National Library of Energy BETA

Sample records for risk management plan

  1. Overview of the Hanford risk management plan

    SciTech Connect (OSTI)

    Halverson, T.G.

    1998-03-26

    The Project Hanford Management Contract called for the enhancement of site-wide decision processes, and development of a Hanford Risk Management Plan to adopt or develop a risk management system for the Hanford Site. This Plan provides a consistent foundation for Site issues and addresses site-wide management of risks of all types. It supports the Department of Energy planning and sitewide decision making policy. Added to this requirement is a risk performance report to characterize the risk management accomplishments. This paper presents the development of risk management within the context of work planning and performance. Also discussed are four risk elements which add value to the context.

  2. Tank Waste Remediation System Characterization Project Programmatic Risk Management Plan

    SciTech Connect (OSTI)

    Baide, D.G.; Webster, T.L.

    1995-12-01

    The TWRS Characterization Project has developed a process and plan in order to identify, manage and control the risks associated with tank waste characterization activities. The result of implementing this process is a defined list of programmatic risks (i.e. a risk management list) that are used by the Project as management tool. This concept of risk management process is a commonly used systems engineering approach which is being applied to all TWRS program and project elements. The Characterization Project risk management plan and list are subset of the overall TWRS risk management plan and list.

  3. Tank waste remediation system tank waste retrieval risk management plan

    SciTech Connect (OSTI)

    Klimper, S.C.

    1997-11-07

    This Risk Management Plan defines the approach to be taken to manage programmatic risks in the TWRS Tank Waste Retrieval program. It provides specific instructions applicable to TWR, and is used to supplement the guidance given by the TWRS Risk Management procedure.

  4. TWRS safety and technical integration risk management plan

    SciTech Connect (OSTI)

    Fordham, R.A.

    1996-03-12

    The objectives of the Tank Waste Remediation System (TWRS) Safety and Technical Integration (STI) programmatic risk management program are to assess, analyze, and handle risks associated with TWRS STI responsibilities and to communicate information about the actions being taken and the results to enable decision making. The objective of this TWRS STI Risk Management Plan is to communicate a consistent approach to risk management that will be used by the organization.

  5. Integrated Waste Treatment Unit GFSI Risk Management Plan

    SciTech Connect (OSTI)

    W. A. Owca

    2007-06-21

    This GFSI Risk Management Plan (RMP) describes the strategy for assessing and managing project risks for the Integrated Waste Treatment Unit (IWTU) that are specifically within the control and purview of the U.S. Department of Energy (DOE), and identifies the risks that formed the basis for the DOE contingency included in the performance baseline. DOE-held contingency is required to cover cost and schedule impacts of DOE activities. Prior to approval of the performance baseline (Critical Decision-2) project cost contingency was evaluated during a joint meeting of the Contractor Management Team and the Integrated Project Team for both contractor and DOE risks to schedule and cost. At that time, the contractor cost and schedule risk value was $41.3M and the DOE cost and schedule risk contingency value is $39.0M. The contractor cost and schedule risk value of $41.3M was retained in the performance baseline as the contractor's management reserve for risk contingency. The DOE cost and schedule risk value of $39.0M has been retained in the performance baseline as the DOE Contingency. The performance baseline for the project was approved in December 2006 (Garman 2006). The project will continue to manage to the performance baseline and change control thresholds identified in PLN-1963, ''Idaho Cleanup Project Sodium-Bearing Waste Treatment Project Execution Plan'' (PEP).

  6. LLNL Site 200 Risk Management PlanAgust 2008

    SciTech Connect (OSTI)

    Pinkston, D; Johnson, M

    2008-07-30

    It is the Lawrence Livermore National Laboratory's (LLNL) policy to perform work in a manner that protects the health and safety of employees and the public, preserves the quality of the environment, and prevents property damage using the Integrated Safety Management System. The environment, safety, and health are to take priority in the planning and execution of work activities at the Laboratory. Furthermore, it is the policy of LLNL to comply with applicable ES&H laws, regulations, and requirements (LLNL Environment, Safety and Health Manual, Document 1.2, ES&H Policies of LLNL). The program and policies that improve LLNL's ability to prevent or mitigate accidental releases are described in the LLNL Environment, Health, and Safety Manual that is available to the public. The laboratory uses an emergency management system known as the Incident Command System, in accordance with the California Standardized Emergency Management System (SEMS) to respond to Operational Emergencies and to mitigate consequences resulting from them. Operational Emergencies are defined as unplanned, significant events or conditions that require time-urgent response from outside the immediate area of the incident that could seriously impact the safety or security of the public, LLNL's employees, its facilities, or the environment. The Emergency Plan contains LLNL's Operational Emergency response policies, commitments, and institutional responsibilities for managing and recovering from emergencies. It is not possible to list in the Emergency Plan all events that could occur during any given emergency situation. However, a combination of hazard assessments, an effective Emergency Plan, and Emergency Plan Implementing Procedures (EPIPs) can provide the framework for responses to postulated emergency situations. Revision 7, 2004 of the above mentioned LLNL Emergency Plan is available to the public. The most recent revision of the LLNL Emergency Plan LLNL-AM-402556, Revision 11, March 2008, has

  7. Risk Management Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-01-12

    The purpose of this guide is to describe effective risk management processes. The continuous and iterative process includes updating project risk documents and the risk management plan and emphasizes implementation communication of the risks and actions taken.

  8. PROJECT MANAGEMENT PLANS Project Management Plans

    Office of Environmental Management (EM)

    MANAGEMENT PLANS Project Management Plans Overview Project Management Plan Suggested Outline Subjects Crosswalk between the Suggested PMP Outline Subjects and a Listing ...

  9. Preparing for CAAA risk management plans: The lessons of OSHA PSM process safety management

    SciTech Connect (OSTI)

    Gillespie, D.P. [Control Systems Consultants, Inc., Ashland, KY (United States)

    1994-12-31

    29 CFR 1910.119 OSHA Process Safety Management (PSM) became law in 1992, presenting covered facilities with extraordinarily comprehensive and demanding requirements for information management. This paper reports an approach adopted by petrochemical plants that have pioneered automated, integrated compliance with PSM information requirements. The approach is worthy of consideration by the many additional plants that will be covered by 40 CFR Part 67 Risk Management Programs for Chemical Accidental Release Prevention (RNT), which closely parallels PSM`s information requirements.

  10. Corporate planning for compliance with EPA`s proposed risk management program rule

    SciTech Connect (OSTI)

    Mannan, M.; Keeney, R.C.

    1995-12-31

    On October 20, 1993, the US Environmental Protection Agency (EPA) published in the Federal Register the proposed rule entitled Risk Management Programs for Chemical Accidental Release Prevention (40 CFR 68). Subsequently, on January 31, 1994, EPA published in the Federal Register the finalized list of 77 regulated toxic substances and 63 regulated flammable substances that are to be covered under the rule along with the associated threshold quantities for each substance. This list of substances will dictate which stationary sources will have to comply with the requirements of the proposed risk management program rule. The risk management program rule will most likely be finalized sometime after mid-1995. Covered facilities will then have a total of three years to achieve complete compliance with the requirements of the rule. This paper presents an approach for corporations with multiple sites to develop action plans for implementation of the risk management program rule. The process starts with a determination of which facilities are potentially covered, development of a matrix of requirements that each facility must comply with, and finally, common strategies that may be used in achieving compliance. Thus, a multi-facility corporation can develop a baseline compliance guideline document that individual plants can use in developing and implementing their risk management programs.

  11. Integrated Planning and Performance Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process Maintain Lab Agenda Prepare ALP Program Execution Plan PEMP PreparationApproval POG Support CAS M-3 Implementation FNAL Enterprise Risk Management...

  12. High Risk Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon High Risk Plan More Documents & Publications DOE Site Facility Management Contracts Internet Posting DOE Head of Contracting Activity and Procurement Directors' Directory ...

  13. Digital Data Management Plans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy physics through experiments that strengthen our fundamental understanding of matter, energy, space, and time. Plans HAWC gamma-Ray Observatory Data Management Plan (pdf)...

  14. Risk Management Process Overview

    Broader source: Energy.gov [DOE]

    The cybersecurity risk management process explained in the Electricity Sector Cybersecurity Risk Management Process (RMP) Guideline has two primary components: the risk management model and the the risk management cycle.

  15. Managing Carbon Regulatory Risk in Utility Resource Planning: Current Practices in the Western United States

    SciTech Connect (OSTI)

    Barbose, Galen; Wiser, Ryan; Phadke, Amol; Goldman, Charles

    2008-07-11

    Concerns about global climate change have substantially increased the likelihood that future policy will seek to minimize carbon dioxide emissions. As such, even today, electric utilities are making resource planning and investment decisions that consider the possible implications of these future carbon regulations. In this article, we examine the manner in which utilities assess the financial risks associated with future carbon regulations within their long-term resource plans. We base our analysis on a review of the most recent resource plans filed by fifteen electric utilities in the Western United States. Virtually all of these utilities made some effort to quantitatively evaluate the potential cost of future carbon regulations when analyzing alternate supply- and demand-side resource options for meeting customer load. Even without Federal climate regulation in the U.S., the prospect of that regulation is already having an impact on utility decision-making and resource choices. That said, the methods and assumptions used by utilities to analyze carbon regulatory risk, and the impact of that analysis on their choice of a particular resource strategy, vary considerably, revealing a number of opportunities for analytic improvement. Though our review focuses on a subset of U.S. electric utilities, this work holds implications for all electric utilities and energy policymakers who are seeking to minimize the compliance costs associated with future carbon regulations.

  16. Managing Carbon Regulatory Risk in Utility Resource Planning:Current Practices in the Western United States

    SciTech Connect (OSTI)

    Barbose, Galen; Wiser, Ryan; Phadke, Amol; Goldman, Charles

    2008-05-16

    Concerns about global climate change have substantially increased the likelihood that future policy will seek to minimize carbon dioxide emissions. Assuch, even today, electric utilities are making resource planning and investment decisions that consider the possible implications of these future carbon regulations. In this article, we examine the manner in which utilities assess the financial risks associated with future carbon regulations within their long-term resource plans. We base our analysis on a review of the most recent resource plans filed by fifteen electric utilities in the Western United States. Virtually all of these utilities made some effort to quantitatively evaluate the potential cost of future carbon regulations when analyzing alternate supply- and demand-side resource options for meeting customer load. Even without Federal climate regulation in the U.S., the prospect of that regulation is already having an impact on utility decision-making and resource choices. That said, the methods and assumptions used by utilities to analyze carbon regulatory risk, and the impact of that analysis on their choice of a particular resource strategy, vary considerably, revealing a number of opportunities for analytic improvement. Though our review focuses on a subset of U.S. electric utilities, this work holds implications for all electric utilities and energy policymakers who are seeking to minimize the compliance costs associated with future carbon regulations

  17. Best Management Practice #1: Water Management Planning

    Office of Energy Efficiency and Renewable Energy (EERE)

    A successful water management program starts with developing a comprehensive water management plan. This plan should be included within existing facility operating plans.

  18. NGNP Risk Management Database: A Model for Managing Risk

    SciTech Connect (OSTI)

    John Collins

    2009-09-01

    To facilitate the implementation of the Risk Management Plan, the Next Generation Nuclear Plant (NGNP) Project has developed and employed an analytical software tool called the NGNP Risk Management System (RMS). A relational database developed in Microsoft® Access, the RMS provides conventional database utility including data maintenance, archiving, configuration control, and query ability. Additionally, the tool’s design provides a number of unique capabilities specifically designed to facilitate the development and execution of activities outlined in the Risk Management Plan. Specifically, the RMS provides the capability to establish the risk baseline, document and analyze the risk reduction plan, track the current risk reduction status, organize risks by reference configuration system, subsystem, and component (SSC) and Area, and increase the level of NGNP decision making.

  19. Managing risks and hazardous in industrial operations

    SciTech Connect (OSTI)

    Almaula, S.C.

    1996-12-31

    The main objective of this paper is to demonstrate that it makes good business sense to identify risks and hazards of an operation and take appropriate steps to manage them effectively. Developing and implementing an effective risk and hazard management plan also contibutes to other industry requirements and standards. Development of a risk management system, key elements of a risk management plan, and hazards and risk analysis methods are outlined. Comparing potential risk to the cost of prevention is also discussed. It is estimated that the cost of developing and preparing the first risk management plan varies between $50,000 to $200,000. 3 refs., 2 figs., 1 tab.

  20. Risk Assessment/Management Tool

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    RAMTool performs the following: • A tool to perform facility and programmatic risk assessments, produce risk registers, develop risk management plans (RMPs), link risks to improvement/risk-reduction projects, and actively manage risks • Ability to conduct risk assessments. Ease of determination of probability and consequence based on industry standard risk matrices. Complies with site risk management performance document. Provides multiple outputs/report for required risk forms. Conduct quick risk data analysis. • Performs/calculates a facility risk factormore » (RF) and a programmatic RF. Supports project and initiative prioritization and funding in order to make solid decisions on risk reduction. Assigns responsibility and accountability at a risk owner (RO) level. Monitors and tracks progress toward completing mitigation strategies. Ability to import massive amounts of data at the push of a button. Integrates development of a Risk Management Plan (RMP) Built for ease-of-use – design, built, and used by technical/management personnel. Can be customized (functions and/or reports) for further analysis« less

  1. TWRS safety management plan

    SciTech Connect (OSTI)

    Popielarczyk, R.S., Westinghouse Hanford

    1996-08-01

    The Tank Waste Remediation System (TWRS) Safety Management Program Plan for development, implementation and maintenance of the tank farm authorization basis is described. The plan includes activities and procedures for: (a) Updating the current Interim Safety Basis, (b) Development,implementation and maintenance of a Basis for Interim Operations, (c) Development, implementation and maintenance of the Final Safety Analyses Report, (d) Development and implementation of a TWRS information Management System for monitoring the authorization basis.

  2. Enterprise Risk Management Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Framework The Enterprise Risk Management (ERM) framework includes four steps: identify the risks, determine the probability and impact of each one, identify controls that are...

  3. Reading the Tea Leaves: How Utilities in the West Are Managing Carbon Regulatory Risk in their Resource Plans

    SciTech Connect (OSTI)

    Barbose, Galen; Wiser, Ryan; Phadke, Amol; Goldman, Charles

    2008-02-01

    The long economic lifetime and development lead-time of many electric infrastructure investments requires that utility resource planning consider potential costs and risks over a lengthy time horizon. One long-term -- and potentially far-reaching -- risk currently facing the electricity industry is the uncertain cost of future carbon dioxide (CO2) regulations. Recognizing the importance of this issue, many utilities (sometimes spurred by state regulatory requirements) are beginning to actively assess carbon regulatory risk within their resource planning processes, and to evaluate options for mitigating that risk. However, given the relatively recent emergence of this issue and the rapidly changing political landscape, methods and assumptions used to analyze carbon regulatory risk, and the impact of this analysis on the selection of a preferred resource portfolio, vary considerably across utilities. In this study, we examine the treatment of carbon regulatory risk in utility resource planning, through a comparison of the most-recent resource plans filed by fifteen investor-owned and publicly-owned utilities in the Western U.S. Together, these utilities account for approximately 60percent of retail electricity sales in the West, and cover nine of eleven Western states. This report has two related elements. First, we compare and assess utilities' approaches to addressing key analytical issues that arise when considering the risk of future carbon regulations. Second, we summarize the composition and carbon intensity of the preferred resource portfolios selected by these fifteen utilities and compare them to potential CO2 emission benchmark levels.

  4. Risk Assessment & Management Information

    Broader source: Energy.gov [DOE]

    NRC - A Proposed Risk Management Regulatory Framework, April 2012 Risk Assessment Technical Experts Working Group (RWG) web page DOE Standard on Development and Use of Probabilistic Risk Assessment in DOE Nuclear Safety Applications (draft), December 2010 Consortium for Risk Evaluation with Stakeholder Participation Workshop on Risk Assessment and Safety Decision Making Under Uncertainty

  5. Integrated Planning and Performance Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Lab Plan - Other plans (SiteFacilities, WFD, etc) * Execute--perform technical & business functions - Management systems (CAS) * Check--measureanalyze & evaluate...

  6. Plutonium Vulnerability Management Plan

    SciTech Connect (OSTI)

    1995-03-01

    This Plutonium Vulnerability Management Plan describes the Department of Energy`s response to the vulnerabilities identified in the Plutonium Working Group Report which are a result of the cessation of nuclear weapons production. The responses contained in this document are only part of an overall, coordinated approach designed to enable the Department to accelerate conversion of all nuclear materials, including plutonium, to forms suitable for safe, interim storage. The overall actions being taken are discussed in detail in the Department`s Implementation Plan in response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. This is included as Attachment B.

  7. Enterprise Risk Management Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model The Enterprise Risk Management (ERM) Model is a system used to analyze the cost and benefit of addressing risks inherent in the work performed by the Department of Energy. This system measures risk using a combination of qualitative and quantitative methods to set a standard method for analyzing risk across the many functions within the department. Risks generally fall within five categories regardless ofthe subject matter ofthe subsystem. These categories are (1) risks to people, (2)

  8. Risk Management Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-01-18

    This Guide provides non-mandatory risk management approaches for implementing the requirements of DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets. Supersedes DOE G 413.3-7.

  9. Best Management Practice #1: Water Management Planning | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Water Management Planning Best Management Practice 1: Water Management Planning A successful water management program starts with a comprehensive strategic plan. The process ...

  10. Waste Management Committee Fiscal Year 2012 Work Plan | Department...

    Office of Environmental Management (EM)

    Management Committee Fiscal Year 2012 Work Plan Waste Management Committee Fiscal Year 2012 Work Plan Topics: TA-21 TA-54 RiskBenefit Principles Consent Order PDF icon WM-FY12-WP...

  11. Enterprise Risk Management Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Framework The Enterprise Risk Management (ERM) framework includes four steps: identify the risks, determine the probability and impact of each one, identify controls that are already in place that mitigate that risk, and propose additional controls if needed. Step 1: Identify Risks - What can go wrong? This step should identify the negative outcomes that could result from an action or decision . It is important to consider a wide range of risks, and so the Department's ERM framework includes

  12. Project Management Plan Examples | Department of Energy

    Office of Environmental Management (EM)

    Examples Project Management Plan Examples Examples From Project Management Plans The following material has been extracted from several project management plans. The order in which ...

  13. Environmental Management System Plan

    SciTech Connect (OSTI)

    Fox, Robert; Thorson, Patrick; Horst, Blair; Speros, John; Rothermich, Nancy; Hatayama, Howard

    2009-03-24

    Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management establishes the policy that Federal agencies conduct their environmental, transportation, and energy-related activities in a manner that is environmentally, economically and fiscally sound, integrated, continually improving, efficient, and sustainable. The Department of Energy (DOE) has approved DOE Order 450.1A, Environmental Protection Program and DOE Order 430.2B, Departmental Energy, Renewable Energy and Transportation Management as the means of achieving the provisions of this Executive Order. DOE Order 450.1A mandates the development of Environmental Management Systems (EMS) to implement sustainable environmental stewardship practices that: (1) Protect the air, water, land, and other natural and cultural resources potentially impacted by facility operations; (2) Meet or exceed applicable environmental, public health, and resource protection laws and regulations; and (3) Implement cost-effective business practices. In addition, the DOE Order 450.1A mandates that the EMS must be integrated with a facility's Integrated Safety Management System (ISMS) established pursuant to DOE P 450.4, 'Safety Management System Policy'. DOE Order 430.2B mandates an energy management program that considers energy use and renewable energy, water, new and renovated buildings, and vehicle fleet activities. The Order incorporates the provisions of the Energy Policy Act of 2005 and Energy Independence and Security Act of 2007. The Order also includes the DOE's Transformational Energy Action Management initiative, which assures compliance is achieved through an Executable Plan that is prepared and updated annually by Lawrence Berkeley National Laboratory (LBNL, Berkeley Lab, or the Laboratory) and then approved by the DOE Berkeley Site Office. At the time of this revision to the EMS plan, the 'FY2009 LBNL Sustainability Executable Plan' represented the most current Executable Plan. These

  14. Project Management Plan

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, Public Law 95-604, 42 USC 7901 (hereinafter referred to as the Act''). Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial actions at 24 designated inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing sites. The Act, amended in January 1983, by Public Law 97-415, also authorizes DOE to perform remedial actions at vicinity properties in Edgemont, South Dakota. Cleanup of the Edgemont processing site is the responsibility of the Tennessee Valley Authority. This document describes the plan, organization, system, and methodologies used to manage the design, construction, and other activities required to clean up the designated sites and associated vicinity properties in accordance with the Act. The plan describes the objectives of the UMTRA Project, defines participants' roles and responsibilities, outlines the technical approach for accomplishing the objectives, and describes the planning and managerial controls to be used in integrating and performing the Project mission. 21 figs., 21 tabs.

  15. Project Management Plans | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Plans Project Management Plans The purpose here is to assist project managers and project planners in creating a project plan by providing examples and pointing to information that have been successfully used by others in the past. Project Management Plans (353.99 KB) More Documents & Publications Project Management Plan Examples Project Management Plan Examples 1 - 80 Deactivation Management

  16. Risk Management Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-09-16

    This Guide provides a framework for identifying and managing key technical, schedule, and cost risks through applying the requirements of DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. Canceled by DOE G 413.3-7A, dated 1-12-11. Does not cancel other directives.

  17. Risk Management Process Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Risk Management Process Overview Risk Management Process Overview figure depicting three tier risk management process The cybersecurity risk management process explained in the ...

  18. Excess Uranium Inventory Management Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 2013 Excess Uranium Inventory Management Plan describes a framework for the effective management of the Energy Department’s surplus uranium inventory in support of meeting its critical...

  19. EERE Digital Data Management Planning Requirements | Department...

    Broader source: Energy.gov (indexed) [DOE]

    To integrate data management planning into an overall research plan, the following ... All projects selected for EERE research funding must include a data management plan (DMP) ...

  20. TWRS Configuration management program plan

    SciTech Connect (OSTI)

    Vann, J.M.

    1996-06-03

    The TWRS Configuration Management Program Plan (CMPP) integrates technical and administrative controls to establish and maintain consistency among requirements, product configuration, and product information for TWRS products during all life cycle phases. This CMPP will be used by TWRS management and configuration management personnel to establish and manage the technical and integrated baselines and controls and status changes to those baselines.

  1. Data Management Facility Operations Plan (Program Document) ...

    Office of Scientific and Technical Information (OSTI)

    Program Document: Data Management Facility Operations Plan Citation Details In-Document Search Title: Data Management Facility Operations Plan The Data Management Facility (DMF) is ...

  2. Waste Management Committee Fiscal Year 2013 Work Plan | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Work Plan Waste Management Committee Fiscal Year 2013 Work Plan Topics: TA-21 TA-54 RiskBenefit Principles TA-49 Fiscal Year 2012 Budget WM-FY13-WP - September 26, 2012 (13.32

  3. PROJECT MANGEMENT PLAN EXAMPLES Project Management Plan Examples

    Office of Environmental Management (EM)

    Management Plan Examples The following material has been extracted from several project management plans. The order in which it is presented is arbitrary. The elements table below ...

  4. Configuration Management Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Configuration Management Plan Configuration Management Plan This template is used for documenting the configuration management methodology, tools, techniques, roles and responsibilities and tasks for a systems development project. Configuration Management Plan (96.89 KB) More Documents & Publications SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Software Configuration Management Checklist NMMSS Software Quality Assurance Plan Software Configuration Management (SCM) A Practical Guide

  5. Systems approach to project risk management

    SciTech Connect (OSTI)

    Kindinger, J. P.

    2002-01-01

    This paper describes the need for better performance in the planning and execution of projects and examines the capabilities of two different project risk analysis methods for improving project performance. A quantitative approach based on concepts and tools adopted from the disciplines of systems analysis, probabilistic risk analysis, and other fields is advocated for managing risk in large and complex research & development projects. This paper also provides an overview of how this system analysis approach for project risk management is being used at Los Alamos National Laboratory along with examples of quantitative risk analysis results and their application to improve project performance.

  6. The Enterprise Risk Management Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enterprise Risk Management Model Using the Risk Assessment Tool to Prepare a Justification Memorandum for the Development and Revision of Departmental Directives * On January 14,...

  7. Comprehensive Legacy Management and Institutional Controls Plan

    Office of Legacy Management (LM)

    Section 4.0 No significant changes. Comprehensive Legacy Management and Institutional Controls Plan, Revision 9, Draft Volume I, Legacy Management Plan Significant Changes Summary ...

  8. California Groundwater Management Plans | Open Energy Information

    Open Energy Info (EERE)

    Groundwater Management Plans Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: California Groundwater Management PlansLegal Published...

  9. LFRG Program Management Plan (LFRG PMP)

    Office of Environmental Management (EM)

    LOW-LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP PROGRAM MANAGEMENT PLAN SEPTEMBER 18, 2000 LOW-LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP PROGRAM MANAGEMENT PLAN Jay ...

  10. ARM - Data Management and Documentation Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DocumentationData Management and Documentation Plan Policies, Plans, Descriptions Data Documentation Home Data Sharing and Distribution Policy Data Management and Documentation ...

  11. PROJECT MANAGEMENT RISK COMMITTEE (PMRC) STANDARD OPERATING PROCEDURE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Version: April 21, 2016 PROJECT MANAGEMENT RISK COMMITTEE (PMRC) STANDARD OPERATING PROCEDURE FOR PLANNING AND ... and Review The review process will be carried out at PMRC ...

  12. AVLIS production plant waste management plan

    SciTech Connect (OSTI)

    Not Available

    1984-11-15

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

  13. Environmental Management Headquarters Corrective Action Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    II Environmental Management Headquarters Corrective Action Plan - Radiological Release ... actions for addressing Office of Environmental Management (EM) Headquarters (HQ) ...

  14. Comprehensive Legacy Management and Institutional Controls Plan

    Office of Legacy Management (LM)

    Department of Energy Comprehensive Legacy Management and Institutional Controls Plan Doc. .........32 Comprehensive Legacy Management and Institutional Controls ...

  15. Configuration management plan for LABCORE Program

    SciTech Connect (OSTI)

    Rich, H.S.

    1995-01-03

    A hardware/software configuration management plan for LABCORE. LABCORE is a laboratory information management system used by Analytical Services.

  16. Waste shipment engineering data management plan

    SciTech Connect (OSTI)

    Marquez, D.L.

    1995-05-01

    This plan documents current data management practices and future data management improvements for TWRS Waste Shipment Engineering.

  17. Comprehensive Legacy Management and Institutional Controls Plan

    Office of Legacy Management (LM)

    Department of Energy Comprehensive Legacy Management and Institutional Controls Plan Doc. .........49 Comprehensive Legacy Management and Institutional Controls ...

  18. Comprehensive Legacy Management and Institutional Controls Plan

    Office of Legacy Management (LM)

    Department of Energy Comprehensive Legacy Management and Institutional Controls Plan Doc. .........52 Comprehensive Legacy Management and Institutional Controls ...

  19. Comprehensive Legacy Management and Institutional Controls Plan

    Office of Legacy Management (LM)

    Department of Energy Comprehensive Legacy Management and Institutional Controls Plan Doc. .........34 Comprehensive Legacy Management and Institutional Controls ...

  20. Comprehensive Legacy Management and Institutional Controls Plan

    Office of Legacy Management (LM)

    Department of Energy Comprehensive Legacy Management and Institutional Controls Plan Doc. .........33 Comprehensive Legacy Management and Institutional Controls ...

  1. Underground storage tank management plan

    SciTech Connect (OSTI)

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  2. A reservoir management plan

    SciTech Connect (OSTI)

    Allis, R.G.

    1989-06-16

    There are numerous documented cases of extraction of fluids from the ground causing surface subsidence. The cases include groundwater, oil and gas, as well as geothermal fluid withdrawal. A recent comprehensive review of all types of man-induced land subsidence was published by the Geological Survey of America. At the early stages of a geothermal power development project it is standard practice in most countries for an environmental impact report to be required. The possibility of geothermal subsidence has to be addressed, and usually it falls on the geophysicists and/or geologists to make some predictions. The advice given is vital for planning the power plant location and the borefield pipe and drain layout. It is not so much the vertical settlement that occurs with subsidence but the accompanying horizontal ground strains that can do the most damage to any man-made structure.

  3. Solid Waste Management Program Plan

    SciTech Connect (OSTI)

    Duncan, D.R.

    1990-08-01

    The objective of the Solid Waste Management Program Plan (SWMPP) is to provide a summary level comprehensive approach for the storage, treatment, and disposal of current and future solid waste received at the Hanford Site (from onsite and offsite generators) in a manner compliant with current and evolving regulations and orders (federal, state, and Westinghouse Hanford Company (Westinghouse Hanford)). The Plan also presents activities required for disposal of selected wastes currently in retrievable storage. The SWMPP provides a central focus for the description and control of cost, scope, and schedule of Hanford Site solid waste activities, and provides a vehicle for ready communication of the scope of those activities to onsite and offsite organizations. This Plan represents the most complete description available of Hanford Site Solid Waste Management (SWM) activities and the interfaces between those activities. It will be updated annually to reflect changes in plans due to evolving regulatory requirements and/or the SWM mission. 8 refs., 9 figs., 4 tabs.

  4. Eastern European risk management

    SciTech Connect (OSTI)

    Honey, J.A. )

    1992-01-01

    Here the authors assess Eastern European risk management practices through the evaluation of the nuclear power plants in the region. This evaluation is limited to the Soviet-designed and -built VVER-440 pressurized water reactors (PWRs) that are currently operating in Bulgaria, Czechoslovakia, Hungary, Russia, and the Ukraine and until recently operated at Greifswald in the former East Germany. This evaluation is based on the basic design of the plants, a safety evaluation of the Greifswald facility by representatives from the Federal Republic of Germany and personal visits by the author to Greifswald and Loviisa.

  5. Waste Management Quality Assurance Plan

    SciTech Connect (OSTI)

    Not Available

    1993-11-30

    Lawrence Berkeley Laboratory`s Environment Department addresses its responsibilities through activities in a variety of areas. The need for a comprehensive management control system for these activities has been identified by the Department of Energy (DOE). The WM QA (Waste Management Quality Assurance) Plan is an integral part of a management system that provides controls necessary to ensure that the department`s activities are planned, performed, documented, and verified. This WM QA Plan defines the requirements of the WM QA program. These requirements are derived from DOE Order 5700.6C, Quality Assurance, the LBL Operating and Assurance Program Plan (OAP, LBL PUB-3111), and other environmental compliance documents applicable to WM activities. The requirements presented herein, as well as the procedures and methodologies that direct the implementation of these requirements, will undergo review and revisions as necessary. The provisions of this QA Plan and its implementing documents apply to quality-affecting activities performed by and for WM. It is also applicable to WM contractors, vendors, and other LBL organizations associated with WM activities, except where such contractors, vendors, or organizations are governed by their own WM-approved QA programs. References used in the preparation of this document are (1) ASME NQA-1-1989, (2) ANSI/ASQC E4 (Draft), (3) Waste Management Quality Assurance Implementing Management Plan (LBL PUB-5352, Rev. 1), (4) LBL Operating and Assurance Program Plan (OAP), LBL PUB-3111, 2/3/93. A list of terms and definitions used throughout this document is included as Appendix A.

  6. LFRG Program Management Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Management Plan LFRG Program Management Plan The purpose of the EM Low-Level Waste Disposal Facility Federal Review Group Program Management Plan (LFRG PMP) is to establish the LFRG roles and responsibilities, the LFRG management processes, and the transition from DOE Order 5820.2A to DOE Order 435.1. LFRG Program Management Plan (LFRG PMP) (185.11 KB) More Documents & Publications LFRG Execution Plan Low-Level Waste Disposal Facility Federal Review Group Manual LFRG Charter

  7. Energy Emergency Planning and Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-07-08

    To establish the administrative and operational framework of the Energy Emergency Management System (EEMS), and to establish the general criteria for the development and coordination of the Department's energy emergency planning activities. Cancels DOE 5500.8. Canceled by DOE O 151.1 of 9-25-95.

  8. DOE Releases Electricity Subsector Cybersecurity Risk Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Releases Electricity Subsector Cybersecurity Risk Management Process (RMP) Guideline DOE Releases Electricity Subsector Cybersecurity Risk Management Process (RMP) Guideline May ...

  9. NGNP Risk Management Database: A Model for Managing Risk

    SciTech Connect (OSTI)

    John Collins; John M. Beck

    2011-11-01

    The Next Generation Nuclear Plant (NGNP) Risk Management System (RMS) is a database used to maintain the project risk register. The RMS also maps risk reduction activities to specific identified risks. Further functionality of the RMS includes mapping reactor suppliers Design Data Needs (DDNs) to risk reduction tasks and mapping Phenomena Identification Ranking Table (PIRTs) to associated risks. This document outlines the basic instructions on how to use the RMS. This document constitutes Revision 1 of the NGNP Risk Management Database: A Model for Managing Risk. It incorporates the latest enhancements to the RMS. The enhancements include six new custom views of risk data - Impact/Consequence, Tasks by Project Phase, Tasks by Status, Tasks by Project Phase/Status, Tasks by Impact/WBS, and Tasks by Phase/Impact/WBS.

  10. Data Management Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Management Plan Data Management Plan A data management plan explains how data generated in the course of the work performed under an EERE award will be shared and preserved or, when justified, explains why data sharing or preservation is not possible or scientifically appropriate. No specific template, but follow the guidelines in this file. Data Management Plan (53.62 KB) More Documents & Publications DOE Public Access Plan RE: NBP RFI: Data Access In the Matter of Implementing the

  11. Developing a Water Management Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Water Efficiency Developing a Water Management Plan Developing a Water Management Plan Developing a Water Management Plan A successful water management program ...

  12. Risk Management Guide - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    G 413.3-7A Chg 1 (Admin Chg), Risk Management Guide by Diane Johnson Functional areas: Risk Management, Safety and Security The purpose of this guide is to describe effective risk management processes. The continuous and iterative process includes updating project risk documents and the risk management plan and emphasizes implementation communication of the risks and actions taken. g4133-7a_AdminChg1_10-22-2015.pdf -- PDF Document, 1.48 MB Writer: Diane Johnson Subjects: Management and

  13. Microsoft PowerPoint - Financial Plan Risk Mitigation Master...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    within acceptable bounds BPA Financial Plan Workshop 5 Financial Plan Risk Metrics Agenda Origin of the Risk Metrics Issue History of risk mitigation measures and origin of...

  14. Role of LEPCs in risk management and risk communication

    SciTech Connect (OSTI)

    Mannan, M.

    1995-12-31

    Under Section 112(r) of Title III of the Clean Air Act Amendments, the US Environmental Protection Agency (EPA) is required to develop regulations that would require development and implementation of risk management programs at facilities that manufacture, process, use, store, or otherwise handle regulated substances in quantities that exceed specified threshold quantities. On January 31, 1994, EPA published the final rule establishing the List of Regulated Substances and Thresholds for Accidental Release Prevention. The proposed rule will require covered facilities to develop and implement a risk management program. The proposed rule will also require facilities to communicate various information to the local emergency planning committee (LEPC). This information may be provided in the form of consultation and communication during the development of various elements of the risk management program and/or by providing access to the risk management plan (RMP). These requirements not only place an additional regulatory burden on facilities but also create the need for the LEPCs to start planning for strategies to deal with significant amount of technical information in a meaningful and effective manner. This paper presents a summary of EPA`s proposed rule, the role of LEPCs in the implementation of many aspects of the rule, and a description of the potential contents of an RMP. Covered facilities as well as the LEPCs may gain a significant advantage by engaging in early dialogue and proactive education to determine mutual needs.

  15. Comprehensive Legacy Management and Institutional Controls Plan

    Office of Legacy Management (LM)

    Department of Energy Comprehensive Legacy Management and Institutional Controls Plan Doc. ... Appendix A Contact List Comprehensive Legacy Management and Institutional Controls ...

  16. Comprehensive Legacy Management and Institutional Controls Plan

    Office of Legacy Management (LM)

    Preserve, Fernald, Ohio Comprehensive Legacy Management and Institutional Controls Plan ... blank LMSFERS03496-9.0 Comprehensive Legacy Management and Institutional Controls ...

  17. Revised Acquisition Guide Chapter 42.5, Contract Management Planning

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) has been on GAO's High Risk List for the past several years as a result of inadequate contract and project management. Accordingly, the improvement of contract administration is a critical issue for DOE. The Acquisition Guide chapter on Contract Management Planning has been completely revised to address this matter. The revised chapter 42.5, entitled Contract Management Planning is attached.

  18. Planning for an Energy Management System

    Broader source: Energy.gov [DOE]

    This presentation discusses the Planning step as part of an Energy Management System. Planning involves establishing your energy picture, defining the scope and boundary, setting an energy baseline, and developing action plans.

  19. Intellectual Property Management Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intellectual Property Management Plan Intellectual Property Management Plan The following guidance is provided to assist applicants in preparing and executing an intellectual property (IP) management plan. This guidance is not exclusive and should not be considered an exhaustive or comprehensive listing of acceptable approaches. Each applicant is encouraged to use its own discretion to independently develop and submit an IP management plan that it and its team (or consortium) believe will best

  20. Managing risk in software systems

    SciTech Connect (OSTI)

    Fletcher, S.K.; Jansma, R.M.; Murphy, M.D.

    1995-07-01

    A methodology for risk management in the design of software systems is presented. It spans security, safety, and correct operation of software within the context of its environment, and produces a risk analysis and documented risk management strategy. It is designed to be iteratively applied, to attain appropriate levels of detail throughout the analysis. The methodology and supporting tools are discussed. The methodology is critiqued relative to other research in the field. Some sample applications of the methodology are presented.

  1. Solid Waste Management Plan. Revision 4

    SciTech Connect (OSTI)

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  2. Lessons Learned in Risk Management on NCSX

    SciTech Connect (OSTI)

    Neilson, G. H.; Gruber, C. O.; Harris, J. H.; Rej, D. J.; Simmons, R. T.; Strykowsky, R. L.

    2009-07-21

    The National Compact Stellarator Experiment (NCSX) was designed to test physics principles of an innovative stellarator design developed by the Princeton Plasma Physics Laboratory and Oak Ridge National Laboratory. Construction of some of the major components and sub-assemblies was completed, but the estimated cost and schedule for completing the project grew as the technical requirements and risks became better understood, leading to its cancellation in 2008. The project's risks stemmed from its technical challenges, primarily the complex component geometries and tight tolerances that were required. The initial baseline, established in 2004, was supported by a risk management plan and risk-based contingencies, both of which proved to be inadequate. Technical successes were achieved in the construction of challenging components and subassemblies, but cost and schedule growth was experienced. As part of an effort to improve project performance, a new risk management program was devised and implemented in 2007-08. It led to a better understanding of project risks, a sounder basis for contingency estimates, and improved management tools. Although the risks ultimately were unacceptable to the sponsor, valuable lessons in risk management were learned through the experiences with the NCSX project.

  3. Lessons Learned in Risk Management on NCSX

    SciTech Connect (OSTI)

    G.H. Neilson, C.O. Gruber, J.H. Harris, D.J. Rej, R.T. Simmons, and R.L. Strykowsky

    2009-02-11

    The National Compact Stellarator Experiment (NCSX) was designed to test physics principles of an innovative stellarator design developed by the Princeton Plasma Physics Laboratory and Oak Ridge National Laboratory. Construction of some of the major components and sub-assemblies was completed, but the estimated cost and schedule for completing the project grew as the technical requirements and risks became better understood, leading to its cancellation in 2008. The project's risks stemmed from its technical challenges, primarily the complex component geometries and tight tolerances that were required. The initial baseline, established in 2004, was supported by a risk management plan and risk-based contingencies, both of which proved to be inadequate. Technical successes were achieved in the construction of challenging components and subassemblies, but cost and schedule growth was experienced. As part of an effort to improve project performance, a new risk management program was devised and implemented in 2007-08. It led to a better understanding of project risks, a sounder basis for contingency estimates, and improved management tools. Although the risks ultimately were unacceptable to the sponsor, valuable lessons in risk management were learned through the experiences with the NCSX project.

  4. Lessons Learned in Risk Management on NCSX

    SciTech Connect (OSTI)

    Neilson, G. H.; Gruber, C. O.; Harris, Jeffrey H; Rej, D. J.; Simmons, R. T.; Strykowsky, R. L.

    2010-01-01

    The National Compact Stellarator Experiment (NCSX) was designed to test physics principles of an innovative stellarator design developed by Princeton Plasma Physics Laboratory and Oak Ridge National Laboratory. Construction of some of the major components and subassemblies was completed, but the estimated cost and schedule for completing the project grew as the technical requirements and risks became better understood, leading to its cancellation in 2008. The project's risks stemmed from its technical challenges, primarily the complex component geometries and tight tolerances that were required. The initial baseline, which was established in 2004, was supported by a risk management plan and risk-based contingencies, both of which proved to be inadequate. Technical successes were achieved in the construction of challenging components and subassemblies, but cost and schedule growth was experienced. As part of an effort to improve project performance, a new risk management program was devised and implemented in 2007-2008. It led to a better understanding of project risks, a sounder basis for contingency estimates, and improved management tools. Although the risks were ultimately unacceptable to the sponsor, valuable lessons in risk management were learned through the experiences with the NCSX project.

  5. Excess Uranium Inventory Management Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Excess Uranium Inventory Management Plan Excess Uranium Inventory Management Plan The 2013 Excess Uranium Inventory Management Plan describes a framework for the effective...

  6. Department of Energy Asset Management Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Asset Management Plan Department of Energy Asset Management Plan The Department of Energy Asset Management Plan (2015) provides an integrating strategy for ...

  7. ICDF Complex Operations Waste Management Plan

    SciTech Connect (OSTI)

    W.M. Heileson

    2006-12-01

    This Waste Management Plan functions as a management and planning tool for managing waste streams generated as a result of operations at the Idaho CERCLA Disposal Facility (ICDF) Complex. The waste management activities described in this plan support the selected remedy presented in the Waste Area Group 3, Operable Unit 3-13 Final Record of Decision for the operation of the Idaho CERCLA Disposal Facility Complex. This plan identifies the types of waste that are anticipated during operations at the Idaho CERCLA Disposal Facility Complex. In addition, this plan presents management strategies and disposition for these anticipated waste streams.

  8. Enterprise Risk Management Specialist

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration, Corporate Services Office, Office of the Chief Operating Officer, Risk and...

  9. Information security management system planning for CBRN facilities

    SciTech Connect (OSTI)

    Lenaeu, Joseph D.; O'Neil, Lori Ross; Leitch, Rosalyn M.; Glantz, Clifford S.; Landine, Guy P.; Bryant, Janet L.; Lewis, John; Mathers, Gemma; Rodger, Robert; Johnson, Christopher

    2015-12-01

    The focus of this document is to provide guidance for the development of information security management system planning documents at chemical, biological, radiological, or nuclear (CBRN) facilities. It describes a risk-based approach for planning information security programs based on the sensitivity of the data developed, processed, communicated, and stored on facility information systems.

  10. MA - Office of Management - Energy Conservation Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MA Energy Conservation Plan January 2010 1 Office of Management Office-Level Energy Conservation Plan January 2010 I. BACKGROUND This energy conservation plan represents an effort to reduce energy consumption within Office of Management (MA) office spaces and to increase employee awareness of and participation in energy conservation measures. II. SCOPE The plan and procedures in this document apply to all Office of Management (MA) office suites in the Forrestal and Germantown Facilities as well

  11. Risk Management RM

    Office of Environmental Management (EM)

    Modules that address key functional areas of project management, engineering and design, safety, environment, security, and quality assurance, grouped by each specific CD phase. ...

  12. Risk Management Tool Attributes: | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Risk Management Tool Attributes: Risk Management Tool Attributes: Risk Management Tool Attributes: (140.27 KB) More Documents & Publications Heating Ventilation and Air Conditioning Efficiency Idaho Operations AMWTP Fact Sheet Greenpower Trap Mufflerl System

  13. Federal Flood Risk Management Standard

    Broader source: Energy.gov [DOE]

    The Federal Flood Risk Management Standard builds upon Executive Order (E.O.) 11988 and is to be incorporated into existing Federal department and agency processes used to implement E.O. 11988.

  14. Risk Management RM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Risk Management RM Risk Management RM This tool is the process of continuous and iterative identification and control of project risks and opportunities. Risks can be technical, financial, or programmatic. The goal for the risk management system is to either avoid the risk's threat by taking preemptive action or to minimize the risks negative impacts on project performance. Project opportunities identified through the project risk management process can be handled in a similar manner with the

  15. Envisory Financial Risk Management | Open Energy Information

    Open Energy Info (EERE)

    Envisory Financial Risk Management Jump to: navigation, search Name: Envisory Financial Risk Management Place: Mnchen, Bavaria, Germany Zip: 80331 Sector: Renewable Energy...

  16. Oak Ridge National Laboratory Waste Management Plan

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  17. Environmental Management and Planning Solutions, Inc | Open Energy...

    Open Energy Info (EERE)

    Environmental Management and Planning Solutions, Inc Jump to: navigation, search Name: Environmental Management and Planning Solutions, Inc Abbreviation: EMPSi Website:...

  18. Spent Nuclear Fuel project, project management plan

    SciTech Connect (OSTI)

    Fuquay, B.J.

    1995-10-25

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  19. Oak Ridge Reservation Waste Management Plan

    SciTech Connect (OSTI)

    Turner, J.W.

    1995-02-01

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.

  20. Spent Nuclear Fuel Project Safety Management Plan

    SciTech Connect (OSTI)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities.

  1. FY 2016 - Stockpile Stewardship and Management Plan

    SciTech Connect (OSTI)

    2015-03-01

    This Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) Fiscal Year Stockpile Stewardship and Management Plan (SSMP) is a key planning document for the nuclear security enterprise.

  2. FY 2015 - Stockpile Stewardship and Management Plan

    SciTech Connect (OSTI)

    2014-04-01

    This Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) Fiscal Year Stockpile Stewardship and Management Plan (SSMP) is a key planning document for the nuclear security enterprise.

  3. Paducah Site Management Plan | Department of Energy

    Energy Savers [EERE]

    Management Plan Paducah Site Management Plan The annual Paducah Gaseous Diffusion Plant Site Management Plan (SMP) outlines DOE's strategic approach for achieving cleanup under the Federal Facility Agreement. The purpose of the SMP is to coordinate and document the potential and selected operable units, including removal actions; to define cleanup priorities; to identify work activities that will serve as the basis for enforceable timetables and deadlines under the agreement; and to establish

  4. Tank waste remediation system configuration management plan

    SciTech Connect (OSTI)

    Vann, J.M.

    1998-01-08

    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents.

  5. Legacy Management 2011-2020 Strategic Plan

    Broader source: Energy.gov [DOE]

    At the August 13, 2014 Committee meeting Tom Longo DOE, Provided Information on DOEs Long Term Stewardship Plan and Office of Legacy Management.

  6. Total quality management program planning

    SciTech Connect (OSTI)

    Thornton, P.T.; Spence, K.

    1994-05-01

    As government funding grows scarce, competition between the national laboratories is increasing dramatically. In this era of tougher competition, there is no for resistance to change. There must instead be a uniform commitment to improving the overall quality of our products (research and technology) and an increased focus on our customers` needs. There has been an ongoing effort to bring the principles of total quality management (TQM) to all Energy Systems employees to help them better prepare for future changes while responding to the pressures on federal budgets. The need exists for instituting a vigorous program of education and training to an understanding of the techniques needed to improve and initiate a change in organizational culture. The TQM facilitator is responsible for educating the work force on the benefits of self-managed work teams, designing a program of instruction for implementation, and thus getting TQM off the ground at the worker and first-line supervisory levels so that the benefits can flow back up. This program plan presents a conceptual model for TQM in the form of a hot air balloon. In this model, there are numerous factors which can individually and collectively impede the progress of TQM within the division and the Laboratory. When these factors are addressed and corrected, the benefits of TQM become more visible. As this occurs, it is hoped that workers and management alike will grasp the ``total quality`` concept as an acceptable agent for change and continual improvement. TQM can then rise to the occasion and take its rightful place as an integral and valid step in the Laboratory`s formula for survival.

  7. 2011-2015 Human Capital Management Plan

    Broader source: Energy.gov [DOE]

    The Office of Legacy Management (LM) needs skilled and engaged staff to accomplish our mission and carry out our responsibilities to the American people. This Human Capital Management Plan (HCMP or...

  8. Glenwood Springs Resource Management Plan (1984) | Open Energy...

    Open Energy Info (EERE)

    Resource Management Plan (1984) Jump to: navigation, search OpenEI Reference LibraryAdd to library Land Use Plan: Glenwood Springs Resource Management Plan (1984) Organization BLM...

  9. DOE-ORP Contract Management Plans - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plan (Rev. 7 September 19, 2014) (PDF) Tank Operations Contract Management Plan TOC Contract Management Plan (October 27, 2008) (PDF) TOC CMP Attachment A Section B...

  10. Social Impact Management Plans: Innovation in corporate and public policy

    SciTech Connect (OSTI)

    Franks, Daniel M.; Vanclay, Frank

    2013-11-15

    Social Impact Assessment (SIA) has traditionally been practiced as a predictive study for the regulatory approval of major projects, however, in recent years the drivers and domain of focus for SIA have shifted. This paper details the emergence of Social Impact Management Plans (SIMPs) and undertakes an analysis of innovations in corporate and public policy that have put in place ongoing processes – assessment, management and monitoring – to better identify the nature and scope of the social impacts that might occur during implementation and to proactively respond to change across the lifecycle of developments. Four leading practice examples are analyzed. The International Finance Corporation (IFC) Performance Standards require the preparation of Environmental and Social Management Plans for all projects financed by the IFC identified as having significant environmental and social risks. Anglo American, a major resources company, has introduced a Socio-Economic Assessment Toolbox, which requires mine sites to undertake regular assessments and link these assessments with their internal management systems, monitoring activities and a Social Management Plan. In South Africa, Social and Labour Plans are submitted with an application for a mining or production right. In Queensland, Australia, Social Impact Management Plans were developed as part of an Environmental Impact Statement, which included assessment of social impacts. Collectively these initiatives, and others, are a practical realization of theoretical conceptions of SIA that include management and monitoring as core components of SIA. The paper concludes with an analysis of the implications for the practice of impact assessment including a summary of key criteria for the design and implementation of effective SIMPs. -- Highlights: • Social impact management plans are effective strategies to manage social issues. • They are developed in partnership with regulatory agencies, investors and community. â

  11. Additional Guidance for EERE Digital Data Management Plans |...

    Office of Environmental Management (EM)

    Services Funding Digital Data Management Additional Guidance for EERE Digital Data Management Plans Additional Guidance for EERE Digital Data Management Plans Beyond the ...

  12. Suggested Elements for an EERE Data Management Plan | Department...

    Office of Environmental Management (EM)

    Services Funding Digital Data Management Suggested Elements for an EERE Data Management Plan Suggested Elements for an EERE Data Management Plan The principal investigator ...

  13. Suggested Elements for a Data Management Plan | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services Funding Digital Data Management Suggested Elements for a Data Management Plan Suggested Elements for a Data Management Plan The principal investigator should ...

  14. Environmental Restoration Information Resource Management Program Plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Environmental Restoration Information Resources Management (ER IRM) Program Plan defines program requirements, organizational structures and responsibilities, and work breakdown structure and to establish an approved baseline against which overall progress of the program as well as the effectiveness of its management will be measured. This plan will guide ER IRM Program execution and define the program`s essential elements. This plan will be routinely updated to incorporate key decisions and programmatic changes and will serve as the project baseline document. Environmental Restoration Waste Management Program intersite procedures and work instructions will be developed to facilitate the implementation of this plan.

  15. Tank waste remediation system risk management list

    SciTech Connect (OSTI)

    Collard, L.B.

    1995-10-31

    The Tank Waste Remedation System (TWRS) Risk Management List and it`s subset of critical risks, the Critical Risk Management List, provide a tool to senior RL and WHC management (Level-1 and -2) to manage programmatic risks that may significantly impact the TWRS program. The programmatic risks include cost, schedule, and performance risks. Performance risk includes technical risk, supportability risk (such as maintainability and availability), and external risk (i.e., beyond program control, for example, changes in regulations). The risk information includes a description, its impacts, as evaluation of the likelihood, consequences and risk value, possible mitigating actions, and responsible RL and WHC managers. The issues that typically form the basis for the risks are presented in a separate table and the affected functions are provided on the management lists.

  16. Corrective Action Plan for Environmenta' Management Headquarters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corrective Action Plan for Environmenta' Management Headquarters Phase 2: Radiological Release Event at the Waste Isolation Pilot Plant on February 14~ 2014 Washington, DC 20585 August 2015 Corrective Action Plan for Environmental Management Headquarters Phase 2: Radiological Release Event at the Waste Isolation Pilot Plant on February 14, 2014 Deputy Assistant Secretary for Safety, Security, and Quality Programs Environmental Management Approved by: Monica Regalbuto Assistant Secretary for

  17. Risk communications and the Chemical Stockpile Emergency-Planning Program

    SciTech Connect (OSTI)

    Vogt, B.M.; Sorensen, J.H.

    1994-09-01

    The CSEPP (Chemical Stockpile Emergency Preparedness Program) was created to improve emergency planning and response capabilities at the eight sites around the country that store chemical weapons. These weapons are scheduled to be destroyed in the near future. In preparation of the Draft Programmatic Environmental Impact Statement (DPEIS) for the Chemical Stockpile Disposal Program (CSDP), it was proposed that the Army mitigate accidents through an enhanced community emergency preparedness program at the eight storage sites. In 1986, the Army initiated the development of an Emergency Response Concept Plan (ERCP) for the CSDP, one of 12 technical support studies conducted during preparation of the Final Programmatic Environmental Impact Statement (FPEIS). The purpose of this document is to provide a fairly comprehensive source book on risk, risk management, risk communication research and recommended risk communication practices. It does not merely summarize each publication in the risk communication literature, but attempts to synthesize them along the lines of a set of organizing principles. Furthermore, it is not intended to duplicate other guidance manuals (such as Covello et al.`s manual on risk comparison). The source book was developed for the CSEPP in support of the training module on risk communications. Although the examples provided are specific to CSEPP, its use goes beyond that of CSEPP as the findings apply to a broad spectrum of risk communication topics. While the emphasis is on communication in emergency preparedness and response specific to the CSEPP, the materials cover other non-emergency communication settings. 329 refs.

  18. Project Management Plan Examples 1- 80

    Office of Energy Efficiency and Renewable Energy (EERE)

    The following material has been extracted from several project management plans. The order in which it is presented is arbitrary. The descriptions below should be used to navigate to the subject of...

  19. Safeguards and Security Program Planning and Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26

    Establishes program planning and management requirements for the Departments Safeguards and Security (S&S) Program. Cancels: DOE N 473.9 and DOE M 470.1-1

  20. Safeguards and Security Program Planning and Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26

    The manual establishes program planning and management requirements for the Departments Safeguards and Security. Chg 1, dated 3-7-06 Cancels DOE N 473.9, DOE M 470.1-1 Chg 2.

  1. Environmental Management Headquarters Corrective Action Plan - Radiological

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Release Phase II | Department of Energy II Environmental Management Headquarters Corrective Action Plan - Radiological Release Phase II The purpose of this Corrective Action Plan (CAP) is to specify U.S. Department of Energy (DOE) actions for addressing Office of Environmental Management (EM) Headquarters (HQ) issues identified in the Accident Investigation Report for the Phase 2: Radiological Release Event at the Waste Isolation Pilot Plant (WIPP) on February 14, 2014. The report identified

  2. Loan Specialist (Risk Management) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Loan Specialist (Risk Management) Loan Specialist (Risk Management) Submitted by admin on Mon, 2016-08-08 00:15 Job Summary Organization Name Department Of Energy Agency SubElement Department of Energy Locations District of Columbia, District of Columbia Announcement Number DOE-MP-16-LP-00290-DE Job Summary This position is located in the U.S. Department of Energy (DOE), Loan Programs Office (LPO), Risk Management Division (RMD), and Enterprise Risk Management & Compliance Branch. The LPO

  3. Draft of the PHENIX Management Plan

    SciTech Connect (OSTI)

    Not Available

    1994-03-10

    The PHENIX Management Plan provides the baselines and controls that the PHENIX and RHIC Projects will follow to meet the technical, cost, and schedule goals for the PHENIX detector at RHIC. This plan will be reviewed and updated as required, with revisions made by agreement among the signed participants.

  4. EERE Digital Data Management Planning Requirements

    Broader source: Energy.gov [DOE]

    To integrate data management planning into an overall research plan, here are requirements which apply to all EERE research solicitations and invitations for new, renewal, and some supplemental funding issued on or after Oct. 1, 2014. These requirements apply to proposals from all organizations, including academic institutions, DOE national laboratories, and others.

  5. India-Natural Resource Management Plan | Open Energy Information

    Open Energy Info (EERE)

    Natural Resource Management Plan Jump to: navigation, search Name India-Natural Resource Management Plan AgencyCompany Organization Government of India Sector Land Focus Area...

  6. Environmental Management and Planning Solutions, Inc | Open Energy...

    Open Energy Info (EERE)

    Environmental Management and Planning Solutions, Inc (Redirected from EMPSi) Jump to: navigation, search Name: Environmental Management and Planning Solutions, Inc Abbreviation:...

  7. Acquisition Planning--Extending A Management and Operating Contract...

    Energy Savers [EERE]

    Operating Contract Without Full and Open Competition; and Site and Utilization Management Planning Acquisition Planning--Extending A Management and Operating Contract Without ...

  8. WAP Memorandum 010: Quality Management Plan - Record Keeping...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10: Quality Management Plan - Record Keeping and Reporting WAP Memorandum 010: Quality Management Plan - Record Keeping and Reporting Effective: April 8, 2015 10 CFR 440.24 ...

  9. EERE Digital Data Management Planning Roles and Responsibilities...

    Broader source: Energy.gov (indexed) [DOE]

    and Renewable Energy (EERE) data management plans (DMPs) are outlined below. EERE Beginning Oct. 1, 2015, EERE will ensure that the requirements for data management plans are ...

  10. Asset Management Plan | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Asset Management Plan NNSA's Asset Management Program Completes First Pilot The National Nuclear Security Administration (NNSA) today announced completion of a $520k pilot to replace a roof, as well as heating, ventilation and cooling (HVAC) system for the Core Library and Data Center at Mercury, Nevada (http://nevada.usgs.gov/mercury/). The library was established

  11. Spent Nuclear Fuel Project Document Management Plan

    SciTech Connect (OSTI)

    Connor, M.D.; Harizison, G.L.; Rice, W.C.

    1995-12-01

    The SNF Project Document Management Plan identifies and describes the currently available systems and processes for implementing and maintaining an effective document control and records management program. This program governs the methods by which documents are generated, released, distributed, maintained current, retired, and ultimately disposed.

  12. First Capitol Risk Management LLC | Open Energy Information

    Open Energy Info (EERE)

    Capitol Risk Management LLC Jump to: navigation, search Name: First Capitol Risk Management, LLC Place: Galena, Illinois Zip: 61036 Product: First Capitol Risk Management...

  13. Risk Management Guide - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7A, Risk Management Guide by John Makepeace Functional areas: Risk Management, Safety and Security This Guide provides non-mandatory risk management approaches for implementing the...

  14. Emergency Management: Facility Emergency Plan Template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Building 219, 274 and 278 SSRL Building Facility Emergency Plan In Case of Emergency 9-911 from a SLAC phone 911 from a non-SLAC phone Then notify SLAC Site Security, Ext. 5555 SLAC Emergency Resources SLAC Site Security 5555 On-site Palo Alto Fire Station Number 7 2776 Conventional and Experimental Facilities 8901 Normal working hours only SLAC Medical Department 2281 Waste Management 2399 Building manager Larry Cadapan Assistant building manager Brian Choi Publication date

  15. Jefferson Lab Project Management & Integrated Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LERF Contact Our Staff Directorate Project Control System Manual Technical Engineering Development Facility (TEDF) Utilities Infrastructure Modernization (UIM) Office of Project Management Org Chart Project Management Office Vision: Partnering with our customers, we provide support to further the laboratory's mission to operate a world class user facility for conducting nuclear physics research. Our focus is to provide project management and integrated planning support across the Lab that is

  16. 2013 Annual Planning Summary for the Environmental Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Management Consolidated Business Center 2013 Annual Planning Summary for the Environmental Management Consolidated Business Center The ongoing and projected...

  17. Acquisition Planning--Extending A Management and Operating Contract Without

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Full and Open Competition; and Site and Utilization Management Planning | Department of Energy Planning--Extending A Management and Operating Contract Without Full and Open Competition; and Site and Utilization Management Planning Acquisition Planning--Extending A Management and Operating Contract Without Full and Open Competition; and Site and Utilization Management Planning PF2009-13.pdf (337.25 KB) PF2009-13a - Acquisition Letter 2009-03 - Acquisition Planning (130.37 KB) More Documents

  18. CRAD, Configuration Management Assessment Plan

    Broader source: Energy.gov [DOE]

    The objective of this assessment is to determine whether a Configuration Management Program (CM) is in place which allows for the availability and retrievability of accurate information, improves response to design and operational decisions, enhances worker safety, increases facility safety and reliability, increases efficiency of work efforts, and helps maintain integrity of interfacing orders.

  19. National Ignition Facility Configuration Management Plan

    SciTech Connect (OSTI)

    Cabral, S G; Moore, T L

    2002-10-01

    This Configuration Management Plan (CMP) describes the technical and administrative management process for controlling the National Ignition Facility (NIF) Project configuration. The complexity of the NIF Project (i.e., participation by multiple national laboratories and subcontractors involved in the development, fabrication, installation, and testing of NIF hardware and software, as well as construction and testing of Project facilities) requires implementation of the comprehensive configuration management program defined in this plan. A logical schematic illustrating how the plan functions is provided in Figure 1. A summary of the process is provided in Section 4.0, Configuration Change Control. Detailed procedures that make up the overall process are referenced. This CMP is consistent with guidance for managing a project's configuration provided in Department of Energy (DOE) Order 430.1, Guide PMG 10, ''Project Execution and Engineering Management Planning''. Configuration management is a formal discipline comprised of the following four elements: (1) Identification--defines the functional and physical characteristics of a Project and uniquely identifies the defining requirements. This includes selection of components of the end product(s) subject to control and selection of the documents that define the project and components. (2) Change management--provides a systematic method for managing changes to the project and its physical and functional configuration to ensure that all changes are properly identified, assessed, reviewed, approved, implemented, tested, and documented. (3) Data management--ensures that necessary information on the project and its end product(s) is systematically recorded and disseminated for decision-making and other uses. Identifies, stores and controls, tracks status, retrieves, and distributes documents. (4) Assessments and validation--ensures that the planned configuration requirements match actual physical configurations and

  20. Hanford cultural resources management plan

    SciTech Connect (OSTI)

    Chatters, J.C.

    1989-06-01

    As a federal agency, the US Department of Energy (DOE) has been directed by Congress and the President to provide leadership in the preservation of prehistoric, historical, and cultural resources on lands it administers, to manage these in a spirit of stewardship for future generations, and to protect and preserve the rights of Native Americans to religious freedom. The purpose of this document is to describe how the DOE-Richland Operations (DOE-RL) will meet those responsibilities on the Hanford Site, pursuant to guidelines for Agency Responsibilities under the Historic Preservation Act (FR 53:31, February 17, 1988). This document is intended for multiple uses. Among other things, the text is designed as a manual for cultural resource managers to follow and as an explanation of the process of cultural resource regulatory compliance for the DOE-RL and Site contractors. 10 refs., 17 figs., 11 tabs.

  1. Data Management Facility Operations Plan

    SciTech Connect (OSTI)

    Keck, Nicole N

    2014-06-30

    The Data Management Facility (DMF) is the data center that houses several critical Atmospheric Radiation Measurement (ARM) Climate Research Facility services, including first-level data processing for the ARM Mobile Facilities (AMFs), Eastern North Atlantic (ENA), North Slope of Alaska (NSA), Southern Great Plains (SGP), and Tropical Western Pacific (TWP) sites, as well as Value-Added Product (VAP) processing, development systems, and other network services.

  2. Oak Ridge National Laboratory Waste Management Plan

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  3. Emergency Management: Facility Emergency Plan Template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20, 130 ,131 Other SLAC Resources SLAC Site Security Main Gate 2551 On-site Palo Alto Fire Station Business Phone 2776 Facilities Department Service Request 8901 Normal working hours only SLAC Medical Department 2281 Waste Management 2399 Building manager Brian Choi Assistant building manager Larry Cadapan Publication dates September 24, 2010 Prepared by Behzad Bozorg-Chami Approved by 20 Jun 2007 (updated AUG. 2010) SLAC-I-730-0A14J-001-R001 2 of 12 Emergency Management: Facility Emergency Plan

  4. The Department of Energy Asset Management Plan (2015) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy The Department of Energy Asset Management Plan (2015) The Department of Energy Asset Management Plan (2015) Asset Management Plan_Final_w S-2 distro memo_2015.05.26.pdf (10.66 MB) More Documents & Publications Department of Energy Asset Management Plan cover_booked.indd Three-year Rolling Timeline

  5. Bureau of Land Management - Land Use Planning | Open Energy Informatio...

    Open Energy Info (EERE)

    Planning Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Bureau of Land Management - Land Use Planning Abstract The BLM's Resource Management Plans...

  6. Hanford site integrated pest management plan

    SciTech Connect (OSTI)

    Giddings, R.F.

    1996-04-09

    The Hanford Site Integrated Pest Management Plan (HSIPMP) defines the Integrated Pest Management (IPM) decision process and subsequent strategies by which pest problems are to be solved at all Hanford Site properties per DOE-RL Site Infrastructure Division memo (WHC 9505090). The HSIPMP defines the roles that contractor organizations play in supporting the IPM process. In short the IPM process anticipates and prevents pest activity and infestation by combining several strategies to achieve long-term pest control solutions.

  7. Project Hanford management contract quality improvement project management plan

    SciTech Connect (OSTI)

    ADAMS, D.E.

    1999-03-25

    On July 13, 1998, the U.S. Department of Energy, Richland Operations Office (DOE-RL) Manager transmitted a letter to Fluor Daniel Hanford, Inc. (FDH) describing several DOE-RL identified failed opportunities for FDH to improve the Quality Assurance (QA) Program and its implementation. In addition, DOE-RL identified specific Quality Program performance deficiencies. FDH was requested to establish a periodic reporting mechanism for the corrective action program. In a July 17, 1998 response to DOE-RL, FDH agreed with the DOE concerns and committed to perform a comprehensive review of the Project Hanford Management Contract (PHMC) QA Program during July and August, 1998. As a result, the Project Hanford Management Contract Quality Improvement Plan (QIP) (FDH-3508) was issued on October 21, 1998. The plan identified corrective actions based upon the results of an in-depth Quality Program Assessment. Immediately following the scheduled October 22, 1998, DOE Office of Enforcement and Investigation (EH-10) Enforcement Conference, FDH initiated efforts to effectively implement the QIP corrective actions. A Quality Improvement Project (QI Project) leadership team was assembled to prepare a Project Management Plan for this project. The management plan was specifically designed to engage a core team and the support of representatives from FDH and the major subcontractors (MSCs) to implement the QIP initiatives; identify, correct, and provide feedback as to the root cause for deficiency; and close out the corrective actions. The QI Project will manage and communicate progress of the process.

  8. Hanford emergency management plan - release 15

    SciTech Connect (OSTI)

    CARPENTER, G.A.

    1999-07-19

    The Hanford emergency management plan for the US Department of Energy Richland, WA and Office of River Protection. The program was developed in accordance with DOE Orders as well as Federal and State regulations to protect workers and public health and safety.

  9. Federal Flood Risk Management Standard (2015)

    Broader source: Energy.gov [DOE]

    The Federal Flood Risk Management Standard (FFRMS (2015)) expands upon E.O. 11988, Floodplain Management, (1977) by directing that federal agencies use a higher vertical flood elevation and...

  10. Federal Flood Risk Management Standard (FEMA, 2015)

    Broader source: Energy.gov [DOE]

    The Federal Flood Risk Management Standard (FFRMS (2015)) expands upon E.O. 11988, Floodplain Management, (1977) by directing that federal agencies use a higher vertical flood elevation and...

  11. Ocean Thermal Energy Conversion Program Management Plan

    SciTech Connect (OSTI)

    Combs, R E

    1980-01-01

    The Office of the Associate Laboratory Director for Energy and Environmental Technology has established the OTEC Program Management Office to be responsible for the ANL-assigned tasks of the OTEC Program under DOE's Chicago Operations and Regional Office (DOE/CORO). The ANL OTEC Program Management Plan is essentially a management-by-objective plan. The principal objective of the program is to provide lead technical support to CORO in its capacity as manager of the DOE power-system program. The Argonne OTEC Program is divided into three components: the first deals with development of heat exchangers and other components of OTEC power systems, the second with development of biofouling counter-measures and corrosion-resistant materials for these components in seawater service, and the third with environmental and climatic impacts of OTEC power-system operation. The essential points of the Management Plan are summarized, and the OTEC Program is described. The organization of the OTEC Program at ANL is described including the functions, responsibilities, and authorities of the organizational groupings. The system and policies necessary for the support and control functions within the organization are discussed. These functions cross organizational lines, in that they are common to all of the organization groups. Also included are requirements for internal and external reports.

  12. Nevada Test Site Resource Management Plan

    SciTech Connect (OSTI)

    1998-12-01

    The Nevada Test Site (NTS) Resource Management Plan (RMP) describes the NTS Stewardship Mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. The NTS Stewardship Mission is to manage the land and facilities at the NTS as a unique and valuable national resource. The RMP has defined goals for twelve resource areas based on the principles of ecosystem management. These goals were established using an interdisciplinary team of DOE/NV resource specialists with input from surrounding land managers, private parties, and representatives of Native American governments. The overall goal of the RMP is to facilitate improved NTS land use management decisions within the Great Basin and Mojave Desert ecoregions.

  13. Process safety management (OSHA) and process risk management (CAA) application. Application to a coke plant

    SciTech Connect (OSTI)

    Graeser, W.C.; Mentzer, W.P.

    1995-12-01

    Risk Management Programs for Chemical Accidental Release Prevention is the name of the proposed rule for the RMP Risk Management Program. The RMP was written in response to several catastrophic releases of hazardous substances. The rule is applicable to facilities that store, process or use greater than threshold quantities of 62 listed flammable chemicals and another 100 listed toxic substances. Additionally, a Risk Management Plan is registered with the EPA, Chemical Safety and Hazardous Investigation Board, state governments and the local emergency planning commission. The Clean Air Act Amendments of 1990 (specifically Section 112r) required the EPA to develop a three phase Risk Management Plan for industry: prevention program; hazard assessment; and emergency response program. The Prevention Program closely follows the OSHA`s Process Safety Management Standard. The Hazard Assessment section requires facilities to develop plans for a worst case scenario. The Emergency Response section defines the steps the facility and each employee will take if a release occurs. This section also needs to be coordinated with the Local Emergency Planning Commission. These regulations are described using Clairton Works as an example of compliance.

  14. Stockpile Stewardship and Management Plan | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Mission / Managing the Stockpile Stockpile Stewardship and Management Plan This Department of Energy's (DOE) National Nuclear Security Administration (NNSA) Fiscal Year 2017 Stockpile Stewardship and Management Plan (SSMP) - Biennial Plan Summary (FY 2017 SSMP) is a key planning document for the nuclear security enterprise. This year's summary report updates the Fiscal Year 2016 Stockpile Stewardship and Management Plan (FY 2016 SSMP), the 25-year strategic program of

  15. DOCS System Configuration Management Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOCS System Configuration Management Plan DOCS System Configuration Management Plan The DOCS Systems Configuration Management Plan (SCMP), from an actual DOE systems engineering project, can be used as a template to facilitate the creation of the CMP for your particular project. DOCS System Configuration Management Plan (654.98 KB) More Documents & Publications OPC Security Whitepaper #3Hardening Guidelines for OPC Hosts NMMSS Software Quality Assurance Plan ABB SCADA/EMS System INEEL

  16. AVLIS Production Plant Project Management Plan

    SciTech Connect (OSTI)

    Not Available

    1984-11-15

    The AVLIS Production Plant is designated as a Major System Acquisition (in accordance with DOE Order 4240.IC) to deploy Atomic Vapor Laser Isotope Separation (AVLIS) technology at the Oak Ridge, Tennessee site, in support of the US Uranium Enrichment Program. The AVLIS Production Plant Project will deploy AVLIS technology by performing the design, construction, and startup of a production plant that will meet capacity production requirements of the Uranium Enrichment Program. The AVLIS Production Plant Project Management Plan has been developed to outline plans, baselines, and control systems to be employed in managing the AVLIS Production Plant Project and to define the roles and responsibilities of project participants. Participants will develop and maintain detailed procedures for implementing the management and control systems in agreement with this plan. This baseline document defines the system that measures work performed and costs incurred. This plan was developed by the AVLIS Production Plant Project staff of Martin Marietta Energy Systems, Inc. and Lawrence Livermore National Laboratory in accordance with applicable DOE directives, orders and notices. 38 figures, 19 tables.

  17. Mission Plan for the Civilian Radioactive Waste Management Program...

    Broader source: Energy.gov (indexed) [DOE]

    this Mission Plan for the Civilian Radioactive Waste Management Program. The Mission Plan is divided into two parts. Part I describes the overall goals, objectives, and...

  18. Environmental Management Los Alamos Field Corrective Action Plan...

    Energy Savers [EERE]

    Los Alamos Field Corrective Action Plan - Radiological Release Phase II Environmental Management Los Alamos Field Corrective Action Plan - Radiological Release Phase II On March...

  19. Department of Energy Asset Management Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Asset Management Plan Department of Energy Asset Management Plan The Department of Energy Asset Management Plan (2015) provides an integrating strategy for supporting the management and performance goals in the Department's Strategic Plan; fulfilling Federal requirements governing the acquisition, management, and disposal of property; and conducting activities in a manner that provides the best value for the American taxpayers. The guiding principles ensure the Department's portfolio of real and

  20. Risk Management II Summit Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Risk Management II Summit Agenda Risk Management II Summit Agenda Risk Management Summit Agenda.pdf (171.41 KB) More Documents & Publications ICAM Workshop Radio and Spectrum Management Ad Hoc Meetings

  1. Tank Waste Remediation Systems (TWRS) Configuration Management Implementation Plan

    SciTech Connect (OSTI)

    WEIR, W.R.

    2000-12-18

    The Tank Waste Configuration Management (TWRS) Configuration Management Implementation Plan descibes the execution of the configuration management (CM) that the contractor uses to manage and integrate its programmatic and functional operations to perform work.

  2. ARM Climate Research Facility Management Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric Radiation Measurement (ARM) Climate Research Facility Management Plan Revised April 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use

  3. River Protection Project (RPP) Project Management Plan

    SciTech Connect (OSTI)

    NAVARRO, J.E.

    2001-03-07

    The Office of River Protection (ORP) Project Management Plan (PMP) for the River Protection Project (RPP) describes the process for developing and operating a Waste Treatment Complex (WTC) to clean up Hanford Site tank waste. The Plan describes the scope of the project, the institutional setting within which the project must be completed, and the management processes and structure planned for implementation. The Plan is written from the perspective of the ORP as the taxpayers' representative. The Hanford Site, in southeastern Washington State, has one of the largest concentrations of radioactive waste in the world, as a result of producing plutonium for national defense for more than 40 years. Approximately 53 million gallons of waste stored in 177 aging underground tanks represent major environmental, social, and political challenges for the U.S. Department of Energy (DOE). These challenges require numerous interfaces with state and federal environmental officials, Tribal Nations, stakeholders, Congress, and the US Department of Energy-Headquarters (DOE-HQ). The cleanup of the Site's tank waste is a national issue with the potential for environmental and economic impacts to the region and the nation.

  4. APPLICATION OF RISK MANAGEMENT PRACTICES TO NNSA TRITIUM READINESS SUBPROGRAM

    SciTech Connect (OSTI)

    Shete, S; Srini Venkatesh, S

    2007-01-31

    The National Nuclear Security Administration (NNSA), Office of Stockpile Technology (NNSA/NA-123) chartered a risk assessment of the Tritium Readiness (TR) Subprogram to identify risks and to develop handling strategies with specific action items that could be scheduled and tracked to completion in order to minimize program failures. This assessment was performed by a team of subject matter experts (SMEs) comprised of representatives from various organizations participating in the TR Subprogram. The process was coordinated by Savannah River Site, Systems Engineering (SRS/SE) with support from Subprogram Team. The Risk Management Process steps performed during this risk assessment were: Planning, Identification, Grading, Handling, and Impact Determination. All of the information captured during the risk assessment was recorded in a database. The team provided estimates for the cost and schedule impacts of implementing the recommended handling strategies and facilitated the risk based cost contingency analysis. The application of the Risk Management Practices to the NNSA Tritium Readiness Subprogram resulted in: (1) The quarterly review and update of the Risk Management Database to include an evaluation of all existing risks and the identification/evaluation of any potential new risks. (2) The risk status and handling strategy action item tracking mechanism that has visibility and buy-in throughout the Tritium Readiness Subprogram to ensure that approved actions are completed as scheduled and that risk reduction is being achieved. (3) The generation of a risk-based cost contingency estimate that may be used by the Tritium Readiness Subprogram Manager in establishing future year program budgets.

  5. 2011 Annual Planning Summary for Office of Legacy Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary for Legacy Management (LM) 2013 Annual Planning Summary for the Office of Legacy Management 2012 Independent Communication and Outreach Stakeholder Satisfaction Survey

  6. 2012 Annual Planning Summary for Environmental Management | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Management 2012 Annual Planning Summary for Environmental Management The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 ...

  7. ADEQ Nonpoint Source State Management Plan | Open Energy Information

    Open Energy Info (EERE)

    Nonpoint Source State Management Plan Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: ADEQ Nonpoint Source State Management PlanLegal...

  8. The ORNL Surplus Facilities Management Program Long Range Plan

    SciTech Connect (OSTI)

    Myrick, T.E.

    1984-09-01

    The Surplus Facilities Management Program (SFMP) at Oak Ridge National Laboratory (ORNL) is part of the Department of Energy`s (DOE) National SFMP, administered by the Richland Operations Office. This program was established to provide for the management of DOE surplus radioactively contaminated facilities from the end of their operating life until final facility disposition is completed. As part of this program, the ORNL SFMP oversees some 76 individual surplus facilities, ranging in complexity from abandoned waste storage tanks to large experimental reactors. The ORNL SFMP has prepared this Long Range Plan to outline the long-term management strategy for those facilities included in the program. The primary objective of this plan are to: (1) develop a base of information for each ORNL SFMP facility, (2) conduct preliminary decommissioning analyses to identify feasible alternatives, (3) assess the current and future risk of each facility, (4) establish a priority list for the decommissioning projects, and (5) integrate the individual project costs and schedules into an overall program schedule and cost estimate for the ORNL site. The Long Range Plan also provides an overview of the ORNL SFMP management structure, specifies the decommissioning criteria to be employed, and identifies special technical problems, research and development needs, and special facilities and equipment that may be required for decommissioning operations.

  9. Risk assessment and management of radiofrequency radiation exposure

    SciTech Connect (OSTI)

    Dabala, Dana; Surducan, Emanoil; Surducan, Vasile; Neamtu, Camelia

    2013-11-13

    Radiofrequency radiation (RFR) industry managers, occupational physicians, security department, and other practitioners must be advised on the basic of biophysics and the health effects of RF electromagnetic fields so as to guide the management of exposure. Information on biophysics of RFR and biological/heath effects is derived from standard texts, literature and clinical experiences. Emergency treatment and ongoing care is outlined, with clinical approach integrating the circumstances of exposure and the patient's symptoms. Experimental risk assessment model in RFR chronic exposure is proposed. Planning for assessment and monitoring exposure, ongoing care, safety measures and work protection are outlining the proper management.

  10. Radiation risk management at DOE accelerator facilities

    SciTech Connect (OSTI)

    Dyck, O.B. van

    1997-01-01

    The DOE accelerator contractors have been discussing among themselves and with the Department how to improve radiation safety risk management. This activity-how to assure prevention of unplanned high exposures-is separate from normal exposure management, which historically has been quite successful. The ad-hoc Committee on the Accelerator Safety Order and Guidance [CASOG], formed by the Accelerator Section of the HPS, has proposed a risk- based approach, which will be discussed. Concepts involved are risk quantification and comparison (including with non-radiation risk), passive and active (reacting) protection systems, and probabilistic analysis. Different models of risk management will be presented, and the changing regulatory environment will also be discussed..

  11. ELECTRICITY SUBSECTOR CYBERSECURITY RISK MANAGEMENT PROCESS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CYBERSECURITY RISK MANAGEMENT PROCESS U.S. Department of Energy May 2012 DOE/OE-0003 Acknowledgments This electricity subsector cybersecurity Risk Management Process (RMP) guideline was developed by the Department of Energy (DOE), in collaboration with the National Institute of Standards and Technology (NIST) and the North American Electric Reliability Corporation (NERC). Members of industry and utility-specific trade groups were included in authoring this guidance designed to be meaningful and

  12. Mixed Waste Focus Area program management plan

    SciTech Connect (OSTI)

    Beitel, G.A.

    1996-10-01

    This plan describes the program management principles and functions to be implemented in the Mixed Waste Focus Area (MWFA). The mission of the MWFA is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments and regulators. The MWFA will develop, demonstrate and deliver implementable technologies for treatment of mixed waste within the DOE Complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation and disposal.

  13. Safeguards and Security Program Planning and Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26

    The manual establishes program planning and management requirements for the Department’s Safeguards and Security (S&S) Program. Change 2 is a revision to Section M of both the Manual and the CRD to realign the process for establishing deviations from DOE directives containing safeguards and security requirements to reflect established Departmental policy as set forth in DOE O 251.1C. Original publication, 8-26-05; Chg 1, 3-7-06. Canceled by DOE O 470.4B

  14. Independent Verification and Validation Of SAPHIRE 8 Risk Management Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Kent Norris

    2009-11-01

    This report provides an evaluation of the risk management. Risk management is intended to ensure a methodology for conducting risk management planning, identification, analysis, responses, and monitoring and control activities associated with the SAPHIRE project work, and to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  15. Information needs for risk management/communication

    SciTech Connect (OSTI)

    Bennett, D.A.

    1990-12-31

    The hazardous waste cleanup program under the Comprehensive Environmental Response, Compensation, and Liability Act (Superfund) is delegated to the ten Regions of the US Environmental Protection Agency (EPA) and has, to date, identified more than 33,000 sites for consideration. The size and complexity of the program places great demands on those who would provide information to achieve national consistency in application of risk assessment while meeting site-specific needs for risk management and risk communication.

  16. New Draft of Cybersecurity Risk Management Process (RMP) Guideline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Draft of Cybersecurity Risk Management Process (RMP) Guideline Now Available for Public Comment (March 2012) New Draft of Cybersecurity Risk Management Process (RMP) Guideline Now ...

  17. UNEP-GEF Renewable Energy Project Financial Risk Management in...

    Open Energy Info (EERE)

    GEF Renewable Energy Project Financial Risk Management in Developing Countries Jump to: navigation, search Name UNEP-GEF Renewable Energy Project Financial Risk Management in...

  18. Enterprise Risk Management (ERM) Model - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enterprise Risk Management (ERM) Model by Website Administrator The Enterprise Risk Management Model is a new standardized framework that the Department will be using to develop,...

  19. SUSTAINABILITY NEWS DOE Publishes its Strategic Water Management Plan

    Energy Savers [EERE]

    DOE Publishes its Strategic Water Management Plan The Sustainability Performance Office (SPO) announces the release of its Strategic Water Management Plan in conjunction with the Pacific Northwest National Laboratory (PNNL). The plan analyzes water use across the agency so that water management initiatives can be prioritized, thereby increasing DOEs water security and sustainability. Strategies are presented to help target best practices and alternative water projects. To access to the plan,

  20. Arid Lands Ecology Facility management plan

    SciTech Connect (OSTI)

    None

    1993-02-01

    The Arid Lands Ecology (ALE) facility is a 312-sq-km tract of land that lies on the western side of the Hanford Site in southcentral Washington. The US Atomic Energy Commission officially set aside this land area in 1967 to preserve shrub-steppe habitat and vegetation. The ALE facility is managed by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) for ecological research and education purposes. In 1971, the ALE facility was designated the Rattlesnake Hills Research Natural Area (RNA) as a result of an interagency federal cooperative agreement, and remains the largest RNA in Washington. it is also one of the few remaining large tracts of shrub-steppe vegetation in the state retaining a predominant preeuropean settlement character. This management plan provides policy and implementation methods for management of the ALE facilities consistent with both US Department of Energy Headquarters and the Richland Field Office decision (US Congress 1977) to designate and manage ALE lands as an RNA and as a component of the DOE National Environmental Research Park System.

  1. HotSpot Software Configuration Management Plan

    SciTech Connect (OSTI)

    Walker, H; Homann, S G

    2009-03-12

    This Software Configuration Management Plan (SCMP) describes the software configuration management procedures used to ensure that the HotSpot dispersion model meets the requirements of its user base, which includes: (1) Users of the PC version of HotSpot for consequence assessment, hazard assessment and safety analysis calculations; and (2) Users of the NARAC Web and iClient software tools, which allow users to run HotSpot for consequence assessment modeling These users and sponsors of the HotSpot software and the organizations they represent constitute the intended audience for this document. This plan is intended to meet Critical Recommendations 1 and 3 from the Software Evaluation of HotSpot and DOE Safety Software Toolbox Recommendation for inclusion of HotSpot in the Department of Energy (DOE) Safety Software Toolbox. HotSpot software is maintained for the Department of Energy Office of Emergency Operations by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL). An overview of HotSpot and NARAC are provided.

  2. Environmental restoration risk-based prioritization work package planning and risk ranking methodology. Revision 2

    SciTech Connect (OSTI)

    Dail, J.L.; Nanstad, L.D.; White, R.K.

    1995-06-01

    This document presents the risk-based prioritization methodology developed to evaluate and rank Environmental Restoration (ER) work packages at the five US Department of Energy, Oak Ridge Field Office (DOE-ORO) sites [i.e., Oak Ridge K-25 Site (K-25), Portsmouth Gaseous Diffusion Plant (PORTS), Paducah Gaseous Diffusion Plant (PGDP), Oak Ridge National Laboratory (ORNL), and the Oak Ridge Y-12 Plant (Y-12)], the ER Off-site Program, and Central ER. This prioritization methodology was developed to support the increased rigor and formality of work planning in the overall conduct of operations within the DOE-ORO ER Program. Prioritization is conducted as an integral component of the fiscal ER funding cycle to establish program budget priorities. The purpose of the ER risk-based prioritization methodology is to provide ER management with the tools and processes needed to evaluate, compare, prioritize, and justify fiscal budget decisions for a diverse set of remedial action, decontamination and decommissioning, and waste management activities. The methodology provides the ER Program with a framework for (1) organizing information about identified DOE-ORO environmental problems, (2) generating qualitative assessments of the long- and short-term risks posed by DOE-ORO environmental problems, and (3) evaluating the benefits associated with candidate work packages designed to reduce those risks. Prioritization is conducted to rank ER work packages on the basis of the overall value (e.g., risk reduction, stakeholder confidence) each package provides to the ER Program. Application of the methodology yields individual work package ``scores`` and rankings that are used to develop fiscal budget requests. This document presents the technical basis for the decision support tools and process.

  3. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect (OSTI)

    Lowrey, Diana Lee

    2009-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  4. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect (OSTI)

    Lowrey, Diana Lee

    2011-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  5. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect (OSTI)

    Julie Braun Williams

    2013-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices

  6. FY 2014 - Stockpile and Stewardship and Management Plan

    SciTech Connect (OSTI)

    2013-06-01

    This Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) Fiscal Year Stockpile Stewardship and Management Plan (SSMP) is a key planning document for the nuclear security enterprise.

  7. Waste Management Committee Fiscal Year 2014 Work Plan | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Work Plan Waste Management Committee Fiscal Year 2014 Work Plan Topics: TA-54 Consent Order TA-49 Remediation TA-21 Remediation Material Disposal Areas WM-FY14-WP - September 25, ...

  8. Waste Management Committee Fiscal Year 2015 Work Plan | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 5 Work Plan Waste Management Committee Fiscal Year 2015 Work Plan Topics: TA-54 Consent Order Deliverables FY'17 Budget National Waste Forum WM-FY15-WP - November 17, 2014 (255.83

  9. Taking Risk Assessment and Management to the Next Level: Program-Level Risk Analysis to Enable Solid Decision-Making on Priorities and Funding

    SciTech Connect (OSTI)

    Nelson, J. G.; Morton, R. L.; Castillo, C.; Dyer, G.; Johnson, N.; McSwain, J. T.

    2011-02-01

    A multi-level (facility and programmatic) risk assessment was conducted for the facilities in the Nevada National Security Site (NNSS) Readiness in Technical Base and Facilities (RTBF) Program and results were included in a new Risk Management Plan (RMP), which was incorporated into the fiscal year (FY) 2010 Integrated Plans. Risks, risk events, probability, consequence(s), and mitigation strategies were identified and captured, for most scope areas (i.e., risk categories) during the facilitated risk workshops. Risk mitigations (i.e., efforts in addition to existing controls) were identified during the facilitated risk workshops when the risk event was identified. Risk mitigation strategies fell into two broad categories: threats or opportunities. Improvement projects were identified and linked to specific risks they mitigate, making the connection of risk reduction through investments for the annual Site Execution Plan. Due to the amount of that was collected, analysis to be performed, and reports to be generated, a Risk Assessment/ Management Tool (RAMtool) database was developed to analyze the risks in real-time, at multiple levels, which reinforced the site-level risk management process and procedures. The RAMtool database was developed and designed to assist in the capturing and analysis of the key elements of risk: probability, consequence, and impact. The RAMtool calculates the facility-level and programmatic-level risk factors to enable a side-by-side comparison to see where the facility manager and program manager should focus their risk reduction efforts and funding. This enables them to make solid decisions on priorities and funding to maximize the risk reduction. A more active risk management process was developed where risks and opportunities are actively managed, monitored, and controlled by each facility more aggressively and frequently. risk owners have the responsibility and accountability to manage their assigned risk in real-time, using the

  10. WAP Memorandum 010: Quality Management Plan - Record Keeping and Reporting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 10: Quality Management Plan - Record Keeping and Reporting WAP Memorandum 010: Quality Management Plan - Record Keeping and Reporting Effective: April 8, 2015 10 CFR 440.24 requires Grantees and Subgrantees administering the Weatherization Assistance Program (WAP) keep records as the Department of Energy (DOE) shall require. WAP Memorandum 15-10 Quality Management Plan addresses record keeping and reporting. The attached draft Client File Checklist identifies elements

  11. Hanford Sampling Quality Management Plan (HSQMP)

    SciTech Connect (OSTI)

    Hyatt, J.E.

    1995-04-28

    This document provides a management tool for evaluating and designing the appropriate elements of a field sampling program. This document provides discussion of the elements of a program and is to be used as a guidance document during the preparation of project and/or function specific documentation. This document does not specify how a sampling program shall be organized. The HSQMP is to be used as a companion document to the Hanford Analytical Services Quality Assurance Plan (HASQAP) DOE/RL-94-55. The generation of this document was enhanced by conducting baseline evaluations of current sampling organizations. Valuable input was received from members of field and Quality Assurance organizations. The HSQMP is expected to be a living document. Revisions will be made as regulations and or Hanford Site conditions warrant changes in the best management practices. Appendices included are: summary of the sampling and analysis work flow process, a user`s guide to the Data Quality Objective process, and a self-assessment checklist.

  12. Technical Assistance Contractor management plan. Revision 1

    SciTech Connect (OSTI)

    1995-08-01

    The Technical Assistance Contractor (TAC) for the Uranium Mill Tailings Remedial Action (UMTRA) Project comprises Jacobs Engineering Group Inc. (JEG) as the prime contractor and three teaming partner subcontractors: Roy F. Weston, Inc. (RFW), AGRA Earth and Environmental, Inc. (AGRA), and Geraghty and Miller, Inc. (G and M). The TAC contract`s scope is to provide technical, analytical, environmental, engineering, design, inspection, and management support services to the US Department of Energy (DOE) for both Surface and Ground Water Projects. The TAC team supports the DOE in completing surface remedial action and initiating ground water remediation work for start-up, characterization, compliance planning, design, construction oversight, and remedial operations. The TAC provides the DOE UMTRA Project Team with a dedicated management, scientific, and technical resource base in Albuquerque, New Mexico, which is supplemented by corporate resources. A carefully developed and maintained staff of technical experts is available to assess, analyze, develop, and execute cost-effective solutions to the demanding technical and institutional problems presented by the UMTRA Project.

  13. Spent Nuclear Fuel project integrated safety management plan

    SciTech Connect (OSTI)

    Daschke, K.D.

    1996-09-17

    This document is being revised in its entirety and the document title is being revised to ``Spent Nuclear Fuel Project Integrated Safety Management Plan.

  14. BLM - Approved Resource Management Plan Amendments/Record of...

    Open Energy Info (EERE)

    BLM - Approved Resource Management Plan AmendmentsRecord of Decision for Solar Energy Development in Six Southwestern States Jump to: navigation, search OpenEI Reference...

  15. Internal Audit Management of Corrective Action Plans | The Ames...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Internal Audit Management of Corrective Action Plans Version Number: 1.0 Document Number: Procedure 10300.001 Effective Date: 01...

  16. Bureau of Land Management - Land Use Planning Handbook | Open...

    Open Energy Info (EERE)

    to library PermittingRegulatory Guidance - GuideHandbook: Bureau of Land Management - Land Use Planning HandbookPermittingRegulatory GuidanceGuideHandbook Abstract...

  17. Oregon Guidelines for Stormwater Management Plans for Removal...

    Open Energy Info (EERE)

    Guidelines for Stormwater Management Plans for RemovalFill Permit Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

  18. Utah Nonpoint Source Pollution Management Plan | Open Energy...

    Open Energy Info (EERE)

    Nonpoint Source Pollution Management Plan Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Utah Nonpoint Source...

  19. Microsoft Word - ContractManagementPlanningDRIVERS.doc | Department...

    Broader source: Energy.gov (indexed) [DOE]

    ContractManagementPlanningDRIVERS.doc More Documents & Publications Microsoft Word - ARRAAttachment2.doc Microsoft Word - ARRAModelWAS.doc Microsoft Word - ARRAMOModelMod.doc...

  20. Internal Audit Management of Corrective Action Plans | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Internal Audit Management of Corrective Action Plans Version Number: 1.0 Document Number: Procedure 10300.001 Effective Date: 01

  1. Suggested Elements for an EERE Data Management Plan

    Broader source: Energy.gov [DOE]

    This page lists the suggested elements of an EERE data management plan including data types and sources, content and format, sharing and preservation, protection and rationale.

  2. NGNP Risk Management through Assessing Technology Readiness

    SciTech Connect (OSTI)

    John W. Collins

    2010-08-01

    Throughout the Next Generation Nuclear Plant (NGNP) project life cycle, technical risks are identified, analyzed, and mitigated and decisions are made regarding the design and selection of plant and sub-system configurations, components and their fabrication materials, and operating conditions. Risk resolution and decision making are key elements that help achieve project completion within budget and schedule constraints and desired plant availability. To achieve this objective, a formal decision-making and risk management process was developed for NGNP, based on proven systems engineering principles that have guided aerospace and military applications.

  3. Management and operating contractor plan for transition to the project Hanford Management Contractor

    SciTech Connect (OSTI)

    Waite, J.L., Westinghouse Hanford

    1996-06-27

    This is Revision 1 to the M{ampersand}O Contractor Plan for Transition to the Project Hanford Management Contractor.

  4. Microsoft Word - DOE-CBFO-01-3107 PDP Management Plan_rev 8_final

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CBFO-01-3107 PERFORMANCE DEMONSTRATION PROGRAM MANAGEMENT PLAN Revision 8 February 2016 ... Plan February 2016 2 Performance Demonstration Program Management Plan DOE...

  5. Environmental Management Los Alamos Field Office Corrective Action Plan -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiological Release Phase II | Department of Energy Los Alamos Field Office Corrective Action Plan - Radiological Release Phase II Environmental Management Los Alamos Field Office Corrective Action Plan - Radiological Release Phase II On March 22, 2015, the Department of Energy established an Environmental Management Los Alamos Field Office (EM-LA) responsible for management of the environmental restoration and the legacy waste management programs at Los Alamos National Laboratory (LANL).

  6. Disaster recovery plan for HANDI 2000 business management system

    SciTech Connect (OSTI)

    Adams, D.E.

    1998-09-29

    The BMS production implementation will be complete by October 1, 1998 and the server environment will be comprised of two types of platforms. The PassPort Supply and the PeopleSoft Financials will reside on LNIX servers and the PeopleSoft Human Resources and Payroll will reside on Microsoft NT servers. Because of the wide scope and the requirements of the COTS products to run in various environments backup and recovery responsibilities are divided between two groups in Technical Operations. The Central Computer Systems Management group provides support for the LTNIX/NT Backup Data Center, and the Network Infrastructure Systems group provides support for the NT Application Server Backup outside the Data Center. The disaster recovery process is dependent on a good backup and recovery process. Information and integrated system data for determining the disaster recovery process is identified from the Fluor Daniel Hanford (FDH) Risk Assessment Plan, Contingency Plan, and Backup and Recovery Plan, and Backup Form for HANDI 2000 BMS.

  7. Planning Tools For Seismic Risk Mitigation. Rules And Applications

    SciTech Connect (OSTI)

    De Paoli, Rosa Grazia

    2008-07-08

    Recently, Italian urban planning research in the field of seismic risk mitigation are renewing. In particular, it promotes strategies that integrate urban rehabilitation and aseismic objectives, and also politicizes that are directed to revitalizes urban systems, coupling physical renewal and socio-economic development.In Italy the first law concerning planning for seismic mitigation dates back 1974, the law n. 64 'Regulation for buildings with particular rules for the seismic areas' where the rules for buildings in seismic areas concerning also the local hazard. This law, in fact, forced the municipalities to acquire, during the formation of the plans, a preventive opinion of compatibility between planning conditions and geomorphology conditions of the territory. From this date the conviction that the seismic risk must be considered inside the territorial planning especially in terms of strategies of mitigation has been strengthened.The town planners have started to take an interest in seismic risk in the [80]s when the Irpinia's earthquake took place. The researches developed after this earthquake have established that the principal cause of the collapse of buildings are due to from the wrong location of urban settlements (on slopes or crowns) After Irpinia's earthquake the first researches on seismic risk mitigation, in particular on the aspects related to the hazards and to the urban vulnerability were made.

  8. TWRS systems engineering software configuration management plan

    SciTech Connect (OSTI)

    Porter, P.E.

    1996-10-09

    This plan delineates the requirements for control of software developed and supported by the Tank Waste Remediation System (TWRS) Technical Integration organization. The information contained in this plan shall assist employees involved with software modification and configuration control.

  9. Jefferson Lab Project Management & Integrated Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FEL Contact Our Staff Directorate Project Control System Manual Technical Engineering Development Facility (TEDF) Utilities Infrastructure Modernization (UIM) Office of Project Management Org Chart Project Management Office Kelly K. Krug, Project Management Office Manager (757) 269-6044, krug@jlab.org Christine Fragapane, Project Management Executive Assistant (757) 269-7502, chummel@jlab.org Matrixed: Claus H. Rode, 12 GeV Upgrade Project Manager (757) 269-7511, rode@jlab.org Program

  10. NNSA Releases Annual Stockpile Stewardship & Management Plan | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Releases Annual Stockpile Stewardship & Management Plan March 19, 2015 Annual Report Provides Insight into Vital National Security Programs WASHINGTON, DC - The Department of Energy's National Nuclear Security Administration (NNSA) has released its Fiscal Year 2016 Stockpile Stewardship and Management Plan (SSMP). The FY16 SSMP documents NNSA's 25-year strategic plan for accomplishing its core stockpile stewardship mission area of maintaining the

  11. Configuration Management Plan for the Tank Farm Contractor

    SciTech Connect (OSTI)

    WEIR, W.R.

    2000-04-21

    The Configuration Management Plan for the Tank Farm Contractor describes configuration management the contractor uses to manage and integrate its technical baseline with the programmatic and functional operations to perform work. The Configuration Management Plan for the Tank Farm Contractor supports the management of the project baseline by providing the mechanisms to identify, document, and control the technical characteristics of the products, processes, and structures, systems, and components (SSC). This plan is one of the tools used to identify and provide controls for the technical baseline of the Tank Farm Contractor (TFC). The configuration management plan is listed in the management process documents for TFC as depicted in Attachment 1, TFC Document Structure. The configuration management plan is an integrated approach for control of technical, schedule, cost, and administrative processes necessary to manage the mission of the TFC. Configuration management encompasses the five functional elements of: (1) configuration management administration, (2) configuration identification, (3) configuration status accounting, (4) change control, and (5 ) configuration management assessments.

  12. Comprehensive Legacy Management and Institutional Controls Plan

    Office of Legacy Management (LM)

    Contact Legacy Management 24-hour Monitored Security Telephone Number (877) 695-5322 This page intentionally left blank U.S. Department of Energy Comprehensive Legacy Management ...

  13. Advanced Risk Management (FQN 301), SRS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The course also addresses representative project risk management software risk analysis ... wish to take this course for continuing education credit. Course Format: 3.5 days ...

  14. Understanding and managing risk in software systems

    SciTech Connect (OSTI)

    Fletcher, S.K.; Jansma, R.; Lim, J.; Murphy, M.; Wyss, G.

    1995-07-01

    When software is used in safety-critical, security-critical, or mission-critical situations, it is imperative to understand and manage the risks involved. A risk assessment methodology and toolset have been developed which are specific to software systems. This paper describes the concepts of the methodology, with emphasis on the experience of designing a toolset to support the methodology. Also presented are results of applying the methodology to two real software-based products: the software toolset itself, and a network firewall.

  15. Excess Uranium Inventory Management Plan 2008 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan 2008 Excess Uranium Inventory Management Plan 2008 On March 11, 2008, Secretary of Energy Samuel W. Bodman signed a policy statement1 on the management of the U.S. Department of Energy's (DOE) excess uranium inventory (Policy Statement). This Policy Statement provides the framework within which DOE will make decisions concerning future use and disposition of this inventory. The Policy Statement commits DOE to manage those inventories in a manner that: (1) is consistent with all applicable

  16. Office of Environmental Management Work Planning and Control Oversight |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Office of Environmental Management Work Planning and Control Oversight Office of Environmental Management Work Planning and Control Oversight May 16, 2013 Presenter: Roger Claycomb, Work Control Program Manager, DOE Idaho Operations Office Topics Covered: Contractor Good Practices: All contractors evaluate WP&C as part of their CAS URS performing corporate Phase II implementation reviews at sites where they are EM's lead contractor NWP (WIPP contractor) implemented

  17. An examination of the role of risk assessment in superfund program management, implementation, and evaluation

    SciTech Connect (OSTI)

    Bala, S.

    1995-12-01

    Human health risk assessment is playing an increasing role in the characterization of the nature and extent of human health threats posed by Superfund hazardous waste sites, and the prioritization of these sites for remediation activities. Risk assessment also plays a central role in initiatives to measure and evaluate the program`s progress in remediating these sites, and in efforts to communicate that progress to a diverse audience. This paper examines the current role of risk assessment in Superfund`s program management, implementation, and evaluation activities, and advocates the need for a comprehensive plan to enhance and systematically apply risk assessment information across all of these activities. Specifically, this paper examines the role of risk assessment at three levels: (1) the current role of risk information in Superfund`s program management activities; (2) the current role of risk information in the implementation of site cleanup; (3) profile of Superfund`s approach to measuring, evaluating, and communicating site remediation progress via Environmental Indicators (EIs). Building on this three-level examination, this paper calls for the development of a comprehensive plan for the enhanced and systematic application of risk assessment information in Superfund`s program management, implementation, and evaluation activities. This paper also draws upon the current literature on risk assessment and measurement, risk-based planning and decision-making, and risk communication.

  18. Tank waste remediation system configuration management implementation plan

    SciTech Connect (OSTI)

    Vann, J.M.

    1998-03-31

    The Tank Waste Remediation System (TWRS) Configuration Management Implementation Plan describes the actions that will be taken by Project Hanford Management Contract Team to implement the TWRS Configuration Management program defined in HNF 1900, TWRS Configuration Management Plan. Over the next 25 years, the TWRS Project will transition from a safe storage mission to an aggressive retrieval, storage, and disposal mission in which substantial Engineering, Construction, and Operations activities must be performed. This mission, as defined, will require a consolidated configuration management approach to engineering, design, construction, as-building, and operating in accordance with the technical baselines that emerge from the life cycles. This Configuration Management Implementation Plan addresses the actions that will be taken to strengthen the TWRS Configuration Management program.

  19. 2012 Annual Planning Summary for Legacy Management

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Legacy Management.

  20. Finance and supply management project execution plan

    SciTech Connect (OSTI)

    BENNION, S.I.

    1999-02-10

    As a subproject of the HANDI 2000 project, the Finance and Supply Management system is intended to serve FDH and Project Hanford major subcontractor with financial processes including general ledger, project costing, budgeting, and accounts payable, and supply management process including purchasing, inventory and contracts management. Currently these functions are performed with numerous legacy information systems and suboptimized processes.

  1. Natural Resource Management Plan for Brookhaven National Laboratory

    SciTech Connect (OSTI)

    green, T.

    2011-08-15

    This comprehensive Natural Resource Management Plan (NRMP) for Brookhaven National Laboratory (BNL) was built on the successful foundation of the Wildlife Management Plan for BNL, which it replaces. This update to the 2003 plan continues to build on successes and efforts to better understand the ecosystems and natural resources found on the BNL site. The plan establishes the basis for managing the varied natural resources located on the 5,265 acre BNL site, setting goals and actions to achieve those goals. The planning of this document is based on the knowledge and expertise gained over the past 10 years by the Natural Resources management staff at BNL in concert with local natural resource agencies including the New York State Department of Environmental Conservation, Long Island Pine Barrens Joint Planning and Policy Commission, The Nature Conservancy, and others. The development of this plan is an attempt at sound ecological management that not only benefits BNL's ecosystems but also benefits the greater Pine Barrens habitats in which BNL is situated. This plan applies equally to the Upton Ecological and Research Reserve (Upton Reserve). Any difference in management between the larger BNL area and the Upton Reserve are noted in the text. The purpose of the Natural Resource Management Plan (NRMP) is to provide management guidance, promote stewardship of the natural resources found at BNL, and to sustainably integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, sustainability, adaptive ecosystem management, compliance, integration with other plans and requirements, and the incorporation of community involvement, where applicable. The NRMP is periodically reviewed and updated, typically every five years. This review and update was delayed to develop documents associated with a new third party facility, the Long Island Solar Farm. This two hundred acre facility will result in

  2. The building codes and the forgotten basics of risk management

    SciTech Connect (OSTI)

    Norte, M.

    1995-12-01

    Building codes specifically developed to identify and manage chronic, endemic, facilities, risks, and the information and monitoring resources that must support them, are fundamental elements of a broadly based and comprehensive system of conventional risk management and compliance processes. This presentation discusses the proper role of building codes in atruly mature risk management and regulatory compliance strategy.

  3. Process safety management and interim or remedial action plans

    SciTech Connect (OSTI)

    Boss, M.J.; Henney, D.A.; Heitzman, V.K. [HWS Consulting Group, Inc., Omaha, NE (United States); Day, D.W. [Army Corps of Engineers, Omaha, NE (United States)

    1996-12-31

    Remedial Actions, including Interim Remedial Activities, often require the use of treatment facilities or stabilization techniques using on-site chemical processes. As such, the 29 CFR 1910.119 Process Safety Management (PSM) of Highly Hazardous Chemicals (PSM Standard) and the USEPA regulations for Risk Management Planning require that these chemicals and their attendant potential hazards be identified. A Hazard and Operation (HAZOP) study, Failure Mode and Effect Analysis (FMEA), Fault Tree Analysis, or equivalent graphic presentation of processes must be completed. These studies form a segment of the Process Hazard Analysis (PHA). HAZOP addresses each system and each element of a system that could deviate from normal operations and thus cause a hazard. A full assessment of each process is produced by looking at the hazards, consequences, causes and personnel protection needed. Many variables must be considered when choosing the appropriate PHA technique including the size of the plant, the number of processes, the types of processes, and the types of chemicals used. A mixture of these techniques may be required to adequately transmit information about the process being evaluated.

  4. Software Configuration Management Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This template is used for documenting the configuration management methodology, tools, techniques, roles and responsibilities and tasks for a systems development project Software ...

  5. LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN...

    Office of Scientific and Technical Information (OSTI)

    AND LAND EXCHANGES: CROSS-JURISDICTIONAL MANAGEMENT AND IMPACTS ON UNCONVENTIONAL FUEL DEVELOPMENT IN UTAH'S UINTA BASIN Utah is rich in oil shale and oil sands resources. ...

  6. FSM 2600 Wildlife, Fish, and Sensitive Plan Habitat Management...

    Open Energy Info (EERE)

    FSM 2600 Wildlife, Fish, and Sensitive Plan Habitat Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: FSM 2600...

  7. Bureau of Land Management - Plan of Utilization Checklist | Open...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Form: Bureau of Land Management - Plan of Utilization Checklist Abstract This page links to the BLM POU checklist....

  8. Title 43 CFR 1610 Resource Management Planning | Open Energy...

    Open Energy Info (EERE)

    10 Resource Management Planning Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 43 CFR 1610 Resource...

  9. Grout treatment facility land disposal restriction management plan

    SciTech Connect (OSTI)

    Hendrickson, D.W.

    1991-04-04

    This document establishes management plans directed to result in the land disposal of grouted wastes at the Hanford Grout Facilities in compliance with Federal, State of Washington, and Department of Energy land disposal restrictions. 9 refs., 1 fig.

  10. Nevada Test Site Resource Management Plan: Annual summary, January 2000

    SciTech Connect (OSTI)

    2000-01-01

    The Nevada Test Site Resource Management Plan published in December of 1998 (DOE/NV--518) describes the Nevada Test Site stewardship mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. As part of the Nevada Test Site Resource Management Plan, DOE Nevada Operations Office has committed to perform and publish an annual summary review of DOE Nevada Operations' stewardship of the Nevada Test Site. This annual summary includes a description of progress made toward the goals of the Nevada Test Site Resource Management Plan, pertinent monitoring data, actions that were taken to adapt to changing conditions, and any other changes to the Nevada Test Site Resource Management Plan.

  11. Management plan -- Multi-Function Waste Tank Facility. Revision 1

    SciTech Connect (OSTI)

    Fritz, R.L.

    1995-01-11

    This Westinghouse Hanford Company (WHC) Multi-Function Waste Tank Facility (MWTF) Management Plan provides guidance for execution WHC MWTF Project activities related to design, procurement, construction, testing, and turnover. This Management Plan provides a discussion of organizational responsibilities, work planning, project management systems, quality assurance (QA), regulatory compliance, personnel qualifications and training, and testing and evaluations. Classified by the US Department of Energy (DOE) as a major systems acquisition (MSA), the MWTF mission is to provide a safe, cost-effective, and environmentally sound method for interim storage of Hanford Site high-level wastes. This Management Plan provides policy guidance and direction to the Project Office for execution of the project activities.

  12. Software Configuration Management Plan for the Sodium Removal System

    SciTech Connect (OSTI)

    HILL, L.F.

    2000-03-06

    This document establishers the Software Configuration Management Plan (SCMP) for the software associated with the control system of the Sodium Removal System (SRS) located in the Interim Examination and Maintenance (IEM Cell) Facility of the FFTF Flux Test.

  13. BPA selects new VP of Transmission Planning and Asset Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the electric utility industry and am honored to lead our Transmission Planning and Asset Management team." Cook came to BPA in March of 2004 as an electrical engineer for its...

  14. ITEP Developing Tribal Integrated Solid Waste Management Plans

    Broader source: Energy.gov [DOE]

    The Institute for Tribal Environmental Professionals (ITEP) is offering a two-day training course providing the tools tribes needs to develop and implement a successful tribal integrated solid waste management plan.

  15. Chemical risk management strategies for product stewardship and community partnership

    SciTech Connect (OSTI)

    Armstrong, C.E. )

    1993-01-01

    With the recent enactments of the environment, health and safety statutes, the once protective walls of an industrial facility are opening to the scrutiny of an inquisitive public. Indeed, the Emergency Planning and Community Right-to-Know Act (EPCRA), Process Safety Management under OSHA 1910.119, and Title III of the Clean Air Act Amendments impose substantial reporting requirements under the auspices of community right to know'' and require written program plans that must be submitted to become public documents. Through these Acts, the public and industry are becoming partners in the understanding and management of human health and environmental risks posed by the chemical inventories, processes, and emissions from an industrial facility. The types of information required by the Act to be available to the public can include quantities, locations, process throughputs, environmental fates, and emissions volumes of manufacturer-specific chemicals for certain industrial facilities. With their implementation of compliance measures with these requirements, industrial facilities have an opportunity to become a public educator about the chemicals they use in the process of making their products. By proactively soliciting a partnership with communities to learn about their concerns, companies can more effectively communicate risks to the public and provide a new kind of stewardship to their products.

  16. Microsoft Word - C-Mod_Data_Managment_Plan_1.0_20140729.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Management Plan (Version 1.0, 29 July 2014) Alcator C-Mod Data Management Plan The Alcator Data Management Plan (DMP) describes the elements and procedures for storing,...

  17. Environmental Management Headquarters Corrective Action Plan - Truck Fire |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Truck Fire Environmental Management Headquarters Corrective Action Plan - Truck Fire The purpose of this Corrective Action Plan (CAP) is to specify U.S. Department of Energy (DOE) actions for addressing Office of Environmental Management (EM) Headquarters (HQ) issues identified in the Accident Investigation Report for the Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant (WIPP) February 5, 2014. The report identified 22 Conclusions and 35 Judgments of

  18. Spent Nuclear Fuel Project Configuration Management Plan

    SciTech Connect (OSTI)

    Reilly, M.A.

    1995-06-09

    This document is a rewrite of the draft ``C`` that was agreed to ``in principle`` by SNF Project level 2 managers on EDT 609835, dated March 1995 (not released). The implementation process philosphy was changed in keeping with the ongoing reengineering of the WHC Controlled Manuals to achieve configuration management within the SNF Project.

  19. Waste Management Committee Fiscal Year 2016 Work Plan | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 6 Work Plan Waste Management Committee Fiscal Year 2016 Work Plan Topics: TA-54 WIPP Recovery Operations Waste Stored at Waste Control Specialists Consent Order Deliverables FY'17 Budget National Waste Forum WM-FY16-WP - March 9, 2016 (107.69

  20. NATURAL RESOURCE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.

    SciTech Connect (OSTI)

    GREEN,T.ET AL.

    2003-12-31

    Brookhaven National Laboratory (BNL) is located near the geographic center of Long Island, New York. The Laboratory is situated on 5,265 acres of land composed of Pine Barrens habitat with a central area developed for Laboratory work. In the mid-1990s BNL began developing a wildlife management program. This program was guided by the Wildlife Management Plan (WMP), which was reviewed and approved by various state and federal agencies in September 1999. The WMP primarily addressed concerns with the protection of New York State threatened, endangered, or species of concern, as well as deer populations, invasive species management, and the revegetation of the area surrounding the Relativistic Heavy Ion Collider (RHIC). The WMP provided a strong and sound basis for wildlife management and established a basis for forward motion and the development of this document, the Natural Resource Management Plan (NRMP), which will guide the natural resource management program for BNL. The body of this plan establishes the management goals and actions necessary for managing the natural resources at BNL. The appendices provide specific management requirements for threatened and endangered amphibians and fish (Appendices A and B respectively), lists of actions in tabular format (Appendix C), and regulatory drivers for the Natural Resource Program (Appendix D). The purpose of the Natural Resource Management Plan is to provide management guidance, promote stewardship of the natural resources found at BNL, and to integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, adaptive ecosystem management, compliance, integration with other plans and requirements, and incorporation of community involvement, where applicable.

  1. Emergency Management: Facility Emergency Plan Template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    37 East and West Other SLAC Resources SLAC Site Security Main Gate 2551 On-site Palo Alto Fire Station Business Phone 2776 Facilities Department Service Request 8901 Normal working hours only SLAC Medical Department 2281 Waste Management 2399 Building manager Todd SLater Assistant building manager Brian Choi Publication date 1/14/2010 Revision date 1/14/2010 Prepared by Behzad Bozorg-Chami Approved by Todd Slater 20 Jun 2007 (updated AUG. 2010) SLAC-I-730-0A14J-001-R001 2 of 12 Emergency

  2. Systems engineering management and implementation plan for Project W-465, immobilized low-activity waste plan

    SciTech Connect (OSTI)

    Latray, D.A.

    1998-05-15

    The Systems Engineering Management and Implementation Plan (SEMIP) for TWRS Project W-465 describes the project implementation of the Tank Waste Remediation System Systems Engineering Management Plan (TWRS SEMP), Rev. 1. The SEMIP outlines systems engineering (SE) products and processes to be used by the project for technical baseline development. A formal graded approach is used to determine the products necessary for requirements, design, and operational baseline completion. SE management processes are defined, and roles and responsibilities for management processes and major technical baseline elements are documented.

  3. SES Performance Management System Plan Training | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon FY2016 SES Performance Management Training.pdf Responsible Contacts Keidra Biddiex Human Resources Specialist E-mail Keidra.Biddiex@hq.doe.gov Phone (202) 586-7693 Deanna ...

  4. Configuration management program plan for Hanford site systems engineering

    SciTech Connect (OSTI)

    Kellie, C.L.

    1996-03-28

    This plan establishes the integrated management program for the evolving technical baseline developed through the systems engineering process. This configuration management program aligns with the criteria identified in the DOE Standard, DOE-STD-1073-93. Included are specific requirements for control of the systems engineering RDD-100 database, and electronic data incorporated in the database that establishes the Hanford Site Technical Baseline.

  5. Underground Test Area Subproject Project Management Plan, Revision 1

    SciTech Connect (OSTI)

    1998-06-03

    This Project Management Plan (PMP) describes the manner in which the US Department of Energy Nevada Operations Office (DOE/NV) will manage the Underground Test Area (UGTA) Subproject at the Nevada Test Site (NTS). It provides the basic guidance for implementation and the organizational structure for meeting the UGTA objectives.

  6. Hanford Waste Vitrification Systems Risk Assessment action plan

    SciTech Connect (OSTI)

    Miller, W.C.

    1990-11-01

    Recent events in the Hanford waste storage tanks and delays in the startup of US Department of Energy vitrification plans suggest that the schedule for waste vitrification activities at the Hanford Site should be reexamined. As a result, a Hanford Waste Vitrification Systems Risk Assessment will be performed to identify significant risks associated with the vitrification of Hanford high-level and transuranic wastes. This document defines the purpose, scope, plan of execution, responsibilities, reporting requirements, and preliminary schedule and cost estimate to complete this assessment. The study will identify and evaluate uncertainties, quantify potential consequences from these uncertainties, and identify the risks to successful completion of the Hanford vitrification mission. Waste characterization, retrieval, pretreatment, and vitrification will be addressed. Uncertainties associated with the vitrification of double-shell and single-shell tank wastes and cesium and strontium capsules, as well as a limited assessment of the grouting of low-level wastes, will be defined. Technical, regulatory (safety and environmental), and programmatic (cost and schedule) uncertainties will be defined. Recommendations for mitigating strategies and assessments of technical alternatives will be made to reduce substantial risks. 2 refs., 1 fig., 1 tab.

  7. Wildland Fire Management Plan for Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Green,T.

    2009-10-23

    This Wildland Fire Management Plan (FMP) for Brookhaven National Lab (BNL) updates the 2003 plan incorporating changes necessary to comply with DOE Order 450.1 and DOE P 450.4, Federal Wildland Fire Management Policy and Program Review; Wildland and Prescribed Fire Management Policy and implementation Procedures Reference Guide. This current plan incorporates changes since the original draft of the FMP that result from new policies on the national level. This update also removes references and dependence on the U.S. Fish & Wildlife Service and Department of the Interior, fully transitioning Wildland Fire Management responsibilities to BNL. The Department of Energy policy for managing wildland fires requires that all areas, managed by the DOE and/or its various contractors, that can sustain fire must have a FMP that details fire management guidelines for operational procedures associated with wild fire, operational, and prescribed fires. Fire management plans provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled, 'prescribed' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered, threatened, and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL. This FMP will be reviewed periodically to ensure the fire program advances and evolves with the missions of the DOE and BNL. This Fire Management Plan is presented in a format that coverers all aspects specified by DOE guidance documents which are based on the national template for fire management plans adopted under the National Fire Plan. The DOE is one of the signatory agencies on the National Fire Plan. This FMP is to be used and implemented for the entire BNL site

  8. Information Resources Management Strategic Plan Appendix FY2014-2018

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan Appendix FY2014-2018 IRM 2 U.S. Department of Energy FY 2014-2018 doe irm strategic plan Appendix: Strategic Planning Process The FY 2014-2018 Department of Energy (DOE) Information Resources Management (IRM) Strategic Plan creates a cohesive connection among more than 15 Federal, DOE, and Office of the Chief Information Officer (OCIO) strategic documents that provide guidance to the Department on issues related to information and IT. Guidance Documents for the FY 2014-2018 DOE IRM

  9. Designs for Risk Evaluation and Management

    SciTech Connect (OSTI)

    2015-12-01

    The Designs for Risk Evaluation and Management (DREAM) tool was developed as part of the effort to quantify the risk of geologic storage of carbon dioxide (CO2) under the U.S. Department of EnergyÂ’s National Risk Assessment Partnership (NRAP). DREAM is an optimization tool created to identify optimal monitoring schemes that minimize the time to first detection of CO2 leakage from a subsurface storage formation. DREAM acts as a post-processer on user-provided output from subsurface leakage simulations. While DREAM was developed for CO2 leakage scenarios, it is applicable to any subsurface leakage simulation of the same output format. The DREAM tool is comprised of three main components: (1) a Java wizard used to configure and execute the simulations, (2) a visualization tool to view the domain space and optimization results, and (3) a plotting tool used to analyze the results. A secondary Java application is provided to aid users in converting common American Standard Code for Information Interchange (ASCII) output data to the standard DREAM hierarchical data format (HDF5). DREAM employs a simulated annealing approach that searches the solution space by iteratively mutating potential monitoring schemes built of various configurations of monitoring locations and leak detection parameters. This approach has proven to be orders of magnitude faster than an exhaustive search of the entire solution space. The userÂ’s manual illustrates the program graphical user interface (GUI), describes the tool inputs, and includes an example application.

  10. Spent Nuclear Fuel project systems engineering management plan

    SciTech Connect (OSTI)

    Womack, J.C.

    1995-10-03

    The purpose of the WHC Systems Engineering Management Plan (SEMP) is to describe the systems engineering approach and methods that will be integrated with established WHC engineering practices to enhance the WHC engineering management of the SNF Project. The scope of the SEMP encompasses the efforts needed to manage the WHC implementation of systems engineering on the SNF Project. This implementation applies to, and is tailored to the needs of the SNF project and all its subprojects, including all current and future subprojects

  11. Risk Management for Sodium Fast Reactors.

    SciTech Connect (OSTI)

    Denman, Matthew R; Groth, Katrina; Cardoni, Jeffrey N; Wheeler, Timothy A.

    2015-01-01

    Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of self - correcting, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the syste m's design to manage the accident. While inherently and passively safe designs are laudable, extreme boundary conditions can interfere with the design attributes which facilitate inherent safety , thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a beyond design basis seismic event with the intend of exploring two issues : (1) can human intervention either improve or worsen the potential end states and (2) can a Bayes ian Network be constructed to infer the state of the reactor to inform (1). ACKNOWLEDGEMENTS The author s would like to acknowledge the U.S. Department of E nergy's Office of Nuclear Energy for funding this research through Work Package SR - 14SN100303 under the Advanced Reactor Concepts program. The authors also acknowledge the PRA teams at A rgonne N ational L aborator y , O ak R idge N ational L aborator y , and I daho N ational L aborator y for their continue d contributions to the advanced reactor PRA mission area.

  12. Limitations of the planning organ at risk volume (PRV) concept

    SciTech Connect (OSTI)

    Stroom, Joep C. [Netherlands Cancer Institute, Department of Radiation Oncology, Amsterdam (Netherlands)]. E-mail: j.stroom@nki.nl; Heijmen, Ben J.M. [Erasmus MC-Daniel den Hoed Cancer Center, Department of Radiation Oncology, Rotterdam (Netherlands)

    2006-09-01

    Purpose: Previously, we determined a planning target volume (PTV) margin recipe for geometrical errors in radiotherapy equal to M{sub T} = 2{sigma} + 0.7{sigma}, with {sigma} and {sigma} standard deviations describing systematic and random errors, respectively. In this paper, we investigated margins for organs at risk (OAR), yielding the so-called planning organ at risk volume (PRV). Methods and Materials: For critical organs with a maximum dose (D{sub max}) constraint, we calculated margins such that D{sub max} in the PRV is equal to the motion averaged D{sub max} in the (moving) clinical target volume (CTV). We studied margins for the spinal cord in 10 head-and-neck cases and 10 lung cases, each with two different clinical plans. For critical organs with a dose-volume constraint, we also investigated whether a margin recipe was feasible. Results: For the 20 spinal cords considered, the average margin recipe found was: M{sub R} = 1.6{sigma} + 0.2{sigma} with variations for systematic and random errors of 1.2{sigma} to 1.8{sigma} and -0.2{sigma} to 0.6{sigma}, respectively. The variations were due to differences in shape and position of the dose distributions with respect to the cords. The recipe also depended significantly on the volume definition of D{sub max}. For critical organs with a dose-volume constraint, the PRV concept appears even less useful because a margin around, e.g., the rectum changes the volume in such a manner that dose-volume constraints stop making sense. Conclusion: The concept of PRV for planning of radiotherapy is of limited use. Therefore, alternative ways should be developed to include geometric uncertainties of OARs in radiotherapy planning.

  13. Preliminary characterization of risks in the nuclear waste management system based on information in the literature

    SciTech Connect (OSTI)

    Daling, P.M.; Rhoads, R.E.; Van Luick, A.E.; Fecht, B.A.; Nilson, S.A.; Sevigny, N.L.; Armstrong, G.R.; Hill, D.H.; Rowe, M.; Stern, E.

    1992-01-01

    This document presents preliminary information on the radiological and nonradiological risks in the nuclear waste management system. The objective of the study was to (1) review the literature containing information on risks in the nuclear waste management system and (2) use this information to develop preliminary estimates of the potential magnitude of these risks. Information was collected on a broad range of risk categories to assist the US Department of Energy (DOE) in communicating information about the risks in the waste management systems. The study examined all of the portions of the nuclear waste management system currently expected to be developed by the DOE. The scope of this document includes the potential repository, the integral MRS facility, and the transportation system that supports the potential repository and the MRS facility. Relevant literature was reviewed for several potential repository sites and geologic media. A wide range of ``risk categories`` are addressed in this report: (1) public and occupational risks from accidents that could release radiological materials, (2) public and occupational radiation exposure resulting from routine operations, (3) public and occupational risks from accidents involving hazards other than radioactive materials, and (4) public and occupational risks from exposure to nonradioactive hazardous materials during routine operations. The report is intended to provide a broad spectrum of risk-related information about the waste management system. This information is intended to be helpful for planning future studies.

  14. Habitat planning, maintenance and management working group

    SciTech Connect (OSTI)

    1997-03-01

    The Gulf of Mexico (GOM), called {open_quotes}America`s Sea,{close_quotes} is actually a small ocean basin covering over 1.5 million square kilometers. Because of the multiple uses, diversity, and size of the Gulf`s resources, management is shared by a number of governmental agencies including the Minerals Management Service, the Gulf of Mexico Fishery Management Council, the Gulf States Marine Fisheries Commission, National Marine Fisheries Service, the US Coast Guard, the US Army Corps of Engineers, and the five Gulf states fisheries agencies. All of these entities share a common goal of achieving optimum sustainable yield to maximize geological, biological, social, and economic benefits from these resources. These entities also share a common theme that the successful management of the northern GOM requires maintenance and enhancement of both the quantity and quality of habitats. A closer look at the GOM shows the sediment to be clearly dominated by vast sand and mud plains. These soft bottom habitats are preferred by many groundfish and shrimp species and, thus, have given rise to large commercial fisheries on these stocks. Hard bottom and reef habitats, on the other hand, are limited to approximately 1.6% of the total area of the Gulf, so that, while there are high demands by commercial and recreational fishermen for reef associated species, the availability of habitat for these stocks is limited. The thousands of oil and gas structures placed in the Gulf have added significant amounts of new hard substrate. The rigs-to-reefs concept was a common sense idea with support from environmental user groups and the petroleum industry for preserving a limited but valuable habitat type. As long as maximizing long-term benefits from the Gulf s resources for the greatest number of users remains the goal, then programs such as Rigs-to-Reefs will remain an important tool for fisheries and habitat managers in the Gulf.

  15. Information Technology Standards Program management plan

    SciTech Connect (OSTI)

    1998-05-01

    This document presents a logical and realistic plan to implement the Information Technology (IT) Standards Program throughout the Department of Energy (DOE). It was developed by DOE Chief Information Officer (CIO) staff, with participation from many other individuals throughout the DOE complex. The DOE IT Standards Program coordinates IT standards activities Department-wide, including implementation of standards to support the DOE Information Architecture. The Program is voluntary, participatory, and consensus-based. The intent is to enable accomplishment of the DOE mission, and the Program is applicable to all DOE elements, both Federal and contractor. The purpose of this document is to describe the key elements of the DOE IT Standards Program.

  16. Soil Management Plan For The Potable Water System Upgrades Project

    SciTech Connect (OSTI)

    Field, S. M.

    2007-04-01

    This plan describes and applies to the handling and management of soils excavated in support of the Y-12 Potable Water Systems Upgrades (PWSU) Project. The plan is specific to the PWSU Project and is intended as a working document that provides guidance consistent with the 'Soil Management Plan for the Oak Ridge Y-12 National Security Complex' (Y/SUB/92-28B99923C-Y05) and the 'Record of Decision for Phase II Interim Remedial Actions for Contaminated Soils and Scrapyard in Upper East Fork Popular Creek, Oak Ridge, Tennessee' (DOE/OR/01-2229&D2). The purpose of this plan is to prevent and/or limit the spread of contamination when moving soil within the Y-12 complex. The major feature of the soil management plan is the decision tree. The intent of the decision tree is to provide step-by-step guidance for the handling and management of soil from excavation of soil through final disposition. The decision tree provides a framework of decisions and actions to facilitate Y-12 or subcontractor decisions on the reuse of excavated soil on site and whether excavated soil can be reused on site or managed as waste. Soil characterization results from soil sampling in support of the project are also presented.

  17. Aircraft de-icing best management plans

    SciTech Connect (OSTI)

    Simpson, A.

    1997-12-31

    The purpose of this paper is to summarize the environmental impact of glycol-based de-icing fluids and the best management practices utilized at Canadian airports. The operational, safety and environmental effects of glycol are discussed as well as the management instruments available to address these areas of concern. In today`s highly mobile society, increasing air travel necessitates an awareness of flight safety by the aviation industry. This is most evident during the inclement winter season when de-icing operations are mandatory. De-icing fluids are both a safety and an environmental concern. Although glycol-based de-icers are applied to ensure flight safety, the release of this chemical has a detrimental effect on the environment.

  18. River Protection Project (RPP) Project Management Plan

    SciTech Connect (OSTI)

    SEEMAN, S.E.

    2000-04-01

    The U.S. Department of Energy (DOE), in accordance with the Strom Thurmond National Defense Authorization Act for Fiscal Year 1999, established the Office of River Protection (ORP) to successfully execute and manage the River Protection Project (RPP), formerly known as the Tank Waste Remediation System (TWRS). The mission of the RPP is to store, retrieve, treat, and dispose of the highly radioactive Hanford tank waste in an environmentally sound, safe, and cost-effective manner. The team shown in Figure 1-1 is accomplishing the project. The ORP is providing the management and integration of the project; the Tank Farm Contractor (TFC) is responsible for providing tank waste storage, retrieval, and disposal; and the Privatization Contractor (PC) is responsible for providing tank waste treatment.

  19. Excess Uranium Inventory Management Plan.pdf

    Office of Environmental Management (EM)

    3 Consolidated Financial Statements OAS-FS-14-03 December 2013 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 December 12, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on the "Department of Energy's Fiscal Year 2013 Consolidated Financial Statements" Pursuant to requirements established by the Government Management Reform Act of 1994, the

  20. Hanford Sampling Quality Management Plan (HSQMP)

    SciTech Connect (OSTI)

    Hyatt, J.E.

    1995-06-01

    HSQMP establishes quality requirements in response to DOE Order 5700. 6C and to 10 Code of Federal Regulations 830.120. HSQMP is designed to meet the needs of Richland Operations Office for controlling the quality of services provided by sampling operations. It is issued through the Analytical Services Program of the Waste Programs Division. This document describes the Environmental Sampling and Analysis Program activities considered to represent the best management activities necessary to achieve a sampling program with adequate control.

  1. Master plan: Guntersville Reservoir Aquatic Plant Management. Executive summary

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    In 1989, Congress provided funding to start a five-year comprehensive project to manage aquatic plants in Guntersville Reservoir, to be jointly implemented by the US Army Corps of Engineers (Corps) and Tennessee Valley Authority (TVA). TVA serves as the overall project coordinator and is the lead agency for this project. Known as the Joint Agency Guntersville Project (JAGP), the project will test and demonstrate innovative management technologies, and incorporate the most effective technologies into a comprehensive aquatic plant management plan for Guntersville Reservoir. The JAGP is intended to serve as a National Demonstration Project for aquatic plant management. As part of this JAGP, the Master Plan for Aquatic Plant Management for the Guntersville Reservoir Project, Alabama-Tennessee is authorized by Corps Contract Number DACW62-90-C-0067.

  2. Marine and Hydrokinetic Technology Development Risk Management Framework

    SciTech Connect (OSTI)

    Snowberg, David; Weber, Jochem

    2015-09-01

    Over the past decade, the global marine and hydrokinetic (MHK) industry has suffered a number of serious technological and commercial setbacks. To help reduce the risks of industry failures and advance the development of new technologies, the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) developed an MHK Risk Management Framework. By addressing uncertainties, the MHK Risk Management Framework increases the likelihood of successful development of an MHK technology. It covers projects of any technical readiness level (TRL) or technical performance level (TPL) and all risk types (e.g. technological risk, regulatory risk, commercial risk) over the development cycle. This framework is intended for the development and deployment of a single MHK technology—not for multiple device deployments within a plant. This risk framework is intended to meet DOE’s risk management expectations for the MHK technology research and development efforts of the Water Power Program (see Appendix A). It also provides an overview of other relevant risk management tools and documentation.1 This framework emphasizes design and risk reviews as formal gates to ensure risks are managed throughout the technology development cycle. Section 1 presents the recommended technology development cycle, Sections 2 and 3 present tools to assess the TRL and TPL of the project, respectively. Section 4 presents a risk management process with design and risk reviews for actively managing risk within the project, and Section 5 presents a detailed description of a risk registry to collect the risk management information into one living document. Section 6 presents recommendations for collecting and using lessons learned throughout the development process.

  3. Oak Ridge National Laboratory Waste Management Plan. Revision 1

    SciTech Connect (OSTI)

    Forgy, Jr., J. R.

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  4. Assistant Director, Credit Modeling and Transaction Risk Management Division

    Broader source: Energy.gov [DOE]

    The Risk Management Division (RMD) is the group within the U.S. Department of Energys Loan Program Office (LPO) that is responsible for oversight of all risks that have the potential to impede the...

  5. Cybersecurity Risk Management Process (RMP) Guideline - Final (May 2012) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Risk Management Process (RMP) Guideline - Final (May 2012) Cybersecurity Risk Management Process (RMP) Guideline - Final (May 2012) This electricity subsector cybersecurity Risk Management Process (RMP) guideline was developed by the Department of Energy, in collaboration with the National Institute of Standards and Technology (NIST) and the North American Electric Reliability Corporation (NERC). The RMP is written with the goal of enabling organizations- regardless of

  6. DOE Releases Electricity Subsector Cybersecurity Risk Management Process

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (RMP) Guideline | Department of Energy Electricity Subsector Cybersecurity Risk Management Process (RMP) Guideline DOE Releases Electricity Subsector Cybersecurity Risk Management Process (RMP) Guideline May 23, 2012 - 9:30am Addthis News Media Contact: (202) 586-4940 For Immediate Release: May 23, 2012 Department of Energy Releases Electricity Subsector Cybersecurity Risk Management Process (RMP) Guideline Public-Private Sector Collaboration Produces Guidance to Help Electric Utilities

  7. Supply Chain Risk Management (SCRM) Awareness Toolkit | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Supply Chain Risk Management (SCRM) Awareness Toolkit Supply Chain Risk Management (SCRM) Awareness Toolkit The Office of the Chief Information Officer (OCIO) Supply Chain Risk Management (SCRM) Resource Center developed the SCRM Awareness Toolkit to introduce DOE employees to the basic terms and concepts of the technology supply chain and associated threats. For additional information on the DOE Enterprise SCRM Resource Center and program initiatives, please contact Sue Farrand at

  8. Designs for Risk Evaluation and Management

    Energy Science and Technology Software Center (OSTI)

    2015-12-01

    The Designs for Risk Evaluation and Management (DREAM) tool was developed as part of the effort to quantify the risk of geologic storage of carbon dioxide (CO2) under the U.S. Department of Energy’s National Risk Assessment Partnership (NRAP). DREAM is an optimization tool created to identify optimal monitoring schemes that minimize the time to first detection of CO2 leakage from a subsurface storage formation. DREAM acts as a post-processer on user-provided output from subsurface leakagemore » simulations. While DREAM was developed for CO2 leakage scenarios, it is applicable to any subsurface leakage simulation of the same output format. The DREAM tool is comprised of three main components: (1) a Java wizard used to configure and execute the simulations, (2) a visualization tool to view the domain space and optimization results, and (3) a plotting tool used to analyze the results. A secondary Java application is provided to aid users in converting common American Standard Code for Information Interchange (ASCII) output data to the standard DREAM hierarchical data format (HDF5). DREAM employs a simulated annealing approach that searches the solution space by iteratively mutating potential monitoring schemes built of various configurations of monitoring locations and leak detection parameters. This approach has proven to be orders of magnitude faster than an exhaustive search of the entire solution space. The user’s manual illustrates the program graphical user interface (GUI), describes the tool inputs, and includes an example application.« less

  9. Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

  10. Advanced Seismic Probabilistic Risk Assessment Demonstration Project Plan

    SciTech Connect (OSTI)

    Justin Coleman

    2014-09-01

    Idaho National Laboratories (INL) has an ongoing research and development (R&D) project to remove excess conservatism from seismic probabilistic risk assessments (SPRA) calculations. These risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. This report presents a plan for improving our current traditional SPRA process using a seismic event recorded at a nuclear power plant site, with known outcomes, to improve the decision making process. SPRAs are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility).

  11. Environmental planning and priorities for the manager

    SciTech Connect (OSTI)

    Eggleston, T.E. )

    1993-01-01

    Industry and government spend in excess of $100 billion each year on pollution control. These funds are producing cleaner land, air, and water. They have also spawned a pollution control industry which today employs more than 175,000 people. While significant, this is only the initial investment of capital and human talent that cleaning up the environment will demand through the 1990's and into the next century. Industry is in the early phases of an explosion of environmentally-oriented activity. Industries who manage their priorities and respond proactively on environmental issues will be the more profitable in an economy increasingly influenced by environmental regulations and consumer activism. A series of issues will most likely dominate management of environmental concerns, including: pollution prevention--reducing pollutants before having to clean them up; recycling--reuse limits disposal problems while reducing pollutants generated by new manufacturing; private-public partnerships--these contractual relationships between public and private partners will become increasingly popular; energy use although large strides have been made in energy conservation, much remains to be done; technology innovation--this is the most fundamental tool for use in improving environmental quality. In order for industry to respond to the need, government will have to implement a series of economic, environmental, and social policies. Business then becomes the key element in advancing the policies established by government.

  12. Enterprise Risk Management Framework - DOE Directives, Delegations, and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requirements Framework by Website Administrator PDF document icon Enterprise_Risk_Managment_Framework.pdf - PDF document, 359 KB (368207

  13. Enterprise Risk Management Model - DOE Directives, Delegations, and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requirements Model by Website Administrator PDF document icon Enterprise_Risk_Management_Model.pdf - PDF document, 863 KB (884517

  14. "Insurance as a Risk Management Instrument for Energy Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Insurance as a Risk Management Instrument for Energy Infrastructure Security and Resilience" Report (March 2013) The Office of Electricity Delivery and Energy Reliability has ...

  15. New Flood Risk Management Standard Responds to Effects of Climate...

    Energy Savers [EERE]

    and resilience against flooding." The principal change is the establishment of the Federal Flood Risk Management Standard, "a flexible framework to increase resilience against ...

  16. New Executive Order Establishes a Federal Flood Risk Management...

    Office of Environmental Management (EM)

    Executive Order Establishes a Federal Flood Risk Management Standard New Executive Order ... Input, on January 30, 2015. The new E.O. amends E.O. 11988, "Floodplain ...

  17. United States Environmental Protection Agency: Use of risk assessment and risk management methodologies. Master's thesis

    SciTech Connect (OSTI)

    Lamuro, R.J.

    1992-09-30

    Make a full investigation of the policy implications and appropriate uses of risk assessment and risk management in regulatory programs under various Federal laws to prevent cancer and other chronic health effects which may result from exposure to hazardous substances. This is the primary mission of the Risk Assessment and Management Commission (Risk Commission). The Clean Air Act Amendments of 1990 (CAAA), created the Risk Commission reflecting Congress' concern over agency use of risk assessment and risk management techniques and methodologies to implement federal laws protective of human health. The Risk Commission is to consider: methods for measuring and describing risks of chronic health effects from hazardous substances; methods to reflect uncertainties associated with estimation techniques, and whether it is possible or desirable to develop a consistent risk assessment methodology or a consistent standard of acceptable risk for various federal programs.

  18. ORNL long-range environmental and waste management plan

    SciTech Connect (OSTI)

    Baldwin, J.S.; Bates, L.D.; Brown, C.H.; Easterday, C.A.; Hill, L.G.; Kendrick, C.M.; McNeese, L.E.; Myrick, T.E.; Payne, T.L.; Pepper, C.E.; Robinson, S.M.; Rohwer, P.S.; Scanlan, T.F.; Smith, M.A.; Stratton, L.E.; Trabalka, J.R.

    1989-09-01

    This report, the ORNL Long-Range Environmental and Waste Management Plan, is the annual update in a series begun in fiscal year 1985. Its primary purpose is to provide a thorough and systematic planning document to reflect the continuing process of site assessment, strategy development, and planning for the current and long-term control of environmental issues, waste management practices, and remedial action requirements. The document also provides an estimate of the resources required to implement the current plan. This document is not intended to be a budget document; it is, however, intended to provide guidance to both Martin Marietta Energy Systems, Inc., and the US Department of Energy (DOE) management as to the near order of magnitude of the resources (primarily funding requirements) and the time frame required to execute the strategy in the present revision of the plan. As with any document of this nature, the near-term (one to three years) part of the plan is a pragmatic assessment of the current program and ongoing capital projects and reflects the efforts perceived to be necessary to comply with all current state and federal regulations and DOE orders. It also should be in general agreement with current budget (funding) requests and obligations for these immediate years. 55 figs., 72 tabs.

  19. CULTURAL RESOURCE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.

    SciTech Connect (OSTI)

    DAVIS, M.

    2005-04-01

    The Cultural Resource Management Plan (CRMP) for Brookhaven National Laboratory (BNL) provides an organized guide that describes or references all facets and interrelationships of cultural resources at BNL. This document specifically follows, where applicable, the format of the U.S. Department of Energy (DOE) Environmental Guidelines for Development of Cultural Resource Management Plans, DOE G 450.1-3 (9-22-04[m1]). Management strategies included within this CRMP are designed to adequately identify the cultural resources that BNL and DOE consider significant and to acknowledge associated management actions. A principal objective of the CRMP is to reduce the need for additional regulatory documents and to serve as the basis for a formal agreement between the DOE and the New York State Historic Preservation Officer (NYSHPO). The BNL CRMP is designed to be a ''living document.'' Each section includes identified gaps in the management plan, with proposed goals and actions for addressing each gap. The plan will be periodically revised to incorporate new documentation.

  20. Energy management planning and control in a large industrial facility

    SciTech Connect (OSTI)

    Rood, L.; Korber, J.

    1995-06-01

    Eastman Kodak`s Kodak Park Manufacturing facility is a collection of hundreds of buildings and millions of square feet operated by dozens of semi-autonomous manufacturing units. The facility is served by a centralized Utilities system which cogenerates electricity and distributes steam, chilled water, compressed air, and several other services throughout the site. Energy management at Kodak Park has been active since the 70`s. In 1991, the Utilities Division took ownership of a site wide energy thrust to address capacity limitations of electric, compressed air and other services. Planning and organizing a program to meet Utilities Division goals in such a large complex site was a slightly daunting task. Tracking progress and keeping on schedule is also a challenge. The authors will describe innovative use of a project management software program called Open Plan{reg_sign} to accomplish much of the planning and control for this program. Open Plan{reg_sign} has been used since the initial planning to the current progress of about 50% completion of the program. Hundreds of activities performed by dozens of resource people are planned and tracked. Not only the usual cost and schedule information is reported, but also the schedule for savings in terms of kilowatt-hours, pounds of steam, etc. These savings schedules are very useful for tracking against energy goals and Utilities business planning. Motivation of the individual departments to participate in the program and collection of data from these departments will also be discussed.

  1. Configuration management program plan for Hanford site systems engineering

    SciTech Connect (OSTI)

    Hoffman, A.G.

    1994-11-14

    This plan establishes the integrated configuration management program for the evolving technical baseline developed through the systems engineering process. This configuration management program aligns with the criteria identified in the DOE Standard, DOE-STD-1073-93. Included are specific requirements for control of the systems engineering RDD-100 database, and electronic data incorporated in the database that establishes the Hanford site technical baseline.

  2. Cryptographic Key Management and Critical Risk Assessment

    SciTech Connect (OSTI)

    Abercrombie, Robert K

    2014-05-01

    The Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) CyberSecurity for Energy Delivery Systems (CSEDS) industry led program (DE-FOA-0000359) entitled "Innovation for Increasing CyberSecurity for Energy Delivery Systems (12CSEDS)," awarded a contract to Sypris Electronics LLC to develop a Cryptographic Key Management System for the smart grid (Scalable Key Management Solutions for Critical Infrastructure Protection). Oak Ridge National Laboratory (ORNL) and Sypris Electronics, LLC as a result of that award entered into a CRADA (NFE-11-03562) between ORNL and Sypris Electronics, LLC. ORNL provided its Cyber Security Econometrics System (CSES) as a tool to be modified and used as a metric to address risks and vulnerabilities in the management of cryptographic keys within the Advanced Metering Infrastructure (AMI) domain of the electric sector. ORNL concentrated our analysis on the AMI domain of which the National Electric Sector Cyber security Organization Resource (NESCOR) Working Group 1 (WG1) has documented 29 failure scenarios. The computational infrastructure of this metric involves system stakeholders, security requirements, system components and security threats. To compute this metric, we estimated the stakes that each stakeholder associates with each security requirement, as well as stochastic matrices that represent the probability of a threat to cause a component failure and the probability of a component failure to cause a security requirement violation. We applied this model to estimate the security of the AMI, by leveraging the recently established National Institute of Standards and Technology Interagency Report (NISTIR) 7628 guidelines for smart grid security and the International Electrotechnical Commission (IEC) 63351, Part 9 to identify the life cycle for cryptographic key management, resulting in a vector that assigned to each stakeholder an estimate of their average loss in terms of dollars per day of system

  3. Waste Isolation Pilot Plant land management plan

    SciTech Connect (OSTI)

    1996-05-01

    On October 30, 1992, the WIPP Land Withdrawal Act became law. This Act transferred the responsibility for the management of the WIPP Land Withdrawal Area (WILWA) from the Secretary of the Interior to the Secretary of Energy. In accordance with sections 3(a)(1) and (3) of the Act, these lands {open_quotes}{hor_ellipsis}are withdrawn from all forms of entry, appropriation, and disposal under the public land laws{hor_ellipsis}{close_quotes}and are reserved for the use of the Secretary of Energy {open_quotes}{hor_ellipsis}for the construction, experimentation, operation, repair and maintenance, disposal, shutdown, monitoring, decommissioning, and other activities, associated with the purposes of WIPP as set forth in the Department of Energy National Security and Military Applications of Nuclear Energy Act of 1980 and this Act.{close_quotes}. As a complement to this LMP, a MOU has been executed between the DOE and the BLM, as required by section 4(d) of the Act. The state of New Mexico was consulted in the development of the MOU and the associated Statement of Work (SOW).

  4. SAPHIRE 8 Software Configuration Management Plan

    SciTech Connect (OSTI)

    Curtis Smith

    2010-01-01

    The INL software developers use version control for both the formally released SAPHIRE versions, as well as for source code. For each formal release of the software, the developers perform an acceptance test: the software must pass a suite of automated tests prior to official release. Each official release of SAPHIRE is assigned a unique version identifier. The release is bundled into a standard installation package for easy and consistent set-up by individual users. Included in the release is a list of bug fixes and new features for the current release, as well as a history of those items for past releases. Each formal release of SAPHIRE will have passed an acceptance test. In addition to assignment of a unique version identifier for an official software release, each source code file is kept in a controlled library. Source code is a collection of all the computer instructions written by developers to create the finished product. The library is kept on a server, where back-ups are regularly made. This document describes the configuration management approach used as part of the SAPHIRE development.

  5. Project management plan for Project W-320, Tank 241-C-106 sluicing

    SciTech Connect (OSTI)

    Phillips, D.R.

    1994-12-01

    This Project Management Plan establishes the organization, plans, and systems for management of Project W-320 as defined in DOE Order 4700.1, Project Management System (DOE 1987).

  6. Strategic plan for Hanford Site Environmental Restoration Information Management

    SciTech Connect (OSTI)

    Cowley, P.J.; Beck, J.E.; Gephart, R.E.

    1994-06-01

    This strategic plan addresses information management for the Environmental Restoration (ER) Program at the Hanford Site. This Program leads the cleanup of the Hanford Site`s soil, groundwater, buried waste, and the decontamination and decommissioning of facilities. The vision that drives this strategic plan is to ensure that quality information is available to the people who need it, when they need it, at a convenient location, in a usable form, and at an acceptable cost. Although investments are being made in managing the vast amounts of information, which include data, records and documents associated with the Hanford Site`s production history and new cleanup mission, it is widely recognized that efforts to date have not accomplished the vision. Effective information management involves more than the compilation of massive amounts of electronic and non-electronic information. It also involves integrating information management into business processes that support user`s needs and decisionmaking. Only then can information management complement and enable environmental restoration priorities and practices, help identify environmental restoration requirements, and enable communication within the Environmental Restoration Program and between the Program and its stakeholders. Successfully accomplishing the Hanford Site mission requires an integrated approach to information management that crosses organizational boundaries, streamlines existing systems, and builds new systems that support the needs of the future. This plan outlines that approach.

  7. Advanced Hybrid Particulate Collector Project Management Plan

    SciTech Connect (OSTI)

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  8. Sandia National Laboratories, California sewer system management plan.

    SciTech Connect (OSTI)

    Holland, Robert C.

    2010-02-01

    A Sewer System Management Plan (SSMP) is required by the State Water Resources Control Board (SWRCB) Order No. 2006-0003-DWQ Statewide General Waste Discharge Requirements (WDR) for Sanitary Sewer Systems (General Permit). DOE, National Nuclear Security Administration (NNSA), Sandia Site Office has filed a Notice of Intent to be covered under this General Permit. The General Permit requires a proactive approach to reduce the number and frequency of sanitary sewer overflows (SSOs) within the State. SSMPs must include provisions to provide proper and efficient management, operation, and maintenance of sanitary sewer systems and must contain a spill response plan. Elements of this Plan are under development in accordance with the SWRCB's schedule.

  9. DOE`s integrated low-level waste management program and strategic planning

    SciTech Connect (OSTI)

    Duggan, G.; Hwang, J.

    1993-03-01

    To meet the DOE`s commitment to operate its facilities in a safe, economic, and environmentally sound manner, and to comply with all applicable federal, state, and local rules, regulations, and agreements, DOE created the Office of Environmental Restoration and Waste Management (EM) in 1989 to focus efforts on controlling waste management and cleaning up contaminated sites. In the first few years of its existence, the Office of Waste Management (EM-30) has concentrated on operational and corrective activities at the sites. In 1992, the Office of Waste Management began to apply an integrated approach to managing its various waste types. Consequently, DOE established the Low-Level Waste Management Program (LLWMP) to properly manage its complex-wide LLW in a consistent manner. The objective of the LLWMP is to build and operate an integrated, safe, and cost-effective program to meet the needs of waste generators. The program will be based on acceptable risk and sound planning, resulting in public confidence and support. Strategic planning of the program is under way and is expected to take two to three years before implementation of the integrated waste management approach.

  10. IEA-Risk Quantification and Risk Management in Renewable Energy...

    Open Energy Info (EERE)

    Energy Topics: Finance, Implementation, Market analysis Resource Type: Presentation, Lessons learnedbest practices Website: www.iea-retd.orgfilesRISK%20IEA-RETD%20(2011-6)....

  11. Pursuing Energy Efficiency as a Hedge against Carbon Regulatory Risks: Current Resource Planning Practices in the West

    SciTech Connect (OSTI)

    Barbose, Galen; Wiser, Ryan; Phadke, Amol; Goldman, Charles

    2008-08-01

    Uncertainty surrounding the nature and timing of future carbon regulations poses a fundamental and far-reaching financial risk for electric utilities and their ratepayers. Long-term resource planning provides a potential framework within which utilities can assess carbon regulatory risk and evaluate options for mitigating exposure to this risk through investments in energy efficiency and other low-carbon resources. In this paper, we examine current resource planning practices related to managing carbon regulatory risk, based on a comparative analysis of the most-recent long-term resource plans filed by fifteen major utilities in the Western U.S. First, we compare the assumptions and methods used by utilities to assess carbon regulatory risk and to evaluate energy efficiency as a risk mitigation option. Although most utilities have made important strides in beginning to address carbon regulatory risk within their resource plan, we also identify a number of opportunities for improvement and offer recommendations for resource planners and state regulators to consider. We also summarize the composition and carbon intensity of the preferred resource portfolios selected by the fifteen Western utilities, highlighting the contribution of energy efficiency and its impact on the carbon intensity of utilities' proposed resource strategies. Energy efficiency and renewables are the dominant low-carbon resources included in utilities' preferred portfolios. Across the fifteen utilities, energy efficiency constitutes anywhere from 6percent to almost 50percent of the preferred portfolio energy resources, and represents 22percent of all incremental resources in aggregate.

  12. Pursuing Energy Efficiency as a Hedge against Carbon Regulatory Risks: Current Resource Planning Practices in the West

    SciTech Connect (OSTI)

    Barbose, Galen; Wiser, Ryan; Phadke, Amol; Goldman, Charles

    2008-07-11

    Uncertainty surrounding the nature and timing of future carbon regulations poses a fundamental and far-reaching financial risk for electric utilities and their ratepayers. Long-term resource planning provides a potential framework within which utilities can assess carbon regulatory risk and evaluate options for mitigating exposure to this risk through investments in energy efficiency and other low-carbon resources. In this paper, we examine current resource planning practices related to managing carbon regulatory risk, based on a comparative analysis of the most-recent long-term resource plans filed by fifteen major utilities in the Western U.S. First, we compare the assumptions and methods used by utilities to assess carbon regulatory risk and to evaluate energy efficiency as a risk mitigation option. Although most utilities have made important strides in beginning to address carbon regulatory risk within their resource plan, we also identify a number of opportunities for improvement and offer recommendations for resource planners and state regulators to consider. We also summarize the composition and carbon intensity of the preferred resource portfolios selected by the fifteen Western utilities, highlighting the contribution of energy efficiency and its impact on the carbon intensity of utilities' proposed resource strategies. Energy efficiency and renewables are the dominant low-carbon resources included in utilities' preferred portfolios. Across the fifteen utilities, energy efficiency constitutes anywhere from 6percent to almost 50percent of the preferred portfolio energy resources, and represents 22percent of all incremental resources in aggregate.

  13. Mathematics, Pricing, Market Risk Management and Trading Strategies for Financial Derivatives (2/3)

    ScienceCinema (OSTI)

    None

    2011-10-06

    Market Trading and Risk Management of Vanilla FX Options - Measures of Market Risk - Implied Volatility - FX Risk Reversals, FX Strangles - Valuation and Risk Calculations - Risk Management - Market Trading Strategies

  14. Wildland Fire Management Plan for Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Schwager, K.; Green, T. M.

    2014-10-01

    The DOE policy for managing wildland fires requires that all areas managed by DOE and/or Its various contractors which can sustain fire must have a FMP that details fire management guidelines for operational procedures associated with wildland fire, operational, and prescribed fires. FMPs provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled ''prescribed'' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered, threatened, and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL. The plan will be reviewed periodically to ensure fire program advances and will evolve with the missions of DOE and BNL.

  15. Office of Legacy Management's Strategic Plan 2016-2025 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Office of Legacy Management's Strategic Plan 2016-2025 Office of Legacy Management's Strategic Plan 2016-2025 Office of Legacy Management's Strategic Plan 2016-2025 (27.51 KB) More Documents & Publications LM 2016-2025 Strategic Plan Program Update: 2nd Quarter 2016 Program Update: 2nd Quarter 2015

  16. Draugen HSE-case - occupational health risk management

    SciTech Connect (OSTI)

    Glas, J.J.P.; Kjaer, E.

    1996-12-31

    The Draugen HSE-Case serves as a risk management tool. Originally, risk management included only major safety hazards to personnel, environment and assets. Work Environment risks such as ergonomics, psycho-social factors and exposure to chemicals and noise, was not given the same attention. The Draugen HSE-Case addresses this weakness and extends all work environment risks. In order to promote line responsibility and commitment, relevant personnel is involved in the Case development. {open_quotes}THESIS{degrees}, a software application, is used to systematize input and to generate reports. The Draugen HSE-case encompasses: HSE risk analyses related to specific activities; Control of risk related to work environment; Established tolerability criteria; Risk reducing measures; Emergency contingency measures; and Requirements for Competence and Follow-up. The development of Draugen HSE-Case is a continuous process. It will serve to minimize the potential of occupational illnesses, raise general awareness, and make occupational health management more cost-effective.

  17. Systems Engineering Plan and project record Configuration Management Plan for the Mixed Waste Disposal Initiative

    SciTech Connect (OSTI)

    Bryan, W.E.; Oakley, L.B.

    1993-04-01

    This document summarizes the systems engineering assessment that was performed for the Mixed Waste Disposal Initiative (MWDI) Project to determine what types of documentation are required for the success of the project. The report also identifies the documents that will make up the MWDI Project Record and describes the Configuration Management Plan describes the responsibilities and process for making changes to project documentation.

  18. Spent nuclear fuel project systems engineering management plan

    SciTech Connect (OSTI)

    Womack, J.C., Westinghouse Hanford

    1996-07-19

    The purpose of this document is to describe the systems engineering approach and methods that will be integrated with established WHC engineering practices. The methodology promotes and ensures sound management of the SNF Project. The scope of the document encompasses the efforts needed to manage the WHC implementation of systems engineering on the SNF Project including risk management process, design authority/design agent concept, and documentation responsibilities. This implementation applies to, and is tailored to the needs of the SNF Project and all its Subprojects, including all current and future Subprojects.

  19. Continuing Developments in PV Risk Management: Strategies, Solutions, and Implications

    SciTech Connect (OSTI)

    Lowder, T.; Mendelsohn, M.; Speer, B.; Hill, R.

    2013-02-01

    As the PV industry matures, successful risk management practices will become more imperative to ensure investor confidence, control costs, and facilitate further growth. This report discusses several key aspects of risk management during the commercial- and utility-scale project life cycle, from identification of risks, to the process of mitigating and allocating those risks among project parties, to transferring those risks through insurance. The report also explores novel techniques in PV risk management, options to offload risks onto the capital markets, and innovative insurance policies (namely warranty policies) that address risks unique to the PV sector. One of the major justifications for robust risk management in the PV industry is the cost-reduction opportunities it affords. If the PV industry can demonstrate the capability to successfully manage its risks, thereby inspiring confidence in financiers, it may be able to obtain a lower cost of capital in future transactions. A lower cost of capital translates to a lower cost of energy, which will in turn enhance PV?s competitiveness at a time when it will have to rely less on subsidies to support its market penetration.

  20. Hanford Site Environmental Safety and Health Fiscal Year 2001 Budget-Risk management summary

    SciTech Connect (OSTI)

    REEP, I.E.

    1999-05-12

    The Hanford Site Environment, Safety and Health (ES&H) Budget-Risk Management Summary report is prepared to support the annual request to sites in the U.S. Department of Energy (DOE) Complex by DOE, Headquarters. The request requires sites to provide supplementary crosscutting information related to ES&H activities and the ES&H resources that support these activities. The report includes the following: (1) A summary status of fiscal year (FY) 1999 ES&H performance and ES&H execution commitments; (2)Status and plans of Hanford Site Office of Environmental Management (EM) cleanup activities; (3) Safety and health (S&H) risk management issues and compliance vulnerabilities of FY 2001 Target Case and Below Target Case funding of EM cleanup activities; (4) S&H resource planning and crosscutting information for FY 1999 to 2001; and (5) Description of indirect-funded S&H activities.

  1. Tank monitor and control system (TMACS) software configuration management plan

    SciTech Connect (OSTI)

    GLASSCOCK, J.A.

    1999-05-13

    This Software Configuration Management Plan (SCMP) describes the methodology for control of computer software developed and supported by the Systems Development and Integration (SD and I) organization of Lockheed Martin Services, Inc. (LMSI) for the Tank Monitor and Control System (TMACS). This plan controls changes to the software and configuration files used by TMACS. The controlled software includes the Gensym software package, Gensym knowledge base files developed for TMACS, C-language programs used by TMACS, the operating system on the production machine, language compilers, and all Windows NT commands and functions which affect the operating environment. The configuration files controlled include the files downloaded to the Acromag and Westronic field instruments.

  2. DNFSB recommendation 94-1 Hanford site integrated stabilization management plan - VOLUMES 1-3

    SciTech Connect (OSTI)

    Gerber, E.W.

    1996-09-23

    The US Department of Energy (DOE) has developed an Integrated Program Plan (IPP) to address concerns identified in Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. The IPP describes the actions that DOE plans to implement at its various sites to convert excess fissile materials to forms or conditions suitable for safe interim storage. The baseline IPP was issued as DOE's DNFSB Recommendation 94-1 Implementation Plan (IP), which was transmitted to the DNFSB on February 28, 1995. The IPP was subsequently supplemented with an Integrated Facilities Plan and a Research and Development Plan, which further develop complex-wide research and development and long-range facility requirements and plans. These additions to the baseline IPP were developed based on a systems engineering approach that integrated facilities and capabilities at the various DOE sites and focused on attaining safe interim storage with minimum safety risks and environmental impacts. Each affected DOE site has developed a Site Integrated Stabilization Management Plan (SISMP) to identify individual site plans to implement the DNFSB Recommendation 94-1 IPP. The SISMPs were developed based on the objectives, requirements, and commitments identified in the DNFSB Recommendation 94-1 IP. The SISMPs supported formulation of the initial versions of the Integrated Facilities Plan and the Research and Development Plan. The SISMPs are periodically updated to reflect improved integration between DOE sites as identified during the IPP systems engineering evaluations. This document constitutes the Hanford SISMP. This document includes the planned work scope, costs and schedules for activities at the Hanford site to implement the DNFSB Recommendation 94-1 IPP.

  3. Breckinridge Project, initial effort. Report VI. Project Management Plan

    SciTech Connect (OSTI)

    1982-01-01

    Report VI presents a comprehensive plan for the management of the Breckinridge Project. For the purpose of this report, the project work is divided into five major project phases: Development, Engineering, Procurement, Construction, and Operations. The results of the Development Phase (Initial Effort) of the project are discussed in Section 1.0. This phase of the project was performed under a Cooperative Agreement with US Department of Energy and has produced 43 volumes of documentation. Fifteen volumes contain information of proprietary nature for patented processes and are therefore classified as Limited Access; however, twenty-eight volumes are not classified and are suitable for public dissemination. This Project Management Plan is a volume of the unclassified documentation. The other twenty-seven volumes contain comprehensive data on technical, financial, and environmental aspects of the project. Each of the four remaining project phases is presented starting with the extensive planning that will be performed and continuing through to the execution and completion of each phase. The major roles of the Operator, Ashland Synthetic Fuels, Inc. (ASFI), and the Managing Contractor are defined. Although a contract has not yet been executed with a Managing Contractor, the procedures, controls, organization and management philosophy of Bechtel Petroleum, Inc., are presented in this report as being representative of those used by contractors in the business of performing the engineering, procurement, and construction of projects of this size and complexity. The organizational structures of the Operator and the Managing Contractor are described, with designation of key project team personnel by job description and organization charts. Provisions for cost, schedule, and material control are described.

  4. Data Quality Assurance Program Plan for NRC Division of Risk Analysis Programs at the INL

    SciTech Connect (OSTI)

    Sattison, Martin B.; Wierman, Thomas E.; Vedros, Kurt G.; Germain, Shawn W. St.; Eide, Steven A.; Sant, Robert L.

    2009-07-01

    The Division of Risk Analysis (DRA), Office of Nuclear Regulatory Research (RES), must ensure that the quality of the data that feed into its programs follow Office of Management and Budget (OMB) and U.S. Nuclear Regulatory Commission (NRC) guidelines and possibly other standards and guidelines used in nuclear power plant risk analyses. This report documents the steps taken in DRA’s Data Quality Improvement project (Job Control Number N6145) to develop a Data Quality Assurance Program Plan. These steps were 1. Conduct a review of data quality requirements 2. Review current data programs, products, and data quality control activities 3. Review the Institute of Nuclear Power Operation (INPO) Equipment Performance and Information Exchange (EPIX) data quality programs and characterize the EPIX data quality and uncertainty 4. Compare these programs, products, and activities against the requirements 5. Develop a program plan that provides assurance that data quality is being maintained. It is expected that the Data Quality Assurance Program Plan will be routinely implemented in all aspects of future data collection and processing efforts and that specific portions will be executed annually to provide assurance that data quality is being maintained.

  5. Software configuration management plan for the Hanford site technical database

    SciTech Connect (OSTI)

    GRAVES, N.J.

    1999-05-10

    The Hanford Site Technical Database (HSTD) is used as the repository/source for the technical requirements baseline and programmatic data input via the Hanford Site and major Hanford Project Systems Engineering (SE) activities. The Hanford Site SE effort has created an integrated technical baseline for the Hanford Site that supports SE processes at the Site and project levels which is captured in the HSTD. The HSTD has been implemented in Ascent Logic Corporation (ALC) Commercial Off-The-Shelf (COTS) package referred to as the Requirements Driven Design (RDD) software. This Software Configuration Management Plan (SCMP) provides a process and means to control and manage software upgrades to the HSTD system.

  6. Tank waste remediation system systems engineering management plan

    SciTech Connect (OSTI)

    Peck, L.G.

    1996-02-06

    This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation Systems (TWRS) implementation of U.S. Department of Energy (DOE) Systems Engineering (SE) policy provided in Tank Waste Remediation System Systems Engineering Management Policy, DOE/RL letter, 95-RTI-107, Oct. 31, 1995. This SEMP defines the products, process, organization, and procedures used by the TWRS Program to accomplish SE objectives. This TWRS SEMP is applicable to all aspects of the TWRS Program and will be used as the basis for tailoring SE to apply necessary concepts and principles to develop and mature the processes and physical systems necessary to achieve the desired end states of the program.

  7. DNFSB Recommendation 94-1 Hanford Site Integrated Stabilization Management Plan. Volume 1

    SciTech Connect (OSTI)

    Gerber, E.W.

    1995-10-01

    The US Department of Energy (DOE) has developed an Integrated Program Plan (IPP) to address concerns identified in Defense Nuclear Facilities Safety Board Recommendation 94-1. The IPP describes the actions that DOE plans to implement at its various sites to convert excess fissile materials to forms or conditions suitable for safe interim storage. The baseline IPP was issued as DOE`s Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1 Implementation Plan (IP), which was transmitted to the DNFSB on February 28, 1995. The IPP is being further developed to include complex-wide requirements for research and development and a long-range facility requirements section. The planned additions to the baseline IPP are being developed based on a systems engineering approach that integrates facilities and capabilities at the various DOE sites and focuses on attaining safe interim storage with minimum safety risks and environmental impacts. Each affected DOE site has developed a Site Integrated Stabilization Management Plan (SISMP) to identify individual site plans to implement the DNFSB Recommendation 94-1 and to provide a basis for formulating planned additions to the IPP. The SISMPs were developed based on the objectives, requirements, and commitments identified in the baseline DNFSB Recommendation 94-1 IPP. The SISMPs will be periodically updated to reflect improved integration between DOE sites as identified during the IPP systems engineering evaluations.

  8. Waste management plan for Hanford spent nuclear fuel characterization activities

    SciTech Connect (OSTI)

    Chastain, S.A. [Westinghouse Hanford Co., Richland, WA (United States); Spinks, R.L. [Pacific Northwest Lab., Richland, WA (United States)

    1994-10-17

    A joint project was initiated between Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL) to address critical issues associated with the Spent Nuclear Fuel (SNF) stored at the Hanford Site. Recently, particular attention has been given to remediation of the SNF stored in the K Basins. A waste management plan (WMP) acceptable to both parties is required prior to the movement of selected material to the PNL facilities for examination. N Reactor and Single Pass Reactor (SPR) fuel has been stored for an extended period of time in the N Reactor, PUREX, K-East, and K-West Basins. Characterization plans call for transport of fuel material form the K Basins to the 327 Building Postirradiation Testing Laboratory (PTL) in the 300 Area for examination. However, PNL received a directive stating that no examination work will be started in PNL hot cell laboratories without an approved disposal route for all waste generated related to the activity. Thus, as part of the Characterization Program Management Plan for Hanford Spent Nuclear Fuel, a waste management plan which will ensure that wastes generated as a result of characterization activities conducted at PNL will be accepted by WHC for disposition is required. This document contains the details of the waste handling plan that utilizes, to the greatest extent possible, established waste handling and disposal practices at Hanford between PNL and WHC. Standard practices are sufficient to provides for disposal of most of the waste materials, however, special consideration must be given to the remnants of spent nuclear fuel elements following examination. Fuel element remnants will be repackaged in an acceptable container such as the single element canister and returned to the K Basins for storage.

  9. Fast Flux Test Facility Closure Project - Project Management Plan

    SciTech Connect (OSTI)

    BEACH, R.R.

    2002-09-26

    The Fast Flux Test Facility (FFTF) Closure Project, Project Management Plan, Revision 5, provides the scope, cost, and schedule to achieve the most cost effective and expeditious closure of the FFTF to an assumed final end-state with the reactor vessel and the containment building, below the 5504 grade level, being entombed in place. Closure will be completed by December 2009 at a cost of $547 million.

  10. A phased approach to induced seismicity risk management

    SciTech Connect (OSTI)

    White, Joshua A.; Foxall, William

    2014-01-01

    This work describes strategies for assessing and managing induced seismicity risk during each phase of a carbon storage project. We consider both nuisance and damage potential from induced earthquakes, as well as the indirect risk of enhancing fault leakage pathways. A phased approach to seismicity management is proposed, in which operations are continuously adapted based on available information and an on-going estimate of risk. At each project stage, specific recommendations are made for (a) monitoring and characterization, (b) modeling and analysis, and (c) site operations. The resulting methodology can help lower seismic risk while ensuring site operations remain practical and cost-effective.

  11. A phased approach to induced seismicity risk management

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    White, Joshua A.; Foxall, William

    2014-01-01

    This work describes strategies for assessing and managing induced seismicity risk during each phase of a carbon storage project. We consider both nuisance and damage potential from induced earthquakes, as well as the indirect risk of enhancing fault leakage pathways. A phased approach to seismicity management is proposed, in which operations are continuously adapted based on available information and an on-going estimate of risk. At each project stage, specific recommendations are made for (a) monitoring and characterization, (b) modeling and analysis, and (c) site operations. The resulting methodology can help lower seismic risk while ensuring site operations remain practical andmore » cost-effective.« less

  12. DNFSB recommendation 94-1 Hanford site integrated stabilization management plan

    SciTech Connect (OSTI)

    McCormack, R.L.

    1997-05-07

    In May 1994, the Defense Nuclear Facilities Safety Board (DNFSB) issued DNFSB Recommendation 94-1 (Conway 1994), which identified concerns related to US Department of Energy (DOE) management of legacy fissile materials remaining from past defense production activities. The DNFSB expressed concern about the existing storage conditions for these materials and the slow pace at which the conditions were being remediated. The DNFSB also expressed its belief that additional delays in stabilizing these fissile materials would be accompanied by further deterioration of safety and unnecessary increased risks to workers and the public. In February 1995, DOE issued the DNFSB Recommendation 94-1 Implementation Plan (O`Leary 1995) to address the concerns identified in DNFSB Recommendation 94-1. The Implementation Plan (IP) identifies several DOE commitments to achieve safe interim storage for the legacy fissile materials, and constitutes DOE`s baseline DNFSB Recommendation 94-1 Integrated Program Plan (IPP). The IPP describes the actions DOE plans to implement within the DOE complex to convert its excess fissile materials to forms or conditions suitable for safe interim storage. The IPP was subsequently supplemented with an Integrated Facilities Plan and a Research and Development Plan, which further develop complex-wide research and development and long-range facility requirements and plans. The additions to the baseline IPP were developed based on a systems engineering approach that integrated facilities and capabilities at the various DOE sites and focused on attaining safe interim storage with minimum safety risks and environmental impacts. Each affected DOE site has developed a Site Integrated Stabilization Management Plan (SISMP) to identify individual site plans to implement the DNFSB Recommendation 94-1 IPP. The SISMPs were developed based on the objectives, requirements, and commitments identified in the DNFSB Recommendation 94-1 IP. The SISMPs also supported

  13. Solid Waste Information and Tracking System Client Server Conversion Project Management Plan

    SciTech Connect (OSTI)

    GLASSCOCK, J.A.

    2000-02-10

    The Project Management Plan governing the conversion of SWITS to a client-server architecture. The PMP describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion

  14. 42pt5ContractManagementPlanning.pdf | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2pt5ContractManagementPlanning.pdf More Documents & Publications Acquisition Letter 2009-03 Acquisition Planning-Extending A Management and Operating Contract Without Full and Open...

  15. Microsoft Word - EM_CM_3_Risk_Management_Best Practices and Gaps...

    Energy Savers [EERE]

    EMCM3RiskManagementBest Practices and Gaps.doc Microsoft Word - EMCM3RiskManagementBest Practices and Gaps.doc Microsoft Word - EMCM3RiskManagementBest Practices and...

  16. Westinghouse Hanford Company FY 1995 Materials Management Plan (MMP)

    SciTech Connect (OSTI)

    Higginson, M.C.

    1994-10-01

    The safe and sound operation of facilities and storage of nuclear material are top priorities within Hanford`s environmental management, site restoration mission. The projected materials estimates, based on the Materials Management Plan (MMP) assumptions outlined below, were prepared for Department of Energy (DOE) use in long-range planning. The Hanford MMP covers the period FY 1995 through FY 2005, as directed by DOE. All DOE Richland Operations (RL) Office facilities are essentially funded by the Office of Transition and Facilities Management, Environmental Restoration and Waste Management (EM). These facilities include PUREX, the UO{sub 3} plant, N-Reactor, T-Plant, K-Basins, FFTF, PFP and the 300 Area Fuel Fabrication facilities. Currently DP provides partial funding for the latter two facilities. Beginning in FY 1996 (in accordance with DOE-HQ MMP assumptions), EM will fund expenses related to the storage, monitoring, and safeguarding of all Special Nuclear Material (SNM) in the PFP. Ownership and costs related to movement and/or stabilization of that material will belong to EM programs (excluding NE material). It is also assumed that IAEA will take over inventory validation and surveillance of EM owned SNM at this time (FY 1996).

  17. Data Management Plan for the Environmental Restoration Program

    SciTech Connect (OSTI)

    Bryd, P.

    1994-01-01

    The purpose of this handbook is to assist environmental restoration (ER) projects in the preparation of a data management implementation plan (DMIP). The DMIP identifies and documents an ER project's requirements and responsibilities for the management, quality assurance, use, and archival of its environmental data. It is important that a project complete its DMIP in the early planning phase to ensure that the necessary and appropriate data management systems and personnel are in place before the project begins acquiring data. All ER projects that collect or use environmental data at the Oak Ridge National Laboratory, the Oak Ridge Y-12 Plant, the Oak Ridge K-25 Site, the Paducah Gaseous Diffusion Plant, the Portsmouth Gaseous Diffusion Plant, and surrounding onsite and offsite areas must prepare a DMIP. Project types that often collect environmental data include surveillance and maintenance, decontamination and decommissioning, remedial design/remedial action, and remedial investigation/feasibility studies. Even if a project does little environmental data management, a DMIP is required to document this fact.

  18. New Executive Order Establishes a Federal Flood Risk Management Standard

    Broader source: Energy.gov [DOE]

    President Obama signed Executive Order (E.O.) 13690, Establishing a Federal Flood Risk Management Standard and a Process for Further Soliciting and Considering Stakeholder Input, on January 30, 2015.

  19. Energy Department Seeks Information on Geothermal Risk and Uncertainty Management

    Broader source: Energy.gov [DOE]

    The Energy Department's Office of Energy Efficiency and Renewable Energy (EERE) has issued a Request for Information (RFI) to help quantify and manage risk in geothermal exploration, in an effort...

  20. Environmental Enterprise Risk Management Benefits for a Government Contractor

    SciTech Connect (OSTI)

    Linda Guinn

    2012-05-01

    An often overlooked advantage that an Environmental Enterprise Risk Management System (ERMS) has to organizations is the added protection from the Civil False Claims Act (FCA) for activities under a government contract.

  1. Managing the Risks of Climate Change and Terrorism

    SciTech Connect (OSTI)

    Rosa, Eugene; Dietz, Tom; Moss, Richard H.; Atran, Scott; Moser, Susanne

    2012-04-07

    The article describes challenges to comparative risk assessment, a key approach for managing uncertainty in decision making, across diverse threats such as terrorism and climate change and argues new approaches will be particularly important in addressing decisions related to sustainability.

  2. Project risk and appeals in U.S. Forest Service planning

    SciTech Connect (OSTI)

    Stern, Marc J.; Predmore, S. Andrew; Morse, Wayde C.; Seesholtz, David N.

    2013-09-15

    The National Environmental Policy Act (NEPA) requires U.S. Forest Service planning processes to be conducted by interdisciplinary teams of resource specialists to analyze and disclose the likely environmental impacts of proposed natural resource management actions on Forest Service lands. Multiple challenges associated with these processes have been a source of frustration for the agency. One of these challenges involves administrative appeals through which public entities can challenge a Forest Service decision following a NEPA process. These appeals instigate an internal review process and can result in an affirmation of the Forest Service decision, a reversal of that decision, or additional work that re-initiates all or part of the NEPA process. We examine the best predictors of appeals and their outcomes on a representative sample of 489 Forest Service NEPA processes that were decided between 2007 and 2009. While certain factors associated with pre-existing social contexts (such as a history of controversy) or pre-determined elements of a proposed action (such as the extraction of forest products) predispose certain processes to a higher risk of appeals, other practices and process-related strategies within the control of the agency also appear to bear meaningful influence on the occurrence of appeals and their outcomes. Appeals and their outcomes were most strongly related to programmatic, structural (turnover of personnel in particular), and relationship risks (both internal and external) within the processes, suggesting the need for greater focus within the agency on cultivating positive internal and external relationships to manage the risk of appeals. -- Highlights: â–ş We examined appeals and their outcomes on 489 U.S. Forest Service NEPA processes. â–ş Project type, context, team turnover, and personal relationships predicted appeals. â–ş External relationship management and staff turnover best predicted appeal outcomes. â–ş Positive internal and

  3. Policy Flash 2013-30 Acquisition Letter on Acquisition Planning Considerations for Management and Operating Contracts

    Broader source: Energy.gov [DOE]

    Attached is  Policy Flash 2013-30 Acquisition Letter on Acquisition Planning Considerations for Management and Operating Contracts

  4. Urban stormwater management planning with analytical probabilistic models

    SciTech Connect (OSTI)

    Adams, B.J.

    2000-07-01

    Understanding how to properly manage urban stormwater is a critical concern to civil and environmental engineers the world over. Mismanagement of stormwater and urban runoff results in flooding, erosion, and water quality problems. In an effort to develop better management techniques, engineers have come to rely on computer simulation and advanced mathematical modeling techniques to help plan and predict water system performance. This important book outlines a new method that uses probability tools to model how stormwater behaves and interacts in a combined- or single-system municipal water system. Complete with sample problems and case studies illustrating how concepts really work, the book presents a cost-effective, easy-to-master approach to analytical modeling of stormwater management systems.

  5. Tank waste remediation system systems engineering management plan

    SciTech Connect (OSTI)

    Peck, L.G.

    1998-01-08

    This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves. The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance.

  6. DOE - Office of Legacy Management -- Mound Site

    Office of Legacy Management (LM)

    U.S. Department of Energy Miamisburg Closure Project Risk Management Plan Volume III Legacy Management Transition Risks April 30, 2005 Site Transition Process Upon Cleanup ...

  7. Marine and Hydrokinetic (MHK) Technology Development Risk Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Framework Webinar | Department of Energy Marine and Hydrokinetic (MHK) Technology Development Risk Management Framework Webinar Marine and Hydrokinetic (MHK) Technology Development Risk Management Framework Webinar December 16, 2014 9:00AM to 10:30AM EST This webinar is also being offered on the same day in the afternoon at 2:00 p.m. EST. Marine and hydrokinetic (MHK) technologies convert the kinetic energy from ocean waves, tides, currents, and ocean thermal resources into electricity. The

  8. Cybersecurity Risk Management Process (RMP) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (RMP) Cybersecurity Risk Management Process (RMP) The electricity subsector cybersecurity Risk Management Process (RMP) guideline was developed by the Department of Energy (DOE), in collaboration with the National Institute of Standards and Technology (NIST) and the North American Electric Reliability Corporation (NERC). Members of industry and utility-specific trade groups were included in authoring this guidance designed to be meaningful and tailored for the electricity subsector. The NIST

  9. Wildlife Management Plan for the Oak Ridge Reservation

    SciTech Connect (OSTI)

    Giffen, Neil R; Evans, James W.; Parr, Patricia Dreyer

    2007-10-01

    This document outlines a plan for management of the wildlife resources on the Department of Energy's (DOE's) Oak Ridge Reservation. Management includes wildlife population control through hunting, trapping, removal, and habitat manipulation; wildlife damage control; restoration of wildlife species; preservation, management, and enhancement of wildlife habitats; coordination of wildlife studies and characterization of areas; and law enforcement. Wildlife resources are divided into several categories, each with a specific set of objectives and procedures for attaining them. These objectives are management of (1) wildlife habitats to ensure that all resident wildlife species exist on the Reservation in viable numbers; (2) featured species to produce selected species in desired numbers on designated land units; (3) game species for research, education, recreation, and public safety; (4) the Three Bend Scenic and Wildlife Management Refuge Area; (5) nuisance wildlife, including nonnative species, to achieve adequate population control for the maintenance of health and safety on the Reservation; (6) sensitive species (i.e., state or federally listed as endangered, threatened, of special concern, or in need of management) through preservation and protection of both the species and habitats critical to the survival of those species; and (7) wildlife disease. Achievement of the objectives is a joint effort between the Tennessee Wildlife Resources Agency (TWRA) and the Oak Ridge National Laboratory through agreements between TWRA and DOE and between DOE and UT-Battelle, LLC.

  10. Solid waste information and tracking system server conversion project management plan

    SciTech Connect (OSTI)

    MAY, D.L.

    1999-04-12

    The Project Management Plan governing the conversion of Solid Waste Information and Tracking System (SWITS) to a client-server architecture. The Solid Waste Information and Tracking System Project Management Plan (PMP) describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents.

  11. Risk-Based Data Management System design specifications and implementation plan for the Alaska Oil and Gas Conservation Commission; the Mississippi State Oil and Gas Board; the Montana Board of Oil and Gas Conservation; and the Nebraska Oil and Gas Conservation Commission

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The purpose of this document is to present design specifications and an implementation schedule for the development and implementation of Risk Based Data Management Systems (RBDMS`s) in the states of Alaska, Mississippi, Montana, and Nebraska. The document presents detailed design information including a description of the system database structure, data dictionary, data entry and inquiry screen layouts, specifications for standard reports that will be produced by the system, functions and capabilities (including environmental risk analyses), And table relationships for each database table within the system. This design information provides a comprehensive blueprint of the system to be developed and presents the necessary detailed information for system development and implementation. A proposed schedule for development and implementation also is presented. The schedule presents timeframes for the development of system modules, training, implementation, and providing assistance to the states with data conversion from existing systems. However, the schedule will vary depending upon the timing of funding allocations from the United States Department of Energy (DOE) for the development and implementation phase of the project. For planning purposes, the schedule assumes that initiation of the development and implementation phase will commence November 1, 1993, somewhat later than originally anticipated.

  12. Strategic Energy Management Plan For Fort Buchanan, Puerto Rico

    SciTech Connect (OSTI)

    Parker, Steven A.; Hunt, W. D.

    2001-10-31

    This document reports findings and recommendations as a result of a design assistance project with Fort Buchanan with the goals of developing a Strategic Energy Management Plan for the Site. A strategy has been developed with three major elements in mind: 1) development of a strong foundation from which to build, 2) understanding technologies that are available, and 3) exploring financing options to fund the implementation of improvements. The objective of this report is to outline a strategy that can be used by Fort Buchanan to further establish an effective energy management program. Once a strategy is accepted, the next step is to take action. Some of the strategies defined in this Plan may be implemented directly. Other strategies may require the development of a more sophisticated tactical, or operational, plan to detail a roadmap that will lead to successful realization of the goal. Similarly, some strategies are not single events. Rather, some strategies will require continuous efforts to maintain diligence or to change the culture of the Base occupants and their efforts to conserve energy resources.

  13. Enterprise Risk Management (ERM) Framework for Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-09-30

    Explains the new ERM framework for developing, revising, and reviewing directives. This memo directs the Office of Management to institutionalize ERM into the directives process no later than September 30, 2012.

  14. WIPP Facility Work Plan for Solid Waste Management Units

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2001-02-25

    This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility’s Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

  15. Risk Management Techniques and Practice Workshop Workshop Report

    SciTech Connect (OSTI)

    Quinn, T; Zosel, M

    2008-12-02

    At the request of the Department of Energy (DOE) Office of Science (SC), Lawrence Livermore National Laboratory (LLNL) hosted a two-day Risk Management Techniques and Practice (RMTAP) workshop held September 18-19 at the Hotel Nikko in San Francisco. The purpose of the workshop, which was sponsored by the SC/Advanced Scientific Computing Research (ASCR) program and the National Nuclear Security Administration (NNSA)/Advanced Simulation and Computing (ASC) program, was to assess current and emerging techniques, practices, and lessons learned for effectively identifying, understanding, managing, and mitigating the risks associated with acquiring leading-edge computing systems at high-performance computing centers (HPCCs). Representatives from fifteen high-performance computing (HPC) organizations, four HPC vendor partners, and three government agencies attended the workshop. The overall workshop findings were: (1) Standard risk management techniques and tools are in the aggregate applicable to projects at HPCCs and are commonly employed by the HPC community; (2) HPC projects have characteristics that necessitate a tailoring of the standard risk management practices; (3) All HPCC acquisition projects can benefit by employing risk management, but the specific choice of risk management processes and tools is less important to the success of the project; (4) The special relationship between the HPCCs and HPC vendors must be reflected in the risk management strategy; (5) Best practices findings include developing a prioritized risk register with special attention to the top risks, establishing a practice of regular meetings and status updates with the platform partner, supporting regular and open reviews that engage the interests and expertise of a wide range of staff and stakeholders, and documenting and sharing the acquisition/build/deployment experience; and (6) Top risk categories include system scaling issues, request for proposal/contract and acceptance testing, and

  16. PUREX/UO{sub 3} deactivation project management plan

    SciTech Connect (OSTI)

    Washenfelder, D.J.

    1993-12-01

    From 1955 through 1990, the Plutonium-Uranium Extraction Plant (PUREX) provided the United States Department of Energy Hanford Site with nuclear fuel reprocessing capability. It operated in sequence with the Uranium Trioxide (UO{sub 3}) Plant, which converted the PUREX liquid uranium nitrate product to solid UO{sub 3} powder. Final UO{sub 3} Plant operation ended in 1993. In December 1992, planning was initiated for the deactivation of PUREX and UO{sub 3} Plant. The objective of deactivation planning was to identify the activities needed to establish a passively safe, environmentally secure configuration at both plants, and ensure that the configuration could be retained during the post-deactivation period. The PUREX/UO{sub 3} Deactivation Project management plan represents completion of the planning efforts. It presents the deactivation approach to be used for the two plants, and the supporting technical, cost, and schedule baselines. Deactivation activities concentrate on removal, reduction, and stabilization of the radioactive and chemical materials remaining at the plants, and the shutdown of the utilities and effluents. When deactivation is completed, the two plants will be left unoccupied and locked, pending eventual decontamination and decommissioning. Deactivation is expected to cost $233.8 million, require 5 years to complete, and yield $36 million in annual surveillance and maintenance cost savings.

  17. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2002-09-24

    U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program, requires each DOE site to prepare a Groundwater Protection Management Program Plan. This document fulfills the requirement for the Waste Isolation Pilot Plant (WIPP). This document was prepared by the Hydrology Section of the Westinghouse TRU Solutions LLC (WTS) Environmental Compliance Department, and it is the responsibility of this group to review the plan annually and update it every three years. This document is not, nor is it intended to be, an implementing document that sets forth specific details on carrying out field projects or operational policy. Rather, it is intended to give the reader insight to the groundwater protection philosophy at WIPP.

  18. Civilian radioactive waste management program plan. Revision 2

    SciTech Connect (OSTI)

    1998-07-01

    This revision of the Civilian Radioactive Waste Management Program Plan describes the objectives of the Civilian Radioactive Waste management Program (Program) as prescribed by legislative mandate, and the technical achievements, schedule, and costs planned to complete these objectives. The Plan provides Program participants and stakeholders with an updated description of Program activities and milestones for fiscal years (FY) 1998 to 2003. It describes the steps the Program will undertake to provide a viability assessment of the Yucca Mountain site in 1998; prepare the Secretary of Energy`s site recommendation to the President in 2001, if the site is found to be suitable for development as a repository; and submit a license application to the Nuclear Regulatory Commission in 2002 for authorization to construct a repository. The Program`s ultimate challenge is to provide adequate assurance to society that an operating geologic repository at a specific site meets the required standards of safety. Chapter 1 describes the Program`s mission and vision, and summarizes the Program`s broad strategic objectives. Chapter 2 describes the Program`s approach to transform strategic objectives, strategies, and success measures to specific Program activities and milestones. Chapter 3 describes the activities and milestones currently projected by the Program for the next five years for the Yucca Mountain Site Characterization Project; the Waste Acceptance, Storage and Transportation Project; ad the Program Management Center. The appendices present information on the Nuclear Waste Policy Act of 1982, as amended, and the Energy Policy Act of 1992; the history of the Program; the Program`s organization chart; the Commission`s regulations, Disposal of High-Level Radioactive Wastes in geologic Repositories; and a glossary of terms.

  19. Martin Marietta Energy Systems, Inc., Groundwater Program Management Plan

    SciTech Connect (OSTI)

    Early, T.O.

    1994-05-01

    The purpose of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Management Plan is to define the function, organizational structure (including associated matrix organizations), interfaces, roles and responsibilities, authority, and relationship to the Department of Energy for the Energy Systems Groundwater Program Office (GWPO). GWPO is charged with the responsibility of coordinating all components of the groundwater program for Energy Systems. This mandate includes activities at the three Oak Ridge facilities [Oak Ridge National Laboratory, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], as well as the Paducah and Portsmouth Gaseous Diffusion Plants.

  20. National ignition facility environment, safety, and health management plan

    SciTech Connect (OSTI)

    1995-11-01

    The ES&H Management Plan describes all of the environmental, safety, and health evaluations and reviews that must be carried out in support of the implementation of the National Ignition Facility (NIF) Project. It describes the policy, organizational responsibilities and interfaces, activities, and ES&H documents that will be prepared by the Laboratory Project Office for the DOE. The only activity not described is the preparation of the NIF Project Specific Assessment (PSA), which is to be incorporated into the Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (PEIS). This PSA is being prepared by Argonne National Laboratory (ANL) with input from the Laboratory participants. As the independent NEPA document preparers ANL is directly contracted by the DOE, and its deliverables and schedule are agreed to separately with DOE/OAK.

  1. Risk and Work Configuration Management as a Function of Integrated Safety Management

    SciTech Connect (OSTI)

    Lana Buehrer, Michele Kelly, Fran Lemieux, Fred Williams

    2007-11-30

    National Security Technologies, LLC (NSTec), has established a work management program and corresponding electronic Facilities and Operations Management Information System (e-FOM) to implement Integrated Safety Management (ISM). The management of work scopes, the identification of hazards, and the establishment of implementing controls are reviewed and approved through electronic signatures. Through the execution of the program and the implementation of the electronic system, NSTec staff work within controls and utilize feedback and improvement process. The Integrated Work Control Manual further implements the five functions of ISM at the Activity level. By adding the Risk and Work Configuration Management program, NSTec establishes risk acceptance (business and physical) for liabilities within the performance direction and work management processes. Requirements, roles, and responsibilities are specifically identified in the program while e-FOM provides the interface and establishes the flowdown from the Safety Chain to work and facilities management processes to company work-related directives, and finally to Subject Matter Expert concurrence. The Program establishes, within the defined management structure, management levels for risk identification, risk mitigation (controls), and risk acceptance (business and physical) within the Safety Chain of Responsibility. The Program also implements Integrated Safeguards and Security Management within the NSTec Safety Chain of Responsibility. Once all information has been entered into e-FOM, approved, and captured as data, the information becomes searchable and sortable by hazard, location, organization, mitigating controls, etc.

  2. Cyber Security Requirements for Risk Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-02-19

    The Notice ensures that system owners consistently assess the threats to and vulnerabilities of systems in order to implement adequate security controls. The Notice will also ensure compliance with the requirements of DOE O 205.1, Department of Energy Cyber Security Management Program, dated 3-21-03, and protect DOE information and information systems from unauthorized access, use, disclosure, modification, or destruction. DOE N 205.15, dated 3/18/05, extends this directive until 3/18/06.

  3. Legacy Management CERCLA Sites. Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Riddle, Donna L.

    2007-05-03

    S.M. Stoller Corporation is the contractor for the Technical Assistance Contract (TAC) for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) operations. Stoller employs a management system that applies to all programs, projects, and business management systems funded through DOE-LM task orders. The management system incorporates the philosophy, policies, and requirements of health and safety, environmental compliance, and quality assurance (QA) in all aspects of project planning and implementation. Health and safety requirements are documented in the Health and Safety Manual (STO 2), the Radiological Control Manual (STO 3), the Integrated Safety Management System Description (STO 10), and the Drilling Health and Safety Requirements (STO 14). Environmental compliance policy and requirements are documented in the Environmental Management Program Implementation Manual (STO 11). The QA Program is documented in the Quality Assurance Manual (STO 1). The QA Manual (STO 1) implements the specific requirements and philosophy of DOE Order 414.1C, Quality Assurance. This manual also includes the requirements of other standards that are regularly imposed by customers, regulators, or other DOE orders. Title 10 Code of Federal Regulations Part 830, “Quality Assurance Requirements,” ANSI/ASQC E4-2004, “Quality Systems for Environmental Data and Technology Programs – Requirements with Guidance for Use,” and ISO 14001-2004, “Environmental Management Systems,” have been included. These standards are similar in content. The intent of the QA Manual (STO 1) is to provide a QA management system that incorporates the requirements and philosophy of DOE and other customers within the QA Manual. Criterion 1, “Quality Assurance Program,” identifies the fundamental requirements for establishing and implementing the QA management system; QA Instruction (QAI) 1.1, “QA Program Implementation,” identifies the TAC organizations that have responsibility for

  4. DOE-NE Proliferation and Terrorism Risk Assessment: FY12 Plans Update

    SciTech Connect (OSTI)

    Sadasivan, Pratap

    2012-06-21

    This presentation provides background information on FY12 plans for the DOE Office of Nuclear Energy Proliferation and Terrorism Risk Assessment program. Program plans, organization, and individual project elements are described. Research objectives are: (1) Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; (2) Develop improvements in the affordability of new reactors to enable nuclear energy; (3) Develop Sustainable Nuclear Fuel Cycles; and (4) Understand and minimize the risks of nuclear proliferation and terrorism - Goal is to enable the use of risk information to inform NE R&D program planning.

  5. WIPP Facility Work Plan for Solid Waste Management Units

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2002-02-14

    This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable

  6. Comparative risk analysis for the Rocky Flats Plant integrated project planning

    SciTech Connect (OSTI)

    Jones, M.E.; Shain, D.I.

    1994-05-01

    The Rocky Flats Plant is developing, with active stakeholder a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs relative risks to workers and the public, and waste disposition. Comparative Risk Analysis employs both incremental risk and cumulative risk evaluations to compare risks from postulated options or endstates. These postulated options or endstates can be various remedial alternatives, or future endstate uses of federal agency land. Currently, there does not exist any approved methodology that aggregates various incremental risk estimates. Comparative Risk Analysis has been developed to aggregate various incremental risk estimates to develop a site cumulative risk estimate. This paper discusses development of the Comparative Risk Analysis methodology, stakeholder participation and lessons learned from these challenges.

  7. Project management plan for project W-320, tank 241-C-106 sluicing

    SciTech Connect (OSTI)

    Leliefeld, K.W.

    1996-02-02

    This Project Management Plan establishes the organization, plans, and systems for management of Project W-320 as defined in DOE Order 4700.1, Project Management System (DOE 1987). The sluicing is for retrieving high-heat waste from single shell tank 241-C-106.

  8. Systems Engineering Management Plan for Tank Farm Restoration and Safety Operations Project W-314

    SciTech Connect (OSTI)

    MCGREW, D.L.

    2000-04-19

    The Systems Engineering Management Plan for Project W-314 has been prepared within the guidelines of HNF-SD-WM-SEMP-002, TWRS Systems Engineering Management Plan. The activities within this SEMP have been tailored, in accordance with the TWRS SEMP and DOE Order 430.1, Life Cycle Asset Management, to meet the needs of the project.

  9. New Technical Risk Management Development for Carbon Capture Process

    SciTech Connect (OSTI)

    Engel, David W.; Letellier, Bruce; Edwards, Brian; Leclaire, Rene; Jones, Edward

    2012-04-30

    The basic CCSI objective of accelerating technology development and commercial deployment of carbon capture technologies through the extensive use of numerical simulation introduces a degree of unfamiliarity and novelty that potentially increases both of the traditional risk elements. In order to secure investor confidence and successfully accelerate the marketability of carbon capture technologies, it is critical that risk management decision tools be developed in parallel with numerical simulation capabilities and uncertainty quantification efforts. The focus of this paper is on the development of a technical risk model that incorporates the specific technology maturity development (level).

  10. Commentary: Risk Management and Reliability Design for Buildings

    SciTech Connect (OSTI)

    Berry, Dennis L.; Cranwell, Robert M.; Hunter, Regina L.

    1999-05-28

    Where there is a significant actuarial basis for decision making (e.g., the occurrence of fires in single-family dwellings), there is little incentive for formal risk management. Formal risk assessments are most useful in those cases where the value of the structure is high, many people may be affected, the societal perception of risk is high, consequences of a mishap would be severe, and the actuarial uncertainty is large. For these cases, there is little opportunity to obtain the necessary experiential data to make informed decisions, and the consequences in terms of money, lives, and societal confidence are severe enough to warrant a formal risk assessment. Other important factors include the symbolic value of the structure and vulnerability to single point failures. It is unlikely that formal risk management and assessment practices will or should replace the proven institutions of building codes and engineering practices. Nevertheless, formal risk assessment can provide valuable insights into the hazards threatening high-value and high-risk (perceived or actual) buildings and structures, which can in turn be translated into improved public health, safety, and security. The key is to choose and apply the right assessment tool to match the structure in question. Design-for-reliability concepts can be applied to buildings, bridges, transportation sys- tems, dams, and other structures. The use of these concepts could have the dual benefits of lowering life-cycle costs by reducing the necessity for maintenance and repair and of enhancing the saiiety and security of the structure's users.

  11. RCRA Groundwater Monitoring Plan for Single-Shell Tank Waste Management Area A-AX at the Hanford Site

    SciTech Connect (OSTI)

    Narbutovskih, Susan M.; Horton, Duane G.

    2001-01-18

    This document describes the interim status groundwater monitoring plan for Waste Management Area A-AX.

  12. EIS-0480: Long-Term Experimental and Management Plan for the...

    Broader source: Energy.gov (indexed) [DOE]

    Bureau of Reclamation and National Park Service, are jointly preparing a Long-Term Experimental and Management Plan for the Glen Canyon Dam and an EIS for adoption of the Plan. ...

  13. Bureau of Land Management - Examples of Non-LUP Prep Plan or...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Web Site: Bureau of Land Management - Examples of Non-LUP Prep Plan or EIS Prep Plan Abstract This page links to...

  14. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    SciTech Connect (OSTI)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management`s operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  15. High-level waste management technology program plan

    SciTech Connect (OSTI)

    Harmon, H.D.

    1995-01-01

    The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs.

  16. Sustainable NREL - Site Sustainability Plan FY 2015 (Management Publication)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    NREL's Site Sustainability Plan FY 2015 reports on sustainability plans for the lab for the year 2015 based on Executive Order Goals and provides the status on planned actions cited in the FY 2014 report.

  17. Performance Evaluation and Measurement Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... including those problems identified in the risk management process, is necessary. ... Central Plateau; for example, port of entry, access control, emergency planning zones, etc. ...

  18. Quality Assurance Program Plan (QAPP) Waste Management Project

    SciTech Connect (OSTI)

    VOLKMAN, D.D.

    1999-10-27

    This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

  19. Environmental Management Headquarters Corrective Action Plan- Radiological Release Phase I

    Broader source: Energy.gov [DOE]

    The purpose of this Corrective Action Plan (CAP) is to specify U.S. Department of Energy (DOE) actions for addressing Office of Environmental Management (EM) Headquarters (HQ) issues identified in the Accident Investigation Report for the Phase 1: Radiological Release Event at the Waste Isolation Pilot Plant (WIPP) on February 14, 2014. The report identified 31 Conclusions and 47 Judgments of Need (JON). Twelve of the Conclusions and ten of the JONs were determined to be associated with DOE HQ oversight of the operations. As such, EM HQ has taken the action to develop the CAP for those JONs specific to HQ (i.e., JONs 11, 13, 23, 25, 26, 32, 44-47). This report documents those corrective actions, along with the responsible office and due dates for completing the actions. The overall approval process for the CAPs associated with this event will involve both the Carlsbad Field Office (CBFO) and EM HQ offices. Specifically, CBFO will approve the NWP CAP (with EM HQ concurrence); EM HQ Office of Safety, Security, and Quality Programs (EM-40) will approve the CBFO CAP; and the Assistant Secretary for the Office of Environmental Management (EM-1) will approve the EM HQ CAP.

  20. Bureau of Land Management - Table 1.4-1 - Land Use Planning Process...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - Instructions: Bureau of Land Management - Table 1.4-1 - Land Use Planning Process StepsPermittingRegulatory...

  1. Environmental Guidelines for Development of Cultural Resource Management Plans--Update

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-09-22

    This Guide provides guidelines for the development of an individual Cultural Resource Management Plan for each DOE facility and program. Canceled by DOE N 251.82.

  2. Data Management Plan for The Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Broader source: Energy.gov [DOE]

    The Data Management Plan describes how DOE will handle data submitted by recipients as deliverables under the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

  3. Comparative risk analysis for the Rocky Flats Plant Integrated Project Planning

    SciTech Connect (OSTI)

    Jones, M.E.; Shain, D.I.

    1994-12-31

    The Rocky Flats Plant is developing a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs, relative risks to workers and the public, and waste disposition. Comparative Risk Analysis employs both incremental risk and cumulative risk evaluations to compare risk from postulated options or endstates. Comparative Risk Analysis is an analytical tool for the Rocky Flats Plant Integrated Project Planning which can assist a decision-maker in evaluating relative risks among proposed remedial options or future endstates. It addresses the cumulative risks imposed by the Rocky Flats Plant and provides risk information, both human health and ecological, to aid in reducing unnecessary resource and monetary expenditures. Currently, there is no approved methodology that aggregates various risk estimates. Along with academic and field expert review, the Comparative Risk Analysis methodology is being reviewed and refined. A Rocky Flats Plant Risk Assessment Focus Group was established. Stakeholder involvement in the development provides an opportunity to influence the information delivered to a decision-maker. This paper discusses development of the methodology.

  4. Standard Review Plan for Environmental Restoration Program Quality Management Plans. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The Department of Energy, Richland Operations Office (RL) Manual Environmental Restoration Program Quality System Requirements (QSR) for the Hanford Site, defines all quality requirements governing Hanford Environmental Restoration (ER) Program activities. The QSR requires that ER Program participants develop Quality Management Plans (QMPs) that describe how the QSR requirements will be implemented for their assigned scopes of work. This standard review plan (SRP) describes the ER program participant responsibilities for submittal of QMPs to the RL Environmental Restoration Division for review and the RL methodology for performing the reviews of participant QMPS. The SRP serves the following functions: acts as a guide in the development or revision of QMPs to assure that the content is complete and adequate; acts as a checklist to be used by the RL staff in their review of participant QMPs; acts as an index or matrix between the requirements of the QSR and implementing methodologies described in the QMPs; decreases the time and subjectivity of document reviews; and provides a formal, documented method for describing exceptions, modifications, or waivers to established ER Program quality requirements.

  5. Building Technologies Program Multi-Year Program Plan Program Portfolio Management 2008

    SciTech Connect (OSTI)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for program portfolio management, including the program portfolio management process, program analysis, performance assessment, stakeholder interactions, and cross-cutting issues.

  6. Environmental guidelines for development of Cultural Resource Management plans. Final report

    SciTech Connect (OSTI)

    1995-08-01

    The purpose of this document is to provide guidelines to the DOE field managements with responsibility for the development of an individual Cultural Resource Management Plan for each DOE facility and program.

  7. Lesson Learned by Environmental Management Complex-wide Activity-level Work Planning and Control

    Broader source: Energy.gov [DOE]

    Slide Presentation by Roger Claycomb, Work Control Program Manager, DOE Idaho Operations Office. Office of Environmental Management Work Planning and Control Oversight. Contractor Good Practices and DOE EM Good Practices.

  8. Microsoft Word - Attachment J-4 Legal Management Plan.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-1 ATTACHMENT J.4. LEGAL MANAGEMENT

  9. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    SciTech Connect (OSTI)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management's operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  10. A mathematically guided strategy for risk assessment and management.

    SciTech Connect (OSTI)

    Cooper, James Arlin

    2005-03-01

    Strategies for risk assessment and management of high consequence operations are often based on factors such as physical analysis, analysis of software and other logical processing, and analysis of statistically determined human actions. Conventional analysis methods work well for processing objective information. However, in practical situations, much or most of the data available are subjective. Also, there are potential resultant pitfalls where conventional analysis might be unrealistic, such as improperly using event tree and fault tree failure descriptions where failures or events are soft (partial) rather than crisp (binary), neglecting or misinterpreting dependence (positive, negative, correlation), and aggregating nonlinear contributions linearly. There are also personnel issues that transcend basic human factors statistics. For example, sustained productivity and safety in critical operations can depend on the morale of involved personnel. In addition, motivation is significantly influenced by 'latent effects', which are pre-occurring influences. This paper addresses these challenges and proposes techniques for subjective risk analysis, latent effects risk analysis and a hybrid analysis that also includes objective risk analysis. The goal is an improved strategy for risk management.

  11. Microsoft Word - EM_CM_3_Risk_Management_Best Practices and Gaps...

    Energy Savers [EERE]

    risk procedures; available personnel and their skill levels relative to risk management; and available data and its validation. Attachment 2 lists the Best Practices...

  12. Re-engineering the Federal planning process: A total Federal planning strategy, integrating NEPA with modern management tools

    SciTech Connect (OSTI)

    Eccleston, C.H.

    1997-09-05

    The National Environmental Policy Act (NEPA) of 1969 was established by Congress more than a quarter of a century ago, yet there is a surprising lack of specific tools, techniques, and methodologies for effectively implementing these regulatory requirements. Lack of professionally accepted techniques is a principal factor responsible for many inefficiencies. Often, decision makers do not fully appreciate or capitalize on the true potential which NEPA provides as a platform for planning future actions. New approaches and modem management tools must be adopted to fully achieve NEPA`s mandate. A new strategy, referred to as Total Federal Planning, is proposed for unifying large-scale federal planning efforts under a single, systematic, structured, and holistic process. Under this approach, the NEPA planning process provides a unifying framework for integrating all early environmental and nonenvironmental decision-making factors into a single comprehensive planning process. To promote effectiveness and efficiency, modem tools and principles from the disciplines of Value Engineering, Systems Engineering, and Total Quality Management are incorporated. Properly integrated and implemented, these planning tools provide the rigorous, structured, and disciplined framework essential in achieving effective planning. Ultimately, the goal of a Total Federal Planning strategy is to construct a unified and interdisciplinary framework that substantially improves decision-making, while reducing the time, cost, redundancy, and effort necessary to comply with environmental and other planning requirements. At a time when Congress is striving to re-engineer the governmental framework, apparatus, and process, a Total Federal Planning philosophy offers a systematic approach for uniting the disjointed and often convoluted planning process currently used by most federal agencies. Potentially this approach has widespread implications in the way federal planning is approached.

  13. Nuclear Safety Risk Management in Refueling Outage of Qinshan Nuclear Power Plant

    SciTech Connect (OSTI)

    Meijing Wu; Guozhang Shen

    2006-07-01

    The NPP is used to planning maintenance, in-service inspection, surveillance test, fuel handling and design modification in the refueling outage; the operator response capability will be reduced plus some of the plant systems out of service or loss of power at this time. Based on 8 times refueling outage experiences of the Qinshan NPP, this article provide some good practice and lesson learned for the nuclear safety risk management focus at four safety function areas of Residual Heat Removal Capability, Inventory Control, Power availability and Reactivity control. (authors)

  14. Groundwater contamination. Volume 2: Management, containment, risk assessment and legal issues

    SciTech Connect (OSTI)

    Rail, C.D.

    2000-07-01

    This book explains in a comprehensive way the sources for groundwater contamination, the regulations governing it, and the technologies for abating it. Volume 2 discusses aquifer management, including technologies to control and stabilize multiple influxes into the water table. This volume outlines strategies for stormwater control and groundwater restoration and presents numerous case histories of site analysis and remediation based on DOE and state documents. Among the many new features of this edition are a full discussion of risk assessment, the preparation of groundwater protection plans, and references linking the text to over 2,300 water-related Web sites.

  15. Environmental Management Waste Management Facility (EMWMF) Site-Specific Health and Safety Plan, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Flynn, N.C. Bechtel Jacobs

    2008-04-21

    The Bechtel Jacobs Company LLC (BJC) policy is to provide a safe and healthy workplace for all employees and subcontractors. The implementation of this policy requires that operations of the Environmental Management Waste Management Facility (EMWMF), located one-half mile west of the U.S. Department of Energy (DOE) Y-12 National Security Complex, be guided by an overall plan and consistent proactive approach to environment, safety and health (ES&H) issues. The BJC governing document for worker safety and health, BJC/OR-1745, 'Worker Safety and Health Program', describes the key elements of the BJC Safety and Industrial Hygiene (IH) programs, which includes the requirement for development and implementation of a site-specific Health and Safety Plan (HASP) where required by regulation (refer also to BJC-EH-1012, 'Development and Approval of Safety and Health Plans'). BJC/OR-1745, 'Worker Safety and Health Program', implements the requirements for worker protection contained in Title 10 Code of Federal Regulations (CFR) Part 851. The EMWMF site-specific HASP requirements identifies safe operating procedures, work controls, personal protective equipment, roles and responsibilities, potential site hazards and control measures, site access requirements, frequency and types of monitoring, site work areas, decontamination procedures, and outlines emergency response actions. This HASP will be available on site for use by all workers, management and supervisors, oversight personnel and visitors. All EMWMF assigned personnel will be briefed on the contents of this HASP and will be required to follow the procedures and protocols as specified. The policies and procedures referenced in this HASP apply to all EMWMF operations activities. In addition the HASP establishes ES&H criteria for the day-to-day activities to prevent or minimize any adverse effect on the environment and personnel safety and health and to meet standards that define acceptable waste management practices. The

  16. Savannah River Site Waste Management Program Plan, FY 1993. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report on facilities being used to manage wastes, forces acting to change current waste management (WM) systems, and how operations are conducted. This document also reports on plans for the coming fiscal year and projects activities for several years beyond the coming fiscal year to adequately plan for safe handling and disposal of radioactive wastes generated at the Savannah River Site (SRS) and for developing technology for improved management of wastes.

  17. Microsoft PowerPoint -Risk_Portfolio_Manager(RPM)_overview_Under...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PowerPoint - RiskPortfolioManager(RPM)overviewUnderSecDOE2011V4 Final 3-22-2011.ppt Read-Only Compatibili Microsoft PowerPoint - RiskPortfolioManager(RPM)overviewUn...

  18. Fairness hypothesis and managing the risks of societal technology choices

    SciTech Connect (OSTI)

    Cantor, R.; Rayner, S.

    1986-08-01

    Much of the literature on risk perception and management has asked how society should resolve the question, ''How safe is safe enough'' There has been political and technical disagreement over the types of answers that may be given, as well as over the social values attached to perceived probabilities and magnitudes of various outcomes. Despite controversy, there seems to have been a large measure of consensus that, ''How safe is safe enough'' is the right question to ask. This paper sets out to question that assumption. Various ingenious techniques of risk analysis have sought to discover the real risks inherent in various activities, but from a sociocultural viewpoint it can be seen that no single answer can be given to the problem of adequate safety in a complex society which contains a wide variety of perceptual biases about danger, expectations of the good life, and levels of demand for safety. The paper argues that, from a societal risk-management perspective, we should be addressing a different range of questions that views societal risk as a whole rather than as the sum of individual hazards. Resolving the question, ''How safe is safe enough'' is less important in making societal technology choices than ''How fair is safe enough.'' A recent empirical pilot study is reported which explored the fairness hypotheses in the context of nuclear power. The results indicate that the process of technology choice should recognize explicitly the preferred principles different parties hold with respect to obtaining consent from those affected by the risks, distributing the liabilities, and justifying trust in the relevant institutions. The paper closes with a discussion of future prospects for the fairness approach in areas such as noxious facility siting.

  19. Legacy system retirement plan for HANDI 2000 business management system

    SciTech Connect (OSTI)

    Adams, D.E.

    1998-09-29

    The implementation of the Business Management System (BMS) will replace a number of systems currently in use at Hanford. These systems will be retired when the replacement is complete and the data from the old systems adequately stored and/or converted to the new system. The replacement is due to a number of factors: (1) Year 2000 conversion: Most of the systems being retired are not year 2000 compliant. Estimates on making these systems compliant approach the costs of replacing with the enterprise system. (2) Many redundant custom-made systems: Maintenance costs on the aging custom developed systems is high. The systems also have overlapping functionality. Replacement with an enterprise system is expected to lower the maintenance costs. (3) Shift inefficient/complex work processes to commercial standards: Many business practices have been developed in isolation from competitive pressures and without a good business foundation. Replacement of the systems allows an opportunity to upgrade the business practices to conform to a market driven approach. (4) Questionable legacy data: Significant amount of data contained within the legacy systems is of questionable origin and value. Replacement of the systems allows for a new beginning with a clean slate and stronger data validation rules. A number of the systems being retired depend on hardware and software technologies that are no longer adequately supported in the market place. The IRM Application Software System Life Cycle Standards, HNF-PRO-2778, and the Data Systems Review Board (DSRB) define a system retirement process which involves the removal of an existing system from active support or use either by: ceasing its operation or support; or replacing it with a new system; or replacing it with an upgraded version of the existing system. It is important to note, that activities associated with the recovery of the system, once archived, relates to the ability for authorized personnel to gain access to the data and

  20. Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2005-08-10

    Markets for renewable energy have historically been motivated primarily by policy efforts, but a less widely recognized driver is poised to also play a major role in the coming years: utility integrated resource planning (IRP). Resource planning has re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, the most recent resource plans contemplate a significant amount of renewable energy additions. These planned additions--primarily coming from wind power--are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. This report examines how twelve western utilities treat renewable energy in their recent resource plans. In aggregate, these utilities supply approximately half of all electricity demand in the western United States. Our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable energy, and (2) to identify methodological/modeling issues, and suggest possible improvements to methods used to evaluate renewable energy as a resource option. Here we summarize the key findings of the report, beginning with a discussion of the planned renewable energy additions called for by the twelve utilities, an overview of how these plans incorporated renewables into candidate portfolios, and a review of the specific technology cost and performance assumptions they made, primarily for wind power. We then turn to the utilities' analysis of natural gas price and environmental compliance risks, and examine how the utilities traded off portfolio cost and risk in selecting a preferred portfolio.

  1. EFCOG Integrated Safety Management Work Planning and Control

    Broader source: Energy.gov [DOE]

    Presenter: Matthew Moury, Deputy Assistant Secretary for Safety, Security and Quality Programs, Office of Environmental Management

  2. 2016 Annual Workforce Analysis and Staffing Plan Report - DOE Oak Ridge Office of Environmental Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (4193) United States Government Department of Energy Oak Ridge Office of Environmental Management memorandum DATE: January 19, 2016 REPLY TO ATTN OF: EM-90:Cange SUBJECT: 2015 OAK RIDGE OFFICE OF ENVIRONMENTAL MANAGEMENT ANNUAL WORKFORCE ANALYSIS AND STAFFING PLAN TO: Karen L. Boardman, Chairperson, Federal Technical Capability Panel, HS-70 The Oak Ridge Office of Environmental Management (OREM) has produced the required OREM Annual Workforce Analysis and Staffing Plan. The attached report

  3. Suggested Elements for a Data Management Plan | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Suggested Elements for a Data Management Plan Funding Opportunities Funding Opportunities Home Grants & Contracts Support Award Search / Public Abstracts Find Funding Early Career Research Program Statement on Digital Data Management Suggested Elements for a Data Management Plan Frequently Asked Questions Resources at the Office of Science User Facilities Acknowledgements of Federal Support Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW

  4. Environmental management 1994. Progress and plans of the environmental restoration and waste management program

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Department of Energy currently faces one of the largest environmental challenges in the world. The Department`s Environmental Restoration and Waste Management program is responsible for identifying and reducing risks and managing waste at 137 sites in 34 States and territories where nuclear energy or weapons research and production resulted in radioactive, hazardous, and mixed waste contamination. The number of sites continues to grow as facilities are transferred to be cleaned up and closed down. The program`s main challenge is to balance technical and financial realities with the public`s expectations and develop a strategy that enables the Department to meet its commitments to the American people. This document provides a closer look at what is being done around the country. Included are detailed discussions of the largest sites in the region, followed by site activities organized by state, and a summary of activities at FUSRAP and UMTRA sites in the region.

  5. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2005-07-01

    The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New MexicoAdministrative Code), "Adoption of 40 CFR [Code of Federal Regulations] Part 264,"specifically 40 CFR §264.90 through §264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] §6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

  6. Microsoft Word - OccMed Recompete Contract Management Plan APM...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... appropriate medical support for emergency preparedness planning, drills, and response to actual ... notification of any contractual problems or issues. 2.5 Legal Counsel...

  7. NNSA Strategic Performance Evaluation Plan (PEP) FOR MANAGEMENT...

    National Nuclear Security Administration (NNSA)

    ... challenging problems that face the nation and the globe. ... the Non-Proliferation, Emergency Operations and ... long-term site planning act1v1t1es ...

  8. Information Resources Management Strategic Plan Appendix FY2014...

    Office of Environmental Management (EM)

    critically relevant concepts from previous strategic ... IRM Strategic Plan Goal 1 has four underlying Objectives ... is implemented across organizational units, describe those ...

  9. Savannah River Site`s Site Specific Plan. Environmental restoration and waste management, fiscal year 1992

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show the Environmental Restoration and Waste Management activities that were identified during the preparation of the Department of Energy-Headquarters (DOE-HQ) Environmental Restoration and Waste Management Five-Year Plan (FYP) for FY 1992--1996. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. The purpose of the SSP is to develop a baseline for policy, budget, and schedules for the DOE Environmental Restoration and Waste Management activities. The plan explains accomplishments since the Fiscal Year (FY) 1990 plan, demonstrates how present and future activities are prioritized, identifies currently funded activities and activities that are planned to be funded in the upcoming fiscal year, and describes future activities that SRS is considering.

  10. Software Configuration Management Plan (SCMP) version 1.1, Phase 1. Federal Emergency Management Information System (FEMIS): System platform

    SciTech Connect (OSTI)

    Strycker, F.E. Jr.

    1993-07-19

    This document is the Software Configuration Management Plan (SCMP) for the Federal Emergency Management Information System (FEMIS) project. FEMIS is an automated decision support system that integrates the planning and analysis, operations and response, and recovery phases of emergency management. It has broad application across the full range of emergency planning and operations. The SCMP will describe the configuration management system to be used for the control and maintenance of the software and associated documentation during development, test, and production of the FEMIS project. This plan provides information on the requirements and procedures necessary for the configuration management activities of FEMIS. It identifies the software configuration management requirements and establishes the methodology for generating configuration identifiers, controlling engineering changes, maintaining status accounting, and performing audits and reviews during the design and development of software configuration items. This plan defines the Software Configuration Management (SCM) activities necessary for maintaining all support software items and associated documentation being developed, procured, tested, sustained and kept in the production environment for FEMIS. It will apply to all phases of the software development life cycle, up to and including the time of delivery to the customer.

  11. Risk-Based Disposal Plan for PCB Paint in the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Canal

    SciTech Connect (OSTI)

    R. A. Montgomery

    2008-05-01

    This Toxic Substances Control Act Risk-Based Polychlorinated Biphenyl Disposal plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex, Idaho National Laboratory Site, to address painted surfaces in the empty canal under 40 CFR 761.62(c) for paint, and under 40 CFR 761.61(c) for PCBs that may have penetrated into the concrete. The canal walls and floor will be painted with two coats of contrasting non-PCB paint and labeled as PCB. The canal is covered with open decking; the access grate is locked shut and signed to indicate PCB contamination in the canal. Access to the canal will require facility manager permission. Protective equipment for personnel and equipment entering the canal will be required. Waste from the canal, generated during ultimate Decontamination and Decommissioning, shall be managed and disposed as PCB Bulk Product Waste.

  12. Quantifying Unnecessary Normal Tissue Complication Risks due to Suboptimal Planning: A Secondary Study of RTOG 0126

    SciTech Connect (OSTI)

    Moore, Kevin L.; Schmidt, Rachel; Moiseenko, Vitali; Olsen, Lindsey A.; Tan, Jun; Xiao, Ying; Galvin, James; Pugh, Stephanie; Seider, Michael J.; Dicker, Adam P.; Bosch, Walter; Michalski, Jeff; Mutic, Sasa

    2015-06-01

    Purpose: The purpose of this study was to quantify the frequency and clinical severity of quality deficiencies in intensity modulated radiation therapy (IMRT) planning in the Radiation Therapy Oncology Group 0126 protocol. Methods and Materials: A total of 219 IMRT patients from the high-dose arm (79.2 Gy) of RTOG 0126 were analyzed. To quantify plan quality, we used established knowledge-based methods for patient-specific dose-volume histogram (DVH) prediction of organs at risk and a Lyman-Kutcher-Burman (LKB) model for grade ≥2 rectal complications to convert DVHs into normal tissue complication probabilities (NTCPs). The LKB model was validated by fitting dose-response parameters relative to observed toxicities. The 90th percentile (22 of 219) of plans with the lowest excess risk (difference between clinical and model-predicted NTCP) were used to create a model for the presumed best practices in the protocol (pDVH{sub 0126,top10%}). Applying the resultant model to the entire sample enabled comparisons between DVHs that patients could have received to DVHs they actually received. Excess risk quantified the clinical impact of suboptimal planning. Accuracy of pDVH predictions was validated by replanning 30 of 219 patients (13.7%), including equal numbers of presumed “high-quality,” “low-quality,” and randomly sampled plans. NTCP-predicted toxicities were compared to adverse events on protocol. Results: Existing models showed that bladder-sparing variations were less prevalent than rectum quality variations and that increased rectal sparing was not correlated with target metrics (dose received by 98% and 2% of the PTV, respectively). Observed toxicities were consistent with current LKB parameters. Converting DVH and pDVH{sub 0126,top10%} to rectal NTCPs, we observed 94 of 219 patients (42.9%) with ≥5% excess risk, 20 of 219 patients (9.1%) with ≥10% excess risk, and 2 of 219 patients (0.9%) with ≥15% excess risk. Replanning demonstrated the

  13. Interim Status Report for Risk Management for SFRs

    SciTech Connect (OSTI)

    Jankovsky, Zachary Kyle; Denman, Matthew R.; Groth, Katrina; Wheeler, Timothy A.

    2015-10-01

    Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of passive, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the system's design to take advantage of natural phenomena to manage the accident. Inherently and passively safe designs are laudable, but nonetheless extreme boundary conditions can interfere with the design attributes which facilitate inherent safety, thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a variety of beyond design basis events with the intent of exploring the utility of a Dynamic Bayesian Network to infer the state of the reactor to inform the operator's corrective actions. These inferences also serve to identify the instruments most critical to informing an operator's actions as candidates for hardening against radiation and other extreme environmental conditions that may exist in an accident. This reduction in uncertainty serves to inform ongoing discussions of how small sodium reactors would be licensed and may serve to reduce regulatory risk and cost for such reactors.

  14. Risk Informed Margins Management as part of Risk Informed Safety Margin Characterization

    SciTech Connect (OSTI)

    Curtis Smith

    2014-06-01

    The ability to better characterize and quantify safety margin is important to improved decision making about Light Water Reactor (LWR) design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margin management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. In addition, as research and development in the LWR Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plant safety and performance will become known. To support decision making related to economics, readability, and safety, the Risk Informed Safety Margin Characterization (RISMC) Pathway provides methods and tools that enable mitigation options known as risk informed margins management (RIMM) strategies.

  15. 2014 Annual Planning Summary for the Office of Environmental Management

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the Office of Environmental Management.

  16. 2011 Annual Planning Summary for Legacy Management (LM)

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within Legacy Management (LM).

  17. 2013 Annual Planning Summary for the Office of Legacy Management

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Office of Legacy Management .

  18. 2014 Annual Planning Summary for the Office of Legacy Management

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the Office of Legacy Management..

  19. Project Schedules and Milestones Draft July 2014 Site Management Plan Page 1

    Office of Legacy Management (LM)

    Draft July 2014 Site Management Plan Page 1 5.0 Project Schedules and Milestones (FY 2015-FY 2017) 5.1 Establishing Project Schedules and Milestones As stated in Section 1.1.2, the Site Management Plan (SMP) establishes the overall plan for remedial actions at the Monticello Mill Tailings Site (MMTS) and milestones against which progress can be measured. The SMP also documents the overall plan for remedial actions at the Monticello Vicinity Properties site (MVP), which was deleted from the

  20. Project Schedules and Milestones Final August 2013 Site Management Plan Page 1

    Office of Legacy Management (LM)

    Final August 2013 Site Management Plan Page 1 5.0 Project Schedules and Milestones (FY 2014-FY 2016) 5.1 Establishing Project Schedules and Milestones As stated in Section 1.1.2, the Site Management Plan (SMP) establishes the overall plan for remedial actions at the Monticello Mill Tailings Site (MMTS) and milestones against which progress can be measured. The SMP also documents the overall plan for remedial actions at the Monticello Vicinity Properties site (MVP), which was deleted from the

  1. Chasing a specter: Risk management for global environmental change

    SciTech Connect (OSTI)

    O'Riordan, T. ); Rayner, S. )

    1989-10-01

    Global environmental change is both a concept and a process that changes in meaning with scientific discovery, public concern, and political responsiveness. It is the relationship between the problems as perceived and the various institutions that help shape and adapt to such problems that defines global environmental change. There is a kind of race between scientific detective work and political adjustment to lessen the likely impacts that predictive science is trying to verify. Risk analysis, because of its capacity to recognize this relationship in many spheres of problem identification, can contribute to the political debate, mostly by proposing institutional redesign of the relationship among scientific research, public entry, and experimental readjustments to consensus formation and international action. This paper discusses the factors involved in global environmental change, the risk management involved, the holistic interpretation, and the environmental impacts. 21 refs., 5 figs., 5 tabs.

  2. Baseline Risk Assessment Supporting Closure at Waste Management Area C at the Hanford Site Washington

    SciTech Connect (OSTI)

    Singleton, Kristin M.

    2015-01-07

    contamination impacts on groundwater. Waste Management Area C is the first of the Hanford tank farms to begin the closure planning process. The current baseline risk assessment will provide valuable information for making corrective actions and closure decisions for WMA C, and will also support the planning for future tank farm soil investigation and baseline risk assessments.

  3. Columbia Basin Wildlife Mitigation Project : Rainwater Wildlife Area Final Management Plan.

    SciTech Connect (OSTI)

    Childs, Allen

    2002-03-01

    This Draft Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary.

  4. Comparative risk analysis for the Rocky Flats Plant integrated project planning

    SciTech Connect (OSTI)

    Jones, M.E.; Shain, D.I.

    1994-12-31

    The Rocky Flats Plant is developing, with active stakeholder participation, a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs, relative risks to workers and the public, and waste disposition. Comparative risk analysis employs both incremental risk and cumulative risk evaluations to compare risks from postulated options or end states. These postulated options or end states can be various remedial alternatives, or future endstate uses of federal land.

  5. Ecological risk assessment guidance for preparation of remedial investigation/feasibility study work plans

    SciTech Connect (OSTI)

    Pentecost, E.D.; Vinikour, W.S.

    1993-08-01

    This guidance document (1) provides instructions on preparing the components of an ecological work plan to complement the overall site remedial assessment investigation/feasibility study (RI/FS) work plan and (2) directs the user on how to implement ecological tasks identified in the plan. Under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfired Amendments and Reauthorization Act of 1986 (SARA), an RI/FS work plan win have to be developed as part of the site-remediation scoping the process. Specific guidance on the RI/FS process and the preparation of work plans has been developed by the US Environmental Protection Agency (EPA 1988a). This document provides guidance to US Department of Energy (DOE) staff and contractor personnel for incorporation of ecological information into environmental remediation planning and decision making at CERCLA sites. An overview analysis of early ecological risk assessment methods (i.e., in the 1980s) at Superfund sites was conducted by the EPA (1989a). That review provided a perspective of attention given to ecological issues in some of the first RI/FS studies. By itself, that reference is of somewhat limited value; it does, however, establish a basis for comparison of past practices in ecological risk with current, more refined methods.

  6. 2010 Annual Planning Summary for Civilian Radioactive Waste Management (CRWM)

    Broader source: Energy.gov [DOE]

    Annual Planning Summaries briefly describe the status of ongoing NEPA compliance activities, any EAs expected to be prepared in the next 12 months, any EISs expected to be prepared in the next 24...

  7. Tank waste remediation system privatization infrastructure program, configuration management implementation plan

    SciTech Connect (OSTI)

    Schaus, P.S.

    1998-08-18

    This Configuration Management Implementation Plan (CMIP) was developed to assist in managing systems, structures, and components (SSCS), to facilitate the effective control and statusing of changes to SSCS, and to ensure technical consistency between design, performance, and operational requirements. Its purpose is to describe the approach Privatization Infrastructure will take in implementing a configuration management program, to identify the Program`s products that need configuration management control, to determine the rigor of control, and to identify the mechanisms for that control.

  8. INL Site Executable Plan for Energy and Transportation Fuels Management

    SciTech Connect (OSTI)

    Ernest L. Fossum

    2008-11-01

    It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

  9. Systems engineering management and implementation plan for Project W-464, immobilized high-level waste storage

    SciTech Connect (OSTI)

    Wecks, M.D.

    1998-04-15

    The Systems Engineering Management and Implementation Plan (SEMIP) for TWRS Project W-46 describes the project implementation of the Tank Waste Remediation System Systems Engineering Management Plan. (TWRS SEMP), Rev. 1. The SEMIP outlines systems engineering (SE) products and processes to be used by the project for technical baseline development. A formal graded approach is used to determine the products necessary for requirements, design, and operational baseline completion. SE management processes are defined, and roles and responsibilities for management processes and major technical baseline elements are documented.

  10. 2011 Annual Planning Summary for Environmental Management (EM)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Office of Environmental Management (EM).

  11. DOE/NNSA Strategic Performance Evaluation Plan (PEP) FOR MANAGEMENT...

    National Nuclear Security Administration (NNSA)

    -----..,--( () 1 3 even C. Er Manager, NNSA Production Office National Nuclear Security Administration eb . lein Contracting Officer NNSA Production Office Pantex National...

  12. IT Capital Planning Corporate Management Improvement Program (CMIP)

    Broader source: Energy.gov [DOE]

    The Corporate Management Improvement Program (CMIP) was initiated by the Department in recognition of the fact that corporate legacy systems that support administrative functions were nearing the...

  13. Information Resources Management Strategic Plan FY2014-2018

    Office of Environmental Management (EM)

    ... process to ensure all Federal project managers for key IT investments were certified. ... We recognize the need to identify existing and forecast future skill competency gaps, ...

  14. Proposed Resource Management Plan/Final Environmental Impact...

    National Nuclear Security Administration (NNSA)

    ... owl (BLM sensitive species) * Sunnyside green gentian (BLM sensitive species) To manage ... Monitoring wind energy development projects; and * Rehabilitating areas damaged by fires. ...

  15. 2011 Annual Workforce Analysis and Staffing Plan Report- Office of Environmental Management

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  16. Management Policy for Planning, Programming, Budgeting, Operation, Maintenance and Disposal of Real Property

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20

    To establish Department of Energy (DOE) management policy for the planning, programming, budgeting, operation, maintenance and disposal of real property owned by the United States and under the custody and control of DOE.

  17. DOE Awards Small Business Contract for Support, Planning Services to Office of Environmental Management

    Broader source: Energy.gov [DOE]

    Cincinnati - The Department of Energy (DOE) today awarded a $1.5 million contact (task order) to Trinity Engineering Associates, Inc. of Cincinnati, Ohio for planning and support functions for the Office of Environmental Management.

  18. 2012 Annual Workforce Analysis and Staffing Plan Report- Oak Ridge Office of Environmental Management

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  19. 2012 Annual Workforce Analysis and Staffing Plan Report- Office of Environmental Management

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  20. 2013 Annual Workforce Analysis and Staffing Plan Report- Office of Environmental Management

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  1. Acquisition Letter on Acquisition Planning Considerations for Management and Operating Contracts

    Office of Energy Efficiency and Renewable Energy (EERE)

    The attached Acquisition Letter is issued to provide updated guidance on the unique acquisition planning procedures associated with management and operating (M%26O) contracts. Acquisition Letter 2009-3 is cancelled.

  2. 2014 Annual Workforce Analysis and Staffing Plan Report- Office of Environmental Management

    Office of Energy Efficiency and Renewable Energy (EERE)

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  3. Strategic Plan for Sustainable Energy Management and Environmental Stewardship for Los Angeles Unified School District

    SciTech Connect (OSTI)

    Walker, A.; Beattie, D.; Thomas, K.; Davis, K.; Sim, M.; Jhaveri, A.

    2007-11-01

    This Strategic Plan for Sustainable Energy Management and Environmental Stewardship states goals, measures progress toward goals and how actions are monitored to achieve continuous improvement for the Los Angeles Unified School District.

  4. 2015 Annual Workforce Analysis and Staffing Plan Report- Office of Environmental Management

    Office of Energy Efficiency and Renewable Energy (EERE)

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  5. Program and Project Management Policy for the Planning, Programming, Budgeting, and Acquisition of Capital Assets

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-10

    To establish Department of Energy (DOE) program and project management policy for the planning, programming, budgeting, and acquisition of capital assets consistent with the following Office of Management and Budget (OMB) circulars: OMB Circular A-11, Part 3, Planning, Budgeting, and Acquisition of Capital Assets, and the supplement to Part 3, Capital Programming Guide; OMB Circular A-123; OMB Circular A-127; and OMB Circular A-130. Does not cancel other directives. Canceled by DOE N 251.99

  6. System Engineering Management and Implementation Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)

    SciTech Connect (OSTI)

    VAN BEEK, J.E.

    2000-05-05

    This systems Engineering Management and Implementation Plan (SEMIP) describes the Project W-211 implementation of the Tank Farm Contractor Systems Engineering Management Plan (TFC SEMP). The SEMIP defines the systems engineering products and processes used by the project to comply with the TFC SEMP, and provides the basis for tailoring systems engineering processes by applying a graded approach to identify appropriate systems engineering requirements for W-211.

  7. EIS-0182: Western Area Power Administration Energy Planning and Management Program

    Broader source: Energy.gov [DOE]

    The Western Area Power Administration (WAPA) prepared this environmental impact statement to analyze the environmental impacts of its proposal to establish an Energy Planning and Management Program to replace its Guidelines and Acceptance Criteria for the Conservation and Renewable Energy Program and to evaluate ways to make future resource commitments to existing customers. If adopted, the proposed management program would require WAPA's long-term firm customers to implement long-term energy planning to help enhance efficient electric energy use.

  8. I U.S. Department of Energy Corrective Action Plan for Environmental Management Headquarters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ' I U.S. Department of Energy Corrective Action Plan for Environmental Management Headquarters Accident Investigation Report Underground Salt Haul Truck Fire at the Waste Isolation ' Pilot Plant February SJ 2014 Washington, DC 20585 August 2014 Corrective Action Plan for Environmental Management Headquarters Accident Investigation Report Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant February 5, 2014 Prepared : James Hutton Acting Deputy Assistant Secretary for Safety,

  9. Seismic risk management solution for nuclear power plants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Coleman, Justin; Sabharwall, Piyush

    2014-12-01

    Nuclear power plants should safely operate during normal operations and maintain core-cooling capabilities during off-normal events, including external hazards (such as flooding and earthquakes). Management of external hazards to expectable levels of risk is critical to maintaining nuclear facility and nuclear power plant safety. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components). Seismic isolation (SI) is one protective measure showing promise to minimize seismic risk. Current SI designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefitmore » of SI application in the nuclear industry is being recognized and SI systems have been proposed in American Society of Civil Engineer Standard 4, ASCE-4, to be released in the winter of 2014, for light water reactors facilities using commercially available technology. The intent of ASCE-4 is to provide criteria for seismic analysis of safety related nuclear structures such that the responses to design basis seismic events, computed in accordance with this standard, will have a small likelihood of being exceeded. The U.S. nuclear industry has not implemented SI to date; a seismic isolation gap analysis meeting was convened on August 19, 2014, to determine progress on implementing SI in the U.S. nuclear industry. The meeting focused on the systems and components that could benefit from SI. As a result, this article highlights the gaps identified at this meeting.« less

  10. Seismic risk management solution for nuclear power plants

    SciTech Connect (OSTI)

    Coleman, Justin; Sabharwall, Piyush

    2014-12-01

    Nuclear power plants should safely operate during normal operations and maintain core-cooling capabilities during off-normal events, including external hazards (such as flooding and earthquakes). Management of external hazards to expectable levels of risk is critical to maintaining nuclear facility and nuclear power plant safety. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components). Seismic isolation (SI) is one protective measure showing promise to minimize seismic risk. Current SI designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed in American Society of Civil Engineer Standard 4, ASCE-4, to be released in the winter of 2014, for light water reactors facilities using commercially available technology. The intent of ASCE-4 is to provide criteria for seismic analysis of safety related nuclear structures such that the responses to design basis seismic events, computed in accordance with this standard, will have a small likelihood of being exceeded. The U.S. nuclear industry has not implemented SI to date; a seismic isolation gap analysis meeting was convened on August 19, 2014, to determine progress on implementing SI in the U.S. nuclear industry. The meeting focused on the systems and components that could benefit from SI. As a result, this article highlights the gaps identified at this meeting.

  11. Waste Management Plan for the Oak Ridge National Remedial Investigation/Feasibility Study

    SciTech Connect (OSTI)

    Not Available

    1988-04-01

    In accordance with the requirements of the Remedial Investigation/Feasibility Study (RI/FS) Project Quality Assurance Plan, this Waste Management Plan establishes clear lines of responsibility and authority, documentation requirements, and operational guidance for the collection, identification, segregation, classification, packaging, certification, and storage/disposal of wastes. These subjects are discussed in the subsequent sections of this document.

  12. Proposed framework for the Western Area Power Administration Environmental Risk Management Program

    SciTech Connect (OSTI)

    Glantz, C.S.; DiMassa, F.V.; Pelto, P.J.; Brothers, A.J.; Roybal, A.L.

    1994-12-01

    The Western Area Power Administration (Western) views environmental protection and compliance as a top priority as it manages the construction, operation, and maintenance of its vast network of transmission lines, substations, and other facilities. A recent Department of Energy audit of Western`s environmental management activities recommends that Western adopt a formal environmental risk program. To accomplish this goal, Western, in conjunction with Pacific Northwest Laboratory, is in the process of developing a centrally coordinated environmental risk program. This report presents the results of this design effort, and indicates the direction in which Western`s environmental risk program is heading. Western`s environmental risk program will consist of three main components: risk communication, risk assessment, and risk management/decision making. Risk communication is defined as an exchange of information on the potential for threats to human health, public safety, or the environment. This information exchange provides a mechanism for public involvement, and also for the participation in the risk assessment and management process by diverse groups or offices within Western. The objective of risk assessment is to evaluate and rank the relative magnitude of risks associated with specific environmental issues that are facing Western. The evaluation and ranking is based on the best available scientific information and judgment and serves as input to the risk management process. Risk management takes risk information and combines it with relevant non-risk factors (e.g., legal mandates, public opinion, costs) to generate risk management options. A risk management tool, such as decision analysis, can be used to help make risk management choices.

  13. Soil Management Plan for the Oak Ridge Y-12 National Security Complex Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    2005-03-02

    This Soil Management Plan applies to all activities conducted under the auspices of the National Nuclear Security Administration (NNSA) Oak Ridge Y-12 National Security Complex (Y-12) that involve soil disturbance and potential management of waste soil. The plan was prepared under the direction of the Y-12 Environmental Compliance Department of the Environment, Safety, and Health Division. Soil disturbances related to maintenance activities, utility and building construction projects, or demolition projects fall within the purview of the plan. This Soil Management Plan represents an integrated, visually oriented, planning and information resource tool for decision making involving excavation or disturbance of soil at Y-12. This Soil Management Plan addresses three primary elements. (1) Regulatory and programmatic requirements for management of soil based on the location of a soil disturbance project and/or the regulatory classification of any contaminants that may be present (Chap. 2). Five general regulatory or programmatic classifications of soil are recognized to be potentially present at Y-12; soil may fall under one or more these classifications: (a) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) pursuant to the Oak Ridge Reservation (ORR) Federal Facilities Agreement; (b) Resource Conservation and Recovery Act (RCRA); (c) RCRA 3004(u) solid waste managements units pursuant to the RCRA Hazardous and Solid Waste Amendments Act of 1984 permit for the ORR; (d) Toxic Substances and Control Act-regulated soil containing polychlorinated biphenyls; and (e) Radiologically contaminated soil regulated under the Atomic Energy Act review process. (2) Information for project planners on current and future planned remedial actions (RAs), as prescribed by CERCLA decision documents (including the scope of the actions and remedial goals), land use controls implemented to support or maintain RAs, RCRA post-closure regulatory requirements for

  14. NNSA Strategic Performance Evaluation Plan (PEP) FOR MANAGEMENT...

    National Nuclear Security Administration (NNSA)

    K. Shook Date Chief, Prime Contracts Office Los Alamos National Laboratory Kevin W. Smith Manager Los Alamos Site Office :dd:.- Date 7J;i;curity Adi2-- Robert M. Poole Date ...

  15. Environmental restoration and waste management site-specific plan for Richland Operations Office. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This document was prepared to implement and support the US Department of Energy-Headquarters (DOE-HQ) national plan. The national plan, entitled Environmental Restoration and Waste Management Five-Year Plan (DOE 1990b) (hereinafter referred to as the DOE-HQ Five-Year Plan) is the cornerstone of the US Department of Energy's (DOE) long-term strategy in environmental restoration and waste management. The DOE-HQ Five-Year Plan addresses overall philosophy and environmental and waste-related activities under the responsibilities of the DOE Office of Environmental Restoration and Waste Management. The plan also reaffirms DOE-HQ goals to bring its nuclear sites into environmental compliance in cooperation with its regulators and the public, and to clean up and restore the environment by 2019 (the commitment for the Hanford Site is for one year sooner, or 2018). This document is part of the site-specific plan for the US Department of Energy-Richland Operations Office (DOE-RL). It is the first revision of the original plan, which was dated December 1989 (DOE-RL 1989a). This document is a companion document to the Overview of the Hanford Cleanup Five-Year Plan (DOE-RL 1989d) and The Hanford Site Environmental Restoration and Waste Management Five-Year Plan Activity Data Sheets (DOE-RL 1991). Although there are three documents that make up the complete DOE-RL plan, this detailed information volume was prepared so it could be used as a standalone document. 71 refs., 40 figs., 28 tabs.

  16. Balancing Cost and Risk: The Treatment of Renewable Energy inWestern Utility Resource Plans

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2005-09-01

    Markets for renewable electricity have grown significantly in recent years, motivated in part by federal tax incentives and in part by state renewables portfolio standards and renewable energy funds. State renewables portfolio standards, for example, motivated approximately 45% of the 4,300 MW of wind power installed in the U.S. from 2001 through 2004, while renewable energy funds supported an additional 15% of these installations. Despite the importance of these state policies, a less widely recognized driver for renewable energy market growth is poised to also play an important role in the coming years: utility integrated resource planning (IRP). Formal resource planning processes have re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, recent resource plans contemplate a significant amount of renewable energy additions. These planned additions - primarily coming from wind power - are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. The treatment of renewable energy in utility resource plans is not uniform, however. Assumptions about the direct and indirect costs of renewable resources, as well as resource availability, differ, as do approaches to incorporating such resources into the candidate portfolios that are analyzed in utility IRPs. The treatment of natural gas price risk, as well as the risk of future environmental regulations, also varies substantially. How utilities balance expected portfolio cost versus risk in selecting a preferred portfolio also differs. Each of these variables may have a substantial effect on the degree to which renewable energy contributes to the preferred portfolio of each utility IRP. This article

  17. Microsoft Word - 2015_0211_Joint FY2015HABWorkPlan_TWC Issue Managers.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated February 11, 2015; incorporates comments from February 2015 EIC discussion Hanford Advisory Board Fiscal Year 2015 Work Plan (FY 2015 Action Overview) - ISSUE MANAGER ASSIGNMENTS Topic Committee Assignment Issue managers (lead in bold) Potential FY 2015 Action/Product Action Q1 Q2 Q3 Q4 1 Deferred Maintenance Plan RAP/HSEP Discussion; sounding board x 2 100 D/H Proposed Plan for ROD RAP Public involvement x 3 Central Plateau Inner Area Principles RAP Policy discussion; advice x x x x 4

  18. Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994. Revision 3

    SciTech Connect (OSTI)

    Turner, J.W.

    1993-12-01

    US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, {open_quotes}Waste Management Plan Outline.{close_quotes} These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES&H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY) 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are documented.

  19. Tank waste remediation system immobilized high-level waste storage project configuration management implementation plan

    SciTech Connect (OSTI)

    Burgard, K.G.

    1998-09-24

    This Configuration Management Implementation Plan was developed to assist in the management of systems, structures, and components, to facilitate the effective control and statusing of changes to systems, structures, and components; and to ensure technical consistency between design, performance, and operational requirements. Its purpose is to describe the approach Project W-464 will take in implementing a configuration management control, to determine the rigor of control, and to identify the mechanisms for imposing that control.This Configuration Management Implementation Plan was developed to assist in the management of systems, structures, and components, to facilitate the effective control and statusing of changes to systems, structures, and components; and to ensure technical consistency between design, performance, and operational requirements. Its purpose is to describe the approach Project W-464 will take in implementing a configuration management control, to determine the rigor of control, and to identify the mechanisms for imposing that control.

  20. Solid waste information and tracking system client-server conversion project management plan

    SciTech Connect (OSTI)

    May, D.L.

    1998-04-15

    This Project Management Plan is the lead planning document governing the proposed conversion of the Solid Waste Information and Tracking System (SWITS) to a client-server architecture. This plan presents the content specified by American National Standards Institute (ANSI)/Institute of Electrical and Electronics Engineers (IEEE) standards for software development, with additional information categories deemed to be necessary to describe the conversion fully. This plan is a living document that will be reviewed on a periodic basis and revised when necessary to reflect changes in baseline design concepts and schedules. This PMP describes the background, planning and management of the SWITS conversion. It does not constitute a statement of product requirements. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents.

  1. Priority service: managing risk by unbundling electric power service

    SciTech Connect (OSTI)

    Chao, H.P.; Oren, S.S.; Smith, S.A.; Wilson, R.B.

    1986-03-01

    The basic features of the Priority Service approach for unbundling the equality attributes of electric power service is described. This paper pointed out how this unbundling of service provides an effective tool for managing the risks faced by electric utilities in the next decade. It is also interesting to compare the features of Priority Service to those that result from deregulation of supply in other industries. In the transportation and communications industries, a primary result of deregulation has been a substantial increase in product differentiation and the tailoring of products to specific customer needs. Thus Priority Service, as a means of product differentiation, offers an opportunity to capture some of the benefits of deregulation without the associated uncertainties and instabilities that are often introduced by deregulating markets. 2 figures, 5 tables.

  2. 340 waste handling complex: Deactivation project management plan

    SciTech Connect (OSTI)

    Stordeur, R.T.

    1998-06-25

    This document provides an overview of the strategy for deactivating the 340 Waste Handling Complex within Hanford`s 300 Area. The plan covers the period from the pending September 30, 1998 cessation of voluntary radioactive liquid waste (RLW) transfers to the 340 Complex, until such time that those portions of the 340 Complex that remain active beyond September 30, 1998, specifically, the Retention Process Sewer (RPS), can also be shut down and deactivated. Specific activities are detailed and divided into two phases. Phase 1 ends in 2001 after the core RLW systems have been deactivated. Phase 2 covers the subsequent interim surveillance of deactivated and stand-by components during the period of continued RPS operation, through the final transfer of the entire 340 Complex to the Environmental Restoration Contractor. One of several possible scenarios was postulated and developed as a budget and schedule planning case.

  3. Fiscal Year 2013 Trails Management Program Mitigation Action Plan Annual Report, October 2013

    SciTech Connect (OSTI)

    Pava, Daniel S.

    2015-03-25

    This Trails Management Program Mitigation Action Plan Annual Report (Trails MAPAR) has been prepared for the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) as part of implementing the 2003 Final Environmental Assessment for the Proposed Los Alamos National Laboratory Trails Management Program (DOE 2003). The Trails Mitigation Action Plan (MAP) is now a part of the Site-Wide Environmental Impact Statement for the Continued Operation of Los Alamos National Laboratory (DOE/EIS 0380) Mitigation Action Plan (2008 SWEIS MAP) (DOE 2008). The MAP provides guidance for the continued implementation of the Trails Management Program at Los Alamos National Laboratory (LANL) and integration of future mitigation actions into the 2008 SWEIS MAP to decrease impacts associated with recreational trails use at LANL. This eighth MAPAR includes a summary of Trails Management Program activities and actions during Fiscal Year (FY) 2013, from October 2012 through September 2013.

  4. WM2014 Conference- Building the Community of Practice for Performance and Risk Assessment in Support of Risk-Informed Environmental Management Decisions

    Broader source: Energy.gov [DOE]

    WM2014 Conference - Building the Community of Practice for Performance and Risk Assessment in Support of Risk-Informed Environmental Management Decisions - 14575

  5. Technical assistance contractor management plan: Surface and ground water

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This report presents the general management structure of the Technical Assistance Contractor (TAC) for the Uranium Mill Tailings Remedial Action (UMTRA) Project. This team is a partnership of four major private subcontractors, which teamed together, are striving to be the leader in environmental restoration of uranium mining and milling operations. It will provide a pool of experts in various aspects of the technologies necessary to accomplish this goal, available to DOE to deal with mission concerns. The report expands on goals from TAC`s mission statement, which include management concerns, environment, safety, and health, quality, technical support, communications, and personnel.

  6. E.O. 13690 (2015): Establishing a Federal Flood Risk Management...

    Broader source: Energy.gov (indexed) [DOE]

    On January 30, 2015, President Obama signed an Executive Order (E.O.) 13690, Establishing a Federal Flood Risk Management Standard and a Process for Further Soliciting and...

  7. Integrating impact assessment and conflict management in urban planning: Experiences from Finland

    SciTech Connect (OSTI)

    Peltonen, Lasse; Sairinen, Rauno

    2010-09-15

    The article examines the interlinkages between recent developments in conflict management and impact assessment procedures in the context of urban planning in Finland. It sets out by introducing the fields of impact assessment and conflict mediation. It then proceeds to discuss the development of impact assessment practices and the status of conflict mediation in Finnish land use planning. The case of Korteniitty infill development plan in Jyvaeskylae is used to demonstrate how the Finnish planning system operates in conflict situations - and how social impact assessment can contribute to managing planning conflicts. The authors ask how the processes of impact assessment contribute to conflict management. Based on the Finnish experience, it is argued that social impact assessment of land use plans can contribute to conflict management, especially in the absence of institutionalised conflict mediation processes. In addition, SIA may acquire features of conflict mediation, depending on extent and intensity of stakeholder participation in the process, and the quality of linkages it between knowledge production and decision-making. Simultaneously, conflict mediation practices and theoretical insights can inform the application of SIA to help it address land use conflicts more consciously.

  8. North Slope Decision Support for Water Resource Planning and Management

    SciTech Connect (OSTI)

    Schnabel, William; Brumbelow, Kelly

    2013-03-31

    The objective of this project was to enhance the water resource decision-making process with respect to oil and gas exploration/production activities on Alaska’s North Slope. To this end, a web-based software tool was developed to allow stakeholders to assemble, evaluate, and communicate relevant information between and amongst themselves. The software, termed North Slope Decision Support System (NSDSS), is a visually-referenced database that provides a platform for running complex natural system, planning, and optimization models. The NSDSS design was based upon community input garnered during a series of stakeholder workshops, and the end product software is freely available to all stakeholders via the project website. The tool now resides on servers hosted by the UAF Water and Environmental Research Center, and will remain accessible and free-of-charge for all interested stakeholders. The development of the tool fostered new advances in the area of data evaluation and decision support technologies, and the finished product is envisioned to enhance water resource planning activities on Alaska’s North Slope.

  9. Quality Assurance Program Plan (QAPP) Waste Management Project

    SciTech Connect (OSTI)

    HORHOTA, M.J.

    2000-12-21

    The Waste Management Project (WMP) is committed to excellence in our work and to delivering quality products and services to our customers, protecting our employees and the public and to being good stewards of the environment. We will continually strive to understand customer requirements, perform services, and activities that meet or exceed customer expectations, and be cost-effective in our performance. The WMP maintains an environment that fosters continuous improvement in our processes, performance, safety and quality. The achievement of quality will require the total commitment of all WMP employees to our ethic that Quality, Health and Safety, and Regulatory Compliance must come before profits. The successful implementation of this policy and ethic requires a formal, documented management quality system to ensure quality standards are established and achieved in all activities. The following principles are the foundation of our quality system. Senior management will take full ownership of the quality system and will create an environment that ensures quality objectives are met, standards are clearly established, and performance is measured and evaluated. Line management will be responsible for quality system implementation. Each organization will adhere to all quality system requirements that apply to their function. Every employee will be responsible for their work quality, to work safely and for complying with the policies, procedures and instructions applicable to their activities. Quality will be addressed and verified during all phases of our work scope from proposal development through closeout including contracts or projects. Continuous quality improvement will be an ongoing process. Our quality ethic and these quality principles constantly guide our actions. We will meet our own quality expectations and exceed those of our customers with vigilance, commitment, teamwork, and persistence.

  10. Quality assurance management plan (QAPP) special analytical support (SAS)

    SciTech Connect (OSTI)

    LOCKREM, L.L.

    1999-05-20

    It is the policy of Special Analytical Support (SAS) that the analytical aspects of all environmental data generated and processed in the laboratory, subject to the Environmental Protection Agency (EPA), U.S. Department of Energy or other project specific requirements, be of known and acceptable quality. It is the intention of this QAPP to establish and assure that an effective quality controlled management system is maintained in order to meet the quality requirements of the intended use(s) of the data.

  11. Risk Level Based Management System: a control banding model for occupational health and safety risk management in a highly regulated environment

    SciTech Connect (OSTI)

    Zalk, D; Kamerzell, R; Paik, S; Kapp, J; Harrington, D; Swuste, P

    2009-05-27

    The Risk Level Based Management System (RLBMS) is an occupational risk management (ORM) model that focuses occupational safety, hygeiene, and health (OSHH) resources on the highest risk procedures at work. This article demonstrates the model's simplicity through an implementation within a heavily regulated research institution. The model utilizes control banding strategies with a stratification of four risk levels (RLs) for many commonly performed maintenance and support activities, characterizing risk consistently for comparable tasks. RLBMS creates an auditable tracking of activities, maximizes OSHH professional field time, and standardizes documentation and control commensurate to a given task's RL. Validation of RLs and their exposure control effectiveness is collected in a traditional quantitative collection regime for regulatory auditing. However, qualitative risk assessment methods are also used within this validation process. Participatory approaches are used throughout the RLBMS process. Workers are involved in all phases of building, maintaining, and improving this model. This work participation also improves the implementation of established controls.

  12. Environmental guidelines for Development of Cultural Resource Management plans. Working draft for comment

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    DOE has stewardship responsibilities for managing the cultural resources remaining on DOE-owned and other lands impacted by DOE programs. Goal of the DOE-wide Cultural Resource Management (CRM) program is to identify and consolidate compliance actions associated with statutory and regulatory requirements. This document is to provide guidelines to DOE field managers; its implementation is intended to assure that each DOE facility and program complies with executive orders, statutes, and regulations governing the management of cultural resources. It covers CRM goals, existing conditions, CRM methods, CRM procedures and administration, and plan attachments. Glossary, legislation, and documents are covered in appendices.

  13. RCRA Groundwater Monitoring Plan for Single-Shell Tank Waste Management Area C at the Hanford Site

    SciTech Connect (OSTI)

    Horton, Duane G.; Narbutovskih, Susan M.

    2001-01-01

    This document describes the groundwater monitoring plan for Waste Management Area C located in the 200 East Area of the DOE Hanford Site. This plan is required under Resource Conservation and Recovery Act of 1976 (RCRA).

  14. Characterization Program Management Plan for Hanford K Basin Spent Nuclear Fuel (SNF) (OCRWM)

    SciTech Connect (OSTI)

    BAKER, R.B.; TRIMBLE, D.J.

    2000-12-12

    The management plan developed to characterize the K Basin spent nuclear fuel (SNF) and sludge was originally developed for Westinghouse Hanford Company and Pacific Northwest National Laboratory to work together on a program to provide characterization data to support removal, conditioning, and subsequent dry storage of the SNF stored at the Hanford K Basins. The plan also addressed necessary characterization for the removal, transport, and storage of the sludge from the Hanford K Basins. This plan was revised in 1999 (i.e., Revision 2) to incorporate actions necessary to respond to the deficiencies revealed as the result of Quality Assurance surveillances and audits in 1999 with respect to the fuel characterization activities. Revision 3 to this Program Management Plan responds to a Worker Assessment resolution determined in Fical Year 2000. This revision includes an update to current organizational structures and other revisions needed to keep this management plan consistent with the current project scope. The plan continues to address both the SNF and the sludge accumulated at K Basins. Most activities for the characterization of the SNF have been completed. Data validation, Office of Civilian Radioactive Waste Management (OCRWM) document reviews, and OCRWM data qualification are the remaining SNF characterization activities. The transport and storage of K Basin sludge are affected by recent path forward revisions. These revisions require additional laboratory analyses of the sludge to complete the acquisition of required supporting engineering data. Hence, this revision of the management plan provides the overall work control for these remaining SNF and sludge characterization activities given the current organizational structure of the SNF Project.

  15. EIS-0480: Long-Term Experimental and Management Plan for the Operation of Glen Canyon Dam

    Office of Energy Efficiency and Renewable Energy (EERE)

    Two agencies of the Department of the Interior, Bureau of Reclamation and National Park Service, are jointly preparing a Long-Term Experimental and Management Plan for the Glen Canyon Dam and an EIS for adoption of the Plan. The Glen Canyon Dam, on the Colorado River in northern, Arizona, generates hydroelectric power that is marketed by DOE's Western Area Power Administration, a cooperating agency.

  16. Microsoft Word - Approved TOC Contract Management Plan 10_27_08_Rev_0.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TANK OPERATIONS CONTRACT Contract No. DE-AC27-08RV14800 CONTRACT MANAGEMENT PLAN Washington River Protection Solutions LLC U.S. Department of Energy OFFICE OF RIVER PROTECTION __Original Signed and in Contract File_________ ___10/27/08________ Joseph C. Poniatowski Date Contracting Officer AMD, 509-376-2760 DE-AC27-08RV14800 CMP Rev. 0 October 27, 2008 i TABLE OF CONTENTS 1.0 PURPOSE OF PLAN

  17. Microsoft Word - Final_Rev_3_-_PRC_Contract_Management_Plan.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PLATEAU REMEDIATION CONTRACT Contract No. DE-AC06-08RL14788 CONTRACT MANAGEMENT PLAN (Rev 3) U.S. Department of Energy RICHLAND OPERATIONS OFFICE Effective April 14, 2016 DE-AC06-08RL14788 CMP Rev. 3 DRAFT DRAFT DATE Oct 01, 2013 i TABLE OF CONTENTS 1.0 PURPOSE OF PLAN ......................................................................................................... 1 2.0 CONTRACT SUMMARY AND BACKGROUND OF THE SCOPE OF WORK .................... 1 3.0 IDENTIFICATION OF KEY CONTRACT

  18. Integrated Safety Management System as the Basis for Work Planning and Control for Research and Development

    Broader source: Energy.gov [DOE]

    Slide Presentation by Rich Davies, Kami Lowry, Mike Schlender, Pacific Northwest National Laboratory (PNNL) and Ted Pietrok, Pacific Northwest Site Office (PNSO). Integrated Safety Management System as the Basis for Work Planning and Control for Research and Development. Work Planning and Control (WP&C) is essential to assuring the safety of workers and the public regardless of the scope of work Research and Development (R&D) activities are no exception.

  19. ORNL long-range environmental and waste management plan: Program overview and summary

    SciTech Connect (OSTI)

    Bates, L.D.; Berry, J.B.; Butterworth, G.E.; du Mont, S.P.; Easterday, C.A.; Geisler, A.H.; Hill, L.G.; Kendrick, C.M.; McNeese, L.E.; Myrick, T.E.; Pudelek, R.E.; Rohwer, P.S.; Scanlan, T.F.; Stratton, L.E.; Trabalka, J.R.; Youngblood, E.L.

    1988-04-01

    The primary purpose of this report is to provide a thorough and systematic planning document to reflect the continuing process of site assessment, strategy development, and planning for the current and long-term control of environmental issues, waste management practices, and remedial action requirements. The docuemnt also provides an estimate of the resources required to implement the current plan. This document is not intended to be a budget document: it is, however, intended to provide guidance to both Martin Marietta Energy Systems, Inc., and the US Department of Energy (DOE) Management as to the near order of magnitude of the resources (primarily funding requirements) and the time frame required to execute the strategy in the present revision of the plan. The near-term (one to three years) part of the plan is a realistic assessment of the current program and ongoing capital projects and reflects the efforts preceived to be necessary to comply with all current state and federal regulations and DOE orders. It also should be in general agreement with current budget (funding) requests and obligations for these immediate years. Beyond the immediate time frame, the document reflects the strategy and the project and funding estimates as a snapshot at the time of publication. Annual revision will reflect the continuing evoltuion and development of environmental and waste management processes, characterizations, remedial actions, regulations, an strategies for the establishment and conduct of a comprehensive environmental and waste management program. 15 figs., 10 tabs.

  20. Site specific plan. [Environmental Restoration and Waste Management, Savannah River Site

    SciTech Connect (OSTI)

    Hutchison, J.; Jernigan, G.

    1989-12-01

    The Environmental Restoration and Waste Management Five-Year Plan (FYP) covers the period for FY 1989 through FY 1995. The plan establishes a Department of Energy -- Headquarters (DOE-HQ) agenda for cleanup and compliance against which overall progress can be measured. The FYP covers three areas: Corrective Activities, Environmental Restoration, and Waste Management Operations. Corrective Activities are those activities necessary to bring active or standby facilities into compliance with local, state, and federal environmental regulations. Environmental restoration activities include the assessment and cleanup of surplus facilities and inactive waste sites. Waste management operations includes the treatment, storage, and disposal of wastes which are generated as a result of ongoing operations. This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show how environmental restoration and waste management activities that were identified during the preparation of the FYP will be implemented, tracked, and reported. The SSP describes DOE Savannah River (DOE-SR) and operating contractor, Westinghouse Savannah River Company (WSRC), organizations that are responsible, for undertaking the activities identified in this plan. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. 8 refs., 46 figs., 23 tabs.

  1. Accidental release prevention requirement: Risk management programs under Clean Air Act section 112(r)(7)

    SciTech Connect (OSTI)

    Hahn, J. [Integrated Waste Services Association, Fairfield, NJ (United States)

    1997-12-01

    The Occupational Safety and Health Administration promulgates and enforces regulations that govern the health and safety of workers. OSHA rules often are considered to govern what happens {open_quotes}inside the fence line,{close_quotes} or within the physical boundaries of the facility. In some ways, the U.S. Environmental Protection Agency takes over where OSHA leaves off. The U.S. EPA is responsible for environmental programs {open_quotes}outside the fence line.{close_quotes} The concept is as simple as drawing a line, or is it? Anyone developing and implementing compliance programs, whether for OSHA or EPA, will tell you nothing is that simple. EPA`s recent promulgation of rules pertaining to risk management programs is a case in point. A new EPA rule is intended to compliment OSHA requirements under the Process Safety Management (PSM) rule. Under the OSHA rule, plant operators developed programs that ensure safe measures are in use when handling certain chemicals. During the past three years, waste-to-energy facilities faced difficult decisions when complying with the PSM requirements. Earlier this year, the US EPA promulgated its 112(r)(7) rule that is intended to `complement` OSHA`s PSM requirements. This is not always the case. Unfortunately, these new Clean Air Act requirements do not always complement, but may instead confuse plant operators. For example, EPA`s 112(r) rule may force plant operators to change, once again, their decisions on the use of selected chemicals. The US EPA estimates that approximately 66,000 facilities, including the 114 waste-to-energy facilities nationwide, may be affected by the list and risk management planning rules. The facilities include chemical and many other manufacturers, cold storage facilities with ammonia refrigeration systems, public water treatment systems, wholesalers and distributors of these chemicals, propane retailers, utilities, and federal facilities.

  2. Quality Assurance Plan for Transportation Management Division Transportation Training Programs

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The U.S. Department of Transportation (DOT) implemented new rules requiring minimum levels of training for certain key individuals who handle, package, transport, or otherwise prepare hazardous materials for transportation. In response to these rules, the U.S. Department of Energy (DOE), Transportation Management Division (TMD), has developed a transportation safety training program. This program supplies designed instructional methodology and course materials to provide basic levels of DOT training to personnel for whom training has become mandatory. In addition, this program provides advanced hazardous waste and radioactive material packaging and transportation training to help personnel achieve proficiency and/or certification as hazardous waste and radioactive material shippers. This training program does not include site-specific or task-specific training beyond DOT requirements.

  3. Native Grass Community Management Plan for the Oak Ridge Reservation

    SciTech Connect (OSTI)

    Ryon, Michael G; Parr, Patricia Dreyer; Cohen, Kari

    2007-06-01

    Land managers at the Department of Energy's Oak Ridge National Laboratory in East Tennessee are restoring native warm-season grasses and wildflowers to various sites across the Oak Ridge Reservation (ORR). Some of the numerous benefits to planting native grasses and forbs include improved habitat quality for wildlife, improved aesthetic values, lower long-term maintenance costs, and compliance with Executive Order 13112 (Clinton 1999). Challenges to restoring native plants on the ORR include the need to gain experience in establishing and maintaining these communities and the potentially greater up-front costs of getting native grasses established. The goals of the native grass program are generally outlined on a fiscal-year basis. An overview of some of the issues associated with the successful and cost-effective establishment and maintenance of native grass and wildflower stands on the ORR is presented in this report.

  4. DNFSB Recommendation 94-1 Hanford Site Integrated Stabilization Management Plan. Volume 1

    SciTech Connect (OSTI)

    McCormack, R.L.

    1995-08-01

    This document describes the plans of the Hanford Site for the safe interim storage of fissile materials. Currently, spent nuclear fuels reside in storage basins that have leaked in the past and are projected to leak in the future. Other problems in the basins include; sludge from decomposition, degraded cladding of fuel elements, and construction defects which make the basins seismically unsafe. This management plan describes the time and cost that it will take to implement a safe interim storage plan for the fissile materials.

  5. AUDIT REPORT The Department of Energy's Cybersecurity Risk Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    program in the areas of patch management, configuration management, and control testing. ... least one site reviewed had developed a tracking system to enhance communication with its ...

  6. Peaking of world oil production: Impacts, mitigation, & risk management

    SciTech Connect (OSTI)

    Hirsch, R.L.; Bezdek, Roger; Wendling, Robert

    2005-02-01

    The peaking of world oil production presents the U.S. and the world with an unprecedented risk management problem. As peaking is approached, liquid fuel prices and price volatility will increase dramatically, and, without timely mitigation, the economic, social, and political costs will be unprecedented. Viable mitigation options exist on both the supply and demand sides, but to have substantial impact, they must be initiated more than a decade in advance of peaking.... The purpose of this analysis was to identify the critical issues surrounding the occurrence and mitigation of world oil production peaking. We simplified many of the complexities in an effort to provide a transparent analysis. Nevertheless, our study is neither simple nor brief. We recognize that when oil prices escalate dramatically, there will be demand and economic impacts that will alter our simplified assumptions. Consideration of those feedbacks will be a daunting task but one that should be undertaken. Our aim in this study is to-- • Summarize the difficulties of oil production forecasting; • Identify the fundamentals that show why world oil production peaking is such a unique challenge; • Show why mitigation will take a decade or more of intense effort; • Examine the potential economic effects of oil peaking; • Describe what might be accomplished under three example mitigation scenarios. • Stimulate serious discussion of the problem, suggest more definitive studies, and engender interest in timely action to mitigate its impacts.

  7. RCRA Assessment Plan for Single-Shell Tank Waste Management Area A-AX at the Hanford Site

    SciTech Connect (OSTI)

    Narbutovskih, Susan M.; Chou, Charissa J.

    2006-03-03

    This document describes a groundwater assessment plan for the single-shell tank systems in Waste Management Area A-AX at the Hanford Site.

  8. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Waste Management Plan

    SciTech Connect (OSTI)

    G. L. Schwendiman

    2006-07-01

    This Waste Management Plan describes waste management and waste minimization activities for Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory. The waste management activities described in this plan support the selected response action presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. This plan identifies the waste streams that will be generated during implementation of the remedial action and presents plans for waste minimization, waste management strategies, and waste disposition.

  9. EIS-0521: Incorporating Gunnison Sage-Grouse Conservation Measures into Resource Management Plans; Colorado and Utah

    Broader source: Energy.gov [DOE]

    Bureau of Land Management (BLM) is preparing an EIS that will analyze the potential environmental impacts of proposed Resource Management Plan amendments that would incorporate conservation measures for the Gunnison Sage-Grouse and its habitat on public land within the range of the species. Due to the presence of Western Area Power Administration’s high-voltage transmission lines throughout Gunnison Sage-Grouse habitat, Western is participating as a cooperating agency.

  10. Planning and management of the Nido Reef Complex Oil Field development, Philippines

    SciTech Connect (OSTI)

    Harry, R.Y.

    1981-01-01

    As Operator for the Northeast Palawan consortium, Philippines-Cities Service, Inc., commenced the Philippines first commercial offshore oil production from the Nido Reef Complex Oil Field on February 1, 1979, some 11 months after a decision by management to start development. The relative speed at which design, fabrication, and construction were accomplished is attributed to the use of the concepts of project planning, task force approach, and project management. This paper presents the above concepts as applied to the Nido Complex.

  11. Waste Management Planned for the Advanced Fuel Cycle Facility

    SciTech Connect (OSTI)

    Soelberg

    2007-09-01

    The U.S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP) program has been proposed to develop and employ advanced technologies to increase the proliferation resistance of spent nuclear fuels, recover and reuse nuclear fuel resources, and reduce the amount of wastes requiring permanent geological disposal. In the initial GNEP fuel cycle concept, spent nuclear fuel is to be reprocessed to separate re-useable transuranic elements and uranium from waste fission products, for fabricating new fuel for fast reactors. The separated wastes would be converted to robust waste forms for disposal. The Advanced Fuel Cycle Facility (AFCF) is proposed by DOE for developing and demonstrating spent nuclear fuel recycling technologies and systems. The AFCF will include capabilities for receiving and reprocessing spent fuel and fabricating new nuclear fuel from the reprocessed spent fuel. Reprocessing and fuel fabrication activities will generate a variety of radioactive and mixed waste streams. Some of these waste streams are unique and unprecedented. The GNEP vision challenges traditional U.S. radioactive waste policies and regulations. Product and waste streams have been identified during conceptual design. Waste treatment technologies have been proposed based on the characteristics of the waste streams and the expected requirements for the final waste forms. Results of AFCF operations will advance new technologies that will contribute to safe and economical commercial spent fuel reprocessing facilities needed to meet the GNEP vision. As conceptual design work and research and design continues, the waste management strategies for the AFCF are expected to also evolve.

  12. Insurance as a Risk Management Instrument for Energy Infrastructure Security and Resilience Report Now Available

    Broader source: Energy.gov [DOE]

    The Office of Electricity Delivery and Energy Reliability has released a report that examines the key risks confronting critical energy infrastructure and ways in which the insurance industry can help manage these risks. In most developed countries, insurance is one of the principal risk management instruments for aiding in recovery after a disaster and for encouraging future investments that are more resilient to potential hazards.

  13. "Insurance as a Risk Management Instrument for Energy Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Security and Resilience" Report (March 2013) | Department of Energy "Insurance as a Risk Management Instrument for Energy Infrastructure Security and Resilience" Report (March 2013) "Insurance as a Risk Management Instrument for Energy Infrastructure Security and Resilience" Report (March 2013) The Office of Electricity Delivery and Energy Reliability has released a report that examines the key risks confronting critical energy infrastructure and ways in which the

  14. Notice of Publication of Electricity Subsector Cybersecurity Risk Management Process: Federal Register Notice Volume 77, No. 100- May 23, 2012

    Broader source: Energy.gov [DOE]

    This serves as public notification of the publication, by the Department of Energy (DOE) of the Electricity Subsector Cybersecurity Risk Management Process guideline. The guideline describes a risk...

  15. Managing the Risks of Climate Change and Terrorism

    SciTech Connect (OSTI)

    Rosa, Eugene; Dietz, Tom; Moss, Richard H.; Atran, Scott; Moser, Susanne

    2012-04-07

    Society has difficult decisions to make about how best to allocate its resources to ensure future sustainability. Risk assessment can be a valuable tool: it has long been used to support decisions to address environmental problems. But in a time when the risks to sustainability range from climate change to terrorism, applying risk assessment to sustainability will require careful rethinking. For new threats, we will need a new approach to risk assessment.

  16. Planning for risk-informed/performance-based fire protection at nuclear power plants. Final report

    SciTech Connect (OSTI)

    Najafi, B.; Parkinson, W.J.; Lee, J.A.

    1997-12-01

    This document presents a framework for discussing issues and building consensus towards use of fire modeling and risk technology in nuclear power plant fire protection program implementation. The plan describes a three-phase approach: development of core technologies, implementation of methods, and finally, case studies and pilot applications to verify viability of such methods. The core technologies are defined as fire modeling, fire and system tests, use of operational data, and system and risk techniques. The implementation phase addresses the programmatic issues involved in implementing a risk-informed/performance-based approach in an integrated approach with risk/performance measures. The programmatic elements include: (1) a relationship with fire codes and standards development as defined by the ongoing effort of NFPA for development of performance-based standards; (2) the ability for NRC to undertake inspection and enforcement; and (3) the benefit to utilities in terms of cost versus safety. The case studies are intended to demonstrate applicability of single issue resolution while pilot applications are intended to check the applicability of the integrated program as a whole.

  17. Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. To address the facility-specific and site-specific vulnerabilities, responsible DOE and site-contractor line organizations have developed initial site response plans. These plans, presented as Volume 2 of this Management Response Plan, describe the actions needed to mitigate or eliminate the facility- and site-specific vulnerabilities identified by the CSV Working Group field verification teams. Initial site response plans are described for: Brookhaven National Lab., Hanford Site, Idaho National Engineering Lab., Lawrence Livermore National Lab., Los Alamos National Lab., Oak Ridge Reservation, Rocky Flats Plant, Sandia National Laboratories, and Savannah River Site.

  18. Characterization program management plan for Hanford K basin spent nuclear fuel

    SciTech Connect (OSTI)

    TRIMBLE, D.J.

    1999-07-19

    The program management plan for characterization of the K Basin spent nuclear fuel was revised to incorporate corrective actions in response to SNF Project QA surveillance 1K-FY-99-060. This revision of the SNF Characterization PMP replaces Duke Eng.

  19. Characterization program management plan for Hanford K Basin spent nuclear fuel

    SciTech Connect (OSTI)

    Lawrence, L.A.

    1998-05-14

    The management plan developed to characterize the K Basin Spent Nuclear Fuel was revised to incorporate actions necessary to comply with the Office of Civilian Radioactive Waste Management Quality Assurance Requirements Document 0333P. This plan was originally developed for Westinghouse Hanford Company and Pacific Northwest National Laboratory to work together on a program to provide characterization data to support removal, conditioning, and subsequent dry storage of the spent nuclear fuels stored at the Hanford K Basins. This revision to the Program Management Plan replaces Westinghouse Hanford Company with Duke Engineering and Services Hanford, Inc., updates the various activities where necessary, and expands the Quality Assurance requirements to meet the applicable requirements document. Characterization will continue to utilize the expertise and capabilities of both organizations to support the Spent Nuclear Fuels Project goals and objectives. This Management Plan defines the structure and establishes the roles for the participants providing the framework for Duke Engineering and Services Hanford, Inc. and Pacific Northwest National Laboratory to support the Spent Nuclear Fuels Project at Hanford.

  20. U.S. Department of Energy Corrective Action Plan for Environmental Management Headquarters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corrective Action Plan for Environmental Management Headquarters Phase 1: Radiological Release Event at the Waste Isolation Pilot Plant on February 14, 2014 Washington, DC 20585 March 2015 Page 3 of 32 TABLE OF CONTENTS 1.0 PURPOSE ..................................................................................................................................................5 2.0 BACKGROUND

  1. Hellsgate Big Game Winter Range Wildlife Mitigation Site Specific Management Plan for the Hellsgate Project.

    SciTech Connect (OSTI)

    Berger, Matthew T.; Judd, Steven L.

    1999-01-01

    This report contains a detailed site-specific management plan for the Hellsgate Winter Range Wildlife Mitigation Project. The report provides background information about the mitigation process, the review process, mitigation acquisitions, Habitat Evaluation Procedures (HEP) and mitigation crediting, current habitat conditions, desired future habitat conditions, restoration/enhancements efforts and maps.

  2. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2008-09-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

  3. Strategic Energy Management Plan for the Santa Ynez Band of Chumash Indians

    SciTech Connect (OSTI)

    Davenport, Lars; Smythe, Louisa; Sarquilla, Lindsey; Ferguson, Kelly

    2015-03-27

    This plan outlines the Santa Ynez Band of Chumash Indians’ comprehensive energy management strategy including an assessment of current practices, a commitment to improving energy performance and reducing overall energy use, and recommended actions to achieve these goals. Vision Statement The primary objective of the Strategic Energy Management Plan is to implement energy efficiency, energy security, conservation, education, and renewable energy projects that align with the economic goals and cultural values of the community to improve the health and welfare of the tribe. The intended outcomes of implementing the energy plan include job creation, capacity building, and reduced energy costs for tribal community members, and tribal operations. By encouraging energy independence and local power production the plan will promote self-sufficiency. Mission & Objectives The Strategic Energy Plan will provide information and suggestions to guide tribal decision-making and provide a foundation for effective management of energy resources within the Santa Ynez Band of Chumash Indians (SYBCI) community. The objectives of developing this plan include; Assess current energy demand and costs of all tribal enterprises, offices, and facilities; Provide a baseline assessment of the SYBCI’s energy resources so that future progress can be clearly and consistently measured, and current usage better understood; Project future energy demand; Establish a system for centralized, ongoing tracking and analysis of tribal energy data that is applicable across sectors, facilities, and activities; Develop a unifying vision that is consistent with the tribe’s long-term cultural, social, environmental, and economic goals; Identify and evaluate the potential of opportunities for development of long-term, cost effective energy sources, such as renewable energy, energy efficiency and conservation, and other feasible supply- and demand-side options; and Build the SYBCI’s capacity for

  4. Using Measurement and Verification to Manage Risk in Federal Energy- and Water-Saving Projects

    Broader source: Energy.gov [DOE]

    "Risk," in the context of measurement and verification (M&V), refers to the uncertainty that expected savings will be realized. Assumption of risk implies acceptance of the potential monetary consequences. Energy service companies (ESCOs) and agencies are each reluctant to assume responsibility for factors they cannot control, and holding certain parameters fixed in the M&V plan can match up responsibilities.

  5. DNFSB recommendation 94-1 Hanford site integrated stabilization management plan - Volumes 1-3

    SciTech Connect (OSTI)

    Gerber, E.W.

    1996-09-30

    The Hanford Site Integrated Stabilization Management Plan (SISMP) was developed in support of the US Department of Energy's (DOE) Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1 Integrated Program Plan (IPP). Volume 1 of the SISMP identifies the technical scope and costs associated with Hanford Site plans to resolve concerns identified in DNFSB Recommendation 94-1. Volume 2 of the SISMP provides the Resource Loaded Integrated Schedules for Spent Nuclear Fuel Project and Plutonium Finishing Plant activities identified in Volume 1 of the SISMP. Volume 3 of the SISMP identifies the 35 Plutonium Environmental, Safety, and Health Vulnerabilities. The vulnerabilities range from institutional problems to specific hardware problems. Many of the identified vulnerabilities will be corrected through the stabilization and packaging activities required by the DNFSB Recommendation 94-1 Implementation Plan, the remainder will be corrected as a part of the plutonium handling facilities transition (deactivation) to the Environmental Restoration Program.

  6. River Protection Project Integrated safety management system phase II verification review plan - 7/29/99

    SciTech Connect (OSTI)

    SHOOP, D.S.

    1999-09-10

    The purpose of this review is to verify the implementation status of the Integrated Safety Management System (ISMS) for the River Protection Project (RPP) facilities managed by Fluor Daniel Hanford, Inc. (FDH) and operated by Lockheed Martin Hanford Company (LMHC). This review will also ascertain whether within RPP facilities and operations the work planning and execution processes are in place and functioning to effectively protect the health and safety of the workers, public, environment, and federal property over the RPP life cycle. The RPP ISMS should support the Hanford Strategic Plan (DOERL-96-92) to safely clean up and manage the site's legacy waste and deploy science and technology while incorporating the ISMS central theme to ''Do work safely'' and protect human health and the environment.

  7. PARALLELS OF RADIATION- AND FINANCIAL-RISK MANAGEMENT ON PUBLIC ACCEPTANCE

    SciTech Connect (OSTI)

    Hogue, M.

    2010-01-04

    The financial collapse of 2007 provides an opportunity for a cross-discipline comparison of risk assessments. Flaws in financial risk assessments bear part of the blame for the financial collapse. There may be a potential for similar flaws to be made in radiological risk assessments. Risk assessments in finance and health physics are discussed in the context of a broader view of the risk management environment. Flawed risk assessments can adversely influence public acceptance of radiological technologies, so the importance of quality is magnified.

  8. Environmental Management Los Alamos Field Corrective Action Plan- Radiological Release Phase II

    Broader source: Energy.gov [DOE]

    On March 22, 2015, the Department of Energy established an Environmental Management Los Alamos Field Office (EM-LA) responsible for management of the environmental restoration and the legacy waste management programs at LANL. The NA-LA continues with the responsibility for the management of LANL's national security mission and the enduring waste management program (newly generated waste). As a result of this delineation in responsibilities, this corrective action plan was prepared collaboratively between NA-LA and EM-LA Field Offices, with joint responsibility for addressing the Judgement of Needs (JONs) identified in the Accident Investigation Board Accident Investigation Report, Phase 2 Radiological Release Event at the Waste Isolation Pilot Plant, February 14, 2014, dated April 2015.

  9. Using Measurement and Verification to Manage Risk in Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assumption of risk implies acceptance of the potential monetary consequences. Energy service companies (ESCOs) and agencies are reluctant to assume responsibility for factors they ...

  10. RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY at the Hanford Site

    SciTech Connect (OSTI)

    Hodges, Floyd N.; Chou, Charissa J.

    2001-02-23

    A groundwater quality assessment plan was prepared to investigate the rate and extent of aquifer contamination beneath Waste Management Area TX-TY on the Hanford Site in Washington State. This plan is an update of a draft plan issued in February 1999, which guided work performed in fiscal year 2000.

  11. Developing a master plan for hospital solid waste management: A case study

    SciTech Connect (OSTI)

    Karamouz, Mohammad Zahraie, Banafsheh Kerachian, Reza Jaafarzadeh, Nemat Mahjouri, Najmeh

    2007-07-01

    Disposal of about 1750 tons of solid wastes per day is the result of a rapid population growth in the province of Khuzestan in the south west of Iran. Most of these wastes, especially hospital solid wastes which have contributed to the pollution of the environment in the study area, are not properly managed considering environmental standards and regulations. In this paper, the framework of a master plan for managing hospital solid wastes is proposed considering different criteria which are usually used for evaluating the pollution of hospital solid waste loads. The effectiveness of the management schemes is also evaluated. In order to rank the hospitals and determine the share of each hospital in the total hospital solid waste pollution load, a multiple criteria decision making technique, namely analytical hierarchy process (AHP), is used. A set of projects are proposed for solid waste pollution control and reduction in the proposed framework. It is partially applied for hospital solid waste management in the province of Khuzestan, Iran. The results have shown that the hospitals located near the capital city of the province, Ahvaz, produce more than 43% of the total hospital solid waste pollution load of the province. The results have also shown the importance of improving management techniques rather than building new facilities. The proposed methodology is used to formulate a master plan for hospital solid waste management.

  12. Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites

    SciTech Connect (OSTI)

    2012-10-24

    This plan incorporates U.S. Department of Energy (DOE) Office of Legacy Management (LM) standard operating procedures (SOPs) into environmental monitoring activities and will be implemented at all sites managed by LM. This document provides detailed procedures for the field sampling teams so that samples are collected in a consistent and technically defensible manner. Site-specific plans (e.g., long-term surveillance and maintenance plans, environmental monitoring plans) document background information and establish the basis for sampling and monitoring activities. Information will be included in site-specific tabbed sections to this plan, which identify sample locations, sample frequencies, types of samples, field measurements, and associated analytes for each site. Additionally, within each tabbed section, program directives will be included, when developed, to establish additional site-specific requirements to modify or clarify requirements in this plan as they apply to the corresponding site. A flowchart detailing project tasks required to accomplish routine sampling is displayed in Figure 1. LM environmental procedures are contained in the Environmental Procedures Catalog (LMS/PRO/S04325), which incorporates American Society for Testing and Materials (ASTM), DOE, and U.S. Environmental Protection Agency (EPA) guidance. Specific procedures used for groundwater and surface water monitoring are included in Appendix A. If other environmental media are monitored, SOPs used for air, soil/sediment, and biota monitoring can be found in the site-specific tabbed sections in Appendix D or in site-specific documents. The procedures in the Environmental Procedures Catalog are intended as general guidance and require additional detail from planning documents in order to be complete; the following sections fulfill that function and specify additional procedural requirements to form SOPs. Routine revision of this Sampling and Analysis Plan will be conducted annually at the

  13. Hellsgate Winter Range Mitigation Project; Long-term Management Plan, Project Report 1993, Final Draft.

    SciTech Connect (OSTI)

    Berger, Matthew T.

    1994-01-01

    A study was conducted on the Hellsgate Winter Range Mitigation Project area, a 4,943 acre ranch purchased for mitigating some habitat losses associated with the original construction of Grand Coulee Dam and innundation of habitat by Lake Roosevelt. A Habitat Evaluation Procedure (HEP) study was used to determine habitat quality and quantity baseline data and future projections. Target species used in the study were sharp-tailed grouse (Tympanuchus phasianellus), mule deer (Odocoileus hemoinus), mink (Mustela vison), spotted sandpiper (Actiius colchicus), bobcat (Felis reufs), blue grouse (Dendragapus obscurus), and mourning dove (Zenaida macroura). From field data collected, limiting life values or HSI's (Habitat Suitability Index's) for each indicator species was determined for existing habitats on project lands. From this data a long term management plan was developed. This report is designed to provide guidance for the management of project lands in relation to the habitat cover types discussed and the indicator species used to evaluate these cover types. In addition, the plan discusses management actions, habitat enhancements, and tools that will be used to enhance, protect and restore habitats to desired conditions. Through planned management actions biodiversity and vegetative structure can be optimized over time to reduce or eliminate, limiting HSI values for selected wildlife on project lands.

  14. Local government involvement in long term resource planning for community energy systems. Demand side management

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    A program was developed to coordinate governmental, research, utility, and business energy savings efforts, and to evaluate future potential actions, based on actual field data obtained during the implementation of Phase I of the State Resource Plan. This has lead to the establishment of a state conservation and energy efficiency fund for the purpose of establishing a DSM Program. By taking a state wide perspective on resource planning, additional savings, including environmental benefits, can be achieved through further conservation and demand management. This effort has already blossomed into a state directive for DSM programs for the natural gas industry.

  15. Environmental restoration and waste management Site-Specific Plan for the Oak Ridge Reservation. FY 1993

    SciTech Connect (OSTI)

    Not Available

    1993-01-15

    The United States Department of Energy (DOE) is committed to achieving and maintaining environmental regulatory compliance while responding to public concerns and emphasizing waste minimization. DOE publishes the Environmental Restoration and Waste Management Five-Year Plan (FYP) annually to document its progress towards these goals. The purpose of this Site-Specific Plan (SSP) is to describe the activities undertaken to implement the FYP goals at the DOE Oak Ridge Field Office (DOE/OR) installations and programs specifically for the Oak Ridge Reservation (ORR) and surrounding areas. This SSP addresses activities and goals to be accomplished during FY93 even through the FYP focuses on FY94.

  16. The Department of Energy's Office of Environmental Management's Budget Allocation Plan, OAS-L-12-03

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Department of Energy's Office of Environmental Management's Budget Allocation Plan OAS-L-12-03 March 2012 Department of Energy Washington, DC 20585 March 15, 2012 MEMORANDUM FOR THE SENIOR ADVISOR FOR ENVIRONMENTAL MANAGEMENT FROM: Daniel M. Weeber, Director Eastern Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's Office of Environmental Management's Budget Allocation Plan" BACKGROUND The Department of Energy's Office of

  17. Moving Forward with the Electric Sector Cybersecurity Risk Management Maturity Initiative

    Broader source: Energy.gov [DOE]

    Since the January 5, 2012 launch of the “Electric Sector Cybersecurity Risk Management Maturity” program, a White House initiative led by the Department of Energy in partnership with the Department...

  18. New Draft of Cybersecurity Risk Management Process (RMP) Guideline Now Available for Public Comment (March 2012)

    Broader source: Energy.gov [DOE]

    The Department of Energy, in collaboration with the National Institute of Standards and Technology and the North American Electric Reliability Corporation, has released the second draft of the Electricity Subsector Cybersecurity Risk Management Process (RMP) Guideline for public comment.

  19. Scientific basis for risk assessment and management of uranium mill tailings

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    A National Research Council study panel, convened by the Board on Radioactive Waste Management, has examined the scientific basis for risk assessment and management of uranium mill tailings and issued this final report containing a number of recommendations. Chapter 1 provides a brief introduction to the problem. Chapter 2 examines the processes of uranium extraction and the mechanisms by which radionuclides and toxic chemicals contained in the ore can enter the environment. Chapter 3 is devoted to a review of the evidence on health risks associated with radon and its decay products. Chapter 4 provides a consideration of conventional and possible new technical alternatives for tailings management. Chapter 5 explores a number of issues of comparative risk, provides a brief history of uranium mill tailings regulation, and concludes with a discussion of choices that must be made in mill tailing risk management. 211 refs., 30 figs., 27 tabs.

  20. 300 Area Integrated Field-Scale Subsurface Research Challenge (IFRC) Field Site Management Plan

    SciTech Connect (OSTI)

    Freshley, Mark D.

    2008-12-31

    Pacific Northwest National Laboratory (PNNL) has established the 300 Area Integrated Field-Scale Subsurface Research Challenge (300 Area IFRC) on the Hanford Site in southeastern Washington State for the U.S. Department of Energy’s (DOE) Office of Biological and Environmental Research (BER) within the Office of Science. The project is funded by the Environmental Remediation Sciences Division (ERSD). The purpose of the project is to conduct research at the 300 IFRC to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The management approach for the 300 Area IFRC requires that a Field Site Management Plan be developed. This is an update of the plan to reflect the installation of the well network and other changes.