National Library of Energy BETA

Sample records for rising energy demand

  1. ENERGY DEMAND FORECAST METHODS REPORT

    E-Print Network [OSTI]

    ....................................................................................................1-16 Energy Consumption Data...............................................1-15 Data Sources for Energy Demand Forecasting ModelsCALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report

  2. Energy Demand Staff Scientist

    E-Print Network [OSTI]

    Eisen, Michael

    #12;Sources: China National Bureau of Statistics; U.S. Energy Information Administration, Annual Energy Outlook. Overview:Overview: Energy Use in China and the U.S.Energy Use in China and the U.S. 5 0Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused

  3. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01

    of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

  4. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    2006-2016: Staff energy demand forecast (Revised SeptemberCEC (2005b) Energy demand forecast methods report.California energy demand 2003-2013 forecast. California

  5. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    of Energy demand-side management energy information systemdemand response. Demand-side management (DSM) program goalsa goal for demand-side management (DSM) coordination and

  6. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    > B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Responseand integration is: Energy efficiency, energy conservation,

  7. Turkey's energy demand and supply

    SciTech Connect (OSTI)

    Balat, M. [Sila Science, Trabzon (Turkey)

    2009-07-01

    The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

  8. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

  9. Demand Response - Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coordination of Energy Efficiency and Demand Response Demand Response in U.S. Electricity Markets: Empirical Evidence 2009 Retail Demand Response in Southwest Power Pool (January...

  10. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

  11. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    CEC (2005b) Energy demand forecast methods report.growth in California energy demands forecast in the baseline2006-2016: Staff energy demand forecast (Revised September

  12. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    Energy Efficiency, Demand Response, and Peak Load Managementdemand response, and load management programs in the Ebefore they undertake load management and demand response

  13. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    relatively high economic/demographic growth, relatively low electricity and natural gas rates REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand Bill Junker Manager DEMAND ANALYSIS OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS

  14. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    high economic/demographic growth, relatively low electricity and natural gas rates, and relatively low CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Manager DEMAND ANALYSIS OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION

  15. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    relatively high economic/demographic growth, relatively low electricity and natural gas rates CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand Gough Office Manager DEMAND ANALYSIS OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS

  16. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    National Action Plan for Energy Efficiency Energy efficiency programson energy efficiency program types, see National Action PlanNational Action Plan for Energy Efficiency Most demand response programs

  17. Reducing Energy Demand in Buildings Through State Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building...

  18. Energy demand and population changes

    SciTech Connect (OSTI)

    Allen, E.L.; Edmonds, J.A.

    1980-12-01

    Since World War II, US energy demand has grown more rapidly than population, so that per capita consumption of energy was about 60% higher in 1978 than in 1947. Population growth and the expansion of per capita real incomes have led to a greater use of energy. The aging of the US population is expected to increase per capita energy consumption, despite the increase in the proportion of persons over 65, who consume less energy than employed persons. The sharp decline in the population under 18 has led to an expansion in the relative proportion of population in the prime-labor-force age groups. Employed persons are heavy users of energy. The growth of the work force and GNP is largely attributable to the growing participation of females. Another important consequence of female employment is the growth in ownership of personal automobiles. A third factor pushing up labor-force growth is the steady influx of illegal aliens.

  19. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01

    electricity. In this manner, demand side management is directly integrated into the wholesale capacity marketcapacity market U.S. Federal Energy Regulatory Commission Florida Reliability Coordinating Council incremental auctions independent electricity

  20. Rising Above the Water: New Orleans Implements Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rising Above the Water: New Orleans Implements Energy Efficiency and Sustainability Practices Following Hurricanes Katrina and Rita (Fact Sheet) Rising Above the Water: New Orleans...

  1. Modeling Energy Demand Aggregators for Residential Consumers

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modeling Energy Demand Aggregators for Residential Consumers G. Di Bella, L. Giarr`e, M. Ippolito, A. Jean-Marie, G. Neglia and I. Tinnirello § January 2, 2014 Abstract Energy demand aggregators- response paradigm. When the energy provider needs to reduce the current energy demand on the grid, it can

  2. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    Forecasts of California transportation energy demand, 2005-alternative transportation energy pathways on California’salternative transportation energy pathways on California’s

  3. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    none,

    2010-01-01

    Summarizes existing research and discusses current practices, opportunities, and barriers to coordinating energy efficiency and demand response programs.

  4. Transportation Energy: Supply, Demand and the Future

    E-Print Network [OSTI]

    Saldin, Dilano

    trends in China, India, Eastern Europe and other developing areas. China oil demand +104% by 2030, India 2000 2020 2040 2060 Supply demand Energy UWM-CUTS 14 U.S. DOE viewpoint, source:http://tonto.eia.doe.gov/FTPROOT/features/longterm.pdf#search='oilTransportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05

  5. Energy Demand | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop, Inc JumpElko,ServiziEnergy

  6. SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY | Department of...

    Energy Savers [EERE]

    SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY As a city that experiences seasonal...

  7. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    relatively high economic/demographic growth, relatively low electricity and natural gas rates REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P

  8. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    /demographic growth, relatively low electricity and natural gas rates, and relatively low efficiency program CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 1: Statewide Electricity Manager Bill Junker Manager DEMAND ANALYSIS OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY

  9. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    incorporates relatively high economic/demographic growth, relatively low electricity and natural gas rates CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P. Oglesby Executive

  10. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    incorporates relatively high economic/demographic growth, relatively low electricity and natural gas rates CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P

  11. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01

    DECC aggregator managed portfolio automated demand responseaggregator designs their own programs, and offers demand responseaggregator is responsible for designing and implementing their own demand response

  12. BPA, Energy Northwest launch demand response pilot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA-Energy-Northwest-launch-demand-response-pilot Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand...

  13. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  14. Addressing Energy Demand through Demand Response. International Experiences and Practices

    SciTech Connect (OSTI)

    Shen, Bo; Ghatikar, Girish; Ni, Chun Chun; Dudley, Junqiao; Martin, Phil; Wikler, Greg

    2012-06-01

    Demand response (DR) is a load management tool which provides a cost-effective alternative to traditional supply-side solutions to address the growing demand during times of peak electrical load. According to the US Department of Energy (DOE), demand response reflects “changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized.” 1 The California Energy Commission (CEC) defines DR as “a reduction in customers’ electricity consumption over a given time interval relative to what would otherwise occur in response to a price signal, other financial incentives, or a reliability signal.” 2 This latter definition is perhaps most reflective of how DR is understood and implemented today in countries such as the US, Canada, and Australia where DR is primarily a dispatchable resource responding to signals from utilities, grid operators, and/or load aggregators (or DR providers).

  15. Global Energy: Supply, Demand, Consequences, Opportunities

    ScienceCinema (OSTI)

    Majumdar, Arun

    2010-01-08

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  16. CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY

    E-Print Network [OSTI]

    supervised data preparation. Steven Mac and Keith O'Brien prepared the historical energy consumption data. Nahid Movassagh forecasted consumption for the agriculture and water pumping CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY FORECAST Volume 1

  17. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  18. Demand Response and Energy Efficiency 

    E-Print Network [OSTI]

    2009-01-01

    stream_source_info ESL-IC-09-11-05.pdf.txt stream_content_type text/plain stream_size 14615 Content-Encoding ISO-8859-1 stream_name ESL-IC-09-11-05.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Demand Response... 4 An Innovative Solution to Get the Ball Rolling ? Demand Response (DR) ? Monitoring Based Commissioning (MBCx) EnerNOC has a solution involving two complementary offerings. ESL-IC-09-11-05 Proceedings of the Ninth International Conference...

  19. US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

    E-Print Network [OSTI]

    in Energy Economics, SEEC, University of Surrey, UK, 2010; the 11th IAEE European Conference, Vilnius strategy. One of the Department of Energy's missions are to promote energy efficiency to help the NationUS Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo

  20. Electricity Demand and Energy Consumption Management System

    E-Print Network [OSTI]

    Sarmiento, Juan Ojeda

    2008-01-01

    This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

  1. Demand Response and Energy Storage Integration Study

    Broader source: Energy.gov [DOE]

    This study is a multi-national laboratory effort to assess the potential value of demand response and energy storage to electricity systems with different penetration levels of variable renewable...

  2. Global Climate Change and Demand for Energy

    E-Print Network [OSTI]

    Subramanian, Venkat

    1 Global Climate Change and Demand for Energy Tyson Research Center and International Center et al. Climate Variability and Climate Change: The New Climate Dice http://data, 2012 Tyson Research Center International Center for Advanced Research and Sustainability (I

  3. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01

    retail regulatory authority prohibit such activity. Demand response integration into US wholesale power marketsretail or wholesale level. 17 While demand response began participating at scale in wholesale power markets

  4. Learning Energy Demand Domain Knowledge via Feature Transformation

    E-Print Network [OSTI]

    Povinelli, Richard J.

    -- Domain knowledge is an essential factor for forecasting energy demand. This paper introduces a method knowledge substantially improves energy demand forecasting accuracy. However, domain knowledge may differ. The first stage automatically captures energy demand forecasting domain knowledge through nonlinear

  5. Behavioral Aspects in Simulating the Future US Building Energy Demand

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01

    Floor-space forecast to 2050 Gross demand for energy Macro-Floor-space forecast to 2050 Gross demand for energy Macro-Floor-space forecast to 2050 Gross demand for energy Macro-

  6. Real-Time Demand Side Energy Management 

    E-Print Network [OSTI]

    Victor, A.; Brodkorb, M.

    2006-01-01

    • Provides periodic energy consumption reports Demand-Side Energy Management • Compares actual energy cost against defined dynamic targets • Alerts responsible personnel when corrective action is needed • Provides a list of recommended actions... stream_source_info ESL-IE-06-05-24.pdf.txt stream_content_type text/plain stream_size 17485 Content-Encoding UTF-8 stream_name ESL-IE-06-05-24.pdf.txt Content-Type text/plain; charset=UTF-8 Real-Time Demand Side Energy...

  7. EarthRise Capital | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)askDoubleEERE -ESolar IncEagleAnalysisEarthRise

  8. Agreement Template for Energy Conservation and Demand Side Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agreement Template for Energy Conservation and Demand Side Management Services Agreement Template for Energy Conservation and Demand Side Management Services Template agreement...

  9. Response to several FOIA requests - Renewable Energy. Demand...

    Energy Savers [EERE]

    Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA...

  10. Agreement for Energy Conservation and Demand Side Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agreement for Energy Conservation and Demand Side Management Services Template Agreement for Energy Conservation and Demand Side Management Services Template Document features a...

  11. Demand Response and Energy Storage Integration Study - Past Workshops...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response and Energy Storage Integration Study - Past Workshops Demand Response and Energy Storage Integration Study - Past Workshops The project was initiated and informed...

  12. Energy Demand (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Growth in U.S. energy use is linked to population growth through increases in demand for housing, commercial floorspace, transportation, manufacturing, and services. This affects not only the level of energy use, but also the mix of fuels and consumption by sector.

  13. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    fraction of residential and commercial demands, leading16 Residential electricity demand endspecific residential electricity demands into electricity

  14. Demand Control Utilizing Energy Management Systems - Report of Field Tests 

    E-Print Network [OSTI]

    Russell, B. D.; Heller, R. P.; Perry, L. W.

    1984-01-01

    Energy Management systems and particularly demand controllers are becoming more popular as commercial and light industrial operations attempt to reduce their electrical usage and demand. Numerous techniques are used to control energy use and demand...

  15. Demand Response | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us| DepartmentFundsEntrepreneurs | Department

  16. CALIFORNIA ENERGY CALIFORNIA ENERGY DEMAND 2010-2020

    E-Print Network [OSTI]

    , and utilities. Ted Dang, Steven Mac, and Libbie Bessman prepared the historical energy consumption data. Miguel CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2010-2020 ADOPTED FORECAST Schwarzenegger, Governor #12; #12; CALIFORNIA ENERGY COMMISSION Chris Kavalec Tom Gorin

  17. UNEP Rise Centre Energy, Climate and Sustainable

    E-Print Network [OSTI]

    ·Development of a pipeline of potential CDM projects ·Development of analytical guidelines and training courses Secretariat in Brussels. #12;Development and Energy in Africa (DEA) · A project of the EC COOPENER Programme Project sponsored by Dutch Government with US$10 million #12;Energy for Development (EfD) Network

  18. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2008-01-01

    developed a residential energy demand forecast for 2030, theIn order to forecast energy service demand based on energy

  19. AUTOMATION OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S.

    E-Print Network [OSTI]

    Povinelli, Richard J.

    AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S. Marquette University, 2013 Automation of energy demand of the energy demand forecasting are achieved by integrating nonlinear transformations within the models

  20. . ^ ^ L c O / ^ -Rise-R-497 Energy Systems Group

    E-Print Network [OSTI]

    2 otSMooiaji é. ^ ^ L c O / ^ - Rise-R-497 t x Energy Systems Group Annual Progress Report 1 Januar Roskilde, Denmark March 1984 r #12;RISØ-R-497 ENERGY SYSTEMS GROUP Annual Progress Report 1 January - 31 of the Energy Systems Group at Risø National Laboratory during 1983. Th«r activities may be roughly classified

  1. Demand Response and Smart Metering Policy Actions Since the Energy...

    Office of Environmental Management (EM)

    Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the...

  2. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01

    8.4 Demand Response Integration . . . . . . . . . . .for each day type for the demand response study - moderatefor each day type for the demand response study - deep

  3. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    duty fuel demand in alternate scenarios. ..for light-duty fuel demand in alternate scenarios. Minimum52 Heavy-duty vehicle fuel demand for each alternate

  4. Demand-Side Management and Energy Efficiency Revisited

    E-Print Network [OSTI]

    Auffhammer, Maximilian; Blumstein, Carl; Fowlie, Meredith

    2007-01-01

    EPRI). 1984. ”Demand Side Management. Vol. 1:Overview of Key1993. ”Industrial Demand-Side Management Programs: What’sJ. Kulick. 2004. ”Demand side management and energy e?ciency

  5. Environmental and Resource Economics Household Energy Demand in Urban China: Accounting for regional prices and rapid

    E-Print Network [OSTI]

    growth, China's energy consumption is rising at one of the fastest rates in the world, almost 8% per year, in particular, household electricity use rose by 12.6% per year, and natural gas by 19.5% in the last decade1Environmental and Resource Economics Household Energy Demand in Urban China: Accounting

  6. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01

    DX Cooling Total Annual Energy Usage Peak Electric DemandDX Cooling Total Annual Energy Usage Scenario Supply/ ReturnDX Cooling Total Annual Energy Usage Peak Electric Demand

  7. Univariate Modeling and Forecasting of Monthly Energy Demand Time Series

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    Univariate Modeling and Forecasting of Monthly Energy Demand Time Series Using Abductive and Neural networks, Neural networks, Modeling, Forecasting, Energy demand, Time series forecasting, Power system demand time series based only on data for six years to forecast the demand for the seventh year. Both

  8. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01

    as energy monitoring, building automation systems and loadhave the necessary building automation systems, it is likely

  9. Optimal Demand Response with Energy Storage Management

    E-Print Network [OSTI]

    Huang, Longbo; Ramchandran, Kannan

    2012-01-01

    In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

  10. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    demand response: ? Distribution utility ? ISO ? Aggregator (demand response less obstructive and inconvenient for the customer (particularly if DR resources are aggregated by a load aggregator).

  11. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    annual per-capita electricity consumption by demand15 California electricity consumption projections by demandannual per-capita electricity consumption by demand

  12. Examining Synergies between Energy Management and Demand Response: A

    E-Print Network [OSTI]

    LBNL-5719E Examining Synergies between Energy Management and Demand Response: A Case Study at Two Summary #12;Introduction Energy Management · · · · · · · · · · #12;Demand Response #12;#12;Bentley Prince-Project Personnel Changes #12;Enablement of Demand Response Capabilities due to Energy Management Improvement

  13. Opportunities for Energy Efficiency and Demand Response in the California

    E-Print Network [OSTI]

    LBNL-4849E Opportunities for Energy Efficiency and Demand Response in the California Cement in this report was coordinated by the Demand Response Research Center and funded by the California Energy. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry. PIER Industrial

  14. Risk Management and Combinatorial Optimization for Large-Scale Demand Response and Renewable Energy Integration

    E-Print Network [OSTI]

    Yang, Insoon

    2015-01-01

    results: demand response . . . . . . . . . . . . . . . . . .Institute. “Automated Demand Response Today”. In: (2012). [Energy. “Benefits of demand response in electricity markets

  15. Demand-Side Load Scheduling Incentivized by Dynamic Energy Hadi Goudarzi, Safar Hatami, and Massoud Pedram

    E-Print Network [OSTI]

    Pedram, Massoud

    consumption-dependent pricing function for electricity consumption. Exact solutions (based on Branch and Bound to avoid blackouts. At the same time, the electrical power consumption is rising rapidly. Without a major growth in electrical energy consumption under worst- case demand conditions [1]. To avoid expending

  16. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    demands. Residential and commercial demand has a significantDemand by Sector Residential Peak Demand (MW) Commercialwe convert residential electricity demand based upon climate

  17. Coordination of Energy Efficiency and Demand Response: A Resource...

    Open Energy Info (EERE)

    Coordination of Energy Efficiency and Demand Response: A Resource of the National Action Plan for Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  18. Risk Management and Combinatorial Optimization for Large-Scale Demand Response and Renewable Energy Integration

    E-Print Network [OSTI]

    Yang, Insoon

    2015-01-01

    Demand Response and Renewable Energy Integration by InsoonDemand Response and Renewable Energy Integration CopyrightDemand Response and Renewable Energy Integration by Insoon

  19. Unobservables in Consumer Choice: Residential Energy and the Demand for Comfort

    E-Print Network [OSTI]

    Quigley, John M.; Rubinfeld, Daniel L.

    1987-01-01

    and the Derived Demand for Residential Energy," Randhave examined the demand for residential energy viewingconsidered the derived demand for residential energy as an

  20. Solar in Demand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar in Demand Solar in Demand June 15, 2012 - 10:23am Addthis Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin...

  1. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2008-01-01

    ABORATORY Japan’s Residential Energy Demand Outlook to 2030o r n i a Japan’s Residential Energy Demand Outlook to 2030outlook of Japan’s residential energy demand, developed by a

  2. Why is energy use rising in the freight sector

    SciTech Connect (OSTI)

    Mintz, M.; Vyas, A.D.

    1991-01-01

    Trends in transportation sector energy use and carbon dioxide emissions are analyzed with an emphasis on three freight modes -- rail, truck, and marine. A recent set of energy use projections is presented and freight mode energy characteristics are discussed. Transportation sector energy use, which nearly doubled between 1960 and 1985, is projected to grow more slowly during the period 1985{endash}2010. Most of the growth is projected to come from non-personal modes (freight and commercial air). Trends in freight mode energy intensities are discussed and a variety of factors behind these trends are analyzed. Rail and marine modes improved their energy intensities during sudden fuel price rises of the 1970s. Though there is room for further technological improvement, long power plant life cycles preclude rapid penetration of new technologies. Thus, energy intensities in these modes are more likely to improve through operational changes. Because of relatively stable fuel prices, the energy share of truck operating expenses is likely to remain low. Coupled with increasing labor costs, this portends only modest improvements in truck energy efficiency over the next two decades.

  3. Why is energy use rising in the freight sector?

    SciTech Connect (OSTI)

    Mintz, M.; Vyas, A.D.

    1991-12-31

    Trends in transportation sector energy use and carbon dioxide emissions are analyzed with an emphasis on three freight modes -- rail, truck, and marine. A recent set of energy use projections is presented and freight mode energy characteristics are discussed. Transportation sector energy use, which nearly doubled between 1960 and 1985, is projected to grow more slowly during the period 1985{endash}2010. Most of the growth is projected to come from non-personal modes (freight and commercial air). Trends in freight mode energy intensities are discussed and a variety of factors behind these trends are analyzed. Rail and marine modes improved their energy intensities during sudden fuel price rises of the 1970s. Though there is room for further technological improvement, long power plant life cycles preclude rapid penetration of new technologies. Thus, energy intensities in these modes are more likely to improve through operational changes. Because of relatively stable fuel prices, the energy share of truck operating expenses is likely to remain low. Coupled with increasing labor costs, this portends only modest improvements in truck energy efficiency over the next two decades.

  4. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01

    Energy. “Benefits of Demand Response in Electricity MarketsEnergy Efficiency and Demand Response?7 3.1.Demand Response in Commercial

  5. A Successful Case Study of Small Business Energy Efficiency and Demand Response with Communicating Thermostats

    E-Print Network [OSTI]

    Herter, Karen

    2010-01-01

    to everyone at the Demand Response Research Center, theEnergy Efficiency and Demand Response with CommunicatingEnergy Efficiency and Demand Response with Communicating

  6. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2010-01-01

    Energy Resources and Demand Response under Uncertainty AfzalEnergy Resources and Demand Response under Uncertainty ?DER in conjunction with demand response (DR): the expected

  7. Sustainable Energy Resources for Consumers (SERC) - On-Demand...

    Broader source: Energy.gov (indexed) [DOE]

    aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of On-Demand Tankless Water Heaters....

  8. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    N ATIONAL L ABORATORY India Energy Outlook: End Use DemandTables Figures Figure 1. India Primary Energy Supply by fuel33 Table 15. India Industry Energy Intensities (GJ/

  9. Retrofitting Existing Buildings for Demand Response & Energy Efficiency

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Retrofitting Existing Buildings for Demand Response & Energy Efficiency www rate periods to avoid high charges. · Assembly Bill 1103 ­ Building Energy Efficiency Disclosure - Starting January 1, 2010, all commercial building lease transactions must disclose the energy efficiency

  10. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2008-01-01

    Total Energy Source Demand Coal, Oil, Gas, Heat, ElectricityEnergy Source Demand per Household Coal, Oil, Gas, Heat,ton of oil equivalent Considerable increases in demand for

  11. The Economics of Energy (and Electricity) Demand

    E-Print Network [OSTI]

    Platchkov, Laura M.; Pollitt, Michael G.

    25 3.3.2 Electrification of personal transport New sources of electricity demand may emerge which substantially change the total demand for electricity and the way electricity is consumed by the household. The Tesla Roadster12 stores 53 k... substantial battery storage capacity to the electricity grid, both when stationary at home and when at work. They may thus be very useful in providing short term back-up at system demand peaks or for dumping electricity to the batteries when supply is at a...

  12. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    Questions: Integrated Energy Management. energy information system energy management controlsystem energy management system U.S. Environmental

  13. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    Figure 16 Annual peak electricity demand by sector. Tableincludes an hourly electricity demand (i.e. power) profileof aggregating sectoral electricity demands into a statewide

  14. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Majumdar, Arun

    2011-04-28

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  15. Smoothing the Energy Consumption: Peak Demand Reduction in Smart Grid

    E-Print Network [OSTI]

    Li, Xiang-Yang

    % of the nation's total electricity consumption. Unfortunately, due to inefficient energy consumption patternSmoothing the Energy Consumption: Peak Demand Reduction in Smart Grid Shaojie Tang , Qiuyuan Huang of Software, TNLIST, Tsinghua University Department of Electrical & Computer Engineering, University

  16. Strategies for reducing energy demand in the materials sector

    E-Print Network [OSTI]

    Sahni, Sahil

    2013-01-01

    This research answers a key question - can the materials sector reduce its energy demand by 50% by 2050? Five primary materials of steel, cement, aluminum, paper, and plastic, contribute to 50% or more of the final energy ...

  17. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Majumdar, Arun

    2008-07-29

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  18. Tankless or Demand-Type Water Heaters | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    a demand water heater at each hot water outlet. ENERGY STAR estimates that a typical family can save 100 or more per year with an ENERGY STAR qualified tankless water heater....

  19. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2010-01-01

    Optimal Control of Distributed Energy Resources and DemandRenewable Energy, former Distributed Energy Program of theOptimal Control of Distributed Energy Resources and Demand

  20. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01

    Scale Renewable Energy Integration . . . . . . . . . . .Impacts of Renewable Energy Supply . . . . . . . . . . . . .1.3 Coupling Renewable Energy with Deferrable

  1. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    California Energy Commission curtailment service providerwith retail energy competition, retail service providers maywith retail energy competition, retail service providers may

  2. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01

    Renewable energy spillage, operating costs and capacityfocused on renewable energy utilization, cost of operationssystem operating costs, • renewable energy utilization,

  3. Demand Response Initiatives at CPS Energy 

    E-Print Network [OSTI]

    Luna, R.

    2013-01-01

    stream_source_info ESL-KT-13-12-53.pdf.txt stream_content_type text/plain stream_size 4780 Content-Encoding UTF-8 stream_name ESL-KT-13-12-53.pdf.txt Content-Type text/plain; charset=UTF-8 Demand Response Initiatives... and Toyota combined. • Schools & Universities contributed 6 MW’s of Demand Response in 2013. 2013 DR Participants Trinity University - $5,654 Fort Sam ISD - $18,860 Judson ISD - $45,540 Alamo Colleges - $98,222 UTSA - $168,572 ESL-KT-13-12-53 CATEE 2013...

  4. CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY

    E-Print Network [OSTI]

    electricity and natural gas rates, and relatively low efficiency program and self: Electricity Demand by Utility Planning Area MAY 2013 CEC-200-2013-004-SD-V2 Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P. Oglesby Executive

  5. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Lekov, Alex

    2009-01-01

    your Power. (2008). "Demand Response Programs." RetrievedS. (2008). Automated Demand Response Results from Multi-Yearusing Open Automated Demand Response, California Energy

  6. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    to managing their energy usage. Greater customer willingnessto managing their energy usage. And greater customera net reduction in energy usage. 5 With sufficient advance

  7. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01

    of Renewable Energy Supply . . . . . . . . . . . . . 1.2.4the model, where renewable energy supply is replaced by itsPhil Kaminsky. Renewable energy supply for electric vehicle

  8. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    control system energy management system U.S. Environmentalbuilding energy management systems (EMS) can deliversystem; EMS = energy management system; ISO = independent

  9. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01

    1.2 Limitations to Large-Scale Renewable EnergyImpacts of Renewable Energy Supply . . . . . . . . . . . . .1.3 Coupling Renewable Energy with Deferrable

  10. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01

    forecasting for wind energy: Temperature dependence andlarge amounts of wind energy with a small electric system.Large scale integration of wind energy in the european power

  11. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    has for years used “New York Energy $mart” as the umbrellaevent days. The New York State Energy Research & DevelopmentEnergy Challenge”). The New York State Energy Research and

  12. ENABLING ENERGY DEMAND RESPONSE WITH VEHICULAR MESH NETWORKS

    E-Print Network [OSTI]

    Chuah, Chen-Nee

    ENABLING ENERGY DEMAND RESPONSE WITH VEHICULAR MESH NETWORKS Howard CheHao Chang1, Haining Du2. Using VMesh to connect disjoint sensor networks One of our expectations for VMesh is to enable demand response (DR) [1] for automatic utility usage retrievals and price dispatching. DR is a project in- itiated

  13. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2010-01-01

    Control of Distributed Energy Resources and Demand ResponseControl of Distributed Energy Resources and Demand Responseinstalled distribution energy resources (DER) in the form of

  14. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    E-Print Network [OSTI]

    Olsen, Daniel

    2012-01-01

    Opportunities for Energy  Efficiency and Demand Response in Agricultural/Water End?Use Energy Efficiency Program.    i 1   4.0   Energy Efficiency and Demand Response 

  15. Policy Paper 36: Energy and Security in Northeast Asia: Supply and Demand, Conflict and

    E-Print Network [OSTI]

    Fesharaki, Fereidun; Banaszak, Sarah; WU, Kang; Valencia, Mark J.; Dorian, James P.

    1998-01-01

    Kazuya, 1996. "Long-Term Energy Supply/Demand Outlook for19 Energy Supply Security and Infrastructure Issues inseek to project future energy supply and demand for Japan,

  16. Examining Synergies between Energy Management and Demand Response: A Case Study at Two California Industrial Facilities

    E-Print Network [OSTI]

    Olsen, Daniel

    2013-01-01

    Capabilities due to Energy Management Improvement inSummary Introduction Energy Management Demand Responseand Processes Energy Management and Demand Response History

  17. Energy Demand Modelling Introduction to the PhD project

    E-Print Network [OSTI]

    Energy Demand Modelling Introduction to the PhD project Erika Zvingilaite Risø DTU System Analysis for optimization of energy systems Environmental effects Global externalities cost of CO2 Future scenarios for the Nordic energy systems 2010, 2020, 2030, 2040, 2050 (energy-production, consumption, emissions, net costs

  18. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01

    Renewable energy spillage, operating costs and capacity requirements for the multi-area casemore in the case of deeper renewable energy integration, duerenewable energy spillage, operating costs and capacity requirements for the four case

  19. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    www.enernoc.com/solutions/energy-efficiency.php>. One reasonAmerican Council for an Energy-Efficient Economy, report no.California Long-term Energy Efficiency Strategic Plan. <

  20. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    natural gas and electricity—is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security

  1. PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022

    E-Print Network [OSTI]

    low electricity and natural gas rates, and relatively low efficiency program and self Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert Oglesby Executive Director DISCLAIMER Staff for electric vehicles. #12;ii #12;iii ABSTRACT The Preliminary California Energy Demand Forecast 2012

  2. Agreement for Energy Conservation and Demand Side Management Services Template

    Broader source: Energy.gov [DOE]

    Document features a template agreement between a U.S. Federal agency and a utility company for the implementation of energy conservation measures (ECMs) and demand side management (DSM) services.

  3. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    response, distributed generation, and renewable energycontrol, distributed generation, renewable energy systems,

  4. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    ventilating, and air conditioning. Energy efficiency is alsoenergy efficiency programs (e.g. , lighting, air conditioning)energy efficiency and sell large, capital-intensive technology solutions, such as boiler and heating, ventilating, and air conditioning (

  5. EnergySolve Demand Response | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville, NewLtd EILEnergyInformationEnergySolve Demand

  6. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST

    E-Print Network [OSTI]

    . Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption data Office. Andrea Gough ran the summary energy model and supervised data preparation. Glen Sharp prepared models. Both the staff revised energy consumption and peak forecasts are slightly higher than

  7. Load Reduction, Demand Response and Energy Efficient Technologies and Strategies

    SciTech Connect (OSTI)

    Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

    2008-11-19

    The Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

  8. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2008-01-01

    2006. “Japan Long-Term Energy Outlook -A Projection up todescribes the residential energy outlook in Japan to 2030.s Residential Energy Demand Outlook to 2030 Considering

  9. Using Community-Based Social Marketing to Drive Demand for Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Community-Based Social Marketing to Drive Demand for Energy Efficiency Using Community-Based Social Marketing to Drive Demand for Energy Efficiency Slides presented in the...

  10. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    alternative energy pathways (such as hydrogen and electric vehicles).Vehicle Conventional and Alternative Fuel Response Simulator California Energyenergy consumption Vehicle-miles traveled Vehicle stock turnover model Water heater vii EXECUTIVE SUMMARY Introduction This report describes five alternative

  11. Water supply and demand in an energy supply model

    SciTech Connect (OSTI)

    Abbey, D; Loose, V

    1980-12-01

    This report describes a tool for water and energy-related policy analysis, the development of a water supply and demand sector in a linear programming model of energy supply in the United States. The model allows adjustments in the input mix and plant siting in response to water scarcity. Thus, on the demand side energy conversion facilities can substitute more costly dry cooling systems for conventional evaporative systems. On the supply side groundwater and water purchased from irrigators are available as more costly alternatives to unappropriated surface water. Water supply data is developed for 30 regions in 10 Western states. Preliminary results for a 1990 energy demand scenario suggest that, at this level of spatial analysis, water availability plays a minor role in plant siting. Future policy applications of the modeling system are discussed including the evaluation of alternative patterns of synthetic fuels development.

  12. Energy and Demand Savings from Implementation Costs in Industrial Facilities 

    E-Print Network [OSTI]

    Razinha, J. A.; Heffington, W. M.

    2000-01-01

    Electrical Fees EF Electricity E1 Natural Gas E2 L.P.G. E3 #1 Fuel Oil E4 #2 Fuel Oil E5 #4 Fuel Oil E6 #6 Fuel Oil E7 Coal E8 Wood E9 Paper E10 Other Gas E11 Other Energy E12 ESL-IE-00-04-17 Proceedings from the Twenty-second National..., electrical consumption, demand and fees were tracked separately. The remaining data include only one energy stream (e.g., natural gas) in each code [6]. Table 1. Energy Streams STREAM CODE Electrical Consumption EC Electrical Demand ED Other...

  13. Transportation Demand Management (TDM) Encyclopedia | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergyTrail Canyonsource History ViewCaseInformation

  14. Demand Response - Policy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | version ofEnergy This document outlinesSince its

  15. Exhausting Battery Statistics Understanding the energy demands on mobile handsets

    E-Print Network [OSTI]

    Hand, Steven

    Exhausting Battery Statistics Understanding the energy demands on mobile handsets Narseo Vallina Thomson Avenue Ernst-Reuter-Platz 7 Cambridge, UK Berlin, Germany name.surname@cl.cam.ac.uk name.surname@telekom.de ABSTRACT Despite the advances in battery technologies, mobile phones still suffer from severe energy

  16. Energy Efficiency, Demand Response, and Volttron

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographic courtesyEducation Data JamDepartment ofEERE ENERGY

  17. Distributed Automated Demand Response - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory | National(TechnicalNISACDisruptionEnergy Analysis

  18. New generation of software? Modeling of energy demands for residential ventilation with HTML interface

    E-Print Network [OSTI]

    Forowicz, T

    1997-01-01

    New generation of software? Modeling of energy demands for residential ventilation with HTML interface

  19. U.S. Energy Demand, Offshore Oil Production and

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    U.S. Energy Demand, Offshore Oil Production and BP's Macondo Well Spill Tad Patzek, Petroleum that run the U.S. Complexity, models, risks Gulf of Mexico's oil and gas production Conclusions ­ p.3/4 #12;Summary of Conclusions. . . The global rate of production of oil is peaking now, coal will peak in 2

  20. Demand Response and Energy Storage Integration Study- Past Workshops

    Office of Energy Efficiency and Renewable Energy (EERE)

    The project was initiated and informed by the results of two DOE workshops; one on energy storage and the other on demand response. The workshops were attended by members of the electric power industry, researchers, and policy makers; and the study design and goals reflect their contributions to the collective thinking of the project team.

  1. High-Rise Residential Building Energy Analysis in Shanghai, China 

    E-Print Network [OSTI]

    Zhou, Hongyun

    2014-07-30

    the growing residential energy use in Shanghai. The energy efficiency measures explored in this study should also provide policy makers with alternatives other than building more power plants, transmission and distribution systems....

  2. CenterPoint Energy Low-Rise Multi Family Program

    Broader source: Energy.gov [DOE]

    Note: This Incentive is only available to customers in the CenterPoint Energy Houston electric territory.

  3. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01

    A. Barat, D. Watson. Demand Response Spinning ReserveOpen Automated Demand Response Communication Standards:Dynamic Controls for Demand Response in a New Commercial

  4. National Action Plan on Demand Response | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Working Group (FUPWG) Fall 2008 meeting-discusses the National Assessment of Demand Response study, the National Action Plan for Demand Response, and demand response as...

  5. Outlook for Light-Duty-Vehicle Fuel Demand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outlook for Light-Duty-Vehicle Fuel Demand Outlook for Light-Duty-Vehicle Fuel Demand Gasoline and distillate demand impact of the Energy Independance and Security Act of 2007...

  6. SC-RISE LECTURE SERIES BRIGHT HORIZONS IN SOLAR ENERGY

    E-Print Network [OSTI]

    are being developed including biomass, geothermal, hydropower, ocean thermal energy conversion, solar in technology development. The high capital costs typical of sustainable technologies coupled with the cyclic Time: 3:00 PM Location: A265 Bourns Hall Abstract: Low cost energy is critical to our lifestyles

  7. Rising Solar Energy Science and Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York:Virginia: EnergyRidgeviewRincon DeJumpMissouri:Rising

  8. Division of IT Convergence Engineering Optimal Demand-Side Energy Management Under

    E-Print Network [OSTI]

    Boutaba, Raouf

    Division of IT Convergence Engineering Optimal Demand-Side Energy Management Under Real-time Demand and wastage through better demand-side management and control is considered a key solution ingredient of appliance specific adapters. Designed and implemented GHS Modeled the demand-side energy management

  9. Low-rise Residential New Construction Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof Energy This Revision 3 of the Low-Level WasteJuly

  10. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    SciTech Connect (OSTI)

    Aden, Nathaniel T.; Zheng, Nina; Fridley, David G.

    2009-07-01

    Urbanization has re-shaped China's economy, society, and energy system. Between 1990 and 2007 China added 290 million new urban residents, bringing the total urbanization rate to 45%. This population adjustment spurred energy demand for construction of new buildings and infrastructure, as well as additional residential use as rural biomass was replaced with urban commercial energy services. Primary energy demand grew at an average annual rate of 10% between 2000 and 2007. Urbanization's effect on energy demand was compounded by the boom in domestic infrastructure investment, and in the export trade following World Trade Organization (WTO) accession in 2001. Industry energy consumption was most directly affected by this acceleration. Whereas industry comprised 32% of 2007 U.S. energy use, it accounted for 75% of China's 2007 energy consumption. Five sub-sectors accounted for 78% of China's industry energy use in 2007: iron and steel, energy extraction and processing, chemicals, cement, and non-ferrous metals. Ferrous metals alone accounted for 25% of industry and 18% of total primary energy use. The rapid growth of heavy industry has led China to become by far the world's largest producer of steel, cement, aluminum, and other energy-intensive commodities. However, the energy efficiency of heavy industrial production continues to lag world best practice levels. This study uses scenario analysis to quantify the impact of urbanization and trade on industrial and residential energy consumption from 2000 to 2025. The BAU scenario assumed 67% urbanization, frozen export amounts of heavy industrial products, and achievement of world best practices by 2025. The China Lightens Up (CLU) scenario assumed 55% urbanization, zero net exports of heavy industrial products, and more aggressive efficiency improvements by 2025. The five dominant industry sub-sectors were modeled in both scenarios using a LEAP energy end-use accounting model. The results of this study show that a CLU-style development path would avoid 430 million tonnes coal-equivalent energy use by 2025. More than 60% of these energy savings would come from reduced activity and production levels. In carbon terms, this would amount to more than a billion-tonne reduction of energy-related carbon emissions compared with the BAU scenario in 2025, though the absolute level of emissions rises in both scenarios. Aside from the energy and carbon savings related to CLU scenario development, this study showed impending saturation effects in commercial construction, urban appliance ownership, and fertilizer application. The implication of these findings is that urbanization will have a direct impact on future energy use and emissions - policies to guide urban growth can play a central role in China's efforts to mitigate emissions growth.

  11. NAS-NAE National Convocation on "Rising Above the Gathering Storm...

    Energy Savers [EERE]

    I don't have to remind you of the challenges we face: rapidly growing global demand for energy, along with rising prices. And these demand pressures will only increase with time....

  12. Demand Reduction

    Office of Energy Efficiency and Renewable Energy (EERE)

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  13. Dynamic Controls for Energy Efficiency and Demand Response: Framework Concepts and a New Construction Study Case in New York

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

    2006-01-01

    of Fully Automated Demand Response in Large Facilities.for Energy Efficiency and Demand Response”, Proceedings ofAuthority (NYSERDA), the Demand Response Research Center (

  14. Claritas Rise, Mars- Pre-Tharsis Magmatism? | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) Jump to:New York: Energy Resources

  15. Three Case Studues of the Application of Energy Systems Optimization Best Prectices for Automatic Demand Response 

    E-Print Network [OSTI]

    Shi, Y.; Guiberteau, K.; Yagua, C.; Watt, J.

    2013-01-01

    of the Application of Energy Systems Optimization Best Practices for Automatic Demand Response Yifu Shi Kelly Guiberteau Carlos Yagua, P.E. James Watt, P.E. Energy Systems Laboratory, Texas A&M University College Station, Texas Austin Energy... of the demand response program is to reduce facilities peak energy demand to reduce the cost of electricity for both Austin Energy and their customer. Reducing the demand mitigates the need to construct additional generation, transmission, and distribution...

  16. ECEEE 2005 SUMMER STUDY WHAT WORKS & WHO DELIVERS? 183 Local energy efficiency and demand-side

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    be the basis for local energy policies and energy efficiency/demand-side management activities1, have been) activities in 1. DSM: Demand-Side Management; EE: energy efficiency (here, does not include renewableECEEE 2005 SUMMER STUDY ­ WHAT WORKS & WHO DELIVERS? 183 1,202 Local energy efficiency and demand-side

  17. Energy and Demand Savings from Implementation Costs in Industrial Facilities 

    E-Print Network [OSTI]

    Razinha, J. A.; Heffington, W. M.

    2000-01-01

    .g., natural gas) in each code [6]. Table 1. Energy Streams STREAM CODE Electrical Consumption EC Electrical Demand ED Other Electrical Fees EF Electricity E1 Natural Gas E2 L.P.G. E3 #1 Fuel Oil E4 #2 Fuel Oil E5 #4 Fuel Oil E6 #6 Fuel... Oil E7 Coal E8 Wood E9 Paper E10 Other Gas E11 Other Energy E12 3 The current database contains records of nearly 9000 assessment visits and almost 64,000 ARs. It is publicly accessible via the Internet [4], and is easily sorted...

  18. Demand Response Resources for Energy and Ancillary Services (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.

    2014-04-01

    Demand response (DR) resources present a potentially important source of grid flexibility particularly on future systems with high penetrations of variable wind an solar power generation. However, DR in grid models is limited by data availability and modeling complexity. This presentation focuses on the co-optimization of DR resources to provide energy and ancillary services in a production cost model of the Colorado test system. We assume each DR resource can provide energy services by either shedding load or shifting its use between different times, as well as operating

  19. Behavioral Economics Applied to Energy Demand Analysis: A Foundation

    Reports and Publications (EIA)

    2014-01-01

    Neoclassical economics has shaped our understanding of human behavior for several decades. While still an important starting point for economic studies, neoclassical frameworks have generally imposed strong assumptions, for example regarding utility maximization, information, and foresight, while treating consumer preferences as given or external to the framework. In real life, however, such strong assumptions tend to be less than fully valid. Behavioral economics refers to the study and formalizing of theories regarding deviations from traditionally-modeled economic decision-making in the behavior of individuals. The U.S. Energy Information Administration (EIA) has an interest in behavioral economics as one influence on energy demand.

  20. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2010-01-01

    Solution Procedure for SDP Energy Prices We use electricityLondon for assistance with energy price modeling. Siddiquiof DER under uncertain energy prices with demand response

  1. Rising to the Challenge: Innovating toward our Clean Energy Future |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidentialThis 3-DMarchLLCClimate Change in

  2. A Rising Star: Solid-State Lighting | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s iof1 of 8(May 1983)Reactor Cooling2, thewhen

  3. A critical review of single fuel and interfuel substitution residential energy demand models

    E-Print Network [OSTI]

    Hartman, Raymond Steve

    1978-01-01

    The overall purpose of this paper is to formulate a model of residential energy demand that adequately analyzes all aspects of residential consumer energy demand behavior and properly treats the penetration of new technologies, ...

  4. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    End use energy consumption per square-foot and floorspaceof floorspace and energy consumption per square-foot, for 10

  5. CSEM WP 165R Demand-Side Management and Energy Efficiency

    E-Print Network [OSTI]

    Auffhammer, Maximilian

    CSEM WP 165R Demand-Side Management and Energy Efficiency Revisited Maximilian Auffhammer, Carl, California 94720-5180 www.ucei.org #12;Demand-Side Management and Energy Efficiency Revisited Maximilian associated with energy efficiency demand side management (DSM) programs. This claim is based on point

  6. Distributed Algorithms for Control of Demand Response and Distributed Energy Resources

    E-Print Network [OSTI]

    Dominguez-Garcia, Alejandro

    Distributed Algorithms for Control of Demand Response and Distributed Energy Resources Alejandro D networks. These algorithms are relevant for load curtailment control in demand response programs, and also is currently achieved through demand response programs in which participants, i.e., demand re- sponse resources

  7. Recouping Energy Costs from Cloud Tenants: Tenant Demand Response Aware Pricing Design

    E-Print Network [OSTI]

    Giles, C. Lee

    Recouping Energy Costs from Cloud Tenants: Tenant Demand Response Aware Pricing Design Cheng Wang. The poor predictability of real-world tenants' demand and demand responses (DRs) make such pricing design Cloud Tenant; Pricing Design; Game; Demand Response 1. INTRODUCTION The electric utility bills of data

  8. Real-Time Demand Response with Uncertain Renewable Energy in Smart Grid

    E-Print Network [OSTI]

    Wierman, Adam

    Real-Time Demand Response with Uncertain Renewable Energy in Smart Grid Libin Jiang and Steven Low manages user load through real-time demand response and purchases balancing power on the spot market and demand response in the presence of uncertain renewable supply and time-correlated demand. The overall

  9. Control and Optimization Meet the Smart Power Grid: Scheduling of Power Demands for Optimal Energy

    E-Print Network [OSTI]

    Koutsopoulos, Iordanis

    technologies to enforce sensible use of energy through effective demand load management. We envision a scenario of effective management of power supply and demand loads. Load management is primarily employed by the power by transferring non-emergency power demands at off-peak-load times. Demand load management does not significantly

  10. AVTA: PHEV Demand and Energy Cost Demonstration Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from a demonstration with Tacoma Power on plug-in hybrid electric vehicle demand and energy cost, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  11. Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity

    E-Print Network [OSTI]

    Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity Chris in this paper. Energy consumption data was sourced from the Bureau of Resources and Energy Economics' Australian Energy Statistics publication. Price and income data were sourced from the Australian Bureau

  12. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01

    Framework Energy supply/demand forecasts change greatlyThis analysis makes energy supply/demand forecasts for theEnergy Demand (Reference Scenario) In millions of tons oil equivalent (Mtoe) I l f Results* •Forecasts *

  13. DEMAND SIDE ENERGY MANAGEMENT AND CONSERVATION PROGRAM Measurement and Verification Program

    E-Print Network [OSTI]

    Hofmann, Hans A.

    DEMAND SIDE ENERGY MANAGEMENT AND CONSERVATION PROGRAM Measurement and Verification Program 4&V deliverables requested here meet the Federal Energy Management Program (FEMP) intent for a "Post- Installation

  14. Comfort-Aware Home Energy Management Under Market-Based Demand-Response

    E-Print Network [OSTI]

    Boutaba, Raouf

    Comfort-Aware Home Energy Management Under Market-Based Demand-Response Jin Xiao, Jian Li, Raouf-compatible with market-based Demand-Response programs under explicit user comfort constraints. Theoretical analysis aside pricing and consumption data in South Korea. Index Terms--smart grid, demand-response, energy management I

  15. Bet and Energy -From Load Forecasting to Demand Response in a Web of Things

    E-Print Network [OSTI]

    Beigl, Michael

    Bet and Energy - From Load Forecasting to Demand Response in a Web of Things Yong Ding TECO (DSM) [7, 19]. Within DSM, mainly two principal activities i.e. load shifting (demand response programs) and load reduction (energy efficiency and conser- vation programs) can be realized [4]. 1.1 Demand Response

  16. Dynamic Controls for Energy Efficiency and Demand Response: Framework Concepts and a New Construction Study Case in New York

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

    2006-01-01

    energy efficiency, peak load management and demand response.minimization); peak load management (for daily operations);Energy Efficiency, Daily Load Management and DR Demand-Side

  17. A Supply-Demand Model Based Scalable Energy Management System for Improved Energy

    E-Print Network [OSTI]

    Bhunia, Swarup

    A Supply-Demand Model Based Scalable Energy Management System for Improved Energy Utilization: sxn124@case.edu Abstract-Harvesting energy from the environment can play an important role in reducing the dependency of an electronic system to primary energy sources (i.e. AC power or battery). For reliable

  18. On-Demand Energy Replenishment for Sensor Networks via Wireless Energy Transfer

    E-Print Network [OSTI]

    Liang, Weifa

    On-Demand Energy Replenishment for Sensor Networks via Wireless Energy Transfer Wenzheng Xu, Weifa) to replenish energy to sensors in a wireless sensor network so that none of the sensors will run out of its energy, where sensor batteries can be recharged. Specifically, we first propose a flexible on

  19. Climate control : smart thermostats, demand response, and energy efficiency in Austin, Texas

    E-Print Network [OSTI]

    Bowen, Brian (Brian Richard)

    2015-01-01

    Energy efficiency and demand response are critical resources for the transition to a cleaner electricity grid. Demand-side management programs can reduce electricity use during peak times when power is scarce and expensive, ...

  20. Driving change : evaluating strategies to control automotive energy demand growth in China

    E-Print Network [OSTI]

    Bonde Åkerlind, Ingrid Gudrun

    2013-01-01

    As the number of vehicles in China has relentlessly grown in the past decade, the energy demand, fuel demand and greenhouse gas emissions associated with these vehicles have kept pace. This thesis presents a model to project ...

  1. China's Energy and Carbon Emissions Outlook to 2050

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01

    effects. The forecast of energy demand underlying bothEnergy demand in residential buildings has been rising very fast in recent years. The forecast

  2. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards"Top-Runner Approach"

    SciTech Connect (OSTI)

    Lacommare, Kristina S H; Komiyama, Ryoichi; Marnay, Chris

    2008-05-15

    As one of the measures to achieve the reduction in greenhouse gas emissions agreed to in the"Kyoto Protocol," an institutional scheme for determining energy efficiency standards for energy-consuming appliances, called the"Top-Runner Approach," was developed by the Japanese government. Its goal is to strengthen the legal underpinnings of various energy conservation measures. Particularly in Japan's residential sector, where energy demand has grown vigorously so far, this efficiency standard is expected to play a key role in mitigating both energy demand growth and the associated CO2 emissions. This paper presents an outlook of Japan's residential energy demand, developed by a stochastic econometric model for the purpose of analyzing the impacts of the Japan's energy efficiency standards, as well as the future stochastic behavior of income growth, demography, energy prices, and climate on the future energy demand growth to 2030. In this analysis, we attempt to explicitly take into consideration more than 30 kinds of electricity uses, heating, cooling and hot water appliances in order to comprehensively capture the progress of energy efficiency in residential energy end-use equipment. Since electricity demand, is projected to exhibit astonishing growth in Japan's residential sector due to universal increasing ownership of electric and other appliances, it is important to implement an elaborate efficiency standards policy for these appliances.

  3. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    Dryer WH - Clothes Washer Clothes Washer WH - DishwasherDishwasher Water Heating Figure 7 Breakdown of residentialUEC Water Heating (WH) Dishwasher Advanced Energy Pathways -

  4. Tankless or Demand-Type Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tankless or Demand-Type Water Heaters Tankless or Demand-Type Water Heaters May 2, 2012 - 6:47pm Addthis Diagram of a tankless water heater. Diagram of a tankless water heater. How...

  5. A study of industrial equipment energy use and demand control 

    E-Print Network [OSTI]

    Dooley, Edward Scott

    2001-01-01

    personnel. Comparing a detailed summary of equipment rated loads to annual utility bills, when measurements are not available, can prevent over-estimation of the demand and duty factors for a plant. Raw unadjusted estimates of demand factors of 60...

  6. Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing

    E-Print Network [OSTI]

    Boutaba, Raouf

    1999 when abnormal hot weather combined with electricity generation shortage resulted in unheard management and is a major con- tributor of electric grid faults. Although peak demand happens very infrastructure (Figure 1): technology upgrade of the electric grid system, all-digital management infrastructure

  7. Energy Demands and Efficiency Strategies in Data Center Buildings

    SciTech Connect (OSTI)

    Shehabi, Arman

    2009-09-01

    Information technology (IT) is becoming increasingly pervasive throughout society as more data is digitally processed, stored, and transferred. The infrastructure that supports IT activity is growing accordingly, and data center energy demands haveincreased by nearly a factor of four over the past decade. Data centers house IT equipment and require significantly more energy to operate per unit floor area thanconventional buildings. The economic and environmental ramifications of continued data center growth motivate the need to explore energy-efficient methods to operate these buildings. A substantial portion of data center energy use is dedicated to removing the heat that is generated by the IT equipment. Using economizers to introduce large airflow rates of outside air during favorable weather could substantially reduce the energy consumption of data center cooling. Cooling buildings with economizers is an established energy saving measure, but in data centers this strategy is not widely used, partly owing to concerns that the large airflow rates would lead to increased indoor levels of airborne particles, which could damage IT equipment. The environmental conditions typical of data centers and the associated potential for equipment failure, however, are not well characterized. This barrier to economizer implementation illustrates the general relationship between energy use and indoor air quality in building design and operation. This dissertation investigates how building design and operation influence energy use and indoor air quality in data centers and provides strategies to improve both design goals simultaneously.As an initial step toward understanding data center air quality, measurements of particle concentrations were made at multiple operating northern California data centers. Ratios of measured particle concentrations in conventional data centers to the corresponding outside concentrations were significantly lower than those reported in the literature for office or residential buildings. Estimates using a material-balance model match well with empirical results, indicating that the dominant particle sources and losses -- ventilation and filtration -- have been characterized. Measurements taken at a data center using economizers show nearly an order of magnitude increase in particle concentration during economizer activity. However, even with the increase, themeasured particle concentrations are still below concentration limits recommended in most industry standards. The research proceeds by exploring the feasibility of using economizers in data centers while simultaneously controlling particle concentrations with high-quality air filtration. Physical and chemical properties of indoor and outdoor particles were analyzed at a data center using economizers and varying levels of air filtration efficiency. Results show that when improved filtration is used in combination with an economizer, the indoor/outdoor concentration ratios for most measured particle types were similar to the measurements when using conventional filtration without economizers. An energy analysis of the data center reveals that, even during the summer months, chiller savings from economizer use greatly outweigh the increase in fan power associated with improved filtration. These findings indicate that economizer use combined with improved filtration couldsignificantly reduce data center energy demand while providing a level of protection from particles of outdoor origin similar to that observed with conventional design. The emphasis of the dissertation then shifts to evaluate the energy benefits of economizer use in data centers under different design strategies. Economizer use with high ventilation rates is compared against an alternative, water-side economizer design that does not affect indoor particle concentrations. Building energy models are employed to estimate energy savings of both economizer designs for data centers in

  8. SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-A WholesaleRetrofitElectricalDepartment ofof Energy

  9. Proceedings of the Chinese-American symposium on energy markets and the future of energy demand

    SciTech Connect (OSTI)

    Meyers, S. (ed.)

    1988-11-01

    The Symposium was organized by the Energy Research Institute of the State Economic Commission of China, and the Lawrence Berkeley Laboratory and Johns Hopkins University from the United States. It was held at the Johns Hopkins University Nanjing Center in late June 1988. It was attended by about 15 Chinese and an equal number of US experts on various topics related to energy demand and supply. Each presenter is one of the best observers of the energy situation in their field. A Chinese and US speaker presented papers on each topic. In all, about 30 papers were presented over a period of two and one half days. Each paper was translated into English and Chinese. The Chinese papers provide an excellent overview of the emerging energy demand and supply situation in China and the obstacles the Chinese planners face in managing the expected increase in demand for energy. These are matched by papers that discuss the energy situation in the US and worldwide, and the implications of the changes in the world energy situation on both countries. The papers in Part 1 provide historical background and discuss future directions. The papers in Part 2 focus on the historical development of energy planning and policy in each country and the methodologies and tools used for projecting energy demand and supply. The papers in Part 3 examine the pattern of energy demand, the forces driving demand, and opportunities for energy conservation in each of the major sectors in China and the US. The papers in Part 4 deal with the outlook for global and Pacific region energy markets and the development of the oil and natural gas sector in China.

  10. Energy-Agile Laptops: Demand Response of Mobile Plug Loads Using Sensor/Actuator Networks

    E-Print Network [OSTI]

    California at Berkeley, University of

    Energy-Agile Laptops: Demand Response of Mobile Plug Loads Using Sensor/Actuator Networks Nathan@me.berkeley.edu Abstract--This paper explores demand response techniques for managing mobile, distributed loads with on observed. Our first simulation study explores a classic demand response scenario in which a large number

  11. Rising equity

    SciTech Connect (OSTI)

    Burr, M.T.

    1992-09-01

    This article reports on the results of a financial rankings survey of the independent energy industry indicating that lenders and investors provided more than five billion dollars in capital for new, private power projects during the first six months of 1992. The topics of the article include rising equity requirements, corporate finance, mergers and acquisitions, project finance investors, revenue bonds, project finance lenders for new projects, project finance lenders for restructurings, and project finance advisors.

  12. Overview of Demand Side Response | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Partnership Working Group (FUPWG) Fall 2008 meeting-discusses the utility PJM's demand side response (DSR) capabilities, including emergency and economic responses....

  13. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Lekov, Alex

    2009-01-01

    energy efficiency, load management, and demand response caseenergy efficiency and load management purposes can often bein place controls for load management programs as well as

  14. Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs

    E-Print Network [OSTI]

    Victoria, University of

    Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs Supervisory Committee Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management savings over time. As BC Hydro increases its DSM initiatives to meet the Clean Energy Act objective

  15. Autonomous Demand Side Management Based on Game-Theoretic Energy Consumption

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    Autonomous Demand Side Management Based on Game-Theoretic Energy Consumption Scheduling side energy management system among users that takes advantage of a two-way digital communication distributed demand side energy management strategy requires each user to simply apply its best response

  16. Fact Sheet: U.S. and China Actions Matter for Global Energy Demand...

    Energy Savers [EERE]

    next two decades. The U.S. continues working with China to increase energy efficiency and renewable energy use. The actions of the U.S. and China matter for global energy demand,...

  17. Program Strategies and Results for California’s Energy Efficiency and Demand Response Markets 

    E-Print Network [OSTI]

    Ehrhard, R.; Hamilton, G.

    2008-01-01

    Global Energy Partners provides a review of California’s strategic approach to energy efficiency and demand response implementation, with a focus on the industrial sector. The official role of the state, through the California Energy Commission (CEC...

  18. Energy Demand and Fuel Supply in Developing Countries Brazil, Korea and the Philippines

    E-Print Network [OSTI]

    Sathaye, Jayant A.

    1984-01-01

    1980. COUNTRY REPORT BRAZIL TRENDS OF ENERGY USE I N BRAZILBRAZIL KOREA PHILIPPINES INTRODUCTION During the 1970s, energyENERGY DEMAND AND FUEL SUPPLY IN DEVELOPING COUNTRIES BRAZIL,

  19. Policy Paper 36: Energy and Security in Northeast Asia: Supply and Demand, Conflict and

    E-Print Network [OSTI]

    Fesharaki, Fereidun; Banaszak, Sarah; WU, Kang; Valencia, Mark J.; Dorian, James P.

    1998-01-01

    Energy and Security in Northeast Asia: Supply and Demand,Policy Papers 35- 37, Energy and Security in Northeast Asia,on Northeast Asian energy and security held in Seoul, Korea.

  20. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01

    international energy supply/demand in 2050, China, India andStorage (CCS) J energy including China and India, growing ""

  1. The continuance of a rise in prices in a Western economy well after a downturn in final demands, termed "Stagflation," has been a puzzle

    E-Print Network [OSTI]

    Wickerhauser, M. Victor

    Abstract The continuance of a rise in prices in a Western economy well after a downturn in final include the use of input-output (or interindustry) tables. In conclusion, at the end of this paper, attention is drawn to the computability of projections of industrial price-levels and rates of return

  2. Implementation and Evaluation of an On-Demand Parameter-Passing Strategy for Reducing Energy

    E-Print Network [OSTI]

    Zhang, Wei

    Implementation and Evaluation of an On-Demand Parameter-Passing Strategy for Reducing Energy M Abstract In this paper, we present an energy-aware parameter- passing strategy called on-demand parameter UMIST Manchester M60 1QD, UK W.Zhang CSE Department Penn State University University Park, PA, 16802

  3. Energy, Water and Fish: Biodiversity Impacts of Energy-Sector Water Demand in the United States Depend on

    E-Print Network [OSTI]

    Olden, Julian D.

    Energy, Water and Fish: Biodiversity Impacts of Energy- Sector Water Demand in the United States to increase the impact of energy sector water use on freshwater biodiversity. We forecast changes in future: Biodiversity Impacts of Energy-Sector Water Demand in the United States Depend on Efficiency and Policy

  4. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01

    the oil crises (to cut primary energy demand per GDP ( T P Eenergy sources in total primary energy supply in 2050 toreduce C 0 emissions per primary energy demand ( C 0 / T P E

  5. Electrical Energy Conservation and Peak Demand Reduction Potential for Buildings in Texas: Preliminary Results 

    E-Print Network [OSTI]

    Hunn, B. D.; Baughman, M. L.; Silver, S. C.; Rosenfeld, A. H.; Akbari, H.

    1985-01-01

    This paper presents preliminary results of a study of electrical energy conservation and peak demand reduction potential for the building sector in Texas. Starting from 1980 building stocks and energy use characteristics, technical conservation...

  6. Economic development and the structure of the demand for commerial energy

    E-Print Network [OSTI]

    Judson, Ruth A.

    To deepen the understanding of the relation between economic development and energy demand, this study estimates the Engel curves that relate per-capita energy consumption in major economic sectors to per-capita GDP. Panel ...

  7. Impacts of Temperature Variation on Energy Demand in Buildings (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    In the residential and commercial sectors, heating and cooling account for more than 40% of end-use energy demand. As a result, energy consumption in those sectors can vary significantly from year to year, depending on yearly average temperatures.

  8. The Window Market in Texas: Opportunities for Energy Savings and Demand Reduction 

    E-Print Network [OSTI]

    Zarnikau, J.; Campbell, L.

    2002-01-01

    The use of high performance windows represents a promising opportunity to reduce energy consumption and summer electrical demand in homes and commercial buildings in Texas and neighboring states. While low-e glass coatings and other energy...

  9. Factors Influencing Water Heating Energy Use and Peak Demand in a Large Scale Residential Monitoring Study 

    E-Print Network [OSTI]

    Bouchelle, M. P.; Parker, D. S.; Anello, M. T.

    2000-01-01

    , as well as obtain improved appliance energy consumption indexes and load profiles. A portion of the monitoring measures water heater energy use and demand in each home on a 15-minute basis....

  10. Residential energy demand modeling and the NIECS data base : an evaluation

    E-Print Network [OSTI]

    Cowing, Thomas G.

    1982-01-01

    The purpose of this report is to evaluate the 1978-79 National Interim Energy Consumption Survey (NIECS) data base in terms of its usefulness for estimating residential energy demand models based on household appliance ...

  11. Promoting Renewable Energy in a Market Environment: A Community-Based Approach for Aggregating Green Demand

    E-Print Network [OSTI]

    ......................................................................................................................................1 Green Marketing Outside the Energy SectorPromoting Renewable Energy in a Market Environment: A Community-Based Approach for Aggregating Green Demand Rudd Mayer Eric Blank Randy Udall John Nielsen Land and Water Fund of the Rockies

  12. InDemandInDemandInDemand Energize Your Career

    E-Print Network [OSTI]

    Wolberg, George

    InDemandInDemandInDemand Energize Your Career You can join the next generation of workers who in Energy #12;#12;In Demand | 1 No, this isn't a quiz...but if you answered yes to any or all and Training Administration wants you to have this publication, In Demand: Careers in Energy. It will let you

  13. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  14. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01

    Linking Continuous Energy Management and Open AutomatedKeywords: Continuous Energy Management, Automated Demandlinking continuous energy management and continuous

  15. Control and Optimization Meet the Smart Power Grid - Scheduling of Power Demands for Optimal Energy Management

    E-Print Network [OSTI]

    Koutsopoulos, Iordanis

    2010-01-01

    The smart power grid aims at harnessing information and communication technologies to enhance reliability and enforce sensible use of energy. Its realization is geared by the fundamental goal of effective management of demand load. In this work, we envision a scenario with real-time communication between the operator and consumers. The grid operator controller receives requests for power demands from consumers, with different power requirement, duration, and a deadline by which it is to be completed. The objective is to devise a power demand task scheduling policy that minimizes the grid operational cost over a time horizon. The operational cost is a convex function of instantaneous power consumption and reflects the fact that each additional unit of power needed to serve demands is more expensive as demand load increases.First, we study the off-line demand scheduling problem, where parameters are fixed and known. Next, we devise a stochastic model for the case when demands are generated continually and sched...

  16. Strategy Guideline: Energy Retrofits for Low-Rise Multifamily Buildings in Cold Climates

    SciTech Connect (OSTI)

    Brozyna, K. [IBACOS, Inc., Pittsburgh, PA (United States); Badger, L. [Vermont Energy Investment Corporation, Burlington, VT (United States)

    2013-04-01

    This Strategy Guideline explains the benefits of evaluating and identifying energy efficiency retrofit measures that could be made during renovation and maintenance of multifamily buildings. It focuses on low-rise multifamily structures (three or fewer stories) in a cold climate. These benefits lie primarily in reduced energy use, lower operating and maintenance costs, improved durability of the structure, and increased occupant comfort. This guideline focuses on retrofit measures for roof repair or replacement, exterior wall repair or gut rehab, and eating system maintenance. All buildings are assumed to have a flat ceiling and a trussed roof, wood- or steel-framed exterior walls, and one or more single or staged boilers. Estimated energy savings realized from the retrofits will vary, depending on the size and condition of the building, the extent of efficiency improvements, the efficiency of the heating equipment, the cost and type of fuel, and the climate location.

  17. Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Broader source: Energy.gov [DOE]

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and by extrapolation, to nearly 30.2 billion tons in 2050, requiring ever-greater amounts of energy. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand; the possible trends and 2050 outlook for these factors, and their anticipated effect on freight demand and related energy use.After describing federal policy actions that could influence freight demand, the report then summarizes the available analytical models for forecasting freight demand, and identifies possible areas for future action.

  18. Optimization of Ventilation Energy Demands and Indoor Air Quality in the ZEBRAlliance Homes

    SciTech Connect (OSTI)

    Hun, D.; Jackson, M.; Shrestha, S.

    2013-09-01

    High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. In this project, Oak Ridge National Laboratory researchers attempted to bridge these two areas by conducting tests in research houses located in Oak Ridge, TN, that were less than 2 years old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built, unoccupied, and unfurnished. The team identified air pollutants of concern in the test homes that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniques that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern from initial air sampling surveys. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74°F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused minimal to modest increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.

  19. Optimization of Ventilation Energy Demands and Indoor Air Quality in High-Performance Homes

    SciTech Connect (OSTI)

    Hun, Diana E; Jackson, Mark C; Shrestha, Som S

    2014-01-01

    High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. We attempted to bridge these two areas by conducting tests in a research house located in Oak Ridge, TN, that was 20 months old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built (i.e., natural ventilation rate ~0.02 h-1), unoccupied, and unfurnished. We identified air pollutants of concern in the test home that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniques that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern among the contaminants that were sampled in the initial survey because it was the only compound that showed concentrations that were greater than the recommended exposure levels. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74 F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.

  20. Location, location, location: The variable value of renewable energy and demand-side efficiency resources

    E-Print Network [OSTI]

    Fowlie, Meredith

    and renewable energy resources. We eval- uate renewable energy (RE) and energy efficiency (EE) technologiesLocation, location, location: The variable value of renewable energy and demand-side efficiency mitigation efforts in the electricity sector emphasize accelerated deployment of energy efficiency measures

  1. DEMAND MANAGEMENT FOR HOME ENERGY NETWORKS USING COST-OPTIMAL APPLIANCE SCHEDULING

    E-Print Network [OSTI]

    Rakocevic, Veselin

    , Madrid, Spain veselin.rakocevic.1@city.ac.uk Keywords: Smart Homes, Optimization for Efficient Energy Consumption, Energy Profiling and Measurement, Energy Demand Management, Economic Models of Energy Efficiency. For energy providers, the greatest remaining challenges lie in: (1) development of intelligent resource

  2. A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    energy performance and demand response. Accurate estimationto assess accurately demand response strategies. 3.6 Weatherincluding HVAC design, demand response for smart grids, and

  3. A Full Demand Response Model in Co-Optimized Energy and

    SciTech Connect (OSTI)

    Liu, Guodong; Tomsovic, Kevin

    2014-01-01

    It has been widely accepted that demand response will play an important role in reliable and economic operation of future power systems and electricity markets. Demand response can not only influence the prices in the energy market by demand shifting, but also participate in the reserve market. In this paper, we propose a full model of demand response in which demand flexibility is fully utilized by price responsive shiftable demand bids in energy market as well as spinning reserve bids in reserve market. A co-optimized day-ahead energy and spinning reserve market is proposed to minimize the expected net cost under all credible system states, i.e., expected total cost of operation minus total benefit of demand, and solved by mixed integer linear programming. Numerical simulation results on the IEEE Reliability Test System show effectiveness of this model. Compared to conventional demand shifting bids, the proposed full demand response model can further reduce committed capacity from generators, starting up and shutting down of units and the overall system operating costs.

  4. U.S. Solar Manufacturing Rising on the Horizon | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Laclede GasEfficiency|Feed Families"ResearchABUto ReachJapanSolar demand

  5. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    SciTech Connect (OSTI)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

    2009-05-11

    This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  6. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    Crises & Climate Challenges - 30 Years of Energy Use in IEACountries”, IEA/OECD, Paris, France. International Energy2006a. “World Energy Outlook”, IEA/OECD, Paris, France.

  7. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    for cooking and lighting. Biomass energy consumption willused in an economy, biomass energy consumption is certainlyby a large share of biomass energy use representing 50% of

  8. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    7 Figure 3. Energy Consumption in the Agriculture Sector (13 Figure 6. Energy Consumption in the ServiceFinal and Primary Energy Consumption in the Industry Sector,

  9. Energy Upgrade California Drives Demand From Behind the Wheel...

    Broader source: Energy.gov (indexed) [DOE]

    trailer with the Energy Upgrade California logo and graphics painted on the side. With a goal of "energy efficiency or bust," the California Center for Sustainable Energy (CCSE)...

  10. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2008-01-01

    Runs, Average Value) Electricity Demand Power/Electricitygrowth to 2030. Since electricity demand is projected toequipment. Since electricity demand, is projected to exhibit

  11. Intelligent Building Energy Information and Control Systems for Low-Energy Operations and Optimal Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2014-01-01

    Open  Automated  Demand  Response  Communications from  7 Years of Automated Demand Response in Commercial Management and Demand Response in Commercial  Buildings. , 

  12. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01

    nature of the wastewater stream, energy use and demand, asPakenas Energy extraction from municipal effluent streamsthe waste stream also greatly reduces the amount of energy

  13. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01

    technologies og Stable Energy Supply Enhancing cooperativesources in total primary energy supply in 2050 to 50% (towell-organized in regard to energy supply and demand toward

  14. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    same activities that require energy today will continue toaccounting of how energy is consumed today. For each sector,

  15. ENERGY DEMAND AND CONSERVATION IN KENYA: INITIAL APPRAISAL

    E-Print Network [OSTI]

    Schipper, Lee

    2013-01-01

    conference "Energy and Environment in East Africa," NairobiEnergy conserving buildings have their axes oriented east-

  16. THE CHALLENGES AND OPPORTUNITIES TO MEET THE WORKFORCE DEMAND IN THE ELECTRIC POWER AND ENERGY PROFESSION

    E-Print Network [OSTI]

    1 THE CHALLENGES AND OPPORTUNITIES TO MEET THE WORKFORCE DEMAND IN THE ELECTRIC POWER AND ENERGY to be about 25%. The demand for U.S. electrical engineers in construction will be up from 150,000 today to 175 PROFESSION Wanda Reder, S & C Electric Company, 6601 North Ridge Blvd., Chicago, IL 60626- 3997, USA Vahid

  17. Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2013-10-01

    Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

  18. Issues in International Energy Consumption Analysis: Chinese Transportation Fuel Demand

    Reports and Publications (EIA)

    2014-01-01

    Since the 1990s, China has experienced tremendous growth in its transportation sector. By the end of 2010, China's road infrastructure had emerged as the second-largest transportation system in the world after the United States. Passenger vehicle sales are dramatically increasing from a little more than half a million in 2000, to 3.7 million in 2005, to 13.8 million in 2010. This represents a twenty-fold increase from 2000 to 2010. The unprecedented motorization development in China led to a significant increase in oil demand, which requires China to import progressively more petroleum from other countries, with its share of petroleum imports exceeding 50% of total petroleum demand since 2009. In response to growing oil import dependency, the Chinese government is adopting a broad range of policies, including promotion of fuel-efficient vehicles, fuel conservation, increasing investments in oil resources around the world, and many others.

  19. Demand Response - Policy: More Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153Daniel BoffDepartment ofConditionDelmarva Power -Demand

  20. Optimization Based Data Mining Approah for Forecasting Real-Time Energy Demand

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Li, Xueping; Zhou, Shengchao

    2015-01-01

    The worldwide concern over environmental degradation, increasing pressure on electric utility companies to meet peak energy demand, and the requirement to avoid purchasing power from the real-time energy market are motivating the utility companies to explore new approaches for forecasting energy demand. Until now, most approaches for forecasting energy demand rely on monthly electrical consumption data. The emergence of smart meters data is changing the data space for electric utility companies, and creating opportunities for utility companies to collect and analyze energy consumption data at a much finer temporal resolution of at least 15-minutes interval. While the data granularity provided by smart meters is important, there are still other challenges in forecasting energy demand; these challenges include lack of information about appliances usage and occupants behavior. Consequently, in this paper, we develop an optimization based data mining approach for forecasting real-time energy demand using smart meters data. The objective of our approach is to develop a robust estimation of energy demand without access to these other building and behavior data. Specifically, the forecasting problem is formulated as a quadratic programming problem and solved using the so-called support vector machine (SVM) technique in an online setting. The parameters of the SVM technique are optimized using simulated annealing approach. The proposed approach is applied to hourly smart meters data for several residential customers over several days.

  1. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    Tables Figures Figure 1. India Primary Energy Supply by fuel7 Figure 2. Final and Primary Energy (including biomass) by19 Figure 10. Final and Primary Energy Consumption in the

  2. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    2002, “TEDDY: TERI’s energy data directory and yearbook2006. “TEDDY: TERI’s energy data directory and yearbookU.S. DOE, 2006, “Buildings Energy Data Book 2006”, September

  3. ENERGY DEMAND AND CONSERVATION IN KENYA: INITIAL APPRAISAL

    E-Print Network [OSTI]

    Schipper, Lee

    2013-01-01

    o One important energy intensive export from Kenya isdata is the energy bound up in imports and exports. goods orand 56 X 10 6 exports. Estimating average energy intem>ity

  4. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01

    end-uses and whole building energy performance metrics. Theperformance metrics associated with each of the domains. For example, whole-building energy

  5. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    gas oil nuclear hydro Energy output Own Uses Transmissiongas oil nuclear hydro Energy output Own Uses Transmissionenergy equivalence of electricity generated from hydro or

  6. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    pumps in India”, Renewable and Sustainable Energy Reviews,Renewable Energy (MNES), 2008. “Annual Report 2007-08”. Government of India.

  7. Demand Side Energy Saving though Proper Construction Practices and Materials Selection 

    E-Print Network [OSTI]

    El-Hawary, M.

    2010-01-01

    and their effect on demand side energy are assessed. Using local materials, pozzolanic blended cements, fillers, along with specifying 56 days strength in design are discussed and assessed. Proper mix design, quality control and proper architectural design also...

  8. Identification of Changes Needed in Supermarket Design for Energy Demand Reduction 

    E-Print Network [OSTI]

    Hill, F.; Edwards, R.; Levermore, G.

    2012-01-01

    not incorporated in modeling of the building at design stage. This paper explores the comparative energy demands of supermarket stores modeled, using a simple first order dynamic model, executed on Excel, and optimized firstly with, and secondly without...

  9. Cooling Energy Demand Evaluation by Meansof Regression Models Obtained From Dynamic Simulations 

    E-Print Network [OSTI]

    Catalina, T.; Virgone, J.

    2011-01-01

    The forecast of the energy heating/cooling demand would be a good indicator for the choice between different conception solutions according to the building characteristics and the local climate. A previous study (Catalina T. et al 2008...

  10. Assumption to the Annual Energy Outlook 2014 - Residential Demand Module

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProved Reserves (BillionTechnical InformationDecade Year-0 2Market ModuleOil and GasDemand

  11. Estimating Demand Response Market Potential | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,Erosion Flume Jump to: navigation,NewDemand Response

  12. Draft Chapter 3: Demand-Side Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of2 Federal Register /1 PiotrDraft3: Demand-Side

  13. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    Statistics and Programme Implementation published a condensed version of statics related to energy production and consumption (

  14. The impact of demand-controlled ventilation on energy use in buildings

    SciTech Connect (OSTI)

    Braun, J.E.; Brandemuehl, M.J.

    1999-07-01

    The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies. The strategies included different combinations of economizer and demand-controlled ventilation controls and energy analyses were performed for a range of typical buildings, systems, and climates. Only single zone buildings were considered, so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates, and for buildings that have low relative internal gains (i.e., low occupant densities). As much as 10% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger, but were strongly dependent upon the occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules (e.g., stores and restaurants) as compared with office buildings. In some cases, the primary heating energy was reduced by a factor of 10 with demand-controlled ventilation as compared with fixed ventilation rates.

  15. Strategies to reduce energy demand in manufacturing processes are becoming necessary due to the growing concern of carbon emissions and the expected rise of electricity prices over time. To guide the development of these strategies, the results of a life-cycle energy consumption analysis of milling machine tools are first highlighted to show the effect of several factors such as degree of automation, manufacturing environment, transportation, material inputs, and facility inputs on environmental impact. An overview of design and operation strategies to reduce energy consumption is thereafter presented including the implementation of a Kinetic Energy Recovery System (KERS), a process parameter selection strategy, and a web-based energy estimation tool.

    E-Print Network [OSTI]

    Dornfeld, David; Wright, Paul

    2007-01-01

    The 1.7 kilogram microchip: Energy and material use in the2002) describing the energy and materials that go into athe cost of materials and manufacturing (in terms of energy

  16. Demand Response and Open Automated Demand Response

    E-Print Network [OSTI]

    LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

  17. Matching Renewable Energy Supply and Demand in Green Datacenters$

    E-Print Network [OSTI]

    Bianchini, Ricardo

    by many small and medium datacenters (partially or completely) powered by solar and/or wind energy all-energy-aware scheduling can have a significant role in building a more sustainable IT ecosystem. Keywords: Green energy is building a 40MW solar array for its North Carolina datacenter [4]. McGraw-Hill has recently completed a 14

  18. Distributed Algorithms for Control of Demand Response and Distributed Energy Resources

    E-Print Network [OSTI]

    Liberzon, Daniel

    Distributed Algorithms for Control of Demand Response and Distributed Energy Resources Alejandro D algorithms for control and coordination of loads and distributed energy resources (DERs) in distribution) integration of distributed energy resources (DERs), e.g., photovoltaics (PV); and iii) new storage

  19. Scalable, Secure Energy Information Management for Demand-Response Analysis Yogesh Simmhan1,2

    E-Print Network [OSTI]

    Hwang, Kai

    Scalable, Secure Energy Information Management for Demand-Response Analysis Yogesh Simmhan1 and optimize energy usage to meet sustainability goals. Managing the energy information lifecycle ­ from, feedback, and query/response interactions, which are transmitted across a widely distributed infrastructure

  20. Demand Responsive and Energy Efficient Control Technologies andStrategies in Commercial Buildings

    SciTech Connect (OSTI)

    Piette, Mary Ann; Kiliccote, Sila

    2006-09-01

    Commercial buildings account for a large portion of summer peak electric demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial buildings contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. The main objectives of the study were: (1) To evaluate the size of contributions of peak demand commercial buildings in the U.S.; (2) To understand how commercial building control systems support energy efficiency and DR; and (3) To disseminate the results to the building owners, facility managers and building controls industry. In order to estimate the commercial buildings contribution to peak demand, two sources of data are used: (1) Commercial Building Energy Consumption Survey (CBECS) and (2) National Energy Modeling System (NEMS). These two sources indicate that commercial buildings noncoincidental peak demand is about 330GW. The project then focused on technologies and strategies that deliver energy efficiency and also target 5-10% of this peak. Based on a building operations perspective, a demand-side management framework with three main features: (1) daily energy efficiency, (2) daily peak load management and (3) dynamic, event-driven DR are outlined. A general description of DR, its benefits, and nationwide DR potential in commercial buildings are presented. Case studies involving these technologies and strategies are described. The findings of this project are shared with building owners, building controls industry, researchers and government entities through a webcast and their input is requested. Their input is presented in the appendix section of this report.

  1. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  2. EA-2020: Energy Efficiency Design Standards for New Federal Low-Rise Residential Buildings (RIN# 1904-AD56)

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of implementing the provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal buildings, including low-rise residential buildings.

  3. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    E-Print Network [OSTI]

    DeForest, Nicholas

    2014-01-01

    Effect of Heat and Electricity Storage and Reliability onThermal Energy Storage for Electricity Peak- demandemployer. Thermal Energy Storage for Electricity Peak-demand

  4. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.

    2008-05-13

    With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy giants', a phenomenon that is expected to continue, accelerate and spread to other countries. This paper explores the potential for slowing energy consumption and greenhouse gas emissions in the residential sector in developing countries and evaluates the potential of energy savings and emissions mitigation through market transformation programs such as, but not limited to Energy Efficiency Standards and Labeling (EES&L). The bottom-up methodology used allows one to identify which end uses and regions have the greatest potential for savings.

  5. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    Petroleum pricing in India: balancing efficiency andand Tables Figures Figure 1. India Primary Energy Supply by28 Table 13. India, US and France Farm Machinery

  6. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01

    O. , 2004. Energy efficient data centers. Report LBNL-54163,and Cooling in the Data Center. Advanced Micro Devices.2007. Special Study: Data Center of the Future. New York,

  7. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01

    volume server efficiency measures, which have energy savingthe savings potential available through efficiency measures.savings from volume servers is the result of IT efficiency measures

  8. Web-based energy information systems for energy management and demand response in commercial buildings

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-04-18

    Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS are discussed: Metering and Connectivity; Visualization and Analysis Features; Demand Response Features; and Remote Control Features. This report also describes the following technologies and the potential benefits of incorporating them into future EIS products: Benchmarking; Load Shape Analysis; Fault Detection and Diagnostics; and Savings Analysis.

  9. India Energy Outlook: End Use Demand in India to 2020

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; McNeil, Michael; Sathaye, Jayant

    2009-03-30

    Integrated economic models have been used to project both baseline and mitigation greenhouse gas emissions scenarios at the country and the global level. Results of these scenarios are typically presented at the sectoral level such as industry, transport, and buildings without further disaggregation. Recently, a keen interest has emerged on constructing bottom up scenarios where technical energy saving potentials can be displayed in detail (IEA, 2006b; IPCC, 2007; McKinsey, 2007). Analysts interested in particular technologies and policies, require detailed information to understand specific mitigation options in relation to business-as-usual trends. However, the limit of information available for developing countries often poses a problem. In this report, we have focus on analyzing energy use in India in greater detail. Results shown for the residential and transport sectors are taken from a previous report (de la Rue du Can, 2008). A complete picture of energy use with disaggregated levels is drawn to understand how energy is used in India and to offer the possibility to put in perspective the different sources of end use energy consumption. For each sector, drivers of energy and technology are indentified. Trends are then analyzed and used to project future growth. Results of this report provide valuable inputs to the elaboration of realistic energy efficiency scenarios.

  10. An overview of energy supply and demand in China

    SciTech Connect (OSTI)

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world's largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China's energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China's energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  11. An overview of energy supply and demand in China

    SciTech Connect (OSTI)

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world`s largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China`s energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China`s energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  12. Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher iSlide 1 MoresteelmakingRenewable EnergyMaintenanceMaximizing<EnergyWater

  13. Energy Upgrade California Drives Demand From Behind the Wheel | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural GasDepartment of EnergyJanuary 26, 2012 Theof

  14. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    Past Trend and Future Outlook",LBNL forthcoming. de la Rue2006. “Building up India: Outlook for India’s real estate”,2006a. “World Energy Outlook”, IEA/OECD, Paris, France.

  15. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    of oil use for the need of LPG and kerosene for cooking andSector PJ Fuel Oil Diesel Oil LPG Electricity Source: CEA,PJ) PJ fuel oil diesel LPG electricity Energy consumption is

  16. ENERGY DEMAND AND CONSERVATION IN KENYA: INITIAL APPRAISAL

    E-Print Network [OSTI]

    Schipper, Lee

    2013-01-01

    and commercial uses" of oil products as given by the 1978as net i.mports of oil products. Electric power productionfrom Kenya is refined oil products, energy for which is

  17. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01

    the impact of data center operation on climate change wouldfrom data centers in addressing climate change, andData centers are presented within the greater context of building energy, indoor air quality, and climate change.

  18. Hydrogen Demand and Resource Assessment Tool | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas: EnergyHunterdonHutto,Fuel

  19. Retail Demand Response in Southwest Power Pool | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-A Wholesale PowerNaturalEnergyResuming Operations at

  20. The impact of demand-controlled and economizer ventilation strategies on energy use in buildings

    SciTech Connect (OSTI)

    Brandemuehl, M.J.; Braun, J.E.

    1999-07-01

    The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies for constant-air-volume (CAV) systems in commercial buildings. The strategies included different combinations of economizer and demand-controlled ventilation, and energy analyses were performed for four typical building types, eight alternative ventilation systems, and twenty US climates. Only single-zone buildings were considered so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates and for buildings that have relatively low internal gains (i.e., low occupant densities). As much as 20% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger but were strongly dependent upon the building type and occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules and large internal gains (i.e., restaurants) as compared with office buildings. In some cases, the primary heating energy was virtually eliminated by demand-controlled ventilation as compared with fixed ventilation rates. For both heating and cooling, the savings associated with demand-controlled ventilation are dependent on the fixed minimum ventilation rate of the base case at design conditions.

  1. Advanced Control Technologies and Strategies Linking DemandResponse and Energy Efficiency

    SciTech Connect (OSTI)

    Kiliccote, Sila; Piette, Mary Ann

    2005-09-02

    This paper presents a preliminary framework to describe how advanced controls can support multiple modes of operations including both energy efficiency and demand response (DR). A general description of DR, its benefits, and nationwide status is outlined. The role of energy management and control systems for DR is described. Building systems such as HVAC and lighting that utilize control technologies and strategies for energy efficiency are mapped on to DR and demand shedding strategies are developed. Past research projects are presented to provide a context for the current projects. The economic case for implementing DR from a building owner perspective is also explored.

  2. Assisting Mexico in Developing Energy Supply and Demand Projections | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation,SummariesAshmanlaCommercial BuildingsEnergy

  3. Transition of Old Hawaii to the Modern Era and our Energy Demands through Renewable

    E-Print Network [OSTI]

    Transition of Old Hawaii to the Modern Era and our Energy Demands through Renewable Development have spent the last 8 years developing Castle & Cooke's portfolio in renewable energy. They have been responsible for the first and largest utility solar project in the State (LaOla) on the island of Lanai which

  4. UK Energy Research Centre Demand Reduction Theme, University of Oxford

    E-Print Network [OSTI]

    for the Environment South Parks Road Oxford OX1 3QY www.eci.ox.ac.uk www.ukerc.ac.uk #12;UK Energy Research Centre 2 1 than carbon taxes or upstream measures would, but there is little evidence to substantiate

  5. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2010-01-01

    follows: • EDemand t : electricity demand during day t (incost of reducing electricity demand (in $/MWh e ) • HRDCost:maximum fraction of electricity demand to be met by demand

  6. Energy Demand in China (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Price, Lynn

    2011-06-08

    Lynn Price, LBNL scientist, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  7. Agreement Template for Energy Conservation and Demand Side Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NRELDepartment of Energy

  8. Response to several FOIA requests - Renewable Energy. Demand for Fossil

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-A Wholesale PowerNatural GasBreakoutResponseResponseFuels |

  9. Regional Differences in the Price-Elasticity of Demand for Energy

    SciTech Connect (OSTI)

    Bernstein, M. A.; Griffin, J.

    2006-02-01

    At the request of the National Renewable Energy Laboratory (NREL), the RAND Corporation examined the relationship between energy demand and energy prices with the focus on whether the relationships between demand and price differ if these are examined at different levels of data resolution. In this case, RAND compares national, regional, state, and electric utility levels of data resolution. This study is intended as a first step in helping NREL understand the impact that spatial disaggregation of data can have on estimating the impacts of their programs. This report should be useful to analysts in NREL and other national laboratories, as well as to policy nationals at the national level. It may help them understand the complex relationships between demand and price and how these might vary across different locations in the United States.

  10. Tankless or Demand-Type Water Heaters | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About Us Shirley Ann Jackson,DeliverySustainableEnergyTT CoordinatorTaking

  11. Behavioral Economics Applied to Energy Demand Analysis: A Foundation -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura| National2.11 Print3.30.2LabBudgetBehaviorofEnergy

  12. Indianapolis Offers a Lesson on Driving Demand | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OF DESIGNEmergency2013Alaska Energysupportflier for

  13. Assessment of Achievable Potential from Energy Efficiency and Demand

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump|Line SitingOil andAshtabula -AskjaGuide |

  14. Chapter 3 Demand-Side Resources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying caulk to 13.1 - Purchase

  15. Chapter 3: Demand-Side Resources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying caulk to 13.1 -Chapter 3 of the

  16. Residential Sector Demand Module of the National Energy Modeling System

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the(Dollars1.840 2.318 3.1195) Model8)3 November4)

  17. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    SciTech Connect (OSTI)

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2011-12-06

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  18. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOE Patents [OSTI]

    Chassin, David P. (Pasco, WA); Donnelly, Matthew K. (Kennewick, WA); Dagle, Jeffery E. (Richland, WA)

    2006-12-12

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  19. Qinhuangdao Rising Solar Energy Science and Technology Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETE IncScience and Technology Co Ltd Jump

  20. Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

  1. Impacts of Climate Change on Energy Consumption and Peak Demand in Buildings: A Detailed Regional Approach

    SciTech Connect (OSTI)

    Dirks, James A.; Gorrissen, Willy J.; Hathaway, John E.; Skorski, Daniel C.; Scott, Michael J.; Pulsipher, Trenton C.; Huang, Maoyi; Liu, Ying; Rice, Jennie S.

    2015-01-01

    This paper presents the results of numerous commercial and residential building simulations, with the purpose of examining the impact of climate change on peak and annual building energy consumption over the portion of the Eastern Interconnection (EIC) located in the United States. The climate change scenario considered (IPCC A2 scenario as downscaled from the CASCaDE data set) has changes in mean climate characteristics as well as changes in the frequency and duration of intense weather events. This investigation examines building energy demand for three annual periods representative of climate trends in the CASCaDE data set at the beginning, middle, and end of the century--2004, 2052, and 2089. Simulations were performed using the Building ENergy Demand (BEND) model which is a detailed simulation platform built around EnergyPlus. BEND was developed in collaboration with the Platform for Regional Integrated Modeling and Analysis (PRIMA), a modeling framework designed to simulate the complex interactions among climate, energy, water, and land at decision-relevant spatial scales. Over 26,000 building configurations of different types, sizes, vintages, and, characteristics which represent the population of buildings within the EIC, are modeled across the 3 EIC time zones using the future climate from 100 locations within the target region, resulting in nearly 180,000 spatially relevant simulated demand profiles for each of the 3 years. In this study, the building stock characteristics are held constant based on the 2005 building stock in order to isolate and present results that highlight the impact of the climate signal on commercial and residential energy demand. Results of this analysis compare well with other analyses at their finest level of specificity. This approach, however, provides a heretofore unprecedented level of specificity across multiple spectrums including spatial, temporal, and building characteristics. This capability enables the ability to perform detailed hourly impact studies of building adaptation and mitigation strategies on energy use and electricity peak demand within the context of the entire grid and economy.

  2. NECESIDAD RECURSOS HDRICOS DE CALIDAD Figura 1: Global Trends in Population, Energy Demand and Water Use. (http://electrical

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    #12;NECESIDAD RECURSOS HÍDRICOS DE CALIDAD Figura 1: Global Trends in Population, Energy Demand and Water Use. (http://electrical engineeringportal.com/technologyinnovationiseverybodysbusiness) #12

  3. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01

    2005). "Energy Demand in Sludge Dewatering." Water Researchand F. Bloetscher (1999). "Sludge Management, Processing,manufacturers can also use sludge and wastewater generated

  4. The urgent demand for energy, environmental sustainability and healthcare represents the world's most paramount challenge for the next 50 years.

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    The urgent demand for energy, environmental sustainability and healthcare represents the world breakthroughs from the elementary step of materials deformation/manufacturing, energy/mass transfer design down to the nanoscale in energy, environment, healthcare and manufacture" Baoxing Xu Assistant

  5. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01

    Komiyama, "Japan's Energy Outlook for 2050 with Stochastic2008 (10) EIA/DOE, "Annual Energy Outlook 2008," 2008 (11)its long-term energy supply/demand outlook (Reference No.

  6. Joint Supply, Demand, and Energy Storage Management Towards Microgrid Cost Minimization

    E-Print Network [OSTI]

    Liang, Ben

    Joint Supply, Demand, and Energy Storage Management Towards Microgrid Cost Minimization Sun Sun balancing in a grid- connected microgrid is studied. We consider a microgrid pow- ered by a conventional) unit. An aggregator operates the microgrid and aims to minimize the long-term system cost, including

  7. Phase-Change Frame Walls (PCFWs) for Peak Demand Reduction, Load Shifting, Energy Conservation and Comfort 

    E-Print Network [OSTI]

    Medina, M.; Stewart, R.

    2008-01-01

    of the wall via the high latent heats of the PCMs. The main goal of this study was to determine the feasibility of using PCFWs for peak air conditioning demand reduction, thermal load shifting, energy conservation, and thermal comfort. The results showed...

  8. Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2015-01-01

    This study investigates how economically motivated customers will use energy storage for demand charge reduction, as well as how this changes in the presence of on-site photovoltaic power generation, to investigate the possible effects of incentivizing increased quantities of behind-the-meter storage. It finds that small, short-duration batteries are most cost effective regardless of solar power levels, serving to reduce short load spikes on the order of 2.5% of peak demand. While profitable to the customer, such action is unlikely to adequately benefit the utility as may be desired, thus highlighting the need for modified utility rate structures or properly structured incentives.

  9. Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency 

    E-Print Network [OSTI]

    Kiliccote, S.; Piette, M. A.

    2005-01-01

    stream_source_info ESL-IE-15-06-13.pdf.txt stream_content_type text/plain stream_size 7608 Content-Encoding UTF-8 stream_name ESL-IE-15-06-13.pdf.txt Content-Type text/plain; charset=UTF-8 Demand Response & Peak Load... additional generation resources • Hurdles to adding additional resources Why Demand Response Exists ESL-IE-15-06-13 Proceedings of the Thrity-Seventh Industrial Energy Technology Conference New Orleans, LA. June 2-4, 2015 What are my Options? • Efficiency...

  10. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01

    buildings. A demand-side management framework from buildingthe integration of DR in demand-side management activitiesdevelopments. The demand-side management (DSM) framework

  11. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01

    perspective, a demand-side management framework with threethe integration of DR in demand-side management activitiesdevelopments. The demand-side management (DSM) framework

  12. Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann

    2005-01-01

    Fully Automated Demand Response Tests in Large Facilities”.also provided through the Demand Response Research Center (of Fully Automated Demand Response in Large Facilities”

  13. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01

    of Fully Automated Demand Response in Large Facilities”NYSERDA) and the Demand Response Research Center (LLC “Working Group 2 Demand Response Program Evaluation –

  14. Model documentation report: Industrial sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1997-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  15. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    SciTech Connect (OSTI)

    Stadler , Michael; Siddiqui, Afzal; Marnay, Chris; ,, Hirohisa Aki; Lai, Judy

    2009-05-26

    The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the CA case. Finally, we illustrate that the multi-criteria frontier that considers costs and carbon emissions in the presence of demand response dominates the one without it.

  16. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  17. Electrical Energy and Demand Savings from a Geothermal Heat Pump ESPC at Fort Polk, LA

    SciTech Connect (OSTI)

    Shonder, John A; Hughes, Patrick

    1997-06-01

    At Fort Polk, Louisiana, the space-conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHPs) under an energy savings performance contract. At the same time, other efficiency measures, such as compact fluorescent lights, low-flow hot water outlets, and attic insulation, were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. Fifteen-minute interval data were also taken on energy use from a sample of the residences. The analysis presented in this paper shows that for a typical meteorological year, the retrofits result in an electrical energy savings of approximately 25.6 million kWh, or 32.4% of the pre-retrofit electrical use in family housing. Peak electrical demand has also been reduced by about 6.8 MW, which is 40% of pre-retrofit peak demand. In addition, the retrofits save about 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the 'apparent' energy savings observed in the monitored data and are not to be mistaken for the 'contracted' energy savings used as the basis for payments. To determine the 'contracted' energy savings, the 'apparent' energy savings may require adjustments for such things as changes in indoor temperature performance criteri, addition of ceiling fans, and other factors.

  18. Model documentation report: Industrial sector demand module of the national energy modeling system

    SciTech Connect (OSTI)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  19. Facility Scale Energy Storage for Peak Deman Management and Demand Response 

    E-Print Network [OSTI]

    Remillard, J.

    2015-01-01

    Technology Conference New Orleans, LA. June 2-4, 2015 1. Introduction 2. Definitions and key terminology 3. Facility scale value streams 4. Energy storage technologies 5. Technical and market barriers AGENDA ESL-IE-15-06-12a Proceedings of the Thrity...-Seventh Industrial Energy Technology Conference New Orleans, LA. June 2-4, 2015 ?To ensure power quality and level demand ? For integration of renewable generation Incentives ? NYSERDA and Con Edison ? $2,100/kW for batteries ? PG&E ? $1,620/kW for advanced energy...

  20. Hawaii Energy Strategy: Program guide. [Contains special sections on analytical energy forecasting, renewable energy resource assessment, demand-side energy management, energy vulnerability assessment, and energy strategy integration

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii's energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii's energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

  1. The Impact of Energy Efficiency and Demand Response Programs on the U.S. Electricity Market

    SciTech Connect (OSTI)

    Baek, Young Sun; Hadley, Stanton W

    2012-01-01

    This study analyzes the impact of the energy efficiency (EE) and demand response (DR) programs on the grid and the consequent level of production. Changes in demand caused by EE and DR programs affect not only the dispatch of existing plants and new generation technologies, the retirements of old plants, and the finances of the market. To find the new equilibrium in the market, we use the Oak Ridge Competitive Electricity Dispatch Model (ORCED) developed to simulate the operations and costs of regional power markets depending on various factors including fuel prices, initial mix of generation capacity, and customer response to electricity prices. In ORCED, over 19,000 plant units in the nation are aggregated into up to 200 plant groups per region. Then, ORCED dispatches the power plant groups in each region to meet the electricity demands for a given year up to 2035. In our analysis, we show various demand, supply, and dispatch patterns affected by EE and DR programs across regions.

  2. Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building

    SciTech Connect (OSTI)

    Dudley, Junqiao Han; Black, Doug; Apte, Mike; Piette, Mary Ann; Berkeley, Pam

    2010-05-14

    We have studied a low energy building on a campus of the University of California. It has efficient heating, ventilation, and air conditioning (HVAC) systems, consisting of a dual-fan/dual-duct variable air volume (VAV) system. As a major building on the campus, it was included in two demand response (DR) events in the summers of 2008 and 2009. With chilled water supplied by thermal energy storage in the central plant, cooling fans played a critical role during DR events. In this paper, an EnergyPlus model of the building was developed and calibrated. We compared both whole-building and HVAC fan energy consumption with model predictions to understand why demand savings in 2009 were much lower than in 2008. We also used model simulations of the study building to assess pre-cooling, a strategy that has been shown to improve demand saving and thermal comfort in many types of building. This study indicates a properly calibrated EnergyPlus model can reasonably predict demand savings from DR events and can be useful for designing or optimizing DR strategies.

  3. The Psychological Underpinnings of the Consumer Role in Energy Demand and Carbon Abatement

    E-Print Network [OSTI]

    McNamara, Siobhán; Grubb, Michael

    . the change in relative price; there is a process  of learning.    c. Uncertainty  Hyperbolic discounting, a tendency for people to prefer rewards closer in time, even if they  are  smaller  than  a  reward  in  the  future,  is  frequently  cited  as  a  cause  for  seemingly  irrational economic... %  gain  realized  in  efficiency,  demand  has  grown  so  much  during  the  same  period  that  residential  energy  use  has  remained  steady.  Looking  at  the  trend  in  energy  consumption  from  a  broader  perspective we  can  see  that  the...

  4. Local government involvement in long term resource planning for community energy systems. Demand side management

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    A program was developed to coordinate governmental, research, utility, and business energy savings efforts, and to evaluate future potential actions, based on actual field data obtained during the implementation of Phase I of the State Resource Plan. This has lead to the establishment of a state conservation and energy efficiency fund for the purpose of establishing a DSM Program. By taking a state wide perspective on resource planning, additional savings, including environmental benefits, can be achieved through further conservation and demand management. This effort has already blossomed into a state directive for DSM programs for the natural gas industry.

  5. Transportation Sector Demand Module of the National Energy Modeling System: Model Documentation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of the National Energy Modeling System: Model Documentation

  6. Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options and Policy Priorities

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Neufville Professor of Engineering Systems Chair, ESD Education Committee #12;2 #12;3 Electricity DemandElectricity Demand-Side Management for an Energy Efficient Future in China: Technology Options: ______________________________________________________________ : Stephen R. Connors Director, Analysis Group for Regional Electricity Alternatives Thesis Supervisor

  7. Model documentation report: Residential sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    1997-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document that provides a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  8. Design Considerations for an On-Demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network

    E-Print Network [OSTI]

    Brown, Timothy X.

    1 Design Considerations for an On-Demand Minimum Energy Routing Protocol for a Wireless Ad Hoc at Boulder Boulder, CO-80309 Abstract--A minimum energy routing protocol reduces the energy con- sumption of energy to get the packets to their destination. This paper identifies the necessary features of an on

  9. Web-based energy information systems for energy management and demand response in commercial buildings

    E-Print Network [OSTI]

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-01-01

    in terms of energy use per square foot normalizes energy usedefinition is energy use per square foot. S Rate tariff

  10. Web-based energy information systems for energy management and demand response in commercial buildings

    E-Print Network [OSTI]

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-01-01

    Energy Management .William R. , 2002. “Energy Management – The Last UntamedOlin, 2002. “Enterprise Energy Management Software - The Key

  11. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    SciTech Connect (OSTI)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Song, Katherine; Piette, Mary Ann

    2009-04-01

    This report summarizes the Lawrence Berkeley National Laboratory?s research to date in characterizing energy efficiency and automated demand response opportunities for wastewater treatment facilities in California. The report describes the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy use and demand, as well as details of the wastewater treatment process. It also discusses control systems and energy efficiency and automated demand response opportunities. In addition, several energy efficiency and load management case studies are provided for wastewater treatment facilities.This study shows that wastewater treatment facilities can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for automated demand response at little additional cost. These improved controls may prepare facilities to be more receptive to open automated demand response due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  12. Statewide Emissions Reduction, Electricity and Demand Savings from the Implementation of Building-Energy-Codes in Texas 

    E-Print Network [OSTI]

    Yazdani, B.; Haberl, J.; Kim, H.; Baltazar, J.C.; Zilbershtein, G.

    2012-01-01

    This paper focuses on the estimate of electricity reduction and electric demand savings from the adoption energy codes for single-family residences in Texas, 2002-2009, corresponding increase in cnstruction costs and estimates of the statewide...

  13. Study of Energy and Demand Savings on a High Efficiency Hydraulic Pump System with Infinite Turn Down Technology (ITDT) 

    E-Print Network [OSTI]

    Sfeir, R. A.; Kanungo, A.; Liou, S.

    2005-01-01

    Detailed field measurement and verification of electrical energy (kWh) and demand (kW) savings is conducted on an injection molding machine used in typical plastic manufacturing facility retrofitted with a high ...

  14. Impacts of Rising Construction and Equipment Costs on Energy Industries (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Costs related to the construction industry have been volatile in recent years. Some of the volatility may be related to higher energy prices. Prices for iron and steel, cement, and concrete -- commodities used heavily in the construction of new energy projects -- rose sharply from 2004 to 2006, and shortages have been reported. How such price fluctuations may affect the cost or pace of new development in the energy industries is not known with any certainty, and short-term changes in commodity prices are not accounted for in the 25-year projections in Annual Energy Outlook 2007. Most projects in the energy industries require long planning and construction lead times, which can lessen the impacts of short-term trends.

  15. Electrical energy and demand savings from a geothermal heat pump energy savings performance contract at Ft. Polk, LA

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J.

    1997-06-01

    At Fort Polk, LA the space conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHP) under an energy savings performance contract. At the same time, other efficiency measures such as compact fluorescent lights (CFLs), low-flow hot water outlets, and attic insulation were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. 15-minute interval data was also taken on energy use from a sample of the residences. This paper summarizes the electrical energy and demand savings observed in this data. Analysis of feeder-level data shows that for a typical year, the project will result in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing. Results from analysis of building-level data compare well with this figure. Analysis of feeder-level data also shows that the project has resulted in a reduction of peak electrical demand of 6,541 kW, which is 39.6% of the pre-retrofit peak electrical demand. In addition to these electrical savings, the facility is also saving an estimated 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the apparent energy savings observed in the monitored data, and are not to be confused with the contracted energy savings used as the basis for payments. To determine the contracted energy savings, the apparent energy savings may require adjustments for such things as changes in indoor temperature performance criteria, additions of ceiling fans, and other factors.

  16. Property:OpenEI/UtilityRate/DemandWindow | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 JumpPublicationDate JumpEnergy InformationDemandWindow Jump to:

  17. Property:OpenEI/UtilityRate/EnableDemandCharge | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 JumpPublicationDate JumpEnergy InformationDemandWindow Jump

  18. U.S. Energy Information Administration NEMS Residential Demand Module Documentation Report 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of the NationalSales (Million Barrels)New

  19. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    SciTech Connect (OSTI)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  20. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1995-02-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This report serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, section 57(b)(1)). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  1. Energy Performance and Comfort Level in High Rise and Highly Glazed Office Buildings 

    E-Print Network [OSTI]

    Bayraktar, M.; Perino, M.; Yilmaz, A. Z.

    2010-01-01

    International Conference for Enhanced Building Operations, Kuwait, October 26-28, 2010 efficiency and comfort solutions. A parametric study has been adopted and the method has been applied to a case study. The calculations were carried out by Energy... International Conference for Enhanced Building Operations, Kuwait, October 26-28, 2010 5 different glazing alternatives were considered. Glazings were obtained from ASHRAE data sets catalogue in EnergyPlus. Thermal and optical properties of the selected...

  2. China's Building Energy Demand: Long-Term Implications from a Detailed Assessment

    SciTech Connect (OSTI)

    Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Kyle, G. Page; Patel, Pralit L.

    2012-10-01

    We present here a detailed, service-based model of China’s building energy use, nested in the GCAM (Global Change Assessment Model) integrated assessment framework. Using the model, we explore long-term pathways of China’s building energy use and identify opportunities of reducing greenhouse gas emissions. The inclusion of a structural model of building energy demands within an integrated assessment framework represents a major methodological advance. It allows for a structural understanding of the drivers of building energy consumption while simultaneously considering the other human and natural system interactions that influence changes in the global energy system and climate. We also explore a range of different scenarios to gain insights into how China’s building sector might evolve and what the implications might be for improved building energy technology and carbon policies. The analysis suggests that China’s building energy growth will not wane anytime soon, although technology improvement will put downward pressure on this growth. Also, regardless of the scenarios represented, the growth will involve the continued, rapid electrification of the buildings sector throughout the century, and this transition will be accelerated by the implementation of carbon policy.

  3. Effect of Sea Level Rise on Energy Infrastructure in Four Major

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus,Department ofDepartment ofDepartment

  4. EA-1926: Energy Efficiency Design Standards for New Federal Low-Rise

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i FramingBecker and MahnomenPB150EnergyOregon This EA evaluatesResidential

  5. EA-2020: Energy Efficiency Design Standards for New Federal Low-Rise

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of Energy 8:Final78: SandDepartmentEnergy

  6. Faced with rising fuel costs, building and home owners are looking for energy-efficient solutions. Improving the building envelope (roof or attic system, walls,

    E-Print Network [OSTI]

    Pennycook, Steve

    Faced with rising fuel costs, building and home owners are looking for energy- efficient solutions penetration rates; validate models; and assist industry to develop new and more energy-efficient materials systems) resulting in affordable, moisture-durable products to increase energy efficiency. · ORNL

  7. Faced with rising fuel costs, building and home owners are looking for energy-efficient solutions. Improving the building envelope (roof or attic system, walls,

    E-Print Network [OSTI]

    Pennycook, Steve

    Faced with rising fuel costs, building and home owners are looking for energy- efficient solutions rates; validate models; and assist industry to develop new and more energy-efficient materials-durable products to increase energy efficiency. · ORNL established test facilities to measure essential property

  8. Intelligent Building Energy Information and Control Systems for Low-Energy Operations and Optimal Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2014-01-01

    Co?simulation  of  Building  Energy  and  Control  Systems Development  in  Building  Energy  and  Control  Systems.  by  the  Assistant  Secretary  for  Energy  Efficiency  and 

  9. Web-based energy information systems for energy management and demand response in commercial buildings

    E-Print Network [OSTI]

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-01-01

    Study on Energy Efficiency in Buildings. Kinter-Meyer,Study on Energy Efficiency in Buildings. LBNL Report #50733.Study on Energy Efficiency in Buildings. LBNL Report #48284.

  10. Web-based energy information systems for energy management and demand response in commercial buildings

    E-Print Network [OSTI]

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-01-01

    also known as EMS (Energy Management Systems), BMS (Buildingfacility operator or energy management systems, often wastefor enterprise energy management systems that typically are

  11. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2008-01-01

    economy, demography and energy prices, which implies thatgrowth, demography, energy prices, and climate on the futuredemand is determined by energy price indicators, taking into

  12. Calibration of an EnergyPlus Building Energy Model to Assess the Impact of Demand Response Measures 

    E-Print Network [OSTI]

    Lavigne, K.; Sansregret, S.; Daoud, A.; Leclair, L. A.

    2013-01-01

    Simon Sansregret Ahmed DaoudLouis-Alexandre Leclaire CALIBRATION OF AN ENERGYPLUS BUILDING ENERGY MODEL TO ASSESS THE IMPACT OF DEMAND RESPONSE MEASURES ICEBO 2013, Montr?al Groupe ? Technologie2 ICEBO-2013 Contextualization > Hydro..., Static fan pressure, Plug load intensity, etc. > Establish an optimization plan (? ? simulated and measured profiles) ? Parameter selection and their limits ? Calibration period (annual or specific period) ? Objective function and type of algorithm...

  13. A Cumulative Energy Demand indicator (CED), life cycle based, for industrial waste management decision making

    SciTech Connect (OSTI)

    Puig, Rita, E-mail: rita.puig@eei.upc.edu [Escola d’Enginyeria d’Igualada (EEI), Universitat Politècnica de Catalunya (UPC), Plaça del Rei, 15, 08700 Igualada (Spain); Fullana-i-Palmer, Pere [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comerç Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain); Baquero, Grau; Riba, Jordi-Roger [Escola d’Enginyeria d’Igualada (EEI), Universitat Politècnica de Catalunya (UPC), Plaça del Rei, 15, 08700 Igualada (Spain); Bala, Alba [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comerç Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain)

    2013-12-15

    Highlights: • We developed a methodology useful to environmentally compare industrial waste management options. • The methodology uses a Net Energy Demand indicator which is life cycle based. • The method was simplified to be widely used, thus avoiding cost driven decisions. • This methodology is useful for governments to promote the best environmental options. • This methodology can be widely used by other countries or regions around the world. - Abstract: Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport.

  14. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2008-01-01

    tackle the energy security and global warming problems.in order to tackle the energy security and global warming

  15. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  16. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  17. Fun Fact Friday: U.S. Renewables on the Rise | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report toDepartmentSignificantofWhat'sEastern

  18. 2014-10-10 Issuance: Energy Conservation Standards for Commercial Pre-Rise

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s iof1 of 8 2 of 8 3 of 8Air ConditionersVerySpray

  19. Analyzing Energy Infrastructure Exposure to Storm Surge and Sea-Level Rise

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I Due Date Adv.Alison MarkovitzAmped Up!Analytical Tools|

  20. Methodology for Analyzing Energy and Demand Savings From Energy Services Performance Contract Using Short-Term Data 

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J. S.; Cho, S.; Lynn, B.; Cook, M.

    2006-01-01

    Systems in Hot and Humid Climates, Orlando, Florida, July 24-26, 2006 d 81ectrioity Savings for the MeasllJIr,ed Period Demand Savings for the MeasllJIr,ed Period Ailidit- MeasllJIred A llId'it- MeasllJIred Bldg.# No" Of Estimat,ed 81edricity %,of... Cook Fort Hood Energy Office ESL-HH-06-07-37a Proceedings of the Fifteenth Symposium on Improving Buildling Systems in Hot and Humid Climates, Orlando, Florida, July 24-26, 2006 February 9, 2009 Energy Systems Laboratory 2 CONCLUSIONSCASE...

  1. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    home January and July weekday electricity and total heat (space + water heating) demand source:home January and July weekday electricity 7 and total heat (space + water heating) 8 demand source:

  2. Bottlenecks aggravate rising construction costs

    SciTech Connect (OSTI)

    NONE

    2008-05-15

    Rising demand for power in developing countries combined with concerns about carbon emissions from coal-fired power plants in developed countries have created a bonanza for carbon-light technologies, including nuclear, renewables and natural gas plants. This, in turn, has put upward pressure on the price of natural gas in key markets while resulting in shortages in critical components for building renewables and nuclear reactors. Globalization of the power industry means that pressures in one segment or one region translate into shortages and rising prices everywhere else.

  3. Abstract --Due to the potentially large number of Distributed Energy Resources (DERs) demand response, distributed

    E-Print Network [OSTI]

    Zhang, Wei

    to accurately estimate the transients caused by demand response is especially important to analyze the stability of the system under different demand response strategies, where dynamics on time scales of seconds to minutes demand response. The aggregated model efficiently includes statistical information of the population

  4. The Impact of CO2-Based Demand-Controlled Ventilation on Energy Consumptions for Air Source Heat Pumps in Schools 

    E-Print Network [OSTI]

    AlRaees, N.; Nassif, N.

    2013-01-01

    There have been increasingly growing concerns for many years over the quality of the air inside buildings and the associated energy use. The CO2-based demand-controlled ventilation DCV offers a great opportunity to reduce energy consumption in HVAC...

  5. The addition of a US Rare Earth Element (REE) supply-demand model improves the characterization and scope of the United States Department of Energy's effort to forecast US REE Supply and Demand

    E-Print Network [OSTI]

    Mancco, Richard

    2012-01-01

    This paper presents the development of a new US Rare Earth Element (REE) Supply-Demand Model for the explicit forecast of US REE supply and demand in the 2010 to 2025 time period. In the 2010 Department of Energy (DOE) ...

  6. The response of world energy and oil demand to income growth and changes in oil prices

    SciTech Connect (OSTI)

    Dargay, J. [Oxford Univ. (United Kingdom). Transport Studies Unit; Gately, D. [New York Univ., NY (United States). Economics Dept.

    1995-11-01

    This paper reviews the path of world oil demand over the past three decades, and the effects of both the oil price increases of the 1970s and the oil price decreases of the 1980s. Compared with demand in the industrialized countries, demand in the Less Developed Countries (LDC) has been more responsive to income growth, less responsive to price increases, and more responsive to price decreases. The LDC has also exhibited much greater heterogeneity in income growth and is effect on demand. The authors expect a smaller demand response to future price increases than to those of the 1970s. The demand response to future income growth will be not substantially smaller than in the past. Finally, given the prospect of growing dependence on OPEC oil, in the event of a major disruption the lessened price-responsiveness of demand could cause dramatic price increases and serious macroeconomic effects.

  7. A Unit Commitment Model with Demand Response for the Integration of Renewable Energies

    E-Print Network [OSTI]

    Ikeda, Yuichi; Kataoka, Kazuto; Ogimoto, Kazuhiko

    2011-01-01

    The output of renewable energy fluctuates significantly depending on weather conditions. We develop a unit commitment model to analyze requirements of the forecast output and its error for renewable energies. Our model obtains the time series for the operational state of thermal power plants that would maximize the profits of an electric power utility by taking into account both the forecast of output its error for renewable energies and the demand response of consumers. We consider a power system consisting of thermal power plants, photovoltaic systems (PV), and wind farms and analyze the effect of the forecast error on the operation cost and reserves. We confirm that the operation cost was increases with the forecast error. The effect of a sudden decrease in wind power is also analyzed. More thermal power plants need to be operated to generate power to absorb this sudden decrease in wind power. The increase in the number of operating thermal power plants within a short period does not affect the total opera...

  8. The worldwide demand for green energy systems is evident. In this context, wind energy converters will play a paramount role. Extending the service life of a

    E-Print Network [OSTI]

    Stanford University

    question for renewable wind energy systems is, how the operating costs and utility charges should be boredABSTRACT The worldwide demand for green energy systems is evident. In this context, wind energy converters will play a paramount role. Extending the service life of a wind energy converter translates

  9. Journal of Artificial Intelligence Research 50 (2014) 885-922 Submitted 4/14; published 8/14 Demand Side Energy Management via Multiagent Coordination in

    E-Print Network [OSTI]

    Sadeh, Norman M.

    2014-01-01

    Side Energy Management via Multiagent Coordination in Consumer Cooperatives Andreas Veit ANDREAS are to increase the penetration of renewable sources, and to manage supply and demand so as to reduce demand peaks demand supply balance by adjusting only the supply side leads to the use of flexible (usually diesel

  10. Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards

    SciTech Connect (OSTI)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David

    2010-04-08

    In demand-controlled ventilation (DCV), rates of outdoor air ventilation are automatically modulated as occupant density varies. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. DCV is most often used in spaces with highly variable and sometime dense occupancy. In almost all cases, carbon dioxide (CO{sub 2}) sensors installed in buildings provide the signal to the ventilation rate control system. People produce and exhale CO{sub 2} as a consequence of their normal metabolic processes; thus, the concentrations of CO{sub 2} inside occupied buildings are higher than the concentrations of CO{sub 2} in the outdoor air. The magnitude of the indoor-outdoor CO{sub 2} concentration difference decreases as the building's ventilation rate per person increases. The difference between the indoor and outdoor CO{sub 2} concentration is also a proxy for the indoor concentrations of other occupant-generated bioeffluents, such as body odors. Reviews of the research literature on DCV indicate a significant potential for energy savings, particularly in buildings or spaces with a high and variable occupancy. Based on modeling, cooling energy savings from applications of DCV are as high as 20%. With support from the California Energy Commission and the U.S. Department of Energy, the Lawrence Berkeley National Laboratory has performed research on the performance of CO{sub 2} sensing technologies and optical people counters for DCV. In addition, modeling was performed to evaluate the potential energy savings and cost effectiveness of using DCV in general office spaces within the range of California climates. The above-described research has implications for the specifications pertaining to DCV in section 121 of the California Title 24 Standard. Consequently, this document suggests possible changes in these specifications based on the research findings. The suggested changes in specifications were developed in consultation with staff from the Iowa Energy Center who evaluated the accuracy of new CO{sub 2} sensors in laboratory-based research. In addition, staff of the California Energy Commission, and their consultants in the area of DCV, provided input for the suggested changes in specifications.

  11. Property:OpenEI/UtilityRate/DemandChargePeriod7FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 7 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  12. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2010-01-01

    Efficiency and Renewable Energy, former Distributed EnergyE?ciency and Renewable Energy, former Distributed Energy

  13. Large-Scale Integration of Deferrable Demand and Renewable Energy Sources

    E-Print Network [OSTI]

    Oren, Shmuel S.

    . Index Terms--Wind power generation, load management, power generation scheduling. I. INTRODUCTION on power system operations it is necessary to represent the balancing operations of the remaining grid and deferrable demand in power systems in terms of reserve requirements. We analyze three demand response

  14. Remote area wind energy harvesting for low-power autonomous sensors Abstract--A growing demand for deployment of autonomous

    E-Print Network [OSTI]

    Remote area wind energy harvesting for low-power autonomous sensors Abstract--A growing demand a wide range of wind speeds. Results show that power harvesting capability using the discussed alternator electronics to be less than the available power for harvest, which varies as a function of wind speed

  15. Field Verification of Energy and Demand Savings of Two Injection Molding Machines Retrofitted with Variable Frequency Drives 

    E-Print Network [OSTI]

    Liou, S. P.; Aguiar, D.

    1999-01-01

    Detailed field measurements of energy consumption (kWh) and demand (kW) are conducted on two injection molding machines (IMMs) used in a typical plastic manufacturing facility in the San Francisco Bay Area, with/without Variable Frequency Drives...

  16. Impact of Temperature Trends on Short-Term Energy Demand, The (Released in the STEO September 1999)

    Reports and Publications (EIA)

    1999-01-01

    The past few years have witnessed unusually warm weather, as evidenced by both mild winters and hot summers. The analysis shows that the 30-year norms--the basis of weather-related energy demand projections--do not reflect the warming trend or its regional and seasonal patterns.

  17. World population growth, industrialization, energy demand, and environmental goals are presently driving rapid global change in emissions with complex conse-

    E-Print Network [OSTI]

    Mauzerall, Denise

    395 World population growth, industrialization, energy demand, and environmental goalsPollution Intercontinental transport of pollution between Asia, North America, and Europe takes place via the prevailing with lifetimes longer than a month are best addressed from that perspective. Mercury has long been recognized

  18. Energy consumption metrics of MIT buildings

    E-Print Network [OSTI]

    Schmidt, Justin David

    2010-01-01

    With world energy demand on the rise and greenhouse gas levels breaking new records each year, lowering energy consumption and improving energy efficiency has become vital. MIT, in a mission to help improve the global ...

  19. Assessing the state-level consequences of global warming: Socio-economic and energy demand impacts

    SciTech Connect (OSTI)

    Rubin, B.M. Gailmard, S.; Marsh, D.; Septoff, A.

    1996-12-31

    The large body of research on climate change has begun to recognize a significant deficiency: the lack of analysis of the impact of climate change at a spatial level consistent with the anticipated occurrence of climate change. Climate change is likely to vary by region, while impact analysis has focused on much larger political units. Clearly, adaptation/mitigation strategies must be developed at a level consistent with political and policy-making processes. This paper specifically addresses this deficiency by identifying the potential socio-economic and energy demand consequences of climate change for subnational regions. This is accomplished via the development and application of a regional simultaneous equation, econometric simulation model that focuses on five states (Illinois, Indiana, Michigan, Ohio, and Wisconsin) in the Great Lakes region of the US. This paper presents a process for obtaining state-specific assessments of the consequences of climate change for the socio-economic system. As such, it provides an indication of which economic sectors are most sensitive to climate change for a specific state (Indiana), a set of initial mitigation/adaptation strategies for this state, and the results of testing these strategies in the policy analysis framework enabled by the model. In addition, the research demonstrates an effective methodology for assessing impacts and policy implications of climate change at a level consistent with policy making authority.

  20. OPPORTUNITIES FOR AUTOMATED DEMAND RESPONSE IN CALIFORNIA’S DAIRY PROCESSING INDUSTRY

    SciTech Connect (OSTI)

    Homan, Gregory K.; Aghajanzadeh, Arian; McKane, Aimee

    2015-08-30

    During periods of peak electrical demand on the energy grid or when there is a shortage of supply, the stability of the grid may be compromised or the cost of supplying electricity may rise dramatically, respectively. Demand response programs are designed to mitigate the severity of these problems and improve reliability by reducing the demand on the grid during such critical times. In 2010, the Demand Response Research Center convened a group of industry experts to suggest potential industries that would be good demand response program candidates for further review. The dairy industry was suggested due to the perception that the industry had suitable flexibility and automatic controls in place. The purpose of this report is to provide an initial description of the industry with regard to demand response potential, specifically automated demand response. This report qualitatively describes the potential for participation in demand response and automated demand response by dairy processing facilities in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use. Typical process equipment and controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Two case studies of demand response at dairy facilities in California and across the country are reviewed. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.

  1. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01

    The household energy transition in India and China. ? EnergyThe household energy transition in India and China. ? Energy

  2. Climate, extreme heat, and electricity demand in California

    E-Print Network [OSTI]

    Miller, N.L.

    2008-01-01

    Peirson. 1998. Residential energy demand and the interactionresponse of residential cooling energy demand to climaterise in residential and commercial electricity demand can be

  3. Preliminary assessment of the availability of U.S. natural gas resources to meet U.S. transportation energy demand.

    SciTech Connect (OSTI)

    Singh, M. K.; Moore, J. S.

    2002-03-04

    Recent studies have indicated that substitutes for conventional petroleum resources will be needed to meet U.S. transportation energy demand in the first half of this century. One possible substitute is natural gas which can be used as a transportation fuel directly in compressed natural gas or liquefied natural gas vehicles or as resource fuel for the production of hydrogen for fuel cell vehicles. This paper contains a preliminary assessment of the availability of U.S. natural gas resources to meet future U.S. transportation fuel demand. Several scenarios of natural gas demand, including transportation demand, in the U.S. to 2050 are developed. Natural gas resource estimates for the U. S. are discussed. Potential Canadian and Mexican exports to the U.S. are estimated. Two scenarios of potential imports from outside North America are also developed. Considering all these potential imports, U.S. natural gas production requirements to 2050 to meet the demand scenarios are developed and compared with the estimates of U.S. natural gas resources. The comparison results in a conclusion that (1) given the assumptions made, there are likely to be supply constraints on the availability of U.S. natural gas supply post-2020 and (2) if natural gas use in transportation grows substantially, it will have to compete with other sectors of the economy for that supply-constrained natural gas.

  4. Model for Analysis of Energy Demand (MAED-2) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005MinnehahaElectric Coop,Mithril GmbHMobius Riskfor

  5. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01

    industrial sector, oil demand will decrease due particularlyand commercial sectors, oil demand will decline on a shifttransportation sector, oil demand will shrink on a fall in

  6. Dynamic Controls for Energy Efficiency and Demand Response: Framework Concepts and a New Construction Study Case in New York

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

    2006-01-01

    introduction of a demand-side management (DSM) framework forof building controls. Demand-Side Management Framework forDOE 2006). The demand-side management (DSM) framework

  7. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01

    equivalent and its electricity demand at 19 Mtoe. If wastemeet water heating and electricity demand in the residentialJournal Vol.4, No.4 electricity demand, fuel requirements

  8. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    E-Print Network [OSTI]

    DeForest, Nicholas

    2014-01-01

    driver of summer peak electricity demand. In the developingin reducing peak electricity demand. Additionally, annualwill drive total electricity demand significantly above

  9. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01

    your Power. (2008). "Demand Response Programs." RetrievedUsing Open Automated Demand Response, Lawrence Berkeley2008). "What is Demand Response?" Retrieved 10/10/2008, from

  10. Unexpected consequences of demand response : implications for energy and capacity price level and volatility

    E-Print Network [OSTI]

    Levy, Tal Z. (Tal Ze'ev)

    2014-01-01

    Historically, electricity consumption has been largely insensitive to short term spot market conditions, requiring the equating of supply and demand to occur almost exclusively through changes in production. Large scale ...

  11. Demand-based Optimal Control to Save Energy: A Case-Study in a Medical Center 

    E-Print Network [OSTI]

    Joo, I. S.; Song, L.; Liu, M.; Carico, M.

    2008-01-01

    Continuous Commissioning®1 (CC®) strategies include reducing simultaneous heating and cooling, scheduling the facility’s occupancy needs, utilizing free cooling, and minimizing excessive supply air and outside air. Most significantly, this demand...

  12. High Electric Demand Days: Clean Energy Strategies for Improving Air Quality

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation, presented in July 2008, addressed greenhouse gas reduction goals on high electric demand days. Presenter was Art Diem of the State and Local Capacity Building Branch at the U.S. Environmental Protection Agency.

  13. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    SciTech Connect (OSTI)

    Komiyama, Ryoichi; Marnay, Chris; Stadler, Michael; Lai, Judy; Borgeson, Sam; Coffey, Brian; Azevedo, Ines Lima

    2009-09-01

    In this analysis, the authors projected Japan's energy demand/supply and energy-related CO{sub 2} emissions to 2050. Their analysis of various scenarios indicated that Japan's CO{sub 2} emissions in 2050 could be potentially reduced by 26-58% from the current level (FY 2005). These results suggest that Japan could set a CO{sub 2} emission reduction target for 2050 at between 30% and 60%. In order to reduce CO{sub 2} emissions by 60% in 2050 from the present level, Japan will have to strongly promote energy conservation at the same pace as an annual rate of 1.9% after the oil crises (to cut primary energy demand per GDP (TPES/GDP) in 2050 by 60% from 2005) and expand the share of non-fossil energy sources in total primary energy supply in 2050 to 50% (to reduce CO{sub 2} emissions per primary energy demand (CO{sub 2}/TPES) in 2050 by 40% from 2005). Concerning power generation mix in 2050, nuclear power will account for 60%, solar and other renewable energy sources for 20%, hydro power for 10% and fossil-fired generation for 10%, indicating substantial shift away from fossil fuel in electric power supply. Among the mitigation measures in the case of reducing CO{sub 2} emissions by 60% in 2050, energy conservation will make the greatest contribution to the emission reduction, being followed by solar power, nuclear power and other renewable energy sources. In order to realize this massive CO{sub 2} abatement, however, Japan will have to overcome technological and economic challenges including the large-scale deployment of nuclear power and renewable technologies.

  14. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01

    Energy Outlook. ? Japan Petroleum Energy Center, 2008. ?OurFigure 58). Japan Petroleum Energy Center, 2008. ?OurPrimary Energy Use by Fuel, 2000-2025 Petroleum Primary

  15. IMPACT Vol. 5 No. 1 | Spring 2010 CLeAn eneRGy DeMAnDS

    E-Print Network [OSTI]

    Hill, Wendell T.

    and development are vital if America is to decrease greenhouse gas emissions at lower cost, reduce dependenceIMPACT Vol. 5 No. 1 | Spring 2010 CLeAn eneRGy DeMAnDS: SCienCe, innovATion, PUBLiC PoLiCy Maryland the science to develop it, the innovation to manu- facture it, the public policy to regulate it and the social

  16. Sharing local energy infrastructure : organizational models for implementing microgrids and district energy systems in urban commercial districts

    E-Print Network [OSTI]

    Sherman, Genevieve Rose

    2012-01-01

    There is a growing trend in cities toward establishing localized, shared energy infrastructure. As existing energy infrastructure ages and demand increases, cities face rising energy costs and security risks combined with ...

  17. Property:OpenEI/UtilityRate/FlatDemandMonth7 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2FlatDemandMonth3 Jump to: navigation, search This is aFlatDemandMonth7 Jump

  18. Property:OpenEI/UtilityRate/FlatDemandMonth8 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2FlatDemandMonth3 Jump to: navigation, search This is aFlatDemandMonth7

  19. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01

    urban form development to reduce overall metabolic energy consumption, further aggressive increases in equipment energy efficiency

  20. Risk Management and Combinatorial Optimization for Large-Scale Demand Response and Renewable Energy Integration

    E-Print Network [OSTI]

    Yang, Insoon

    2015-01-01

    flexible future grid in which renewable energy sources andflexible future grid in which distributed renewable energy

  1. On a Rising Tide: The Future of U.S. Utility Customer-Funded Energy Efficiency Programs

    E-Print Network [OSTI]

    Goldman, Charles

    2014-01-01

    for policymakers, energy and efficiency service providers,2010 Budgets. Consortium for Energy Efficiency. 2007.U.S. Energy Efficiency Programs: A $2.6 Billion Industry,

  2. On a Rising Tide: The Future of U.S. Utility Customer-Funded Energy Efficiency Programs

    E-Print Network [OSTI]

    Goldman, Charles

    2014-01-01

    study, we define Energy Efficiency Resource or Portfoliostates with an Energy Efficiency Resource Standard (EERS)role for energy efficiency as a resource in many states.

  3. The Impact of Technological Change and Lifestyles on the Energy Demand

    E-Print Network [OSTI]

    Steininger, Karl W.

    , households' electricity and heat consumption are growing rapidly despite of technological progress demand into a model of total private consumption. Private consumption is determined by economic variables of variables are available in cross section consumer surveys and in time series data of aggregate consumption

  4. Energy Consumption and Demand as Affected by Heat Pumps that Cool, Heat and Heat Domestic Water 

    E-Print Network [OSTI]

    Cawley, R.

    1992-01-01

    % and that this amounts to the full daily need of 14.4 KW-HR. Table 5 (right column) shows the hour by hour demand' for a standard non-integrated heat pump used in conjunction with a water heater having efficiency of 87%, The draw schedule in Table 5 is the same...

  5. Demand Response: Load Management Programs 

    E-Print Network [OSTI]

    Simon, J.

    2012-01-01

    Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs V. Residential Discussion... Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off-peak period or from high-price periods...

  6. Water demands for electricity generation in the U.S.: Modeling different scenarios for the water–energy nexus

    SciTech Connect (OSTI)

    Liu, Lu; Hejazi, Mohamad I.; Patel, Pralit L.; Kyle, G. Page; Davies, Evan; Zhou, Yuyu; Clarke, Leon E.; Edmonds, James A.

    2015-05-01

    Water withdrawal for electricity generation in the United States accounts for approximately half the total freshwater withdrawal. With steadily growing electricity demands, a changing climate, and limited water supplies in many water-scarce states, meeting future energy and water demands poses a significant socio-economic challenge. Employing an integrated modeling approach that can capture the energy-water interactions at regional and national scales is essential to improve our understanding of the key drivers that govern those interactions and the role of national policies. In this study, the Global Change Assessment Model (GCAM), a technologically-detailed integrated model of the economy, energy, agriculture and land use, water, and climate systems, was extended to model the electricity and water systems at the state level in the U.S. (GCAM-USA). GCAM-USA was employed to estimate future state-level electricity generation and consumption, and their associated water withdrawals and consumption under a set of six scenarios with extensive details on the generation fuel portfolio, cooling technology mix, and their associated water use intensities. Six scenarios of future water demands of the U.S. electric-sector were explored to investigate the implications of socioeconomics development and growing electricity demands, climate mitigation policy, the transition of cooling systems, electricity trade, and water saving technologies. Our findings include: 1) decreasing water withdrawals and substantially increasing water consumption from both climate mitigation and the conversion from open-loop to closed-loop cooling systems; 2) open trading of electricity benefiting energy scarce yet demand intensive states; 3) within state variability under different driving forces while across state homogeneity under certain driving force ; 4) a clear trade-off between water consumption and withdrawal for the electricity sector in the U.S. The paper discusses this withdrawal-consumption trade-off in the context of current national policies and regulations that favor decreasing withdrawals (increasing consumptive use), and the role of water saving technologies. The highly-resolved nature of this study both geographically and technologically provides a useful platform to address scientific and policy relevant and emerging issues at the heart of the water-energy nexus in the U.S.

  7. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    and Operation in Zero-Net- Energy Buildings with Demandand Operation in Zero-Net-Energy Buildings with Demandhas launched the Zero-Net- Energy (ZNE) Commercial Building

  8. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01

    al. 2008. ?World Best Practice Energy Intensity Values foral. , 2008, "World Best Practice Energy Intensity Values foral. , 2008, "World Best Practice Energy Intensity Values for

  9. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01

    and the corresponding primary energy form. Sown Area As aof consumption. In terms of primary energy sources, urbanits share of total primary energy consumption surged even

  10. Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann

    2005-01-01

    technologies and strategies for energy efficiency are mappedchoice of DR and energy efficiency strategy is limited byDemonstration of Energy Management Control Strategies for

  11. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01

    was provided by the New York State Energy and Researchwork was supported by the New York State Energy and Researchsupplies of affordable energy. In New York and California,

  12. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01

    was provided by the New York State Energy and ResearchCalifornia Energy Commission and the New York State Energysupplies of affordable energy. In New York and California,

  13. Energy and Security in Northeast Asia: Supply and Demand, Conflict and

    E-Print Network [OSTI]

    Fesharaki, Fereidun; Banaszak, Sarah; WU, Kang; Valencia, Mark J.; Dorian, James P.

    1998-01-01

    in Northeast Asia Energy security is a vague and changingand military dimensions of energy security is provided byan important element of energy security. Lack of importing,

  14. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01

    Study in Energy Efficiency in Buildings August Nationalelectric loads in buildings: energy efficiency (for steady-and Energy Efficiency Options Using Commercial Building

  15. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01

    devices in energy management systems. Operations Designprice. EMCS (energy management control system) carried outthe use of energy management and control systems is required

  16. Energy Efficient Retrofits and Green Building Practices 

    E-Print Network [OSTI]

    Rahman, M.

    2010-01-01

    . Moreover, the increase in demand is also causing rise in pollution levels. Therefore, the subject of energy efficient retrofits and green building practices is becoming increasingly important. Based on the latest walkthrough energy audit it is proven...

  17. International Builders' Show | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    for Delivery by Secretary Bodman Thank you, Andy, and thank you all for being here. The world has reached an energy crossroads. Rising global energy demand and the need for more...

  18. Policy Paper 36: Energy and Security in Northeast Asia: Supply and Demand, Conflict and

    E-Print Network [OSTI]

    Fesharaki, Fereidun; Banaszak, Sarah; WU, Kang; Valencia, Mark J.; Dorian, James P.

    1998-01-01

    Regional Strategies." Energy Policy. Vol.23, No.2, pp.167-Asia and the Pacific. Energy Policy Im- plications of thethe central objectives of energy policy, such as energy sav-

  19. Policy Paper 36: Energy and Security in Northeast Asia: Supply and Demand, Conflict and

    E-Print Network [OSTI]

    Fesharaki, Fereidun; Banaszak, Sarah; WU, Kang; Valencia, Mark J.; Dorian, James P.

    1998-01-01

    with coal the main energy supplier for the industry. Theboth potential energy suppliers--Russia and possibly

  20. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01

    consumption, further aggressive increases in equipment energy efficiency standards, implementation of renewable energy in cities (such as expanded solar

  1. Description of the global petroleum supply and demand outlook. Updated for the 1991 edition of the GRI Baseline Projection of the U. S. energy supply and demand

    SciTech Connect (OSTI)

    Dreyfus, D.A.

    1990-12-01

    GRI developed a world oil projection for the 1991 Baseline Projection based on publicly available data. GRI's 1991 projection of the U.S. refiner acquisition cost (RAC) of crude oil is described. The potential impact of the Middle East crisis is discussed along with two alternative world oil price tracks and their impacts on the global petroleum supply and demand outlook.

  2. Rising Stars 2015 3 Rising Stars

    E-Print Network [OSTI]

    Kastner, Marc A.

    such an esteemed group of women in computer science and electrical engineering. The Rising Stars program gives you part!" --Cynthia Barnhart Chancellor Ford Professor of Engineering Massachusetts Institute women in computer science and electrical engineering globally.You will help lead research, education

  3. Direct versus Facility Centric Load Control for Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01

    Interoperable Automated Demand Response Infrastructure.and Techniques for Demand Response. LBNL Report 59975. Mayand Communications for Demand Response and Energy Efficiency

  4. Demand Response in U.S. Electricity Markets: Empirical Evidence

    E-Print Network [OSTI]

    Cappers, Peter

    2009-01-01

    Reliability Corporation. Demand response data task force:Energy. Benefits of demand response in electricity marketsAssessment of demand response & advanced metering, staff

  5. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01

    if non-commercial biomass energy consumption is included,of non-commercial biomass energy sources such as firewood,However, non-commercial biomass energy consumption is often

  6. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01

    Agency. 2008. ?2008 World Energy Outlook. ? Japan Petroleumbelow the 2008 World Energy Outlook‘s projection (FigureSource: IEA, 2008 World Energy Outlook; LBNL CLU Model. 4.2

  7. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01

    growth and of energy-intensive exports to 2025. Withinlevels and export activity, total energy use dips slightlydemand for energy-intensive Chinese exports as China‘s WTO

  8. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2010-01-01

    Rio de Janeiro, Brazil Optimal Control of Distributed EnergyRio de Janeiro, Brazil Optimal Control of Distributed EnergyRio de Janeiro, Brazil Optimal Control of Distributed Energy

  9. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01

    In the residential and commercial sectors, oil demand willthe residential and commercial sectors, electricity demandwater heating demand in the residential sector. At present,

  10. Rising Above the Water: New Orleans Implements Energy Efficiency and Sustainability Practices Following Hurricanes Katrina and Rita (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet describes the technical assistance that the U.S. Department of Energy, through its National Renewable Energy Laboratory, provided to New Orleans, Louisiana, which helped the city incorporate energy efficiency into its rebuilding efforts for K-12 schools and homes following Hurricanes Katrina and Rita. NREL also provided support and analysis on energy policy efforts.

  11. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    chillers, energy storage, or solar-based technologies areand the huge solar thermal and heat storage system adoptionon expensive solar-based equipment and energy storage

  12. The Integration of Energy Efficiency, Renewable Energy, Demand Response and Climate Change: Challenges and Opportunities for Evaluators and Planners

    E-Print Network [OSTI]

    Vine, Edward

    2007-01-01

    M. Bolinger 2006. Who Owns Renewable Energy Certificates? AnEnergy Efficiency and Renewable Energy Technology andan Energy Efficiency and Renewable Energy Set-Aside in the

  13. ERCOT Demand Response Paul Wattles

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    ERCOT Demand Response Paul Wattles Senior Analyst, Market Design & Development, ERCOT Whitacre;Definitions of Demand Response · `The short-term adjustment of energy use by consumers in response to price to market or reliability conditions.' (NAESB) #12;Definitions of Demand Response · The common threads

  14. Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU

    E-Print Network [OSTI]

    Bol, David; Boyd, Sarah; Dornfeld, David

    2011-01-01

    Performance 32 nm CPU to Ultra-Low-Power 130 nm MCU Davidboxes and smart phones to ultra-low-power 130 nm MCUs forthe energy demand for ultra-low-power MCUs is completely

  15. Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU

    E-Print Network [OSTI]

    Bol, David; Boyd, Sarah; Dornfeld, David

    2011-01-01

    Performance 32 nm CPU to Ultra-Low-Power 130 nm MCU Davidboxes and smart phones to ultra-low-power 130 nm MCUs forthe energy demand for ultra-low-power MCUs is completely

  16. ASHRAE's Proposed Guideline 14P for Measurement of Energy and Demand Savings: How to Determine What Was Really Saved by the Retrofit 

    E-Print Network [OSTI]

    Haberl, J. S.; Reeves, G.; Gillespie, K.; Claridge, D. E.; Cowan, J.; Culp, C.; Frazell, W.; Heinemeier, K.; Kromer, S.; Kummer, J.; Mazzucchi, R.; Reddy, A.; Schiller, S.; Sud, I.; Wolpert, J.; Wutka, T.

    2001-01-01

    ASHRAE has recently completed the development of Guideline 14 to fill a need for a standard set of energy (and demand) savings calculation procedures. Guideline 14 is intended to be a guideline that provides a minimum acceptable level of performance...

  17. Impacts of High Resolution Extreme Events on U.S. Energy Demand and CO{sub 2} Emissions in the 21st Century

    SciTech Connect (OSTI)

    Diffenbaugh, Noah

    2013-06-21

    Progress is reported in these areas: Validation of temperature and precipitation extremes; Time of emergence of severe heat stress in the United States; Quantifying the effects of temperature extremes on energy demand and carbon dioxide emissions.

  18. Property:OpenEI/UtilityRate/DemandChargePeriod7 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 JumpPublicationDate Jump to: navigation,DemandChargePeriod7 Jump to:

  19. Property:OpenEI/UtilityRate/DemandChargePeriod8 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 JumpPublicationDate Jump to: navigation,DemandChargePeriod7 Jump

  20. Property:OpenEI/UtilityRate/DemandChargePeriod8FAdj | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 JumpPublicationDate Jump to: navigation,DemandChargePeriod7

  1. Property:OpenEI/UtilityRate/DemandChargePeriod9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 JumpPublicationDate Jump to: navigation,DemandChargePeriod7 Jump to:

  2. Property:OpenEI/UtilityRate/DemandChargePeriod9FAdj | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 JumpPublicationDate Jump to: navigation,DemandChargePeriod7 Jump

  3. Property:OpenEI/UtilityRate/DemandRatchetPercentage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 JumpPublicationDate Jump to: navigation,DemandChargePeriod7

  4. Property:OpenEI/UtilityRate/DemandRateStructure/Period | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 JumpPublicationDate Jump to: navigation,DemandChargePeriod7Information

  5. Property:OpenEI/UtilityRate/FixedDemandChargeMonth9 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 JumpPublicationDateInformationInformation FixedDemandChargeMonth9

  6. Property:OpenEI/UtilityRate/FlatDemandMonth1 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 JumpPublicationDateInformationInformationFlatDemandMonth1 Jump to:

  7. Property:OpenEI/UtilityRate/FlatDemandMonth10 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 JumpPublicationDateInformationInformationFlatDemandMonth1 Jump

  8. Property:OpenEI/UtilityRate/FlatDemandMonth11 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 JumpPublicationDateInformationInformationFlatDemandMonth1 JumpThis

  9. Property:OpenEI/UtilityRate/FlatDemandMonth12 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 JumpPublicationDateInformationInformationFlatDemandMonth1

  10. Property:OpenEI/UtilityRate/FlatDemandMonth3 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2FlatDemandMonth3 Jump to: navigation, search This is a property of type

  11. Property:OpenEI/UtilityRate/FlatDemandMonth4 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2FlatDemandMonth3 Jump to: navigation, search This is a property of

  12. Property:OpenEI/UtilityRate/FlatDemandMonth5 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2FlatDemandMonth3 Jump to: navigation, search This is a property

  13. Property:OpenEI/UtilityRate/FlatDemandMonth6 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2FlatDemandMonth3 Jump to: navigation, search This is a

  14. Property:OpenEI/UtilityRate/FlatDemandMonth9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2FlatDemandMonth3 Jump to: navigation, search This is

  15. Property:OpenEI/UtilityRate/FlatDemandStructure/Period | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2FlatDemandMonth3 Jump to: navigation, search This isInformation

  16. Statewide Electrical Energy Cost Savings and Peak Demand Reduction from the IECC Code-Compliant, Single-Family Residences in Texas (2002-2009) 

    E-Print Network [OSTI]

    Kim, H; Baltazar, J.C.; Haberl, J.

    2011-01-01

    -02-01 STATEWIDE ELECTRICITY AND DEMAND CAPACITY SAVINGS FROM THE INTERNATIONAL ENERGY CONSERVATION CODE (IECC) ADOPTION FOR SINGLE-FAMILY RESIDENCES IN TEXAS (2002-2009) Hyojin Kim Juan-Carlos Baltazar, Ph.D. Jeff Haberl, Ph.D., P... SUMMARY Statewide electricity and electric demand savings achieved from the adoption of the different International Energy Conservation Code (IECC) versions for single-family residences in Texas and the corresponding construction cost increases over...

  17. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    SciTech Connect (OSTI)

    DeForest, Nicholas; Mendes, Goncalo; Stadler, Michael; Feng, Wei; Lai, Judy; Marnay, Chris

    2013-06-02

    In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity demand. In the developing world a steadily increasing utilization of air-conditioning places additional strain on already-congested grids. This common thread represents a large and growing threat to the reliable delivery of electricity around the world, requiring capital-intensive expansion of capacity and draining available investment resources. Thermal energy storage (TES), in the form of ice or chilled water, may be one of the few technologies currently capable of mitigating this problem cost effectively and at scale. The installation of TES capacity allows a building to meet its on-peak air conditioning load without interruption using electricity purchased off-peak and operating with improved thermodynamic efficiency. In this way, TES has the potential to fundamentally alter consumption dynamics and reduce impacts of air conditioning. This investigation presents a simulation study of a large office building in four distinct geographical contexts: Miami, Lisbon, Shanghai, and Mumbai. The optimization tool DER-CAM (Distributed Energy Resources Customer Adoption Model) is applied to optimally size TES systems for each location. Summer load profiles are investigated to assess the effectiveness and consistency in reducing peak electricity demand. Additionally, annual energy requirements are used to determine system cost feasibility, payback periods and customer savings under local utility tariffs.

  18. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect (OSTI)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  19. Trends in Heating and Cooling Degree Days: Implications for Energy Demand Issues (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    Weather-related energy use, in the form of heating, cooling, and ventilation, accounted for more than 40% of all delivered energy use in residential and commercial buildings in 2006. Given the relatively large amount of energy affected by ambient temperature in the buildings sector, the Energy Information Administration has reevaluated what it considers normal weather for purposes of projecting future energy use for heating, cooling, and ventilation. The Annual Energy Outlook 2008, estimates of normal heating and cooling degree-days are based on the population-weighted average for the 10-year period from 1997 through 2006.

  20. Fast Automated Demand Response to Enable the Integration of Renewable Resources

    E-Print Network [OSTI]

    Watson, David S.

    2013-01-01

    California Energy Demand 2010 2020 Adopted Forecast presentsEnergy Commission, Demand Analysis Office. Ag and Water Pumping Energy Forecasts (

  1. Drivers for the Value of Demand Response under Increased Levels of Wind and Solar Power; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Hale, Elaine

    2015-07-30

    Demand response may be a valuable flexible resource for low-carbon electric power grids. However, there are as many types of possible demand response as there are ways to use electricity, making demand response difficult to study at scale in realistic settings. This talk reviews our state of knowledge regarding the potential value of demand response in several example systems as a function of increasing levels of wind and solar power, sometimes drawing on the analogy between demand response and storage. Overall, we find demand response to be promising, but its potential value is very system dependent. Furthermore, demand response, like storage, can easily saturate ancillary service markets.

  2. A Successful Case Study of Small Business Energy Efficiency and Demand Response with Communicating Thermostats

    E-Print Network [OSTI]

    Herter, Karen

    2010-01-01

    energy efficiency advice and offered participants several program options, including the choice of either a dynamic rate or monthly payment for air-conditioningair conditioning load on hot days. In conclusion, this study provides evidence that energy efficiency

  3. Opportunities for Energy Efficiency and Demand Response in Corrugated Cardboard Manufacturing Facilities 

    E-Print Network [OSTI]

    Chow, S.; Hackett, B.; Ganji, A. R.

    2005-01-01

    will be discussed, current prevalent practices in the industry will be elaborated and potential measures for energy use and cost savings will be outlined. The results from detailed energy audits of 12 large corrugated cardboard production plants in California...

  4. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01

    Energy Research Institute 2050 Model and projects that both urban and rural per capita floor spaceurban and rural total energy consumption per square meter of residential building spaceSpace Urban Rural square meters per person Source: NBS With increased residential floor space, changes in the energy

  5. Cooling energy demand evaluation by means of regression models obtained from dynamic simulations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    European Union has agreed a forward-looking political agenda to achieve its core energy objectives their positions to exert political pressure - inadequate energy efficiency measures in Europe,, or ,,impact of EU consumption and CO2 emissions. Buildings account for 40­45% of energy consumption in Europe and China (and

  6. Energy Demand and Fuel Supply in Developing Countries Brazil, Korea and the Philippines

    E-Print Network [OSTI]

    Sathaye, Jayant A.

    1984-01-01

    1 shows the primary energy supply i n 1961 and 1965. Thesmall f r a c t i o n o f the t o t a l energy supply.Table 2 shows the primary energy supply i n 1965 and 1973. o

  7. Introduction Increasing demand and the rising cost of fossil

    E-Print Network [OSTI]

    Qin, Wensheng

    in the world). It also contains some hemi- cellulose (a heterologous polymer of 5- and 6- carbon sugars, a homologous polymer of glucose molecules connected by - 1,4 linkages (the most abundant organic poly- mer) and even less so lignin (a com- plex aromatic polymer). Known as abundant, there are a great many sources

  8. New Demand for Old Food: the U.S. Demand for Olive Oil Bo Xiong, William Matthews, Daniel Sumner

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    New Demand for Old Food: the U.S. Demand for Olive Oil Bo Xiong, William Matthews, Daniel Sumner, demand for oils differentiated by origin and quality is price-elastic. These olive oils are highly of olive oil and the spread of Mediterranean diet contribute significantly to the rising demand

  9. Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast Energy Demand .............................................................. 23 Electricity Demand Growth in the West............................................................................................................................... 28 Estimating Electricity Demand in Data Centers

  10. Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building

    E-Print Network [OSTI]

    Dudley, Junqiao Han

    2010-01-01

    Performance with an EnergyPlus Model in a Low Energy CampusPerformance with an EnergyPlus Model in a Low Energy Campusevents. In this paper, an EnergyPlus model of the building

  11. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    of Carbon Tax on Combined Heat and Power Adoption by ain energy-efficient combined heat and power equipment, whilegeneration with combined heat and power (CHP) applications

  12. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01

    66: China CO 2 Emissions in Global Context WEO '08 globalmt CO2 WEO '08 China CLU Source: IEA, 2008 World Energy

  13. On the Inclusion of Energy-Shifting Demand Response in Production...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a case study of aggregated supermarket refrigeration systems providing balancing energy reserves in real-time markets at different levels of variable generation (VG). This DR...

  14. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01

    e-mail. [8] Peak Load Management Alliance, “Principles ofTable 2. Energy Efficiency, Daily Load Management and Demandefficiency, (2) daily peak load management and (3) dynamic,

  15. Scenarios of Building Energy Demand for China with a Detailed Regional Representation

    SciTech Connect (OSTI)

    Yu, Sha; Eom, Jiyong; Zhou, Yuyu; Evans, Meredydd; Clarke, Leon E.

    2014-02-07

    Building energy consumption currently accounts for 28% of China’s total energy use and is expected to continue to grow induced by floorspace expansion, income growth, and population change. Fuel sources and building services are also evolving over time as well as across regions and building types. To understand sectoral and regional difference in building energy use and how socioeconomic, physical, and technological development influence the evolution of the Chinese building sector, this study developed a building energy use model for China downscaled into four climate regions under an integrated assessment framework. Three building types (rural residential, urban residential, and commercial) were modeled specifically in each climate region. Our study finds that the Cold and Hot Summer Cold Winter regions lead in total building energy use. The impact of climate change on heating energy use is more significant than that of cooling energy use in most climate regions. Both rural and urban households will experience fuel switch from fossil fuel to cleaner fuels. Commercial buildings will experience rapid growth in electrification and energy intensity. Improved understanding of Chinese buildings with climate change highlighted in this study will help policy makers develop targeted policies and prioritize building energy efficiency measures.

  16. reduced demand for power by nearly 1,500 megawatts through investments in energy

    E-Print Network [OSTI]

    are in energy-efficient water heaters, lighting, windows and equipment for heating, ventilation and air energy efficiency standards for manufactured housing and major appliances Amendments to the Fish in homes and buildings, indus- trial facilities and irrigated agriculture. The savings primarily

  17. SmartHG: Energy Demand Aware Open Services for Smart Grid Intelligent Automation

    E-Print Network [OSTI]

    Tronci, Enrico

    : to minimise energy usage and cost for each home, and to support the Distribution Network Operator (DNO) in optimising operation of the Electric Distribution Network (EDN). SmartHG goals are achieved solar panels)], for each time slot (say each hour) the DNO price policy defines an interval of energy

  18. Evaluation on Cooling Energy Load with Varied Envelope Design for High-Rise Residential Buildings in Malaysia 

    E-Print Network [OSTI]

    Al-Tamimi, N.; Fadzil, S.

    2010-01-01

    With the development of the economy in the recent years, Malaysia is maintaining a high economic growth and therefore, its energy consumption increases dramatically. Residential buildings are characterized by being envelope-load dominated buildings...

  19. The Integration of Energy Efficiency, Renewable Energy, Demand Response and Climate Change: Challenges and Opportunities for Evaluators and Planners

    E-Print Network [OSTI]

    Vine, Edward

    2007-01-01

    Homes,” Home Energy, Solar & Efficiency Special Issue, pp.Initiative,” Home Energy, Solar & Efficiency Special Issue,in Hand,” Home Energy, Solar & Efficiency Special Issue, pp.

  20. The Integration of Energy Efficiency, Renewable Energy, Demand Response and Climate Change: Challenges and Opportunities for Evaluators and Planners

    E-Print Network [OSTI]

    Vine, Edward

    2007-01-01

    and Renewable Energy Technology and Policy. Washington,Owns Renewable Energy Certificates? An Exploration of Policypolicies and supporting DR programs. Interest in renewable energy (

  1. 'The Overriding Demand for Energy Conservation in the Cement Industry' An Update 

    E-Print Network [OSTI]

    Spellman, L. U.

    1981-01-01

    Incentives and constraints to upgrade the U. S. cement industry and its energy efficiency are discussed. Emphasis is given to those measures most accessible to the industry, such as increased use of blended cements and waste fuels....

  2. Short-Term Energy Outlook Model Documentation: Hydrocarbon Gas Liquids Supply and Demand

    Reports and Publications (EIA)

    2015-01-01

    The hydrocarbon gas liquids (ethane, propane, butanes, and natural gasoline) module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of U.S. production, consumption, refinery inputs, net imports, and inventories.

  3. energy: Supply, Demand, and impacts CooRDinATinG LeAD AUThoR

    E-Print Network [OSTI]

    Kammen, Daniel M.

    position of having low per-capita energy consumption (222 million BTUs per person) relative" cost the United States about $80 billion every year in lost services, industrial capacity, and gross

  4. Potential For Energy, Peak Demand, and Water Savings in California Tomato Processing Facilities 

    E-Print Network [OSTI]

    Trueblood, A. J.; Wu, Y. Y.; Ganji, A. R.

    2013-01-01

    Tomato processing is a major component of California's food industry. Tomato processing is extremely energy intensive, with the processing season coinciding with the local electrical utility peak period. Significant savings are possible...

  5. Energy Demand and Emissions in Building in China: Scenarios and Policy Options 

    E-Print Network [OSTI]

    Kejun, J.; Xiulian, H.

    2006-01-01

    including transport), taking into account the most up-to-date data and recent policy discussions that will affect future economic, population, and energy supply trends. To understand the role of policy options including technology options and countermeasures...

  6. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01

    attract foreign investment." Oil and Gas Journal 102 (1):attract foreign investment." Oil and Gas Journal 102 (1):Investment (EROEI) ratio, or the quotient of usable acquired energy from coal, oil and

  7. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01

    He, et. Al. 2005. ?Oil consumption and CO 2 emissions inMichael P. Walsh, 2005, ?Oil consumption and CO 2 emissionsoil and 2% electricity were also used for calculating energy consumption

  8. Electrical Demand Analysis Software Tool Suite and Automatic Report Generation for Energy Audits 

    E-Print Network [OSTI]

    Morelli, Franco Javier

    2015-05-06

    The American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) defines an energy audit through a multi-tiered stratagem characterized by the level of in-depth analysis. The Level 1, or walkthrough survey is highlighted by low...

  9. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    E-Print Network [OSTI]

    G. Fridley, David

    2010-01-01

    Electricity Demand ..in the rise of final electricity demand, where industry’sdeclining share in electricity demand and relatively flat

  10. VideoonDemandVideoonDemandVideoonDemand Video on Demand Testbed

    E-Print Network [OSTI]

    Eleftheriadis, Alexandros

    VideoonDemandVideoonDemandVideoonDemand Columbia's Video on Demand Testbed and Interoperability Experiment Columbia's Video on Demand Testbed and Interoperability Experiment S.-F. Chang and A Columbia UniversityColumbia University www.www.ctrctr..columbiacolumbia..eduedu/advent/advent #12;VideoonDemandVideoonDemandVideoonDemand

  11. VideoonDemandVideoonDemandVideoonDemand Video on Demand Testbed

    E-Print Network [OSTI]

    Eleftheriadis, Alexandros

    #12;VideoonDemandVideoonDemandVideoonDemand Columbia's Video on Demand Testbed and Interoperability Experiment Columbia's Video on Demand Testbed and Interoperability Experiment H.H. KalvaKalva, A.www.eeee..columbiacolumbia..eduedu/advent/advent #12;VideoonDemandVideoonDemandVideoonDemand VoD Testbed ArchitectureVoD Testbed Architecture Video

  12. Demand Response and Smart Metering Policy Actions Since the Energy Policy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | version ofEnergy This document outlinesSince

  13. Fact Sheet: U.S. and China Actions Matter for Global Energy Demand, for

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report to Congress MoreHyd rog enOffice|DOEof Energy

  14. National Action Plan on Demand Response, June 2010 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing SwimmingMicrosoft TheDepartment ofEnergy The

  15. Nature of high-energy ions in the cathode plasma jet of a vacuum arc with high rate of current rise

    SciTech Connect (OSTI)

    Beilis, I.I.

    2004-10-04

    The production mechanism of extremely high-energy (up to 10 keV) ions observed in vacuum arcs having only a few tens of volts of arc voltage was considered. A model was developed for the plasma acceleration in a high-current ({>=}1 kA) short pulsed (<1 {mu}s) vacuum arc, taking into account the high rate of rise of the spot current (dI/dt>100 MA/s). A system of equations, including equations for the cathode spot and the plasma jet, was solved self-consistently with dI/dt in the range of 0.1-10 GA/s. It was shown that the plasma could be accelerated to the measured energy in the near spot region due to a gas dynamic mechanism and that the ion energy depends on the ratio of the ion flux to the electron flux. This ratio is determined by the cathode erosion rate. The calculated cathode erosion rate varies from 200 to 10 {mu}g/C when the ion energy increases from 0.1 to 10 keV and well agrees with measurements.

  16. Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building

    E-Print Network [OSTI]

    Dudley, Junqiao Han

    2010-01-01

    Study of Energy Efficiency in Buildings, Pacific Grove, CA,Study of Energy Efficiency in Buildings, Pacific Grove, CA,Study of Energy Efficiency in Buildings, Pacific Grove, CA,

  17. Energy Conservation Through Demand-Side Management (DSM): A Methodology to Characterize Energy Use Among commercial Market Segments 

    E-Print Network [OSTI]

    Grosskopf, K. R.; Oppenheim, P.; Barclay, D

    2007-01-01

    the need for costly capacity expansion and wholesale power purchasing, especially if energy reductions occur during peak loading conditions. Energy reductions may also lessen global climate change and reduce many other consequences of fossil-fuel energy...

  18. Impact of Industrial Electric Rate Structure on Energy Conservation - A Utility Viewpiont 

    E-Print Network [OSTI]

    Williams, M. M.

    1981-01-01

    As the price of energy rises, changes in industrial electric rates will have an impact on energy usage and conservation. Utilities interested in reducing system peak demands may reflect this need in the rate structure as an incentive...

  19. Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building

    E-Print Network [OSTI]

    Dudley, Junqiao Han

    2010-01-01

    2009. “Chilled Water Thermal Storage System and Demandwater supplied by thermal energy storage in the centralchilled water thermal energy storage (TES) tank provides

  20. Transportation Sector Demand Module of the National Energy Modeling System: Model Documentation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,