Powered by Deep Web Technologies
Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Ecotoxicology | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It is the mission ofEconomicSavannah River

2

Applicability of 10 CFR 851 to Savannah River Ecology Laboratory  

Broader source: Energy.gov [DOE]

Letter from Bruce Diamond, Assistant General Counsel for Environment, DOE, dated November 24, 2007 to Mr. Bertsch, Director and Professor, Savannah River Ecology Laboratory, regarding Savannah Riber Ecology Laboratory's Request for Interpretive Ruling under 10 CFR 851.

3

Savannah River Ecology Laboratory 2005 Annual Technical Progress Report  

SciTech Connect (OSTI)

2005 annual report of research conducted by the Savannah River Ecology Laboratory, a research unit of The University of Georgia operating on the Savannah River Site, Aiken, South Carolina

Paul M. Bertsch

2005-07-19T23:59:59.000Z

4

Savannah River Ecology Laboratory FY2006 Annual Technical Progress Report  

SciTech Connect (OSTI)

FY2006 annual report of research conducted by the Savannah River Ecology Laboratory, a research unit of the University of Georgia operating on the Savannah River Site in Aiken, County, SC.

Paul M. Bertsch

2006-10-23T23:59:59.000Z

5

Savannah River Ecology Laboratory 2004 Annual Technical Progress Report  

SciTech Connect (OSTI)

2004 annual report of research conducted by the Savannah River Ecology Laboratory, a research unit of The University of Georgia operating on the Savannah River Site in Aiken, South Carolina

Paul M. Bertsch

2004-07-29T23:59:59.000Z

6

A Publication of the Savannah River Ecology Laboratory National Environmental Research Park Program  

E-Print Network [OSTI]

, ".' .-.' .; . " c. ':-, A Publication of the Savannah River Ecology Laboratory National Laboratory A Publication of the Savannah River National Environmental Research Park 1988 , Present Address, 1988 Copies my be obtained from Savannah River Ecology Laboratory #12;#12;SEASONAL DYNAMICS OFBENTHIC

Georgia, University of

7

Beasley Lab | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground8.0.1Vulture Spatial Ecology camouflaged

8

Beasley Lab | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground8.0.1Vulture Spatial Ecology camouflagedGray

9

Opportunies for Students | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat CornellInternships,(SC) Laboratories » OPM HomeEducation

10

A Publication of the Savannah River Ecology Laboratory National Environmental Research Park Program  

E-Print Network [OSTI]

A Publication of the Savannah River Ecology Laboratory National Environmental Research Park Program of the Savannah River Site National Environmental Research Park Program SRO-NERP-28 2005 Prepared under the auspices of The University of Georgia Savannah River Ecology Laboratory P.O. Drawer E Aiken, South Carolina

Georgia, University of

11

Environmental audit of the Savannah River Ecology Laboratory (SREL)  

SciTech Connect (OSTI)

This report documents the results of the environmental audit conducted at the Savannah River Ecology Laboratory (SREL) at the Savannah River Site (SRS), principally in Aiken and Barnwell Counties, South Carolina. The audit was conducted by the US Department of Energy`s (DOE`s), Office of Environmental Audit (EH-24), beginning September 13, 1993, and ending September 23, 1993. The scope of the audit at SREL was comprehensive, addressing environmental activities in the technical areas of air; surface water/drinking water; groundwater/soil, sediment, and biota; waste management; toxic and chemical materials; inactive Waste sites; radiation; quality assurance; and environmental management. Specifically assessed was the compliance of SREL operations and activities with Federal, state, and local regulations; DOE Orders; and best management practices.

Not Available

1993-09-01T23:59:59.000Z

12

Savannah River Ecology Laboratory. Annual technical progress report of ecological research, period ending July 31, 1994  

SciTech Connect (OSTI)

The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) that is managed in conjunction with the University`s Institute of Ecology. The laboratory`s overall mission is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under an M&O contract with the US Department of Energy at the Savannah River Site. Significant accomplishments were made during the year ending July 31, 1994 in the areas of research, education and service. Reviewed in this document are research projects in the following areas: Environmental Operations Support (impacted wetlands, streams, trace organics, radioecology, database synthesis, wild life studies, zooplankton, safety and quality assurance); wood stork foraging and breeding ecology; defence waste processing facility; environmental risk assessment (endangered species, fish, ash basin studies); ecosystem alteration by chemical pollutants; wetlands systems; biodiversity on the SRS; Environmental toxicology; environmental outreach and education; Par Pond drawdown studies in wildlife and fish and metals; theoretical ecology; DOE-SR National Environmental Research Park; wildlife studies. Summaries of educational programs and publications are also give.

Not Available

1994-07-31T23:59:59.000Z

13

Savannah River Ecology Laboratory. Annual technical progress report of ecological research  

SciTech Connect (OSTI)

The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory`s research mission was fulfilled with the publication of two books and 143 journal articles and book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL).

Smith, M.H.

1996-07-31T23:59:59.000Z

14

Savannah River Ecology Laboratory, annual technical progress report of ecological research for the year ending June 30, 1998  

SciTech Connect (OSTI)

This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.

Wein, G.; Rosier, B.

1998-12-31T23:59:59.000Z

15

Savannah River Ecology Laboratory, annual technical progress report of ecological research for the year ending June 30, 1997  

SciTech Connect (OSTI)

This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.

Wein, G.; Rosier, B.

1997-12-31T23:59:59.000Z

16

Savannah River Ecology Laboratory annual technical progress report of ecological research, period ending July 31, 1993  

SciTech Connect (OSTI)

This progress report gives an overview of research programs at the Savannah River Site. Topics include; environmental operations support, wood stork foraging and breeding, defense waste processing, environmental stresses, alterations in the environment due to pollutants, wetland ecology, biodiversity, pond drawdown studies, and environmental toxicology.

Vaitkus, M.R.; Wein, G.R. [eds.; Johnson, G.

1993-11-01T23:59:59.000Z

17

Savannah River Ecology Laboratory annual technical progress report of ecological research for the year ending July 31, 1995  

SciTech Connect (OSTI)

The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the US Department of Energy (DOE) at the Savannah River Site near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. Major additions to SREL Facilities were completed that will enhance the Laboratory`s work in the future. Following several years of planning, opening ceremonies were held for the 5000 ft{sup 2} multi-purpose conference center that was funded by the University of Georgia Research Foundation (UGARF). The center is located on 68 acres of land that was provided by the US Department of Energy. This joint effort between DOE and UGARF supports DOE`s new initiative to develop partnerships with the private sector and universities. The facility is being used for scientific meetings and environmental education programs for students, teachers and the general public. A 6000 ft{sup 2} office and library addition to S@s main building officially opened this year, and construction plans are underway on a new animal care facility, laboratory addition, and receiving building.

Smith, M.H.

1995-07-01T23:59:59.000Z

18

This information is provided by Savannah River Ecology Laboratory Outreach and SPARC. For more information, call (803) 725-0156.  

E-Print Network [OSTI]

This information is provided by Savannah River Ecology Laboratory Outreach and SPARC. For more National Park, I took a trip to Miami to catch iguanas, the "big game" of the lizard species, inhabiting

Georgia, University of

19

O. E. Rhodes, Jr. | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohnSecurityControls |NavyNuclearLife Users andO.Rhodes

20

Opportunities for Field Research | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat CornellInternships,(SC) Laboratories » OPMOpportunities for

Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

ECOLOGY LABORATORY BIOLOGY 341  

E-Print Network [OSTI]

Page 1 ECOLOGY LABORATORY BIOLOGY 341 Fall Semester 2008 Bighorn Sheep Rams at Bison Range National ecological data; and 3) oral and written communication skills. Thus, these ecology labs, and statistical analyses appropriate for ecological data. A major goal of this class will be for you to gain

Vonessen, Nikolaus

22

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|Physics ResearchLCLS Sign In Launch

23

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011 6.28 HumanSarah12 /

24

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011 6.28 HumanSarah12 /Risher

25

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011 6.28 HumanSarah12

26

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011 6.28 HumanSarah122 This

27

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011 6.28 HumanSarah122

28

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011 6.28 HumanSarah122Mature

29

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011 6.28

30

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011 6.28Rainbow Bay Amphibian

31

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011 6.28Rainbow Bay

32

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011 6.28Rainbow BayBoiling

33

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011 6.28Rainbow

34

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011 6.28RainbowUniversity of

35

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011 6.28RainbowUniversity

36

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011

37

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011Little Cypress Bay This

38

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011Little Cypress Bay ThisDry

39

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011Little Cypress Bay

40

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011Little Cypress BayMona Bay

Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011Little Cypress BayMona

42

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011Little Cypress BayMonaRoad

43

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011Little Cypress

44

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011Little CypressScrub Oak

45

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011Little CypressScrub OakSite

46

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011Little CypressScrub

47

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011Little CypressScrubLoblolly

48

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011Little

49

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011LittleBeech-Hardwood Forest

50

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011LittleBeech-Hardwood

51

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011LittleBeech-HardwoodSteel

52

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8

53

The Ecology of the Navasota River, Texas  

E-Print Network [OSTI]

COLLEGE OF AGRICULTURE AND LIFE SCIENCES TR-44 1973 The Ecology of the Navasota River, Texas By: William J. Clark Texas Water Resources Institute Technical Report No. 44 Texas A&M University System...

Clark, W. J.

54

Enforcement Documents - Savannah River Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the Savannah River Site (EA-2000-08) June 7, 2000 Enforcement Letter, Savannah River Ecology Laboratory - June 7, 2000 Issued to Savannah River Ecology Laboratory related to...

55

New Laboratory Complex Department of Global Ecology  

E-Print Network [OSTI]

, and associated facilities to house its new Department of Global Ecology. The buildings, located on the campus1 New Laboratory Complex Department of Global Ecology Carnegie Institution of Washington Stanford Ecology will conduct basic research and training on large-scale interactions between ecological systems

56

Reprints | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNewsCenterandGasAlternatingRenewable RFPSREL

57

Research | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome toResearch AreasResearch Gene Odum forest sampling

58

Employment | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It is the|ResourcesCareersEmployment

59

Mills Laboratory | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA3,0 Alabama - Natural Gas 201328.1 64.1.33.0 8.0

60

Savannah River Laboratory monthly report, November 1991  

SciTech Connect (OSTI)

This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

Ferrell, J.M. (comp.)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Savannah River Laboratory monthly report, November 1991  

SciTech Connect (OSTI)

This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

Ferrell, J.M. [comp.

1991-12-31T23:59:59.000Z

62

Savannah River Laboratory monthly report, August 1991  

SciTech Connect (OSTI)

This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

Ferrell, J.M. [comp.

1991-12-31T23:59:59.000Z

63

Savannah River Laboratory monthly report, August 1991  

SciTech Connect (OSTI)

This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

Ferrell, J.M. (comp.)

1991-01-01T23:59:59.000Z

64

Savannah River Laboratory monthly report, February 1992  

SciTech Connect (OSTI)

This report is a progress report for the Savannah River Laboratory for the month of February 1992. The progress and activities in six categories were described in the report. The categories are reactor, tritium, separations, environmental, waste management, and general. Each category described numerous and varied activities. Some examples of these activities described are such things as radiation monitoring, maintenance, modifications, and remedial action.

Ferrell, J.M. (comp.); Ice, L.W. (ed.)

1992-02-01T23:59:59.000Z

65

Kelsey Turner | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kelsey Turner SREL Graduate Program Warnell School of Forestry & Nat. Res. Kelsey Turner Masters Student Beasley Lab Kelsey is currently working as a Research Technician for Dr....

66

Greg Skupien | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermalGoGreen EngineeringGreg

67

I. Lehr Brisbin | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasics Hydropower BasicsDepartmentBrisbin Faculty

68

Thomas G. Hinton | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScienceThe43068

69

Tracey Tuberville | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler Tina ButlerToday inm"Topo II:TowardsToyotaTuberville

70

Tuberville Lab Personnel | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation6/14/11 Page 1 of 17 PrintedLab Personnel

71

Rebecca Sharitz | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1PrincipalRare |Real-TimeRebeccaSharitz

72

Rich Biemiller | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter ResourcesReviews andanemia,Rich

73

Airports & Lodging | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuelAbout UsAdvisory Panels SSRLAirports and

74

Research Facilities | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome toResearch Areas Our VisionResearch Facilities In

75

Robert A. Kennamer | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »SubmitterJ. Norby (2007)RisingofRoark

76

J. Whitfield Gibbons | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for andFuel-Efficient EnginesJ. Michael Ramsey

77

James Beasley | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for andFuel-EfficientJeffersonAna Moore Anne JonesBeasley

78

John Seaman | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologies |JenniferB. Storer

79

Judith L. Greene | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologiesDialysis Provider inAstrophysics -17Greene

80

Justin D. Congdon | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologiesDialysis Provider3 | National64to5Just

Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Kimberly Andrews | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs & Graduates >Pearson d3l178 PrimaryAndrews

82

Kurt Buhlmann | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs & Graduates >PearsonKlausKristynBuhlmann

83

Beasley Lab | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground8.0.1 PrintTemperatures Energy:Welcome to the

84

Beasley Lab | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground8.0.1 PrintTemperatures Energy:Welcome to

85

Beasley Lab | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground8.0.1 PrintTemperatures Energy:Welcome

86

Beasley Lab | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground8.0.1 PrintTemperatures Energy:WelcomeField

87

Beasley Lab | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground8.0.1 PrintTemperatures

88

Beasley Lab | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground8.0.1 PrintTemperaturesGallery Coming soon

89

Beasley Lab | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground8.0.1 PrintTemperaturesGallery Coming soonLab

90

Beasley Lab | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground8.0.1 PrintTemperaturesGallery Coming

91

Beasley Lab | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground8.0.1 PrintTemperaturesGallery ComingRecent

92

Beasley Lab | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground8.0.1 PrintTemperaturesGallery

93

Beasley Lab | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground8.0.1 PrintTemperaturesGalleryScavenging

94

Beasley Lab | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground8.0.1

95

David E. Scott | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINL is aID Service FirstMeetingsADavidScott

96

Dean E. Fletcher | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINL is aIDDaylighting DaylightingFletcher

97

Domy C. Adriano | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct:Directives Templates8. U.S. uraniumDomestic production

98

Educational Materials | Savannah River Ecology Laboratory Environmental  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for the Future ofTroubleStrategicOutreach Program

99

Erin Abernethy | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial Thin Film XRD Epitaxial Thin FilmErin Abernethy SREL

100

Erin Abernethy | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial Thin Film XRD Epitaxial Thin FilmErin Abernethy

Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Rebecca Sharitz: Publications | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, andEpidermalOxideSelected Publications (My full C.V.

102

Rebecca Sharitz: Research | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, andEpidermalOxideSelected Publications (My full

103

Rebecca Sharitz: Teaching | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, andEpidermalOxideSelected Publications (My

104

Graduate Program | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCIResearch toAboutPolicies About ESnetGraduate

105

In the News | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign In AboutIn the News 2015In the

106

Make a Gift | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMissionreal-time information TourTourAnaloguesOurMake a

107

Maps and Directions | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMissionreal-time informationScience &Maps Maps

108

Savannah River Ecology Laboratory - Outreach Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8

109

Savannah River Ecology Laboratory - Outreach Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8

110

Savannah River Ecology Laboratory - Outreach Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8

111

Savannah River Ecology Laboratory - Outreach Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8

112

Tuberville Lab Home | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2TopoPortalBRDF EffectsPacific: A Year WIPPseeking

113

Tuberville Lab Opportunities | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2TopoPortalBRDF EffectsPacific: A Year

114

Tuberville Lab Opportunities | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2TopoPortalBRDF EffectsPacific: A YearResearch

115

Tuberville Lab Publications | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2TopoPortalBRDF EffectsPacific: A

116

Beasley Lab | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I. Ben-Zvi, P.2.2 Beamline21 Print21Graduate

117

Becca Philipps | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I. Ben-Zvi, P.2.2 Beamline21 Print21GraduateBecca

118

Ecoviews Archives | Savannah River Ecology Laboratory Environmental  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutronEnvironmentZIRKLE FRUITYear 1 Winners

119

Educational Materials | Savannah River Ecology Laboratory Environmental  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutronEnvironmentZIRKLE FRUITYear 1 WinnersEdEducation6 FY2007

120

Gary Mills | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note:ComputingFusionSanGEStatus o f

Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Conference Center | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporous MaterialsComplianceOrganizationConference Center

122

Faculty and Scientists | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERP SubmitScienceastheFactFaculty

123

Larry Bryan | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space CombinedValues ParticipantsDepartmentBryan

124

Linda Lee | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocsCenterCenter (LMI-EFRC) -PrinciplesLee Faculty

125

Melissa Pilgrim | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey

126

Michael E. Dorcas | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubeyChallengeMetal &Michael Dopheide

127

Savannah Harris | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialstheterahertz sourcesSatellite storiesExpansion

128

Shem D. Unger | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlightsSeminars SeminarsO'Leary d3j906

129

Peter Stangel | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design Passive Solar Home Design SystemAndresen

130

Undergraduate Program | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled

131

Upcoming Seminars | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEIResearch

132

Visitor Security Requirements | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome VelenciaNews Careers WorkVisitor Security

133

Stacey Lance | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus Tom Fletcher,FutureNanostructuredSPRING NEWSUnder HeavyLance

134

Behavioural Ecology Field Course Mols Laboratories, Denmark 2007  

E-Print Network [OSTI]

1 REPORTS Behavioural Ecology Field Course Mols Laboratories, Denmark 2007 Teachers: Dr. Trine ................................................................................................................................... 64 Receptor based feeding preferences; An investigation of the taste perception of three classes ............................................................................................................................ 79 Taste perception in the wood ant, Formica rufa Jeppe Jensen

Hamburg,.Universität

135

SAVANNAH RIVER NATIONAL LABORATORY HYDROGEN TECHNOLOGY RESEARCH  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E

2008-02-08T23:59:59.000Z

136

Ecology Fact Sheets | Savannah River Ecology Laboratory Environmental  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutronEnvironmentZIRKLE FRUITYear 1 Winners Announced! EcoCAR 2Outreach

137

Savannah River Site Vegetation Map | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialstheterahertz sourcesSatelliteSRSAiken.

138

Guide to Savannah River Laboratory Analytical Services Group  

SciTech Connect (OSTI)

The mission of the Analytical Services Group (ASG) is to provide analytical support for Savannah River Laboratory Research and Development Programs using onsite and offsite analytical labs as resources. A second mission is to provide Savannah River Site (SRS) operations with analytical support for nonroutine material characterization or special chemical analyses. The ASG provides backup support for the SRS process control labs as necessary.

Not Available

1990-04-01T23:59:59.000Z

139

Baseline ecological footprint of Sandia National Laboratories, New Mexico.  

SciTech Connect (OSTI)

The Ecological Footprint Model is a mechanism for measuring the environmental effects of operations at Sandia National Laboratories in Albuquerque, New Mexico (SNL/NM). This analysis quantifies environmental impact associated with energy use, transportation, waste, land use, and water consumption at SNL/NM for fiscal year 2005 (FY05). Since SNL/NM's total ecological footprint (96,434 gha) is greater than the waste absorption capacity of its landholdings (338 gha), it created an ecological deficit of 96,096 gha. This deficit is equal to 886,470lha, or about 3,423 square miles of Pinyon-Juniper woodlands and desert grassland. 89% of the ecological footprint can be attributed to energy use, indicating that in order to mitigate environmental impact, efforts should be focused on energy efficiency, energy reduction, and the incorporation of additional renewable energy alternatives at SNL/NM.

Coplen, Amy K.; Mizner, Jack Harry,; Ubechel, Norion M.

2009-01-01T23:59:59.000Z

140

Savannah River Technology Center (SRTC) Designated as a National Laboratory  

Broader source: Energy.gov [DOE]

In 2004, the Secretary of Energy designated SRTC as a national laboratory based on its contributions and important role it has played in both energy and defense programs of the United States. The lab was also renamed the Savannah River National Laboratory (SRNL).

Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

DATA RECOVERY EFFORTS AT IDAHO NATIONAL LABORATORY, OAK RIDGE NATIONAL LABORATORY, AND SAVANNAH RIVER NATIONAL LABORATORY  

SciTech Connect (OSTI)

Abstract was already submitted. Could not find the previous number. Would be fine with attaching/update of old number. Abstract Below: Modern nuclear facilities will have significant process monitoring capability for their operators. These systems will also be used for domestic safeguards applications, which has led to research over new diversion-detection algorithms. Curiously missing from these efforts are verification and validation data sets. A tri-laboratory project to locate the existing data sets and recover their data has yielded three major potential sources of data. The first is recovery of the process monitoring data of the Idaho Chemical Processing Plant, which now has a distributable package for algorithm developers. The second data set is extensive sampling and process data from Savannah River National Laboratorys F- and H-canyon sites. Finally, high fidelity data from the start-up tests at the Barnwell Reprocessing Facility is in recovery. This paper details the data sets and compares their relative attributes.

Richard Metcalf; Saleem Salaymeh; Michael Ehinger

2010-07-01T23:59:59.000Z

142

Seasonality and midscale spatial effects on Cichla ecology and fish species diversity in a neotropical floodplain river  

E-Print Network [OSTI]

The influence of seasonal fluctuations in water levels on tropical fish species from fluvial environments was evaluated by comparing the ecology of resident piscivores and habitat use of prey fish within a floodplain river. Ecological data were...

Jepsen, David Brice

2012-06-07T23:59:59.000Z

143

A PUBLICATION OF DOE'S SAVANNAH RIVER SITE NATIONAL ENVIRONMENTAL RESEARCH PARK  

E-Print Network [OSTI]

#12;A PUBLICATION OF DOE'S SAVANNAH RIVER SITE NATIONAL ENVIRONMENTAL RESEARCH PARK April 1990 River Ecology Laboratory Drawer E Aiken, SC 29802 USA #12;VEGETATION OF THE SAVANNAH RIVER SITE: MAJOR COMMUNITY TYPES Sarah W. Workman Kenneth W. McLeod Savannah River Ecology Laboratory A Publication

Georgia, University of

144

"The Father of Modern Ecology" --1913 Born in Newport, New Hampshire, on 17 September while parent on vacation  

E-Print Network [OSTI]

into the Savannah River Ecology Laboratory --1953: publishes the first edition of his Fundamentals of Ecology on the subject U.S. Department of Energy Savannah River Ecology Laboratory Aiken, South Carolina ­ UGA facility of the National Academy of Sciences --1974: receives the Ecological Society of America's Eminent Ecologist award

Jodice, Patrick

145

2010 Ecological Survey of the Pacific Northwest National Laboratory Site  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Pacific Northwest Site Office (PNSO) oversees and manages the DOE contract for the Pacific Northwest National Laboratory (PNNL), a DOE Office of Science multi-program laboratory located in Richland, Washington. PNSO is responsible for ensuring that all activities conducted on the PNNL Site comply with applicable laws, policies, and DOE orders. The DOE Pacific Northwest Site Office Cultural and Biological Resources Management Plan (DOE/PNSO 2008) addresses the requirement for annual surveys and monitoring for species of concern and to identify and map invasive species. In addition to the requirement for an annual survey, proposed project activities must be reviewed to assess any potential environmental consequences of conducting the project. The assessment process requires a thorough understanding of the resources present, the potential impacts of a proposed action to those resources, and the ultimate consequences of those actions. The PNNL Site is situated on the southeastern corner of the DOE Hanford Site, located at the north end of the city of Richland in south-central Washington. The site is bordered on the east by the Columbia River, on the west by Stevens Drive, and on the north by the Hanford Site 300 Area (Figure 1). The environmental setting of the PNNL Site is described in Larson and Downs (2009). There are currently two facilities on the PNNL Site: the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), and the recently completed Physical Sciences Facility (PSF). This report describes the results of the annual survey of the biological resources found on the undeveloped portions of the PNNL Site in 2010. A brief description of the methods PNNL ecologists used to conduct the surveys and the results of the surveys are presented. Actions taken to fully delineate noxious weed populations discovered in 2009 and efforts in 2010 to control those weeds also are described. Appendix A provides a list of plant and animal species identified on the PNNL Site.

Chamness, Michele A.; Perry, Christopher; Downs, Janelle L.; Powell, Sylvia D.

2011-02-16T23:59:59.000Z

146

TESTING OF THE RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY  

SciTech Connect (OSTI)

The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, nonelectrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. Positive results from initial deployment trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and the anticipated future potential use of RadBall throughout the U.S. Department of Energy Complex have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further test, underpin, and strengthen the technical performance of the technology. The study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment were successful in that for each trial radiation tracks were visible. The deployment of RadBall can be accomplished in different ways depending on the size and characteristics of the contaminated area (e.g., a hot cell that already has a crane/manipulator available or highly contaminated room that requires the use of a remote control device with sensor and video equipment to position RadBall). This report also presents SRNL-designed RadBall accessories for future RadBall deployment (a harness, PODS, and robot).

Farfan, E.; Foley, T.

2010-02-10T23:59:59.000Z

147

Savannah River Ecology Laboratory Annual Technical Progress Report  

Office of Scientific and Technical Information (OSTI)

AND RISK ASSESSMENT (ETRRA) . 21 Cycling of Mercury in SRS Waters and Accumulation by Fish; Effects of Heavy Metals on Biota . . . . . . . . . . . . . . . . . . . . . . . . . . ....

148

Hyun-shik Chang | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasics Hydropower Basics ContentHydropower,Chang

149

Savannah River Ecology Laboratory Annual Technical Progress Report  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: CrystalFG36-08GO18149SpeedingRenewable Energy Agricultural

150

J Vaun McArthur | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for andFuel-Efficient Engines |IronIvarMcArthur Faculty

151

Kenneth W. McLeod | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs & Graduates > The Energy

152

DOE Research Set-Aside Program | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublicDNALostPlasma PhysicsDOE Plans2 DOESRS

153

Enforcement Letter, Savannah River Ecology Laboratory - June 7, 2000 |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClick onDepartmentEnergy May 15,

154

EcoTalks | Savannah River Ecology Laboratory Environmental Outreach Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for the Future of DOEEarth Videos3 2.484

155

Ecologist for a Day | Savannah River Ecology Laboratory Environmental  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for the Future of DOEEarth Videos3Outreach

156

Exhibits | Savannah River Ecology Laboratory Environmental Outreach Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial Thin Film XRDEvanExecutiveSRD-13 1Exhibits About

157

Home | Savannah River Ecology Laboratory Environmental Outreach Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portal SolarAbout Energy.gov

158

Low Dose Irradiation Facility | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMission StatementCenterTri-Party Agreement

159

Ecologist for a Day Photo Album | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutronEnvironmentZIRKLE FRUITYear 1 Winners Announced! EcoCAR 2

160

Microsatellite DNA Development Service | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fundProject Quarterly ReportsMicrofluidicThis page has moved

Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Savannah River Ecology Laboratory - Touch An Animal Day 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialstheterahertz sourcesSatellite storiesExpansion

162

Savannah River National Laboratory Celebrates More Than 60 Years of Innovation  

Broader source: Energy.gov [DOE]

AIKEN, S.C. EMs Savannah River National Laboratory (SRNL) is celebrating its first 10 years as a national laboratory and over 60 years of dedicated service to the country.

163

2011 Annual Ecological Survey: Pacific Northwest National Laboratory Site  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Pacific Northwest Site Office (PNSO) oversees and manages the DOE contract for the Pacific Northwest National Laboratory (PNNL), a DOE Office of Science multi-program laboratory located in Richland, Washington. PNSO is responsible for ensuring that all activities conducted on the PNNL site comply with applicable laws, policies, and DOE Orders. The DOE Pacific Northwest Site Office Cultural and Biological Resources Management Plan (DOE/PNSO 2008) addresses the requirement for annual surveys and monitoring for species of concern and to identify and map invasive species. In addition to the requirement for an annual survey, proposed project activities must be reviewed to assess any potential environmental consequences of conducting the project. The assessment process requires a thorough understanding of the resources present, the potential impacts of a proposed action to those resources, and the ultimate consequences of those actions. The PNNL site is situated on the southeastern corner of the DOE Hanford Site, located at the north end of the city of Richland in south-central Washington. The site is bordered on the east by the Columbia River, on the west by Stevens Drive, and on the north by the Hanford Site 300 Area (Figure 1). The environmental setting of the PNNL site is described in Larson and Downs (2009). There are currently two facilities on the PNNL site: the William R. Wiley Environmental Molecular Sciences Laboratory and the Physical Sciences Facility. This report describes the annual survey of biological resources found on the undeveloped upland portions of the PNNL site. The annual survey is comprised of a series of individual field surveys conducted on various days in late May and throughout June 2011. A brief description of the methods PNNL ecologists used to conduct the baseline surveys and a summary of the results of the surveys are presented. Appendix A provides a list of plant and animal species identified in the upland areas of the PNNL site in 2011. Efforts in 2011 to control noxious weed populations (comprising plant species designated as Class B noxious weeds by the Washington State Noxious Weed Control Board) discovered in 2009 and initially treated with herbicides in 2010 are described in Appendix B.

Becker, James M.; Chamness, Michele A.

2012-02-27T23:59:59.000Z

164

Industrial ecology at Lawrence Livermore National Laboratory summary statement  

SciTech Connect (OSTI)

At Livermore our hope and our intention is to make important contributions to global sustainability by basing both our scientific and technological research and our business practices on the principles of industrial ecology. Current efforts in the following fields are documented: global security, global ecology, energy for transportation, fusion energy, materials sciences, environmental technology, and bioscience.

Gilmartin, T.J.

1996-06-04T23:59:59.000Z

165

HYDROGEN TECHNOLOGY RESEARCH AT THE SAVANNAH RIVER NATIONAL LABORATORY  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E

2009-03-02T23:59:59.000Z

166

Ecological interactions between hatchery summer steelhead and wild Oncorhynchus mykiss in the Willamette River basin, 2014  

SciTech Connect (OSTI)

The purpose of this study was to determine the extent to which juvenile hatchery summer steelhead and wild winter steelhead overlap in space and time, to evaluate the extent of residualism among hatchery summer steelhead in the South Santiam River, and to evaluate the potential for negative ecological interactions among hatchery summer steelhead and wild winter steelhead. Because it is not possible to visually discern juvenile winter steelhead from resident rainbow trout, we treated all adipose-intact juvenile O. mykiss as one group that represented juvenile wild winter steelhead. The 2014 study objectives were to 1) estimate the proportion of hatchery summer steelhead that residualized in the South Santiam River in 2014, 2) determine the extent to which hatchery and naturally produced O. mykiss overlapped in space and time in the South Santiam River, and 3) characterize the behavioral interactions between hatchery-origin juvenile summer steelhead and naturally produced O. mykiss. We used a combination of radio telemetry and direct observations (i.e., snorkeling) to determine the potential for negative interactions between hatchery summer and wild winter steelhead juveniles in the South Santiam River. Data collected from these two independent methods indicated that a significant portion of the hatchery summer steelhead released as smolts did not rapidly emigrate from the South Santiam River in 2014. Of the 164 radio-tagged steelhead that volitionally left the hatchery, only 66 (40.2%) were detected outside of the South Santiam River. Forty-four (26.8% of 164) of the radio-tagged hatchery summer steelhead successfully emigrated to Willamette Falls. Thus, the last known location of the majority of the tagged fish (98 of 164 = 59.8%) was in the South Santiam River. Thirty-three of the tagged hatchery steelhead were detected in the South Santiam River during mobile-tracking surveys. Of those, 21 were found to be alive in the South Santiam River over three months after their release, representing a residualization rate of 12.8% (21 of 164). Snorkeling revealed considerable overlap of habitat use (in space and time) by residual hatchery steelhead and naturally produced O. mykiss in the South Santiam River. Results from our study (and others) also indicated that hatchery steelhead juveniles typically dominate interactions with naturally produced O. mykiss juveniles. The overlap in space and time, combined with the competitive advantage that residual hatchery steelhead appear to have over naturally produced O. mykiss, increases the potential for negative ecological interactions that could have population-level effects on the wild winter steelhead population of the South Santiam River.

Harnish, Ryan A.; Green, Ethan D.; Vernon, Christopher R.; Mcmichael, Geoffrey A.

2014-12-23T23:59:59.000Z

167

Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008 Annual Report.  

SciTech Connect (OSTI)

The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington. The overarching goal of the TFM project is to bridge the gap in knowledge between tidal freshwater habitats and the early life history attributes of migrating salmon. The research questions include: In what types of habitats within the tidal freshwater area of the Columbia River are juvenile salmon found, when are they present, and under what environmental conditions? What is the ecological contribution of shallow (0-5 m) tidal freshwater habitats to the recovery of ESA-listed salmon in the Columbia River basin? Field data collection for the TFM project commenced in June 2007 and since then has continued monthly at six to nine sites in the vicinity of the Sandy River delta (river kilometer 192-208). While this report includes summary data spanning the 19-month period of study from June 2007 through December 2008, it highlights sampling conducted during calendar year 2008. Detailed data for calendar year 2007 were reported previously. The 2008 research objectives were as follows: (1) Characterize the vegetation composition and percent cover, conventional water quality, water surface elevation, substrate composition, bathymetry, and beach slope at the study sites within the vicinity of the Sandy River delta. (2) Characterize the fish community and juvenile salmon migration, including species composition, length-frequency distribution, density (number/m{sup 2}), and temporal and spatial distributions in the vicinity of the Sandy River delta in the lower Columbia River and estuary (LCRE). (3) Determine the stock of origin for juvenile Chinook salmon (Oncorhynchus tshawytscha) captured at sampling sites through genetic identification. (4) Characterize the diets of juvenile Chinook and coho (O. kisutch) salmon captured within the study area. (5) Estimate run timing, residence times, and migration pathways for acoustic-tagged fish in the study area. (6) Conduct a baseline evaluation of the potential restoration to reconnect the old Sandy River channel with the delta. (7) Apply fish density data to initiate a design for a juvenile salmon monitoring program for beach habitats within the tidal freshwater segment of the LCRE (river kilometer 56-234).

Sather, NK; Johnson, GE; Storch, AJ [Pacific Northwest National Laboratory

2009-07-06T23:59:59.000Z

168

CONTROL TESTING OF THE UK NATIONAL NUCLEAR LABORATORY'S RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY  

SciTech Connect (OSTI)

The UK National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. To date, the RadBall has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK. The trials have demonstrated the successful ability of the RadBall technology to be deployed and retrieved from active areas. The positive results from these initial deployment trials and the anticipated future potential of RadBall have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further underpin and strengthen the technical performance of the technology. RadBall consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. It has no power requirements and can be positioned in tight or hard-to reach places. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly less transparent, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation maps provides information on the spatial distribution and strength of the sources in a given area forming a 3D characterization of the area of interest. This study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this part of the testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment completed at SRNL were successful in that for each trial, the technology was able to locate the radiation sources. The NNL believe that the ability of RadBall to be remotely deployed with no electrical supplies into difficult to access areas of plant and locate and quantify radiation hazards is a unique radiation mapping service. The NNL consider there to be significant business potential associated with this innovative technology.

Farfan, E.

2009-11-23T23:59:59.000Z

169

Industrial ecology at Lawrence Livermore National Laboratory summary statement  

SciTech Connect (OSTI)

This statement summarizes Lawrence Livermore National Laboratory`s committment to making important scientific, technological, and business contributions to global sustainability. The quest has many aspects, some socio-political or economic and some technological, and some in which the soft and hard sciences become indistinguishable, as in visionary national strategies, like Holland`s, and futuristic regional and city development plans, like those of Kagoshima and Chattanooga.

Gilmartin, T.J.

1996-05-21T23:59:59.000Z

170

Idaho National Engineering Laboratory radioecology and ecology programs. 1983 progress report  

SciTech Connect (OSTI)

Progress is reported in research on: the baseline ecology of the Idaho National Engineering Laboratory (INEL), the effects of disturbance on animal and plant communities, and the behavior of radionuclides in the environment surrounding radioactive waste sites. Separate abstracts have been prepared for individual reports. (ACR)

Markham, O. D. [ed.

1983-06-01T23:59:59.000Z

171

Laboratory-Measured and Property-Transfer Modeled Saturated Hydraulic Conductivity of Snake River Plain  

E-Print Network [OSTI]

Plain Aquifer Sediments at the Idaho National Laboratory, Idaho Scientific Investigations Report 2008, Idaho: U.S. Geological Survey Scientific-Investigations Report 2008­5169, 14 p. #12;iii Contents Conductivity of Snake River Plain Aquifer Sediments at the Idaho National Laboratory, Idaho By Kim S. Perkins

172

SRO -NERP-1 THE SAVANNAH RIVER PLANT  

E-Print Network [OSTI]

AND TREATMENT by Whit Gibbons Savannah River Ecology Laboratory Aiken , South Carolina A PUBLICATION OF EROA 'S SAVANNAH RIVER NATIONAL ENVIRONMENTAL RESEARCH PARK -SEPTEMBER 1977 COPIES MAY BE OBTAINEO FROM SAVANNAHSRO -NERP-1 SNAKES OF THE SAVANNAH RIVER PLANT WITH INFORMATION ABOUT SNAKEBITE PREVENTION

Georgia, University of

173

Savannah River National Laboratory Meets with Historically Black...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Share Research with EM Laboratory in Successful Exchange Joining Director Dot Harris (second from left) were Marlene Kaplan, the Deputy Director of Education and director...

174

Ecologically Significant Wetlands in the  

E-Print Network [OSTI]

Ecologically Significant Wetlands in the North Fork Flathead River Watershed Prepared See Also: Ecologically Significant Wetlands in the Flathead, Stillwater, & Swan River Valleys Appendix 29 #12;Ecologically Significant Wetlands in the North Fork Flathead River Watershed Prepared

175

Savannah River National Laboratory (SRNL) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRooseveltVISanton GmbH JumpSatconSaulsbury,Savannah River

176

A summary of ecological investigations at the burial ground complex, Savannah River Site - 1994  

SciTech Connect (OSTI)

This report summarizes the results of three ecological investigations that were conducted in 1994 at the Burial Ground Complex (BGC) at the Savannah River Site (SRS). The three topics of study included remote sensing, aquatic toxicity testing, and qualitative surveys of herpetofauna and small mammals. Interim reports from each investigation are included in the appendices (A, B, and C). The objectives of the remote sensing effort were to compile historical aerial photography of the BGC and to develop a land use/cover map of the complex using recent aerial imagery. The goal of the aquatic toxicity testing was to determine if surface waters were toxic to aquatic biota whereas the objectives of the vertebrate surveys were to identify the species diversity and relative abundances of amphibians, reptiles, and small mammals inhabiting the study area.

Friday, G.P.; Hartman, G.D.; Mackey, H.E. Jr.; Riley, R.S.; Roach, J.L.; Specht, W.L.; Westbury, H.M.; Wike, L.D.

1994-11-01T23:59:59.000Z

177

Savannah River National Laboratory (SRNL) Scientific Computing Where We Have Been And  

E-Print Network [OSTI]

Solutions assumed responsibility for SRS management and operations · July 1, 2009 ­ Savannah River National Laboratory and Hanford Site) · SRS workforce: Approximately 8,000 ­ Prime contractor (about 58 project ­ Du Pont built SRS and operated it for nearly 40 years · April 1, 1989 ­ Westinghouse Savannah

Valtorta, Marco

178

eo SRQ-NERP-15 FLORA OF THE SAVANNAH RIVER PLANT  

E-Print Network [OSTI]

of the S.vann.h River PI.nt National Environm.nta. R····rch Park Program #12;FLORA OF TIlE SAVANNAH RIVER 29808 and J . nrOHAS JONES JEANNINE S. ANGERMAN Savannah River Ecology Laboratory Drawer E, Aiken, SC 29801 A Publication of the Savannah River Plant National Environmeneal Res.arch Park Program 1985

Georgia, University of

179

ECOLOGY LECTURE (BI 40601) & LABORATORY (BI40711) Lecture Fischer 316, TTH 10:0011:35; Lab Fischer 224, M 1:004:00  

E-Print Network [OSTI]

ECOLOGY LECTURE (BI 40601) & LABORATORY (BI40711) FALL 2005 Lecture Fischer 316, TTH 10 EMAILpacker@susqu.edu OFFICE HOURS MW 9:0010:00, W 1:302:30 WHAT IS ECOLOGY? Ecology is the study of interrelationships between organisms and their biotic and abiotic environments. As a basic science, ecology informs

Packer, Alissa A.

180

Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River  

SciTech Connect (OSTI)

As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987.

Loar, J.M. [ed.] [ed.; Adams, S.M.; Bailey, R.D.; Blaylock, B.G.; Boston, H.L.; Cox, D.K.; Huston, M.A.; Kimmel, B.L.; Loar, J.M.; Olsen, C.R.; Ryon, M.G.; Shugart, L.R.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Talmage, S.S.; Murphy, J.B.; Valentine, C.K. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States); Appellanis, S.M.; Jimenez, B.D. [Puerto Rico Univ., San Juan (Puerto Rico)] [Puerto Rico Univ., San Juan (Puerto Rico); Huq, M.V. [Connecticut Dept. of Environmental Protection, Hamden, CT (United States)] [Connecticut Dept. of Environmental Protection, Hamden, CT (United States); Meyers-Schone, L.J. [Frankfurter, Gross-Gerau (Germany)] [Frankfurter, Gross-Gerau (Germany); Mohrbacher, D.A. [Automated Sciences Group, Inc., Oak Ridge, TN (United States)] [Automated Sciences Group, Inc., Oak Ridge, TN (United States); Olsen, C.R. [USDOE Office of Energy Research, Washington, DC (United States). Environmental Sciences Div.] [USDOE Office of Energy Research, Washington, DC (United States). Environmental Sciences Div.; Stout, J.G. [Cincinnati Univ., OH (United States)] [Cincinnati Univ., OH (United States)

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

GIS Framework for Large River Geomorphic Classification to Aid in the Evaluation of Flow-Ecology Relationships  

SciTech Connect (OSTI)

Assessing the environmental benefits of proposed flow modification to large rivers provides invaluable insight into future hydropower project operations and relicensing activities. Providing a means to quantitatively define flow-ecology relationships is integral in establishing flow regimes that are mutually beneficial to power production and ecological needs. To compliment this effort an opportunity to create versatile tools that can be applied to broad geographic areas has been presented. In particular, integration with efforts standardized within the ecological limits of hydrologic alteration (ELOHA) is highly advantageous (Poff et al. 2010). This paper presents a geographic information system (GIS) framework for large river classification that houses a base geomorphic classification that is both flexible and accurate, allowing for full integration with other hydrologic models focused on addressing ELOHA efforts. A case study is also provided that integrates publically available National Hydrography Dataset Plus Version 2 (NHDPlusV2) data, Modular Aquatic Simulation System two-dimensional (MASS2) hydraulic data, and field collected data into the framework to produce a suite of flow-ecology related outputs. The case study objective was to establish areas of optimal juvenile salmonid rearing habitat under varying flow regimes throughout an impounded portion of the lower Snake River, USA (Figure 1) as an indicator to determine sites where the potential exists to create additional shallow water habitat. Additionally, an alternative hydrologic classification useable throughout the contiguous United States which can be coupled with the geomorphic aspect of this framework is also presented. This framework provides the user with the ability to integrate hydrologic and ecologic data into the base geomorphic aspect of this framework within a geographic information system (GIS) to output spatiotemporally variable flow-ecology relationship scenarios.

Vernon, Christopher R.; Arntzen, Evan V.; Richmond, Marshall C.; McManamay, R. A.; Hanrahan, Timothy P.; Rakowski, Cynthia L.

2013-02-01T23:59:59.000Z

182

ROBOTICS IN HAZARDOUS ENVIRONMENTS - REAL DEPLOYMENTS BY THE SAVANNAH RIVER NATIONAL LABORATORY  

SciTech Connect (OSTI)

The Research & Development Engineering (R&DE) section in the Savannah River National Laboratory (SRNL) engineers, integrates, tests, and supports deployment of custom robotics, systems, and tools for use in radioactive, hazardous, or inaccessible environments. Mechanical and electrical engineers, computer control professionals, specialists, machinists, welders, electricians, and mechanics adapt and integrate commercially available technology with in-house designs, to meet the needs of Savannah River Site (SRS), Department of Energy (DOE), and other governmental agency customers. This paper discusses five R&DE robotic and remote system projects.

Kriikku, E.; Tibrea, S.; Nance, T.

2010-09-27T23:59:59.000Z

183

Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007  

SciTech Connect (OSTI)

This document is the first annual report for the study titled Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River. Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Councils Columbia Basin Fish and Wildlife Program.

Sobocinski, Kathryn L.; Johnson, Gary E.; Sather, Nichole K.; Storch, Adam; Jones, Tucker A.; Mallette, Christine; Dawley, Earl M.; Skalski, John R.; Teel, David; Moran, Paul

2008-03-18T23:59:59.000Z

184

Ecological Responses to Hydrogeomorphic Fluctuations in a Sand Bed Prairie River: River Complexity, Habitat Availability, and Benthic Invertebrates  

E-Print Network [OSTI]

Rivers with stochastic precipitation have fauna that overcome unique challenges. Organisms surmount these challenges by using refugia. Research was conducted on the sand bed Kansas River (Kaw). I (a) quantified how the hydrology affects the Kaw...

O'Neill, Brian James

2010-04-02T23:59:59.000Z

185

The Ecology and Conservation of the Critically Endangered Cross River Gorilla in Cameroon  

E-Print Network [OSTI]

of desert bighorn sheep. Ecology Letters, 8, 1029-1038.Journal of Animal Ecology, 79, 1157-1163. Beazley, K. ,Journal of Animal Ecology, 75, 1393-1405. Boulanger, J.G. &

Sawyer, Sarah

2012-01-01T23:59:59.000Z

186

Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats of the Lower Columbia River, 20072010  

SciTech Connect (OSTI)

The TFM study was designed to investigate the ecology and early life history of juvenile salmonids within shallow (<5 m) tidal freshwater habitats of the LCRE. We started collecting field data in June 2007. Since then, monthly sampling has occurred in the vicinity of the Sandy River delta (rkm 192208) and at other sites and times in lower river reaches of tidal freshwater (rkm 110 to 141). This report provides a comprehensive synthesis of data covering the field period from June 2007 through April 2010.

Johnson, Gary E.; Storch, Adam; Skalski, J. R.; Bryson, Amanda J.; Mallette, Christine; Borde, Amy B.; Van Dyke, E.; Sobocinski, Kathryn L.; Sather, Nichole K.; Teel, David; Dawley, Earl M.; Ploskey, Gene R.; Jones, Tucker A.; Zimmerman, Shon A.; Kuligowski, D. R.

2011-03-01T23:59:59.000Z

187

THE IPOS FRAMEWORK: LINKING FISH SWIMMING PERFORMANCE IN ALTERED FLOWS FROM LABORATORY EXPERIMENTS TO RIVERS  

SciTech Connect (OSTI)

Current understanding of the effects of turbulence on the swimming performance of fish 32 is primarily derived from laboratory experiments under pressurized flow swim tunnels 33 and open channel flow facilities. These studies have produced valuable information on 34 the swimming mechanics and behavior of fish in turbulent flow. However, laboratory 35 studies have limited representation of the flows fish experience in nature. The complex 36 flow structure in rivers is imparted primarily by the highly heterogeneous and non37 uniform bed and planform geometry. Our goal is to direct future laboratory and field 38 studies to adopt a common framework that will shape the integration of both approaches. 39 This paper outlines four characteristics of turbulent flow, which we suggest should be 40 evaluated when generalizing results from fish turbulent studies in both the laboratory and 41 the field. The framework is based on four turbulence characteristics that are summarized 42 under the acronym IPOS: Intensity, Periodicity, Orientation, and Scale.

Neary, Vincent S [ORNL

2011-01-01T23:59:59.000Z

188

Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007 Annual Report.  

SciTech Connect (OSTI)

This document is the first annual report for the study titled 'Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River'. Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program. The goal of the 2007-2009 Tidal Freshwater Monitoring Study is to answer the following questions: In what types of habitats within the tidal freshwater area of the lower Columbia River and estuary (LCRE; Figure 1) are yearling and subyearling salmonids found, when are they present, and under what environmental conditions?1 And, what is the ecological importance2 of shallow (0-5 m) tidal freshwater habitats to the recovery of Upper Columbia River spring Chinook salmon and steelhead and Snake River fall Chinook salmon? Research in 2007 focused mainly on the first question, with fish stock identification data providing some indication of Chinook salmon presence at the variety of habitat types sampled. The objectives and sub-objectives for the 2007 study were as follows: (1) Habitat and Fish Community Characteristics-Provide basic data on habitat and fish community characteristics for yearling and subyearling salmonids at selected sites in the tidal freshwater reach in the vicinity of the Sandy River delta. (1a) Characterize vegetation assemblage percent cover, conventional water quality, substrate composition, and beach slope at each of six sampling sites in various tidal freshwater habitat types. (1b) Determine fish community characteristics, including species composition, abundance, and temporal and spatial distributions. (1c) Estimate the stock of origin for the yearling and subyearling Chinook salmon captured at the sampling sites using genetic analysis. (1d) Statistically assess the relationship between salmonid abundance and habitat parameters, including ancillary variables such as temperature and river stage. (2) Acoustic Telemetry Monitoring-Assess feasibility of applying Juvenile Salmon Acoustic Telemetry System (JSATS) technology to determine migration characteristics from upriver of Bonneville Dam through the study area (vicinity of the Sandy River delta/Washougal River confluence). (2a) Determine species composition, release locations, and distributions of JSATS-tagged fish. (2b) Estimate run timing, residence times, and migration pathways for these fish. Additionally, both objectives serve the purpose of baseline research for a potential tidal rechannelization project on the Sandy River. The U.S. Forest Service, in partnership with the Bonneville Power Administration and the U.S. Army Corps of Engineers, is currently pursuing reconnection of the east (relict) Sandy River channel with the current channel to improve fish and wildlife habitat in the Sandy River delta. Our study design and the location of sampling sites in this reach provide baseline data to evaluate the potential restoration.

Sobocinski, Kathryn; Johnson, Gary; Sather, Nichole [Pacific Northwest National Laboratory

2008-03-17T23:59:59.000Z

189

ELECTRONICS UPGRADE TO THE SAVANNAH RIVER NATIONAL LABORATORY COULOMETER FOR PLUTONIUM AND NEPTUNIUM ASSAY  

SciTech Connect (OSTI)

The Savannah River Site (SRS) has the analytical measurement capability to perform high-precision plutonium concentration measurements by controlled-potential coulometry. State-of-the-art controlled-potential coulometers were designed and fabricated by the Savannah River National Laboratory and installed in the Analytical Laboratories process control laboratory. The Analytical Laboratories uses coulometry for routine accountability measurements of and for verification of standard preparations used to calibrate other plutonium measurement systems routinely applied to process control, nuclear safety, and other accountability applications. The SRNL Coulometer has a demonstrated measurement reliability of {approx}0.05% for 10 mg samples. The system has also been applied to the characterization of neptunium standard solutions with a comparable reliability. The SRNL coulometer features: a patented current integration system; continuous electrical calibration versus Faraday's Constants and Ohm's Law; the control-potential adjustment technique for enhanced application of the Nernst Equation; a wide operating room temperature range; and a fully automated instrument control and data acquisition capability. Systems have been supplied to the International Atomic Energy Agency (IAEA), Russia, Japanese Atomic Energy Agency (JAEA) and the New Brunswick Laboratory (NBL). The most recent vintage of electronics was based on early 1990's integrated circuits. Many of the components are no longer available. At the request of the IAEA and the Department of State, SRNL has completed an electronics upgrade of their controlled-potential coulometer design. Three systems have built with the new design, one for the IAEA which was installed at SAL in May 2011, one system for Los Alamos National Laboratory, (LANL) and one for the SRS Analytical Laboratory. The LANL and SRS systems are undergoing startup testing with installation scheduled for this summer.

Cordaro, J.; Holland, M.; Reeves, G.; Nichols, S.; Kruzner, A.

2011-07-08T23:59:59.000Z

190

Laboratory Assessment of Potential Impacts to Dungeness Crabs from Disposal of Dredged Material from the Columbia River  

SciTech Connect (OSTI)

Dredging of the Columbia River navigation channel has raised concerns about dredging-related impacts on Dungeness crabs (Cancer magister) in the estuary, mouth of the estuary, and nearshore ocean areas adjacent to the Columbia River. The Portland District, U.S. Army Corps of Engineers engaged the Marine Sciences Laboratory (MSL) of the U.S. Department of Energys Pacific Northwest National Laboratory to review the state of knowledge and conduct studies concerning impacts on Dungeness crabs resulting from disposal during the Columbia River Channel Improvement Project and annual maintenance dredging in the mouth of the Columbia River. The present study concerns potential effects on Dungeness crabs from dredged material disposal specific to the mouth of the Columbia River.

Vavrinec, John; Pearson, Walter H.; Kohn, Nancy P.; Skalski, J. R.; Lee, Cheegwan; Hall, Kathleen D.; Romano, Brett A.; Miller, Martin C.; Khangaonkar, Tarang P.

2007-05-07T23:59:59.000Z

191

Ecological environment of the proposed site for the Compact Ignition Tokamak at Princeton Plasma Physics Laboratory  

SciTech Connect (OSTI)

This report gives a description of the exological environment of D-site and the surrounding area at Princeton Plasma Physics Laboratory (PPPL) near Princeton, New Jersey. D-site at PPL is the proposed location for construction of a new fusion test facility, the Compact Ignition Tokamak (CIT). This report was prepared as supplemental information for an Environmental Assessment for the proposed CIT at PPL. The report characterizes the vegetation and wildlife occuring at and near the site and describes the water quality and aquatic ecology of Bee Brook. No threatened or endangered plant or animal species are known to occur in the area, although suitable habitat exists for some species. The occurrence of a forested wetland north of the site is discussed. 9 refs., 2 figs.

Not Available

1987-12-01T23:59:59.000Z

192

UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle Assessment of the Aquatic Ecosystems Research Laboratory  

E-Print Network [OSTI]

of life cycle assessment (LCA). The information and findings contained in this report have not been, 2013 Final Report #12;CIVL 498C: Life Cycle Assessment of the Aquatic Ecosystems Research LaboratoryUBC Social Ecological Economic Development Studies (SEEDS) Student Report Daniel Tse Life Cycle

193

Pacific Northwest Laboratory annual report for 1980 to the DOE Assistant Secretary for Environment. Part 2 supplement, ecological sciences  

SciTech Connect (OSTI)

This supplement replaces the list of Publications and Presentations in the Pacific Northwest Laboratory Annual Report for 1980 to the Assistant Secretary for Environment, PNL-3700 PT2, Ecological Sciences. The listings in the report as previously distributed were incomplete owing to changeovers in the bibliographic-tracking system.

Vaughan, B.E.

1981-06-01T23:59:59.000Z

194

The key to minimizing minesite versus utility laboratory analyses on Powder River Basin coals  

SciTech Connect (OSTI)

Powder River Basin (PRB) coals are continuing to expand their areas of use into regions previously reserved for higher ranked coals. PRB coals are subbituminous by rank. Inherent moisture values of 25 to 30 percent are the norm. PRB coals, being lower rank in nature, also tend to oxidize very easily. These factors combined produce a coal which can cause analysis problems for laboratories unaccustomed to PRB coals. In fact, even laboratories that deal with this type of coal on a daily basis can experience analytical difficulties. Special care needs to be taken by both minesite laboratory and the utility laboratory to ensure accurate analyses. Cooperation between both parties is the key to reproducible analyses. Only by working together can parties fully analyze the situation and develop analytical methods acceptable to both. This paper will describe the methods employed by the Caballo Rojo Mine (CRM) and the Georgia Power Company (GPC) to resolve laboratory analysis differences found during shipments by CRM to GPC beginning in 1994. The following topics are discussed: initial comparative results, analytical investigations, the cooperative process, recent comparative results, and conclusions.

Rexin, M.G.

1995-08-01T23:59:59.000Z

195

HYDROGEN TECHNOLOGY RESEARCH AT THE SAVANNAH RIVER NATIONAL LABORATORY, CENTER FOR HYDROGEN RESEARCH, AND THE HYDROGEN TECHNOLOGY RESEARCH LABORATORY  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. Many of SRNL's programs support dual-use applications. SRNL has participated in projects to convert public transit and utility vehicles for operation on hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E

2007-02-26T23:59:59.000Z

196

Ecologically Significant Wetlands  

E-Print Network [OSTI]

Ecologically Significant Wetlands in the Flathead, Stillwater, and Swan River Valleys FINAL REPORT Also: Ecologically Significant Wetlands in the North Fork of the Flathead River Valley Appendix 29b #12;Ecologically Significant Wetlands in the Flathead, Stillwater, and Swan River Valleys JUNE 1, 1999 DEQ

197

RIVER ECOLOGY BIO 568 Dr. Mike Mallin SPRING 2011 office is CMS 1331  

E-Print Network [OSTI]

; stream protection and stream restoration / CFR benthos April 13 Field trip to Wilmington urbanized tidal Introduction, physical aspects of streams and rivers January 19 The primary producers; Stream nutrients January 26 Stream nutrients; Stream and river consumer communities February 2 Consumers; Major concepts

Mallin, Michael

198

Influence of environomental factors at the Brazos River Valley Laboratory on seed set of soybean, Glycine max (L.) Merr  

E-Print Network [OSTI]

" CITED iPP:, IDIX 24 29 34 38 41 45 TA BLES Fertilizer troatments in the dryland test at the Brazos River Valley Laboratory, 1955. 10 2 ~ The nvera"o yields i. n bushels per acus i' or four varieties of soybeans for four planting dates -rown... undor dryland and irrigated conditions at the Brazos Rirer Valley laboratory~ 1955. . . , ~ ~ ~ . . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 13 3 ~ The ana:ysis of variance of seec yields from the dryland date of p~lsuoting test ~. . . . . . . . . *. . . . . ~ 14 4...

Scott, John Edward

1956-01-01T23:59:59.000Z

199

Potential Geomorphic and Ecological Impacts of Marmot Dam Removal, Sandy River, OR  

E-Print Network [OSTI]

Marmot Dam is a 13-meter (42 ft) high hydroelectric diversion dam on the Sandy River that is owned Run Hydroelectric project and began the process of creating a decommissioning plan for the dam

200

Plutonium Surveillance Destructive Examination Requirements at Savannah River National Laboratory for K-Area Interim Surveillance  

SciTech Connect (OSTI)

The DOE 3013 storage standard requires nested, welded 300 series stainless steel containers to store plutonium-bearing materials for up to 50 years. Packaged contents include stabilized plutonium-bearing residues that contain chloride salts and a low (< 0.5 weight %) water content. The DOE 3013 STD requires surveillance of the packages over the 50 year lifetime. These surveillance requirements have been further defined by the Integrated Surveillance Program to include both non-destructive examination (NDE) and destructive examination (DE) of the 3013 container. The DE portion of surveillance involves examining the 3013 nested containers, analyzing the head space gas, and evaluating the plutonium oxide chemistry. At SRS, the stored 3013 containers will undergo preparation for the DE surveillance activities in facilities located in K-Area. The actual DE surveillance will be performed in SRNL. This report provides preliminary functional requirements for the destructive examination (DE) of plutonium-bearing oxide materials and containers in support of K-Area Interim Surveillance (KIS). The KIS project will install interim facilities to prepare the samples for analysis in SRNL. This document covers the requirements for the interim period beginning in 2007, and lasting until the Container Storage and Surveillance Capability (CSSC) project provides the permanent facilities in K-Area to perform sampling and repackaging operations associated with the 3013 container storage and surveillance program. Initial requirements for the CSSC project have been previously defined in WSRC-TR-2004-00584 ''Plutonium Surveillance Destructive Examination Requirements at Savannah River National Laboratory''. As part of the Plutonium Surveillance Program of 3013 Containers at the Savannah River Site (SRS), the Savannah River National Laboratory (SRNL) will receive the emptied 3013 container components, plutonium oxide samples and headspace gas samples from K-Area. The DE program scope includes chemical and metallurgical analyses for a maximum of 25 DE sets a year to provide essential data in support of the SRS Plutonium Surveillance Program. The normal operation is expected to be approximately 15 DE sets a year.

Stefek, T. M.

2005-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Lawrence Livermore National Laboratory interests and capabilities for research on the ecological effects of global climatic and atmospheric change  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory (LLNL) has interests and capabilities in all three types of research that must be conducted in order to understand and predict effects of global atmospheric and climatic (i.e., environmental) changes on ecological systems and their functions (ecosystem function is perhaps most conveniently defined as mass and energy exchange and storage). These three types of research are: (1) manipulative experiments with plants and ecosystems; (2) monitoring of present ecosystem, landscape, and global exchanges and pools of energy, elements, and compounds that play important roles in ecosystem function or the physical climate system, and (3) mechanistic (i.e., hierarchic and explanatory) modeling of plant and ecosystem responses to global environmental change. Specific experimental programs, monitoring plans, and modeling activities related to evaluation of ecological effects of global environmental change that are of interest to, and that can be carried out by LLNL scientists are outlined. Several projects have the distinction of integrating modeling with empirical studies resulting in an Integrated Product (a model or set of models) that DOE or any federal policy maker could use to assess ecological effects. The authors note that any scheme for evaluating ecological effects of atmospheric and climatic change should take into account exceptional or sensitive species, in particular, rare, threatened, or endangered species.

Amthor, J.S.; Houpis, J.L.; Kercher, J.R.; Ledebuhr, A.; Miller, N.L.; Penner, J.E.; Robison, W.L.; Taylor, K.E.

1994-09-01T23:59:59.000Z

202

An ecological study of the amphibians and reptiles of the Navasota River, Texas  

E-Print Network [OSTI]

the Navasota River (Fig. 2 and Table 1, pp. 11 and 12). A study plot was established within a wooded section but cleared areas occur throughout the area. The dominant vegetation consists of post oak, blackjack oak, and black hickory. The understory is dense... to occur in other areas along the river. Site 7UL contained the greatest number of species of lisards (8) and snakes (18). Community Comparisons Community coefficients were calculated for every two site combinations for 11 sites (1-ILL and 1-7UL...

Calvin, Terry Lynne

1974-01-01T23:59:59.000Z

203

Assessing the Ecological Condition of Wetlands in the Lower Missouri River Floodplain  

E-Print Network [OSTI]

.............................................................................................. 68 APPENDIX D: CHARACTERIZATION OF LEAST DISTURBED WATER QUALITY CONDITIONS ........................................ 72 APPENDIX E: PARAMETERS, INSTRUMENTS, METHODS AND FORMS USED IN THE STUDY ........................................ 75 vi..., developing a method to assess the condition of remnant wetlands within the Lower Missouri River floodplain may give insight into how specific hydrologic alterations impact wetland condition by characterizing the extent of wetland impairment according...

Beury, Jason Horry

2010-01-28T23:59:59.000Z

204

Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008  

SciTech Connect (OSTI)

The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Councils Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington.

Sather, Nichole K.; Johnson, Gary E.; Storch, Adam; Teel, David; Skalski, John R.; Jones, Tucker A.; Dawley, Earl M.; Zimmerman, Shon A.; Borde, Amy B.; Mallette, Christine; Farr, R.

2009-05-29T23:59:59.000Z

205

The feeding ecology of the San Marcos River population of Sarotherodon (Pisces, Cichlideae) and the systematic relationship of the population to other species of African cichlids established in Texas  

E-Print Network [OSTI]

THE FEEDING ECOLOGY OF THE SAN MARCOS RIVER POPULATION OF SAROTHERODON (PISCES, CICHLIDAE) AND THE SYSTEMATIC RELATIONSHIP OF THE POP- ULATION TO OTHER SPECIES OF AFRICAN CICHLIDS ESTABLISHED IN TEXAS A Thesis by MAURIZIO ANDREA MANGINI... Submitted to the Graduate College of Texas AQi University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE MAY 1981 Major Sub)cot: Zoology THE FEEDING ECOLOGY OF THE SAN MARCOS RIVER POPULATION OF SAROTHERODON (PISCES...

Mangini, Maurizio Andrea

1981-01-01T23:59:59.000Z

206

Development of an Integrated Waste Plan for Chalk River Laboratories - 13376  

SciTech Connect (OSTI)

To further its Strategic Planning, the Atomic Energy of Canada Limited (AECL) required an effective approach to developing a fully integrated waste plan for its Chalk River Laboratories (CRL) site. Production of the first Integrated Waste Plan (IWP) for Chalk River was a substantial task involving representatives from each of the major internal stakeholders. Since then, a second revision has been produced and a third is underway. The IWP remains an Interim IWP until all gaps have been resolved and all pathways are at an acceptable level of detail. Full completion will involve a number of iterations, typically annually for up to six years. The end result of completing this process is a comprehensive document and supporting information that includes: - An Integrated Waste Plan document summarizing the entire waste management picture in one place; - Details of all the wastes required to be managed, including volume and timings by waste stream; - Detailed waste stream pathway maps for the whole life-cycle for each waste stream to be managed from pre-generation planning through to final disposition; and - Critical decision points, i.e. decisions that need to be made and timings by when they need to be made. A waste inventory has been constructed that serves as the master reference inventory of all waste that has been or is committed to be managed at CRL. In the past, only the waste that is in storage has been effectively captured, and future predictions of wastes requiring to be managed were not available in one place. The IWP has also provided a detailed baseline plan at the current level of refinement. Waste flow maps for all identified waste streams, for the full waste life cycle complete to disposition have been constructed. The maps identify areas requiring further development, and show the complexities and inter-relationships between waste streams. Knowledge of these inter-dependencies is necessary in order to perform effective options studies for enabling facilities that may be necessary for multiple related waste streams. The next step is to engage external stakeholders in the optioneering work required to provide enhanced confidence that the path forward identified within future iterations of the IWP will be acceptable to all. (authors)

Jones, L. [Atomic Energy of Canada Limited Chalk River, Ontario (Canada)] [Atomic Energy of Canada Limited Chalk River, Ontario (Canada)

2013-07-01T23:59:59.000Z

207

Journal of Applied Ecology 2005  

E-Print Network [OSTI]

beneficial stream and river restoration. We propose five criteria that must be met for a river restoration ArticleEcological success in river restorationM. A. Palmer et al. FORUM Standards for ecologically successful river restoration M.A. PALMER,* E.S. BERNHARDT,* J. D. ALLAN, P.S. LAKE, G. ALEXANDER, S. BROOKS

Palmer, Margaret A.

208

Development and Implementation of a Scaled Saltstone Facility at Savannah River National Laboratory - 13346  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) has supported the Saltstone Production Facility (SPF) since its conception. However, bench scaled tests have not always provided process or performance data related to the mixing, transfer, and other operations utilized in the SPF. A need was identified to better understand the SPF processes and to have the capabilities at SRNL to simulate the SPF unit operations to support an active low-level radioactive waste (LLW) processing facility. At the SPF, the dry premix is weighed, mixed and transferred to the Readco '10-inch' continuous mixer where it is mixed with the LLW salt solution from the Salt Feed Tank (SFT) to produce fresh Saltstone slurry. The slurry is discharged from the mixer into a hopper. The hopper feeds the grout pump that transfers the slurry through at least 457.2 meters of piping and discharges it into the Saltstone Disposal Units (SDU) for permanent disposal. In conjunction with testing individual SPF processes over several years, SRNL has designed and fabricated a scaled Saltstone Facility. Scaling of the system is primarily based on the volume capacity of the mixer and maintaining the same shear rate and total shear at the wall of the transfer line. At present, SRNL is utilizing the modular capabilities of the scaled Saltstone Facility to investigate the erosion issues related to the augers and paddles inside the SPF mixer. Full implementation of the scaled Saltstone Facility is still ongoing, but it is proving to be a valuable resource for testing alternate Saltstone formulations, cleaning sequences, the effect of pumping Saltstone to farther SDU's, optimization of the SPF mixer, and other operational variables before they are implemented in the SPF. (authors)

Reigel, Marissa M.; Fowley, Mark D.; Hansen, Erich K.; Hera, Kevin R.; Marzolf, Athneal D.; Cozzi, Alex D. [Savannah River National Laboratory, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

209

Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.  

SciTech Connect (OSTI)

This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning and (2) summarize results of research that have broader scientific relevance. This is the fourth in a series of reports that address reproductive ecological research and monitoring of spring chinook populations in the Yakima River basin. This annual report summarizes data collected between April 1, 2004 and March 31, 2005 and includes analyses of historical baseline data, as well. Supplementation success in the Yakima Klickitat Fishery Project's (YKFP) spring chinook (Oncorhynchus tshawytscha) program is defined as increasing natural production and harvest opportunities, while keeping adverse ecological interactions and genetic impacts within acceptable bounds (Busack et al. 1997). Within this context demographics, phenotypic traits, and reproductive ecology have significance because they directly affect natural productivity. In addition, significant changes in locally adapted traits due to hatchery influence, i.e. domestication, would likely be maladaptive resulting in reduced population productivity and fitness (Taylor 1991; Hard 1995). Thus, there is a need to study demographic and phenotypic traits in the YKFP in order to understand hatchery and wild population productivity, reproductive ecology, and the effects of domestication (Busack et al. 1997). Tracking trends in these traits over time is also a critical aspect of domestication monitoring (Busack et al. 2004) to determine whether trait changes have a genetic component and, if so, are they within acceptable limits. The first chapter of this report compares first generation hatchery and wild upper Yakima River spring chinook returns over a suite of life-history, phenotypic and demographic traits. The second chapter deals specifically with identification of putative populations of wild spring chinook in the Yakima River basin based on differences in quantitative and genetic traits. The third chapter is a progress report on gametic traits and progeny produced by upper Yakima River wild and hatchery origin fish spawned in 2004 including some comparisons with Little Naches River fish. In the fourth chapter, we present a progress report on comparisons naturally spawning wild and hatchery fish in the upper Yakima River and in an experimental spawning channel at CESRF in 2004. The chapters in this report are in various stages of development. Chapters One and Two will be submitted for peer reviewed publication. Chapters Three and Four should be considered preliminary and additional fieldwork and/or analysis are in progress related to these topics. Readers are cautioned that any preliminary conclusions are subject to future revision as more data and analytical results become available.

Knudsen, Curtis M. (Oncorh Consulting, Olympia, WA); Schroder, Steven L. (Washington Department of Fish and Wildlife, Olympia, WA); Johnston, Mark V. (yakama Nation, Toppenish, WA)

2005-05-01T23:59:59.000Z

210

SRS ECOLOGY ENVIRONMENTAL INFORMATION DOCUMENT -1997 UPDATE  

SciTech Connect (OSTI)

The purpose of the SRS Ecology: Environmental Information Document is to provide a source of information on the ecology of the Savannah River Site.

Halverson, N.V. [Westinghouse Savannah River Company, AIKEN, SC (United States); Wike, L.D.; Patterson, K.K.; Bowers, J.A.; Bryan, A.L.; Chen, K.F.; Cummins, C.L.; deCarmen, B.R.; Dixon, K.L.; Dunn, D.L. [and others

1997-12-31T23:59:59.000Z

211

Deerskins and Cotton. Ecological impacts of historical land use in the Central Savannah River Area of the Southeastern US before 1950.  

SciTech Connect (OSTI)

White, D.L. 2004. Deerskins and Cotton. Ecological impacts of historical land use in the Central Savannah River Area of the Southeastern US before 1950. Final Report. USDA Forest Service, Savannah River, Aiken, SC. 324 pp. Abstract: The history of land use for an area is the history of the way in which humans have manipulated or altered the environment. Most land use activities can be viewed as disturbance to ecosystems. Within a given climatic regime, the interaction of the disturbance regime with vegetation, soil, and landform factors largely determines the distribution and composition of plant and associated animal communities. For these reasons, a greater understanding of the ecological impacts of both human and non-human related disturbance is needed to improve our ability to make natural resource management decisions. This document outlines the land use history of the Savannah River Site and surrounding areas from about 1780 thru 1950, when the site was converted to a government facility for the purposes of national defense.

D.L. White

2004-01-01T23:59:59.000Z

212

Laboratory And Lysimeter Experimentation And Transport Modeling Of Neptunium And Strontium In Savannah River Site Sediments  

SciTech Connect (OSTI)

The Savannah River Site (SRS) conducts performance assessment (PA) calculations to determine the appropriate amount of low-level radiological waste that can be safely disposed on site. Parameters are included in these calculations that account for the interaction between the immobile solid phase and the mobile aqueous phase. These parameters are either the distribution coefficient (K{sub d} value) or the apparent solubility value (K{sub sp}). These parameters are readily found in the literature and are used throughout the DOE complex. One shortcoming of K{sub d} values is that they are only applicable to a given set of solid and aqueous phase conditions. Therefore, a given radionuclide may have several K{sub d} values as it moves between formations and comes into contact with different solids and different aqueous phases. It is expected that the K{sub d} construct will be appropriate to use for a majority of the PA and for a majority of the radionuclides. However, semi-mechanistic models would be more representative in isolated cases where the chemistry is especially transitory or the radionuclide chemistry is especially complex, bringing to bear multiple species of varying sorption tendencies to the sediment. Semi-mechanistic models explicitly accommodate the dependency of K{sub d} values, or other sorption parameters, on contaminant concentration, competing ion concentrations, pH-dependent surface charge on the adsorbent, and solute species distribution. Incorporating semi-mechanistic concepts into geochemical models is desirable to make the models more robust and technically defensible. Furthermore, these alternative models could be used to augment or validate a Kd?based DOE Order 435.1 Performance Assessment. The objectives of this study were to: 1) develop a quantitative thermodynamically-based model for neptunium sorption to SRS sediments, and 2) determine a sorption constant from an SRS 11-year lysimeter study. The modeling studies were conducted with existing data sets. The first data set used laboratory generated Np sorption data as a function of concentration (three orders of magnitude) and as a function of pH (four orders of magnitude of proton concentration). In this modeling exercise, a very simple solution was identified by assuming that all sorption occurred only to the iron oxides in the sediment and that all the added NpO{sub 4}{sup -} remained in the oxidized state and was not reduced to the Np(IV) state (as occurs rapidly with Pu(V)). With rather limited input data, very good agreement between experimental and modeling results was observed. This modeling approach would be easy to add to the PA with little additional data requirements. This model would be useful in a system where pH is expected to change greatly, such as directly beneath a grout or concrete structure. The second model discussed in the report was to derive strontium K{sub d} values from data collected in an 11-year-old field transport study. In this controlled lysimeter study, a sensitivity analysis was conducted of hydrological and chemical processes that influence contaminant transport, including diffusion coefficients, seepage velocity, and K{sub d} value. The best overall K{sub d} derived from the model fit to the data was 32 L kg{sup -1}, which was the same value that was previously measured in traditional laboratory batch sorption studies. This was an unexpected result given the differences in experimental conditions between the batch test and the lysimeter flow through test, in particular the differences between strontium adsorption and desorption processes occurring in the latter test and not in the former. There were some trends in the lysimeter strontium data that were not predicted by the K{sub d} model, which suggest that other geochemical processes are likely also controlling strontium transport. Strontium release and cation exchange are being evaluated. These results suggest that future modeling efforts (e.g., PAs) could be improved by employing a more robust semi-empirical modeling approach to transient or complex conditio

Kaplan, Daniel I.; Powell, B. A.; Miller, Todd J.

2012-09-24T23:59:59.000Z

213

Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 3 of 7, 2003-2004 Annual Report.  

SciTech Connect (OSTI)

This is the third in a series of annual reports that address reproductive ecological research and comparisons of hatchery and wild origin spring chinook in the Yakima River basin. Data have been collected prior to supplementation to characterize the baseline reproductive ecology, demographics and phenotypic traits of the unsupplemented upper Yakima population, however this report focuses on data collected on hatchery and wild spring chinook returning in 2003; the third year of hatchery adult returns. This report is organized into three chapters, with a general introduction preceding the first chapter and summarizes data collected between April 1, 2003 and March 31, 2004 in the Yakima basin. Summaries of each of the chapters in this report are included below. A major component of determining supplementation success in the Yakima Klickitat Fishery Project's spring chinook (Oncorhynchus tshawytscha) program is an increase in natural production. Within this context, comparing upper Yakima River hatchery and wild origin fish across traits such as sex ratio, age composition, size-at-age, fecundity, run timing and gamete quality is important because these traits directly affect population productivity and individual fish fitness which determine a population's productivity.

Knudsen, Curtis (Oncorh Consulting, Olympia, WA)

2004-05-01T23:59:59.000Z

214

Journal of Applied Ecology 2004  

E-Print Network [OSTI]

Journal of Applied Ecology 2004 41, 922­933 © 2004 British Ecological Society Blackwell Publishing that might guide management decisions. We tested whether ideas from landscape ecology (local vs. landscape-scale, Sacramento River, succession, vegetation Journal of Applied Ecology (2004) 41, 922­933 Introduction More than

Holl, Karen

215

Preliminary delineation of natural geochemical reactions, Snake River Plain aquifer system, Idaho National Engineering Laboratory and vicinity, Idaho  

SciTech Connect (OSTI)

The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, is conducting a study to determine the natural geochemistry of the Snake River Plain aquifer system at the Idaho National Engineering Laboratory (INEL), Idaho. As part of this study, a group of geochemical reactions that partially control the natural chemistry of ground water at the INEL were identified. Mineralogy of the aquifer matrix was determined using X-ray diffraction and thin-section analysis and theoretical stabilities of the minerals were used to identify potential solid-phase reactants and products of the reactions. The reactants and products that have an important contribution to the natural geochemistry include labradorite, olivine, pyroxene, smectite, calcite, ferric oxyhydroxide, and several silica phases. To further identify the reactions, analyses of 22 representative water samples from sites tapping the Snake River Plain aquifer system were used to determine the thermodynamic condition of the ground water relative to the minerals in the framework of the aquifer system. Principal reactions modifying the natural geochemical system include congruent dissolution of olivine, diopside, amorphous silica, and anhydrite; incongruent dissolution of labradorite with calcium montmorillonite as a residual product; precipitation of calcite and ferric oxyhydroxide; and oxidation of ferrous iron to ferric iron. Cation exchange reactions retard the downward movement of heavy, multivalent waste constituents where infiltration ponds are used for waste disposal.

Knobel, L.L.; Bartholomay, R.C.; Orr, B.R.

1997-05-01T23:59:59.000Z

216

Factsheet Overview The Savannah River National Laboratory's Shielded Cells Facility gives the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FYRANDOMOverview The Savannah River National

217

Fourth report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River  

SciTech Connect (OSTI)

In response to a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC) and selected tributaries. BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake. The ecological characterization of the WOC watershed will provide baseline data that can be used to document the ecological effects of the water pollution control program and the remedial action program. The long-term nature of BMAP ensures that the effectiveness of remedial measures will be properly evaluated.

Loar, J.M. [ed.] [ed.

1994-04-01T23:59:59.000Z

218

Pacific Northwest Laboratory annual report for 1984 to the DOE Office of Energy Research. Part 2. Ecological sciences  

SciTech Connect (OSTI)

Research progress is reported in the following areas: (1) the terrestrial ecology of semi-arid sites; (2) marine sciences; (3) radionuclide fate and effects; (4) waste mobilization, fate and effects; and (5) theoretical research on environmental sampling. (ACR)

Novich, C.M. (ed.)

1985-02-01T23:59:59.000Z

219

Management of Legacy Spent Nuclear Fuel Wastes at the Chalk River Laboratories: The Challenges and Innovative Solutions Implemented - 13301  

SciTech Connect (OSTI)

AECL's Fuel Packaging and Storage (FPS) Project was initiated in 2004 to retrieve, transfer, and stabilize an identified inventory of degraded research reactor fuel that had been emplaced within in-ground 'Tile Hole' structures in Chalk River Laboratories' Waste Management Area in the 1950's and 60's. Ongoing monitoring of the legacy fuel storage conditions had identified that moisture present in the storage structures had contributed to corrosion of both the fuel and the storage containers. This prompted the initiation of the FPS Project which has as its objective to design, construct, and commission equipment and systems that would allow for the ongoing safe storage of this fuel until a final long-term management, or disposition, pathway was available. The FPS Project provides systems and technologies to retrieve and transfer the fuel from the Waste Management Area to a new facility that will repackage, dry, safely store and monitor the fuel for a period of 50 years. All equipment and the new storage facility are designed and constructed to meet the requirements for Class 1 Nuclear Facilities in Canada. (authors)

Schruder, Kristan [Atomic Energy of Canada Limited - Chalk River Laboratories, Chalk River, Ontario (Canada)] [Atomic Energy of Canada Limited - Chalk River Laboratories, Chalk River, Ontario (Canada); Goodwin, Derek [Rolls-Royce Civil Nuclear Canada Limited, 678 Neal Dr., Peterborough, Ontario (Canada)] [Rolls-Royce Civil Nuclear Canada Limited, 678 Neal Dr., Peterborough, Ontario (Canada)

2013-07-01T23:59:59.000Z

220

Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LOSEngineering |LabVideoLaboratories

Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LOSEngineering |LabVideoLaboratoriesForest fire

222

Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LOSEngineering |LabVideoLaboratoriesForest

223

Inventory of site-derived {sup 36}Cl in the Snake River plain aquifier, Idaho National Engineering Laboratory, Idaho  

SciTech Connect (OSTI)

Radioactive waste management practices at the U.S. Department of Energy`s Idaho National Engineering Laboratory (INEL) in Idaho have introduced {sup 36}Cl (T{sub 1/2} = 301,000 yr) into the Snake River Plain aquifer underlying the site. The {sup 36}Cl is believed to originate from neutron activation of stable {sup 35}Cl in nuclear fuels (principally) and in reactor cooling/process water. Wastewater releases of {sup 3}H at the INEL have been documented by the site operators for the period 1952 to 1988. During this time, approximately 1.2 PBq of {sup 3}H (30,000 Ci) were introduced to the subsurface through disposal wells and seepage ponds. By sampling a number of monitoring and production wells downgradient from points of introduction, {sup 3}H movement and dispersion in the groundwater have been documented by the U.S. Geological Survey. The present report uses these historical {sup 3}H release and monitoring data to choose hydrologic parameters (matrix porosity and plume penetration depth) that produce concordance between the {sup 3}H release estimates and the inventory calculated from measurements of {sup 3}H in the subsurface. These parameters are then applied to {sup 36}Cl isopleths to generate an estimated {sup 36}Cl inventory in the subsurface. Using assumptions about irradiation times, neutron fluxes, and total fuel processed, as little as 23 g of stable chloride impurity in fuel elements would be adequate to produce the amount of {sup 36}Cl estimated to be in the groundwaters underlying the site. The highest atom concentration of {sup 36}Cl measured onsite (222x10{sup 10} atoms 1{sup -1}) corresponds to an activity level of {approximately}4 pCi 1{sup -1} and represents 0.2 percent of the U.S. Environmental Protection Agency`s (EPA) drinking water standard for this radionuclide (2000 pCi 1{sup -1}).

Beasley, T.M.

1995-02-01T23:59:59.000Z

224

Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 2. Ecological sciences  

SciTech Connect (OSTI)

The 1983 annual report highlights research in five areas funded by the Ecological Sciences Division of the Office of Energy Research. The five areas include: western semi-arid ecosystems; marine sciences; mobilization fate and effects of chemical wastes; radionuclide fate and effects; and statistical and quantitative research. The work was accomplished under 19 individual projects. Individual projects are indexed separately.

Vaughan, B.E.

1984-02-01T23:59:59.000Z

225

Independent Oversight Follow-up Review, Savannah River National...  

Broader source: Energy.gov (indexed) [DOE]

Savannah River National Laboratory - January 2012 Independent Oversight Follow-up Review, Savannah River National Laboratory - January 2012 January 2012 Follow-up Review of...

226

Pacific Northwest Laboratory annual report for 1979 to the DOE Assistant Secretary for Environment. Part 2. Ecological sciences  

SciTech Connect (OSTI)

Research in Environment, Health, and Safety conducted during fiscal year 1979 is reported. This volume consists of project reports from the Ecological Sciences research department. The reports are grouped under the following subject areas: National Environmental Research Park and land use; Alaskan resource research; shale oil; synfuels; nuclear waste; fission; marine research programs; statistical development of field research; nuclear fusion; pumped storage and hydroelectric development; pathways modelling, assessment and Hanford project support; electric field and microwave research; and energy research for other agencies. (ACR)

Vaughan, B.E.

1980-02-01T23:59:59.000Z

227

Where's the ecology in molecular ecology? Jerald B. Johnson, Scott M. Peat and Byron J. Adams  

E-Print Network [OSTI]

Where's the ecology in molecular ecology? Jerald B. Johnson, Scott M. Peat and Byron J. Adams J. B. Johnson (jerry.johnson@byu.edu), S. M. Peat and B. J. Adams, Evolutionary Ecology Laboratories, Dept

Pfrender, Michael

228

Persistent source influences on the trailing edge of a groundwater plume, and natural attenuation timeframes: The F-Area Savannah River Site  

E-Print Network [OSTI]

and FSB-110D; Savannah River National Laboratory: Aiken, SC,Berkeley CA Savannah River National Laboratory (SRNL), Aiken

Wan, J.

2013-01-01T23:59:59.000Z

229

Wild and Scenic Rivers Act (Maryland)  

Broader source: Energy.gov [DOE]

It is state policy to protect the outstanding scenic, geologic, ecologic, historic, recreational, agricultural, fish, wildlife, cultural, and other similar values of certain rivers and adjacent...

230

Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook and Juvenile-to-Adult PIT-tag Retention; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001 Annual Report.  

SciTech Connect (OSTI)

This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the first in an anticipated series of reports that address reproductive ecological research and monitoring of spring chinook in the Yakima River basin. In addition to within-year comparisons, between-year comparisons will be made to determine if traits of the wild Naches basin control population, the naturally spawning population in the upper Yakima River and the hatchery control population are diverging over time. This annual report summarizes data collected between April 1, 2001 and March 31, 2002. In the future, these data will be compared to previous years to identify general trends and make preliminary comparisons.

Knudsen, Curtis M. (Washington Department of Fish and Wildlife, Olympia, WA)

2002-11-01T23:59:59.000Z

231

Ecology of Neoschongastia americana (Hirst): laboratory life cycle, developmental period in the field and influence of selected external factors.  

E-Print Network [OSTI]

date of sperm production Sept. 18 Nov. 20 Feb. 20 Jan. 26 Nov. 11 Nov. 30 Oct. 10 Sept. 11 March 2 Dec. 29 March 2 Feb. 23 Oct. 10 Oct. 17 Oct. 31 March 2 Dec. 29 Feb. 2 Dec. 9 Dec. 22 Dec. 14 Total days sperm product&. on 79...): Laboratory Life Cycle, Developmental Period in the Field and Influence of Selected External Factors (August 1974 ) Jerry Real Cunningham, B. S. , Texas A8cw University Chairman of Advisory Committees Prof. Manning AD Price In the summers of 1971 and 1972...

Cunningham, Jerry Real

1974-01-01T23:59:59.000Z

232

SRS ecology: Environmental information document  

SciTech Connect (OSTI)

The purpose of this Document is to provide a source of ecological information based on the exiting knowledge gained from research conducted at the Savannah River Site. This document provides a summary and synthesis of ecological research in the three main ecosystem types found at SRS and information on the threatened and endangered species residing there.

Wike, L.D.; Shipley, R.W.; Bowers, J.A. [and others

1993-09-01T23:59:59.000Z

233

Survey of ecological resources at selected US Department of Energy sites  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) owns and manages a wide range of ecological resources. During the next 30 years, DOE Headquarters and Field Offices will make land-use planning decisions and conduct environmental remediation and restoration activities in response to federal and state statutes. This document fulfills, in part, DOE`s need to know what types of ecological resources it currently owns and manages by synthesizing information on the types and locations of ecological resources at 10 DOE sites: Hanford Site, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Sandia National Laboratory, Rocky Flats Plant, Los Alamos National Laboratory, savannah River Site, Oak Ridge National Laboratory, Argonne National Laboratory, and Fernald Environmental Management Project. This report summarizes information on ecosystems, habitats, and federally listed threatened, endangered, and candidate species that could be stressed by contaminants or physical activity during the restoration process, or by the natural or anthropogenic transport of contaminants from presently contaminated areas into presently uncontaminated areas. This report also provides summary information on the ecosystems, habitats, and threatened and endangered species that exist on each of the 10 sites. Each site chapter contains a general description of the site, including information on size, location, history, geology, hydrology, and climate. Descriptions of the major vegetation and animal communities and of aquatic resources are also provided, with discussions of the treatened or endangered plant or animal species present. Site-specific ecological issues are also discussed in each site chapter. 106 refs., 11 figs., 1 tab.

McAllister, C.; Beckert, H.; Abrams, C. [and others

1996-09-01T23:59:59.000Z

234

White Pine in the Northern Forests: An Ecological and Management History of White Pine on the Bad River Reservation of Wisconsin  

E-Print Network [OSTI]

White Pine in the Northern Forests: An Ecological and Management History of White Pine on the Bad-ADAMS, NANCY LANGSTON, AND DAVID J.MLADENOFF white pine inthe northern forests: AN ECOLOGICAL AND MANAGEMENTHISTORY OF WHITE PINE ON THE BAD RIVERRESERVATIONOF WISCONSIN ABSTRACT This essay examines eastern white

Langston, Nancy

235

Mammals of the Savannah River Site  

SciTech Connect (OSTI)

This book is designed to be used as a field guide, reference book, bibliography, and introduction to the basic biology and ecology of the 54 mammal species that currently or potentially exist on or near the Savannah River Site (SRS). For 50 of these species, we present basic descriptions, distinguishing morphological features, distribution and habitat preferences, food habits, reproductive biology, social behavior, ecological relationships with other species, and economic importance to man. For those species that have been studied on the SRS, we summarize the results of these studies. Keys and illustrations are provided for whole body and skull identification. A selected glossary defines technical terminology. Illustrations of tracks of the more common larger mammals will assist in field identifications. We also summarize the results of two major long-term SRS studies, The Forbearer Census'' and White-tailed Deer Studies''. A cross-indexed list of over 300 SRS publications on mammals classifies each publication by 23 categories such as habitat, reproduction, genetics, etc., and also for each mammal species. The 149 Master's theses and Ph.D. dissertations that have been conducted at the Savannah River Ecology Laboratory are provided as additional references.

Cothran, E.G.; Smith, M.H.; Wolff, J.O.; Gentry, J.B.

1991-01-01T23:59:59.000Z

236

Mammals of the Savannah River Site  

SciTech Connect (OSTI)

This book is designed to be used as a field guide, reference book, bibliography, and introduction to the basic biology and ecology of the 54 mammal species that currently or potentially exist on or near the Savannah River Site (SRS). For 50 of these species, we present basic descriptions, distinguishing morphological features, distribution and habitat preferences, food habits, reproductive biology, social behavior, ecological relationships with other species, and economic importance to man. For those species that have been studied on the SRS, we summarize the results of these studies. Keys and illustrations are provided for whole body and skull identification. A selected glossary defines technical terminology. Illustrations of tracks of the more common larger mammals will assist in field identifications. We also summarize the results of two major long-term SRS studies, ``The Forbearer Census`` and ``White-tailed Deer Studies``. A cross-indexed list of over 300 SRS publications on mammals classifies each publication by 23 categories such as habitat, reproduction, genetics, etc., and also for each mammal species. The 149 Master`s theses and Ph.D. dissertations that have been conducted at the Savannah River Ecology Laboratory are provided as additional references.

Cothran, E.G.; Smith, M.H.; Wolff, J.O.; Gentry, J.B.

1991-12-31T23:59:59.000Z

237

Montana State University 1 Ph.D. Degree in Ecology  

E-Print Network [OSTI]

Montana State University 1 Ph.D. Degree in Ecology and Environmental Sciences This cross of ecology and environmental sciences, within the unparalleled natural laboratory that is the Greater Yellowstone Ecosystem. Particular program strengths include terrestrial and aquatic ecology, environmental

Lawrence, Rick L.

238

Risk-based Prioritization of Facility Decommissioning and Environmental Restoration Projects in the National Nuclear Legacy Liabilities Program at the Chalk River Laboratory - 13564  

SciTech Connect (OSTI)

Chalk River Laboratory (CRL), located in Ontario Canada, has a large number of remediation projects currently in the Nuclear Legacy Liabilities Program (NLLP), including hundreds of facility decommissioning projects and over one hundred environmental remediation projects, all to be executed over the next 70 years. Atomic Energy of Canada Limited (AECL) utilized WorleyParsons to prioritize the NLLP projects at the CRL through a risk-based prioritization and ranking process, using the WorleyParsons Sequencing Unit Prioritization and Estimating Risk Model (SUPERmodel). The prioritization project made use of the SUPERmodel which has been previously used for other large-scale site prioritization and sequencing of facilities at nuclear laboratories in the United States. The process included development and vetting of risk parameter matrices as well as confirmation/validation of project risks. Detailed sensitivity studies were also conducted to understand the impacts that risk parameter weighting and scoring had on prioritization. The repeatable prioritization process yielded an objective, risk-based and technically defendable process for prioritization that gained concurrence from all stakeholders, including Natural Resources Canada (NRCan) who is responsible for the oversight of the NLLP. (authors)

Nelson, Jerel G.; Kruzic, Michael [WorleyParsons, Mississauga, ON, L4W 4H2 (United States)] [WorleyParsons, Mississauga, ON, L4W 4H2 (United States); Castillo, Carlos [WorleyParsons, Las Vegas, NV 89128 (United States)] [WorleyParsons, Las Vegas, NV 89128 (United States); Pavey, Todd [WorleyParsons, Idaho Falls, ID 83402 (United States)] [WorleyParsons, Idaho Falls, ID 83402 (United States); Alexan, Tamer [WorleyParsons, Burnaby, BC, V5C 6S7 (United States)] [WorleyParsons, Burnaby, BC, V5C 6S7 (United States); Bainbridge, Ian [Atomic Energy Canada Limited, Chalk River Laboratories, Chalk River, ON, K0J1J0 (Canada)] [Atomic Energy Canada Limited, Chalk River Laboratories, Chalk River, ON, K0J1J0 (Canada)

2013-07-01T23:59:59.000Z

239

Multi-Scale Action Effectiveness Research in the Lower Columbia River and Estuary, 2012  

SciTech Connect (OSTI)

The study reported herein was conducted for the U.S. Army Corps of Engineers, Portland District (USACE) by researchers at the Pacific Northwest National Laboratory (PNNL), Oregon Department of Fish and Wildlife (ODFW), National Marine Fisheries Service (NMFS), University of Washington (UW), and U.S. Fish and Wildlife Service (USFWS). The goal of the study was to evaluate the ecological benefits of restoration actions for juvenile salmon in the lower Columbia River and estuary (LCRE; rkm 0234).

Johnson, Gary E.; Sather, Nichole K.; Storch, Adam; Johnson, Jeff; Skalski, J. R.; Teel, D. J.; Brewer, Taylor; Bryson, Amanda J.; Dawley, Earl M.; Kuligowski, D. R.; Whitesel, T.; Mallette, Christine

2013-11-30T23:59:59.000Z

240

Cesium in the Savannah River Site environment  

SciTech Connect (OSTI)

Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of {sup 137}Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of {sup 137}Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope {sup 137}Cs releases have resulted in a negligible risk to the environment and the population it supports.

Carlton, W.H.; Bauer, L.R.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

1992-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

FrontiersinEcology and the Environment  

E-Print Network [OSTI]

FrontiersinEcology and the Environment Stream restoration strategies for reducing river nitrogen). Natural resource managers are now asking how restoration of stream ecosystems might reduce the downstream turned to ecological restoration as a tool for reducing N loading. While more than 30% of the stream

Bledsoe, Brian

242

Savannah River National Laboratory Homepage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|Physics ResearchLCLS Sign In Launch Hanford Tank

243

about Savannah River National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2Zenoss, VersionTheto Five Six toGas

244

about Savannah River National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2Zenoss, VersionTheto Five Six toGasEDM

245

about Savannah River National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2Zenoss, VersionTheto Five Six

246

Ecological Applications, 17(8), 2007, pp. 23652376 2007 by the Ecological Society of America  

E-Print Network [OSTI]

Ecological Applications, 17(8), 2007, pp. 2365­2376 ? 2007 by the Ecological Society of America of nitrate to nitrogen gas. An important factor in this process is the interaction of river water to this study, the site had been leveed, drained, and farmed for more than 50 years. In late fall 2002

Stanley, Emily

247

River Thames River Thames  

E-Print Network [OSTI]

West Kent House Penge East Lower Sydenham Forest Hill Honor Oak Park Crofton Park Nunhead New CrossC BD A River Thames River Thames Waterloo & City Southwark Northwood Northwood Hills North Harrow Harrow- on-the-Hill Northwick Park Harrow & Wealdstone Headstone Lane Pinner Kenton Stanmore Canons Park

Delmotte, Nausicaa

248

Multi-Scale Action Effectiveness Research in the Lower Columbia River and Estuary, 2011 - FINAL ANNUAL REPORT  

SciTech Connect (OSTI)

The study reported here was conducted by researchers at Pacific Northwest National Laboratory (PNNL), the Oregon Department of Fish and Wildlife (ODFW), the University of Washington (UW), and the National Marine Fisheries Service (NMFS) for the U.S. Army Corps of Engineers, Portland District (USACE). This research project was initiated in 2007 by the Bonneville Power Administration to investigate critical uncertainties regarding juvenile salmon ecology in shallow tidal freshwater habitats of the lower Columbia River. However, as part of the Washington Memorandum of Agreement, the project was transferred to the USACE in 2010. In transferring from BPA to the USACE, the focus of the tidal freshwater research project shifted from fundamental ecology toward the effectiveness of restoration in the Lower Columbia River and estuary (LCRE). The research is conducted within the Action Agencies Columbia Estuary Ecosystem Restoration Program (CEERP). Data reported herein spans the time period May 2010 to September 2011.

Sather, Nichole K.; Storch, Adam; Johnson, Gary E.; Teel, D. J.; Skalski, J. R.; Bryson, Amanda J.; Kaufmann, Ronald M.; Woodruff, Dana L.; Blaine, Jennifer; Kuligowski, D. R.; Kropp, Roy K.; Dawley, Earl M.

2012-05-31T23:59:59.000Z

249

Los Alamos National Laboratory - Chromium | Department of Energy  

Energy Savers [EERE]

likely to be submitted in 201516 timeframe. Addthis Related Articles Los Alamos National Laboratory - RDX Savannah River Site - Central Shops GW OU Brookhaven National Laboratory...

250

Qualification of the Savannah River National Laboratories Coulometer, Model SRNL-Rev. 2 (Serial # SRNL-003 Coulometer) for use in Process 3401a, Plutonium Assay by Controlled Coulometer  

SciTech Connect (OSTI)

This report discusses the process used to prove in the SRNL-Rev.2 coulometer for isotopic data analysis used in the special plutonium material project. In May of 2012, the PAR 173 coulometer system that had been the workhorse of the Plutonium Assay team since the early 1970s became inoperable. A new coulometer system had been purchased from Savannah River National Laboratory (SRNL) and installed in August of 2011. Due to funding issues the new system was not qualified at that time. Following the failure of the PAR 173, it became necessary to qualify the new system for use in Process 3401a, Plutonium Assay by Controlled Coulometry. A qualification plan similar to what is described in PQR -141a was followed. Experiments were performed to establish a statistical summary of the performance of the new system by monitoring the repetitive analysis of quality control sample, PEOL, and the assay of plutonium metals obtained from the Plutonium Exchange Program. The data for the experiments was acquired using work instructions ANC125 and ANC195. Figure 1 shows approximately 2 years of data for the PEOL material obtained using the PAR 173. The required acceptance criteria for the sample are that it returns the correct value for the quality control material of 88.00% within 2 sigma (95% Confidence Interval). It also must meet daily precision standards that are set from the historical data analysis of decades of data. The 2 sigma value that is currently used is 0.146 % as evaluated by the Statistical Science Group, CCS-6. The average value of the PEOL quality control material run in 10 separate days on the SRNL-03 coulometer is 87.98% with a relative standard deviation of 0.04 at the 95% Confidence interval. The date of data acquisition is between 5/23/2012 to 8/1/2012. The control samples are run every day experiments using the coulometer are carried out. It is also used to prove an instrument is in statistical control before any experiments are undertaken. The total number of replicate controls run with the new coulometer to date, is n=18. This value is identical to that calculated by the LANL statistical group for this material from data produced by the PAR 173 system over the period of October 2007 to May 2011. The final validation/verification test was to run a blind sample over multiple days. AAC participates in a plutonium exchange program which supplies blind Pu metal samples to the group on a regular basis. The Pu material supplied for this study was ran using the PAR 173 in the past and more recently with the new system. Table 1a contains the values determined through the use of the PAR 173 and Table 1b contains the values obtained with the new system. The Pu assay value obtained on the SRNL system is for paired analysis and had a value of 98.88+/-0.07% RSD at 95% CI. The Pu assay value (decay corrected to July 2012) of the material determined in prior measurements using the PAR173 is 99.05 +/- 0.06 % RSD at 95% CI. We believe that the instrument is adequate to meet the needs of the program.

Tandon, Lav [Los Alamos National Laboratory; Colletti, Lisa M. [Los Alamos National Laboratory; Drake, Lawrence R. [Los Alamos National Laboratory; Lujan, Elmer J. W. [Los Alamos National Laboratory; Garduno, Katherine [Los Alamos National Laboratory

2012-08-22T23:59:59.000Z

251

SRS ECOLOGY ENVIRONMENTAL INFORMATION DOCUMENT  

SciTech Connect (OSTI)

The SRS Ecology Environmental Information Document (EEID) provides a source of information on the ecology of Savannah River Site (SRS). The SRS is a U.S. Department of Energy (DOE)--owned property on the upper Atlantic Coastal Plain of South Carolina, centered approximately 40 kilometers (25 miles) southeast of Augusta, Georgia. The entire site was designated a National Environmental Research Park in 1972 by the Atomic Energy Commission, the predecessor of DOE. This document summarizes and synthesizes ecological research and monitoring conducted on the three main types of ecosystems found at SRS: terrestrial, wetland and aquatic. It also summarizes the available information on the threatened and endangered species found on the Savannah River Site. SRS is located along the Savannah River and encompasses an area of 80,267 hectares (310 square miles) in three South Carolina counties. It contains diverse habitats, flora, and fauna. Habitats include upland terrestrial areas, wetlands, streams, reservoirs, and the adjacent Savannah River. These diverse habitats support a variety of plants and animals, including many commercially or recreationally valuable species and several rare, threatened, or endangered species. Soils are the basic terrestrial resource, influencing the development of terrestrial biological communities. Many different soils exist on the SRS, from hydric to well-drained, and from sand to clay. In general, SRS soils are predominantly well-drained loamy sands.

Wike, L; Doug Martin, D; Eric Nelson, E; Nancy Halverson, N; John Mayer, J; Michael Paller, M; Rodney Riley, R; Michael Serrato, M

2006-03-01T23:59:59.000Z

252

The Savannah River Site is owned by the U.S. Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Steven Wach Strategic Development and Technical Partnerships Savannah River National Laboratory Savannah River Nuclear Solutions, LLC Georgia Institute of Technology Bachelor of...

253

The Savannah River Site is owned by the U.S. Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Director for Clean Energy Initiatives at the U.S. Department of Energy's (DOE) Savannah River National Laboratory (SRNL), operated by Savannah River Nuclear Solutions (SRNS),...

254

The Savannah River Site is owned by the U.S. Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Director for Nuclear Materials Programs at the U.S. Department of Energy's (DOE) Savannah River National Laboratory (SRNL), operated by Savannah River Nuclear Solutions (SRNS),...

255

Using Satellite Imagery to Assess Macrophyte Response to Water-level Manipulations in the Saskatchewan River  

E-Print Network [OSTI]

in the Saskatchewan River Delta, Manitoba Mark S. Baschuk & Michael D. Ervin & William R. Clark & Llwellyn M partially drawn down during a three-year period (2007­2010) in the Saskatchewan River Delta, Manitoba-based . Saskatchewan River Delta Introduction The Saskatchewan River Delta (SRD) is a large and ecolog- ically

Clark, William R.

256

Waste area grouping 2 Phase I task data report: Ecological risk assessment and White Oak Creek watershed screening ecological risk assessment  

SciTech Connect (OSTI)

This report presents an ecological risk assessment for Waste Area Grouping (WAG) 2 based on the data collected in the Phase I remedial investigation (RI). It serves as an update to the WAG 2 screening ecological risk assessment that was performed using historic data. In addition to identifying potential ecological risks in WAG 2 that may require additional data collection, this report serves to determine whether there are ecological risks of sufficient magnitude to require a removal action or some other expedited remedial process. WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the Oak Ridge National Laboratory (ORNL) main plant area, White Oak Lake (WOL), the White Oak Creek Embayment of the Clinch River, associated flood plains, and the associated groundwater. The WOC system drains the WOC watershed, an area of approximately 16.8 km{sup 2} that includes ORNL and associated WAGs. The WOC system has been exposed to contaminants released from ORNL and associated operations since 1943 and continues to receive contaminants from adjacent WAGs.

Efroymson, R.A.; Jackson, B.L.; Jones, D.S. [and others] [and others

1996-05-01T23:59:59.000Z

257

Aquatic Ecology Aquatic ecology group studies ecological interactions  

E-Print Network [OSTI]

Aquatic Ecology Aquatic ecology group studies ecological interactions between biota and their environment in freshwater and marine ecosystems. The group focuses particularly on the ecological interactions and their underlying ecological processes necessary to sustain ecosystem structure and function in their natural state

258

Human Ecology Human ecology Research  

E-Print Network [OSTI]

Channel, Latin America. STUDIOS Architecture. #12;HUMAN ECOLOGY · APRIL 2005 1 Lisa Staiano-Coico, Ph Frey spins a green alternative for textiles. Fibers from rapidly renewable materials

Wang, Z. Jane

259

EM National Laboratorys Solvent to Save an Estimated $1.35 Billion  

Broader source: Energy.gov [DOE]

AIKEN, S.C. For the Savannah River National Laboratory (SRNL), successful deployment is the ultimate validation of science and technologys value to the EM program.

260

Designing for ecology : the ecological park  

E-Print Network [OSTI]

This thesis aims to define a) what an ecological park is, and b) whether it is a new model in park design. Reference to the literature on landscape ecology is used to analyze the natural ecological merit of these parks, ...

Power, Andres M

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

BEE 446546, River Engineering, Winter 2010 Instructor: Dr. Desiree Tullos  

E-Print Network [OSTI]

appropriate methods of data collection for addressing engineering problem at the project site. WeBEE 446546, River Engineering, Winter 2010 Syllabus Instructor: Dr. Desiree Tullos Assistant Professor, Biological and Ecological Engineering Department 233 Gilmore Hall Phone

Tullos, Desiree

262

Assessing channel reconfiguration as river restoration bioassessment and  

E-Print Network [OSTI]

Assessing channel reconfiguration as river restoration ­ bioassessment and disturbance Desiree love - restoration "various techniques used to replicate the hydrological, morphological, and ecological features that have been lost in a stream due to urbanization, farming, or other disturbance

Tullos, Desiree

263

Plant Ecology An Introduction  

E-Print Network [OSTI]

1 Plant Ecology An Introduction Ecology as a Science Study of the relationships between living and causes of the abundance and distribution of organisms Ecology as a Science We'll use the perspective of terrestrial plants Basic ecology - ecological principles Applied ecology - application of principles

Cochran-Stafira, D. Liane

264

Microb Ecol (1991) 22:293-304 MICROBIAL ECOLOGY  

E-Print Network [OSTI]

pez de Victoria,** and Carl B. Fliermans Environmental Sciences Section, Savannah River Laboratory, Westinghouse Savannah River Company, Aiken, South Carolina 29808, USA Received: March 22, 1991; Revised: July 1 methodology. Sediments to a depth of 550 m were collected from boreholes at three sites on the Savannah River

Hazen, Terry

265

Conservation Ecology & Entomology Department Stellenbosch University ecological network research (Mondi  

E-Print Network [OSTI]

Conservation Ecology & Entomology Department Stellenbosch University ecological network research (Mondi Ecological Network Programme (MENP) Ecological networks (ENs) reduce the isolation of populations helps to prevent ecological relaxation (the loss of ecological systems and interactions) and so prevents

Geldenhuys, Jaco

266

Linking ecosystem services, rehabilitation, and river hydrogeomorphology  

E-Print Network [OSTI]

of all services for all FPZs combined. Table 1 includes only 5 of the 14 to 15 variables used to delineate FPZs in our river-typing methods, but these are sufficient to illustrate why ecosystem services should vary among FPZs. The first three.... Ecological Applications 13: 17621772. Loomis J, Kent P, Strange L, Fausch K, Covich A. 2000. Measuring the total economic value of restoring ecosystem services in an impaired river basin: Results from contingent valuation survey. Ecological Economics 33: 103...

Thorp, James H.

2010-01-01T23:59:59.000Z

267

River DNA:.  

E-Print Network [OSTI]

??A new dynamic equilibrium between flood prevention, ecology, energy supply and recreation. This is amplified with the transformation of a nuclear plant into a centre (more)

Van der Gaag, E.J.

2015-01-01T23:59:59.000Z

268

Principal Media Contact: DT Townsend Savannah River Nuclear Solutions...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Science Week, dozens of students and teachers recently spent time with Savannah River National Laboratory (SRNL) scientists, touring the Department of Energy's (DOE)...

269

American Society of Mechanical Engineers/Savannah River National...  

Broader source: Energy.gov (indexed) [DOE]

American Society of Mechanical EngineersSavannah River National Laboratory (ASMESRNL) Materials and Components for Hydrogen Infrastructure Codes and Standards Workshop and the...

270

Ecological Screening Values for Surface Water, Sediment, and Soil: 2005 Update  

SciTech Connect (OSTI)

One of the principal components of the environmental remediation program at the Savannah River Site (SRS) is the assessment of ecological risk. Used to support CERCLA, RCRA, and DOE orders, the ecological risk assessment (ERA) can identify environmental hazards and evaluate remedial action alternatives. Ecological risk assessment is also an essential means for achieving DOE's risk based end state vision for the disposition of nuclear material and waste hazards, the decommissioning of facilities, and the remediation of inactive waste units at SRS. The complexity of an ERA ranges from a screening level ERA (SLERA) to a full baseline ERA. A screening level ecological risk assessments, although abbreviated from a baseline risk assessment, is nonetheless considered a complete risk assessment (EPA, 2001a). One of the initial tasks of any ERA is to identify constituents that potentially or adversely affect the environment. Typically, this is accomplished by comparing a constituent's maximum concentration in surface water, sediment, or soil with an ecological screening value (ESV). The screening process can eliminate many constituents from further consideration in the risk assessment, but it also identifies those that require additional evaluation. This document is an update of a previous compilation (Friday, 1998) and provides a comprehensive listing of ecological screening values for surface water, sediment, and soil. It describes how the screening values were derived and recommends benchmarks that can be used for ecological risk assessment. The sources of these updated benchmarks include the U.S. Environmental Protection Agency (EPA), U.S. Fish and Wildlife Service (USFWS), U.S. Geological Survey (USGS), National Oceanic and Atmospheric Administration (NOAA), Oak Ridge National Laboratory (ORNL), the State of Florida, the Canadian Council of Ministers of the Environment (CCME), the Dutch Ministry of the Environment (RIVM), and the scientific literature. It should be noted that ESV's are continuously revised by the various issuing agencies. The references in this report provide the citations of each source and, where applicable, the internet address where they can be accessed. Although radiological screening values are not included herein due to space limitations, these have been recently derived by a technical working committee sponsored by the U.S. Department of Energy (DOE 2002, 2004). The recommended ecological screening values represent the most conservative concentrations of the cited sources, and are to be used for screening purposes only. They do not represent remedial action cleanup levels. Their use at locations other than SRS should take into account environmental variables such as water quality, soil chemistry, flora and fauna, and other ecological attributes specific to the ecosystem potentially at risk.

Friday, G. P.

2005-07-18T23:59:59.000Z

271

PATTERNS OF PRIMARYAND HETEROTROPHIC PRODUCTIVITY IN AN ARID LOWLAND RIVER  

E-Print Network [OSTI]

production variability. This study also highlights the importance of the microbial loop and macrophytes in the ecology of the Murray R. Copyright # 2007 John Wiley & Sons, Ltd. key words: lowland rivers; carbon; River of organic carbon supplied to a riverine system will be one of the major determinants of biotic community

Canberra, University of

272

Advanced Hydride Laboratory  

SciTech Connect (OSTI)

Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

Motyka, T.

1989-01-01T23:59:59.000Z

273

Advanced Hydride Laboratory  

SciTech Connect (OSTI)

Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, ``cold,`` process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility`s metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

Motyka, T.

1989-12-31T23:59:59.000Z

274

Los Alamos National Laboratory Issue 1 June 2014  

E-Print Network [OSTI]

Berkeley, Pacific Northwest, Savannah River, and Los Alamos national laboratories at the Savannah RiverLos Alamos National Laboratory Issue 1 · June 2014 RESEARCH QUARTERLY Th 90 Ac 89 Pa 91 U 92 Np 93 Institute Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated

275

Prehistoric Rock Structures of the Idaho National Laboratory  

SciTech Connect (OSTI)

Over the past 13,500 years, human populations have lived in and productively utilized the natural resources offered by the cold desert environment of the northeastern Snake River Plain in eastern Idaho. Within an overall framework of hunting and gathering, groups relied on an intimate familiarity with the natural world and developed a variety of technologies to extract the resources that they needed to survive. Useful items were abundant and found everywhere on the landscape. Even the basaltic terrain and the rocks, themselves, were put to productive use. This paper presents a preliminary classification scheme for rock structures built on the Idaho National Laboratory landscape by prehistoric aboriginal populations, including discussions of the overall architecture of the structures, associated artifact assemblages, and topographic placement. Adopting an ecological perspective, the paper concludes with a discussion of the possible functions of these unique resources for the desert populations that once called the INL home.

Brenda R Pace

2007-04-01T23:59:59.000Z

276

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

Not Available

1994-06-01T23:59:59.000Z

277

Heavy Metal Contaminated Sediments of Lower Passaic River, New Jersey USA Victor Onwueme1  

E-Print Network [OSTI]

Heavy Metal Contaminated Sediments of Lower Passaic River, New Jersey USA Victor Onwueme1 , Huan benchmarks and probable ecological stressors. Heavy metals remains chemicals of concern in the Passaic River of toxic chemicals throughout the river, whose concentrations greatly exceed the sediment quality

Brookhaven National Laboratory

278

Evaluating Cumulative Ecosystem Response to Restoration Projects in the Columbia River Estuary, Annual Report 2006  

SciTech Connect (OSTI)

This report is the third annual report of a six-year project to evaluate the cumulative effects of habitat restoration action in the Columbia River Estuary (CRE). The project is being conducted for the U.S. Army Corps of Engineers (Corps) by the Marine Sciences Laboratory of the Pacific Northwest National Laboratory, the Pt. Adams Biological Field Station of the National Marine Fisheries Service, and the Columbia River Estuary Study Taskforce. Measurement of the cumulative effects of ecological restoration projects in the Columbia River estuary is a formidable task because of the size and complexity of the estuarine landscape and the meta-populations of salmonids in the Columbia River basin. Despite the challenges presented by this system, developing and implementing appropriate indicators and methods to measure cumulative effects is the best way to enable estuary managers to track the overall effectiveness of investments in estuarine restoration projects. This project is developing methods to quantify the cumulative effects of multiple restoration activities in the CRE. The overall objectives of the 2006 study were to continue to develop techniques to assess cumulative effects, refine the standard monitoring protocols, and initiate development of an adaptive management system for Corps of Engineers habitat restoration monitoring efforts in the CRE. (The adaptive management effort will be reported at a later date.) Field studies during 2006 were conducted in tidal freshwater at Kandoll Farm on the lower Grays River and tidal brackish water at Vera Slough on Youngs Bay. Within each of area, we sampled one natural reference site and one restoration site. We addressed the overall objectives with field work in 2006 that, coupled with previous field data, had specific objectives and resulted in some important findings that are summarized here by chapter in this report. Each chapter of the report contains data on particular monitored variables for pre- and post-restoration conditions at both the Kandoll and Vera study areas.

Johnson, Gary E.; Borde, Amy B.; Dawley, Earl; Diefenderfer, Heida L.; Ebberts, Blaine D.; Putman, Douglas A.; Roegner, G. C.; Thom, Ronald M.; Vavrinec, John; Whiting, Allan H.

2007-12-06T23:59:59.000Z

279

Laboratory Handbook Department of Ecology and Evolution  

E-Print Network [OSTI]

, ...) 1118 toxic waste storage room Recycling and waste disposal (paper, glass, aluminum, PET, Styrofoam autoclave the tip boxes, and afterwards, place them in the drying oven. Waste disposal: Recycling). Chemical waste: Organic compounds (phenol, chloro

Alvarez, Nadir

280

Ecological Resources and Systems | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for the Future of DOEEarth Videos3 2.484Public

Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Forest ecology Introduction  

E-Print Network [OSTI]

Forest ecology Introduction Forest ecology is a part of ecology that is con- cerned with forests as opposed to grasslands, savan- nas, or tundra. Ecology is the study of the processes of interaction among organisms and between organ- isms and their environment. Ecology is often subdi- vided into physiological

Johnson, Edward A.

282

Ecology and environment  

E-Print Network [OSTI]

Ecology and environment Essentials Courses MSci (Hons) in Ecology and Environment MSci (Hons) in Ecology and Environment (research placement) BSc (Hons) in Ecology and Environment Foundation year for UK for the MSci in Ecology and Environment (research placement): AAA Typical A level offer range for the other

Sussex, University of

283

Environmental Planning and Ecology Program Annual Report.  

SciTech Connect (OSTI)

The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Environmental Planning and Ecology Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The program report describes the activities undertaken during the past year, and activities planned in future years to implement the Planning and Ecology Program, one of six programs that supports environmental management at SNL/CA.

Larsen, Barbara L.

2008-01-01T23:59:59.000Z

284

Savannah River Technology Center. Monthly report  

SciTech Connect (OSTI)

This document contains information about the research programs being conducted at the Savannah River Plant. Topics of discussion include: thermal cycling absorption process, development of new alloys, ion exchange, oxalate precipitation, calcination, environmental research, remedial action, ecological risk assessments, chemical analysis of salt cakes, natural phenomena hazards assessment, and sampling of soils and groundwater.

Not Available

1994-02-01T23:59:59.000Z

285

CREEL CENSUS AND EXPENDITURE STUDY, NORTH FORK SUN RIVER,  

E-Print Network [OSTI]

CREEL CENSUS AND EXPENDITURE STUDY, NORTH FORK SUN RIVER, MONTANA, 1951 Marine Biological STUDY, NORTH FORK SUN RIVER, MONTANA, 1951 Marine Biological Laboratory JUN16 1954 WOODS HOLE, MASS MAP CREEL CENSUS SUN RIVER MONTANA DRAWN i*^ ^ TRACED- _2£jLt:l SUBMITTED . 1 V N 01 1 VN ei

286

Complexity, Ecology, Finance  

E-Print Network [OSTI]

The Morris Worm Complexity, Ecology, Finance The Pre-HistorySystemic Risk Complexity, Ecology, Finance Andrew Haldane,has called for more ecology in the study of finance ( read

2011-01-01T23:59:59.000Z

287

CRAD, Emergency Management - Los Alamos National Laboratory TA...  

Broader source: Energy.gov (indexed) [DOE]

CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Los Alamos National Laboratory TA 55 SST Facility CRAD, Training -...

288

Ecology 2007 95, 482492  

E-Print Network [OSTI]

LIZA S. COMITA*, RICHARD CONDIT§ and STEPHEN P. HUBBELL Department of Plant Biology, University. Comita, Department of Ecology, Evolution & Behaviour, University of Minnesota, 100 Ecology Building, 1987

Bermingham, Eldredge

289

The U.S. Department of Energy's Office of Science: Steward of 10 World-Class National Laboratories  

E-Print Network [OSTI]

National Laboratory (DOE's National Nuclear Security Administration) Savannah River National LaboratoryThe U.S. Department of Energy's Office of Science: Steward of 10 World-Class National Laboratories.......................................................................................................................1 DOE National Laboratories Map

290

Linking Molecular Microbiology and Geochemistry to Better Understand Microbial Ecology in Coastal Marine Sediments  

E-Print Network [OSTI]

The overall objective of the research presented here was to combine multiple geochemical parameters and molecular characterizations to provide a novel view of active microbial community ecology of sediments in a large-river deltaic estuary...

Reese, Brandi Kiel

2012-02-14T23:59:59.000Z

291

RANGELAND ECOLOGY Rangeland Ecology graduates are trained in the ecology and  

E-Print Network [OSTI]

RANGELAND ECOLOGY Rangeland Ecology graduates are trained in the ecology and management, aesthetic values, biodiversity, recreation, and many others) are sustained through time. Rangeland Ecology graduates are also well prepared to work in ecological restoration of drastically disturbed lands. Rangeland

292

Pennsylvania Scenic Rivers Program  

Broader source: Energy.gov [DOE]

Rivers included in the Scenic Rivers System will be classified, designated and administered as Wild, Scenic, Pastoral, Recreational and Modified Recreational Rivers (Sections 4; (a) (1) of the...

293

Ecology 2007 21, 455464  

E-Print Network [OSTI]

Functional Ecology 2007 21, 455­464 455 © 2007 The Authors. Journal compilation © 2007 British Ecological Society Blackwell Publishing Ltd The speed of ecological speciation ANDREW P. HENDRY*, PATRIK on ecological time-scales (contemporary evolution) and adaptive divergence can cause reproductive isolation

Rieseberg, Loren

294

Ecology 2004 18, 584591  

E-Print Network [OSTI]

Functional Ecology 2004 18, 584­591 © 2004 British Ecological Society 584 Blackwell Publishing, Ltd. WEICHT,* D. L. MOORHEAD* and R. L. SINSABAUGH* *Department of Earth, Ecological and Environmental productivity, soil respiration Functional Ecology (2004) 18, 584­591 Introduction Net ecosystem responses

Neher, Deborah A.

295

Ecology 2005 93, 231243  

E-Print Network [OSTI]

Journal of Ecology 2005 93, 231­243 © 2005 British Ecological Society Blackwell Publishing, Ltd. PRESIDENTIAL ADDRESS Darkness visible: reflections on underground ecology A. H. FITTER Department of Biology Journal of Ecology (2005) 93, 231­243 doi: 10.1111/j.1365-2745.2005.00990.x Soil, science and civilization

Bruns, Tom

296

Postgraduate Overview MSc Aquatic Ecology by Research (AER)  

E-Print Network [OSTI]

Postgraduate Overview MSc Aquatic Ecology by Research (AER) Established programme to strengthen in the laboratory or field, rather than by formal tuition in the lecture theatre. In essence then, AER melds both UK

Chittka, Lars

297

ECOLOGICAL DIVERSITY AND BIODIVERSITY AS CONCEPTS FOR CONSERVATION PLANNING  

E-Print Network [OSTI]

ECOLOGICAL DIVERSITY AND BIODIVERSITY AS CONCEPTS FOR CONSERVATION PLANNING: COMMENTS ON RICOTTA Sahotra Sarkar Biodiversity and Biocultural Conservation Laboratory, Section of Integrative Biology of measures of biodiversity which can be used for systematic conservation planning. Moreover, these measures

Sarkar, Sahotra

298

Industrial ecology Prosperity Game{trademark}  

SciTech Connect (OSTI)

Industrial ecology (IE) is an emerging scientific field that views industrial activities and the environment as an interactive whole. The IE approach simultaneously optimizes activities with respect to cost, performance, and environmental impact. Industrial Ecology provides a dynamic systems-based framework that enables management of human activity on a sustainable basis by: minimizing energy and materials usage; insuring acceptable quality of life for people; minimizing the ecological impact of human activity to levels that natural systems can sustain; and maintaining the economic viability of systems for industry, trade and commerce. Industrial ecology applies systems science to industrial systems, defining the system boundary to incorporate the natural world. Its overall goal is to optimize industrial activities within the constraints imposed by ecological viability, globally and locally. In this context, Industrial systems applies not just to private sector manufacturing and services but also to government operations, including provision of infrastructure. Sandia conducted its seventeenth Prosperity Game{trademark} on May 23--25, 1997, at the Hyatt Dulles Hotel in Herndon, Virginia. The primary sponsors of the event were Sandia National Laboratories and Los Alamos National Laboratory, who were interested in using the format of a Prosperity Game to address some of the issues surrounding Industrial Ecology. Honorary game sponsors were: The National Science Foundation; the Committee on Environmental Improvement, American Chemical Society; the Industrial and Engineering Chemistry Division, American Chemical Society; the US EPA--The Smart Growth Network, Office of Policy Development; and the US DOE-Center of Excellence for Sustainable Development.

Beck, D.; Boyack, K.; Berman, M.

1998-03-01T23:59:59.000Z

299

Hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, December 30, 1992--December 29, 1993  

SciTech Connect (OSTI)

Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and by the year 2000. In December, 1992, the Tulane/Xavier CBR was awarded a five year grant to study pollution in the Mississippi River system. The ``Hazardous Materials in Aquatic Environments of the Mississippi River Basin`` project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. These research and education projects are particularly relevant to the US Department of Energy`s programs aimed at addressing aquatic pollution problems associated with DOE National Laboratories. First year funding supported seven collaborative cluster projects and twelve initiation projects. This report summarizes research results for period December 1992--December 1993.

Not Available

1993-12-31T23:59:59.000Z

300

Roger Seitz Savannah River National Laboratory  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015DepartmentDepartment of Energy9-09-24-01

Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Sandia National Laboratories: river current energy converters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskiteremoving thereverse osmosis

302

Sandia National Laboratories: East River Tidal Strait  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortium for AdvancedEnergy StorageEarth

303

Species for the screening assessment. Columbia River Comprehensive Impact Assessment  

SciTech Connect (OSTI)

Because of past nuclear production operations along the Columbia River, there is intense public and tribal interest in assessing any residual Hanford Site related contamination along the river from the Hanford Reach to the Pacific Ocean. The Columbia River Comprehensive Impact Assessment was proposed to address these concerns. The assessment of the Columbia River is being conducted in phases. The initial phase is a screening assessment of the risk, which addresses current environmental conditions for a range of potential uses. One component of the screening assessment estimates the risk from contaminants in the Columbia River to the environment. The objective of the ecological risk assessment is to determine whether contaminants from the Columbia River pose a significant threat to selected receptor species that exist in the river and riparian communities of the study area. This report (1) identifies the receptor species selected for the screening assessment of ecological risk and (2) describes the selection process. The species selection process consisted of two tiers. In Tier 1, a master species list was developed that included many plant and animal species known to occur in the aquatic and riparian systems of the Columbia River between Priest Rapids Dam and the Columbia River estuary. This master list was reduced to 368 species that occur in the study area (Priest Rapids Dam to McNary Dam). In Tier 2, the 181 Tier 1 species were qualitatively ranked based on a scoring of their potential exposure and sensitivity to contaminants using a conceptual exposure model for the study area.

Becker, J.M.; Brandt, C.A.; Dauble, D.D.; Maughan, A.D.; O`Neil, T.K.

1996-03-01T23:59:59.000Z

304

Urbanizing Watersheds and Changing River Flood Dynamics: Implications for Urban Wetland Restoration  

E-Print Network [OSTI]

Urbanization alters river hydrology, morphology, water quality, and habitat and ecology. Most of these associated changes are due to an increase in impervious surface cover (ISC) throughout the watershed. But the spatial location of urban areas...

Simmons, M.

2003-01-01T23:59:59.000Z

305

Demonstration Sites of Best Management Practices: A Manual for the Upper Etowah River Alliance  

E-Print Network [OSTI]

Demonstration Sites of Best Management Practices: A Manual for the Upper Etowah River Alliance and the Institute of Ecology #12;UERA BMPs Demonstation Sites Manual 2 of 2 Demonstration Sites of Best Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 iii. Best Management Practices

Rosemond, Amy Daum

306

Ramifications of late Holocene hide-processing geographies along the lower Medina River, Texas  

E-Print Network [OSTI]

This thesis identifies and describes the importance of late Holocene hide processing along the lower Medina River, Texas within a contextual framework of human ecology and land use on the Texas inner Gulf Coastal Plain. Toyah sites in Texas...

Ahr, Steve Wayne

1998-01-01T23:59:59.000Z

307

Laboratory or Facility Representative Email Addresses Phone # Ames Laboratory Stacy Joiner joiner@ameslab.gov 515-294-5932  

E-Print Network [OSTI]

@sandia.gov 505-284-3768 Savannah River National Laboratory Dale Haas dale.haas@srnl.gov 803-725-4185 Stanford joiner@ameslab.gov 515-294-5932 Argonne National Laboratory Connie Cleary ccleary@anl.gov 630-252-8111 Brookhaven National Laboratory Walter Copan wcopan@bnl.gov 631-344-3035 Fermi National Acclerator Laboratory

Ohta, Shigemi

308

Ecological risks of DOE`s programmatic environmental restoration alternatives  

SciTech Connect (OSTI)

This report assesses the ecological risks of the Department of Energy`s (DOE) Environmental Restoration Program. The assessment is programmatic in that it is directed at evaluation of the broad programmatic alternatives outlined in the DOE Implementation Plan. It attempts to (1) characterize the ecological resources present on DOE facilities, (2) describe the occurrence and importance of ecologically significant contamination at major DOE facilities, (3) evaluate the adverse ecological impacts of habitat disturbance caused by remedial activities, and (4) determine whether one or another of the programmatic alternatives is clearly ecologically superior to the others. The assessment focuses on six representative facilities: the Idaho National Engineering Laboratory (INEL); the Fernald Environmental Management Project (FEMP); the Oak Ridge Reservation (ORR), including the Oak Ridge National Laboratory (ORNL), Y-12 plant, and K-25 plant; the Rocky Flats Plant; the Hanford Reservation; and the Portsmouth Gaseous Diffusion Plant.

Not Available

1994-06-01T23:59:59.000Z

309

Chapter I: Ecological Acoustics 1.1 Ecological Perception  

E-Print Network [OSTI]

23 Chapter I: Ecological Acoustics 1.1 Ecological Perception The ecological approach to perception of view of low-level sensory stimuli. #12;Ecological Perception 24 The ecological approach, however of its ecological activities, can be obtained by direct sensitivity to invariant structures in the world

Cummins, Fred

310

Ecology or Economy  

E-Print Network [OSTI]

Broadcast Transcript: File this under "Statistics to the Rescue". Economy or ecology? Ecology or economy? Tough choice. Especially for China which is barreling recklessly ahead in its quest to become top consumer nation. A recent release from...

Hacker, Randi; Tsutsui, William

2007-07-18T23:59:59.000Z

311

Grays River Watershed Geomorphic Analysis  

SciTech Connect (OSTI)

This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: 􀂃 The effects of historical and current land use practices on erosion and sedimentation within the channel network 􀂃 The ways in which these effects have influenced the sediment budget of the upper watershed 􀂃 The resulting responses in the main stem Grays River upstream of State Highway 4 􀂃 The past and future implications for salmon habi

Geist, David R.

2005-04-30T23:59:59.000Z

312

Ecological Restoration and Dreams of Natural Streams Waterways throughout the world are under immense pressure to meet the needs of people yet many  

E-Print Network [OSTI]

Ecological Restoration and Dreams of Natural Streams Waterways throughout the world are under the paucity of data on the outcome of stream and river restoration but today there is a rapidly expanding literature on river restoration outcome. One of the dominant approach to restoring streams and rivers remains

Palmer, Margaret A.

313

RESEARCH UPDATE Ecology Division  

E-Print Network [OSTI]

1 RESEARCH UPDATE Ecology Division Biotype has changed its name to Ecotype! Following the re-organisation of Forest Research into five science Divisions and three Support Divisions, the former Woodland Ecology Branches to form the new Ecology Division. We decided to give the divisional newsletter a new name (and

314

PREPARED FOR: The National Renewable Energy Laboratory  

E-Print Network [OSTI]

Wind and solar integration study May 2010 Prepared for NREL by GE Energy 1 River Road Schenectady, New York 12345PREPARED FOR: The National Renewable Energy Laboratory A national laboratory of the U.S. Department of Energy PREPARED BY: GE Energy MAY 2010 WESTERNWIND AND SOLAR INTEGRATION STUDY #12;#12;Western

315

COLLOQUIUM - NOTE SPECIAL TIME OF 3:15PM: Savannah River National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to 5:30pm Colloquia MBG Auditorium COLLOQUIUM - NOTE SPECIAL TIME OF 3:15PM: Savannah River National Laboratory: Underpinning Critical National Missions Dr. Jeff Griffin...

316

AN ECOLOGICAL ECONOMIC APPROACH FOR ANALYZING THE COSTS AND BENEm5 OF RIPARIAN REsTORATION PROJECTS  

E-Print Network [OSTI]

require an approach that addresses the mutualistic nature of these relation ships. The restoration and sustainability of the Verde River ecosystem is not an ecological or eco nomic problem-it is an integrated

317

Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company  

SciTech Connect (OSTI)

Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70[degrees]C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.

Paller, M. (Westinghouse Savannah River Co., Aiken, SC (United States))

1992-03-26T23:59:59.000Z

318

1. Puget Sound Rivers and Salmon Recovery David R. Montgomery, Derek B. Booth, and Susan Bolton  

E-Print Network [OSTI]

and stream restoration into a single volume. Largely drawn from presentations at the conference, the chapters A symposium on Restoration of Puget Sound Rivers at the spring 2000 meeting of the Society for Ecological Restoration's Northwest chapter pre- sented an opportunity to synthesize regional expertise on river

Montgomery, David R.

319

Red River Compact (Texas)  

Broader source: Energy.gov [DOE]

The Red River Compact Commission administers the Red River Compact to ensure that Texas receives its equitable share of quality water from the Red River and its tributaries as apportioned by the...

320

Electrofishing survey of the Great Miami River, September 1994 Annual Report  

SciTech Connect (OSTI)

Fish sampling by electroshocking in the Great Miami River upstream and downstream the Fernald site (September 25 and 26, 1994) was designed to determine changes in the health of the fish community compared to the previous ten years and to collect samples for uranium analyses in fish fillets. Samples of 853 fish, from 27 species, eight families and three sites at river mile (RM) 38, RM 24, and RM 19 provided seventy-eight samples for uranium analyses by an independent laboratory. The biomass of fish caught per hour was greatest at RM 24 > RM 19 > RM 3 8. The diversity index and the heaviest fish community was RM 24 > RM 38 > RM 19. The pooled site at RM 38 near Hamilton was diagnostically separated from the other sites by the young-of-the-year (YOY) golden redhorse, smallmouth bass and golden shiner. The darns at Hamilton acted as an effective barrier against fish migration upriver. Larger freshwater drum, gizzard shad, channel catfish and flathead catfish, which might be expected in rapid current reaches of mid-sized rivers characterize RM 24. The pool at RM 19 was distinguished from the others by YOY gizzard shad, bluegill, and longear sunfish. Thus the fish community in 1994 was separated ecologically by the physical features of the habitat more than by water quality differences between sites. These data suggest that the Fernald effluents in September were having no detectable effects on the distribution of fishes, independent of changes in habitat quality separated on physical attributes of the river channel at each site.

Stocker, L.E.; Miller, M.C.; Evans, R.L.; Koch, R.W. [Univ. of Cincinatti, OH (United States). Dept. of Biological Science

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Ecology and environment What ecology and environment course is  

E-Print Network [OSTI]

Ecology and environment Essentials What ecology and environment course is there? Ecology 01273 876787 Why ecology and environment at Sussex? · You will be taught by lecturers who are leaders in research, with a broad range of experience and expertise including plant, bird and insect ecology, climate

Sussex, University of

322

Platte River Cooperative Agreement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Platte River Cooperative Agreement Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Platte River Cooperative Agreement PEIS, NE, WY,...

323

Maine Rivers Policy (Maine)  

Broader source: Energy.gov [DOE]

The Maine Rivers Policy accompanies the Maine Waterway Development and Conservation Act and provides additional protection for some river and stream segments, which are designated as outstanding...

324

River Basin Commissions (Indiana)  

Broader source: Energy.gov [DOE]

This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

325

Wabash River Heritage Corridor (Indiana)  

Broader source: Energy.gov [DOE]

The Wabash River Heritage Corridor, consisting of the Wabash River, the Little River, and the portage between the Little River and the Maumee River, is considered a protected area, where...

326

Population Ecology Philip M. Dixon  

E-Print Network [OSTI]

Population Ecology Philip M. Dixon Department of Statistics Iowa State University 20 December 2001 Population ecology is the discipline in ecology that deals with the structure and dynamics (e.g. growth interacting populations. Population ecology is closely related to other ecological disciplines, e

327

Application of the ELOHA Framework to Regulated Rivers in the Upper Tennessee River Basin: A Case Study  

SciTech Connect (OSTI)

In order for habitat restoration in regulated rivers to be effective at large scales, broadly applicable frameworks are needed that provide measurable objectives and contexts for management. The Ecological Limits of Hydrologic Alteration (ELOHA) framework was created as a template to assess hydrologic alterations, develop relationships between altered streamflow and ecology, and establish environmental flow standards. We tested the utility of ELOHA in informing flow restoration applications for fish and riparian communities in regulated rivers in the Upper Tennessee River Basin (UTRB). We followed the steps of ELOHA to generate flow alteration-ecological response relationships and then determined whether those relationships could predict fish and riparian responses to flow restoration in the Cheoah River, a regulated system within the UTRB. Although ELOHA provided a robust template to construct hydrologic information and predict hydrology for ungaged locations, our results do not support the assertion that over-generalized univariate relationships between flow and ecology can produce results sufficient to guide management in regulated rivers. After constructing multivariate models, we successfully developed predictive relationships between flow alterations and fish/riparian responses. In accordance with model predictions, riparian encroachment displayed consistent decreases with increases in flow magnitude in the Cheoah River; however, fish richness did not increase as predicted four years post- restoration. Our results suggest that altered temperature and substrate and the current disturbance regime may have reduced opportunities for fish species colonization. Our case study highlights the need for interdisciplinary science in defining environmental flows for regulated rivers and the need for adaptive management approaches once flows are restored.

McManamay, Ryan A [ORNL; Orth, Dr. Donald J [Virginia Polytechnic Institute and State University (Virginia Tech); Dolloff, Dr. Charles A [USDA Forest Service, Department of Fisheries and Wildlife Sciences, Virginia Tech; Mathews, David C [Tennessee Valley Authority (TVA)

2013-01-01T23:59:59.000Z

328

analytical laboratory rtal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ecology Websites Summary: 12;12;A BRIEF HISTORY THE ANALYTICAL CHEMISTRY DIVISION OF OAK RIDGE NATIONAL LABORATORY 1950 hiembers of the Chemistry Division R-on: J. A. Swartout...

329

ISE 2012, Vienna USING RIVER RESTORATION OPERATIONS TO TEST  

E-Print Network [OSTI]

to assess how ecohydraulic models can predict actual biological responses to stream restoration. As other9 th ISE 2012, Vienna USING RIVER RESTORATION OPERATIONS TO TEST PREDICTIVE ECOHYDRAULIC MODELS physical restoration, it is still difficult to assess the ecological effects of restoration operations

Paris-Sud XI, Université de

330

RANGELAND ECOLOGY Rangeland Ecology graduates are trained in the ecology and  

E-Print Network [OSTI]

RANGELAND ECOLOGY Rangeland Ecology graduates are trained in the ecology and management, recreation, and many others) are sustained through time. Rangeland Ecology graduates are also well prepared to work in ecological restoration of drastically disturbed lands. Rangeland ecologist often work closely

331

ECOLOGY AND EVOLUTION SEMINAR SERIES*  

E-Print Network [OSTI]

ECOLOGY AND EVOLUTION SEMINAR SERIES* WINTER 2013 ECL 296 (CRN 50337) / PBG 292 (CRN 64677 24 The Modern Ecology of Ice-Covered Lakes in Antarctica: A Journey Back JANUARY 31 Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation

Ishida, Yuko

332

Evaluation of Cumulative Ecosystem Response to Restoration Projects in the Lower Columbia River and Estuary, 2010  

SciTech Connect (OSTI)

This is the seventh and final annual report of a project (20042010) addressing evaluation of the cumulative effects of habitat restoration actions in the 235-km-long lower Columbia River and estuary. The project, called the Cumulative Effects (CE) study, was conducted for the U.S. Army Corps of Engineers Portland District by a collaboration of research agencies led by the Pacific Northwest National Laboratory. We achieved the primary goal of the CE study to develop a methodology to evaluate the cumulative effects of habitat actions in the Columbia Estuary Ecosystem Restoration Program. We delivered 1) standard monitoring protocols and methods to prioritize monitoring activities; 2) the theoretical and empirical basis for a CE methodology using levels-of-evidence; 3) evaluations of cumulative effects using ecological relationships, geo-referenced data, hydrodynamic modeling, and meta-analyses; and 4) an adaptive management process to coordinate and coalesce restoration efforts in the LCRE. A solid foundation has been laid for future comprehensive evaluations of progress made by the Columbia Estuary Ecosystem Restoration Program to understand, conserve, and restore ecosystems in the lower Columbia River and estuary.

Johnson, Gary E.; Diefenderfer, Heida L.; Thom, Ronald M.; Roegner, G. Curtis; Ebberts, Blaine D.; Skalski, John R.; Borde, Amy B.; Dawley, Earl; Coleman, Andre M.; Woodruff, Dana L.; Breithaupt, Stephen A.; Cameron, April; Corbett, C.; Donley, Erin E.; Jay, D. A.; Ke, Yinghai; Leffler, K.; McNeil, C.; Studebaker, Cindy; Tagestad, Jerry D.

2012-05-01T23:59:59.000Z

333

Savannah River Technology Center. Monthly report  

SciTech Connect (OSTI)

This is a monthly progress report from the Savannah River Laboratory for the month of January 1993. It has sections with work in the areas of reactor safety, tritium processes and absorption, separations programs and wastes, environmental concerns and responses, waste management practices, and general concerns.

Not Available

1993-01-01T23:59:59.000Z

334

Ecology 2006 20, 678688  

E-Print Network [OSTI]

Ecological Society Blackwell Publishing Ltd Carotenoid accumulation strategies for becoming a colourful HouseFunctional Ecology 2006 20, 678688 678 2006 The Authors. Journal compilation 2006 British. CRINO School of Life Sciences, Arizona State University, Tempe, AZ 852874501, USA Summary 1. Male House

McGraw, Kevin J.

335

Enter Keyword(s) Today's Ecology Top  

E-Print Network [OSTI]

Enter Keyword(s) Today's Ecology Top News OMG's Business Ecology Initiative BEI Reaches 250 Member Advertisement Ecology Topics Botany Climate Research Ecology Environment Environmental Microbiology Environmental Monitoring Environmental Research Fisheries Research Marine Biology Meteorology Molecular Ecology

336

Sandia National Laboratories: Geomechanics Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science: Latest News and Events Earth Science: Facilities and Equipment Bureau of Land Management Fossil Energy Liquid Natural Gas (LNG) Clean Coal Geomechanics Laboratory User...

337

Entrainment sampling at the Savannah River Site (SRS) Savannah River water intakes (1991)  

SciTech Connect (OSTI)

Cooling water for the Westinghouse Savannah River Company (WSRC) L-Reactor, K-Reactor, and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pumphouses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water. They are passed through the reactor heat exchangers where temperatures may reach 70{degree}C during full power operation. Ichthyoplankton mortality under such conditions is presumably 100%. Apart from a small pilot study conducted in 1989, ichthyoplankton samples have not been collected from the vicinity of the SRS intake canals since 1985. The Department of Energy (DOE) has requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory (SRL) resume ichthyoplankton sampling for the purpose of assessing entrainment at the SRS Savannah River intakes. This request is due to the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River. The following scope of work presents a sampling plan that will collect information on the spatial and temporal distribution of fish eggs and larvae near the SRS intake canal mouths. This data will be combined with information on water movement patterns near the canal mouths in order to determine the percentage of ichthyoplankton that are removed from the Savannah River by the SRS intakes. The following sampling plan incorporates improvements in experimental design that resulted from the findings of the 1989 pilot study. 1 fig.

Paller, M.

1990-11-01T23:59:59.000Z

338

Guidance Manual for Conducting Screening Level Ecological Risk Assessments at the INEL  

SciTech Connect (OSTI)

This document presents reference material for conducting screening level ecological risk assessments (SLERAs)for the waste area groups (WAGs) at the Idaho National Engineering Laboratory. Included in this document are discussions of the objectives of and processes for conducting SLERAs. The Environmental Protection Agency ecological risk assessment framework is closely followed. Guidance for site characterization, stressor characterization, ecological effects, pathways of contaminant migration, the conceptual site model, assessment endpoints, measurement endpoints, analysis guidance, and risk characterization are included.

R. L. VanHorn; N. L. Hampton; R. C. Morris

1995-06-01T23:59:59.000Z

339

The CHPRC Columbia River Protection Project Quality Assurance Project Plan  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.

Fix, N. J.

2008-11-30T23:59:59.000Z

340

ECOLOGICAL NOTES ON THE SIREX WOOD WASPS AND THEIR By H. S. HANSON.  

E-Print Network [OSTI]

27 ECOLOGICAL NOTES ON THE SIREX WOOD WASPS AND THEIR PARASITES. By H. S. HANSON. Farnham House on the ecology of the Sirex wood-wasps and their parasites have been collected during a period of several years. The preliminary investigations were carried out by Dr. J. G. Myers, of Farnham House Laboratory, in collaboration

Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

3, 11851214, 2006 Landscape ecology  

E-Print Network [OSTI]

HESSD 3, 1185­1214, 2006 Landscape ecology meets catchment hydrology B. Schr¨oder Title Page, and function in landscape ecology and catchment hydrology ­ how can quantitative landscape ecology support¨oder (boschroe@uni-potsdam.de) 1185 #12;HESSD 3, 1185­1214, 2006 Landscape ecology meets catchment hydrology B

Paris-Sud XI, Université de

342

Journal of Animal Ecology 2002  

E-Print Network [OSTI]

Journal of Animal Ecology 2002 71, 23­31 © 2002 British Ecological Society Blackwell Science Ltd TONI LAAKSONEN, ERKKI KORPIM?KI and HARRI HAKKARAINEN Section of Ecology, Department of Biology of Animal Ecology (2002) 71, 23­31 Introduction An understanding of age-dependent reproductive out- put

Laaksonen, Toni

343

Journal of Animal Ecology 2004  

E-Print Network [OSTI]

Journal of Animal Ecology 2004 73, 342­352 © 2004 British Ecological Society Blackwell Publishing VALKAMA and VILLE P?YRI Section of Ecology, Department of Biology, University of Turku, FIN-20014 Turku, reproductive value, sex allocation, sex-dependent mortality, varia- ble environment. Journal of Animal Ecology

Laaksonen, Toni

344

MICROSYSTEMS LABORATORIES  

E-Print Network [OSTI]

15 nm MICROSYSTEMS TECHNOLOGY LABORATORIES ANNUAL RESEARCH REPORT 2014 MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MA AUGUST 2014 #12;MTL Annual Research Report 2014 Director Jesús A. del Alamo Project........................................................................ 47 Energy: Photovoltaics, Energy Harvesting, Batteries, Fuel Cells

Culpepper, Martin L.

345

AVIAN ECOLOGY AND CONSERVATION  

E-Print Network [OSTI]

AVIAN ECOLOGY AND CONSERVATION IN AN URBANIZING WORLD edited by John M. Marzluff College of Forest...............................................................................49 4. Human perception and appreciation of birds: A motivation for wildlife conservation in urban

Fernández-Juricic, Esteban

346

Ecology 2007 95, 217225  

E-Print Network [OSTI]

Matsunosato, Tsukuba 305-8687 Japan, and *Institute of Agricultural and Environmental Sciences, Estonian Ecological Society Blackwell Publishing Ltd Dormancyisassociatedwithdecreasedadultsurvivalinthe burnt orchid lower variability in survival and fitness over the long term. We suggest that conservation measures

Shefferson, Richard P.

347

Canadian River Compact (Texas)  

Broader source: Energy.gov [DOE]

The Canadian River Commission administers the Canadian River Compact which includes the states of New Mexico, Oklahoma, and Texas. Signed in 1950 by the member states, the Compact was subsequently...

348

Pecos River Compact (Texas)  

Broader source: Energy.gov [DOE]

This legislation authorizes the state's entrance into the Pecos River Compact, a joint agreement between the states of New Mexico and Texas. The compact is administered by the Pecos River Compact...

349

Assessment of the Species Composition, Densities, and Distribution of Native Freshwater Mussels along the Benton County Shoreline of the Hanford Reach, Columbia River, 2004  

SciTech Connect (OSTI)

The Hanford Reach of the Columbia River is the last unimpounded section of the river and contains substrate characteristics (cobble, gravel, sand/silt) suitable for many of the native freshwater mussels known to exist in the Pacific Northwest. Information concerning the native mussel species composition, densities, and distributions in the mainstem of the Columbia River is limited. Under funding from the U.S. Department of Energy Richland Operations Office (DOE-RL), Pacific Northwest National Laboratory conducted an assessment of the near-shore habitat on the Hanford Reach. Surveys conducted in 2004 as part of the Ecological Monitoring and Compliance project documented several species of native mussels inhabiting the near-shore habitat of the Hanford Reach. Findings reported here may be useful to resource biologists, ecologists, and DOE-RL to determine possible negative impacts to native mussels from ongoing near-shore remediation activities associated with Hanford Site cleanup. The objective of this study was to provide an initial assessment of the species composition, densities, and distribution of the freshwater mussels (Margaritiferidae and Unionidae families) that exist in the Hanford Reach. Researchers observed and measured 201 live native mussel specimens. Mussel density estimated from these surveys is summarized in this report with respect to near-shore habitat characteristics including substrate size, substrate embeddedness, relative abundance of aquatic vegetation, and large-scale geomorphic/hydrologic characteristics of the Hanford Reach.

Mueller, Robert P.; Tiller, Brett L.; Bleich, Matthew D.; Turner, Gerald; Welch, Ian D.

2011-01-31T23:59:59.000Z

350

A Literature Review, Bibliographic Listing, and Organization of Selected References Relative to Pacific salmon (Oncorhynchus spp.) and Abiotic and Biotic Attributes of the Columbia River Estuary and Adjacent Marine and Riverine Environs for Various Historical Periods : Measure 7.1A of the Northwest Power Planning Council`s 1994 Fish and Wildlife Program : Report 4 of 4, Final Report.  

SciTech Connect (OSTI)

This report contains the results of a literature review on the carrying capacity of Pacific salmon in the Columbia River Basin. The objective of the review was to find the information gaps relative to the determinants of salmon carrying capacity in the Columbia River Basin. The review was one activity designed to answer questions asked in Measure 7.1A of the Councils Fish and Wildlife Program. Based, in part, on the information learned during the literature review and the other work accomplished during this study the Pacific Northwest National Laboratory (PNNL) state concluded that the approach inherent in 7.1A will not increase understanding of ecology, carrying capacity, or limiting factors that influence salmon under current conditions. To increase understanding of ecology, carring capacity, and limiting factors, it is necessary to deal with the complexity of the sustained performance of salmon in the Columbia River Basin. The PNNL team suggests that the regions evaluated carrying capacity from more than one view point. The PNNL team recommends that the region use the contextualistic view for evaluating capacity.

Costello, Ronald J.

1996-05-01T23:59:59.000Z

351

Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company. Final report  

SciTech Connect (OSTI)

Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor`s heat exchangers where temperatures may reach 70{degrees}C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams & Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.

Paller, M. [Westinghouse Savannah River Co., Aiken, SC (United States)

1992-03-26T23:59:59.000Z

352

sent to the WIPP Laboratories, Los Alamos National Laboratory, and Savannah River National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 JointProgram ConsortiumTHIS CONTRACT IS Aseliger5,

353

TR-003 Ecology March 2000 Technical Report  

E-Print Network [OSTI]

TR-003 Ecology March 2000 Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife CONTENTS ABSTRACT

354

Pinniped ecology in Santa Monica Bay, California  

E-Print Network [OSTI]

Bight. Anderson JW e d . Ecology of the Southern 2005 .347 - 359. 1998 . Behavioral ecology and demography of seals3 % 4 ) : Population Ecology of California Press Stewart B

Bearzi, Maddalena; Saylan, Charles A.; Barroso, Celia

2008-01-01T23:59:59.000Z

355

Theoretical Ecology: Continued growth and success  

E-Print Network [OSTI]

EDITORIAL Theoretical Ecology: Continued growth and successof areas in theoretical ecology. Among the highlights areyear represent theoretical ecology from around the world: 20

Hastings, Alan

2010-01-01T23:59:59.000Z

356

Long-Term Ecological Monitoring Field Sampling Plan for 2007  

SciTech Connect (OSTI)

This field sampling plan describes the field investigations planned for the Long-Term Ecological Monitoring Project at the Idaho National Laboratory Site in 2007. This plan and the Quality Assurance Project Plan for Waste Area Groups 1, 2, 3, 4, 5, 6, 7, 10, and Removal Actions constitute the sampling and analysis plan supporting long-term ecological monitoring sampling in 2007. The data collected under this plan will become part of the long-term ecological monitoring data set that is being collected annually. The data will be used t determine the requirements for the subsequent long-term ecological monitoring. This plan guides the 2007 investigations, including sampling, quality assurance, quality control, analytical procedures, and data management. As such, this plan will help to ensure that the resulting monitoring data will be scientifically valid, defensible, and of known and acceptable quality.

T. Haney

2007-07-31T23:59:59.000Z

357

Exposure to sediments from polluted rivers has limited phenotypic effects on larvae and adults of Chironomus riparius  

E-Print Network [OSTI]

Exposure to sediments from polluted rivers has limited phenotypic effects on larvae and adults Shape changes Chironomus riparius Polluted sediment Laboratory studies have sometimes failed to detect by using laboratory Chironomus riparius larvae cultured on two sediments sampled in contaminated rivers

Debat, Vincent

358

Snake and Columbia Rivers Sediment Sampling Project  

SciTech Connect (OSTI)

The disposal of dredged material in water is defined as a discharge under Section 404 of the Clean Water Act and must be evaluated in accordance with US Environmental Protection Agency regulation 40 CFR 230. Because contaminant loads in the dredged sediment or resuspended sediment may affect water quality or contaminant loading, the US Army Corps of Engineers (USACE), Walla Walla District, has requested Battelle/Marine Sciences Laboratory to collect and chemically analyze sediment samples from areas that may be dredged near the Port Authority piers on the Snake and Columbia rivers. Sediment samples were also collected at River Mile (RM) stations along the Snake River that may undergo resuspension of sediment as a result of the drawdown. Chemical analysis included grain size, total organic carbon, total volatile solids, ammonia, phosphorus, sulfides, oil and grease, total petroleum hydrocarbons, metals, polynuclear aromatic hydrocarbons, pesticides, polychlorinated biphenyls, and 21 congeners of polychlorinated dibenzodioxins and dibenzofurans.

Pinza, M.R.; Word, J.Q; Barrows, E.S.; Mayhew, H.L.; Clark, D.R. (Battelle/Marine Sciences Lab., Sequim, WA (United States))

1992-12-01T23:59:59.000Z

359

Ecology 2004 18, 257282  

E-Print Network [OSTI]

Institute, 1399 Hyde Park Road., Santa Fe, NM 87501 USA, Los Alamos National Laboratory, Los Alamos, NM

Allen, Andrew P.

360

Big data and the future of ecology  

E-Print Network [OSTI]

in ecological research. Ecology 91: 253639. Ernest SKM,opportunities of open data in ecology. Science 331: 70305.Stokstad E. 2011. Open-source ecology takes root across the

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

1808 METABOLIC THEORY OF ECOLOGY Ecology, Vol. 85, No. 7 Ecology, 85(7), 2004, pp. 18081810  

E-Print Network [OSTI]

Forum 1808 METABOLIC THEORY OF ECOLOGY Ecology, Vol. 85, No. 7 Ecology, 85(7), 2004, pp. 1808­1810 2004 by the Ecological Society of America CAN FUNCTION AT THE ORGANISMAL LEVEL EXPLAIN ECOLOGICAL of chemistry, physics, and biology'' can be used to link the function of individual organisms to ecological pro

Koehl, Mimi

362

Bacterial Source Tracking to Support the Development and Implementation of Watershed Protection Plans for the Lampasas and Leon Rivers: Lampasas River Watershed Final Report  

E-Print Network [OSTI]

..................................................................................................... 14 Laboratory Procedures ........................................................................................ 14 Results ................................................................................................................. 15 Known... forming units (CFU) per 100 mL .................................................................................... 15 Table 6 Known source fecal samples collected in the Lampasas River Watershed . 17 Table 7 City, volume, and discharge location...

Gregory, L.; Casarez, E.; Truesdale, J.; Di Giovanni, G.; Owen, T; Wolfe, J.

2013-04-25T23:59:59.000Z

363

Landscape pattern Landscape ecology, if not ecology in general, is  

E-Print Network [OSTI]

VAL006- Landscape pattern metrics Landscape ecology, if not ecology in general, is largely founded on the notion that environmental patterns strongly influence ecological processes [32]. The habitats in which with organism perception and behav- ior to drive the higher-level processes of population dynamics and community

McGarigal, Kevin

364

44 WEB ECOLOGY 9, 2009 Web Ecology 9: 4453.  

E-Print Network [OSTI]

44 WEB ECOLOGY 9, 2009 Web Ecology 9: 44­53. Accepted 13 May 2009 Copyright © EEF ISSN 1399 agricultural landscape on local bird communities. ­ Web Ecol. 9: 44­53. This study assesses whether Alcalá de Henares, Spain. #12;45WEB ECOLOGY 9, 2009 multifunctional systems are common in southern Europe

Rey Benayas, José María

365

120 WEB ECOLOGY 7, 2007 Web Ecology 7: 120131.  

E-Print Network [OSTI]

120 WEB ECOLOGY 7, 2007 Web Ecology 7: 120­131. Accepted 27 December 2007 Copyright © EEF ISSN 1399 improves early performance of planted seedlings of the Mediterranean shrub Quer- cus coccifera. ­ Web, Spain. #12;121WEB ECOLOGY 7, 2007 have important economic consequences because large amounts of public

Rey Benayas, José María

366

February 2010 / Vol. 60 No. 2 www.biosciencemag.org Ecology and Management of the  

E-Print Network [OSTI]

's Mediterranean-montane environment. We then present two scenarios of change to the spring snowmelt recession of changing spring recession conditions on stream ecosystems. Keywords: stream ecology, Mediterranean-montane, climate change, regulated rivers, natural flow regime these components with regard to the success

Schladow, S. Geoffrey

367

Biological surveys on the Savannah River in the vicinity of the Savannah River Plant (1951-1976)  

SciTech Connect (OSTI)

In 1951, the Academy of Natural Sciences of Philadelphia was contracted by the Savannah River Plant to initiate a long-term monitoring program in the Savannah River. The purpose of this program was to determine the effect of the Savannah River Plant on the Savannah River aquatic ecosystem. The data from this monitoring program have been computerized by the Savannah River Laboratory, and are summarized in this report. During the period from 1951-1976, 16 major surveys were conducted by the Academy in the Savannah River. Water chemistry analyses were made, and all major biological communities were sampled qualitatively during the spring and fall of each survey year. In addition, quantitative diatom data have been collected quarterly since 1953. Major changes in the Savannah River basin, in the Savannah River Plant's activities, and in the Academy sampling patterns are discussed to provide a historical overview of the biomonitoring program. Appendices include a complete taxonomic listing of species collected from the Savannah River, and summaries of the entire biological and physicochemical data base.

Matthews, R. A.

1982-04-01T23:59:59.000Z

368

SULI at Ames Laboratory  

SciTech Connect (OSTI)

A video snapshot of the Science Undergraduate Laboratory Internship (SULI) program at Ames Laboratory.

None

2011-01-01T23:59:59.000Z

369

ANALYTICAL METHODS in CHEMICAL ECOLOGY  

E-Print Network [OSTI]

ANALYTICAL METHODS in CHEMICAL ECOLOGY a post graduate course (doktorandkurs) when: February 10 ­ 28, 2014 where: Chemical Ecology, Plant Protection Biology, Swedish University of Agriculture (SLU to modern analytical methods used in Chemical Ecological and Ecotoxicological research, such as: methods

370

Department of Ecology & Evolutionary Biology  

E-Print Network [OSTI]

Department of Ecology & Evolutionary Biology Graduate Handbook 2011-2012 University of California OVERVIEW The Ecology and Evolutionary Biology (EEB) Graduate Program at UCSC reflects the remarkable local related fields as they acquire mastery in their areas of specialization. The graduate program in Ecology

California at Santa Cruz, University of

371

Journal of Animal Ecology 2007  

E-Print Network [OSTI]

Journal of Animal Ecology 2007 76, 1045­1052 © 2007 The Authors. Journal compilation © 2007 British Ecological Society Blackwell Publishing Ltd Climatechangecanaltercompetitiverelationshipsbetween resident and migratory birds MARKUS P. AHOLA, TONI LAAKSONEN, TAPIO EEVA and ESA LEHIKOINEN Section of Ecology

Laaksonen, Toni

372

The evolutionary ecology of metacommunities  

E-Print Network [OSTI]

The evolutionary ecology of metacommunities Mark C. Urban1* , Mathew A. Leibold2* , Priyanga Vellend12 and Michael J. Wade13 1 National Center for Ecological Analysis and Synthesis, Santa Barbara, CA Department of Ecology and Evolutionary Biology, University of California­Los Angeles, Los Angeles, CA 90095

Hochberg, Michael

373

Laboratory Directed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space controlAppraisal Process Laboratory

374

Laboratory Directors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space controlAppraisalLaboratory Directors

375

880 BOOK REVIEWS Ecology, Vol. 83, No. 3 Ecology, 83(3), 2002, pp. 880881  

E-Print Network [OSTI]

880 BOOK REVIEWS Ecology, Vol. 83, No. 3 Ecology, 83(3), 2002, pp. 880­881 2002 by the Ecological Society of America COMMUNITY ECOLOGY--IN SPANISH Jaksic A., Fabia´n. 2000. Ecologi´a de comunidades. Edi ecology. Few branches of ecology have gone through such a shocking process of redefinition of paradigms

Nacional Autónoma de México, Universidad

376

This article was downloaded by: [University of Georgia] On: 04 February 2014, At: 13:21  

E-Print Network [OSTI]

b a Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808, USA b Savannah River. Fletcherb and Andrew M. Grosseb,y a Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808, USA; b Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29808, USA (Received 30

Georgia, University of

377

Ecology 2007 21, 154161  

E-Print Network [OSTI]

of contexts, both reproductive and routine. For example, large antlers of moose are effective weapons in male Ecological Society Blackwell Publishing Ltd Costs of bearing a sexually selected ornamental weapon be costly to produce and maintain. 2. Male fiddler crabs use a single greatly enlarged claw as both a weapon

Levinton, Jeffrey

378

Ecology 2006 94, 10111026  

E-Print Network [OSTI]

-specific variation in resistance to wind mortality interacted strongly with: (i) shade tolerance characteristics, (ii Ecological Society Blackwell Publishing Ltd Species resistance and community response to wind disturbance, Millbrook, NY 12545, USA Summary 1 Severe winds are the predominant cause of natural disturbance

379

Ecology 2007 95, 12611273  

E-Print Network [OSTI]

Ecological Society Blackwell Publishing Ltd Wind-throw mortality in the southern boreal forest: effects of tree mortality as influenced by species, diameter and stand age were assessed across a gradient in wind in tree size and wind intensity index, and for three stand ages. 3. Probability of mortality was higher

Minnesota, University of

380

Environmental Sciences and Ecology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abella, Scott R. - School of Life Sciences, University of Nevada at Las Vegas Abouheif, Ehab - Department...

Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

RUTGERS ECOLOGICAL PRESERVE POSTALPLAZA  

E-Print Network [OSTI]

RUTGERS ECOLOGICAL PRESERVE Solar Farm METLARSLN ETHELRDW REDBUDRD GO R DO N RD RD 3 RD 2 SUTTONS Material Services Central Receiving/Rutgers Computer Store Security Technologies Shop/University Facilities Operations & Services Asian American Cultural Center/Day Care Center Bainton Field NN N N S LLSSNNNNS OOOON

Hanson, Stephen José

382

ECOLOGY & EVOLUTION CONSERVATION BIOLOGY  

E-Print Network [OSTI]

.arlettaz@iee.unibe.ch www.conservation.unibe.ch Grassland management: designing tomorrow's farmland for biodiversity 1ECOLOGY & EVOLUTION CONSERVATION BIOLOGY Prof. Dr Raphaël Arlettaz Head of the division of Conservation Biology Office: Erlachstrasse 9a Mail: Baltzerstrasse 6 CH­3012 Bern +41 31 631 31 61 +41 79 637

Richner, Heinz

383

Ecology 2006 94, 342354  

E-Print Network [OSTI]

populations in impacted habitats. In recent decades the grass Phragmites australis has been aggressively, Phragmites australis, recruitment limitation, sedimentation, seedling establishment Journal of Ecology (2006. 2 Our objective was to quantify how P. australis modifies the abiotic (soil and light conditions

Bertness, Mark D.

384

Ecology 2006 94, 905914  

E-Print Network [OSTI]

Ecological Society Blackwell Publishing Ltd Arbuscular mycorrhizal fungi and water table affect wetland plant in experimental wetland plant communities, where the dominant plant species are non-mycorrhizal and subordinate table (un-saturated) treatment, above-ground plant biomass increased in the presence of AMF relative

Pringle, Anne

385

Columbia River Treaty  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

an understanding of the implications for post-2024 Treaty planning and Columbia River operations. The joint effort by the Entities to conduct initial post-2024 modeling and...

386

Saving a Dwindling River  

E-Print Network [OSTI]

information on this research is available by downloading TWRI Technical Report 291, ?Reconnaissance Survey of Salt Sources and Loading into the Pecos River,? at http://twri.tamu.edu/reports.php. The research team has also compared flow and salinity data from... Water Act, Section 319 from the U.S. Environmental Protection Agency. ?The river?s importance?historically, biologically, hydrologically and economically?to the future of the entire Pecos River Basin and the Rio Grande is huge,? said Will Hatler, project...

Wythe, Kathy

2007-01-01T23:59:59.000Z

387

Schlumberger soundings in the Upper Raft River and Raft River...  

Open Energy Info (EERE)

Schlumberger soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Abstract In 1975, the U.S. Geological Survey made seventy Schlumberger resistivity...

388

Valuation of ecological resources  

SciTech Connect (OSTI)

Ecological resources are resources that have functional value to ecosystems. Frequently, these functions are overlooked in terms of the value they provide to humans. Environmental economics is in search of an appropriate analysis framework for such resources. In such a framework, it is essential to distinguish between two related subsets of information: (1) ecological processes that have intrinsic value to natural ecosystems; and (2) ecological functions that are values by humans. The present study addresses these concerns by identifying a habitat that is being displaced by development, and by measuring the human and ecological values associated with the ecological resources in that habitat. It is also essential to determine which functions are mutually exclusive and which are, in effect, complementary or products of joint production. The authors apply several resource valuation tools, including contingent valuation methodology (CVM), travel cost methodology (TCM), and hedonic damage-pricing (HDP). One way to derive upper-limit values for more difficult-to-value functions is through the use of human analogs, because human-engineered systems are relatively inefficient at supplying the desired services when compared with natural systems. Where data on the relative efficiencies of natural systems and human analogs exist, it is possible to adjust the costs of providing the human analog by the relative efficiency of the natural system to obtain a more realistic value of the function under consideration. The authors demonstrate this approach in an environmental economic case study of the environmental services rendered by shrub-steppe habitats of Benton County, Washington State.

Scott, M.J.; Bilyard, G.R.; Link, S.O.; Ricci, P.F.; Seely, H.E.; Ulibarri, C.A.; Westerdahl, H.E.

1995-04-01T23:59:59.000Z

389

Sabine River Compact (Multiple States)  

Broader source: Energy.gov [DOE]

The Sabine River Compact Commission administers the Sabine River Compact to ensure that Texas receives its equitable share of quality water from the Sabine River and its tributaries as apportioned...

390

Laboratory Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 CERN 73-11 Laboratory I | Nuclear

391

Bringing science into river systems cumulative effects assessment practice  

SciTech Connect (OSTI)

Fast-paced watershed change, driven by anthropogenic development, is threatening the sustainability of freshwater resources across the globe. Developments within watersheds interact in a manner that is additive and synergistic over space and time. Such cumulative environmental effects are defined as the results of actions that are individually minor but collectively significant when added to other past, present, and reasonably foreseeable future actions. Cumulative effects assessment (CEA) then is broadly defined as the process of evaluating the potential impacts of such collective actions on the environment and is a requirement in many countries, including in Canada at the federal level under the Canadian Environmental Assessment Act. However, current approaches to CEA for river systems are proving to be ineffective, which is largely attributed to the disconnect between CEA science and practice. We highlight this gap herein by discussing contradictions in the CEA literature, challenges in quantifying cumulative interactions, including overcoming spatiotemporal scale issues, multiple hydrologic and ecological pathways, and lack of predictive analysis. Our analysis shows there is a need for improved CEA for river systems, and in responding to this need we propose a conceptual framework for better integrating science and practice for improved CEA for river systems using one of the most adversely affected rivers basins in Canada, the Athabasca River, as our model. We conclude by addressing the challenges inherent to CEA with the intent of providing scientists with ways to help improve CEA of river systems.

Seitz, Nicole E. [Centre for Hydrology, Department of Geography and Planning, University of Saskatchewan. 117 Science Place, Saskatoon, SK. S7N 5C8 (Canada); Westbrook, Cherie J., E-mail: cherie.westbrook@usask.c [Centre for Hydrology, Department of Geography and Planning, University of Saskatchewan. 117 Science Place, Saskatoon, SK. S7N 5C8 (Canada); Noble, Bram F. [Department of Geography and Planning, School for the Environment and Sustainability, University of Saskatchewan. 117 Science Place, Saskatoon, SK. S7N 5C8 (Canada)

2011-04-15T23:59:59.000Z

392

River Edge Redevelopment Zone (Illinois)  

Broader source: Energy.gov [DOE]

The purpose of the River Edge Redevelopment Program is to revive and redevelop environmentally challenged properties adjacent to rivers in Illinois.

393

McKenzie River Subbasin Assessment, Technical Report 2000.  

SciTech Connect (OSTI)

This document details the findings of the McKenzie River Subbasin Assessment team. The goal of the subbasin assessment is to provide an ecological assessment of the McKenzie River Floodplain, identification of conservation and restoration opportunities, and discussion of the influence of some upstream actions and processes. This Technical Report can be viewed in conjunction with the McKenzie River Subbasin Summary or as a stand-alone document. The purpose of the technical report is to detail the methodology and findings of the consulting team that the observations and recommendations in the summary document are based on. This part, Part I, provides an introduction to the subbasin and a general overview. Part II details the specific findings of the science team. Part III provides an explanation and examples of how to use the data that has been developed through this assessment to aid in prioritizing restoration activities. Part III also includes the literature cited and appendices.

Alsea Geospatial, Inc.

2000-02-01T23:59:59.000Z

394

Database of radionuclide measurements in Columbia River water, fish, waterfowl, gamebirds, and shellfish downstream of Hanford`s single-pass production reactors, 1960--1970. Hanford Environmental Dose Reconstruction Project  

SciTech Connect (OSTI)

This report is a result of the Hanford Environmental Dose Reconstruction (HEDR) Project. The goal of the HEDR Project is to estimate the radiation dose that individuals could have received from radionuclide emissions since 1944 at the Hanford Site near Richland, Washington. The HEDR Project is conducted by Battelle, Pacific Northwest Laboratories. The time periods of greatest interest to the HEDR study vary depending on the type of environmental media concerned. Concentrations of radionuclides in Columbia River media from 1960--1970 provide the best historical data for validation of the Columbia River pathway computer models. This report provides the historical radionuclide measurements in Columbia River water (1960--1970), fish (1960--1967), waterfowl (1960--1970), gamebirds (1967--1970), and shellfish (1960--1970). Because of the large size of the databases (845 pages), this report is being published on diskette. A diskette of this report is available from the Technical Steering Panel (c/o K. CharLee, Office of Nuclear Waste Management, Department of Ecology, Technical Support and Publication Information Section, P.O. Box 47651, Olympia, Washington 98504-7651).

Thiede, M.E.; Duncan, J.P.

1994-03-01T23:59:59.000Z

395

National Laboratory Impact Initiative  

Broader source: Energy.gov [DOE]

The National Laboratory Impact Initiative supports the relationship between the Office of Energy Efficiency & Renewable Energy and the national laboratory enterprise. The national laboratories...

396

Characterization of the Kootenai River Aquatic Macroinvertebrate Community before and after Experimental Nutrient Addition, 2003-2006. [Chapter 3  

SciTech Connect (OSTI)

The Kootenai River ecosystem has experienced numerous ecological changes since the early 1900s. Some of the largest impacts to habitat, biological communities, and ecological function resulted from levee construction along the 120 km of river upstream from Kootenay Lake, completed by the 1950s, and the construction and operation of Libby Dam, completed in 1972 on the river near Libby Montana. Levee construction isolated tens of thousands of hectares of historic functioning floodplain habitat from the river channel, eliminating nutrient production and habitat diversity crucial to the functioning of a large river-floodplain ecosystem. Libby Dam continues to create large changes in the timing, duration, and magnitude of river flows, and greatly reduces sediment and nutrient transport to downstream river reaches. These changes have contributed to the ecological collapse of the post-development Kootenai River ecosystem and its native biological communities. In response to this artificial loss of nutrients, experimental nutrient addition was initiated in the Kootenay Lake's North Arm in 1992, the South Arm in 2004, and in the Kootenai River at the Idaho-Montana border during 2005. This report characterizes the macroinvertebrate community in the Kootenai River and its response to experimental nutrient addition during 2005 and 2006. This report also provides an initial evaluation of cascading trophic interactions in response to nutrient addition. Macroinvertebrates were sampled at 12 sites along a 325 km section of the Kootenai River, representing an upriver unimpounded reference reach, treatment and control canyon reach sites, and braided and meandering reach sites, all downstream from Libby Dam. Principle component analysis revealed that richness explained the greatest amount of variability in response to nutrient addition as did taxa from Acari, Coleoptera, Ephemeroptera, Plecoptera, and Trichoptera. Analysis of variance revealed that nutrient addition had a significant effect (p<0.0001) on invertebrate abundance, biomass, and richness at sites KR-9 and KR-9.1 combined (the zone of maximum biological response). Richness, a valuable ecological metric, increased more than abundance and biomass, which were subject to greater sampling bias. Cascading trophic interactions were observed as increased algal accrual, increased in-river invertebrate abundance, and increased invertebrate counts in mountain whitefish (Prosopium williamsonii) guts samples, but were not quantitatively tested. Sampling and analyses across trophic levels are currently ongoing and are expected to better characterize ecological responses to experimental nutrient addition in the Kootenai River.

Holderman, Charlie [Kootenai Tribe of Idaho Bonners

2009-02-19T23:59:59.000Z

397

Tribology Laboratory | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation From919-660-2694Tribology Laboratory

398

Laboratory Events | Brookhaven National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space controlAppraisalLaboratoryGet the tools you

399

Geoscience Laboratory | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshort version)UnveilsGeorgeGeoscience Laboratory

400

Soil Conservation in the Yangtze River Basin By Nicholas Gervais 3169537  

E-Print Network [OSTI]

agricultural · Traditional farming · Hydroelectric conservation · Sediment flux · Conclusion Yangtze River decades (Xiubin et al 2007) Study site profile (Xiubin et al 2007) Hydroelectric conservation · Zhongwei et al (2007) examined the relationship between ecological services/hydroelectric dam (Three Gorges

Blouin-Demers, Gabriel

Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Landscape and Urban Planning 78 (2006) 5070 Room for rivers: An integrative search  

E-Print Network [OSTI]

for floodplain restoration S. Rohdea,, M. Hostmannb, A. Peterc, K.C. Ewaldd a Swiss Federal Institute for Forest restoration aims to re-establish the ecological integrity of a river ecosystem. However, restoration measures to identify stream systems where present environmental (e.g. natural flow, sufficient bed load material

402

More than two-thirds of the Earth's surface is covered with water, so it is not surprising that the planet's oceans, lakes, rivers, streams and wetlands are considered valuable natural  

E-Print Network [OSTI]

that the planet's oceans, lakes, rivers, streams and wetlands are considered valuable natural resources and/stream ecology, wetland science, aquatic- conservation biology and Great Lakes ecosystems. Because of the breadth

Edwards, Paul N.

403

Copyrighted Material What Is Tropical Ecology?  

E-Print Network [OSTI]

Copyrighted Material What Is Tropical Ecology? Asking the question, What is tropical ecology? may seem akin to asking questions such as, Who is buried in Grant's tomb? Tropical ecology is the study of the ecology of tropical regions. But so what? Consider these questions: First, what is ecology? What are its

Landweber, Laura

404

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Biology, Ecology, and Management  

E-Print Network [OSTI]

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife CONTENTS ABSTRACT

405

Environmental | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Management Program at the Ames Laboratory includes Waste Management, Pollution Prevention, Recycling, Cultural Resources, and the Laboratory's Environmental...

406

Columbia River Channel Improvement Project Rock Removal Blasting: Monitoring Plan  

SciTech Connect (OSTI)

This document provides a monitoring plan to evaluate take as outlined in the National Marine Fisheries Service 2002 Biological Opinion for underwater blasting to remove rock from the navigation channel for the Columbia River Channel Improvement Project. The plan was prepared by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers (USACE), Portland District.

Carlson, Thomas J.; Johnson, Gary E.

2010-01-29T23:59:59.000Z

407

Savannah River Technology Center monthly report, September 1992  

SciTech Connect (OSTI)

This is a monthly progress report from the Savannah River Laboratory for the month of September, 1992. It has sections dealing with work in the broad areas of reactor safety, tritium processes and absorption, separations programs and wastes, environmental concerns and responses, waste management practices, and general concerns.

Ferrell, J.M. [comp.

1992-09-01T23:59:59.000Z

408

Ecology 2004 18, 000000  

E-Print Network [OSTI]

. P. ALLEN,§ B. J. ENQUIST¶ and J. H. BROWN*§ *The Santa Fe Institute, 1399 Hyde Park Road., Santa Fe, NM 87501 USA, Los Alamos National Laboratory, Los Alamos, NM 87545 USA, §Department of Biology

Brown, James H.

409

SNL/CA Environmental Planning and Ecology Program Annual Report 2007.  

SciTech Connect (OSTI)

The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Environmental Planning and Ecology Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2006 program report describes the activities undertaken during the past year, and activities planned in future years to implement the Planning and Ecology Program, one of six programs that supports environmental management at SNL/CA.

Larsen, Barbara L.

2007-02-01T23:59:59.000Z

410

TR-017 Ecology March 2002 Technical Report  

E-Print Network [OSTI]

TR-017 Ecology March 2002 Technical Report Forest Research Vancouver Forest Region 2100 Labieux Region Coarse Woody Debris Working Group Research Disciplines: Ecology ~ Geology ~ Geomorphology Research Section, Vancouver Forest Region, BCMOF Research Disciplines: Ecology ~ Geology ~ Geomorphology

411

PERSPECTIVE What is microbial community ecology?  

E-Print Network [OSTI]

PERSPECTIVE What is microbial community ecology? Allan Konopka Biological Sciences Division for rigorous progress in the field. Important elements of research in microbial community ecology include by a `microbial community' and identification of important characteristics specific to community ecology. What

412

The ecology of coral-microbe interactions  

E-Print Network [OSTI]

algal symbioses. Molecular Ecology 18:1823-1833. Webster, N.F. Rohwer. 2008. Microbial ecology of four coral atolls inin Caribbean coral reefs. Ecology Letters 9:818-826. Porter,

Marhaver, Kristen Laura

2010-01-01T23:59:59.000Z

413

commentary: A Darwinian approach to community ecology  

E-Print Network [OSTI]

plant ecol- ogy. Journal of Ecology, 55, 247-270. Kress, W.The merging of community ecology and phylogenetic biology.Ecology Let- ters, 12, 693-715. Freckleton, R. P. & Harvey,

Freckleton, Robert P.

2009-01-01T23:59:59.000Z

414

Preparation of SARs for nonreactor nuclear facilities at the Savannah River Plant  

SciTech Connect (OSTI)

Safety Analysis Reports for designated nonreactor nuclear facilities at the Savannah River Plant are prepared in accordance with the DOE Savannah River Manual Chapter 52X1. The accident analysis section is based on the Integrated Risk Assessment Plan, a methodology developed by the Savannah River Laboratory for reprocessing facilities. In general, designated facilities contain radioactive, chemical, or other materials to the extent that a credible accident could have a significant detrimental effect on health and safety. The responsibility for specifying which facilities are designated rests with the manager, Savannah River Operations Office.

Durant, W.S.

1981-01-01T23:59:59.000Z

415

Ecological Research Division Theoretical Ecology Program. [Contains abstracts  

SciTech Connect (OSTI)

This report presents the goals of the Theoretical Ecology Program and abstracts of research in progress. Abstracts cover both theoretical research that began as part of the terrestrial ecology core program and new projects funded by the theoretical program begun in 1988. Projects have been clustered into four major categories: Ecosystem dynamics; landscape/scaling dynamics; population dynamics; and experiment/sample design.

Not Available

1990-10-01T23:59:59.000Z

416

The Ecological Impact of Biofuels  

E-Print Network [OSTI]

The Ecological Impact of Biofuels Joseph E. Fargione,1 Richard J. Plevin,2 and Jason D. Hill3 1 land-use change Abstract The ecological impact of biofuels is mediated through their effects on land, air, and water. In 2008, about 33.3 million ha were used to produce food- based biofuels

Kammen, Daniel M.

417

Kiyoko Yokota 100 Ecology Building  

E-Print Network [OSTI]

1 Kiyoko Yokota 100 Ecology Building Department of Ecology, Evolution and Behavior University: Michael Mullan, Fiona Crawford, and Daniel Paris, 1999-2001 #12;2 Oral presentations Yokota, K. and R. W and Oceanography Aquatic Sciences Meeting. Santa Fe, New Mexico. Yokota, K. and R. W. Sterner. 2006. Long

Sterner, Robert W.

418

Journal of Applied Ecology 2006  

E-Print Network [OSTI]

Journal of Applied Ecology 2006 43, 377384 2006 The Authors. Journal compilation 2006 British Ecological Society Blackwell Publishing Ltd METHODOLOGICAL INSIGHTS Point transect sampling with traps, Etive House, Beechwood Park, Inverness IV2 3BW, UK Summary 1. The ability to monitor abundance of animal

Thomas, Len

419

Economic Sustainability and Ecological Compatibility  

E-Print Network [OSTI]

Economic Sustainability and Ecological Compatibility: Where is the room to move? October 21st - 22: Economic Sustainability and Ecological Compatibility: Where is the room to move? October 21st - 22nd , 2010, Economic Sustainability: Room to Move? Workshop Hosted by Colorado Forest Restoration Institute Walden

420

Ecology of Ecotourism Spring, 2014  

E-Print Network [OSTI]

FOR 4934: Ecology of Ecotourism Spring, 2014 Room 106 Rogers Hall Monday Periods 6-8 (12:50 to 3 with an understanding of the management and planning of ecotourism opportunities. Specific learning outcomes include recreation and tourism development; · understand ecological impacts and ecotourism management approaches

Watson, Craig A.

Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Microelectrodes in microbial ecology  

SciTech Connect (OSTI)

Understanding the microenvironment of bacteria has presented many challenges for the microbial ecologist. Simple intracellular capillary electrodes have been used in neurophysiology since the 1950s to measure action potentials in ion transport over biological membranes, and ion-selective electrodes were developed soon thereafter for the determination of H{sup +}, Na{sup +}, K{sup +}, and Ca{sup 2+}. However, these analytical techniques did not receive much attention until 1978, when Niels Peter Revsbech and Bo Barker Joergensen at the Institute of Ecology and Genetics, University of Aarhus, Denmark, began using oxygen microelectrodes in their studies of the ecology and biogeochemistry of marine sediments and other microbial environments. Today, Revsbech and Joergensen use five types of microelectrodes, two types of oxygen microelectrodes, a combined microelectrode for nitrous oxide and oxygen, a sulfide microelectrode, and a pH microelectrode. The first three microelectrodes have diameters of about 10 {mu}m and the last two of about 50 {mu}m. Some of the electrodes actually contain two or three cathodes plus a reference electrode, all situated behind a polymer membrane. In situ experiments have been done for several years at a water depth of several meters, where the micromanipulator is operated by a diver. Recently measurements were obtained in the deep sea with the microelectrodes mounted on a free-falling vehicle or operated from a submersible vessel.

Boots, S.

1989-03-15T23:59:59.000Z

422

Screening of contaminants in Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

Waste Area Grouping 2 (WAG 2) of the Oak Ridge National Laboratory (ORNL) is located in the White Oak Creek Watershed and is composed of White Oak Creek Embayment, White Oak Lake and associated floodplain, and portions of White Oak Creek (WOC) and Melton Branch downstream of ORNL facilities. Contaminants leaving other ORNL WAGs in the WOC watershed pass through WAG 2 before entering the Clinch River. Health and ecological risk screening analyses were conducted on contaminants in WAG 2 to determine which contaminants were of concern and would require immediate consideration for remedial action and which contaminants could be assigned a low priority or further study. For screening purposes, WAG 2 was divided into four geographic reaches: Reach 1, a portion of WOC; Reach 2, Melton Branch; Reach 3, White Oak Lake and the floodplain area to the weirs on WOC and Melton Branch; and Reach 4, the White Oak Creek Embayment, for which an independent screening analysis has been completed. Screening analyses were conducted using data bases compiled from existing data on carcinogenic and noncarcinogenic contaminants, which included organics, inorganics, and radionuclides. Contaminants for which at least one ample had a concentration above the level of detection were placed in a detectable contaminants data base. Those contaminants for which all samples were below the level of detection were placed in a nondetectable contaminants data base.

Blaylock, B.G.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.; Suter, G.W.; Watts, J.A.

1992-07-01T23:59:59.000Z

423

,.,, +++_+++>++.._.. IM + _ +.+.++ _._ As$ci+tin f+l_ O0WayneAvenue,Suite 1100 ]_ _ y+' +' _c" _ _2  

E-Print Network [OSTI]

River Ecology Laboratory A Publication of the Savannah River Site National Environmental Research Park National Environmental Resea_-chPark Program 1993 #12;A PUBLICATION OF DOE'S SAVANNAH RIVER SITE NATIONAL may be obtained from: Savannah River Ecology Laboratory Drawer E Aiken, SC 29802 USA #12;SPECIES

Georgia, University of

424

Savannah River National Laboratory (SRNL) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa, Mallorca: Energy ResourcesSaudi Aramco

425

Savannah River National Laboratory Feed | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa, Mallorca: Energy ResourcesSaudi

426

Independent Oversight Follow-up Review, Savannah River National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofThe fullTreatment and Immobilization- January 2012

427

American Society of Mechanical Engineers/Savannah River National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe OfficeUtility Fed.9-0s) All OtherDepartmentWESTPresident

428

Savannah River National Laboratory Meets with Historically Black Colleges  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1 of 1Sandra L. BurrellSarai Geary|and

429

Savannah River National Laboratory Technologies Available for Licensing -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeScienceProgramsSANDCurrentNational NuclearEnergy

430

Sandia National Laboratories: ensure we have a living river  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NRELdeep-waterbiofuelssituationstransmissionenhancedensure we

431

Savannah River National Laboratory Technology Marketing Summaries - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialstheterahertz sourcesSatellite

432

American Society of Mechanical Engineers/Savannah River National Laboratory  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, TMOAB, Utah

433

American Society of Mechanical Engineers/Savannah River National Laboratory  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, TMOAB, Utah(ASME/SRNL) Materials and

434

About SRNL - Visiting the Savannah River National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)Productssondeadjustsondeadjust DocumentationARMStreamsUSBudgetEnterpriseFermilabNational Security5 SEARCH

435

Pacific Northwest National Laboratory  

E-Print Network [OSTI]

and the Columbia River · effects of oil exploration in the Gulf of Mexico · migration of salmon in Northwest inland

436

Arid Lands Ecology Facility management plan  

SciTech Connect (OSTI)

The Arid Lands Ecology (ALE) facility is a 312-sq-km tract of land that lies on the western side of the Hanford Site in southcentral Washington. The US Atomic Energy Commission officially set aside this land area in 1967 to preserve shrub-steppe habitat and vegetation. The ALE facility is managed by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) for ecological research and education purposes. In 1971, the ALE facility was designated the Rattlesnake Hills Research Natural Area (RNA) as a result of an interagency federal cooperative agreement, and remains the largest RNA in Washington. it is also one of the few remaining large tracts of shrub-steppe vegetation in the state retaining a predominant preeuropean settlement character. This management plan provides policy and implementation methods for management of the ALE facilities consistent with both US Department of Energy Headquarters and the Richland Field Office decision (US Congress 1977) to designate and manage ALE lands as an RNA and as a component of the DOE National Environmental Research Park System.

None

1993-02-01T23:59:59.000Z

437

ORIGINAL PAPER A general theory of ecology  

E-Print Network [OSTI]

ORIGINAL PAPER A general theory of ecology Samuel M. Scheiner & Michael R. Willig Received: 9 of ecology have existed for the past half century; ecologists simply have failed to explicitly recognize them. We present a general theory of ecology and show how it relates to ecology's numerous constituent

Willig, Michael

438

For additional information, contact: Department of Ecology  

E-Print Network [OSTI]

For additional information, contact: Department of Ecology Montana State University 310 Lewis Hall P.O. Box 173460 Bozeman, MT 59717-3460 Tel: 406-994-4548 Fax: 406-994-3190 www.montana.edu/ecology/ ecology@montana.edu The Department of Ecology at Montana State University offers undergraduate majors

Maxwell, Bruce D.

439

Hindawi Publishing Corporation International Journal of Ecology  

E-Print Network [OSTI]

Hindawi Publishing Corporation International Journal of Ecology Volume 2012, Article ID 939862, 17 pages doi:10.1155/2012/939862 Review Article Parallel Ecological Speciation in Plants? Katherine L speciation, known as parallel ecological speciation, is one of several forms of evidence for ecology's role

Rieseberg, Loren

440

ECOLOGY LIFE 320 Spring Semester 2011  

E-Print Network [OSTI]

ECOLOGY LIFE 320 Spring Semester 2011 INSTRUCTOR: Dr. Liba Pejchar Office: 234 Wagar E-mail: liba to the fundamental principles of ecology. You will learn about the mechanisms that generate ecological patterns the distribution and abundance of organisms in nature. We will spend most of the semester studying ecology

Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Rivanna River Basin Commission (Virginia)  

Broader source: Energy.gov [DOE]

The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

442

Yellowstone River Compact (North Dakota)  

Broader source: Energy.gov [DOE]

The Yellowstone River Compact, agreed to by the States of Montana, North Dakota, and Wyoming, provides for an equitable division and apportionment of the waters of the Yellowstone River, as well as...

443

Aspen Ecology in the MixedAspen Ecology in the Mixed Conifer TypeConifer Type  

E-Print Network [OSTI]

Aspen Ecology in the MixedAspen Ecology in the Mixed Conifer TypeConifer Type Wayne D. Shepperd Colorado State University Fort Collins, CO Aspen Ecology in the MixedAspen Ecology in the Mixed ConiferAssumptions Mixed conifer forests are a collection of different species, each with different ecologic requirements

444

Ecology, 87(3), 2006, pp. 769779 2006 by the Ecological Society of America  

E-Print Network [OSTI]

769 Ecology, 87(3), 2006, pp. 769­779 2006 by the Ecological Society of America ECOLOGICAL and phenotypic plasticity in promoting ecological character displacement (i.e., trait evolution stemming from resource competition between species). Because ecological character displacement generates new populations

Behe, Michael J.

445

Lafont, M. and Vivier, A. (2006). Oligochaete assemblages in the hyporheic zone and coarse surface sediments: their importance for understanding of ecological  

E-Print Network [OSTI]

sediments: their importance for understanding of ecological functioning of watercourses. Hydrobiologia. 564 assemblages in the hyporheic zone and coarse surface sediments: their importance for understanding Laboratory, 3 bis Quai Koch, 67000 Strasbourg (France) Keywords: Running waters, coarse sediments, hyporheic

Boyer, Edmond

446

Annual Report for 1981 to the DOE Office of the Assistant Secretary for Environmental Protection, Safety, and Emergency Preparedness. Part 2. Ecological Sciences. [Lead abstract  

SciTech Connect (OSTI)

Separate abstracts were prepared for the 38 reports for this Pacific Northwest Laboratory Annual Report for 1981 to the DOE Office of Energy Research. This part dealt with research conducted in the ecological sciences.

Vaughan, B.E.

1982-02-01T23:59:59.000Z

447

P. Julien S. Ikeda River Engineering and  

E-Print Network [OSTI]

1 P. Julien S. Ikeda River Engineering and Stream Restoration Pierre Y. Julien Hong Kong - December 2004 River Engineering and Stream Restoration I - Stream Restoration Objectives Brief overview of River Engineering and Stream Restoration with focus on : 1. River Equilibrium; 2. River Dynamics; 3. River

Julien, Pierre Y.

448

EM Laboratory Researcher James Marra Recognized for Leadership  

Broader source: Energy.gov [DOE]

AIKEN, S.C. Dr. James Marra, an investigator with EMs Savannah River National Laboratory (SRNL), was named the 2014 recipient of the D.T. Rankin Award for exemplary service to the Nuclear and Environmental Technology Division of the American Ceramic Society (ACerS).

449

Pecos River Ecosystem Monitoring Project  

E-Print Network [OSTI]

TR- 272 2004 Pecos River Ecosystem Monitoring Project C. Hart A. McDonald Texas Water Resources Institute Texas A&M University - 146 - 2003 Pecos River Ecosystem Monitoring Project... Charles R. Hart, Extension Range Specialist, Fort Stockton Alyson McDonald, Extension Assistant Hydrology, Fort Stockton SUMMARY The Pecos River Ecosystem Project is attempting to minimize the negative impacts of saltcedar on the river ecosystem...

McDonald, A.; Hart, C.

2004-01-01T23:59:59.000Z

450

Muddy River Restoration Project Begins  

E-Print Network [OSTI]

Muddy River Restoration Project Begins Page 5 #12;2 YANKEE ENGINEER February 2013 Yankee Voices of the Muddy River Restoration project. Inset photo: Flooding at the Muddy River. Materials provided by Mike Project Manager, on the passing of his father in law, Francis James (Jim) Murray, Jan. 9. ... to Laura

US Army Corps of Engineers

451

Words with Winemiller: Researcher's passion for rivers, fish began early  

E-Print Network [OSTI]

. After graduation and with a Fulbright Scholarship in hand, Winemiller and his new wife, Dr. Leslie Kelso-Winemiller, arrived in Zambia, Africa, in 1989, to begin a year-long study of fish ecology on the Zambezi River and its huge floodplain. ?That... for conservation of biodiversity and fishery management but also water resource management, is just a huge bonus.? Dr. Kirk Winemiller and his wife, Dr. Leslie Kelso-Winemiller with former President George H. W. Bush, after receiving the Bush Excellence...

Wythe, Kathy

2009-01-01T23:59:59.000Z

452

Effects of Changes in Arctic Lake and River Ice Terry Prowse, Knut Alfredsen, Spyros Beltaos, Barrie R. Bonsal,  

E-Print Network [OSTI]

ice in the Arctic are projected to produce a variety of effects on hydrologic, ecological, and socio impacts that are directly produced by changes in freshwater ice. The details and diversityEffects of Changes in Arctic Lake and River Ice Terry Prowse, Knut Alfredsen, Spyros Beltaos

Vincent, Warwick F.

453

Behavioral Ecology doi:10.1093/beheco/arq172  

E-Print Network [OSTI]

Behavioral Ecology doi:10.1093/beheco/arq172 Forum: Invited Review The fusion of behavioral ecology and ecology Deborah M. Gordon Department of Biology, Stanford University, Stanford, CA 94305-5020, USA Behavioral ecology and ecology have projects in common. Community ecology can provide behavioral ecology

Gordon, Deborah

454

Book Reviews Ecology, 92(8), 2011, p. 1705  

E-Print Network [OSTI]

Book Reviews Ecology, 92(8), 2011, p. 1705 ? 2011 by the Ecological Society of America Advances in community ecology Gido, Keith B., and Donald A. Jackson, editors. 2010. Community ecology of stream fishes: community ecology; fish ecology; long-term studies; stream ecology. It is rare that a book has a 25-year

Mangel, Marc

455

Environmental Sciences Laboratory dedication, February 26-27, 1979  

SciTech Connect (OSTI)

The dedication of the new Environmental Sciences Laboratory coincided with the 25th year of the establishment of the science of ecology at Oak Ridge National Laboratory. That quarter century witnessed the evolution of ecology from an obscure, backwater discipline of biology to a broadly used, everyday household word. The transition reflected broad and basic changes in our social and cultural view of the world. This was brought about as a result of the awareness developed in our society of the importance of the environment, coupled with efforts of ecologists and other environmental scientists who identified, clarified, and formulated the issues and challenges of environmental protection for both the lay public and the scientific community. In many respects, the activities in ecology at ORNL were a microcosm of the broader social scene; the particular problems of the environment associated with atomic energy needed to be defined in scientific terms and articulated in both the specific and general sense for a larger audience which was unfamiliar with the field and somewhat alien to its concepts and philosophy. The success of this effort is reflected in the existence of the new Environmental Sciences Laboratory. This dedication volume brings together the thoughts and reflections of many of these scientists whose efforts contributed in a unique and individualistic fashion not only to ORNL but also to the national identification of ecology and its importance to the achievement of our national goals. Their remarks and presentations are not only a pleasant and personally gratifying recapitulation of the past and of ORNL's contributions to ecology but also portend some of the challenges to ecology in the future.

Auerbach, S.I.; Millemann, N.T. (eds.)

1980-09-01T23:59:59.000Z

456

The ecological approach to perception and action, in the tradition of the late James J. Gibson, sees psychology as continuous with the natural sciences. Just as the behaviors of natural, nonliving systems at the very large and very small scales are approa  

E-Print Network [OSTI]

The ecological approach to perception and action, in the tradition of the late James J. Gibson established the Center for the Ecological Study of Perception and Action (laboratories are described. Courses within Psychology include Ecological and Computational Theories of Perception, Control

Alpay, S. Pamir

457

Characterization of the geochemical and physical properties of wetland soils on the Savannah River Site: Field sampling activities. Final report  

SciTech Connect (OSTI)

There are 36,000 acres of wetlands on the Savannah River Site (SRS) and an additional 5,000 acres of floodplain. Recent studies of wetland soils near various waste sites at SRS have shown that some wetlands have been contaminated with pollutants resulting from SRS operations. In general, releases of contaminants to wetland areas have been indirect. These releases may have originated at disposal lagoons or waste facilities located in the vicinity of the wetland areas. Transport mechanisms such as surface runoff, soil erosion, sediment transport, and groundwater seepage into downgradient wetland areas are responsible for the indirect discharges to the wetland areas. The SRS determined that a database of background geochemical and physical properties for wetland soils on the SRS was needed to facilitate future remedial investigations, human health and ecological risk assessments, treatability studies, and feasibility studies for the wetland areas. These data are needed for comparison to contaminant data collected from wetland soils that have been affected by contamination from SRS operations. This report describes the efforts associated with the collection of soil cores, preparation of a lithologic log for each core, and the processing and packaging of individual soil samples for shipment to analytical laboratory facilities.

Dixon, K.L. [Westinghouse Savannah River Co., Aiken, SC (United States)

1992-11-01T23:59:59.000Z

458

National Renewable Energy Laboratory  

E-Print Network [OSTI]

National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

459

Rainfall-River Forecasting  

E-Print Network [OSTI]

;2Rainfall-River Forecasting Joint Summit II NOAA Integrated Water Forecasting Program · Minimize losses due management and enhance America's coastal assets · Expand information for managing America's Water Resources, Precipitation and Water Quality Observations · USACE Reservoir Operation Information, Streamflow, Snowpack

US Army Corps of Engineers

460

Savannah River Site Robotics  

ScienceCinema (OSTI)

Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

None

2012-06-14T23:59:59.000Z

Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Materials Design Laboratory | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Design Laboratory, scheduled for completion in FY 2020, is designed to meet U.S. Green Building Council Leadership in Energy and Environmental Design (LEED) Gold...

462

Feeding on Phytoestrogens: Implications of Estrogenic Plants for Primate Ecology  

E-Print Network [OSTI]

change. Journal of Tropical Ecology 21: 31-45. Chapman, C. ,success in a mammal. Ecology 90: Dixon, R. 2004.physiology, and feeding ecology. Evolutionary Anthropology

Wasserman, Michael David

2011-01-01T23:59:59.000Z

463

Empirical and theoretical challenges in abovegroundbelowground ecology  

E-Print Network [OSTI]

in abovegroundbelowground ecology Wim H. van der Putten Interactions, Centre for Terrestrial Ecology, NetherlandsInstitute of Ecology NIOO-KNAW, Boterhoeksestraat 48, 6666

2009-01-01T23:59:59.000Z

464

Dolphins and African apes: comparisons of sympatric socio-ecology  

E-Print Network [OSTI]

Review of sympatric ecology among dolphins and African apesA. 1998. Gorilla ecology and behaviour. EvolutionaryVolume 2: be- haviour, Ecology, and Conservation.Tokyo:

Bearzi, Maddalena; Stanford, Craig B.

2007-01-01T23:59:59.000Z

465

Behavior, Ecology and Genetics of Geoffroy's Tamarin (Saguinus geoffroyi)  

E-Print Network [OSTI]

of landscapes for conservation. Ecology Letters 11: 78-91. LSystematics, behaviour and ecology. Oxford University Press,The evolutionary ecology of the major histocompatibility

Diaz-Munoz, Samuel Luis

2010-01-01T23:59:59.000Z

466

A Model of Success: The Carnegie Institute for Global Ecology  

E-Print Network [OSTI]

Carnegie Institute for Global Ecology Kirstin Weeks, DavidInstitute for Global Ecology, the answer is an unquali? edremarkable about the Global Ecology building is not only how

Weeks, Kirstin; Lehrer, David; Bean, Jonathan

2007-01-01T23:59:59.000Z

467

Grays River Watershed and Biological Assessment Final Report 2006.  

SciTech Connect (OSTI)

The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat-forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within

May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

2008-02-04T23:59:59.000Z

468

Grays River Watershed and Biological Assessment, 2006 Final Report.  

SciTech Connect (OSTI)

The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within

May, Christopher; Geist, David [Pacific Northwest National Laboratory

2007-04-01T23:59:59.000Z

469

Ecology and Conservation Biology This option is appropriate for students interested in the scientific study of ecology and conservation  

E-Print Network [OSTI]

Biogeography 3 EEOB 570 Landscape Ecology 3 Y EEOB 596 Ecology and Society 3 AEcl 418 Stream Ecology 3 Y Ent

Wurtele, Eve Syrkin

470

2012 Annual Report: Simulate and Evaluate the Cesium Transport and Accumulation in Fukushima-Area Rivers by the TODAM Code  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory initiated the application of the time-varying, one-dimensional sediment-contaminant transport code, TODAM (Time-dependent, One-dimensional, Degradation, And Migration) to simulate the cesium migration and accumulation in the Ukedo River in Fukushima. This report describes the preliminary TODAM simulation results of the Ukedo River model from the location below the Ougaki Dam to the river mouth at the Pacific Ocean. The major findings of the 100-hour TODAM simulation of the preliminary Ukedo River modeling are summarized as follows:

Onishi, Yasuo; Yokuda, Satoru T.

2013-03-28T23:59:59.000Z

471

Observation Method to Predict Meander Migration and Vertical Degradation of Rivers  

E-Print Network [OSTI]

examples of bridges that were in danger of structural damage due to excessive erosion are presented herein. The Burrs Ferry Bridge on the Sabine River, shown in Figure 1, was built over 80 years ago and is on the state line between Texas and Louisiana... and laboratory tests (full scale experimental study). ? Develop a model that relates the soil erodibility, river flow, and past observations with the meander migration and vertical degradation. ? Develop a method (called Observation Method) using computer...

Montalvo Bartolomei, Axel M

2014-03-05T23:59:59.000Z

472

Hood River Passive House  

SciTech Connect (OSTI)

The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

Hales, D.

2013-03-01T23:59:59.000Z

473

Ecology and Evolutionary Biology The Wiess School of Natural Sciences  

E-Print Network [OSTI]

Ecology and Evolutionary Biology The Wiess School of Natural Sciences Chair Evan Siemann Professors of Ecology and Evolutionary Biologyoffersabroadrangeofcoursesinthebiosciences:animalbehavior,animal biology, bioinformatics, conservation biology, diseases, ecology, evolutionary biology, field ecology, genetics, genomics

Richards-Kortum, Rebecca

474

The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory researchers are working on the Columbia River Protection Supplemental Technologies Project. This project is a U. S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies, and technologies for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Technologies Project staff.

Fix, N. J.

2008-03-12T23:59:59.000Z

475

Screening of contaminants in Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

Waste Area Grouping 2 (WAG 2) of the Oak Ridge National Laboratory (ORNL) is located in the White Oak Creek Watershed and is composed of White Oak Creek Embayment, White Oak Lake and associated floodplain, and portions of White Oak Creek (WOC) and Melton Branch downstream of ORNL facilities. Contaminants leaving other ORNL WAGs in the WOC watershed pass through WAG 2 before entering the Clinch River. Health and ecological risk screening analyses were conducted on contaminants in WAG 2 to determine which contaminants were of concern and would require immediate consideration for remedial action and which contaminants could be assigned a low priority or further study. For screening purposes, WAG 2 was divided into four geographic reaches: Reach 1, a portion of WOC; Reach 2, Melton Branch; Reach 3, White Oak Lake and the floodplain area to the weirs on WOC and Melton Branch; and Reach 4, the White Oak Creek Embayment, for which an independent screening analysis has been completed. Screening analyses were conducted using data bases compiled from existing data on carcinogenic and noncarcinogenic contaminants, which included organics, inorganics, and radionuclides. Contaminants for which at least one ample had a concentration above the level of detection were placed in a detectable contaminants data base. Those contaminants for which all samples were below the level of detection were placed in a nondetectable contaminants data base.

Blaylock, B.G.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.; Suter, G.W.; Watts, J.A.

1992-07-01T23:59:59.000Z

476

Argonne National Laboratory's Nondestructive  

E-Print Network [OSTI]

Argonne National Laboratory's Nondestructive Evaluation Technologies NDE #12;Over45yearsexperienceinNondestructiveEvaluation... Argonne National Laboratory's world-renowned researchers have a proven the safe operationof advanced nuclear reactors. Argonne's World-Class Nondestructive Evaluation

Kemner, Ken

477

Naval Civil Engineering Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Naval Civil Engineering Laboratory Personnel from the Power Systems Department have participated in numerous distribution equipment research, development, demonstration, testing,...

478

SRNL-RP-2009-00869 BIOLOGY, DAMAGE,  

E-Print Network [OSTI]

. Lehr Brisbin, Jr. Editors Savannah River National Laboratory Aiken, South Carolina 2009 #12;ii University, Auburn, Alabama 36849 (SSD) Savannah River National Laboratory, Savannah River Nuclear Solutions University of Georgia - Savannah River Ecology Laboratory #12;Wild Pigs 105 Biology of Wild Pigs: Wild Pig

Ditchkoff, Steve

479

Ecologic and geographic distribution of filovirus disease  

E-Print Network [OSTI]

We used ecologic niche modeling of outbreaks and sporadic cases of filovirus-associated hemorrhagic fever (HF) to provide a large-scale perspective on the geographic and ecologic distributions of Ebola and Marburg viruses. We predicted...

Peterson, A. Townsend; Bauer, John T.; Mills, James N.

2004-01-01T23:59:59.000Z

480

Ecology, 92(12), 2011, pp. 21592166 2011 by the Ecological Society of America  

E-Print Network [OSTI]

Reports Ecology, 92(12), 2011, pp. 2159­2166 ? 2011 by the Ecological Society of America plant parasites is widespread. Yet, understanding the ecological determinants of evolutionary divergence such a trade-off has been reported, this study provides further ecological bases for the coexistence of closely

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "river ecology laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

ECOLOGY & ENVIRONMENTAL SCIENCE Programs of Study The graduate program in Ecology & Environmental Science capitalizes on University  

E-Print Network [OSTI]

ECOLOGY & ENVIRONMENTAL SCIENCE Programs of Study The graduate program in Ecology & Environmental Science capitalizes on University strengths in ecology, environmental science, and environmental policy. The primary mission of the Graduate Program in Ecology & Environmental Science is to offer a graduate program

Thomas, Andrew

482

Ecology, 91(10), 2010, pp. 29412951 2010 by the Ecological Society of America  

E-Print Network [OSTI]

Ecology, 91(10), 2010, pp. 2941­2951 ? 2010 by the Ecological Society of America Origin Integrative Ecology Group, Estacio´n Biolo´gica de Do~nana, CSIC, 41092 Sevilla, Spain 6 Northwestern interactions--and on the food web's degree of compartmentalization. Despite its ecological importance

Newman, Mark

483

Ecology, 91(6), 2010, pp. 17631773 2010 by the Ecological Society of America  

E-Print Network [OSTI]

Ecology, 91(6), 2010, pp. 1763­1773 ? 2010 by the Ecological Society of America Recruitment and negative species interactions acts to drive community dynamics is a fundamental question in ecology. Here to drive community dynamics has become increasingly apparent in both theoretical and applied ecological

484

Molecular Ecology NCGR May 2003 Physiology and Molecular Ecology of Synechococcus WH8102  

E-Print Network [OSTI]

Molecular Ecology NCGR May 2003 1 Physiology and Molecular Ecology of Synechococcus WH8102 DOE is to provide a summary of the literature on the physiology and molecular ecology of bacteria and in particular to be a comprehensive review. Excellent current detailed reviews are available on the physiology and molecular ecology

485

Jan 16 Conceptual models of ecological systems Why is Integration Needed in Ecology?  

E-Print Network [OSTI]

Jan 16 Conceptual models of ecological systems #12;Why is Integration Needed in Ecology? Great advances have been made by dividing ecology into subdisciplines. But too much focus on subdisciplines has also hindered ecology · too little study of the interface between disciplines · tended to narrow focus

Hansen, Andrew J.

486

Big data and the future of ecology  

E-Print Network [OSTI]

Ecological Archives, iPlant, NatureServe, Dryad, the National Oceanographic Data Center). Some of these repositories house

2013-01-01T23:59:59.000Z

487

Louisiana Nuclear Profile - River Bend  

U.S. Energy Information Administration (EIA) Indexed Site

River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

488

Florida Nuclear Profile - Crystal River  

U.S. Energy Information Administration (EIA) Indexed Site

Crystal River1" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

489

Aquatic Supplement Hood River Subbasin  

E-Print Network [OSTI]

.7 (10 cfs) 50 powerhouse discharge river mile 4.51 (20 cfs) Upper Lenz or Odell cr no info Davis water

490

Susquehanna River Basin Compact (Maryland)  

Broader source: Energy.gov [DOE]

This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

491

Rappahannock River Basin Commission (Virginia)  

Broader source: Energy.gov [DOE]

The Rappahannock River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the...

492

74 WEB ECOLOGY 8, 2008 Web Ecology 8: 7483.  

E-Print Network [OSTI]

Villar-Salvador and Pedro Jáuregui Rey Benayas, J. M., Cuesta, B., Villar-Salvador, P. and Jaúregui, P.rey@uah.es), B. Cuesta and P. Villar-Salvador, Univ. de Alcalá, Dept de Ecología, ES­28871 Alcalá de Henares

Villar-Salvador, Pedro

493

Soil Properties That Distinguish Ecological Sites  

E-Print Network [OSTI]

Soil Properties That Distinguish Ecological Sites Mike Duniway USGS-Southwest Biological Science of vegetation? Why do sites differ in response to disturbance & management? #12;Ecological Sites & Soil Properties Within a climatic zone (e.g. MLRA), differentiation of ecological sites based on soil

494

SHORT REVIEW Ecological genomics: understanding gene and  

E-Print Network [OSTI]

SHORT REVIEW Ecological genomics: understanding gene and genome function in the natural environment MC Ungerer, LC Johnson and MA Herman Division of Biology, Ecological Genomics Institute, Kansas State University, Manhattan, KS, USA The field of ecological genomics seeks to understand the genetic mechanisms

Kaufman, Glennis A.

495

CollageMachine: Model of ``Interface Ecology''  

E-Print Network [OSTI]

CollageMachine: Model of ``Interface Ecology'' By Andruid Kerne dissertation submitted partial addresses browsing creatively, been co­developed with the metadisciplinary framework interface ecology, in addition inside them, open process without definite bounds. a metadiscipline, interface ecology brings

Mohri, Mehryar

496

Rangeland ecology: Key global research issues & questions  

E-Print Network [OSTI]

1 Rangeland ecology: Key global research issues & questions Robin Reid and Maria Fernandez-Gimenez This paper discusses developments in our understanding about rangeland ecology and rangeland dynamics in the last 20 years. Before the late 1980's, the mainstream view in range ecology was that livestock

497

The Ecology of Malware Jedidiah R. Crandall  

E-Print Network [OSTI]

The Ecology of Malware Jedidiah R. Crandall University of New Mexico Dept. of Computer Science Mail of ecological systems have begun to emerge. This may include competition between malware, fa- cilitation, parasitism, predation, and density-dependent population regulation. Ecological principles will likely

Forrest, Stephanie

498

Population Ecology ISSN 1438-3896  

E-Print Network [OSTI]

1 23 Population Ecology ISSN 1438-3896 Popul Ecol DOI 10.1007/s10144-012-0352-3 Impacts of enemy of Population Ecology and Springer Japan. This e-offprint is for personal use only and shall not be self of Population Ecology and Springer Japan 2012 Abstract In this study, we used data from both experi- ments

de Aguiar, Marcus A. M.

499

Conservation Ecology & Entomology Department Undergraduate Programmes  

E-Print Network [OSTI]

Conservation Ecology & Entomology Department Undergraduate Programmes BSc ConsEcol Would you like, with an emphasis on socio-ecological systems, equips you to work at solving conservation challenges. The areas and freshwater), restoration ecology, game farm management, ecotourism, community-based natural resource

Geldenhuys, Jaco

500

Exciting careers blending engineering, science, and ecology  

E-Print Network [OSTI]

Exciting careers blending engineering, science, and ecology New Opportunities Making the world://bee.oregonstate.edu/ecoe Ecological Engineering is: · Ecosystem restoration and habitat design at multiple scales · Watershed · Phytoremediation and bioremediation · Industrial ecology · Constructed wetlands and tidal marshlands · Mitigation

Tullos, Desiree