Operation of the Little Walla Walla River juvenile trap for trap and haul purposes was not necessary this year. The project transported adult spring chinook from Threemile Dam to the South Fork Walla Walla Brood Holding Facility. A total of 239 spring chinook were outplanted in August for natural spawning in the basin.

  13. Pile Structure Program, Projected Start Date : January 1, 2010 (Implementation).

    SciTech Connect (OSTI)

    Collins, Chris; Corbett, Catherine [Lower Columbia River Estuary Partnership; Ebberts, Blaine [U.S. Army Corps of Engineers

    2009-07-27T23:59:59.000Z

    The 2008 Federal Columbia River Power System Biological Opinion includes Reasonable and Prudent Alternative 38-Piling and Piling Dike Removal Program. This RPA directs the Action Agencies to work with the Estuary Partnership to develop and implement a piling and pile dike removal program. The program has since evolved to include modifying pile structures to enhance their habitat value and complexity by adding large woody debris. The geographic extent of the Pile Structure Program (PSP) includes all tidally-influenced portions of the lower Columbia River below Bonneville Dam; however, it will focus on the mainstem. The overarching goal of the PSP is to enhance and restore ecosystem structure and function for the recovery of federally listed salmonids through the active management of pile structures. To attain this goal, the program team developed the following objectives: (1) Develop a plan to remove or modify pile structures that have lower value to navigation channel maintenance, and in which removal or modification will present low-risk to adjacent land use, is cost-effective, and would result in increased ecosystem function. (2) Determine program benefits for juvenile salmonids and the ecosystem through a series of intensively monitored pilot projects. (3) Incorporate best available science and pilot project results into an adaptive management framework that will guide future management by prioritizing projects with the highest benefits. The PSP's hypotheses, which form the basis of the pilot project experiments, are organized into five categories: Sediment and Habitat-forming Processes, Habitat Conditions and Food Web, Piscivorous Fish, Piscivorous Birds, and Toxic Contaminant Reduction. These hypotheses are based on the effects listed in the Estuary Module (NOAA Fisheries in press) and others that emerged during literature reviews, discussions with scientists, and field visits. Using pilot project findings, future implementation will be adaptively managed to maximize program benefits and address limiting factors.

  14. Hood River Production Program Monitoring and Evaluation (M&E) - Confederated Tribes of Warm Springs : Annual Report For Fiscal Year, October 2007 – September 2008.

    SciTech Connect (OSTI)

    Gerstenberger, Ryan [Confederated Tribes of Warm Springs Reservation

    2009-07-27T23:59:59.000Z

    This progress report describes work performed by the Confederated Tribes of Warm Springs (CTWSRO) portion of the Hood River Production Program Monitoring and Evaluation Project (HRPP) during the 2008 fiscal year. A total of 64,736 hatchery winter steelhead, 12,108 hatchery summer steelhead, and 68,426 hatchery spring Chinook salmon smolts were acclimated and released in the Hood River basin during the spring. The HRPP exceeded program goals for a release of and 50,000 winter steelhead but fell short of the steelhead release goals of 30,000 summer steelhead and 75,000 spring Chinook in 2008. Passive Integrated Transponders (PIT) tags were implanted in 6,652 hatchery winter steelhead, and 1,196 hatchery summer steelhead, to compare migratory attributes and survival rates of hatchery fish released into the Hood River. Water temperatures were recorded at six locations within the Hood River subbasin to monitor for compliance with Oregon Department of Environmental Quality water quality standards. A preseason spring Chinook salmon adult run forecast was generated, which predicted an abundant return adequate to meet escapement goal and brood stock needs. As a result the tribal and sport fisheries were opened. A tribal creel was conducted from May 22 to July 18 during which an estimated 172 spring Chinook were harvested. One hundred sixteen Spring Chinook salmon redds were observed and 72 carcasses were inspected on 19.4 miles of spawning grounds throughout the Hood River Basin during 2008. Annual salvage operations were completed in two irrigation canals resulting in the liberation of 1,641 fish back to the Hood River.

  15. Lower Flathead System Fisheries Study, 1984 Annual Report.

    SciTech Connect (OSTI)

    Darling, James E.; Pajak, Paul; Wunderlich, Mary P.

    1984-12-01T23:59:59.000Z

    This study was undertaken to assess the effects of Kerr Dam operations on the fisheries of the Lower Flathead System. Supported by Bonneville Power Administration funding, and conducted by the Confederated Salish and Kootenai Tribes, the study began in December of 1982 and is scheduled for completion in December of 1987. This report covers the 1983-84 field season and includes the status of target fish species populations in the Flathead River and tributaries, and initial work in South Bay of Flathead Lake. Additionally it addresses how Kerr operations may effect the reproduction of salmonids and northern pike. Combined trout population estimates for rainbow, brown, brook, and bull trout, averaged 13 fish/km of the lower Flathead River. The number of bull trout and cutthroat trout captured was so low that estimation of their individual populations was not possible. An interim closure to trout harvest on the lower Flathead River was recommended and approved by the Tribal Council until study results can be further analyzed and management options reviewed. Population estimates for northern pike ranged from six/kilometer in poorer habitat, to one hundred three/km in the best habitat in the main Flathead River. Seven pike were radio tagged and their movements monitored. Movements of over 89 km were recorded. One fish left the Flathead River and moved down the Clark Fork to the Plains area. Fish weirs were constructed on the Jocko River and Mission Creek to assess spawning runs of trout from the main river. Thirty-two adult rainbow passed the Jocko weir and twenty-eight passed the Mission weir during the spring spawning season. Twenty adult brown trout were captured at the Jocko weir and five at Mission weir in the fall. The Jocko weir suffered minor damage due to bed load movement during high flows of spring runoff. The structure of trout populations in the lower Flathead River points to spawning and recruitment problems caused by hydroelectric operations and sedimentation. Among the consequences of the present operational regime are constant, rapid changes in river discharge during spawning and Incubation seasons of trout species present in the lower river. Hamilton and Buell (1976) reported that similar fluctuation might exceed tolerance limits of adults and inhibit spawning behavior, dewater redds, strand fry, and displace juveniles to habitats less suitable for survival. Similar problems are felt to exist on the lower river. Constant fluctuations over backwater vegetation have been linked to major problems in successful northern pike spawning and recruitment by preventing access to spawning sites, and dewatering eggs and attached fry. Phase I of the South Bay investigation was completed this year resulting in a detailed study program for the next three years. Dominant habitat types were mapped, and physical habitat and biological monitoring methods were evaluated and selected. Permanent habitat transects, water quality stations, fish sampling, gillnetting, seining, and trapping sites were established.

  16. Seasonal cycle of Precipitation over Major River Basins in South and Southeast Asia: A Review of the CMIP5 climate models data for present climate and future climate projections

    E-Print Network [OSTI]

    Hasson, Shabeh ul; Lucarini, Valerio; Böhner, Jürgen

    2015-01-01T23:59:59.000Z

    We review the skill of thirty coupled climate models participating in Coupled Model Intercomparison Project 5 in terms of reproducing properties of the seasonal cycle of precipitation over the major river basins of South and Southeast Asia (Indus, Ganges, Brahmaputra and Mekong) for historical period (1961-2000). We also present projected changes by these models by end of century (2061-2100) under extreme scenario RCP8.5. First, we assess their ability to reproduce observed timings of the monsoon onset and the rate of rapid fractional accumulation (RFA slope) - a measure of seasonality within active monsoon period. Secondly, we apply a threshold-independent seasonality index (SI) - a multiplicative measure of precipitation and extent of its concentration relative to the uniform distribution (relative entropy - RE). We apply SI distinctly for monsoonal precipitation regime (MPR), westerly precipitation regime (WPR) and annual precipitation regime. For present climate, neither any single model nor the multi-mod...

  17. Snake River Sockeye Salmon Captive Broodstock Program : Hatchery Element : Annual Progress Report, 2000.

    SciTech Connect (OSTI)

    Kline, Paul A.; Willard, Catherine

    2001-04-01T23:59:59.000Z

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Marine Fisheries Service at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Marine Fisheries Service are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases are also reported under separate cover. Captive broodstock program activities conducted between January 1, 2000 and December 31, 2000 are presented in this report.

  18. Foreign Fishery Developments The Polish Fishing Industry

    E-Print Network [OSTI]

    . There is also a shortage of pro- cessing equipment such as ice factories and cold storage facilities.Foreign Fishery Developments The Polish Fishing Industry Polish fishennen caught about 700

  19. Marine Fisheries On the cover: A

    E-Print Network [OSTI]

    Coast Surf Clam Fishery, 1965-1974 Stabilization of the Flavor of Frozen Minced Whiting: I. Effect Salmon, Norway- EEC Herring Agreement, Japan's 1981 Surimi Production, and Norwegian Fishing Fleet Growth

  20. Fisheries management and flags of convenience

    E-Print Network [OSTI]

    Papaioannou, Maria Andriana

    2004-01-01T23:59:59.000Z

    The over-exploitation of the world's fish resources and the depletion of many fish stocks have brought into focus the need for effective fisheries management and conservation measures. Many states have adopted international ...

  1. Nez Perce Tribe Department of Fisheries Resource Management

    E-Print Network [OSTI]

    but would not open. It is unfortunate that the link given did not work properly, as the original comments to the ftp site containing the original comments and a map for the Maines Estate Land Parcel. 1. Open Windows portions of the American and Crooked #12;2 River watersheds. This EIS was a multi-faceted project

  2. EIS-0116-S1: Final Supplemental Environmental Impact Statement for the Blue River-Gore Pass Portion of the Hayden-Blue River Transmission Line Project, Grand and Summit Counties, Colorado

    Broader source: Energy.gov [DOE]

    This supplemental environmental impact statement by the Western Area Power Administration assesses the environmental effects of constructing, operating, and maintaining about 30 miles of 230/345-kV transmission line between the existing Gore Pass Substation northwest of Kremmling, Colorado, and a proposed new substation (not part of this action) near the Ute Pass Road. Alternatives assessed included routing and design alternatives plus the alternatives addressed in the Hayden-Blue River Final EIS, issued by the Rural Electrification Administration in July 1982 and adopted by DOE in June 1985 (see DOE/EIS-0116).

  3. Final project report on arsenic biogeochemistry in the Clinch River and Watts Bar Reservoir: Volume 2, Quality assurance/quality control summary report for arsenic biogeochemistry in the Clinch River and Watts Bar Reservoir. Environmental Restoration Program

    SciTech Connect (OSTI)

    Newman, K.A.; Ford, C.J.; Byrd, J.T.

    1995-04-01T23:59:59.000Z

    Arsenic contamination was studied in the Clinch River/Watts Bar Reservoir (CR/WBR) system downstream from the US Department of Energy`s Oak Ridge Reservation (ORR). Arsenic is of particular interest and concern because (1) it occurs commonly in coal-bearing rock and waste products such as fly ash associated with the burning of coal, (2) it is classified as a Class A carcinogen by the US Environmental Protection Agency, and (3) disposal of fly ash, both on and off the ORR, may have contaminated surface water and sediments in the Clinch River and Watts Bar Reservoir. The present study dffers from previous reports on arsenic concentrations in the CR/WBR system in the use of much more sensitive and precise processing and analytical techniques to measure arsenic species (arsenate, arsenite, and organic arsenic) at levels well below the ecological and human health risk screening criteria. The absolute detection limits using these techniques are approximately 20 to 40 pmol/L or 0.0015 to 0.003 {mu}g/L.

  4. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River; 2000-2001 Annual Report.

    SciTech Connect (OSTI)

    Connor, William P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID)

    2003-02-01T23:59:59.000Z

    This report summarizes results of research activities conducted in 2000, 2001, and years previous to aid in the management and recovery of fall chinook salmon in the Columbia River basin. The report is divided into sections and self-standing chapters. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall chinook salmon juveniles for the years 1992-2001. The Journal Manuscripts section includes complete copies of papers submitted or published during 2000 and 2001 that were not included in previous annual reports. Publication is a high priority for this project because it provides our results to a wide audience, it ensures that our work meets high scientific standards, and we believe that it is a necessary obligation of a research project. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers co-authored by personnel of project 199102900 that were published from 1998 to 2001.

  5. Migration and bioenergetics of juvenile Snake River fall Chinook salmon Daniel Widener

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Migration and bioenergetics of juvenile Snake River fall Chinook salmon Daniel Widener A thesis: Aquatic and Fishery Sciences #12;#12;University of Washington Abstract Migration and Bioenergetics are still poorly understood. This thesis describes a complex of individually-based bioenergetic

  6. AUSTRALIAN FISHERY EXPORTS SET RECORD Australian fishery exports were a record

    E-Print Network [OSTI]

    AUSTRALIAN FISHERY EXPORTS SET RECORD Australian fishery exports were a record US$87.3 million in FY 1971-72 (twelve months ending in June) . Rock lobster tail exports were 10.3 million pounds worth quantity was exported to the United States. Prawn exports set records for both volume and value - -17

  7. Table 1.-Statlsllcal dala on Argentina's major fishery slacks, 1980. Foreign Fishery Developments

    E-Print Network [OSTI]

    Table 1.-Statlsllcal dala on Argentina's major fishery slacks, 1980. Foreign Fishery Developments Argentina Revises Marine Resources Forecast squid one of the country's major fish- eries. INIDEP indicated- ly. Argentina signed a cooperative research agreement in 1980 with the Soviet Union to study

  8. Pennsylvania Scenic Rivers Program

    Broader source: Energy.gov [DOE]

    Rivers included in the Scenic Rivers System will be classified, designated and administered as Wild, Scenic, Pastoral, Recreational and Modified Recreational Rivers (Sections 4; (a) (1) of the...

  9. Independent Oversight Activity Report, Savannah River Site Waste...

    Broader source: Energy.gov (indexed) [DOE]

    Safety and Security (HSS) (Reference 1). Meet with the SRS WSB project staff and Savannah River Nuclear Solutions (SRNS) engineers to discuss the proposed corrective actions...

  10. Microsoft Word - CX_Priest_River_Acquistiont.doc

    Broader source: Energy.gov (indexed) [DOE]

    Kalispel Tribe of Indians (Kalispell) for purchase of Priest River (Flesher) property. Fish and Wildlife Project No.: 1992-061-00, Contract BPA-004991 Categorical Exclusion...

  11. Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.

    SciTech Connect (OSTI)

    McGowan, Vance

    2003-08-01T23:59:59.000Z

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian exclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2002 included: (1) Implementing 1 new fencing project in the Wallowa subbasin that will protect an additional 0.95 miles of stream and 22.9 acres of habitat; (2) Conducting instream work activities in 3 streams to enhance habitat and/or restore natural channel dimensions, patterns or profiles; (3) Planting 31,733 plants along 3.7 stream miles, (4) Establishing 71 new photopoints and retaking 254 existing photopoint pictures; (5) Monitoring stream temperatures at 12 locations on 6 streams; (6) Completing riparian fence, water gap and other maintenance on 100.5 miles of project fences. Since initiation of the project in 1984 over 68.7 miles of anadromous fish bearing streams and 1,933 acres of habitat have been protected, enhanced and maintained.

  12. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Sears, Sheryl

    2004-01-01T23:59:59.000Z

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated Tribes (CCT), Spokane Tribe of Indians (STI) and Washington Department of Fish and Wildlife (WDFW) to develop and propose a comprehensive fishery management plan for Lake Roosevelt. The Rainbow Trout Habitat/Passage Improvement Project (LRHIP) was designed with goals directed towards increasing natural production while maintaining genetic integrity among current tributary stocks. The initial phase of the Lake Roosevelt Habitat Improvement Project (Phase I, baseline data collection: 1990-91) was focused on the assessment of limiting factors, including the quality and quantity of available spawning gravel, identification of passage barriers, and assessment of other constraints. After the initial assessment of stream parameters, five streams meeting specific criteria were selected for habitat/passage improvement projects (Phase II, implementation -1992-1995). Four of these projects were on the Colville Indian Reservation South Nanamkin, North Nanamkin, Louie and Iron Creeks and one Blue Creek was on the Spokane Indian Reservation. At the completion of project habitat improvements, the final phase (Phase III, monitoring-1996-2000) began. This phase assessed the changes and determined the success achieved through the improvements. Data analysis showed that passage improvements are successful for increasing habitat availability and use. The results of in-stream habitat improvements were inconclusive. Project streams, to the last monitoring date, have shown increases in fish density following implementation of the improvements. In 2000 Bridge Creek, on the Colville Reservation was selected for the next phase of improvements. Data collection, including baseline stream survey and population data collection, was carried out during 2001 in preparation for the design and implementation of stream habitat/passage improvements. Agencies cooperating on the project include the Colville Confederated Tribes (CCT), Natural Resource Conservation Service (NRCS, Ferry County District), Ferry County Conservation District, and Ferry County. The Bonneville Power Administration (BPA) provided

  13. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2001-2002.

    SciTech Connect (OSTI)

    Sears, Sheryl

    2003-01-01T23:59:59.000Z

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated Tribes (CCT), Spokane Tribe of Indians (STI) and Washington Department of Fish and Wildlife (WDFW) to develop and propose a comprehensive fishery management plan for Lake Roosevelt. The Rainbow Trout Habitat/Passage Improvement Project (LRHIP) was designed with goals directed towards increasing natural production while maintaining genetic integrity among current tributary stocks. The initial phase of the Lake Roosevelt Habitat Improvement Project (Phase I, baseline data collection: 1990-91) was focused on the assessment of limiting factors, including the quality and quantity of available spawning gravel, identification of passage barriers, and assessment of other constraints. After the initial assessment of stream parameters, five streams meeting specific criteria were selected for habitat/passage improvement projects (Phase II, implementation -1992-1995). Four of these projects were on the Colville Indian Reservation South Nanamkin, North Nanamkin, Louie and Iron Creeks and one Blue Creek was on the Spokane Indian Reservation. At the completion of project habitat improvements, the final phase (Phase III, monitoring-1996-2000) began. This phase assessed the changes and determined the success achieved through the improvements. Data analysis showed that passage improvements are successful for increasing habitat availability and use. The results of in-stream habitat improvements were inconclusive. Project streams, to the last monitoring date, have shown increases in fish density following implementation of the improvements. In 2000 Bridge Creek, on the Colville Reservation was selected for the next phase of improvements. Data collection, including baseline stream survey and population data collection, was carried out during 2001 in preparation for the design and implementation of stream habitat/passage improvements. Agencies cooperating on the project include the Colville Confederated Tribes (CCT), Natural Resource Conservation Service (NRCS, Ferry County District), Ferry County Conservation District, and Ferry County. The Bonneville Power Administration (BPA) provided

  14. NOAA Fisheries Protocols For Hydro-dynamic Dredge Surveys

    E-Print Network [OSTI]

    NOAA Fisheries Protocols For Hydro-dynamic Dredge Surveys: Surf Clams and Ocean Quahogs December 19..................................................................................................................................... 1 NOAA Fisheries Hydro-dynamic Clam Dredge Survey Protocols........................................................................... 5 Clam Dredge Construction and Repair

  15. NOAA Fisheries Protocols For Sea Scallop Dredge Surveys

    E-Print Network [OSTI]

    NOAA Fisheries Protocols For Sea Scallop Dredge Surveys January 7, 2004 Prepared by: Members..................................................................................................................................... 5 NOAA Fisheries Sea Scallop Dredge Survey Protocols............................................................................................................................. 10 Changes to Regional Scallop Dredge Protocols

  16. How We Got Started Sheyenne River

    E-Print Network [OSTI]

    for Riparian Ecosystems · Field Tours · Rancher Meetings · Educational Materials #12;Project Collaborators Source Program #12;· The goals of this project is to improve and strengthen the ability of resource Project #12;· 6 New Riparian ESDs · MLRA 54 · Knife River · Spring Creek · MLRA 55B · Baldhill Creek

  17. artisanal shrimp fishery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or competitive usages?. Open Access Theses and Dissertations Summary: ??In Indonesia, coastal villages traditionally depend on artisanal fisheries. Increasing population...

  18. artisanal parrotfish fisheries: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or competitive usages?. Open Access Theses and Dissertations Summary: ??In Indonesia, coastal villages traditionally depend on artisanal fisheries. Increasing population...

  19. PETITION FOR INSIGNIFICANT PROJECT MODIFICATION

    E-Print Network [OSTI]

    Cosumnes River Boulevard Interchange SMUD Cogeneration Pipeline Project Docket No. 92-AFC-2P July 2007, CA 95833 #12;SMUD COGENERATION PIPELINE PROJECT Table of Contents K:\\Wprocess\\25832\\SMUD

  20. Microsoft Word - CX_Okanogan_River.docx

    Broader source: Energy.gov (indexed) [DOE]

    Confederated Tribes for the purchase of two parcels of land along the Okanogan River. Fish and Wildlife Project No.: 2007-224-00 Categorical Exclusion Applied (from Subpart D, 10...

  1. EA-1988: NFSC (Northwest Fisheries Science Center) Earthen Drainage Channel, Burley Creek Hatchery, Port Orchard, Washington

    Broader source: Energy.gov [DOE]

    The National Oceanic and Atmospheric Administration (NOAA), with DOE’s Bonneville Power Administration (BPA) as a cooperating agency, prepared an EA that assesses the potential environmental impacts of a NOAA Northwest Fisheries Science Center proposal to construct an earthen drainage channel at its Burley Creek Hatchery in Kitsap County, Washington. The project would facilitate increased discharge of treated effluent from the hatchery facility into the adjacent Burley Creek. BPA’s proposal is to fund the project. The project website is http://efw.bpa.gov/environmental_services/Document_Library/Burley_Creek/.

  2. CURRENT FISHERIES STATISTICS NO. 2008-2 IMPORTS AND EXPORTS

    E-Print Network [OSTI]

    CURRENT FISHERIES STATISTICS NO. 2008-2 IMPORTS AND EXPORTS OF FISHERY PRODUCTS ANNUAL SUMMARY and nonedible fishery imports was $28.5 billion in 2008, $0.3 billion less than in 2007. EXPORTS. U.S. exports with 1,263,778 tons at $4.01 billion exported in 2007. Exports of fresh and frozen items were 1

  3. CURRENT FISHERIES STATISTICS NO. 2007-2 IMPORTS AND EXPORTS

    E-Print Network [OSTI]

    CURRENT FISHERIES STATISTICS NO. 2007-2 IMPORTS AND EXPORTS OF FISHERY PRODUCTS ANNUAL SUMMARY. EXPORTS. U.S. exports of edible fishery products of domestic origin in 2007 were 1,263,778 tons valued at $4.0 billion, compared with 1,306,706 tons at $4.0 billion exported in 2006. Exports of fresh

  4. CURRENT FISHERIES STATISTICS NO. 2009-2 IMPORTS AND EXPORTS

    E-Print Network [OSTI]

    CURRENT FISHERIES STATISTICS NO. 2009-2 IMPORTS AND EXPORTS OF FISHERY PRODUCTS ANNUAL SUMMARY imports was $21.8 billion in 2009, $6.6 billion less than in 2008. EXPORTS. U.S. exports of edible fishery,161,843 tons at $3.99 billion exported in 2008. Exports of fresh and frozen items were 987,330 tons valued

  5. CURRENT FISHERIES STATISTICS NO. 2010-2 IMPORTS AND EXPORTS

    E-Print Network [OSTI]

    CURRENT FISHERIES STATISTICS NO. 2010-2 IMPORTS AND EXPORTS OF FISHERY PRODUCTS ANNUAL SUMMARY imports was $27.4 billion in 2010, $3.8 billion more than in 2009. EXPORTS. U.S. exports of edible fishery,119,732 tons at $3.74 billion exported in 2009. Exports of fresh and frozen items were 1,077,310 tons valued

  6. CURRENT FISHERIES STATISTICS NO. 2005-2 IMPORTS AND EXPORTS

    E-Print Network [OSTI]

    CURRENT FISHERIES STATISTICS NO. 2005-2 IMPORTS AND EXPORTS OF FISHERY PRODUCTS ANNUAL SUMMARY.2 billion more than in 2004, when $22.9 billion of fishery products were imported. EXPORTS. U.S. exports,275,765 tons at $3.5 billion exported in 2004. Fresh and frozen items were 1,098,799 tons valued at $2

  7. CURRENT FISHERIES STATISTICS NO. 2004-2 IMPORTS AND EXPORTS

    E-Print Network [OSTI]

    CURRENT FISHERIES STATISTICS NO. 2004-2 IMPORTS AND EXPORTS OF FISHERY PRODUCTS ANNUAL SUMMARY.7 billion more than in 2003, when $21.3 billion of fishery products were imported. EXPORTS. U.S. exports,048,052 tons at $3.1 billion exported in 2003. Fresh and frozen items were 1,091,057 tons valued at $2

  8. CURRENT FISHERIES STATISTICS NO. 2011-2 IMPORTS AND EXPORTS

    E-Print Network [OSTI]

    CURRENT FISHERIES STATISTICS NO. 2011-2 IMPORTS AND EXPORTS OF FISHERY PRODUCTS ANNUAL SUMMARY, $3.4 billion more than in 2010. EXPORTS. U.S. exports of edible fishery products of domestic origin exported in 2010. Exports of fresh and frozen items were 1,292,684 tons valued at $4.3 billion, an increase

  9. FISHERY STATISTICS I OF THE UNITED STATESmmmMM

    E-Print Network [OSTI]

    ^^ FISHERY STATISTICS I OF THE UNITED STATESmmmMM 'f^ gjIP^Ws^WI'l STATISTICAL DIGEST NO. 25 Fish Statistical Digest 25 FISHERY STATISTICS OF THE UNITED STATES 1949 BY A. W. ANDERSON and C. E. PETERSON UNITED. Government Printing Office, Washington 25, D. C. - - - Price $1.25 (paper) #12;Fishery Statistics

  10. Cefas contract report: -SLEA2 Oil and Gas Fisheries Risk

    E-Print Network [OSTI]

    Cefas contract report: - SLEA2 Oil and Gas Fisheries Risk Assessment Advice Updated Cefas: Oil and Gas Fisheries Risk Assessment Advice Submitted to: Department of Energy and Climate Change Recommendations for Spawning Finfish ­ English & Welsh Blocks Oil and Gas Fisheries Risk Assessment Advice Updated

  11. The Fisheries of Norway UNITED STATES DEPARTMENT OF THE INTERIOR

    E-Print Network [OSTI]

    The Fisheries of Norway UNITED STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE BUREAU 11 12 15 16 16 16 17 17 17 18 19 19 #12;The Fisheries of Norway By SID 'EY SHAPIRO Foreign Fisheries about 1.3 million tons annually between 1960 and 1964. Thes e landings make Norway the foremost fishing

  12. William Francis Thompson (18881965): a Preeminent Fishery Biologist of the

    E-Print Network [OSTI]

    William Francis Thompson (1888­1965): a Preeminent Fishery Biologist of the Early and Mid Twentieth Century William Francis Thompson (Fig. 1) was a major figure in fisheries research on the west coast--William Francis Thompson (1888­1965) was a preeminent fishery sci entist of the early to mid twentieth century

  13. Foreign Fishery Developments The U.S.-Canadian

    E-Print Network [OSTI]

    .4 million and per capita consumption of edible fishery products is only 6.4 kg. The Government is actively 7-8 per- cent of the world fisheries trade. Over half of Canada's fishery exports are shipped promoting increased fish consumption and has designated November as the "Fish and Seafood Month." In January

  14. Assessing Efficiency and Capacity in Fisheries James E. Kirkley

    E-Print Network [OSTI]

    Assessing Efficiency and Capacity in Fisheries James E. Kirkley College of William and Mary.M.Ward@noaa.gov ____________________ Prepared for the National Marine Fisheries Service Workshop of "Assessing Technical Efficiency and Capacity in Fisheries (Silver Spring, Maryland; September 29 - October 1, 1999). #12;Efficiency and Capacity iv Table

  15. COMMERCIAL FISHERY FOR CHUBS (CISCOES) IN LAKE MICHIGAN

    E-Print Network [OSTI]

    COMMERCIAL FISHERY FOR CHUBS (CISCOES) IN LAKE MICHIGAN THROUGH 1953 Marine Biological Laboratory COMMERCIAL FISHERY FOR CHUBS (CISCOES) IN LAKE MICHIGAN THROUGH 1953 By Ralph Hile and Howard J . Buettner #12;ABSTRACT The chub fishery of Lake Michigan is based on 7 deep-water species of coregonines . Small

  16. The Columbia River System Inside Story

    SciTech Connect (OSTI)

    none,

    2001-04-01T23:59:59.000Z

    The Columbia River is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Pacific Northwest—from fostering world-famous Pacific salmon to supplying clean natural fuel for 50 to 65 percent of the region’s electrical generation. Since early in the 20th century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system.

  17. Grays River Watershed Geomorphic Analysis

    SciTech Connect (OSTI)

    Geist, David R.

    2005-04-30T23:59:59.000Z

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: 􀂃 The effects of historical and current land use practices on erosion and sedimentation within the channel network 􀂃 The ways in which these effects have influenced the sediment budget of the upper watershed 􀂃 The resulting responses in the main stem Grays River upstream of State Highway 4 􀂃 The past and future implications for salmon habi

  18. In-River Backwards Run Reconstruction of Fraser River Sockeye Fisheries from 2002 -2009 and

    E-Print Network [OSTI]

    to within +/- 2.5 days for 90% of CUs at the 50th percentile, while FRSMM harvests can differ by up to +/-30

  19. Estuarine Habitats for Juvenile Salmon in the Tidally-Influenced Lower Columbia River and Estuary : Reporting Period September 15, 2008 through May 31, 2009.

    SciTech Connect (OSTI)

    Baptista, António M. [Oregon Health & Science University, Science and Technology Center for Coastal Margin Observation and Prediction

    2009-08-02T23:59:59.000Z

    This work focuses on the numerical modeling of Columbia River estuarine circulation and associated modeling-supported analyses conducted as an integral part of a multi-disciplinary and multi-institutional effort led by NOAA's Northwest Fisheries Science Center. The overall effort is aimed at: (1) retrospective analyses to reconstruct historic bathymetric features and assess effects of climate and river flow on the extent and distribution of shallow water, wetland and tidal-floodplain habitats; (2) computer simulations using a 3-dimensional numerical model to evaluate the sensitivity of salmon rearing opportunities to various historical modifications affecting the estuary (including channel changes, flow regulation, and diking of tidal wetlands and floodplains); (3) observational studies of present and historic food web sources supporting selected life histories of juvenile salmon as determined by stable isotope, microchemistry, and parasitology techniques; and (4) experimental studies in Grays River in collaboration with Columbia River Estuary Study Taskforce (CREST) and the Columbia Land Trust (CLT) to assess effects of multiple tidal wetland restoration projects on various life histories of juvenile salmon and to compare responses to observed habitat-use patterns in the mainstem estuary. From the above observations, experiments, and additional modeling simulations, the effort will also (5) examine effects of alternative flow-management and habitat-restoration scenarios on habitat opportunity and the estuary's productive capacity for juvenile salmon. The underlying modeling system is part of the SATURN1coastal-margin observatory [1]. SATURN relies on 3D numerical models [2, 3] to systematically simulate and understand baroclinic circulation in the Columbia River estuary-plume-shelf system [4-7] (Fig. 1). Multi-year simulation databases of circulation are produced as an integral part of SATURN, and have multiple applications in understanding estuary/plume variability, the role of the estuary and plume on salmon survival, and functional changes in the estuary-plume system in response to climate and human activities.

  20. New Bedford Harbor Superfund Project Acushnet River estuary engineering feasibility study of dredging and dredged-material disposal alternatives. Report 10. Evaluation of dredging and dredging control technologies. Technical report, August 1985-March 1988

    SciTech Connect (OSTI)

    Palermo, M.R.; Pankow, V.R.

    1988-11-01T23:59:59.000Z

    This report presents the results of an evaluation of dredging equipment and techniques for removal of highly contaminated sediments from the upper estuary of the Acushnet River, a portion of the New Bedford Harbor Superfund Project. Site conditions as related to dredge selection and operation, factors considered in selection of equipment, various dredge types considered for use, and operational procedures and controls for sediment resuspension during dredging are described. Each of the dredge types is ranked according to the following criteria: compatibility for full-scale cleanup, availability, safety, potential for sediment resuspension, maneuverability, cleanup precision, cost and production flexibility, required water depth for operation, ability to access the site, and compatibility with disposal options.

  1. Supplement Analysis for the Watershed Management Program EIS --Idaho Model Watershed Habitat Projects - Pahsimeroi Fence Crossing

    SciTech Connect (OSTI)

    N /A

    2004-08-11T23:59:59.000Z

    The Bonneville Power Administration is proposing to fund the installation of a fenced stream crossing over the Pahsimeroi River to enhance a livestock riparian enclosure. This structure would include up to four wood fence posts and two deadman anchors buried in the ground. The goal of this project is to enhance salmon and steelhead rearing and migration habitat by preventing livestock from entering the riparian area via the river. The NEPA compliance checklist for this project was completed by Carl Rudeen with the Custer Soil and Water Conservation District (August 4, 2004) and meets the standards and guidelines for the Watershed Management Program Environmental Impact Statement (EIS) and Record of Decision (ROD). The Endangered Species Act (ESA) listed species that may occur in the general vicinity of the project area are gray wolf, Canada lynx, bald eagle, Ute ladies'Tresses, Snake River chinook salmon, Snake River steelhead trout, and Columbia River Basin bull trout. It was determined that the proposed fence crossing construction project would have no effect on these species. Bald eagle, gray wolf and Canada lynx are not known to occur in the immediate project vicinity. Since the site is used primarily as livestock pasture it does not lend itself to the presence of Ute ladies'Tresses. ESA listed fish may be present in the project vicinity but will not be affected because the project does not involve instream work. Soil disturbance will be limited to the livestock pasture and to two holes that will be used to bury anchors for the suspended portion of the fence. Required river crossings will be made on foot. Requirements associated with Section 106 of the National Historic Preservation Act were handled by the Natural Resource Conservation Service (NRCS), in cooperation with staff from the U.S. Forest Service (Boise National Forest), under their existing Programmatic Agreement with the Idaho State Historic Preservation Office (SHPO). A description of the Pahsimeroi Fence Crossing project and site information was reviewed by a qualified archaeologist and it was determined that an archaeological survey was needed. Bruce Blackmere with NRCS conducted an intensive-complete survey of the project site and cultural resources were not identified (July 30, 2004). Based on these findings, it was recommended that the project proceed as planned. All survey findings were provided to the Idaho SHPO. In the unlikely event that archaeological material is discovered during project implementation, an archaeologist should be notified immediately and work halted in the vicinity of the finds until they can be inspected and assessed. Standard water quality protection procedures and Best Management Practices should be followed during the implementation of the Pahsimeroi Fence Crossing project. No construction is authorized to begin until the proponent has obtained all applicable local, state, and federal permits and approvals. Public involvement has occurred as part of the Pahsimeroi Fence Crossing project. This project was coordinated through the Upper Salmon Basin Technical Team and Advisory Committee composed of representatives from U.S. Fish and Wildlife Service, NOAA Fisheries, Shoshone Bannock Tribe, and Idaho Department of Fish and Game. In addition, the Custer Soil and Water Conservation District holds monthly meetings that are open to the public in which this project was discussed.

  2. EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River Counties, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration (BPA) is preparing an EA to assess potential environmental impacts of a proposal to rebuild its 24-mile long, 115 kilovolt Bonneville-Hood River transmission line. The existing line runs between the Bonneville Powerhouse at Bonneville Dam in Multnomah County, Oregon, and BPA's existing Hood River Substation in Hood River County, Oregon. The project would include replacing structures and conductor wires, improving access roads, and constructing new access roads or trails where needed.

  3. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, D.

    2014-01-01T23:59:59.000Z

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  4. Yakima Habitat Improvement Project Master Plan, Technical Report 2003.

    SciTech Connect (OSTI)

    Golder Associates, Inc.

    2003-04-22T23:59:59.000Z

    The Yakima Urban Growth Area (UGA) is a developing and growing urban area in south-central Washington. Despite increased development, the Yakima River and its tributaries within the UGA continue to support threatened populations of summer steelhead and bull trout as well as a variety of non-listed salmonid species. In order to provide for the maintenance and recovery of these species, while successfully planning for the continued growth and development within the UGA, the City of Yakima has undertaken the Yakima Habitat Improvement Project. The overall goal of the project is to maintain, preserve, and restore functioning fish and wildlife habitat within and immediately surrounding the Yakima UGA over the long term. Acquisition and protection of the fish and wildlife habitat associated with key properties in the UGA will prevent future subdivision along riparian corridors, reduce further degradation or removal of riparian habitat, and maintain or enhance the long term condition of aquatic habitat. By placing these properties in long-term protection, the threat of development from continued growth in the urban area will be removed. To most effectively implement the multi-year habitat acquisition and protection effort, the City has developed this Master Plan. The Master Plan provides the structure and guidance for future habitat acquisition and restoration activities to be performed within the Yakima Urban Area. The development of this Master Plan also supports several Reasonable and Prudent Alternatives (RPAs) of the NOAA Fisheries 2000 Biological Opinion (BiOp), as well as the Water Investment Action Agenda for the Yakima Basin, local planning efforts, and the Columbia Basin Fish and Wildlife Authority's 2000 Fish and Wildlife Program. This Master Plan also provides the framework for coordination of the Yakima Habitat Improvement Project with other fish and wildlife habitat acquisition and protection activities currently being implemented in the area. As a result of the planning effort leading to this Master Plan, a Technical Working Group (TWG) was established that represents most, if not all, fish and wildlife agencies/interests in the subbasin. This TWG met regularly throughout the planning process to provide input and review and was instrumental in the development of this plan. Preparation of this plan included the development of a quantitative prioritization process to rank 40,000 parcels within the Urban Growth Area based on the value of fish and wildlife habitat each parcel provided. Biological and physical criteria were developed and applied to all parcels through a GIS-based prioritization model. In the second-phase of the prioritization process, the TWG provided local expert knowledge and review of the properties. In selecting the most critical areas within the Urban Growth Area for protection, this project assessed the value of fish and wildlife habitat on the Yakima River. Well-developed habitat acquisition efforts (e.g., Yakima River Basin Water Enhancement Project by the Bureau of Reclamation and Yakama Nation acquisition projects) are already underway on the Yakima River mainstem. These efforts, however, face several limitations in protection of floodplain function that could be addressed through the support of the Yakima Habitat Improvement Project. This Master Plan integrates tributary habitat acquisition efforts with those ongoing on the Yakima River to best benefit fish and wildlife in the Urban Growth Area. The parcel ranking process identified 25 properties with the highest fish and wildlife value for habitat acquisition in the Yakima Urban Area. These parcels contain important fish and wildlife corridors on Ahtanum and Wide Hollow Creeks and the Naches River. The fifteen highest-ranking parcels of the 25 parcels identified were considered very high priority for protection of fish and wildlife habitat. These 15 parcels were subsequently grouped into four priority acquisition areas. This Master Plan outlines a four-year schedule for acquisition, protection, and restoration of the 25 highest ranked prop

  5. Final Independent External Peer Review Report Melvin Price Wood River Underseepage

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EXECUTIVE SUMMARY Project Background and Purpose The purpose of the Melvin Price Wood River Underseepage Price Wood River LRR and the overall scope of the project, the final panel members were selectedFinal Independent External Peer Review Report Melvin Price Wood River Underseepage Limited

  6. Foreign Fishery Developments Abalone Culture in Japan

    E-Print Network [OSTI]

    Foreign Fishery Developments Abalone Culture in Japan Adam G. C. Body Introduction Abalone, known as awabe in Japan, is a popular and traditional food maintain ing a good, consistent market value. Up transplanted from areas of high spatfall, aquaculture research centers were set up in each of Japan's 37

  7. Foreign Fishery Developments Soviet Union and Japan

    E-Print Network [OSTI]

    Foreign Fishery Developments Soviet Union and Japan Agree on 1978 Quotas The Soviet Union and Japan year in Moscow. Japan's total 1978 allocation in the Soviet zone was set at 850,000 metric tons (t ex- trapolation of the 1977 quotas, which were 700,000 t for Japan during March-December and 335

  8. Foreign Fishery Developments Nigeria Plans Large

    E-Print Network [OSTI]

    Foreign Fishery Developments Nigeria Plans Large Fishing Fleet Expansion Table 1.-Nigerian fishing reported deliveries. Development Program Nigeria's oil exports have enabled its Government to fInance Africa's most ambitious development program. Nigeria has the largest population of any country in Africa

  9. INTRODUCTION Salmon for New England Fisheries

    E-Print Network [OSTI]

    . kef(l , from the west coast would be the best approach to generatin g such an inshore fishery. Pri on the hi gh seas off southwest G reenl and and in the Norwegian Sea has become a hi ghl y controver ial coast as a whole in any fo re- seeable future." H e re erved his most favo rable arguments

  10. Foreign Fishery Developments Australia Reports Growth in

    E-Print Network [OSTI]

    ." Later studies have also shown both per capita fish and seafood consump- tion and fish prices-76, the last year of the survey. Apparent consumption per person rose another 6 percent in 1976-77 and trendsForeign Fishery Developments Australia Reports Growth in Fish Consumption and Prices Australians

  11. Foreign Fishery Developments The Belgian Market for

    E-Print Network [OSTI]

    , 1978," and based on live weight equivalents of fish con- sumed. Actual per capita consumption would capita consumption' of fishery products in Belgium is esti- mated at about 18 kg, near the west European yearly per capita average of 19 kg, but higher than the 15 kg per person in the United States. According

  12. Foreign Fishery Developments New Latin American

    E-Print Network [OSTI]

    to be delivered. Libya has announced the formation of several joint fishery ventures with Af- rican countries/58.) Taiwan and Libya have both recently forn1ed joint venture fishing companies in Latin America. Taiwan Trawling Venture Libya and Guyana have agreed to set up a $5 million joint fishing company in which Guyana

  13. Marine Fisheries On the cover, top to

    E-Print Network [OSTI]

    Marine Fisheries ~@WD@W On the cover, top to bollom: Yelloweye rock fish, Sebastes ruberrimus Maturity and Fecundity in the Rockfishes, Sebastes spp., a Review Joy Clark, Wade Griffin, Jerry Clark.25 foreign. Publication of material from sources outside the NMFS is not an endorsement and the NMFS

  14. Habitats keep commercial and recreational fisheries strong

    E-Print Network [OSTI]

    and sea level rise. So what can we do? Protect and restore habitat Investments by private groups not only for our fisheries but for the communities--and economies--that rely on them. San Francisco Bay Bay gone, but the dam or poorly designed culvert remains, still preventing fish from getting to habitat

  15. Conceptual Spawning Habitat Model to Aid in ESA Recovery Plans for Snake River Fall Chinook Salmon, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Geist, David (Pacific Northwest National Laboratory)

    2005-09-01T23:59:59.000Z

    The goal of this project is to develop a spawning habitat model that can be used to determine the physical habitat factors that are necessary to define the production potential for fall chinook salmon that spawn in large mainstem rivers like the Columbia River's Hanford Reach and Snake River. This project addresses RPA 155 in the NMFS 2000 Biological Opinion: Action 155: BPA, working with BOR, the Corps, EPA, and USGS, shall develop a program to: (1) Identify mainstem habitat sampling reaches, survey conditions, describe cause-and-effect relationships, and identify research needs; (2) Develop improvement plans for all mainstem reaches; and (3) Initiate improvements in three mainstem reaches. During FY 2003 we continued to collect and analyze information on fall chinook salmon spawning habitat characteristics in the Hanford Reach that will be used to address RPA 155, i.e., items 1-3 above. For example, in FY 2003: (1) We continued to survey spawning habitat in the Hanford Reach and develop a 2-dimensional hydraulic and habitat model that will be capable of predicting suitability of fall chinook salmon habitat in the Hanford Reach; (2) Monitor how hydro operations altered the physical and chemical characteristics of the river and the hyporheic zone within fall chinook salmon spawning areas in the Hanford Reach; (3) Published a paper on the impacts of the Columbia River hydroelectric system on main-stem habitats of fall chinook salmon (Dauble et al. 2003). This paper was made possible with data collected on this project; (4) Continued to analyze data collected in previous years that will ultimately be used to identify cause-and-effect relationships and identify research needs that will assist managers in the improvement of fall chinook habitat quality in main-stem reaches. During FY 2004 we plan to: (1) Complete preliminary reporting and submit papers based on the results of the project through FY 2004. Although we have proposed additional analysis of data be conducted in FY 2005, we anticipate a significant number of key papers being prepared and submitted in FY 2004 which will go toward identifying the data gaps this RPA is intended to address; (2) Make available data from this project for use on Project 2003-038-00 ('Evaluate restoration potential of Snake River fall chinook salmon') which is a BPA-funded project that will start in FY 2004; and (3) Present results of our work at regional and national meetings in order to facilitate technology transfer and information sharing. The objective of this project is to define the production potential of fall chinook salmon that spawn in the Hanford Reach. We will provide fisheries and resource managers with the information they need to determine if the Hanford Reach fall chinook salmon population is indeed healthy, and whether this population will be capable of seeding other satellite populations in the future. We will accomplish this purpose by continuing our on-going research at determining the carrying capacity of the Hanford Reach for producing fall chinook salmon under current operational scenarios, and then begin an assessment of whether the Reach is functioning as a model of a normative river as is widely believed. The product of our research will be a better understanding of the key habitat features for mainstem populations of anadromous salmonids, as well as a better understanding of the measures that must be taken to ensure long-term protection of the Hanford Reach fall chinook population. Although the project was originally funded in FY 1994, it was significantly redefined in FY 2000. At that time five tasks were proposed to accomplish the project objective. The purpose of this progress report is to briefly describe the activities that have been completed on each of the five tasks from FY 2000 through FY 2003.

  16. South Fork Salmon River Watershed Restoration, 2008-2009 Annual Report.

    SciTech Connect (OSTI)

    Reaney, Mark D. [Nez Perce Tribe Department of Fisheries Resource Management

    2009-04-15T23:59:59.000Z

    The watershed restoration work elements within the project area, the South Fork Salmon River Watershed, follow the watershed restoration approach adopted by the Nez Perce Tribe Department of Fisheries Resource Management (DFRM) - Watershed Division. The vision of the Nez Perce Tribe DFRM-Watershed Division focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects and strategies that rely on natural fish production and healthy river ecosystems. The Nez Perce Tribe DFRM-Watershed Division strives towards maximizing historic ecosystem productivity and health for the restoration of anadromous and resident fish populations and the habitat on which all depend on for future generations Originally, this project was funded to create a step/pool stream channel that was appropriate to restore fish passage where the 'Glory Hole Cascade' is currently located at the Stibnite Mine. Due to unforeseen circumstances at the time, the project is unable to move forward as planned and a request for a change in scope of the project and an expansion of the geographic area in which to complete project work was submitted. No additional funds were being requested. The ultimate goal of this project is to work with the holistic, ridge top to ridge top approach to protect and restore the ecological and biological functions of the South Fork Salmon River Watershed to assist in the recovery of threatened and endangered anadromous and resident fish species. FY 2008 Work Elements included two aquatic organism passage (AOP) projects to restore habitat connectivity to two fish-bearing tributaries to the East Fork South Fork Salmon River, Salt and Profile Creeks. The Work Elements also included road survey and assessment activities that move toward road decommissioning to reduce sediment delivery to spawning gravels and rearing habitats by reducing sedimentation from road related, man-made sources. For FY08, the project included the design and implementation of two fish barrier replacement structures mentioned above, the Salt and Profile Creek Bridges. These work elements were to be implemented on Valley County easements within the Payette National Forest. The existing culverts are full or partial barriers to most aquatic life species and all juvenile anadromous and resident fish species. Implementation will reconnect 9.34 miles of habitat, and provide natural stream channels to facilitate complete passage for all aquatic life forms. All designs were completed and a construction subcontract was awarded to construct free span, pre-cast concrete bridges. For 2008, the project statement of work also included all the necessary work elements to manage, coordinate, plan, and develop continuing strategies for restoration and protection activities.

  17. Project ID: 35062 ~ Impacts of Flow Regulation on Riparian Cottonwood Ecosystems in the Columbia River Basin ~ Response to ISRP/RME Proposal Review Comments

    E-Print Network [OSTI]

    , Synder et al. 2002). The shifting habitat mosaic is controlled by the coupled relationship between flowProject ID: 35062 ~ Impacts of Flow Regulation on Riparian Cottonwood Ecosystems in the Columbia. 1. The ISRP cited a need to "provide better evidence of the linkages of changes in flow regimes

  18. Submission of 2012-2013 U.S. Fishery Statistics for the Western and Central Pacific Ocean and Other Areas

    E-Print Network [OSTI]

    . The principal U.S. fisheries for HMS are the purse seine fishery that targets skipjack tuna (Katsuwonus pelamis

  19. Red River Compact (Texas)

    Broader source: Energy.gov [DOE]

    The Red River Compact Commission administers the Red River Compact to ensure that Texas receives its equitable share of quality water from the Red River and its tributaries as apportioned by the...

  20. Oxbow Fish Hatchery Snake River Sockeye Salmon Smolt Program, 2008 Annual Report.

    SciTech Connect (OSTI)

    Banks, Duane D. [Oregon Department of Fish and Wildlife

    2009-11-14T23:59:59.000Z

    This contract proposal is in response to the Federal Columbia River Power System Biological Opinion Implementation Plan/Update Proposed Action (UPA) associated with increasing the number of Snake River sockeye smolts by 150,000. To accomplish this proposal the cooperation and efforts of three government entities has been planned (e.g., Idaho Department of Fish and Game (IDFG), Oregon Department of Fish and Wildlife (ODFW), and the National Marine Fisheries Service (NMFS)). Improvements at the IDFG Eagle Fish Hatchery and NMFS Burley Creek Hatchery will focus on increasing sockeye salmon captive broodstock and egg production. Improvements at the ODFW Oxbow Fish Hatchery will be made to accommodate the incubation, hatching and rearing of 150,000 sockeye salmon smolts for release into Idaho's Sawtooth Valley, Upper Salmon River near IDFG's Sawtooth Fish Hatchery and/or Redfish Lake Creek 1.4 km downstream of Redfish Lake. Modifications to Oxbow Fish Hatchery (ODFW) will include retro-fit existing pond drains so pond cleaning effluent water can be routed to the pollution abatement pond, and modifications to the abatement pond. Also included in this project as an added phase, was the rerouting of the hatchery building effluent water to meet state DEQ guidelines for the use of formalin to treat salmonid eggs. Some additional funding for the described Oxbow Hatchery modifications will come from Mitchell Act Funding. All personnel costs associated with this project will come from Mitchell Act funding. Due to heavy work load issues, being under staffed, and two emergency projects in the spring and summer of 2006, ODFW engineers were not able to complete all plans and get them out for bid in 2006. As a result of these circumstances retro-fitting pond drains and modifications to the abatement pond was carried over into fiscal year 2007-2008. A no cost time extension to the contract was approved by BPA. The format for this report will follow the standard format for Statement of Work Report (SOW), which includes sub-categories Work Element (WE), and within the WE the Milestone Titles.

  1. River Basin Commissions (Indiana)

    Broader source: Energy.gov [DOE]

    This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

  2. Maine Rivers Policy (Maine)

    Broader source: Energy.gov [DOE]

    The Maine Rivers Policy accompanies the Maine Waterway Development and Conservation Act and provides additional protection for some river and stream segments, which are designated as “outstanding...

  3. Bacteria TMDL Projects

    E-Print Network [OSTI]

    Wythe, Kathy

    2007-01-01T23:59:59.000Z

    of TMDL projects for water bodies where swimming or wading may be unsafe or harvesting of oysters is limited or prohibited due to high concentrations of bacteria. ? Atascosa River: A TMDL Project for Bacteria ? Buffalo andWhite Oak Bayous: A TMDL...

  4. Wabash River Heritage Corridor (Indiana)

    Broader source: Energy.gov [DOE]

    The Wabash River Heritage Corridor, consisting of the Wabash River, the Little River, and the portage between the Little River and the Maumee River, is considered a protected area, where...

  5. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Zabel, Richard; Williams, John G.; Smith, Steven G. (Northwest and Alaska Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2002-06-01T23:59:59.000Z

    In 2001, the National Marine Fisheries Service and the University of Washington completed the ninth year of a study to estimate survival and travel time of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from passive integrated transponder (PIT)-tagged fish. We PIT tagged and released at Lower Granite Dam a total of 17,028 hatchery and 3,550 wild steelhead. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream of the hydropower system and sites within the hydropower system. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using the Single-Release Model. Primary research objectives in 2001 were to: (1) estimate reach and project survival and travel time in the Snake and Columbia Rivers throughout the yearling chinook salmon and steelhead migrations; (2) evaluate relationships between survival estimates and migration conditions; and (3) evaluate the survival-estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2001 for PIT-tagged yearling chinook salmon and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Results are reported primarily in the form of tables and figures with a minimum of text. More details on methodology and statistical models used are provided in previous reports cited in the text. Results for summer-migrating chinook salmon will be reported separately.

  6. Test plan for in situ bioremediation demonstration of the Savannah River Integrated Demonstration Project DOE/OTD TTP No.: SR 0566-01. Revision 3

    SciTech Connect (OSTI)

    Hazen, T.C.

    1991-09-18T23:59:59.000Z

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms will be simulated to degrade trichloroethylene (TCE), tetrachloroethylene (PCE) and their daughter products in situ by addition of nutrients to the contaminated zone. in situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work.

  7. Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries Christina M Comfort Institute #12;Ocean Thermal Energy Conversion (OTEC) · Renewable energy ­ ocean thermal gradient · Large

  8. Foreign Fishery Developments The Norwegian Fishing

    E-Print Network [OSTI]

    -EEC fisheries agreement, which prevented Norwegian purse seiners from fishing North Sea brisling during the peak,200 t of meal (up 0.6 percent) and 164,600 t of oil (down 9.1 per- cent). Arctic Cod Quotas Quotas for Arctic.3 Fish oil 79,400 180.5 107,300 241.4 Cod liver oil 12,700 63.1 10,900 51.3 Canned fish 14,100 233.8 15

  9. Spawning and abundance of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River, 1948--1988

    SciTech Connect (OSTI)

    Dauble, D.D.; Watson, D.G.

    1990-03-01T23:59:59.000Z

    The Hanford Reach of the Columbia River provides the only major spawning habitat for the upriver bright (URB) race of fall chinook salmon in the mainstem Columbia River. Hanford Site biologists have conducted aerial surveys of spawning salmon in the Hanford Reach since 1948. This report summarizes data on fall chinook salmon spawning in the Hanford Reach and presents a discussion of factors that may affect population trends. Most data are limited to fisheries agency reports and other working documents. Fisheries management practices in the Columbia River system have changed rapidly over the last decade, particularly under requirements of the Pacific Northwest Power Planning and Conservation Act of 1980. New information has been generated and included in this report. 75 refs., 17 figs., 11 tabs.

  10. Lake Roosevelt Fisheries and Limnological Research : 1996 Annual Report.

    SciTech Connect (OSTI)

    Cichosz, Thomas A.; Underwood, Keith D.; Shields, John; Scholz, Allan; Tilson, Mary Beth

    1997-05-01T23:59:59.000Z

    The Lake Roosevelt Monitoring/Data Collection Program resulted from a merger between the Lake Roosevelt Monitoring Program and the Lake Roosevelt Data Collection Project. This project will model biological responses to reservoir operations, evaluate the effects of releasing hatchery origin kokanee salmon and rainbow trout on the fishery, and evaluate the success of various stocking strategies. In 1996, limnological, reservoir operation, zooplankton, and tagging data were collected. Mean reservoir elevation, storage volume and water retention time were reduced in 1996 relative to the last five years. In 1996, Lake Roosevelt reached a yearly low of 1,227 feet above mean sea level in April, a yearly high of 1,289 feet in July, and a mean yearly reservoir elevation of 1,271.4 feet. Mean monthly water retention times in Lake Roosevelt during 1996 ranged from 15.7 days in May to 49.2 days in October. Average zooplankton densities and biomass were lower in 1996 than 1995. Daphnia spp. and total zooplankton densities peaked during the summer, whereas minimum densities occurred during the spring. Approximately 300,000 kokanee salmon and 400,000 rainbow trout were released into Lake Roosevelt in 1996. The authors estimated 195,628 angler trips to Lake Roosevelt during 1996 with an economic value of $7,629,492.

  11. Climate Change and Adaptation in Irrigated Agriculture?A Case Study of the Yakima River

    SciTech Connect (OSTI)

    Scott, Michael J.; Vail, Lance W.; Stockle, Claudio O.; Kemanian, Armen

    2004-07-22T23:59:59.000Z

    Using a case study of the Yakima River Valley in Washington State, we show that relatively simple tools originally developed to forecast the impact of the El Nino phenomenon on water supplies to irrigated agriculture also can be used to estimate the significantly shifted probability distribution of water shortages in irrigated agriculture during climate change, and that these shifted probabilities can be used to estimate the impact on agriculture in a region. The more permanent nature of changes in the temperature and precipitation regime associated with climate change means that risk management options also take a more permanent form (such as changes in crops and cultivars, and adding storage). A number of storage options have been proposed to deal with El Nino-associated drought, and would be more valuable under climate change. The most ambitious of the proposed storage projects is Black Rock, which would add about 500,00 acre-feet of water to supplement the Yakima's current 1.1 million acre-feet, at a cost currently estimated at $1.9 billion. For perspective, economic losses in the Yakima Valley reportedly have been about $100 million in a drought year such as 2001. Under current circumstances, the expected annual fisheries and periodic drought relief benefits may be large enough to justify the expenditure, but since drought has been occasional, environmental consequences of new projects uncertain, and the price tag beyond the reach of all but the Federal government, no projects have been built. The benefits become more certain with warming. Analysis shows that adding 500,000 acre-feet to TWSA would offset El Nino and the effects of 2 C warming.

  12. MArine science School of Fisheries and Ocean Sciences

    E-Print Network [OSTI]

    Hartman, Chris

    government management agencies such as the Alaska Department of Fish and Game and the U.S. Fish and Wildlife--Marine Field Experience (Independent Study) ....... 1 ­ 2 Fisheries FISH F288/BIOL F288--Fish and Fisheries of Alaska........................3 FISH F301--Biology of Fishes

  13. Review of U.S. West Coast Commercial Shark Fisheries

    E-Print Network [OSTI]

    long periods. These fisheries generally produced minimum ex-vessel prices and fluctuating yields are extremely slow. and as a result there is a close relationship between stock size and recruitment. Because of this relationship. only a small amount of that stock is avail able to support a sustained fishery. The increased

  14. Foreign Fishery Developments Mediterranean Bluefin Tuna Airlifted to Japan

    E-Print Network [OSTI]

    Foreign Fishery Developments Mediterranean Bluefin Tuna Airlifted to Japan Japan-Soviet Fishery dealt a seri- ous blow by the various new restric- tions introduced in the S-year Japan- Soviet in Japan has revived a once-abandoned airlift of fresh bluefin tuna from the Mediterranean. Two earlier

  15. Biology, ecology, and fisheries for K. Limburg lecture

    E-Print Network [OSTI]

    Limburg, Karin E.

    . Fisheries Oceanography 6(2) #12;3 Photos: K. Limburg Herring periods sustained Swedish West Coast villages of camouflage from predators both above and below (counter-shading) Photo: © GLENN VANSTRUM OFF THE COAST in upwelling areas along coasts - Form the basis of much of the world's commercial fisheries Smithsonian

  16. FISHERY REGULATION VIA OPTIMAL CONTROL THEORY1 WILLIAM J. PALM'

    E-Print Network [OSTI]

    FISHERY REGULATION VIA OPTIMAL CONTROL THEORY1 WILLIAM J. PALM' ABSTRACT This paper attempts such a feedback scheme for fishery regulation. A single-variable logistic model is used to introduce the basic regulation. The Linear-Quadratic Optimal Control Problem, which has been widely applied in engineering

  17. Multi-Scale Action Effectiveness Research in the Lower Columbia River and Estuary, 2012

    SciTech Connect (OSTI)

    Johnson, Gary E.; Sather, Nichole K.; Storch, Adam; Johnson, Jeff; Skalski, J. R.; Teel, D. J.; Brewer, Taylor; Bryson, Amanda J.; Dawley, Earl M.; Kuligowski, D. R.; Whitesel, T.; Mallette, Christine

    2013-11-30T23:59:59.000Z

    The study reported herein was conducted for the U.S. Army Corps of Engineers, Portland District (USACE) by researchers at the Pacific Northwest National Laboratory (PNNL), Oregon Department of Fish and Wildlife (ODFW), National Marine Fisheries Service (NMFS), University of Washington (UW), and U.S. Fish and Wildlife Service (USFWS). The goal of the study was to evaluate the ecological benefits of restoration actions for juvenile salmon in the lower Columbia River and estuary (LCRE; rkm 0–234).

  18. October 2012 PhD Projects at DTU Aqua

    E-Print Network [OSTI]

    Mosegaard, Klaus

    Ecology and Genetics 9 PhD projects within Aquaculture 15 PhD projects within Fisheries Management Systems to sexual selection. Sexual selection theory has proven powerful in explaining the morphology, behaviour, is the deepest passage across the Greenland-Scotland Ridge which connects the water flow from Nordic Seas

  19. River Data Package for Hanford Assessments

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Guensch, Gregory R.; Patton, Gregory W.

    2006-08-01T23:59:59.000Z

    This data package documents the technical basis for selecting physical and hydraulic parameters and input values that will be used in river modeling for Hanford assessments. This work was originally conducted as part of the Characterization of Systems Task of the Groundwater Remediation Project managed by Fluor Hanford, Inc. and revised as part of the Characterization of Systems Project managed by PNNL for DOE. The river data package provides calculations of flow and transport in the Columbia River system. The module is based on the legacy code for the Modular Aquatic Simulation System II (MASS2), which is a two-dimensional, depth-averaged model that provides the capability to simulate the lateral (bank-to-bank) variation of flow and contaminants. It simulates river hydrodynamics (water velocities and surface elevations), sediment transport, contaminant transport, biotic transport, and sediment-contaminant interaction, including both suspended sediments and bed sediments. This document presents the data assembled to run the river module components for the section of the Columbia River from Vernita Bridge to the confluence with the Yakima River. MASS2 requires data on the river flow rate, downstream water surface elevation, groundwater influx and contaminants flux, background concentrations of contaminants, channel bathymetry, and the bed and suspended sediment properties. Stochastic variability for some input parameters such as partition coefficient (kd) values and background radionuclide concentrations is generated by the Environmental Stochastic Preprocessor. River flow is randomized on a yearly basis. At this time, the conceptual model does not incorporate extreme flooding (for example, 50 to 100 years) or dam removal scenarios.

  20. IS S N 0142-2499 MINISTRY OF AGRICULTURE FISHERIES AND FOOD

    E-Print Network [OSTI]

    IS S N 0142-2499 MINISTRY OF AGRICULTURE FISHERIES AND FOOD DIRECTORATE OF FISHERIES RESEARCH Isles, 1986 Lowestoft 1987 #12;MINISTRY OF AGRICULTURE, FISHERIES AND FOOD DIRECTORATEOF FISHERIES of presentation of measurements 3.4 Methods of interpretation 4. British Nuclear Fuels plc (BNFL) 4.1 Sellafield

  1. I S S N 0142-2499 MINISTRY OF AGRICULTURE FISHERIES AND FOOD

    E-Print Network [OSTI]

    I S S N 0142-2499 MINISTRY OF AGRICULTURE FISHERIES AND FOOD DIRECTORATE OF FISHERIES RESEARCH;MINISTRY OF AGRICULTURE, FISHERIES AND FOOD DIRECTORATE OF FISHERIES RESEARCH AQUATIC ENVIRONMENT of presentation of measurements 3.4 Method of interpretation of results 4. British Nuclear Fuels plc (BNFL) 4

  2. Terms of Reference for NOAA Southeast Fisheries Science Center Fiscal Year 2014

    E-Print Network [OSTI]

    to fishery stock assessment modeling? What is the suitability of the stock assessment models employed, taking1 Terms of Reference for NOAA Southeast Fisheries Science Center Fiscal Year 2014 Stock Assessment of this review is to examine and evaluate the Southeast Fisheries Science Center's (SEFSC) fishery stock

  3. EcoGIS GIS Tools for Ecosystem Approaches to Fisheries Management

    E-Print Network [OSTI]

    EcoGIS ­ GIS Tools for Ecosystem Approaches to Fisheries Management May 2009 NOAA TechnicalGIS ­ GIS Tools for Ecosystem Approaches to Fisheries Management. NOAA Technical Memorandum NOS NCCOS 75. 38 Fisheries Science Centers, NOAA Fisheries Regional Offices, NatureServe's EBM Tools Network, and other

  4. Three Rivers Builders The Three Rivers House Project Summary

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnologyfact sheet summarizes what is knownDOE

  5. Foreign Fishery Developments Data on 1985-86 exports are given in FishmealThe Fisheries of Chile

    E-Print Network [OSTI]

    Foreign Fishery Developments Data on 1985-86 exports are given in Table 2. FishmealThe Fisheries with the same period of 1986. Export shipments, however, in creased over 35 percent by value during that same period. Frozen and fresh fish ery products were the most rapidly grow ing exports. Fishmeal remained

  6. North American Journal of Fisheries Management 23:10151019, 2003 Copyright by the American Fisheries Society 2003

    E-Print Network [OSTI]

    1015 North American Journal of Fisheries Management 23:1015­1019, 2003 Copyright by the American Fisheries Society 2003 Mortality and Long-Term Retention of Passive Integrated Transponder Tags by Spring Chinook Salmon MATTHEW R. DARE*1 Biomark, Incorporated, 149 South Adkins Way, Suite 104, Meridian, Idaho

  7. OHIO RIVER SHORELINE, PADUCAH, KENTUCKY, (PADUCAH, KENTUCKY LFPP)

    E-Print Network [OSTI]

    US Army Corps of Engineers

    1 OHIO RIVER SHORELINE, PADUCAH, KENTUCKY, (PADUCAH, KENTUCKY LFPP) RECONSTRUCTION PROJECT 22 June and private infrastructure to Paducah, Kentucky, from flooding by the Ohio River through reconstruction of an existing Corps of Engineers floodwall and levee system. The city of Paducah is the non-Federal sponsor

  8. Baxter Creek Gateway Park: assessment of an urban stream restoration project

    E-Print Network [OSTI]

    Goodman, Judd; Lunde, Kevin B; Zaro, Theresa

    2006-01-01T23:59:59.000Z

    of a Small Urban Stream Restoration Project in Northernfor: LA 227- Restoration of Rivers and Streams Instructor:restoration project was constructed with aspects of stream

  9. Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries, 1983-1987 Methods and Data Summary.

    SciTech Connect (OSTI)

    Chisholm, Ian

    1989-12-01T23:59:59.000Z

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin. The authorized purpose of the dam is to provide power, flood control, and navigation and other benefits. Research began in May 1983 to determine how operations of Libby dam impact the reservoir fishery and to suggest ways to lessen these impacts. This study is unique in that it was designed to accomplish its goal through detailed information gathering on every trophic level in the reservoir system and integration of this information into a quantitative computer model. The specific study objectives are to: quantify available reservoir habitat, determine abundance, growth and distribution of fish within the reservoir and potential recruitment of salmonids from Libby Reservoir tributaries within the United States, determine abundance and availability of food organisms for fish in the reservoir, quantify fish use of available food items, develop relationships between reservoir drawdown and reservoir habitat for fish and fish food organisms, and estimate impacts of reservoir operation on the reservoir fishery. 115 refs., 22 figs., 51 tabs.

  10. The Walla Walla Basin Natural Production Monitoring and Evaluation Project : Progress Report, 1999-2002.

    SciTech Connect (OSTI)

    Contor, Craig R.; Sexton, Amy D.

    2003-06-02T23:59:59.000Z

    The Walla Walla Basin Natural Production Monitoring and Evaluation Project (WWNPME) was funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P. L. 96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) under the Walla Walla Basin Natural Production Monitoring and Evaluation Project (WWNPME). Chapter One provides an overview of the entire report and how the objectives of each statement of work from 1999, 2000, 2001, and 2002 contract years are organized and reported. Chapter One also provides background information relevant to the aquatic resources of the Walla Walla River Basin. Objectives are outlined below for the statements of work for the 1999, 2000, 2001 and 2002 contract years. The same objectives were sometimes given different numbers in different years. Because this document is a synthesis of four years of reporting, we gave objectives letter designations and listed the objective number associated with the statement of work for each year. Some objectives were in all four work statements, while other objectives were in only one or two work statements. Each objective is discussed in a chapter. The chapter that reports activities and findings of each objective are listed with the objective below. Because data is often interrelated, aspects of some findings may be reported or discussed in more than one chapter. Specifics related to tasks, approaches, methods, results and discussion are addressed in the individual chapters.

  11. Wildlife Impact Assessment and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Phase 1, Volume Two (B), Clark Fork River Projects, Cabinet Gorge and Noxon Rapids Dams, Operator, Washington Water Power Company.

    SciTech Connect (OSTI)

    Wood, Marilyn

    1984-06-01T23:59:59.000Z

    This report documents best available information concerning the wildlife species impacted and the degree of the impact. A target species list was developed to focus the impact assessment and to direct mitigation efforts. Many non-target species also incurred impacts but are not discussed in this report. All wildlife habitats inundated by the two reservoirs are represented by the target species. It was assumed the numerous non-target species also affected will be benefited by the mitigation measures adopted for the target species. Impacts addressed are limited to those directly attributable to the loss of habitat and displacement of wildlife populations due to the construction and operation of the two hydroelectric projects. Secondary impacts, such as the relocation of railroads and highways, and the increase of the human population, were not considered. In some cases, both positive and negative impacts were assessed; and the overall net effect was reported. The loss/gain estimates reported represent impacts considered to have occurred during one point in time except where otherwise noted. When possible, quantitative estimates were developed based on historical information from the area or on data from similar areas. Qualitative loss estimates of low, moderate, or high with supporting rationale were assessed for each species or species group.

  12. Coeur d'Alene Tribe Fisheries Program : Implementation of Fisheries Enhancement Opportunities on the Coeur d'Alene Reservation : 2006 Annual Report.

    SciTech Connect (OSTI)

    Vitale, Angelo J.; Hallock, Stephanie A.; Firehammer, Jon A.

    2008-12-12T23:59:59.000Z

    This annual report summarizes previously unreported data collected to fulfill the contractual obligations for BPA project No.1990-044-00, 'Coeur d'Alene Subbasin Fisheries Habitat Enhancement', during the 2006 calendar year. Even though the contract performance period for this project crosses fiscal and calendar years, the timing of data collection and analysis, as well as implementation of restoration projects, lends itself to this reporting schedule. The 2006 performance period marked the first year that BPA implemented its Process Improvement Initiative with the Pisces system serving as the vehicle for developing statements of work and tracking project performance. This document attempts to provide some consistency between the project objectives, around which past reports have been structured, and the new work element format adopted for use in Pisces. The report is formatted into three primary sections that respectively provide results and discussion of: (1) monitoring and evaluation of biological and physical habitat indicators; (2) implementation of restoration and enhancement projects; and (3) education and outreach work performed during 2006. The relevant work elements and/or milestones found in the statement of work are listed under these section headings and described in the body of the report.

  13. Yakima River Spring Chinook Enhancement Study, 1984 Annual Report.

    SciTech Connect (OSTI)

    Wasserman, Larry

    1985-01-01T23:59:59.000Z

    This study develops data to present management alternatives for Yakima River spring chinook. The first objective is to determine the distribution, abundance and survival of wild Yakima River spring chinook. Naturally produced populations will be studied to determine if these runs can be sustained in the face of present harvest and environmental conditions. This information will be gathered through spawning ground surveys, counting of adults at Prosser and Roza fish ladders, and through monitoring the tribal dipnet fishery. Concurrent studies will examine potential habitat limitations within the basin. Presently, survival to emergence studies, in conjunction with substrate quality analysis is being undertaken. Water temperature is monitored throughout the basin, and seining takes place monthly to evaluate distribution and abundance. The outcome of this phase of the investigation is to determine an effective manner for introducing hatchery stocks that minimize the impacts on the wild population. The second objective of this study is to determine relative effectiveness of different methods of hatchery supplementation.

  14. BEE 446546, River Engineering, Winter 2010 Instructor: Dr. Desiree Tullos

    E-Print Network [OSTI]

    Tullos, Desiree

    appropriate methods of data collection for addressing engineering problem at the project site. WeBEE 446546, River Engineering, Winter 2010 Syllabus Instructor: Dr. Desiree Tullos Assistant Professor, Biological and Ecological Engineering Department 233 Gilmore Hall Phone

  15. Office of River Protection Waste Treatment and Immobilizatin...

    Broader source: Energy.gov (indexed) [DOE]

    Review of the Office of River Protection Waste Treatment and Immobilization Project Construction Site, November 16-18, 2010 The U.S. Department of Energy Office of Independent...

  16. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    NOAA National Marine Fisheries Service Cramer Fisheries Service Contract Number: 500-02-004 Prepared

  17. Supplement Analysis for the Watershed Management Program EIS--Tapteal Bend Riparian Corridor Restoration Project

    SciTech Connect (OSTI)

    N /A

    2004-08-11T23:59:59.000Z

    The Bonneville Power Administration is proposing to fund the restoration of approximately 500 feet of streambank along the Yakima River at river mile 8, upstream of the Van Giesen Bridge on SR 224, in and between Richland and West Richland, Washington. This project will also result in the acquisition of Fox Island, a 12-acre island directly across the river from the restoration area. There is no development planned for the island. The proposed project includes: The installation of a bio-engineered streambank that incorporates barbs to capture silt and deflect flow, roughened rock or log toes, a riparian buffer, soil reinforcement, and bank grading. Long-term photo-point and plot sampling will also be implemented to evaluate the effectiveness and success of the restoration project. The NEPA compliance checklist for this project was completed by Darrel Sunday, a contractor with Sunday and Associates, Inc. (April 4, 2004), and meets the standards and guidelines for the Watershed Management Program Environmental Impact Statement (EIS) and Record of Decision (ROD). The Endangered Species Act (ESA) listed species that may occur in the general vicinity of the project area are the pygmy rabbit, bald eagle, bull trout, Ute ladies'-tresses, and mid-Columbia Steelhead. The pygmy rabbit, bald eagle, and Ute ladies'Tresses are not known to occur in the immediate project vicinity, and it was determined that the proposed restoration project would have no effect on these species. It is difficult to determine if bull trout occur within the Tapteal project area and Dave Carl of the Washington Department of Fish & Wildlife was contacted and concurred with this assumption. It was determined that the project may affect, but is not likely to adversely affect bull trout, and the U.S. Fish & Wildlife Service has concurred with that determination (July 28, 2004). For the mid-Columbia Steelhead, an anadromous fish species, BPA has determined that if conducted in accordance with the applicable terms and conditions identified in the ESA Consultation Biological Opinion (BO) and Magnuson-Stevens Fishery Conservation and Management Act Essential Fish Habitat Consultation, for BPA's Habitat Improvement Program (HIP), the Tapteal Bend Restoration Project meets the requirements of consistency and no further consultation is required. ESA listed fish may be present in the project vicinity but will not be affected because the project does not involve instream work. In complying with the requirements of Section 106 of the National Historic Preservation Act, BPA contracted with the Cultural Resources Protection Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) for cultural resource survey work. Shawn Steinmetz prepared a report (December 15, 2002) concluding that there were only two isolated finds in the project area. BPA and the Washington Office of Archaeology and Historic Preservation have concurred with the conclusions and recommendations set out in the report and the determination that no historic properties will be affected by the current project as proposed (January 31, 2003). It was recommended that a cultural resource monitor be present during ground disturbing activities. In the unlikely event that archaeological material is discovered during project implementation, an archaeologist should be notified immediately and work halted in the vicinity of the finds until they can be inspected and assessed. Standard water quality protection procedures and Best Management Practices should be followed during the implementation of the Tapteal Bend Restoration project. No construction is authorized to begin until the proponent has obtained all applicable local, state, and federal permits and approvals.

  18. Pecos River Compact (Texas)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the state's entrance into the Pecos River Compact, a joint agreement between the states of New Mexico and Texas. The compact is administered by the Pecos River Compact...

  19. Canadian River Compact (Texas)

    Broader source: Energy.gov [DOE]

    The Canadian River Commission administers the Canadian River Compact which includes the states of New Mexico, Oklahoma, and Texas. Signed in 1950 by the member states, the Compact was subsequently...

  20. Identifying Lagrangian fronts with favourable fishery conditions

    E-Print Network [OSTI]

    S. V. Prants; M. V. Budyansky; M. Yu. Uleysky

    2013-06-20T23:59:59.000Z

    Lagrangian fronts (LF) in the ocean delineate boundaries between surface waters with different Lagrangian properties. They can be accurately detected in a given velocity field by computing synoptic maps of the drift of synthetic tracers and other Lagrangian indicators. Using Russian ship's catch and location data for a number of commercial fishery seasons in the region of the northwest Pacific with one of the richest fishery in the world, it is shown statistically that the saury fishing grounds with maximal catches are not randomly distributed over the region but located mainly along those LFs where productive cold waters of the Oyashio Current, warmer waters of the southern branch of the Soya Current, and waters of warm-core Kuroshio rings converge. Computation of those fronts with the altimetric geostrophic velocity fields both in the years with the First and Second Oyashio Intrusions shows that in spite of different oceanographic conditions the LF locations may serve good indicators of potential fishing grounds. Possible reasons for saury aggregation near LFs are discussed. We propose a mechanism of effective export of nutrient rich waters based on stretching of material lines in the vicinity of hyperbolic objects in the ocean. The developed method, based on identifying LFs in any velocity fields, is quite general and may be applied to forecast potential fishing grounds for the other pelagic fishes in different seas and the oceans.

  1. Building America Whole-House Solutions for New Homes: Hood River Passive House- Hood River, Oregon (Fact Sheet)

    Broader source: Energy.gov [DOE]

    The Hood River Passive Project incorporates high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless minisplit heat pump.

  2. NOAA Fisheries Service National Cooperative Research Program

    E-Print Network [OSTI]

    COOPERATIVE RESEARCH Project Title: Personnel and Associated Management Costs Project Title: Development and Operating Costs to Support Cooperative Research Projects 16 NORTHEAST REGIONAL OFFICE COOPERATIVE RESEARCH Council Reports: Improve Fish Stock Assessments, Effects of Trawling & Dredging on Sea Floor Habitat

  3. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01T23:59:59.000Z

    releases into the river from a hydropower project. Data fromSymposium on small hydropower and fisheries; Bethesda,instream flow needs in hydropower licensing. Palo Alto, CA:

  4. Hood River Passive House, Hood River, Oregon (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50%" (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  5. 3. Hydrogeomorphic Variability and River Restoration

    E-Print Network [OSTI]

    Montgomery, David R.

    . It is difficult to design effective stream and channel restoration measures, or evaluate project performance expansion of efforts in and expenditures for stream restoration. Increasingly, resto- ration efforts focus39 3. Hydrogeomorphic Variability and River Restoration D. R. MONTGOMERY1 AND S. M. BOLTON2

  6. assurance project plans: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and water resources, while supporting the Pecos River Compact by delivering water to Texas 4. Project Objectives: Planning for a possible candidate conservation agreement will...

  7. assurance project plan: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and water resources, while supporting the Pecos River Compact by delivering water to Texas 4. Project Objectives: Planning for a possible candidate conservation agreement will...

  8. assurance plan project: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and water resources, while supporting the Pecos River Compact by delivering water to Texas 4. Project Objectives: Planning for a possible candidate conservation agreement will...

  9. Environmental Management Construction Project Review of the Savannah...

    Broader source: Energy.gov (indexed) [DOE]

    Evaluations Activity Report for the Shadowing of the Environmental Management Construction Project Review of the Savannah River Site Salt Waste Processing Facility on July...

  10. Focused Review of the River Protection Project

    Broader source: Energy.gov (indexed) [DOE]

    changes in the CHG organizational structure and in key ORP and CHG management personnel. New personnel in critical positions, such as the ORP Manager; the ORP Assistant Manager for...

  11. River Corridor Closure Project Partnering Performance Agreement |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -DepartmentRetail DemandEnergyRisk Management

  12. Salt River Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to:Energysource History ViewJumpSaintSalmonSalt

  13. Undergraduate Opportunities: Currently Funded Projects | Savannah River

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence may

  14. Mary's River Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,JemezMissouri:MarshfieldMartinsville County, Virginia:

  15. River Corridor Closure Project Partnering Performance Agreement

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergy SmallImplementing theFinancing » Financing StructuresA l i cKerryRita

  16. Savannah River Site Waste Disposition Project

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmentalEfficiency |91-51-SW State SouthTerrel J. Spears

  17. Inventory of NMFS Fishery-Independent Surveys and Observations

    E-Print Network [OSTI]

    1 Inventory of NMFS Fishery-Independent Surveys and Observations Phase 1: A One-year Snapshot of Appendixes Appendix I. Inventory working group .............................................................. 22 Appendix II. Glossary for terms used in the inventory

  18. african pelagic fishery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    maximus) and porbeagle (Lamna nasus) were well established in northern areas (e.g. off Norway) in the early 20th century. Although targeted fisheries for basking shark have now...

  19. PARASITES OF SKIPJACK TUNA, KATSUWONUS PELAMIS: FISHERY IMPLICATIONS

    E-Print Network [OSTI]

    PARASITES OF SKIPJACK TUNA, KATSUWONUS PELAMIS: FISHERY IMPLICATIONS R. J. G. LESTER,' A. BARNES of the many examples see MacKenzie (1983). The skipjack tuna, Katsuwonus pelamis, is one of the most valuable

  20. American Fisheries Society Symposium 45:557585, 2005 2005 by the American Fisheries Society

    E-Print Network [OSTI]

    Bart Jr., Henry L. "Hank"

    * Corresponding author: mary_freeman@usgs.gov Status and Conservation of the Fish Fauna of the Alabama River System MARY C. FREEMAN* U.S. Geological Survey, Patuxent Wildlife Research Center, University of Georgia Chasse, Louisiana 70037, USA Abstract.--The Alabama River system, comprising the Alabama, Coosa

  1. Appendix 18 Excerpt from Return to the River, Chatper 5 (Williams et al.

    E-Print Network [OSTI]

    in the Columbia River Ecosystem. Northwest Power Planning Council Document 2000-12. Northwest Power Planning is one of the larger rivers of the world and also one of the most developed with ten major hydroelectric mainstems showing the major hydroelectric projects and the owner-operator of each project. #12;RETURN

  2. he importance of rivers and streams for fresh water, food, and recreation is well

    E-Print Network [OSTI]

    Allan, David

    (NRRSS) database. The NRRSS database includes all stream and river restoration projects present in national databases as of July 2004, as well as a large sample of river and stream restoration projects from defini- tion of restoration. No judgments were made of the validity of the terms "stream restora- tion

  3. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS.

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.

  4. Collaborative Systemwide Monitoring and Evaluation Project (CSMEP) - Year 5 : Annual Report for FY 2008.

    SciTech Connect (OSTI)

    Marmorek, David R.; Porter, Marc; Pickard, Darcy; Wieckowski, Katherine

    2008-11-19T23:59:59.000Z

    The Collaborative Systemwide Monitoring and Evaluation Project (CSMEP) is a coordinated effort to improve the quality, consistency, and focus of fish population and habitat data to answer key monitoring and evaluation questions relevant to major decisions in the Columbia River Basin. CSMEP was initiated by the Columbia Basin Fish and Wildlife Authority (CBFWA) in October 2003. The project is funded by the Bonneville Power Administration (BPA) through the Northwest Power and Conservation Council's Fish and Wildlife Program (NPCC). CSMEP is a major effort of the federal state and Tribal fish and wildlife managers to develop regionally integrated monitoring and evaluation (M&E) across the Columbia River Basin. CSMEP has focused its work on five monitoring domains: status and trends monitoring of populations and action effectiveness monitoring of habitat, harvest, hatcheries, and the hydrosystem. CSMEP's specific goals are to: (1) interact with federal, state and tribal programmatic and technical entities responsible for M&E of fish and wildlife, to ensure that work plans developed and executed under this project are well integrated with ongoing work by these entities; (2) document, integrate, and make available existing monitoring data on listed salmon, steelhead, bull trout and other fish species of concern; (3) critically assess strengths and weaknesses of these data for answering key monitoring questions; and (4) collaboratively design, implement and evaluate improved M&E methods with other programmatic entities in the Pacific Northwest. During FY2008 CSMEP biologists continued their reviews of the strengths and weaknesses (S&W) of existing subbasin inventory data for addressing monitoring questions about population status and trends at different spatial and temporal scales. Work was focused on Lower Columbia Chinook and steelhead, Snake River fall Chinook, Upper Columbia Spring Chinook and steelhead, and Middle Columbia River Chinook and steelhead. These FY2008 data assessments and others assembled over the years of the CSMEP project can be accessed on the CBFWA public website. The CSMEP web database (http://csmep.streamnet.org/) houses metadata inventories from S&W assessments of Columbia River Basin watersheds that were completed prior to FY2008. These older S&W assessments are maintained by StreamNet, but budget cutbacks prevented us from adding the new FY2008 assessments into the database. Progress was made in FY2008 on CSMEP's goals of collaborative design of improved M&E methods. CSMEP convened two monitoring design workshops in Portland (December 5 and 6, 2007 and February 11 and 12, 2008) to continue exploration of how best to integrate the most robust features of existing M&E programs with new approaches. CSMEP continued to build on this information to develop improved designs and analytical tools for monitoring the status and trends of fish populations and the effectiveness of hatchery and hydrosystem recovery actions within the Columbia River Basin. CSMEP did not do any new work on habitat or harvest effectiveness monitoring designs in FY2008 due to budget cutbacks. CSMEP presented the results of the Snake Basin Pilot Study to the Independent Scientific Review Panel (ISRP) in Portland on December 7, 2008. This study is the finalization of CSMEP's pilot exercise of developing design alternatives across different M&E domains within the Snake River Basin spring/summer Chinook ESU. This work has been summarized in two linked reports (CSMEP 2007a and CSMEP 2007b). CSMEP participants presented many of the analyses developed for the Snake Basin Pilot work at the Western Division American Fisheries Society (AFS) conference in Portland on May 4 to 7, 2008. For the AFS conference CSMEP organized a symposium on regional monitoring and evaluation approaches. A presentation on CSMEP's Cost Integration Database Tool and Salmon Viability Monitoring Simulation Model developed for the Snake Basin Pilot Study was also given to the Pacific Northwest Aquatic monitoring Partnership (PNAMP) stee

  5. TSSWCB Bacteria-Related Projects

    E-Print Network [OSTI]

    Wythe, Kathy

    2007-01-01T23:59:59.000Z

    of TMDL projects for water bodies where swimming or wading may be unsafe or harvesting of oysters is limited or prohibited due to high concentrations of bacteria. ? Atascosa River: A TMDL Project for Bacteria ? Buffalo andWhite Oak Bayous: A TMDL...

  6. Do Chinese Environmental Laws Work? A Study of Litigation as a Response to the Problem of Fishery Pollution in China

    E-Print Network [OSTI]

    McMullin, Joseph

    2009-01-01T23:59:59.000Z

    THE PROBLEM OF FISHERY POLLUTION IN CHINA Joseph McMullinlFishery Pollution in China II. Water Pollution in China: Its Overall Effects on

  7. A study to determine the feasibility of diverting a portion of the Red River into the Trinity, Neches and Sabine River basins 

    E-Print Network [OSTI]

    Cook, John Henry

    1967-01-01T23:59:59.000Z

    outlook ~Pt t 1 Trinity River Basin EconoInic outlook ~Pt t 1 Neches River Basin 10 10 Economic outlook 10 ~Pt t 1 Sabine River Basin Economic outlook 12 I I I. THE WATER RESOURCES DF THE NECHES AND RED RIVER BASINS 14 Neches River Basin 14..., '' is a general discussion of the economic factors as they are related to demand for water in each basin. In addition to a statewide outlook, a separate discussion for each basin is presented which includes future population projections. In closing...

  8. BIOLOGICAL INVESTIGATIONS OF THE FISHERY RESOURCES

    E-Print Network [OSTI]

    Steelhead trout · 40 Pacific lamprey .· 45 Salmon spawning bed surveys .. ...... 49 Nest measurements to a constant change in availability of gravel at various river flows* . · * · 55 12* Recommended fixed flow in that stream* ··**·····*·* 59 13* The effect of a fixed flow schedule for fish at Lewiston on the discharge

  9. MHK Projects/UEK Yukon River Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:Energy InformationSEAREV Pays deTreat IslandAK

  10. A Model of Fishery Harvests with a Voluntary Co-op

    E-Print Network [OSTI]

    Deacon, Robert T; Costello, Christopher J; Parker, Dominic P

    2008-01-01T23:59:59.000Z

    the Chignik Salmon Co-op. ” Mimeo, UCSB Department ofHarvest Rights to Fishery Co-operatives: Evidence fromFishery Harvests with a Voluntary Co-op Robert T. Deacon *

  11. Lake Chelan Fishery Management Plan Washington Department of Fish and Wildlife

    E-Print Network [OSTI]

    ........................................................... Monitoring changes in cutthroat and rainbow trout management........ Creel survey methods1 Appendix D Lake Chelan Fishery Management Plan Washington Department of Fish and Wildlife 2002 #12;2 LAKE CHELAN FISHERY MANAGEMENT PLAN TABLE OF CONTENTS ACKNOWLEDGEMENTS

  12. Adaptation Options for Agriculture, Forestry and Fisheries. A Report to the UNFCCC Secretariat

    E-Print Network [OSTI]

    McCarl, Bruce A.

    Climate change effects on agriculture, forestry, and fisheries...................................12 3 adaptation employed to offset climate change effects in an agricultural, forest and fisheries (AFF 4 Basic forms of Climate change adaptation

  13. Chesapeake Bay citizen monitoring program report: Conestoga River (October 1986-June 1990)

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    The Alliance for the Chesapeake Bay, Inc. (ACB) began a pilot water quality testing project using volunteers in July 1985 as one of the activities funded under its Chesapeake Bay Program public participation grant from USEPA. This initial project was carried out in the tidal portions of the James River in Virginia and the Patuxent River in Maryland. The major objective of the Conestoga River Citizen Monitoring Project is to track concentration of nitrate in the ambient waters of the Conestoga River with the intent of answering the questions: (1) Has the level of nitrate in the river changed over time; and (2) Is there a downward trend in observed nitrate. The report summarizes the water quality data collected by the Conestoga River volunteer monitors with particular emphasis on the concentration of nitrate.

  14. Sabine River Compact (Multiple States)

    Broader source: Energy.gov [DOE]

    The Sabine River Compact Commission administers the Sabine River Compact to ensure that Texas receives its equitable share of quality water from the Sabine River and its tributaries as apportioned...

  15. IS SN 0142-2499 MINISTRY OF AGRICULTURE FISHERIES AND FOOD

    E-Print Network [OSTI]

    IS SN 0142-2499 MINISTRY OF AGRICULTURE FISHERIES AND FOOD DIRECTORATE OF FISHERIES RESEARCH OF THE BRITISH ISLES, 1984 G..HUNT LOWESTOFT 1 9 8 5 #12;MINISTRY OF AGRICULTURE,FISHERIES AND FOOD DIRECTORATE 3.4 Methodsof interpretation 4. British Nuclear Fuels plc (BNFL) 4.1 Sellafield,Cumbria 4

  16. Fishery systems and linkages: from clockworks to soft watches Serge M. Garcia and Anthony T. Charles

    E-Print Network [OSTI]

    Charles, Anthony

    Fishery systems and linkages: from clockworks to soft watches Serge M. Garcia and Anthony T. Charles Garcia, S. M., and Charles, A. T. 2007. Fishery systems and linkages: from clockworks to soft watches. ­ ICES Journal of Marine Science, 64: 580­587. The complex systemic nature of fisheries has been

  17. Fisheries Utilization Research-50 Years in Retrospect, Part II: The Enduring Research Themes

    E-Print Network [OSTI]

    -produced fish. Finally, the fishery products used in pet foods are important as they relate to the health of millions of pets. In past years, I reviewed many reports of the fisheries chemists of the 1930's and 1940's not be said of botulism and several other unpleasant diseases related to fishery consumption

  18. The Development and Decline of Hawaii's Skipjack Tuna Fishery CHRISTOFER H. BOGGS and BERT S. KIKKAWA

    E-Print Network [OSTI]

    pelamis, was the largest commercial fishery in Hawaii. Annual pole-and-line landings of skipjack tuna, I Bert S. Kikkawa. An update of the skipjack tuna, Katsuwonus pelamis, baitboat fishery in Hawaii-2396, unpub!. manuscr. ABSTRACT-The pole-and-line fishery for skipjack tuna, Katsuwonus pelamis

  19. River Edge Redevelopment Zone (Illinois)

    Broader source: Energy.gov [DOE]

    The purpose of the River Edge Redevelopment Program is to revive and redevelop environmentally challenged properties adjacent to rivers in Illinois.

  20. Valuation and the consequences of multiple sources of environmental deterioration: The case of the New York striped bass fishery

    SciTech Connect (OSTI)

    Kahn, J.R. (Univ. of Tennessee, Knoxville, TN (United States)); Buerger, R.B. (Univ. of North Carolina, Wilmington, NC (United States))

    1994-03-01T23:59:59.000Z

    This paper examines two sources of environmental degradation in the New York striped bass fishery. The first is the decline in environmental quality in the Chesapeake Bay, the spawning ground for the majority of fish in New York waters. The second is the PCB contamination of striped bass from the Hudson River, the other primary spawning ground for striped bass in New York waters. The paper develops methodologies for examining loss in economic value, when the loss stems from two sources. The estimates resulting from the application of these methodologies suggest that the general deterioration of the Chesapeake Bay generated 2[center dot]3 to 7[center dot]7 million dollars in annual losses to the New York striped bass fishery, and that the annual losses from PCB contamination of the Hudson striped bass are between 0[center dot]745 and 3[center dot]7 million dollars. The paper also discusses how the dual sources of degradation generate barriers to the formation of effective management policy, and develops policy recommendations based on the estimated losses. 9 refs., 8 figs., 8 tabs.