Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Impacts of Rising Construction and Equipment Costs on Energy Industries (released in AEO2007)  

Reports and Publications (EIA)

Costs related to the construction industry have been volatile in recent years. Some of the volatility may be related to higher energy prices. Prices for iron and steel, cement, and concrete -- commodities used heavily in the construction of new energy projects -- rose sharply from 2004 to 2006, and shortages have been reported. How such price fluctuations may affect the cost or pace of new development in the energy industries is not known with any certainty, and short-term changes in commodity prices are not accounted for in the 25-year projections in Annual Energy Outlook 2007. Most projects in the energy industries require long planning and construction lead times, which can lessen the impacts of short-term trends.

2007-01-01T23:59:59.000Z

2

Construction cost impact analysis of the U.S. Department of Energy mandatory performance standards for new federal commercial and multi-family, high-rise residential buildings  

SciTech Connect (OSTI)

In accordance with federal legislation, the U.S. Department of Energy (DOE) has conducted a project to demonstrate use of its Energy Conservation Voluntary Performance Standards for Commercial and Multi-Family High-Rise Residential Buildings; Mandatory for New Federal Buildings; Interim Rule (referred to in this report as DOE-1993). A key requisite of the legislation requires DOE to develop commercial building energy standards that are cost effective. During the demonstration project, DOE specifically addressed this issue by assessing the impacts of the standards on (1) construction costs, (2) builders (and especially small builders) of multi-family, high-rise buildings, and (3) the ability of low-to moderate-income persons to purchase or rent units in such buildings. This document reports on this project.

Di Massa, F.V.; Hadley, D.L.; Halverson, M.A.

1993-12-01T23:59:59.000Z

3

Estimating the Economic Cost of Sea-Level Rise  

E-Print Network [OSTI]

To improve the estimate of economic costs of future sea-level rise associated with global climate change,

Sugiyama, Masahiro.

4

Rising Electricity Costs: A Challenge For Consumers, Regulators, And Utilities  

Broader source: Energy.gov [DOE]

Presentation covers the rising electricity costs and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

5

Sun-Sentinel South Florida consumer costs rising faster than  

E-Print Network [OSTI]

Sun-Sentinel South Florida consumer costs rising faster than the national average May 18, 2011|By Donna Gehrke-White, Sun Sentinel We are not imagining it: The cost of living has jumped in South Florida

Belogay, Eugene A.

6

Estimating the economic cost of sea-level rise  

E-Print Network [OSTI]

(cont.) In the case of a classical linear sea-level rise of one meter per century, the use of DIVA generally decreases the protection fraction of the coastline, and results in a smaller protection cost because of high ...

Sugiyama, Masahiro, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

7

How to Reduce Energy Supply Costs  

E-Print Network [OSTI]

Rising energy costs have many businesses looking for creative ways to reduce their energy usage and lower the costs of energy delivered to their facilities. This paper explores innovative renewable and alternative energy technologies that can help...

Swanson, G.

2007-01-01T23:59:59.000Z

8

Our winters of discontent: Addressing the problem of rising home-heating costs1  

E-Print Network [OSTI]

on fossil fuels by using solar energy, reducing residential energy demand, and promoting district heating. 1ERG/200602 Our winters of discontent: Addressing the problem of rising home-heating costs1 Larry Residential space heating is a necessity in northern countries such as Canada. With over 70 percent

Hughes, Larry

9

Estimating the economic cost of sea-level rise Masahiro Sugiyama  

E-Print Network [OSTI]

Estimating the economic cost of sea-level rise by Masahiro Sugiyama Bachelor of Science in Earth To improve the estimate of economic costs of future sea-level rise associated with global climate change, the thesis generalizes the sea-level rise cost function originally proposed by Fankhauser, and applies

10

Rising Above the Water: New Orleans Implements Energy Efficiency...  

Energy Savers [EERE]

Rising Above the Water: New Orleans Implements Energy Efficiency and Sustainability Practices Following Hurricanes Katrina and Rita (Fact Sheet) Rising Above the Water: New Orleans...

11

Faced with rising fuel costs, building and home owners are looking for energy-efficient solutions. Improving the building envelope (roof or attic system, walls,  

E-Print Network [OSTI]

, ventilating, and air-conditioning (HVAC) accounts for 17% of the nation's primary energy consumption. However and North America. Scaling envelope improve- ments in the market is now feasible without fear of unintended

Oak Ridge National Laboratory

12

Estimating Renewable Energy Costs  

Broader source: Energy.gov [DOE]

Some renewable energy measures, such as daylighting, passive solar heating, and cooling load avoidance, do not add much to the cost of a building. However, renewable energy technologies typically...

13

Coastal flood damage and adaptation costs under 21st century sea-level rise  

E-Print Network [OSTI]

Coastal flood damage and adaptation costs under 21st century sea-level rise Jochen Hinkela,1st century sea-level rise are assessed on a global scale taking into account a wide range- ment and sea-level rise. Uncertainty in global mean and regional sea level was derived from four

Marzeion, Ben

14

Energy Management Strategies for Fast Battery Temperature Rise...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Very Cold Conditions Energy Management Strategies for Fast Battery Temperature Rise and Engine Efficiency Improvement at Very Cold Conditions 2010 DOE Vehicle Technologies and...

15

Rising Above the Water: New Orleans Implements Energy Efficiency...  

Energy Savers [EERE]

Rising Above the Water: New Orleans Implements Energy Efficiency and Sustainability Practices Following Hurricanes Katrina and Rita On August 29, 2005, Hurricane Katrina, the...

16

UNEP Rise Centre Energy, Climate and Sustainable  

E-Print Network [OSTI]

UNEP Risře Centre ­ Energy, Climate and Sustainable Development Organisational set;UNEP Risře Centre ­ Energy, Climate and Sustainable Development International and Danish research team by an International Scientific Advisory Panel · Risř - Programme on Energy, Environment & Development Planning #12

17

Minimum cost model energy code envelope requirements  

SciTech Connect (OSTI)

This paper describes the analysis underlying development of the U.S. Department of Energy`s proposed revisions of the Council of American Building Officials (CABO) 1993 Model Energy Code (MEC) building thermal envelope requirements for single-family and low-rise multifamily residences. This analysis resulted in revised MEC envelope conservation levels based on an objective methodology that determined the minimum-cost combination of energy efficiency measures (EEMs) for residences in different locations around the United States. The proposed MEC revision resulted from a cost-benefit analysis from the consumer`s perspective. In this analysis, the costs of the EEMs were balanced against the benefit of energy savings. Detailed construction, financial, economic, and fuel cost data were compiled, described in a technical support document, and incorporated in the analysis. A cost minimization analysis was used to compare the present value of the total long-nm costs for several alternative EEMs and to select the EEMs that achieved the lowest cost for each location studied. This cost minimization was performed for 881 cities in the United States, and the results were put into the format used by the MEC. This paper describes the methodology for determining minimum-cost energy efficiency measures for ceilings, walls, windows, and floors and presents the results in the form of proposed revisions to the MEC. The proposed MEC revisions would, on average, increase the stringency of the MEC by about 10%.

Connor, C.C.; Lucas, R.G.; Turchen, S.J.

1994-08-01T23:59:59.000Z

18

Worker productivity rises with energy efficiency  

SciTech Connect (OSTI)

Many American companies have found that saving energy and cutting pollution dramatically improves the bottom line. But beyond these gains, businesses that launch energy efficiency programs to save money are often astonished to discover unforeseen benefits: energy efficient lighting, heating, cooling, motors, and industrial processes can increase worker productivity, decrease absenteeism, and improve the quality of work performed. Profits created by the jump in worker productivity can exceed energy savings by a factor of ten. Energy efficiency and pollution prevention represent the next wave in manufacturing, following the quality revolution launched by the Japanese in the 1960s. Unless America leads the lean and clean revolution, economic health will be undermined as other countries develop clean processes and products and US companies suffer competitively. Also, developing countries will leapfrog their wasteful model and buy products and manufacturing processes from foreign firms already practicing lean and clean.

Romm, J.J. (Dept. of Energy, Washington, DC (United States))

1995-01-01T23:59:59.000Z

19

SC-RISE LECTURE SERIES BRIGHT HORIZONS IN SOLAR ENERGY  

E-Print Network [OSTI]

SC-RISE LECTURE SERIES BRIGHT HORIZONS IN SOLAR ENERGY Sustainable Energy Opportunities, Options are being developed including biomass, geothermal, hydropower, ocean thermal energy conversion, solar electric, solar thermal, and wind. However, such aspects as low energy density, siting, and temporal

20

. ^ ^ L c O / ^ -Rise-R-497 Energy Systems Group  

E-Print Network [OSTI]

2 otSMooiaji é. ^ ^ L c O / ^ - Rise-R-497 t x Energy Systems Group Annual Progress Report 1 Januar Roskilde, Denmark March 1984 r #12;RIS�-R-497 ENERGY SYSTEMS GROUP Annual Progress Report 1 January - 31 of the Energy Systems Group at Risø National Laboratory during 1983. Th«r activities may be roughly classified

Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Rising Above the Water: New Orleans Implements Energy  

E-Print Network [OSTI]

for Humanity DOE/NREL worked with Florida Solar Energy Center to assist the New Orleans Area Habitat for Humanity, the largest builder in the greater New Orleans area, to achieve ENERGY STAR® efficiency levelsRising Above the Water: New Orleans Implements Energy Efficiency and Sustainability Practices

22

Cost Effectiveness NW Energy Coalition  

E-Print Network [OSTI]

1 Action 8 Cost Effectiveness Manual Kim Drury NW Energy Coalition Context · Inconsistent understanding of cost effectiveness contributed to under performing conservation E.g: individual measures vs Action Plan for Energy Efficiency published a comprehensive guide on cost effectiveness: best practices

23

Effect of Sea Level Rise on Energy Infrastructure in Four Major...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Effect of Sea Level Rise on Energy Infrastructure in Four Major Metropolitan Areas (September 2014) Effect of Sea Level Rise on Energy Infrastructure in Four Major Metropolitan...

24

Lower Cost Energy Options  

E-Print Network [OSTI]

ttle b1t about Abbott Laborator1es. Abbott 1s a world-w1de health care company w1th 27 manufactur1ng and research fac111t1es 1n the U.S. and Puerto R1co totall1ng more than 10,000,000 square feet of floor space. The company has also has manufactur1...ch ranks 96th 1n the Furtune 500. .uaan L.UOU.TO_IU OOMESTIC ENEllGY CONSEllVATION ~~ n ~~~ ~~ a M m M ~ ? " YEn F1gure 1: Energy Conservat10n U.S. & Puerto R1co The Abbott energy conservat10n program started 1n 1973 as d1d many compan1es. We...

Maze, M. E.

25

LSA Space Guidelines February 2011 The rising costs of utilities and building maintenance have placed increasing stress on the University's  

E-Print Network [OSTI]

1 LSA Space Guidelines ­February 2011 Overview The rising costs of utilities and building costs, the Provost has launched a University-wide Space Initiative that will unfold over a period of several years. The Initiative will inventory all University space and study its management

Resnick, Paul

26

Strategy Guideline: Energy Retrofits for Low-Rise Multifamily Buildings in Cold Climates  

SciTech Connect (OSTI)

This Strategy Guideline explains the benefits of evaluating and identifying energy efficiency retrofit measures that could be made during renovation and maintenance of multifamily buildings. It focuses on low-rise multifamily structures (three or fewer stories) in a cold climate. These benefits lie primarily in reduced energy use, lower operating and maintenance costs, improved durability of the structure, and increased occupant comfort. This guideline focuses on retrofit measures for roof repair or replacement, exterior wall repair or gut rehab, and eating system maintenance. All buildings are assumed to have a flat ceiling and a trussed roof, wood- or steel-framed exterior walls, and one or more single or staged boilers. Estimated energy savings realized from the retrofits will vary, depending on the size and condition of the building, the extent of efficiency improvements, the efficiency of the heating equipment, the cost and type of fuel, and the climate location.

Frozyna, K.; Badger, L.

2013-04-01T23:59:59.000Z

27

NUCLEAR ENERGY SYSTEM COST MODELING  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative “Island” approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this island’s used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an island’s cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

Francesco Ganda; Brent Dixon

2012-09-01T23:59:59.000Z

28

Effect of Sea Level Rise on Energy Infrastructure in Four Major...  

Broader source: Energy.gov (indexed) [DOE]

Effect of Sea Level Rise on Energy Infrastructure in Four Major Metropolitan Areas Effect of Sea Level Rise on Energy Infrastructure in Four Major Metropolitan Areas The Office of...

29

Plant Energy Cost Optimization Program (PECOP)  

E-Print Network [OSTI]

The Plant Energy Cost Optimization Program (PECOP) is a Management System designed to reduce operating cost in a continuous operating multi product plant by reviewing all cost factors and selecting plant wide production schedules which are most...

Robinson, A. M.

1980-01-01T23:59:59.000Z

30

Energy Management Strategies for Fast Battery Temperature Rise...  

Broader source: Energy.gov (indexed) [DOE]

Strategies to Quickly Raise Battery Temperature and Engine Efficiency Component level comparison: - Compare rate of temperature rise for the battery , engine. Vehicle...

31

Cost of Offshore Wind Energy Charlene Nalubega  

E-Print Network [OSTI]

Cost of Offshore Wind Energy and Industrial Engineering The focus of my research is to estimate the cost of floating offshore wind turbines water as well as on land based wind farms. The specific offshore wind energy case under consideration

Mountziaris, T. J.

32

A Manager's Approach to Energy Cost Management  

E-Print Network [OSTI]

A major responsibility of management is the control and containment of operating costs. Energy costs are a major portion of the industrial budget. GM has developed a 3 phase approach to energy conservation. Phase I -Administrative Controls...

Spencer, R. J.

33

Computational Energy Cost of TCP Bokyung Wang  

E-Print Network [OSTI]

present results from a detailed energy measurement study of TCP. We focus on the node- level cost have characterized the cost of the primary TCP functions; (3) our node-level energy models canComputational Energy Cost of TCP Bokyung Wang Telecommunications System Division SAMSUNG

Singh, Suresh

34

Audit Costs for the 1986 Texas Energy Cost Containment Program  

E-Print Network [OSTI]

Direct program costs for detailed audits of 13.5 million square feet of institutional building space in the 1986 Texas Energy Cost Containment Program were $0.047/SF. The building area was 63 percent simple (offices, schools, and universities...

Heffington, W. M.; Lum, S. K.; Bauer, V. A.; Turner, W. D.

1987-01-01T23:59:59.000Z

35

2010 Cost of Wind Energy Review  

SciTech Connect (OSTI)

This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

2012-04-01T23:59:59.000Z

36

A Rising Star: Solid-State Lighting | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-DecemberBasedToward a MoreA Rising Star: Solid-State

37

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

Developments in the Levelized Cost of Energy From U.S. Windreducing the levelized cost of energy (LCOE) for onshore

Wiser, Ryan

2013-01-01T23:59:59.000Z

38

A Multi-objective Approach to Balance Buildings Construction Cost and Energy Efficiency  

E-Print Network [OSTI]

The continuous rise of energy consumption is a global concern. On the one hand, energy is still mainly coming rate, estimated at around 40% of the total energy used worldwide. Surprisingly, the resulting carbonA Multi-objective Approach to Balance Buildings Construction Cost and Energy Efficiency ´Alvaro

Hamadi, Yousseff

39

Beyond Energy Savings: Case Studies on Enhancing Productivity and Reducing Costs Through Energy Efficiency Investments  

E-Print Network [OSTI]

productivity. Anheuser-Busch Companies. Inc. Bio-Energy Recoverv In response to rising fuel prices in the hite 1970s, Anheuser-Busch looked for ways to gain control over energy and other utility costs. The company began exploring anaerobic treatment... of organic nutrients in wastewater, in which bacteria consume organic compounds under water, releasing biogas that bubbles to the top of the tank. The biogas (mostly methane) is collected and used for fuel (bio-energy recovery), and solid waste...

Pye, M.

40

Time-Energy Costs of Quantum Measurements  

E-Print Network [OSTI]

Time and energy of quantum processes are a tradeoff against each other. We propose to ascribe to any given quantum process a time-energy cost to quantify how much computation it performs. Here, we analyze the time-energy costs for general quantum measurements, along a similar line as our previous work for quantum channels, and prove exact and lower bound formulae for the costs. We use these formulae to evaluate the efficiencies of actual measurement implementations. We find that one implementation for a Bell measurement is optimal in time-energy. We also analyze the time-energy cost for unambiguous state discrimination and find evidence that only a finite time-energy cost is needed to distinguish any number of states.

Chi-Hang Fred Fung; H. F. Chau

2014-05-08T23:59:59.000Z

Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Off-the-Job Injuries are on the Rise- and Costly  

Broader source: Energy.gov [DOE]

Do you have an off-the-job safety program? Should you? The findings from a National Safety Council survey suggest that off-the-job injuries cost companies and society in general as much, if not more than on-the-job injuries!

42

Rising to the Challenge: Innovating toward our Clean Energy Future |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015Department ofRequirementsEnergyJDickson About

43

DOE employee listed among area's rising leaders | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof EnergyAllianceDepartment ofDepartment of EnergyofThe

44

Energy Performance and Comfort Level in High Rise and Highly Glazed Office Buildings  

E-Print Network [OSTI]

Thermal and visual comfort in buildings play a significant role on occupants' performance but on the other hand achieving energy savings and high comfort levels can be a quite difficult task especially in high rise buildings with highly glazed...

Bayraktar, M.; Perino, M.; Yilmaz, A. Z.

2010-01-01T23:59:59.000Z

45

Soft Costs | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The U.S. Department of Energy (DOE) SunShot Initiative accelerates the adoption of solar energy technologies in the marketplace. In support of SunShot Initiative goals, the solar...

46

Rise Report No. 255 Danish Atomic Energy Commission  

E-Print Network [OSTI]

Energy Commission Research Establishment RisO Chemistry Department Abstract The Fe(n, Y) Fe reaction can effects, which may mask the effects of nuclear recoil, make short irradiation times and consequently low of nuclear reactions. For (n,Y) reactions the use of a M5ssbauer spectrometer on line with a reactor

47

Financing Energy Cost Savings | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

an overview of funding energy savings, specifically Energy Saving Performance Contracting in relation to energy and water conservation measures, operation and maintenance...

48

Energy Management Strategies for Fast Battery Temperature Rise and Engine  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE:2009 DOEDeploymentHenry C. FoleyEnergy

49

City of Rising Sun, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Nebraska (UtilityGeorgiaArkansas References: EIARedding,RichlandSun,

50

Claritas Rise, Mars- Pre-Tharsis Magmatism? | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy NebraskaStanhope, IowaWymore,Information ClarendonClarionClaritas

51

Rising Solar Energy Science and Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue RidgeUniversityMedio, New Mexico: EnergyRising Solar

52

Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost  

E-Print Network [OSTI]

Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost Omur Ozel Khurram with an energy harvesting transmitter with non-negligible processing circuitry power and a hybrid energy storage for energy storage while the battery has unlimited space. The transmitter stores the harvested energy either

Ulukus, Sennur

53

Renewable Energy Planning: Multiparametric Cost Optimization; Preprint  

SciTech Connect (OSTI)

This paper describes a method for determining the combination of renewable energy technologies that minimize life-cycle cost at a facility, often with a specified goal regarding percent of energy use from renewable sources. Technologies include: photovoltaics (PV); wind; solar thermal heat and electric; solar ventilation air preheating; solar water heating; biomass heat and electric (combustion, gasification, pyrolysis, anaerobic digestion); and daylighting. The method rests upon the National Renewable Energy Laboratory's (NREL's) capabilities in characterization of technology cost and performance, geographic information systems (GIS) resource assessment, and life-cycle cost analysis. The paper discusses how to account for the way candidate technologies interact with each other, and the solver routine used to determine the combination that minimizes life-cycle cost. Results include optimal sizes of each technology, initial cost, operating cost, and life-cycle cost, including incentives from utilities or governments. Results inform early planning to identify and prioritize projects at a site for subsequent engineering and economic feasibility study.

Walker, A.

2008-05-01T23:59:59.000Z

54

2011 Cost of Wind Energy Review  

SciTech Connect (OSTI)

This report describes the levelized cost of energy (LCOE) for a typical land-based wind turbine installed in the United States in 2011, as well as the modeled LCOE for a fixed-bottom offshore wind turbine installed in the United States in 2011. Each of the four major components of the LCOE equation are explained in detail, such as installed capital cost, annual energy production, annual operating expenses, and financing, and including sensitivity ranges that show how each component can affect LCOE. These LCOE calculations are used for planning and other purposes by the U.S. Department of Energy's Wind Program.

Tegen, S.; Lantz, E.; Hand, M.; Maples, B.; Smith, A.; Schwabe, P.

2013-03-01T23:59:59.000Z

55

Project Profile: Reducing the Cost of Thermal Energy Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power...

56

Extreme Temperature Energy Storage and Generation, for Cost and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Extreme Temperature Energy Storage and Generation, for Cost and Risk Reduction in Geothermal Exploration Extreme Temperature Energy Storage and Generation, for Cost and Risk...

57

Best Practices for Controlling Capital Costs in Net Zero Energy...  

Energy Savers [EERE]

Best Practices for Controlling Capital Costs in Net Zero Energy Design and Construction - 2014 BTO Peer Review Best Practices for Controlling Capital Costs in Net Zero Energy...

58

New Process for Producing Styrene Cuts Costs, Saves Energy, and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces Greenhouse Gas Emissions New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces Greenhouse Gas...

59

EA-2001: Energy Efficiency Design Standards: New Federal Commercial and Multi-Family High-Rise Residential Buildings and New Federal Low-Rise Residential Buildings  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) is publishing this final rule to implement provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal commercial and multi-family high-rise residential buildings. This rule updates the baseline Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2013.

60

Hidden Costs of Energy Chris Field  

E-Print Network [OSTI]

#12;What are the real costs of energy? · Unpriced components · Production · Distribution · Consumption2 fertilization #12;Electricity #12;#12;Injuries #12;#12;#12;#12;Other electricity · Nuclear · Wind in Africa · Regression analysis: T & P vs conflict ­ 100 deaths in a year, at least one government ­Range

Kammen, Daniel M.

Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Analysis of Potential Benefits and Costs of Adopting a Commercial Building Energy Standard in South Dakota  

SciTech Connect (OSTI)

The state of South Dakota is considering adopting a commercial building energy standard. This report evaluates the potential costs and benefits to South Dakota residents from requiring compliance with the most recent edition of the ANSI/ASHRAE/IESNA 90.1-2001 Energy Standard for Buildings except Low-Rise Residential Buildings. These standards were developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. The quantitative benefits and costs of adopting a commercial building energy code are modeled by comparing the characteristics of assumed current building practices with the most recent edition of the ASHRAE Standard, 90.1-2001. Both qualitative and quantitative benefits and costs are assessed in this analysis. Energy and economic impacts are estimated using results from a detailed building simulation tool (Building Loads Analysis and System Thermodynamics [BLAST] model) combined with a Life-Cycle Cost (LCC) approach to assess corresponding economic costs and benefits.

Belzer, David B.; Cort, Katherine A.; Winiarski, David W.; Richman, Eric E.

2005-03-04T23:59:59.000Z

62

High Energy Cost Grants | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health and Productivity Questionnaire (HPQ) SurveyHelpHelping

63

Energy Department Invests to Drive Down Costs of Carbon Capture...  

Energy Savers [EERE]

Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions...

64

Sandia National Laboratories: Analysis, Modeling, Cost of Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProgramsAnalysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014 Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014 The "20% Wind Energy by...

65

The Cost of Conserved Energy As An Investment Statistic  

E-Print Network [OSTI]

The cost of conserved energy (CCE) is an investment statistic that simplifies comparison of conservation measures among themselves and against competing energy supplies. A formula for calculating the cost of conserved energy formula is presented. A...

Meier, A. K.

1984-01-01T23:59:59.000Z

66

Assessing the Costs and Benefits of the Superior Energy Performance...  

Broader source: Energy.gov (indexed) [DOE]

the Costs and Benefits of the Superior Energy Performance Program Presentation Nine companies certified under the U.S. Department of Energy (DOE) Superior Energy Performance...

67

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

2009). Technology Roadmap – Wind Energy. Paris, France:5) Ceńa, A; Simonot, E. (2011). The Cost of Wind Energy.Spanish Wind Energy Association (AEE) contribution to IEA

Wiser, Ryan

2013-01-01T23:59:59.000Z

68

Project Cost Profile Spreadsheet | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSEEnergy ProgressProject Cost Profile

69

Reducing Photovoltaic Costs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated |Reducing LED Costs Through

70

Reducing Power Factor Cost | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated |Reducing LED Costs ThroughReducing Power

71

Energy information systems (EIS): Technology costs, benefit, and best  

E-Print Network [OSTI]

LBNL-6476E 1 Energy information systems (EIS): Technology costs, benefit, and best practice uses, Lin, G, Piette, MA. Energy information systems (EIS): Technology costs, benefits, and best practice

72

Cost Study Manual | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief MedicalDepartmentWorkingCooking UpCorrectiveCost

73

Low Cost, Durable Seal | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term Storage ofEnergy HighCost, Durable Seal

74

Solution to time-energy costs of quantum channels  

E-Print Network [OSTI]

We derive a formula for the time-energy costs of general quantum channels proposed in [Phys. Rev. A 88, 012307 (2013)]. This formula allows us to numerically find the time-energy cost of any quantum channel using positive semidefinite programming. We also derive a lower bound to the time-energy cost for any channels and the exact the time-energy cost for a class of channels which includes the qudit depolarizing channels and projector channels as special cases.

Chi-Hang Fred Fung; H. F. Chau; Chi-Kwong Li; Nung-Sing Sze

2014-12-16T23:59:59.000Z

75

Reducing "Search Cost" and Risk in Energy-efficiency Investments  

E-Print Network [OSTI]

Reducing "Search Cost" and Risk in Energy-efficiency Investments: Two Success Stories Philip E "search Cost"and Risk in Energy-Eficiency Investments: Two Success Stories - 4.91 #12;Perspectives significant transaction costs related to searching for and analyzing information on prospective energy

76

A Walking Model with No Energy Cost M. W. Gomes  

E-Print Network [OSTI]

on a frictional surface. Can legged transport over level ground be similarly energy-cost free? NatureA Walking Model with No Energy Cost M. W. Gomes Mechanics, Cornell University; now at Mechanical these minor friction losses, is a zero- energy-cost walking mechanism possible? Consider walking mechanisms

Ruina, Andy L.

77

Energy Smart Guide to Campus Cost Savings: Executive Summary  

SciTech Connect (OSTI)

Summary of The Energy Smart Guide to Campus Cost Savings, an energy efficiency guidebook for College and University business and facility managers.

Not Available

2003-07-01T23:59:59.000Z

78

Analysis of Energy, Environmental and Life Cycle Cost Reduction...  

Broader source: Energy.gov (indexed) [DOE]

Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Analysis of Energy, Environmental and Life...

79

Energy Department Invests Over $7 Million to Commercialize Cost...  

Energy Savers [EERE]

Energy Department Invests Over 7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell Technologies Energy Department Invests Over 7 Million to Commercialize...

80

Department of Energy Environmental Management cost infrastructure development program: Cost analysis requirements  

SciTech Connect (OSTI)

This report was prepared to support development of the Department of Energy Environmental Management cost infrastructure -- a new capability to independently estimate and analyze costs. Currently, the cost data are reported according to a structure that blends level of effort tasks with product and process oriented tasks. Also. the budgetary inputs are developed from prior year funding authorizations and from contractor-developed parametric estimates that have been adjusted to planned funding levels or appropriations. Consequently, it is difficult for headquarters and field-level activities to use actual cost data and technical requirements to independently assess the costs generated and identify trends, potential cost savings from process improvements, and cost reduction strategies.

Custer, W.R. Jr.; Messick, C.D.

1996-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Analysis of TCP's Computational Energy Cost for Mobile [Extended Abstract  

E-Print Network [OSTI]

a wire- less link. Our primary goal was on obtaining a breakdown of the computational energy cost of TCP this cost in actual systems. We analyzed the energy consumption of TCP in FreeBSD 5 running on a wireless the energy consumed by TCP. Prior work in this do- main has has looked at the energy consumption of various

Singh, Suresh

82

Cost analysis of energy storage systems for electric utility applications  

SciTech Connect (OSTI)

Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

1997-02-01T23:59:59.000Z

83

Energy and Demand Savings from Implementation Costs in Industrial Facilities  

E-Print Network [OSTI]

1 ENERGY AND DEMAND SAVINGS FROM IMPLEMENTATION COSTS IN INDUSTRIAL FACILITIES 1 Razinha, J.A. and Heffington, W.M. Industrial Assessment Center and Mechanical Engineering Department Texas A&M University, College Station, Texas 77843.... noted that a direct calculation of cost savings from the implementation cost could eliminate as much as 30% of the preparation time (and associated cost) for the LoanSTAR reports. The savings result from not having to calculate energy or demand...

Razinha, J. A.; Heffington, W. M.

84

UNDP-Energy Costing Tool | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump to: navigation,EnergyAgency/CompanyCosting

85

Benefits and Costs of Aggressive Energy Efficiency Programs and...  

Open Energy Info (EERE)

Area: Energy Efficiency Topics: Policy Impacts Website: eetd.lbl.goveaempreportslbnl-3833e.pdf Equivalent URI: cleanenergysolutions.orgcontentbenefits-and-costs-aggressiv...

86

Energy Department Announces $25 Million to Lower Cost of Concentrating...  

Energy Savers [EERE]

clean and renewable energy, even at night, by storing the heat generated by the sun. "Investments to improve the efficiency and lower the costs of concentrating solar...

87

Developing a Lower Cost and Higher Energy Density Alternative...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Advanced Batteries ADVANCED MANUFACTURING OFFICE Developing a Lower Cost and Higher Energy Density Alternative to Lithium-Ion Batteries Introduction As the world moves toward...

88

Assessing the Costs and Benefits of the Superior Energy Performance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

This paper focuses on the business value of Superior Energy Performance (SEP(tm)) and ISO 50001, providing an assessment of the costs and benefits associated with SEP...

89

Analysis of Energy, Environmental and Life Cycle Cost Reduction...  

Broader source: Energy.gov (indexed) [DOE]

Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Principal Investigator: Y.-X. Tao Florida International...

90

SEE Action Webinar on Energy Efficiency Measure Cost Studies  

Broader source: Energy.gov [DOE]

Presented by State and Local Energy Efficiency Action Network (SEE Action), this webinar will explain the importance of measure cost studies, review the current "state of the science" of measure cost development and estimation, and explore opportunities for future collaboration and advancement of measure cost research.

91

Draft Submission; Social Cost of Energy Generation  

SciTech Connect (OSTI)

This report is intended to provide a general understanding of the social costs associated with electric power generation. Based on a thorough review of recent literature on the subject, the report describes how these social costs can be most fully and accurately evaluated, and discusses important considerations in applying this information within the competitive bidding process. [DJE 2005

None

1990-01-05T23:59:59.000Z

92

EA-1926: Energy Efficiency Design Standards for New Federal Low-Rise Residential Buildings (RIN# 1904-AC61)  

Broader source: Energy.gov [DOE]

This EA will evaluate the potential environmental impacts of implementing the provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal buildings, including low-rise residential buildings.

93

EECBG Success Story: Ormond Beach Triples Energy Cost Savings...  

Office of Environmental Management (EM)

Program, Ormond Beach was able to make energy efficiency upgrades to 16 city-owned buildings and is now saving more than 45,000 a year on its energy costs. | Photo courtesy of...

94

Energy Innovator Drops Costs for Titanium Metalwork | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for37 EastEIA-64A Annual ReportInnovator Drops Costs

95

Sun Rises on Tribal Energy Future in Nevada | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4 RecoveryJuly 1, 2013On-BoardSummerofSummit:

96

PET: Reducing Database Energy Cost via Query Optimization  

E-Print Network [OSTI]

PET: Reducing Database Energy Cost via Query Optimization Zichen Xu The Ohio State University xuz not necessarily have the shortest processing time. This demo proposal introduces PET ­ an energy-aware query op- timization framework that is built as a part of the PostgreSQL ker- nel. PET, via its power cost estimation

Tu, Yicheng

97

Cost and benefit of energy efficient buildings  

E-Print Network [OSTI]

A common misconception among developers and policy-makers is that "sustainable buildings" may not be financially justified. However, this report strives to show that building green is cost-effective and does make financial ...

Zhang, Wenying, S.B. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

98

Updating Texas Energy Cost Containment Audit Reports  

E-Print Network [OSTI]

In 1984 and 1986, 35.3 million square feet of state owned buildings were audited to identify cost saving retrofit projects. Originally intended for direct legislative funding or bond sales, funding became available in 1989 through oil overcharge...

Burke, T. E.; Heffington, W. M.

1989-01-01T23:59:59.000Z

99

Sensitivity Analysis of Offshore Wind Cost of Energy (Poster)  

SciTech Connect (OSTI)

No matter the source, offshore wind energy plant cost estimates are significantly higher than for land-based projects. For instance, a National Renewable Energy Laboratory (NREL) review on the 2010 cost of wind energy found baseline cost estimates for onshore wind energy systems to be 71 dollars per megawatt-hour ($/MWh), versus 225 $/MWh for offshore systems. There are many ways that innovation can be used to reduce the high costs of offshore wind energy. However, the use of such innovation impacts the cost of energy because of the highly coupled nature of the system. For example, the deployment of multimegawatt turbines can reduce the number of turbines, thereby reducing the operation and maintenance (O&M) costs associated with vessel acquisition and use. On the other hand, larger turbines may require more specialized vessels and infrastructure to perform the same operations, which could result in higher costs. To better understand the full impact of a design decision on offshore wind energy system performance and cost, a system analysis approach is needed. In 2011-2012, NREL began development of a wind energy systems engineering software tool to support offshore wind energy system analysis. The tool combines engineering and cost models to represent an entire offshore wind energy plant and to perform system cost sensitivity analysis and optimization. Initial results were collected by applying the tool to conduct a sensitivity analysis on a baseline offshore wind energy system using 5-MW and 6-MW NREL reference turbines. Results included information on rotor diameter, hub height, power rating, and maximum allowable tip speeds.

Dykes, K.; Ning, A.; Graf, P.; Scott, G.; Damiami, R.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Veers, P.

2012-10-01T23:59:59.000Z

100

Ormond Beach Triples Energy Cost Savings Projections  

Broader source: Energy.gov [DOE]

With the help of the Energy Department's Energy Efficiency and Conservation Block Grant (EECBG) Program, the city of Ormond Beach, Florida is saving energy and encouraging its residents to do the same through an environmental education program.

Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Reported Energy and Cost Savings from the DOE ESPC Program  

SciTech Connect (OSTI)

The objective of this work was to determine the realization rate of energy and cost savings from the Department of Energy's Savings Performance Contract (ESPC) program based on information reported by the energy services companies (ESCOs) that are carrying out ESPC projects at federal sites. Information was extracted from 134 Measurement and Verification (M&V) reports to determine reported, estimated, and guaranteed cost savings and reported and estimated energy savings for the previous contract year. Because the quality of the reports varied, it was not possible to determine all of these parameters for each project. For 133 of the 134 projects, there was sufficient information to compare estimated, reported, and guaranteed cost savings. For this group, the total estimated cost savings for the reporting periods addressed were $95.7 million, total reported cost savings were $96.8 million, and total guaranteed cost savings were $92.1 million. This means that on average: ESPC contractors guaranteed 96% of the estimated cost savings, projects reported achieving 101% of the estimated cost savings, and projects reported achieving 105% of the guaranteed cost savings. For 129 of the projects examined, there was sufficient information to compare estimated and reported energy savings. On the basis of site energy, estimated savings for those projects for the previous year totaled 5.371 million MMBtu, and reported savings were 5.374 million MMBtu, just over 100% of the estimated energy savings. On the basis of source energy, total estimated energy savings for the 129 projects were 10.400 million MMBtu, and reported saving were 10.405 million MMBtu, again, just over 100.0% of the estimated energy savings.

Shonder, John A [ORNL; Slattery, Bob S [ORNL; Atkin, Erica [ORNL

2012-01-01T23:59:59.000Z

102

Cost-Energy Dynamics: An Engineering - Economic Basis for Industrial Energy Conservation Policies  

E-Print Network [OSTI]

This paper develops a theory called cost-energy dynamics that can be used to shape policies for industrial energy conservation. It is built on two hypotheses commonly observed in process engineering; namely, cost varies as positive power function...

Phung, D. L.; van Gool, W.

1980-01-01T23:59:59.000Z

103

Cost effectiveness of long life incandescent lamps and energy buttons  

SciTech Connect (OSTI)

Long-life replacement lamps for the incandescent lamp have been evaluated with regard to their cost effectiveness. The replacements include the use of energy buttons that extend lamp life as well as an adaptive fluorescent circline lamp that will fit into existing incandescent lamp sockets. The initial, operating, and replacement costs for one million lumen hours are determined for each lamp system. It is found that the most important component lighting cost is the operating cost. Using lamps that are less efficient or devices that cause lamps to operate less efficiently are not cost-effective. The adaptive fluorescent circline lamp, even at an initial unit cost of $20.00, is the most cost-effective source of illumination compared to the incandescent lamp and lamp systems examined.

Verderber, R.; Morse, O.

1980-04-07T23:59:59.000Z

104

E-Print Network 3.0 - achieve cost-effective energy Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy rating; Cost-effective energy efficiency improvements; Public and private sector... , the availability of an appropriate cost-effective energy efficiency...

105

Effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs  

SciTech Connect (OSTI)

This study determines the performance and cost of four 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States. The solar plants are conceptualized to begin commercial operation in the year 2000. It is assumed that major subsystem performance will have improved substantially as compared to that of pilot plants currently operating or under construction. The net average annual system efficiency is therefore roughly twice that of current solar thermal electric power plant designs. Similarly, capital costs reflecting goals based on high-volume mass production that are considered to be appropriate for the year 2000 have been used. These costs, which are approximately an order of magnitude below the costs of current experimental projects, are believed to be achievable as a result of the anticipated sizeable solar penetration into the energy market in the 1990 to 2000 timeframe. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrators comprise the advanced collector concepts studied. All concepts exhibit their best performance when sited in regional areas such as the sunbelt where the annual insolation is high. The regional variation in solar plant performance has been assessed in relation to the expected rise in the future cost of residential and commercial electricity in the same regions. A discussion of the regional insolation data base, a description of the solar systems performance and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades are given.

Latta, A.F.; Bowyer, J.M.; Fujita, T.; Richter, P.H.

1980-02-01T23:59:59.000Z

106

Optimal Power Cost Management Using Stored Energy in Data Centers  

E-Print Network [OSTI]

the aver- age price of 1 MW-Hour of electricity. Consequently, mini- mization of energy consumption needOptimal Power Cost Management Using Stored Energy in Data Centers Rahul Urgaonkar, Bhuvan Urgaonkar that arise by the use of uninterrupted power supply (UPS) units as energy storage devices. This rep- resents

Urgaonkar, Bhuvan

107

Financing; A Cost Effective Alternative When Upgrading Energy Efficient Systems  

E-Print Network [OSTI]

in order to effectively compete in the marketplace. One obvious method of reducing costs and improving productivity is to upgrade old, antiquated equipment such as lighting to more modern energy efficient systems. Most projects provide a return...

Ertle, J. M.

108

Demonstrating Innovative Low-Cost Carbon Fiber for Energy and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demonstrating Innovative Low-Cost Carbon Fiber for Energy and National Security Applications Front-end creel for processing precursor in tow format In-line melt spinning for...

109

A Low Cost Energy Management Program at Engelhard Industries Division  

E-Print Network [OSTI]

in technology related to precious metals and nonmetallic minerals. It manufactures high-performance chemical and precious metals products, including catalysts for the petroleum and automotive industries. Engelhard's energy costs have risen dramatically over...

Brown, T. S.; Michalek, R.; Reiter, S.

1982-01-01T23:59:59.000Z

110

Energy Department Announces New Investments to Drive Cost-Competitive...  

Energy Savers [EERE]

over the next two decades could save the U.S. 250 billion in energy costs and reduce electricity consumption for lighting by nearly 50 percent. By 2030, LED lighting is...

111

Energy Information: The Key to Cost-Effective Conservation  

E-Print Network [OSTI]

This paper analyzes the cost-effectiveness- simple payback, Net Present Value (NPV) and Return on Investment (ROI) -of permanently installed energy consumption monitoring equipment used as the basis for applying value-added engineering services...

McBride, J. R.; Flanagan, D. E.

112

Low Cost Durable Seal | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term Storage of Cesium1940sofof10 DOEofCost

113

Hydrogen Pathway Cost Distributions | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto ApplyRoadmapNear-term CostHydrogen: Over1Pathway

114

Energy Management and Cost Analysis (A case study)  

E-Print Network [OSTI]

Abstract — Lighting constitutes a main portion of energy consumption in commercial and industrial sector. The Energy Auditing is the key of the consumption which stabilize the situation of energy crisis by providing the conservation schemes. Any organization so called bulk consumer of electrical energy propose to adopt suitable technology or scheme of energy conservation to minimize the unwanted power shutdown either incidentally or by load shedding. In educational buildings a significant component of the energy used is spent in illuminating the interior of the building. As the energy costs increases, possible efforts are to be done to minimize the energy consumption of lighting installations. This follow three basic directions: new more efficient equipment (lamps, control gear, etc.), utilization of improved lighting design practices, improvements in lighting control systems to avoid energy waste for unoccupied and daylight hours. In this paper an Energy audit has been conducted in the educational Institute to estimate the Energy consumption. In this Energy audit the cost analysis and pay back periods have been calculated by replacing the higher consumption lamps with Energy efficient Lightning. The profit of implementing the energy efficiency measures in buildings are considerable both in terms of energy savings and cost savings.

unknown authors

115

Impact of Utility Costs on the Economics of Energy Cost Reduction & Conservation Technologies  

E-Print Network [OSTI]

IMPACT OF UTILITY COSTS ON THE ECONOMICS OF ENERGY COST REDUCTION & CONSERVATION TECHNOLOGIES Saidas M. Ranade Senior Process Engineer ARCO Chemical Company Channelview,Texas ABSTRACT This paper summarizes some key results obtained from... to ARCO Chemical Company for providing the time and space required to complete thi paper. REFERENCES 1. N. R. Friedman, Co eneration: Impacts on Utility Operations and Marketing. EPRI Conference on Placing Industrial Cogeneration in Perspective...

Ranade, S. M.; Chao, Y. T.

116

Wind Plant Cost of Energy: Past and Future (Presentation)  

SciTech Connect (OSTI)

This presentation examines trends in wind plant cost of energy over the last several decades and discusses methods and examples of projections for future cost trends. First, the presentation explores cost trends for wind energy from the 1980s, where there had been an overall downward trend in wind plant energy costs. Underlying factors that influenced these trends, including turbine technology innovation for lower wind speed sites, are explored. Next, the presentation looks at projections for the future development of wind energy costs and discusses a variety of methods for establishing these projections including the use of learning curves, qualitative assessment using expert elicitation, and engineering-based analysis. A comparison of the methods is provided to explore their relative merits. Finally, a brief introduction is provided for the U.S. Department of Energy program-wide shift towards an integrative use of qualitative and quantitative methods for assessing the potential impacts of wind plant technology innovations on reducing the wind plant cost of energy.

Hand, M.

2013-03-01T23:59:59.000Z

117

Starship Sails Propelled by Cost-Optimized Directed Energy  

E-Print Network [OSTI]

Microwave propelled sails are a new class of spacecraft using photon acceleration. It is the only method of interstellar flight that has no physics issues. Laboratory demonstrations of basic features of beam-driven propulsion, flight, stability ('beam-riding'), and induced spin, have been completed in the last decade, primarily in the microwave. It offers much lower cost probes after a substantial investment in the launcher. Engineering issues are being addressed by other applications: fusion (microwave, millimeter and laser sources) and astronomy (large aperture antennas). There are many candidate sail materials: carbon nanotubes and microtrusses, graphene, beryllium, etc. For acceleration of a sail, what is the cost-optimum high power system? Here the cost is used to constrain design parameters to estimate system power, aperture and elements of capital and operating cost. From general relations for cost-optimal transmitter aperture and power, system cost scales with kinetic energy and inversely with sail di...

Benford, James

2011-01-01T23:59:59.000Z

118

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

costs, and increased energy awareness among employees (Wyethimprove the awareness of personnel with regard to energy useawareness Build capacity Not addressed No promotion of energy

Galitsky, Christina

2008-01-01T23:59:59.000Z

119

U.S. Department of Energy Hydrogen Storage Cost Analysis  

SciTech Connect (OSTI)

The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a â��bottom-upâ� costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with DFMA�® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target. In general, tank costs are the largest component of system cost, responsible for at least 30 percent of total system cost, in all but two of the 12 systems. Purchased BOP cost also drives system cost, accounting for 10 to 50 percent of total system cost across the various storage systems. Potential improvements in these cost drivers for all storage systems may come from new manufacturing processes and higher production volumes for BOP components. In addition, advances in the production of storage media may help drive down overall costs for the sodium alanate, SBH, LCH2, MOF, and AX-21 systems.

Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

2013-03-11T23:59:59.000Z

120

Energy efficiency improvement and cost saving opportunities forpetroleum refineries  

SciTech Connect (OSTI)

The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the petroleum refining industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to individual refineries, is needed to assess the feasibility of implementation of selected technologies at individual plants.

Worrell, Ernst; Galitsky, Christina

2005-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Computerized Energy and Treatment Cost Calculations  

E-Print Network [OSTI]

6 summarizes the products and control limits that would be necessary to control scale and corrosion throughout the boiler system. DE!\\i1N ERALIZAnON Let us now consider using the same raw water analysis, but using demineralization as treatment... - Demineralization Energy and Material Balance 55 ESL-IE-81-04-09 Proceedings from the Third Industrial Energy Technology Conference Houston, TX, April 26-29, 1981 PIEPAIl?lI FOa. IIIIlUSfIIUL EIlElClY CUiFElEM:E FOIl 5VSIUc JllOlIIII IiIIILITE Y5 DBl...

Trace, W. L.

1981-01-01T23:59:59.000Z

122

Hydrogen Threshold Cost Calculation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy EmbrittlementFactEducation »Clean Coal »Threshold

123

Facilitating Sound, Cost-Effective Federal Energy Management (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet is an overview of the U.S. Department of Energy's Federal Energy Management Program (FEMP). The Federal Government, as the nation's largest energy consumer, has a tremendous opportunity and acknowledged responsibility to lead by example. The U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP) plays a critical role in this effort. FEMP facilitates the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. FEMP does this by focusing on the needs of its Federal customers, delivering an array of services across a variety of program areas.

Not Available

2012-03-01T23:59:59.000Z

124

PAFC Cost Challenges | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergy

125

Capturing Waste Gas: Saves Energy, Lower Costs  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of EnergyLANDSCAPEDepartment ofDepartment of

126

Biotrans: Cost Optimization Model | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE IS UNDER(RedirectedBiomass:

127

Sandia National Laboratories: reduce wind energy costs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskite oxideplatform size requirements

128

Property:Cost | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug PowerAddress JumpFloorAreaTotal

129

Interruption Cost Estimate Calculator | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load)International AssociationServicesforInterproject

130

Vehicle Cost Calculator | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy NowNew HampshireValero Refining Company -

131

Scheduling in an Energy Cost Aware Environment The energy cost aware scheduling problem (ECASP) is concerned with variable electricity tariffs, where the price of  

E-Print Network [OSTI]

Scheduling in an Energy Cost Aware Environment The energy cost aware scheduling problem (ECASP) is concerned with variable electricity tariffs, where the price of electricity changes over time depending because a schedule without considering variable energy charges might significantly increase

132

Optimal Power Cost Management Using Stored Energy in Data Centers  

E-Print Network [OSTI]

Optimal Power Cost Management Using Stored Energy in Data Centers Rahul Urgaonkar, Bhuvan Urgaonkar of uninterrupted power supply (UPS) units as energy storage devices. This rep- resents a deviation from the usual average electric utility bill in a data center. Us- ing the technique of Lyapunov optimization, we develop

Giles, C. Lee

133

Assessing the Energy Costs of Computing Devices in Developing Countries  

E-Print Network [OSTI]

Assessing the Energy Costs of Computing Devices in Developing Countries K. Gopinath1 and Rahul to power these devices in developing countries. (2) the energy-efficient design of large information@gwu.edu Abstract Competition, technological developments, and economies of scale have together brought down

Simha, Rahul

134

Hydrogen and Infrastructure Costs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013DepartmentAgenda for theTrucksEvaluation71Fred

135

PHEV Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&D at the DOE7-A2

136

PHEV Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&D at the DOE7-A21

137

PHEV Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&D at the

138

PHEV Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&D at the09 DOE

139

2013 Cost of Wind Energy Review  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H. I. Park,October 2013Agenda3 201332013

140

2011 Cost of Wind Energy Review  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloweenReliable7O(α,5March0JuneLab1 Ceremony The2011

Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Microsoft Word - Levelized Cost of Energy Analysis  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps MoreWSRC-STI-2007-00250 Rev. 0 MayOE-781RComparingSandiaStorageMarch 28,

142

Developing a Cost Model and Methodology to Estimate Capital Costs for Thermal Energy Storage  

SciTech Connect (OSTI)

This report provides an update on the previous cost model for thermal energy storage (TES) systems. The update allows NREL to estimate the costs of such systems that are compatible with the higher operating temperatures associated with advanced power cycles. The goal of the Department of Energy (DOE) Solar Energy Technology Program is to develop solar technologies that can make a significant contribution to the United States domestic energy supply. The recent DOE SunShot Initiative sets a very aggressive cost goal to reach a Levelized Cost of Energy (LCOE) of 6 cents/kWh by 2020 with no incentives or credits for all solar-to-electricity technologies.1 As this goal is reached, the share of utility power generation that is provided by renewable energy sources is expected to increase dramatically. Because Concentrating Solar Power (CSP) is currently the only renewable technology that is capable of integrating cost-effective energy storage, it is positioned to play a key role in providing renewable, dispatchable power to utilities as the share of power generation from renewable sources increases. Because of this role, future CSP plants will likely have as much as 15 hours of Thermal Energy Storage (TES) included in their design and operation. As such, the cost and performance of the TES system is critical to meeting the SunShot goal for solar technologies. The cost of electricity from a CSP plant depends strongly on its overall efficiency, which is a product of two components - the collection and conversion efficiencies. The collection efficiency determines the portion of incident solar energy that is captured as high-temperature thermal energy. The conversion efficiency determines the portion of thermal energy that is converted to electricity. The operating temperature at which the overall efficiency reaches its maximum depends on many factors, including material properties of the CSP plant components. Increasing the operating temperature of the power generation system leads to higher thermal-to-electric conversion efficiency. However, in a CSP system, higher operating temperature also leads to greater thermal losses. These two effects combine to give an optimal system-level operating temperature that may be less than the upper operating temperature limit of system components. The overall efficiency may be improved by developing materials, power cycles, and system-integration strategies that enable operation at elevated temperature while limiting thermal losses. This is particularly true for the TES system and its components. Meeting the SunShot cost target will require cost and performance improvements in all systems and components within a CSP plant. Solar collector field hardware will need to decrease significantly in cost with no loss in performance and possibly with performance improvements. As higher temperatures are considered for the power block, new working fluids, heat-transfer fluids (HTFs), and storage fluids will all need to be identified to meet these new operating conditions. Figure 1 shows thermodynamic conversion efficiency as a function of temperature for the ideal Carnot cycle and 75% Carnot, which is considered to be the practical efficiency attainable by current power cycles. Current conversion efficiencies for the parabolic trough steam cycle, power tower steam cycle, parabolic dish/Stirling, Ericsson, and air-Brayton/steam Rankine combined cycles are shown at their corresponding operating temperatures. Efficiencies for supercritical steam and carbon dioxide (CO{sub 2}) are also shown for their operating temperature ranges.

Glatzmaier, G.

2011-12-01T23:59:59.000Z

143

Low to No Cost Strategy for Energy Efficiency in Public Buildings...  

Broader source: Energy.gov (indexed) [DOE]

Low to No Cost Strategy for Energy Efficiency in Public Buildings (Text Version) Low to No Cost Strategy for Energy Efficiency in Public Buildings (Text Version) Electronic Voice:...

144

SciTech Connect: Cost analysis of energy storage systems for...  

Office of Scientific and Technical Information (OSTI)

Cost analysis of energy storage systems for electric utility applications Citation Details In-Document Search Title: Cost analysis of energy storage systems for electric utility...

145

DOE Announces $27 Million to Reduce Costs of Solar Energy Projects...  

Energy Savers [EERE]

DOE Announces 27 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations DOE Announces 27 Million to Reduce Costs of Solar Energy Projects,...

146

Energy Cost Reduction Measures Identified for Texas State Agencies  

E-Print Network [OSTI]

conservation opportunities and capital intensive energy cost reduction measures. Though more square feet was audited in 1984, more utility cost savings per square foot were identified in 1986. Changes in the screening process, the audit report format... square foot for the audited facilities by building type. Maintenance and operation savings are included in this table. A sufficient number of academic buildings, medical research facilities, libraries, hospitals, and office buildings were audited...

Grigg, T. J.; Verdict, M. E.

1987-01-01T23:59:59.000Z

147

Gelatin/graphene systems for low cost energy storage  

SciTech Connect (OSTI)

In this work, we introduce the possibility to use a low cost, biodegradable material for temporary energy storage devices. Here, we report the use of biologically derived organic electrodes composed of gelatin ad graphene. The graphene was obtained by mild sonication in a mixture of volatile solvents of natural graphite flakes and subsequent centrifugation. The presence of exfoliated graphene sheets was detected by atomic force microscopy (AFM) and Raman spectroscopy. The homogeneous dispersion in gelatin demonstrates a good compatibility between the gelatin molecules and the graphene particles. The electrical characterization of the resulting nanocomposites suggests the possible applications as materials for transient, low cost energy storage device.

Landi, Giovanni [Faculty of Mathematics and Computer Science, FernUniversität Hagen, 58084 Hagen (Germany); Fedi, Filippo; Sorrentino, Andrea; Iannace, Salvatore [Institute for Composite and Biomedical Materials (IMCB-CNR), Piazzale Enrico Fermi 1, 80055 Portici (Italy); Neitzert, Heinz C. [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy)

2014-05-15T23:59:59.000Z

148

Cost effectiveness of the 1993 Model Energy Code in Colorado  

SciTech Connect (OSTI)

This report documents an analysis of the cost effectiveness of the Council of American Building Officials` 1993 Model Energy Code (MEC) building thermal-envelope requirements for single-family homes in Colorado. The goal of this analysis was to compare the cost effectiveness of the 1993 MEC to current construction practice in Colorado based on an objective methodology that determined the total life-cycle cost associated with complying with the 1993 MEC. This analysis was performed for the range of Colorado climates. The costs and benefits of complying with the 1993 NIEC were estimated from the consumer`s perspective. The time when the homeowner realizes net cash savings (net positive cash flow) for homes built in accordance with the 1993 MEC was estimated to vary from 0.9 year in Steamboat Springs to 2.4 years in Denver. Compliance with the 1993 MEC was estimated to increase first costs by $1190 to $2274, resulting in an incremental down payment increase of $119 to $227 (at 10% down). The net present value of all costs and benefits to the home buyer, accounting for the mortgage and taxes, varied from a savings of $1772 in Springfield to a savings of $6614 in Steamboat Springs. The ratio of benefits to costs ranged from 2.3 in Denver to 3.8 in Steamboat Springs.

Lucas, R.G.

1995-06-01T23:59:59.000Z

149

Program Potential: Estimates of Federal Energy Cost Savings from Energy Efficient Procurement  

E-Print Network [OSTI]

Water Heaters ..Table 7: Annual energy and cost savings of water heaters (Boilers Commercial Water Heater See Appendix F for

Taylor, Margaret

2014-01-01T23:59:59.000Z

150

Impact evaluation of the energy retrofits installed in the Margolis high-rise apartment building, Chelsea housing authority  

SciTech Connect (OSTI)

As part of a joint demonstration effort involving HUD, DOE, a local public housing authority and Boston Edison, an evaluation of energy and demand saving retrofits was conducted for a tall, residential, low-income building located in Boston. The thirteen story building underwent window, lighting, and heating system control renovations in December, 1992. The success of these retrofits was determined using monthly and hourly whole-building consumption data along with a calibrated DOE-2.1D energy simulation model. According to the model developed, post-retrofit conditions showed reductions in annual energy consumption of 325 MWh and in peak demand of 100 kW. These savings resulted in an annual energy cost savings of $28,000. Over 90% of energy and cost savings were attributed to the window retrofit. Interaction of the reduction in lighting capacity with the building`s electric resistance heating system reduced the potential for energy and demand savings associated with the lighting retrofit. Results from the hourly simulation model also indicate that night setbacks controlled by the energy management system were not implemented. An additional 32 MWh in energy savings could be obtained by bringing this system on-line, however peak demand would be increased by 40 kW as the morning demand for space heat is increased, with a net loss in cost savings of $2,500.

Abraham, M.M.; McLain, H.A.; MacDonald, J.M.

1995-03-01T23:59:59.000Z

151

Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.  

SciTech Connect (OSTI)

This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

Schoenung, Susan M. (Longitude 122 West, Menlo Park, CA)

2011-04-01T23:59:59.000Z

152

Maximum Residual Energy Routing with Reverse Energy Cost  

E-Print Network [OSTI]

energy consumption is present in transmission (i.e. the receiving end consumes energy), finding an MRE in energy conservation. This issue has been studied extensively in the past. A central part of any routing is present in transmission (i.e. the receiving end consumes energy), finding an MRE path that has enough

Fleischer, Rudolf

153

U.S. Solar Manufacturing Rising on the Horizon | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on EnergyEnergyThe sunCommerceEnergy SmallVisitSolar

154

Some Observations on Energy Efficiency and Capital Cost  

E-Print Network [OSTI]

SO~ffi OBSERVATIONS ON ENERGY EFFICIENCY AND CAPITAL COST William F. Kenney Exxon Chemical Company Florham Park, ABSTRACT The usual expectation in the process indus tries is that improved energy efficiency requires increased investment..., ACS Symposium Series ~. (3) Exxon Chemical Internal Studies. ACKNOWLEDGEMENT The author is grateful to Exxon Chemical for permission to publish this study. Particular thanks go to A. P. Durso and W. J. O'Brien of the Central Engineering...

Kenney, W. F.

1982-01-01T23:59:59.000Z

155

Demonstrating Innovative Low-Cost Carbon Fiber for Energy  

E-Print Network [OSTI]

Demonstrating Innovative Low-Cost Carbon Fiber for Energy and National Security Applications #12 posttreatment for various resin systems Winding and packaging Carbon fiber is a strong, stiff, lightweight of today's relatively high price. Current methods for manufacturing carbon fiber and carbon-fiber

Pennycook, Steve

156

Costs of Generating Electrical Energy 1.0 Overview  

E-Print Network [OSTI]

uranium (3.5% U-235) in a light water reactor has an energy content of 960MWhr/kg [2], or multiplying by 3.41 MBTU/MWhr, we get 3274MBTU/kg. The total cost of bringing uranium to the fuel rods of a nuclear power plant, considering mining, transportation, conversion1 , enrichment, and fabrication, has been estimated

McCalley, James D.

157

Costs of Generating Electrical Energy 1.0 Overview  

E-Print Network [OSTI]

. Enriched uranium (3.5% U-235) in a light water reactor has an energy content of 960MWhr/kg [2], or multiplying by 3.41 MBTU/MWhr, we get 3274MBTU/kg. The total cost of bringing uranium to the fuel rods of a nuclear power plant, considering mining, transportation, conversion1 , enrichment, and fabrication, has

McCalley, James D.

158

Towards Optimizing Energy Costs of Algorithms for Shared Memory Architectures  

E-Print Network [OSTI]

Towards Optimizing Energy Costs of Algorithms for Shared Memory Architectures Vijay Anand Korthikanti Department of Computer Science University of Illinois Urbana-Champaign vkortho2@illinois.edu Gul Agha Department of Computer Science University of Illinois Urbana-Champaign agha@illinois.edu ABSTRACT

Marchal, Loris

159

Energy Use and Costs in Texas Schools and Hospitals  

E-Print Network [OSTI]

performance indices among the participating institutions. For participating elementary schools, the annual electrical energy use/area ranged from 5.52 to 16.84 kwh/ft^2, the gas use from 9,363 to 66,639 Btu/ft^2, the electrical cost/area from 0.29 to 0.98 $/ft...

Dunn, J. R.

1998-01-01T23:59:59.000Z

160

Reducing Life Cycle Cost By Energy Saving in Pump Systems  

E-Print Network [OSTI]

% by the available NPSH. The system should provide the highest NPSHA that is cost effective. Losses in the pump suction line are therefore even more wasteful of energy than those on the discharge ? Suction pipes should avoid restrictions which can cause gas...

Bower, J. R.

Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

for  any net energy consumption with solar panels, the cost energy generation technologies (such as solar panels).   

Al-Beaini, S.

2010-01-01T23:59:59.000Z

162

Wind Energy Technology Trends: Comparing and Contrasting Recent Cost and Performance Forecasts (Poster)  

SciTech Connect (OSTI)

Poster depicts wind energy technology trends, comparing and contrasting recent cost and performance forecasts.

Lantz, E.; Hand, M.

2010-05-01T23:59:59.000Z

163

Energy Conservation Fund: Helping Corporations Develop Energy Conservation Strategies and Reduce Utility Costs  

E-Print Network [OSTI]

Energy conservation projects can save companies significant money over time and often pay for themselves very quickly. This is especially true with the dramatic increase in energy costs over the past few years. Yet convincing corporate decision...

Swanson, G. A.; Houston, W.

2005-01-01T23:59:59.000Z

164

Energy Management System Lowers U.S. Navy Energy Costs Through PV System Interconnection (Fact Sheet)  

SciTech Connect (OSTI)

To meet the U.S. Navy's energy goals, the National Renewable Energy Laboratory (NREL) and the Naval Facilities Engineering Command (NAVFAC) spent two years collaborating on demonstrations that tested market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - an energy management system - was identified as a promising method for reducing energy use and costs, and can contribute to increasing energy security.

Not Available

2014-04-01T23:59:59.000Z

165

ASHRAE/IESNA 90.1-1989R, energy code for buildings except low-rise residential buildings, Revision update  

SciTech Connect (OSTI)

The first public review draft of the next cyclical revision to ASHRAE/IESNA 90.1 - 1989, titled {open_quotes}Energy Efficient Design of New Buildings Except New Low-Rise Residential Buildings,{close_quotes} is currently available for public review. This paper provides commentary by the author on the background of the revision and a general comparison of this first public review draft to the 1989 version of the Standard. Those wishing further information on the draft should contact the American Society of Heating, Refrigerating and Air-Conditioning Engineers.

Emerson, K. [Public Service Company of Colorado, Denver, CO (United States)

1996-12-31T23:59:59.000Z

166

Energy Policy 34 (2006) 16451658 Technological learning and renewable energy costs: implications for  

E-Print Network [OSTI]

electricity cost estimates used in energy policy planning models. Sensitivities of the learning rates: Learning by doing; Renewable energy costs; Research expenditures 1. Introduction Changes in the electricity,000 MW by 2000 (McVeigh et al., 1999). Analysts in the private sector produced similar scenarios

Vermont, University of

167

Battery energy storage systems life cycle costs case studies  

SciTech Connect (OSTI)

This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

1998-08-01T23:59:59.000Z

168

Energy conservation and cost benefits in the dairy processing industry  

SciTech Connect (OSTI)

Guidance is given on measuring energy consumption in the plant and pinpointing areas where energy-conservation activities can return the most favorable economics. General energy-conservation techniques applicable to most or all segments of the dairy processing industry, including the fluid milk segment, are emphasized. These general techniques include waste heat recovery, improvements in electric motor efficiency, added insulation, refrigeration improvements, upgrading of evaporators, and increases in boiler efficiency. Specific examples are given in which these techniques are applied to dairy processing plants. The potential for energy savings by cogeneration of process steam and electricity in the dairy industry is also discussed. Process changes primarily applicable to specific milk products which have resulted in significant energy cost savings at some facilities or which promise significant contributions in the future are examined. A summary checklist of plant housekeeping measures for energy conservation and guidelines for economic evaluation of conservation alternatives are provided. (MHR)

none,

1982-01-01T23:59:59.000Z

169

Evaluation of Global Onshore Wind Energy Potential and Generation Costs  

SciTech Connect (OSTI)

In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance and cost assumptions as well as explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of world energy needs, although this potential varies substantially by region as well as with assumptions such as on what types of land can be used to site wind farms. Total global wind potential under central assumptions is estimated to be approximately 89 petawatt hours per year at less than 9 cents/kWh with substantial regional variations. One limitation of global wind analyses is that the resolution of current global wind speed reanalysis data can result in an underestimate of high wind areas. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly those related to land suitability and turbine density as well as cost and financing assumptions which have important policy implications. Transmission cost has a relatively small impact on total wind costs, changing the potential at a given cost by 20-30%. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

Zhou, Yuyu; Luckow, Patrick; Smith, Steven J.; Clarke, Leon E.

2012-06-20T23:59:59.000Z

170

Costs of Generating Electrical Energy 1.0 Overview  

E-Print Network [OSTI]

be divided into two broad areas: ownership or sunk costs and operating or avoidable costs. These costs (sunk) costs Operating (avoidable) costs Interest on bonds Return to stockholders Property taxes

McCalley, James D.

171

Cost effectiveness of the 1995 model energy code in Massachusetts  

SciTech Connect (OSTI)

This report documents an analysis of the cost effectiveness of the Council of American Building Officials` 1995 Model Energy Code (MEC) building thermal-envelope requirements for single-family houses and multifamily housing units in Massachusetts. The goal was to compare the cost effectiveness of the 1995 MEC to the energy conservation requirements of the Massachusetts State Building Code-based on a comparison of the costs and benefits associated with complying with each.. This comparison was performed for three cities representing three geographical regions of Massachusetts--Boston, Worcester, and Pittsfield. The analysis was done for two different scenarios: a ``move-up`` home buyer purchasing a single-family house and a ``first-time`` financially limited home buyer purchasing a multifamily condominium unit. Natural gas, oil, and electric resistance heating were examined. The Massachusetts state code has much more stringent requirements if electric resistance heating is used rather than other heating fuels and/or equipment types. The MEC requirements do not vary by fuel type. For single-family homes, the 1995 MEC has requirements that are more energy-efficient than the non-electric resistance requirements of the current state code. For multifamily housing, the 1995 MEC has requirements that are approximately equally energy-efficient to the non-electric resistance requirements of the current state code. The 1995 MEC is generally not more stringent than the electric resistance requirements of the state code, in fact; for multifamily buildings the 1995 MEC is much less stringent.

Lucas, R.G.

1996-02-01T23:59:59.000Z

172

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

E-Print Network [OSTI]

heating, given the higher cost per KWh for electricity, aaverage cost of electrical energy per kilowatt-hour (kWh) is

Logue, J.M.

2012-01-01T23:59:59.000Z

173

Department of Energy Geo-Environmental Engineering Spring 2012 Diesel Engine Cost and Quality Improvement  

E-Print Network [OSTI]

PENNSTATE Department of Energy Geo-Environmental Engineering Spring 2012 Diesel Engine Cost and Quality Improvement Overview Tasked with improving cost and quality throughout the Volvo diesel engine

Demirel, Melik C.

174

Additional Resources for Estimating Building Energy and Cost Savings to Reduce Greenhouse Gases  

Broader source: Energy.gov [DOE]

For evaluating greenhouse gas reduction strategies and estimating costs, the following information resources can help Federal agencies estimate energy and cost savings potential by building type.

175

California: Energy-Efficient Glass Saves Energy Costs, Increases Personal  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (AprilBiden2 Categorical ExclusionOrderEconomy HigherComfort |

176

NREL-Levelized Cost of Energy Calculator | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3Informationof Energy Calculator Jump to: navigation, search

177

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network [OSTI]

MANUFACTURING THROUGH AN ALTERNATIVE ENERGY SUPPLY Chris Y.Footprint, Alternative Energy, Cost of Ownership ABSTRACTmanufacturing is to use alternative energies to partially

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

178

Energy and Demand Savings from Implementation Costs in Industrial Facilities  

E-Print Network [OSTI]

Improve Lubrication Practices 0.91 4 na 3 na 0 24 16 487 Use Waste Heat from Hot Flue Gases to Preheat Combustion Air 0.29 483 na 2 0.31 449 25 11 464 Use Synthetic Lubricant 0.03 198 0.03 198 na 0 5 Table 3. National IAC... 2 25 11 Use Synthetic Lubricant 0.00 159 0.00 24 6 Table 4. Texas A&M University IAC Energy Conservation - Implementation Cost Correlations Rank No. TAMU Assessment Recommendation (AR) Total Energy Electrical Consumption Natural...

Razinha, J. A.; Heffington, W. M.

179

Reduce Pumping Costs Through Optimum Pipe Sizing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated | DepartmentRecruitPumping Costs Through

180

Reducing LED Costs Through Innovation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated |Reducing LED Costs Through Innovation

Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Solar at the cost of coal | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping Study |4 SolarPVSolar Viewed asat the cost of

182

Cost Effective Water Heating Solutions | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate EarthEnergyDistrict EnergyCensus,Core5intoNovemberCost

183

Alpaca Farmers Shearing Energy Costs with Solar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe OfficeUtility Fed.9-0s) All Other Edi~imsEnergy Efficiency

184

Energy Cost Calculator for Commercial Ice Machines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department of Energy benchmarking.Department ofcapacity size,

185

Energy Cost Calculator for Compact Fluorescent Lamps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department of Energy benchmarking.Department ofcapacity size,This

186

Energy Cost Calculator for Faucets and Showerheads | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department of Energy benchmarking.Department ofcapacityutility

187

Energy Cost Calculator for Urinals | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department of Energy benchmarking.Department

188

Reducing Energy Costs and Rebuilding the Past | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated | DepartmentRecruitPumpingStudy |Reducing

189

Renewable Energy Cost Modeling: A Toolkit for Establishing Cost-Based Incentives in the United States; March 2010 -- March 2011  

SciTech Connect (OSTI)

This report is intended to serve as a resource for policymakers who wish to learn more about establishing cost-based incentives. The report will identify key renewable energy cost modeling options, highlight the policy implications of choosing one approach over the other, and present recommendations on the optimal characteristics of a model to calculate rates for cost-based incentives, feed-in tariffs (FITs), or similar policies. These recommendations will be utilized in designing the Cost of Renewable Energy Spreadsheet Tool (CREST). Three CREST models will be publicly available and capable of analyzing the cost of energy associated with solar, wind, and geothermal electricity generators. The CREST models will be developed for use by state policymakers, regulators, utilities, developers, and other stakeholders to assist them in current and future rate-setting processes for both FIT and other renewable energy incentive payment structures and policy analyses.

Gifford, J. S.; Grace, R. C.; Rickerson, W. H.

2011-05-01T23:59:59.000Z

190

Fun Fact Friday: U.S. Renewables on the Rise | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQualityAUGUST 2006 U.S. DepartmentFun Fact

191

Community-Based Sea Level Rise Projections Webinar | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment ofCarrieofProperty AssessedIntroductionEnergybe Held

192

Effect of Sea Level Rise on Energy Infrastructure in Four Major  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQ Contract ESPC IDIQEnergy Edison vs.Webinar toMetropolitan

193

EIA Report: U.S. Renewables Rise by 2040 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final9:Department of EnergyQCJuly8, 2003 VEE-0095EIA

194

Cost-and Energy-Aware Load Distribution Across Data Centers  

E-Print Network [OSTI]

centers powered by green energy (possibly limited) Solution approaches Optimization-based Heuristic that particular hour Policy GreenDC Cost of green energy, if green energy not yet exhausted Cost of energy during;Effect of Green Data Centers 35% brown = 3% cost 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Cost Brown Energy

195

Energy Responsibility Accounting - An Energy Conservation Tool for Industrial Facilities  

E-Print Network [OSTI]

As energy costs continue to rise faster than the rate of inflation, industrial energy management becomes a more important issue in the control of manufacturing costs. Energy Responsibility Accounting (ERA) is a tool which improves management...

Kelly, R. L.

1980-01-01T23:59:59.000Z

196

Cost Effectiveness of Electricity Energy Efficiency Programs | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova Electric Coop,Cosmo Powertech Pvt Ltd

197

Ormond Beach Triples Energy Cost Savings Projections | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's Impact on Our National-Projects inDepartmentOrmond Beach

198

Energy and Cost Savings Calculators for Energy-Efficient Products |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClick on the graphic to learn more

199

California Biomass Collaborative Energy Cost Calculators | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3: Crystalline RockCaldera2 2013Calhoun

200

Impact of Financial Structure on the Cost of Solar Energy  

SciTech Connect (OSTI)

To stimulate investment in renewable energy generation projects, the federal government developed a series of support structures that reduce taxes for eligible investors--the investment tax credit, the production tax credit, and accelerated depreciation. The nature of these tax incentives often requires an outside investor and a complex financial arrangement to allocate risk and reward among the parties. These financial arrangements are generally categorized as 'advanced financial structures.' Among renewable energy technologies, advanced financial structures were first widely deployed by the wind industry and are now being explored by the solar industry to support significant scale-up in project development. This report describes four of the most prevalent financial structures used by the renewable sector and evaluates the impact of financial structure on energy costs for utility-scale solar projects that use photovoltaic and concentrating solar power technologies.

Mendelsohn, M.; Kreycik, C.; Bird, L.; Schwabe, P.; Cory, K.

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy Price Indices and Discount Factors for Life-Cycle Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis-2014 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis-2014 Handbook describes the...

202

Low-to-No Cost Strategy for Energy Efficiency in Public Buildings...  

Broader source: Energy.gov (indexed) [DOE]

Low-to-No Cost Strategy for Energy Efficiency in Public Buildings Low-to-No Cost Strategy for Energy Efficiency in Public Buildings Blue version of the EERE PowerPoint template,...

203

Energy Department Awards $3.5 Million to Develop Cost-Competitive...  

Broader source: Energy.gov (indexed) [DOE]

3.5 Million to Develop Cost-Competitive Algal Biofuels Energy Department Awards 3.5 Million to Develop Cost-Competitive Algal Biofuels July 17, 2014 - 11:52am Addthis The Energy...

204

GAO Cost Estimating and Assessment Guide | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.FinancialofFuel CycleDepartmentG. BrianCost

205

Low Cost Nanostructured Smart Window Coatings | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen toLeveragingLindseyLong-TermLosof EnergyLow Cost

206

Advanced Biofuels Cost of Production | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative RecordsBiofuels Cost of Production Advanced

207

Property:Geothermal/AwardeeCostShare | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug PowerAddressDataFormat JumpNercMroURL.AwardeeCostShare Jump

208

Costs of Storing and Transporting Hydrogen | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate EarthEnergyDistrictAssistance RecipientsDepartmentCosts

209

Cost Effective Production of Giant Magneto-Caloric Materials - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on &gamma;-Al2O3. |ID#: 19834 Title: CorrelationCost

210

Cost and Performance Comparison Baseline for Fossil Energy Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on &gamma;-Al2O3. |ID#: 19834 Title:Cost Study ManualBaseline

211

Cost and Performance Comparison Baseline for Fossil Energy Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on &gamma;-Al2O3. |ID#: 19834 Title:Cost Study ManualBaseline,

212

Cost and Performance Comparison Baseline for Fossil Energy Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on &gamma;-Al2O3. |ID#: 19834 Title:Cost Study

213

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

cost levelized using 15% per year levelizing factor (3) Energycost levelized using 15% per year levelizing factor (3) Energy

Mills, Andrew D.

2009-01-01T23:59:59.000Z

214

Past and Future Cost of Wind Energy: Preprint  

SciTech Connect (OSTI)

The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions.

Lantz, E.; Hand, M.; Wiser, R.

2012-08-01T23:59:59.000Z

215

City of Healdsburg Green Building Ordinance Energy Cost-Effectiveness Study  

E-Print Network [OSTI]

City of Healdsburg Green Building Ordinance Energy Cost-Effectiveness Study April 21, 2011 Scott-3346 sward@ci.healdsburg.ca.us #12;Energy Cost-Effectiveness Study for City of Healdsburg Green Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 #12;Energy Cost-Effectiveness Study for City of Healdsburg Green Building Ordinances, 4

216

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes 1 fey, 1David Feasibility of Achieving a ZeroNetEnergy, ZeroNetCost Homes 1 #12;2 ACKNOWLEDGEMENTS The material reduction, by requiring design entries to meet "zero net energy" and "zero net cost" criteria

217

Labeling energy cost on light bulbs lowers implicit discount rates Jihoon Min a  

E-Print Network [OSTI]

levels that could be achieved if the most energy-efficient and cost-effective end-use technologiesAnalysis Labeling energy cost on light bulbs lowers implicit discount rates Jihoon Min a , Inęs L of five, lowering barriers to adoption of energy efficient alternatives with higher up-front costs

Michalek, Jeremy J.

218

Selected bibliography: cost and energy savings of conservation and renewable energy technologies  

SciTech Connect (OSTI)

This bibliography is a compilation of reports on the cost and energy savings of conservation and renewable energy applications throughout the United States. It is part of an overall effort to inform utilities of technological developments in conservation and renewable energy technologies and so aid utilities in their planning process to determine the most effective and economic combination of capital investments to meet customer needs. Department of Energy assessments of the applications, current costs and cost goals for the various technologies included in this bibliography are presented. These assessments are based on analyses performed by or for the respective DOE Program Offices. The results are sensitive to a number of variables and assumptions; however, the estimates presented are considered representative. These assessments are presented, followed by some conclusions regarding the potential role of the conservation and renewable energy alternative. The approach used to classify the bibliographic citations and abstracts is outlined.

None

1980-05-01T23:59:59.000Z

219

The Resilience of the Indian Economy to Rising Oil Prices as a Validation Test for a Global Energy-Environment-Economy CGE Model  

E-Print Network [OSTI]

as on how short-term mechanisms ­ and policy action ­ can smooth the negative impacts of energy price shocks1 The Resilience of the Indian Economy to Rising Oil Prices as a Validation Test for a Global Energy-Environment-Economy CGE Model Céline Guivarcha, * , Stéphane Hallegattea,b , Renaud Crassousa

Paris-Sud XI, Université de

220

SunShot: Making Solar Energy Cost Competitive Throughout the United States (Fact Sheet)  

SciTech Connect (OSTI)

The U.S. Department of Energy's SunShot Initiative focuses on making solar energy cost competitive throughout the United States.

McCamey, D.

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

California Federal Facilities: Rate-Responsive Buidling Operating for Deeper Cost and Energy Savings  

Broader source: Energy.gov [DOE]

Fact sheet from the Federal Energy Management Program (FEMP) describes rate-responsive building operations for cost and energy savings in California federal facilities.

222

Energy Price Indices and Discount Factors for Life-Cycle Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2010 Report describes the 2010 edition of energy price indices and discount factors for performing...

223

SunShot: Making Solar Energy Cost Competitive Throughout the United States (Fact Sheet)  

SciTech Connect (OSTI)

The U.S. Department of Energy's SunShot Initiative focuses on making solar energy cost competitive throughout the United States.

Not Available

2011-06-01T23:59:59.000Z

224

3800 Green Series Cost Elements | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

(formerly EPP) Program 3800 Green Series Cost Elements 06112014 (Rev. 7) 3800 Green Series Cost Elements More Documents & Publications 1 OPAM Policy Acquisition Guides...

225

Calculating Wind Integration Costs: Separating Wind Energy Value from Integration Cost Impacts  

SciTech Connect (OSTI)

Accurately calculating integration costs is important so that wind generation can be fairly compared with alternative generation technologies.

Milligan, M.; Kirby, B.

2009-07-01T23:59:59.000Z

226

Energy Assessment Training Reduces Energy Costs for the U.S. Coast Guard Sector Guam: Success Stories (Fact Sheet)  

SciTech Connect (OSTI)

U.S. Coast Guard Sector Guam experiences considerable energy cost and use savings after implementing training from NREL's energy assessment training.

Not Available

2013-05-01T23:59:59.000Z

227

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

of current energy costs in Illinois).     To compare energy Energy Conservation  Code for Residential Buildings in Illinois.  Energy Conservation  Code for Residential Buildings in Illinois.  

Al-Beaini, S.

2010-01-01T23:59:59.000Z

228

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

SciTech Connect (OSTI)

The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions. Our findings indicate that steady cost reductions were interrupted between 2004 and 2010, but falling turbine prices and improved turbine performance are expected to drive a historically low LCOE for current installations. In addition, the majority of studies indicate continued cost reductions on the order of 20%-30% through 2030. Moreover, useful cost projections are likely to benefit from stronger consideration of the interactions between capital cost and performance as well as trends in the quality of the wind resource where projects are located, transmission, grid integration, and other cost variables.

NREL,; Wiser, Ryan; Lantz, Eric; Hand, Maureen

2012-03-26T23:59:59.000Z

229

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

2008-03-01T23:59:59.000Z

230

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

2008-03-01T23:59:59.000Z

231

Cost-Effective Solar Thermal Energy Storage: Thermal Energy Storage With Supercritical Fluids  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: UCLA and JPL are creating cost-effective storage systems for solar thermal energy using new materials and designs. A major drawback to the widespread use of solar thermal energy is its inability to cost-effectively supply electric power at night. State-of-the-art energy storage for solar thermal power plants uses molten salt to help store thermal energy. Molten salt systems can be expensive and complex, which is not attractive from a long-term investment standpoint. UCLA and JPL are developing a supercritical fluid-based thermal energy storage system, which would be much less expensive than molten-salt-based systems. The team’s design also uses a smaller, modular, single-tank design that is more reliable and scalable for large-scale storage applications.

None

2011-02-01T23:59:59.000Z

232

The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs  

SciTech Connect (OSTI)

End-use energy efficiency is increasingly being relied upon as a resource for meeting electricity and natural gas utility system needs within the United States. There is a direct connection between the maturation of energy efficiency as a resource and the need for consistent, high-quality data and reporting of efficiency program costs and impacts. To support this effort, LBNL initiated the Cost of Saved Energy Project (CSE Project) and created a Demand-Side Management (DSM) Program Impacts Database to provide a resource for policy makers, regulators, and the efficiency industry as a whole. This study is the first technical report of the LBNL CSE Project and provides an overview of the project scope, approach, and initial findings, including: • Providing a proof of concept that the program-level cost and savings data can be collected, organized, and analyzed in a systematic fashion; • Presenting initial program, sector, and portfolio level results for the program administrator CSE for a recent time period (2009-2011); and • Encouraging state and regional entities to establish common reporting definitions and formats that would make the collection and comparison of CSE data more reliable. The LBNL DSM Program Impacts Database includes the program results reported to state regulators by more than 100 program administrators in 31 states, primarily for the years 2009–2011. In total, we have compiled cost and energy savings data on more than 1,700 programs over one or more program-years for a total of more than 4,000 program-years’ worth of data, providing a rich dataset for analyses. We use the information to report costs-per-unit of electricity and natural gas savings for utility customer-funded, end-use energy efficiency programs. The program administrator CSE values are presented at national, state, and regional levels by market sector (e.g., commercial, industrial, residential) and by program type (e.g., residential whole home programs, commercial new construction, commercial/industrial custom rebate programs). In this report, the focus is on gross energy savings and the costs borne by the program administrator—including administration, payments to implementation contractors, marketing, incentives to program participants (end users) and both midstream and upstream trade allies, and evaluation costs. We collected data on net savings and costs incurred by program participants. However, there were insufficient data on participant cost contributions, and uncertainty and variability in the ways in which net savings were reported and defined across states (and program administrators).

Billingsley, Megan A.; Hoffman, Ian M.; Stuart, Elizabeth; Schiller, Steven R.; Goldman, Charles A.; LaCommare, Kristina

2014-03-19T23:59:59.000Z

233

Using Pinch Technology to Explore Trade-Offs Between Energy Cost, Capital Cost, Process Modifications, and Utility Selection  

E-Print Network [OSTI]

USING PINCH TECHNOLOGY TO EXPLORE TRADE-OFFS BETWEEN ENERGY COST, CAPITAL COST, PROCESS MODIFICATIONS, AND UTILITY SELECTION A.S. McMullan, Consultant and H.D. Spriggs, President Linnhoff March, Inc., Leesburg, Virginia ABSTRACT Process... (3), predict payback targets in retrofit situations (4), and design flexible heat exchanger networks (5). The most recent developments enable the process designer to explore the interactions and trade-offs between design variables, prior...

McMullan, A. S.

234

Energy Department Announces up to $4 Million to Advance Low-Cost...  

Broader source: Energy.gov (indexed) [DOE]

to Advance Low-Cost Hydrogen Production from Renewable and Low Carbon Sources Energy Department Announces up to 4 Million to Advance Low-Cost Hydrogen Production from Renewable...

235

On-Site Diesel Generation- How You Can Reduce Your Energy Costs  

E-Print Network [OSTI]

Interruptible power rates, Utility special rate negotiations, and the emergence of a spot electrical power market all can lead to lower industrial energy costs. The installation of low cost on-site diesel powered generation, or the proposed...

Charles, D.

236

Energy Price Indices and Discount Factors for Life-Cycle Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2012 Report provides tables of present-value factors for use in the life-cycle cost analysis of capital...

237

AVCEM: Advanced-Vehicle Cost and Energy Use Model  

E-Print Network [OSTI]

compressor); total cost of materials for the water pump, the hydrogencost); the initial temperature and pressure of hydrogen; the compressorcompressor cost per unit of output ($/hp/million standard ft3 [SCF] of hydrogen/

Delucchi, Mark

2005-01-01T23:59:59.000Z

238

Energy Efficiency Improvements and Cost Saving Opportunities in the Corn Wet Milling Industry  

E-Print Network [OSTI]

Corn wet milling is the most energy intensive industry in the food and kindred products group (SIC 20). Plants typically spend approximately $15 to 25 million per year on energy, one of its largest operating costs, making energy efficiency...

Galitsky, C.; Worrell, E.

239

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

near zero” energy definitions exist.    EnEV Compliant to differing definitions of zero  energy, methods for cost to the “net zero” definitions, a range of “low energy” or “

Al-Beaini, S.

2010-01-01T23:59:59.000Z

240

Energy and Energy Cost Savings Analysis of the IECC for Commercial Buildings  

SciTech Connect (OSTI)

The purpose of this analysis is to assess the relative energy and energy cost performance of commercial buildings designed to meet the requirements found in the commercial energy efficiency provisions of the International Energy Conservation Code (IECC). Section 304(b) of the Energy Conservation and Production Act (ECPA), as amended, requires the Secretary of Energy to make a determination each time a revised version of ASHRAE Standard 90.1 is published with respect to whether the revised standard would improve energy efficiency in commercial buildings. As many states have historically adopted the IECC for both residential and commercial buildings, PNNL has evaluated the impacts of the commercial provisions of the 2006, 2009, and 2012 editions of the IECC. PNNL also compared energy performance with corresponding editions of ANSI/ASHRAE/IES Standard 90.1 to help states and local jurisdictions make informed decisions regarding model code adoption.

Zhang, Jian; Athalye, Rahul A.; Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Goel, Supriya; Mendon, Vrushali V.; Liu, Bing

2013-08-30T23:59:59.000Z

Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

An Evaluation of the Sustainability and Scalability of Business Models that Support Low-cost Assisted Home Energy Assessments Using A Cost Benefit Analysis.  

E-Print Network [OSTI]

??Energy costs and forecasted climate change have recently prompted organizations withinthe residential building sector and homeowners alike to increase their attention towards reducingresidential energy consumption.… (more)

Hinsey, Jason

2012-01-01T23:59:59.000Z

242

Reducing Energy Costs And Minimizing Capital Requirements: Case Studies of Thermal Energy Storage (TES)  

E-Print Network [OSTI]

, and thus during those times when power has its highest cost or value. Thermal Energy Storage (TES) provides a means of de-coupling the generation of cooling from the provision of cooling to the peak cooling loads. In this manner, peak power demand...

Andrepont, J. S.

2007-01-01T23:59:59.000Z

243

Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.

Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

2003-09-01T23:59:59.000Z

244

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

SciTech Connect (OSTI)

The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

2011-12-01T23:59:59.000Z

245

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

Sustainable Energy (4) Danish Energy Agency (DEA). (1999).al. [3] and the Danish Energy Agency (DEA) [4], illustrate

Wiser, Ryan

2013-01-01T23:59:59.000Z

246

On the Cost and Quality Tradeoff in Constructing Minimum-Energy Broadcast Trees in Wireless Ad  

E-Print Network [OSTI]

On the Cost and Quality Tradeoff in Constructing Minimum-Energy Broadcast Trees in Wireless Ad Hoc], each having a different complexity and produc- ing a broadcast tree with a different energy cost. Thus to the quality of the trees constructed. II. BUILDING BLOCKS The three ingredients that constitute any minimum-energy

Hu, Y. Charlie

247

Net Energy Costs of Skylights Peter Kleinhenz, Rizwan Syed, and Kelly Kissock,  

E-Print Network [OSTI]

Net Energy Costs of Skylights Peter Kleinhenz, Rizwan Syed, and Kelly Kissock, University of Dayton, it is also useful to consider the net energy costs associated with skylights. This paper describes a methodology for calculating net energy savings from skylights as a function of skylight area, the required

Kissock, Kelly

248

Energy Policy 34 (2006) 32183232 Beyond the learning curve: factors influencing cost reductions  

E-Print Network [OSTI]

Energy Policy 34 (2006) 3218­3232 Beyond the learning curve: factors influencing cost reductions-reducing improvements in low-carbon energy systems are important sources of uncertainty in future levels of greenhouse-gas emissions. Models that assess the costs of climate change mitigation policy, and energy policy in general

Kammen, Daniel M.

2006-01-01T23:59:59.000Z

249

LEARNING-BY-DOING AND THE COSTS OF A BACKSTOP FOR ENERGY TRANSITION AND SUSTAINABILITY?  

E-Print Network [OSTI]

LEARNING-BY-DOING AND THE COSTS OF A BACKSTOP FOR ENERGY TRANSITION AND SUSTAINABILITY? Pierre-by-doing and the Costs of a Backstop for Energy Transition and Sustainability Pierre-Andr´e Jouvet Ingmar Schumacher.2 Energy transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Impact

Boyer, Edmond

250

Cutting Down Electricity Cost in Internet Data Centers by Using Energy Storage  

E-Print Network [OSTI]

Cutting Down Electricity Cost in Internet Data Centers by Using Energy Storage Yuanxiong Guo energy storage capability in data centers to reduce electricity bill under real-time electricity market between cost saving and energy storage capacity. As far as we know, our work is the first to explore

Latchman, Haniph A.

251

Reducing Energy Costs for IBM Blue Gene/P via Power-Aware Job Scheduling  

E-Print Network [OSTI]

Reducing Energy Costs for IBM Blue Gene/P via Power-Aware Job Scheduling Zhou Zhou1 , Zhiling Lan1 scheduling approach for HPC systems based on variable energy prices and job power profiles. In particular, we from produc- tion systems show that our power-aware job scheduling approach can reduce the energy cost

Feitelson, Dror

252

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

with the National Renewable Energy Laboratory and underLehmann, H. (2008). Renewable Energy Outlook 2030 – EnergyWatch Group Global Renewable Energy Scenarios. Berlin,

Wiser, Ryan

2013-01-01T23:59:59.000Z

253

Title: Digital Infrastructure: Reducing Energy Cost and Environmental Impacts of Information Processing and Communications Systems  

E-Print Network [OSTI]

Title: Digital Infrastructure: Reducing Energy Cost and Environmental Impacts of Information of various societal and environmental mandates followed by a review of technologies, systems, and hardware

254

Impacts of increased outdoor air flow rates on annual HVAC energy costs in office environment.  

E-Print Network [OSTI]

??The use of different ventilation systems has an important impact on the energy cost of office buildings. This paper examines the relationship between heating and… (more)

Destrez, Adrien

2011-01-01T23:59:59.000Z

255

Quantifying the system balancing cost when wind energy is incorporated into electricity generation system.  

E-Print Network [OSTI]

??Incorporation of wind energy into the electricity generation system requires a detailed analysis of wind speed in order to minimize system balancing cost and avoid… (more)

Issaeva, Natalia

2009-01-01T23:59:59.000Z

256

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

technologies (such as solar panels).   Combined with energy wind turbine height,  solar panel visibility, etc. ).   In consumption with solar panels, the cost may determine 

Al-Beaini, S.

2010-01-01T23:59:59.000Z

257

Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios Hydrogen Pathways: Cost,...

258

SEE Action Webinar - Energy Efficiency Measure Cost Studies ...  

Broader source: Energy.gov (indexed) [DOE]

and program planning applications of measure cost data, explain the limitations of ad hoc sources of such data, and provide examples of successful development of ex ante...

259

IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2  

SciTech Connect (OSTI)

Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an array of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.

Lantz, E.; Wiser, R.; Hand, M.

2012-05-01T23:59:59.000Z

260

Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012  

SciTech Connect (OSTI)

The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawai�¢����i and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the predicted economies of scale as technology and efficiency improvements are realized and larger more economical plants deployed. Utilizing global high resolution OTEC resource assessment from the Ocean Thermal Extractable Energy Visualization (OTEEV) project (an independent DOE project), Global Energy Supply Curves were generated for Grid Connected and Energy Carrier OTEC plants deployed in 2045 when the predicted technology and efficiencies improvements are fully realized. The Global Energy Supply Curves present the LCOE versus capacity in ascending order with the richest, lowest cost resource locations being harvested first. These curves demonstrate the vast ocean thermal resource and potential OTEC capacity that can be harvested with little change in LCOE.

Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael

2012-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The impact of rising energy prices on household energy consumption and expenditure patterns: The Persian Gulf crisis as a case example  

SciTech Connect (OSTI)

The Iraqi invasion of Kuwait and the subsequent war between Iraq and an international alliance led by the United States triggered immediate increases in world oil prices. Increases in world petroleum prices and in US petroleum imports resulted in higher petroleum prices for US customers. In this report, the effects of the Persian Gulf War and its aftermath are used to demonstrate the potential impacts of petroleum price changes on majority, black, and Hispanic households, as well as on poor and nonpoor households. The analysis is done by using the Minority Energy Assessment Model developed by Argonne National Laboratory for the US Department of Energy (DOE). The differential impacts of these price increases and fluctuations on poor and minority households raise significant issues for a variety of government agencies, including DOE. Although the Persian Gulf crisis is now over and world oil prices have returned to their prewar levels, the differential impacts of rising energy prices on poor and minority households as a result of any future crisis in the world oil market remains a significant long-term issue.

Henderson, L.J. (Baltimore Univ., MD (United States)); Poyer, D.A.; Teotia, A.P.S. (Argonne National Lab., IL (United States). Energy Systems Div.)

1992-09-01T23:59:59.000Z

262

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

2009). Technology Roadmap – Wind Energy. Paris, France:EWEA. (2011). Pure Power – Wind Energy Targets for 2020 andBelgium: European Wind Energy Association (19) Electric

Wiser, Ryan

2013-01-01T23:59:59.000Z

263

The Cost of Enforcing Building Energy Codes: Phase 1  

E-Print Network [OSTI]

the Community Energy Challenge in Illinois. Washington, DC:Improving Energy Code Compliance in Illinois's Buildings.Improving Energy Code Compliance in Illinois's Buildings.

Williams, Alison

2013-01-01T23:59:59.000Z

264

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

08-GO28308 with the National Renewable Energy Laboratory andS. ; Lehmann, H. (2008). Renewable Energy Outlook 2030 –Watch Group Global Renewable Energy Scenarios. Berlin,

Wiser, Ryan

2013-01-01T23:59:59.000Z

265

Annual Federal Government Energy Use and Costs by Agency, 1975...  

Open Energy Info (EERE)

energy use, and is further broken down by energy type, electricity, natural gas, petroleum types, coal, steam, and others. Data and Resources Annual Federal Government Energy...

266

The Rising Sea  

E-Print Network [OSTI]

in the thick of a sea level rise. After reading the evidencepredictive figure for ocean level rise by the turn of thethat a 7-foot (2 m) sea level rise by the year 2100 should

Miller, Ryder W.

2011-01-01T23:59:59.000Z

267

Thermal Energy Storage: It's not Just for Electric Cost Savings Anymore  

E-Print Network [OSTI]

Large cool Thermal Energy Storage (TES), typically ice TES or chilled water (CHW) TES, has traditionally been thought of, and used for, managing time-of-day electricity use to reduce the cost associated with electric energy and demand charges...

Andrepont, J. S.

2014-01-01T23:59:59.000Z

268

Case Studies of Energy Information Systems and Related Technology: Operational Practices, Costs, and Benefits  

E-Print Network [OSTI]

Energy Information Systems (EIS), which can monitor and analyze building energy consumption and related data throughout the Internet, have been increasing in use over the last decade. Though EIS developers describe the capabilities, costs...

Motegi, N.; Piette, M. A.; Kinney, S.; Dewey, J.

2003-01-01T23:59:59.000Z

269

Identifying and Evaluating Energy Cost Reduction Opportunities for Harvesters - The Community Food Network  

E-Print Network [OSTI]

The purpose of this project is to identify and evaluate opportunities where energy costs can be reduced for Harvesters - The Community Food Network. This is accomplished by conducting an energy audit, analyzing the data collected during the audit...

Miller, Aaron M.

2011-05-20T23:59:59.000Z

270

Facilitating Sound, Cost-Effective Federal Energy Management (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet is an overview of the U.S. Department of Energy's Federal Energy Management Program (FEMP).

Not Available

2012-12-01T23:59:59.000Z

271

Capital, labor, and energy cost prediction in timber harvesting: a microcomputer solution  

E-Print Network [OSTI]

Organization Capital. 17 17 Labor 22 Energy. III. CAPITAL COST CALCULATION. 22 25 Depreciation. Taxes, Insurance, and Interest. 25 30 IV. LABOR COST CALCULATION. 36 Nages and Salaries. Fringe Benefits. 36 38 Chapter Page V. ENERGY COST... Summary for Champion International Corporation's Harvesting Unit g2 60 15 List of Equipment in Champion's Harvesting Unit N2 61 Table page 16 Breakdown of Workers in Champion's Harvesting Unit 42 and Their Respective Salary or Wage. . 62 17 Monthly...

Kusmertz, Timothy Jon

1983-01-01T23:59:59.000Z

272

Feasibility of Achieving Net-Zero-Energy Net-Zero-Cost  

E-Print Network [OSTI]

1 Feasibility of Achieving Net- Zero-Energy Net-Zero-Cost Homes I.S. Walker, Al-Beaini, SSimjanovic,JohnStanley,BretStrogen,IainWalker FeasibilityofAchieving ZeroNetEnergy,Zero NetCostHomes #12;4 ACKNOWLEDGEMENTS

273

Capacity and Energy Cost of Information in Biological and Silicon Photoreceptors  

E-Print Network [OSTI]

Capacity and Energy Cost of Information in Biological and Silicon Photoreceptors PAMELA ABSHIRE of infor- mation capacity (in bits per second) versus energy cost of infor- mation (in joules per bit levels of abstraction. At the functional level, we ex- amine the operational and task specification

Maryland at College Park, University of

274

Literature Review of Data on the Incremental Costs to Design and Build Low-Energy Buildings  

SciTech Connect (OSTI)

This document summarizes findings from a literature review into the incremental costs associated with low-energy buildings. The goal of this work is to help establish as firm an analytical foundation as possible for the Building Technology Program's cost-effective net-zero energy goal in the year 2025.

Hunt, W. D.

2008-05-14T23:59:59.000Z

275

The effect of ankle foot orthosis stiffness on the energy cost of walking: A simulation study  

E-Print Network [OSTI]

The effect of ankle foot orthosis stiffness on the energy cost of walking: A simulation study D sclerosis patients, gait is frequently hampered by a reduced ability to push-off with the ankle caused by weakness of the plantar-flexor muscles. To enhance ankle push-off and to decrease the high energy cost

Collins, Steven H.

276

Petroleum Refinery Catalytic Reforming -- Cutting High Energy Costs  

E-Print Network [OSTI]

. It is essential that the operation and maintenance of these furnaces be optimized to minimize production costs. This paper describes the performance testing and evaluation of a set of ten refinery furnaces used to thermally drive several reforming reactors...

Viar, W. L.

1979-01-01T23:59:59.000Z

277

AVCEM: Advanced-Vehicle Cost and Energy Use Model  

E-Print Network [OSTI]

stack); fuel-cell salvage value (fraction of initial coststack); total cost of vehicle electronics needed specifically for the fuel-cellcosts, expressed as a wage multiplier); specific weight of the fuel-cell stack (

Delucchi, Mark

2005-01-01T23:59:59.000Z

278

Implementing Energy Efficiency in Wastewater to Reduce Costs  

E-Print Network [OSTI]

In the industrial world creating a quality product at minimum cost is the goal. In this environment all expenses are scrutinized, when they are part of the manufacturing process. However, even at the most conscientious facility the wastewater system...

Cantwell, J. C.

2008-01-01T23:59:59.000Z

279

The Cost of Superconducting Magnets as a Function of Stored Energy and Design Magnetic Induction Times the Field Volume  

E-Print Network [OSTI]

the Cost of Large Superconducting Thin Solenoid Magnets,"The Economics of Large Superconducting Toroidal Magnets forEnergy (MJ) Fig. 2. Superconducting magnet costs (M$) versus

Green, M.A.

2008-01-01T23:59:59.000Z

280

Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative  

SciTech Connect (OSTI)

This analysis is an update to the 2005 Energy Efficiency Potential Study completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005). The Total Resource Cost (TRC) test is used to determine which of the energy efficiency measures analyzed in the KEMA report are cost effective for KIUC to include in a residential energy efficiency program. This report finds that there remains potential energy efficiency savings that could be cost-effectively incentivized through a utility residential demand-side management program on Kauai if implemented in such a way that the program costs per measure are consistent with the current residential program costs.

Busche, S.; Hockett, S.

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Rise of the Biopsychosocial Model Psychoanalytic Contributions  

E-Print Network [OSTI]

Infant and Maternal Mortality #12;Rise of the Biopsychosocial Model Escalating Health Care Costs Factors Patterns of Illness Escalating Health Care Costs Research #12;The Mind-Body Relationship: Psychoanalytic contributing to increased costs: i) Technology ii) Insurance iii) Aging Population iv) Defensive Medicine v

Meagher, Mary

282

Energy Management and Cost Analysis in Residential Houses using Batteries  

E-Print Network [OSTI]

prices when the demand is expected to be low and higher prices when the demand is higher. Energy arbitrage leverages these different energy prices by buying the extra energy when the prices are low, storing it in an energy storage device and then using the stored energy when the price is higher. Several

Simunic, Tajana

283

Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

2008-01-01T23:59:59.000Z

284

The Cost of Enforcing Building Energy Codes: Phase 1  

E-Print Network [OSTI]

Summer Study on Energy Efficiency in Buildings (pp. 5-387 -Summer Study on Energy Efficiency in Buildings. pp. 8-249Summer Study on Energy Efficiency in Buildings. pp. 4-275 -

Williams, Alison

2013-01-01T23:59:59.000Z

285

The Cost of Enforcing Building Energy Codes: Phase 1  

E-Print Network [OSTI]

Best Practices: Sharing Local and State Successes in Energy EfficiencyBest Practices from the Southwest. Boulder, CO : Southwest Energy EfficiencyBest Practices from the Southwest. Boulder, CO: Southwest Energy Efficiency

Williams, Alison

2013-01-01T23:59:59.000Z

286

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

WIND ENERGY by as much as 270% when comparing today’s turbinesTurbines in Denmark. Presentation to IEA Wind Task 26 (12) European Wind Energy

Wiser, Ryan

2013-01-01T23:59:59.000Z

287

Reduce Operating Costs with an EnergySmart School Project  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ballasts can reduce lighting energy by 20 to 30 percent. * ENERGY STAR light-emitting diode (LED) exit signs can last 25 years without lamp replacement. Compact...

288

Identifying Cost-Effective Residential Energy Efficiency Opportunities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative This analysis is an update to the Energy Efficiency Potential report completed by KEMA for the...

289

The Cost of Enforcing Building Energy Codes: Phase 1  

E-Print Network [OSTI]

B. (2005). Residential Energy Code Evaluatinons: Review andProvidence, RI: Building Codes Assistance Project. ZING2007 Commercial Energy Code Compliance Study. Calgary, AB:

Williams, Alison

2013-01-01T23:59:59.000Z

290

Energy Department Report Calculates Emissions and Costs of Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

today by the Energy Department's National Renewable Energy Laboratory (NREL) examines the potential impacts of increasing wind and solar power generation on the operators of coal...

291

Energy costs of heating and cooling homes continue to increase. Both rural and urban homeowners can reduce these costs by strategically planting trees in their landscape. In  

E-Print Network [OSTI]

Energy costs of heating and cooling homes continue to increase. Both rural and urban homeowners can save energy costs while beautifying your property. Summer Cooling: In the summer months we want to keep to the south, we want our south facing windows to be un-obstructed by trees so passive solar energy from

Blanchette, Robert A.

292

Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California  

E-Print Network [OSTI]

Cost Effectiveness Investment cost Demonstration in salad2015 Cost Effectiveness Investment cost Type of cost Change2015 Cost Effectiveness Investment cost Type of cost Change

Xu, Tengfang

2011-01-01T23:59:59.000Z

293

EA-1918: Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and MultiFamily High-Rise Residential Buildings" RIN 1904-AC60  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of implementing provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal buildings, including commercial and multi-family high-rise residential buildings. This EA addresses Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2010. The Final Rule was published in the Federal Register on July 9, 2013, 78 FR 40945.

294

IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 19, NO. 1, MARCH 2004 151 Production Cost Analysis of Dispersed Generation  

E-Print Network [OSTI]

IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 19, NO. 1, MARCH 2004 151 Production Cost Analysis the appli- cability and production cost analysis of dispersed generation (DG) resources in a transmission economics, production costing, transmission-constrained interconnected system. I. INTRODUCTION

Gross, George

295

Low-Cost Titanium Powder for Feedstock | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-Cost Production of Hydrogen and ElectricityLow-Cost

296

Lower Cost Carbon Fiber Precursors | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-Cost Production ofModeling AssessmentLower Cost

297

Lower Cost, Higher Performance Carbon Fiber | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-Cost Production ofModeling AssessmentLower CostLower

298

COST-BENEFIT ANALYSIS OF A WASTE TO ENERGY PLANT FOR MONTEVIDEO; AND WASTE TO  

E-Print Network [OSTI]

1 COST-BENEFIT ANALYSIS OF A WASTE TO ENERGY PLANT FOR MONTEVIDEO; AND WASTE TO ENERGY IN SMALL-benefit analysis by the author of a waste to energy (WTE) plant in Montevideo, Uruguay; the second part are that it is the most proven waste- to-energy technology in the world, has demonstrated high plant availability (>90

299

On the Energy Cost of Robustness and Resiliency in IP Networks , A. Caponea,  

E-Print Network [OSTI]

approaches in saving energy. We propose novel optimization models to minimize the energy consumption of IP protocols (like MPLS) allow us to quantitatively analyze the trade-off between energy cost and level Both network operators and device manufacturers agree that the energy consumption of communications

Paris-Sud XI, Université de

300

Rising Above the Water: New Orleans Implements Energy Efficiency and Sustainability Practices Following Hurricanes Katrina and Rita (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the technical assistance that the U.S. Department of Energy, through its National Renewable Energy Laboratory, provided to New Orleans, Louisiana, which helped the city incorporate energy efficiency into its rebuilding efforts for K-12 schools and homes following Hurricanes Katrina and Rita. NREL also provided support and analysis on energy policy efforts.

Not Available

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Capitalization of energy efficient features into home values in the Austin, Texas real estate market  

E-Print Network [OSTI]

Volatile and rising energy prices have made consumers aware of their opportunity costs for energy. Information on the cost-savings of energy efficient features in homes has not been well researched to date and is an option ...

Amado, Antonio R

2007-01-01T23:59:59.000Z

302

How Do You Save on Lighting Costs? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

LED lights are six to seven times more energy efficient than conventional incandescent lights, cut energy use by more than 80 percent and can last more than 25 times...

303

Low-Cost Financing with Clean Renewable Energy Bonds  

Broader source: Energy.gov [DOE]

Contains information from the TAP Webcast on June 24, 2009 on clean renewable energy bonds from Claire Kreycik on feed-in tariffs, an economic resource for developing renewable energy.

304

Understanding and reducing energy and costs in industrial cooling systems  

E-Print Network [OSTI]

Industrial cooling remains one of the largest potential areas for electrical energy savings in industrial plants today. This is in spite of a relatively small amount of attention paid to it by energy auditors and rebate program designers. US DOE...

Muller, M.R.; Muller, M.B.

2012-01-01T23:59:59.000Z

305

ORNL/TM-2010/310 REPORTED ENERGY AND COST  

E-Print Network [OSTI]

January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge

Oak Ridge National Laboratory

306

Costs and benefits of energy efficiency improvements in ceiling fans  

SciTech Connect (OSTI)

Ceiling fans contribute significantly to residential electricity consumption, especially in developing countries with warm climates. The paper provides analysis of costs and benefits of several options to improve the efficiency of ceiling fans to assess the global potential for electricity savings and green house gas (GHG) emission reductions. Ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terawatt hours per year could be saved and 25 million metric tons of carbon dioxide equivalent (CO2-e) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize potential savings.

Shah, Nihar; Sathaye, Nakul; Phadke, Amol; Letschert, Virginie [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division] [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division

2013-10-15T23:59:59.000Z

307

Low-Cost Energy Efficiency Goes Block-to-Block | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term StorageDepartmentSystemLow-Cost Energy

308

Reducing the Cost of Energy from Parabolic Trough Solar Power Plants: Preprint  

SciTech Connect (OSTI)

Parabolic trough solar technology is the most proven and lowest cost large-scale solar power technology available today, primarily because of the nine large commercial-scale solar power plants that are operating in the California Mojave Desert. However, no new plants have been built during the past ten years because the cost of power from these plants is more expensive than power from conventional fossil fuel power plants. This paper reviews the current cost of energy and the potential for reducing the cost of energy from parabolic trough solar power plant technology based on the latest technological advancements and projected improvements from industry and sponsored R&D. The paper also looks at the impact of project financing and incentives on the cost of energy.

Price, H.; Kearney, D.

2003-01-01T23:59:59.000Z

309

High Performance, Low Cost Hydrogen Generation from Renewable Energy  

SciTech Connect (OSTI)

Renewable hydrogen from proton exchange membrane (PEM) electrolysis is gaining strong interest in Europe, especially in Germany where wind penetration is already at critical levels for grid stability. For this application as well as biogas conversion and vehicle fueling, megawatt (MW) scale electrolysis is required. Proton has established a technology roadmap to achieve the necessary cost reductions and manufacturing scale up to maintain U.S. competitiveness in these markets. This project represents a highly successful example of the potential for cost reduction in PEM electrolysis, and provides the initial stack design and manufacturing development for Proton’s MW scale product launch. The majority of the program focused on the bipolar assembly, from electrochemical modeling to subscale stack development through prototyping and manufacturing qualification for a large active area cell platform. Feasibility for an advanced membrane electrode assembly (MEA) with 50% reduction in catalyst loading was also demonstrated. Based on the progress in this program and other parallel efforts, H2A analysis shows the status of PEM electrolysis technology dropping below $3.50/kg production costs, exceeding the 2015 target.

Ayers, Katherine [Proton OnSite] [Proton OnSite; Dalton, Luke [Proton OnSite] [Proton OnSite; Roemer, Andy [Proton OnSite] [Proton OnSite; Carter, Blake [Proton OnSite] [Proton OnSite; Niedzwiecki, Mike [Proton OnSite] [Proton OnSite; Manco, Judith [Proton OnSite] [Proton OnSite; Anderson, Everett [Proton OnSite] [Proton OnSite; Capuano, Chris [Proton OnSite] [Proton OnSite; Wang, Chao-Yang [Penn State University] [Penn State University; Zhao, Wei [Penn State University] [Penn State University

2014-02-05T23:59:59.000Z

310

Analysis of Potential Benefits and Costs of Adopting ASHRAE Standard 90.1-2001 as the Commercial Building Energy Code in Tennessee  

SciTech Connect (OSTI)

ASHRAE Standard 90.1-2001 Energy Standard for Buildings except Low-Rise Residential Buildings (hereafter referred to as ASHRAE 90.1-2001 or 90.1-2001) was developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. The State of Tennessee is considering adopting ASHRAE 90.1-2001 as its commercial building energy code. In an effort to evaluate whether or not this is an appropriate code for the state, the potential benefits and costs of adopting this standard are considered in this report. Both qualitative and quantitative benefits and costs are assessed. Energy and economic impacts are estimated using the Building Loads Analysis and System Thermodynamics (BLAST) simulations combined with a Life-Cycle Cost (LCC) approach to assess corresponding economic costs and benefits. Tennessee currently has ASHRAE Standard 90A-1980 as the statewide voluntary/recommended commercial energy standard; however, it is up to the local jurisdiction to adopt this code. Because 90A-1980 is the recommended standard, many of the requirements of ASHRAE 90A-1980 were used as a baseline for simulations.

Cort, Katherine A.; Winiarski, David W.; Belzer, David B.; Richman, Eric E.

2004-09-30T23:59:59.000Z

311

Energy Input, Carbon Intensity, and Cost for Ethanol Produced from Brown Seaweed  

E-Print Network [OSTI]

Energy Input, Carbon Intensity, and Cost for Ethanol Produced from Brown Seaweed by Aaron, Carbon Intensity, and Cost for Ethanol Produced from Brown Seaweed by Aaron Philippsen B.Eng, University of Mechanical Engineering) Co-Supervisor Brown macroalgae or brown seaweed is a promising source of ethanol

Victoria, University of

312

Minimizing Building Electricity Costs in a Dynamic Power Market: Algorithms and Impact on Energy Conservation  

E-Print Network [OSTI]

Minimizing Building Electricity Costs in a Dynamic Power Market: Algorithms and Impact on Energy of Computing, The Hong Kong Polytechnic University, Hong Kong, P. R. China 2 Department of Electrical and the electricity bills nowa- days are leading to unprecedented costs. Electricity price is market-based and dynamic

Wang, Dan

313

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

Řkonomi (The Economy of Wind Power). EUDP 33033-0196.to the Chapter on Wind Power in Energy TechnologyAgency (DEA). (1999). Wind Power in Denmark: Technologies,

Wiser, Ryan

2013-01-01T23:59:59.000Z

314

Innovative, Lower Cost Sensors and Controls Yield Better Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPosting ThomasEnergyAlgae!|| Department

315

Low Cost Nanostructured Smart Window Coatings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson -of EnergyEqual JusticeShipping

316

Capturing Waste Gas: Saves Energy, Lower Costs - Case Study, 2013 |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (AprilBiden2 CategoricalApproach for Energy 07-21-2014

317

Reducing Energy Costs in Internet-Scale Distributed Systems Using Load Shifting  

E-Print Network [OSTI]

-response technique where the system temporarily reduces its energy usage in response to pricing signals from a smart offline algorithm can achieve 12% energy cost savings for time-of-use electricity pricing, even when only-efficiency techniques. These include the availability of novel electricity pricing models to encourage greater energy

Massachusetts at Amherst, University of

318

Cost Optimal Operation of Thermal Energy Storage System with Real-Time Prices  

E-Print Network [OSTI]

Cost Optimal Operation of Thermal Energy Storage System with Real-Time Prices Toru Kashima, Member of the result [4]. The same can be said for time varying real-time prices. Real-time energy pricing is not yet such as chillers. Energy resources such as electricity or natural gas are bought from suppliers at certain prices

319

CONSUMPTION AND CHANGES IN HOME ENERGY COSTS: HOW PREVALENT IS THE `HEAT OR EAT' DECISION?  

E-Print Network [OSTI]

CONSUMPTION AND CHANGES IN HOME ENERGY COSTS: HOW PREVALENT IS THE `HEAT OR EAT' DECISION?· Julie how household consumption responds to changes in home energy outlays over the course of the year. We specify Euler equations describing nondurable and food consumption and then rely on changes in energy

Sadoulet, Elisabeth

320

Capping the Brown Energy Consumption of Internet Services at Low Cost  

E-Print Network [OSTI]

Capping the Brown Energy Consumption of Internet Services at Low Cost Kien T. Le Ricardo Bianchini Consumption of Data Centers 0 20 40 60 80 100 120 140 2000 2006 2011 Electricity consumption of US DCs Billion Energy Consumption · Improving efficiency does not promote green energy or guarantee limits on brown

Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Status of Grid Scale Energy Storage and Strategies for Accelerating Cost Effective  

E-Print Network [OSTI]

Status of Grid Scale Energy Storage and Strategies for Accelerating Cost Effective Deployment MIT · Motivation · Individual Functions/Markets · Energy Storage Technologies · Implementations to Combine) · Previously: · Energy storage and smart grid analyst at Lux Research and GTM Research · MIT SDM '08 (Graduated

de Weck, Olivier L.

322

Clean Energy Options for Sabah an analysis of resource availability and cost  

E-Print Network [OSTI]

Clean Energy Options for Sabah an analysis of resource availability and cost Tyler McNish1, 2 and Appropriate Energy Laboratory 2 University of California, Berkeley School of Law 3 University of California, Berkeley Energy and Resources Group 4 University of California, Berkeley Goldman School of Public Policy 5

Kammen, Daniel M.

323

An hybrid CP/MILP method for scheduling with energy costs  

E-Print Network [OSTI]

.artigues@laas.fr Abstract This paper deals with energy-related job scheduling for a foundry, in order to minimizeAn hybrid CP/MILP method for scheduling with energy costs Alain Ha¨it1 Christian Artigues2,3 1 the electricity bill. Accounting for energy and hu- man resource constraints leads to better solutions in terms

Paris-Sud XI, Université de

324

innovati nNREL Recommends Ways to Cut Building Energy Costs in Half  

E-Print Network [OSTI]

the basis for the 50% Advanced Energy Design Guide (AEDG) books. These user-friendly guides are the secondinnovati nNREL Recommends Ways to Cut Building Energy Costs in Half Building designers of capabilities, NREL leads an integrated approach across the spectrum of renewable energy innovation. From

325

'Green energy' an option; PSC plan calls for costly wind power  

E-Print Network [OSTI]

'Green energy' an option; PSC plan calls for costly wind power Denver Post Staff Writer Colorado wind power Page 1 of 3http://eeredev.nrel.gov/greenpower/option.html #12;In a related announcement

326

Cost Savings and Energy Reduction: Bi-Level Lighting Retrofits in Multifamily Buildings  

E-Print Network [OSTI]

Community Environmental Center implements Bi- Level Lighting fixtures as a component of cost-effective multifamily retrofits. These systems achieve substantial energy savings by automatically reducing lighting levels when common areas are unoccupied...

Ackley, J.

2010-01-01T23:59:59.000Z

327

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

Cost of Energy From U.S. Wind Power Projects. PresentationTrust. (2008). Offshore Wind Power: Big Challenge, BigAgency (DEA). (1999). Wind Power in Denmark: Technologies,

Lantz, Eric

2014-01-01T23:59:59.000Z

328

Lifecycle Cost and GHG Implications of a Hydrogen Energy Storage Scenario (Presentation)  

SciTech Connect (OSTI)

Overview of life cycle cost and green house gas implications of a hydrogen energy storage scenario presented at the National Hydrogen Association Conference & Expo, Long Beach, CA, May 3-6, 2010

Steward, D. M.

2010-05-01T23:59:59.000Z

329

Life-Cycle Cost Analysis Highlights Hydrogen's Potential for Electrical Energy Storage (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes NREL's accomplishments in analyzing life-cycle costs for hydrogen storage in comparison with other energy storage technologies. Work was performed by the Hydrogen Technologies and Systems Center.

Not Available

2010-11-01T23:59:59.000Z

330

Quantifying the system balancing cost when wind energy is incorporated into electricity generation system   

E-Print Network [OSTI]

Incorporation of wind energy into the electricity generation system requires a detailed analysis of wind speed in order to minimize system balancing cost and avoid a significant mismatch between supply and demand. Power ...

Issaeva, Natalia

2009-01-01T23:59:59.000Z

331

Energy Price Indices and Discount Factors for Life-Cycle Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NISTIR 85-3273-29 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2014 Annual Supplement to NIST Handbook 135 Amy S. Rushing Joshua D. Kneifel Priya...

332

Reducing energy use comes at a costReducing energy use comes at a cost ----the EU casethe EU case  

E-Print Network [OSTI]

Deputy Director and Chief Economist Centre for Global Energy StudiesCentre for Global Energy Studies Athens emissions, which are deemed to cause globalemissions, which are deemed to cause global warming regions ofsupplies (especially oil) from unstable regions of the world.the world. Why reduce energy use

333

Levelized cost and levelized avoiced cost of new generation resources in the Annual Energy Outlook 2014  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81 § ¨,43332 Next

334

Levelized cost and levelized avoided cost of new generation resources in the Annual Energy Outlook 2014  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81 § ¨,43332 NextApril

335

Durable, Low Cost, Improved Fuel Cell Membranes | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA andDriving InnovationDurable, Low Cost,

336

Property:Cost(per day) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyoCoolingTowerWaterUseSummerConsumed Jump to: navigation,Cost(per day) Jump to:

337

Property:EstimatedCostLowUSD | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to: navigation, search PropertyEstimatedCostLowUSD Jump to:

338

Property:EstimatedCostMedianUSD | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to: navigation, search PropertyEstimatedCostLowUSD Jump

339

System engineering and energy costs of small and medium wind turbines  

SciTech Connect (OSTI)

A preliminary system-level, computational model was developed to allow broad assessment and optimization of wind turbine design and costs analysis at The Wind Energy Research Center, Solar Energy Research Institute under contract to the US Department of Energy (DOE). This paper briefly describes the basic principles used in the model for energy capture and cost-of-energy (COE), and demonstrates the model's usefulness in determining the effects of rotor and system design modifications. The model's utilization for conducting parametric studies and defining the energy cost of small and medium-sized wind turbines is also shown. Topics of interest to wind turbine engineers and designers include the effects on rotor performance of airfoil geometry, blade pitch angle setting, and the system RPM schedule, etc.

Tu, P.K.C.

1985-07-01T23:59:59.000Z

340

Simplified thermoeconomic approach to cost allocation in acombined cycle cogeneration and district energy system  

E-Print Network [OSTI]

of the requirements for the degree of MASTER OF SCIENCE May 1997 Major Subject: Mechanical Engineering SIMPLIFIED THERMOECONOMIC APPROACH TO COST ALLOCATION IN A COMBINED CYCLE COGENERATION AND DISTRICT ENERGY SYSTEM A Thesis By JASON GRAHAM FLEMING... (Member) Jerald Caton (Head of Department) May 1997 lviajor Sui&ject: lviechanical Engineering ABSTRACT Simplified Thermoeconomic Approach to Cost Allocation in a Combined Cycle Cogeneration and District Energy System. (May 1997) Jason Graham...

Fleming, Jason Graham

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

An Analysis of Energy Reductions from the Use of Daylighting in Low-Cost Housing  

E-Print Network [OSTI]

AN ANALYSIS OF ENERGY REDUCTIONS FROM THE USE OF DAYLIGHTING IN LOW-COST HOUSING A Thesis by NAYARAT RUNGCHAREONRAT Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2003 Major Subject: Architecture AN ANALYSIS OF ENERGY REDUCTIONS FROM THE USE OF DAYLIGHTING IN LOW-COST HOUSING A Thesis by NAYARAT RUNGCHAREONRAT...

Rungchareonrat, N.

342

Assessing the Costs and Benefits of the Superior Energy Performance Program  

SciTech Connect (OSTI)

Industrial companies are seeking to manage energy consumption and costs, mitigate risks associated with energy, and introduce transparency into reports of their energy performance achievements. Forty industrial facilities are participating in the U.S. DOE supported Superior Energy Performance (SEP) program in which facilities implement an energy management system based on the ISO 50001 standard, and pursue third-party verification of their energy performance improvements. SEP certification provides industrial facilities recognition for implementing a consistent, rigorous, internationally recognized business process for continually improving energy performance and achievement of established energy performance improvement targets. This paper focuses on the business value of SEP and ISO 50001, providing an assessment of the costs and benefits associated with SEP implementation at nine SEP-certified facilities across a variety of industrial sectors. These cost-benefit analyses are part of the U.S. DOE?s contribution to the Global Superior Energy Performance (GSEP) partnership, a multi-country effort to demonstrate, using facility data, that energy management system implementation enables companies to improve their energy performance with a greater return on investment than business-as-usual (BAU) activity. To examine the business value of SEP certification, interviews were conducted with SEP-certified facilities. The costs of implementing the SEP program, including internal facility staff time, are described and a marginal payback of SEP certification has been determined. Additionally, more qualitative factors with regard to the business value and challenges related to SEP and ISO 50001 implementation are summarized.

Therkelsen, Peter; McKane, Aimee; Sabouini, Ridah; Evans, Tracy

2013-07-01T23:59:59.000Z

343

AVTA Vehicle Component Cost Model | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdf ASGovLtr.pdf-OPAMGuidance forAUDITSafety OfficerAVTA

344

Energy Department Announces $25 Million to Lower Cost of Concentrating  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department of EnergyStakeholders |Clean EnergyGeothermalSolar

345

Chapter 31 - Contract Cost Principles and Procedures | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4CenterPoint Comments7-18-2011 Chapter 10-132Energy 0 -1

346

Chicago Solar Express Reduces Costs, Wait Times | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLE FORSuperior Energy5-1 Chapter 5 Loswhen toEnergyThe

347

Subject: Cost and Price Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate Characterization|Energy High|Study:FuelSubject:

348

Energy Department Announces Projects to Advance Cost-Effective  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 & 6, 2012 MEETINGPreparednessHanford's WasteConcentrating

349

Sustainable Alternative Fuels Cost Workshop | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of Energy U.S.Improve Emitter4-0140, 2014ADepartmentDepartment of

350

COST EFFECTIVENESS OF LONG LIFE INCANDESCENT LAMPS AND ENERGY BUTTONS  

E-Print Network [OSTI]

as any 1ong-li incandescent lamp or system evaluated in thisEFFECTIVENESS OF LONG LIFE INCANDESCENT LAMPS AND ENERGYEFFECTIVENESS OF LONG LIFE INCANDESCENT LAMPS AND ENERGY

Verderber, Rudy

2013-01-01T23:59:59.000Z

351

Building Life Cycle Cost Programs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

with an XML file format. The user's guide is part of the BLCC Help system. BLCC version 5.3-13 contains the following modules: FEMP Analysis; Energy Project Federal Analysis;...

352

Reducing LED Costs Through Innovation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated |

353

Impacts of rural energy costs and availabilities in Kenya  

SciTech Connect (OSTI)

This study sought to examine energy-consumption patterns in a cross section of rural households in Kenya and to analyze how these use patterns relate to socio-economic, demographic, institutional, and energy market factors. The models specified were demands for fuelwood, charcoal, kerosene, commercial heat energy, and aggregate energy. For fuelwood, a probit analysis was utilized to determine the conditional probability of fuelwood consumption and a least-squares regression to determine quantity consumed. Ordinary regression was used to estimate demand for the other fuels. The research indicates that household incomes, family size, improved ceramic stoves, other fuels, and occupation are the most influential variables on consumption of various fuels. The quantities of fuelwood, charcoal, and kerosene consumed are not very responsive to changes in income. Aggregate energy is income-inelastic and a normal good, while woodfuel and kerosene are inferior products. The model indicates that redirection of a 10% increase in income, so that only the low-income households benefit, would cause only a small, 1% increase in fuelwood consumption.

Jama, M.A.

1987-01-01T23:59:59.000Z

354

Cost Analysis of Hydrogen Storage Systems | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate EarthEnergyDistrict EnergyCensus,Core5into

355

AMO Announces Funding Opportunity for Low-Cost, Energy Efficient  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office of FossilMembershipof EnergyALABAMA GETSManufacturing and

356

Hanford Solar Power: Cost Effective and Mobile | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTS CableMay 2009 Hanford SiteMaterialSolar

357

Project Profile: Low-Cost Heliostat Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21,-CommitteeItemsHiTek logo HiTek Services, under

358

Energy Department Announces New Investment to Reduce Fuel Cell Costs |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQ ContractEndstatesEnergyWeatherized Three Months AheadtoBiofuels

359

Energy Cost Savings Calculator for Air-Cooled Electric Chillers |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department of Energy benchmarking.DepartmentDepartment of

360

Energy Cost Savings Calculator for Commercial Boilers: Closed Loop, Space  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department of Energy benchmarking.DepartmentDepartment ofHeating

Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Department Announces $9 Million to Lower Costs, Increase Performance  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department of EnergyStakeholders |CleanandFederalHotels,of Solar

362

Energy Department Helping Lower Biofuel Costs for the Nation | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department ofto Cellulosic Bioenergy |EnergyDevelopmentDepartmentof

363

Estimating the Benefits and Costs of Distributed Energy Technologies  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectricalonJustice EnvironmentalDISTRIBUTIO FROM: DAE Y. CHUNGWorkshop

364

Low-cost, Rapid DNA Sequencing Technique - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministration - RockyTemperatureEnergy InnovationBiomass and

365

Simple Modular LED Cost Model | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable Energy (EERE) |SeniorIt seems likeShawn

366

Low-Cost Titanium Alloy Production | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartmentJuneWhenJulyBadges atEnergy ThisIncreasing

367

Top Low- or No-Cost Improvements | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe Sun and ItsXVIIof EnergyMapsabout CarbonTop

368

Low-Cost, Lightweight Solar Concentrator | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJenniferLeslieEnergyTitanium Alloy

369

Special Feature: Reducing Energy Costs with Better Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus Tom Fletcher,Future |CarlosSpeakers Bureau SpeakersEnergy -

370

Monitoring and Targeting (M&T): A Low Investment, Low Risk Approach to Energy Cost Savings  

E-Print Network [OSTI]

Monitoring and Targeting (M&T): A Low Investment, Low Risk Approach to Energy Cost Savings Andrew McMullan Mike Rutkowski Alan Karp Vice President President Manager Bus. Development VERITECH, INC. Sterling, VA ABSTRACT Monitoring... and Targeting (M&T) is a disciplined approach to energy management that ensures that energy resources are used to their maximmn economic advantage. M&T serves two principal functions: ? Ongoing, day-to-day control of energy use ? Planned improvements...

McMullan, A.; Rutkowski, M.; Karp, A.

371

Using Key Performance Indicators to Manage Energy Costs  

E-Print Network [OSTI]

-effective to collect much more data than ever before, many energy managers find themselves drowning in the volume of data generated. Business information systems faced a similar challenge a decade ago, and it is now common practice to use Key Performance Indicators...

Van Gorp, J. C.

2005-01-01T23:59:59.000Z

372

ACHIEVING ALL COST-EFFECTIVE ENERGY EFFICIENCY FOR CALIFORNIA  

E-Print Network [OSTI]

, and to growth rates of forecasted natural gas consumption, electricity consumption, and peak electricity demand of the economic potential for electric consumption savings, 89 percent of the economic potential for peak demand, electricity consumption, natural gas consumption, electric peak demand reduction, energy efficiency potential

373

The cost of efficiency in energy metabolism Arion I. Stettnera  

E-Print Network [OSTI]

conservation are tightly coupled, why is the less-efficient ED pathway so prev- alent? What has kept that logically arises between a glycolytic pathway's ATP yield and thermodynamic driving force. Free energy- sipate as heat, making the overall pathway more thermodynamically favorable (albeit less efficient) (4

Segrč, Daniel

374

CALIFORNIA ENERGY Costs & Savings For Houses Built With  

E-Print Network [OSTI]

through the integrated design, construction, and operation of building systems. The Integrated Energy Systems Integrated Design of Commercial Building Ceiling Systems Integrated Design of Residential Ducting;#12;ACKNOWLEDGEMENTS The products and outcomes presented in this report are part of the Integrated Design

375

The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Wave Energy Devices  

SciTech Connect (OSTI)

Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale and for commercial arrays for a surge wave energy converter

Copping, Andrea E.; Geerlofs, Simon H.; Hanna, Luke A.

2014-06-30T23:59:59.000Z

376

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

2010-10-21T23:59:59.000Z

377

Designing and Implementing Monitoring Based Energy Cost Reduction Programs  

E-Print Network [OSTI]

operation where ambient air is heated and used to remove moisture from a slurry. The site in question has multiple dryers. Figure 1. Schematic of drying operation Figure 2 summarizes historical energy performance. XYZ Chemicals Fuel... Consumption Rate vs. Production 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00 0 5,000 10,000 15,000 20,000 25,000 TOTAL PRODUCTION (Units/MONTH) E N E R G Y / Unit XYZ Chemicals Specific Energy Use Vs. Ambient Temperature 25.0 30.0 35...

McMullan, A. S.; Pretty, B. L.; Hart, D.

2006-01-01T23:59:59.000Z

378

Benchmark the Fuel Cost of Steam Generation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment ofEnergy StevenHouseField Experiment | Department

379

Overview of Levelized Cost of Energy in the AEO  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010 | 2006 |Presented to the EIA Energy

380

Building Life Cycle Cost Programs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruaryResistanceBuilding Energy UseIntegrated Heat

Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Reducing Non-Hardware Costs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and Launches theResidentialRecoveryWaste and Save Energy

382

Lower Cost Carbon Fiber Precursors | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-Temperature Combustion Demonstrator for2009ModelingLowell,2

383

Energy Department Report Calculates Emissions and Costs of Power Plant  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusiness CompetitionDepartmentandDepartment of

384

Energy Detectives Help Pennsylvania Town Reduce Costs | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department ofto

385

Property:Geothermal/TotalProjectCost | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:PlugNumberOfArraProjectTypeTopic2 Jump to:

386

Property:GeothermalArraAwardeeCostShare | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:PlugNumberOfArraProjectTypeTopic2 Jump

387

Property:OpenEI/Tool/CostRange | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:

388

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

Brown, Moya Melody, Camilla Dunham Whitehead, Rich; Dunham Whitehead, Camilla; Brown, Rich

2010-09-30T23:59:59.000Z

389

Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications  

SciTech Connect (OSTI)

The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achieving savings in non-building applications.

Williams, Charles; Green, Andrew S.; Dahle, Douglas; Barnett, John; Butler, Pat; Kerner, David

2013-08-01T23:59:59.000Z

390

ACCELERATED COMMUNICATION Low free energy cost of very long loop insertions in proteins  

E-Print Network [OSTI]

ACCELERATED COMMUNICATION Low free energy cost of very long loop insertions in proteins MICHELLE to have recovery levels similar to the wild-type SH2 domain and to be relatively intolerant to further insertions of 60­80 amino acids have minimal effects on SH2 domain stability suggests that the free energy

Baker, David

391

Minimizing the Energy Cost of Throughput in a Linear Pipeline by Opportunistic Time Borrowing  

E-Print Network [OSTI]

Minimizing the Energy Cost of Throughput in a Linear Pipeline by Opportunistic Time Borrowing a technique to optimize the energy-delay product of a synchronous linear pipeline circuit with dynamic error and clock frequency of the design by exploiting slacks that are present in various stages of the pipeline

Pedram, Massoud

392

Cost of Wind Energy in the United States: Trends from 2007 to 2012 (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of recent technology trends observed in the United States including project size, turbine size, rotor diameter, hub height, annual average wind speed, and annual energy production. It also highlights area where system analysis is required to fully understand how these technology trends relate to the cost of wind energy.

Hand, M.

2015-01-01T23:59:59.000Z

393

Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.  

SciTech Connect (OSTI)

This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

Bull, Diana L; Ochs, Margaret Ellen

2013-09-01T23:59:59.000Z

394

Low Cost Solar Energy Conversion (Carbon Cycle 2.0)  

ScienceCinema (OSTI)

Ramamoorthy Ramesh from LBNL's Materials Science Division speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Ramesh, Ramamoorthy

2011-06-08T23:59:59.000Z

395

10 Strategic Steps to Reducing Your Energy Costs  

E-Print Network [OSTI]

to replace standard ?V? belt drives (save up to 6%) and synthetic oil in compressors and chillers (saves up to 7%). 5. Maximize Utility Rebates and Programs?Many utilities and states offer rebates, audits and incentive programs that can pay for up... to 50% of an energy conservation project. In many cases, you already are paying into these programs through your utility bills. It is in your best interest to get your money back (or even more then you paid into the programs). Rebate amounts...

Swanson, G. A.; Haley, M.

2005-01-01T23:59:59.000Z

396

EECBG Success Story: Ormond Beach Triples Energy Cost Savings Projections |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 ClosingA Tradition ofOregonPower |

397

EECBG Success Story: Reducing Energy Costs and Rebuilding the Past |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 ClosingA Tradition ofOregonPower

398

Energy Department Announces Projects to Advance Cost-Effective  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember 2011 EMABDevelopment | Department

399

Finding Solutions to Solar's Soft Cost Dilemma | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.Financial Statement: OAS-FS-13-10Financing

400

Helping Alaska Native Communities Reduce Their Energy Costs | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecemberGlossary ofGroundwaterHCHearingsHeatingAffairs

Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Innovative Nanocoatings Unlock the Potential for Major Energy and Cost  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartmentJune 20, 2012 The Innovative Manufacturing

402

Carbon Dioxide Capture at a Reduced Cost - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route BTRICGEGR-N-Capture ofCaptureIndustrial

403

Cost and Quality of Fuels for Electric Plants - Energy Information  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompany LevelPhysicalAdministration

404

PHEV and LEESS Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&DPaul H.10

405

Levelized Cost of Energy in US | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJuno Beach,October, 2012Lee CountyLearned:Energy in US

406

Low Cost Carbon Fiber Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term Storage of Cesium1940sofof Energy 210

407

Low Cost Titanium Â… Propulsion Applications | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term Storage ofEnergy High VoltageTemplate1

408

Low Cost Titanium Â… Propulsion Applications | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term Storage ofEnergy High VoltageTemplate10

409

Low Cost Titanium Â… Propulsion Applications | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term Storage ofEnergy High

410

Low Cost Titanium Â… Propulsion Applications | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term Storage ofEnergy High

411

Lower Cost Carbon Fiber Precursors | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-Temperature Combustion Demonstrator for2009ModelingLowell,2 DOE

412

Technology Cost and Performance Toolkit | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to: navigation, searchTecate Group JumpEnergyInc

413

Estimating the Benefits and Costs of Distributed Energy Technologies  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -DepartmentNovember 1, 2010December 1,Goals DuringSalt |

414

Estimating the Benefits and Costs of Distributed Energy Technologies  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -DepartmentNovember 1, 2010December 1,Goals DuringSalt |Workshop - Day

415

Natural Gas Vehicle Cost Calculator | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithunCenter Jump to: navigation, search Logo: Natural

416

Extreme Temperature Energy Storage and Generation, for Cost and Risk  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11forPre-Application (IIP)atReduction in

417

Extreme Balance of System Hardware Cost Reduction | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review:Department of Energyand Review of Infrastructure Projects:Systems Integration »

418

Energy Department Announces $25 Million to Lower Cost of Concentrating  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit| Department ofNon-RoadDepartment of EnergyBioproductsWindSolar Power |

419

Innovative, lower cost sensors and controls yield better energy efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface Emissivity in theSurface.Innovative local manufacturer|

420

Technological Feasibility and Cost Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy Technical Evaluation ofRulemaking |Department

Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Low Cost TiO2 Nanoparticles - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministration - Rocky MountainPrepared: 10/28/09 Low

422

Lower Cost, Nanoporous Block Copolymer Battery Separator - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministration -Lowell L. Wood, 1981 The Ernest

423

Production Costs of Alternative Transportation Fuels | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimateMeadows, NewPriorOpenis a town

424

Cost and Impacts of Policies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate EarthEnergyDistrictAssistance Recipients |and Impacts

425

Efficient, Low-cost Microchannel Heat Exchanger - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It is the| Center for GasVehicles and

426

Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps More Documents &Small2011 DOETheNationalWeMessage fromin Process

427

Best Practices for Net Zero Energy Cost Control  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment ofEnergyBeowawe7: Faucets andBestBestBest

428

Life Cycle Cost Analysis for Sustainable Buildings | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJenniferLeslie Pezzullo: ...theDepartment

429

The sun also rises.  

E-Print Network [OSTI]

??This is an adaptation of 'Fiesta: The Sun Also Rises'. The story is changed in form and function from a book into a screenplay. And… (more)

Erwin, Suzanne K.

2009-01-01T23:59:59.000Z

430

Energy savings can be communicated in terms of kilowatt hours (energy), carbon (climate change) or pounds (cost).  

E-Print Network [OSTI]

AIM Energy savings can be communicated in terms of kilowatt hours (energy), carbon (climate change) or pounds (cost). We want to know if these different communication units prime different motivations more broadly. This implies that considering carbon may result in wider changes in sustainable behaviour

McAuley, Derek

431

Advanced Flywheel Composite Rotors: Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration  

SciTech Connect (OSTI)

GRIDS Project: Boeing is developing a new material for use in the rotor of a low-cost, high-energy flywheel storage technology. Flywheels store energy by increasing the speed of an internal rotor —slowing the rotor releases the energy back to the grid when needed. The faster the rotor spins, the more energy it can store. Boeing’s new material could drastically improve the energy stored in the rotor. The team will work to improve the storage capacity of their flywheels and increase the duration over which they store energy. The ultimate goal of this project is to create a flywheel system that can be scaled up for use by electric utility companies and produce power for a full hour at a cost of $100 per kilowatt hour.

None

2010-10-01T23:59:59.000Z

432

Reducing Building Energy Costs Using Optimized Operation Strategies for Constant Volume Air Handling Systems  

E-Print Network [OSTI]

SDCVP 67.380 $153.200 $41.800 $195.000 $2.89 measured energy consumption for each building. The horizontal axis is the ambient temperature. The venical axis is the average daily energy consumption in MMBtulhr. Figure 5 compares the predicted...REDUCING BUILDING ENERGY COSTS USING OPTIMIZED OPERATION STRATEGIES FOR CONSTANT VOLUME AIR HANDLING SYSTEMS Mingsheng Liu, her Atha, Agarni Reddy Ed White David Claridge and Jeff Haberl Department of Physical Plant Texas A&M University...

Liu, M.; Athar, A.; Reddy, A.; Claridge, D. E.; Haberl, J. S.; White, E.

1994-01-01T23:59:59.000Z

433

Integrating Process Unit Energy Metrics into Plant Energy Management Systems  

E-Print Network [OSTI]

As energy costs continue to rise across the process industry, many plants have responded by developing improved energy monitoring and reporting programs. At the center of such programs are typically spreadsheet or database applications that pull...

Davis, J. L.; Knight, N.

2005-01-01T23:59:59.000Z

434

The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Oscillating Water Column Wave Energy Devices  

SciTech Connect (OSTI)

Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects, as well as expert opinion of marine environmental research professionals. Cost estimates have been developed at the pilot and commercial scale. The reference model described in this document is an oscillating water column device deployed in Northern California at approximately 50 meters water depth.

Copping, Andrea E.; Geerlofs, Simon H.; Hanna, Luke A.

2013-09-30T23:59:59.000Z

435

A Comprehensive Approach to Reduce the Energy Cost of Network of Datacenters Baris Aksanli, Jagannathan Venkatesh, Tajana Rosing  

E-Print Network [OSTI]

in the energy cost estimation by 2.6x. Keywords- Datacenter, energy, green energy, job migration I. INTRODUCTION energy [10]. Renewable energy prediction can be used to decrease the variability of local green energy the impact of new technology and policies in datacenter WAN, such as energy- proportional routing and green

Simunic, Tajana

436

Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report  

SciTech Connect (OSTI)

The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries that utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.

Meyer, Howard, S.; Lu, Yingzhong

2012-08-10T23:59:59.000Z

437

Cost-Effectiveness of Home Energy Retrofits in Pre-Code Vintage Homes in the United States  

SciTech Connect (OSTI)

This analytical study examines the opportunities for cost-effective energy efficiency and renewable energy retrofits in residential archetypes constructed prior to 1980 (Pre-Code) in fourteen U.S. cities. These fourteen cities are representative of each of the International Energy Conservation Code (IECC) climate zones in the contiguous U.S. The analysis is conducted using an in-house version of EnergyGauge USA v.2.8.05 named CostOpt that has been programmed to perform iterative, incremental economic optimization on a large list of residential energy efficiency and renewable energy retrofit measures. The principle objectives of the study are as follows: to determine the opportunities for cost effective source energy reductions in this large cohort of existing residential building stock as a function of local climate and energy costs; and to examine how retrofit financing alternatives impact the source energy reductions that are cost effectively achievable.

Fairey, P.; Parker, D.

2012-11-01T23:59:59.000Z

438

Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model  

SciTech Connect (OSTI)

Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

Denholm, P.; Hummon, M.

2012-11-01T23:59:59.000Z

439

Minimizing Wind Power Producer's Balancing Costs Using Electrochemical Energy Storage: Preprint  

SciTech Connect (OSTI)

This paper examines how electrochemical energy storage can be used to decrease the balancing costs of a wind power producer in the Nordic market. Because electrochemical energy storage is developing in both technological and financial terms, a sensitivity analysis was carried out for the most important variables in the wind-storage hybrid system. The system was studied from a wind power producer's point of view. The main result is that there are no technical limitations to using storage for reducing the balancing costs. However, in terms of economic feasibility, installing hybrid wind-storage systems such as the one studied in this paper faces challenges in both the short and long terms.

Miettinen, J.; Tikka, V.; Lassila, J.; Partanen, J.; Hodge, B. M.

2014-08-01T23:59:59.000Z

440

Case studies of energy information systems and related technology: Operational practices, costs, and benefits  

SciTech Connect (OSTI)

Energy Information Systems (EIS), which can monitor and analyze building energy consumption and related data throughout the Internet, have been increasing in use over the last decade. Though EIS developers describe the capabilities, costs, and benefits of EIS, many of these descriptions are idealized and often insufficient for potential users to evaluate cost, benefit and operational usefulness. LBNL has conducted a series of case studies of existing EIS and related technology installations. This study explored the following questions: (1) How is the EIS used in day-to-day operation? (2) What are the costs and benefits of an EIS? (3) Where do the energy savings come from? This paper reviews the process of these technologies from installation through energy management practice. The study is based on interviews with operators and energy managers who use EIS. Analysis of energy data trended by EIS and utility bills was also conducted to measure the benefit. This paper explores common uses and findings to identify energy savings attributable to EIS, and discusses non-energy benefits as well. This paper also addresses technologies related to EIS that have been demonstrated and evaluated by LBNL.

Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Dewey, Jim

2003-09-02T23:59:59.000Z

Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Projected Cost, Energy Use, and Emissions of Hydrogen Technologies for Fuel Cell Vehicles  

SciTech Connect (OSTI)

Each combination of technologies necessary to produce, deliver, and distribute hydrogen for transportation use has a corresponding levelized cost, energy requirement, and greenhouse gas emission profile depending upon the technologies' efficiencies and costs. Understanding the technical status, potential, and tradeoffs is necessary to properly allocate research and development (R&D) funding. In this paper, levelized delivered hydrogen costs, pathway energy use, and well-to-wheels (WTW) energy use and emissions are reported for multiple hydrogen production, delivery, and distribution pathways. Technologies analyzed include both central and distributed reforming of natural gas and electrolysis of water, and central hydrogen production from biomass and coal. Delivery options analyzed include trucks carrying liquid hydrogen and pipelines carrying gaseous hydrogen. Projected costs, energy use, and emissions for current technologies (technology that has been developed to at least the bench-scale, extrapolated to commercial-scale) are reported. Results compare favorably with those for gasoline, diesel, and E85 used in current internal combustion engine (ICE) vehicles, gasoline hybrid electric vehicles (HEVs), and flexible fuel vehicles. Sensitivities of pathway cost, pathway energy use, WTW energy use, and WTW emissions to important primary parameters were examined as an aid in understanding the benefits of various options. Sensitivity studies on production process energy efficiency, total production process capital investment, feed stock cost, production facility operating capacity, electricity grid mix, hydrogen vehicle market penetration, distance from the hydrogen production facility to city gate, and other parameters are reported. The Hydrogen Macro-System Model (MSM) was used for this analysis. The MSM estimates the cost, energy use, and emissions trade offs of various hydrogen production, delivery, and distribution pathways under consideration. The MSM links the H2A Production Model, the Hydrogen Delivery Scenario Analysis Model (HDSAM), and the Greenhouse Gas, Regulated Emission, and Energy for Transportation (GREET) Model. The MSM utilizes the capabilities of each component model and ensures the use of consistent parameters between the models to enable analysis of full hydrogen production, delivery, and distribution pathways. To better understand spatial aspects of hydrogen pathways, the MSM is linked to the Hydrogen Demand and Resource Analysis Tool (HyDRA). The MSM is available to the public and enables users to analyze the pathways and complete sensitivity analyses.

Ruth, M. F.; Diakov, V.; Laffen, M. J.; Timbario, T. A.

2010-01-01T23:59:59.000Z

442

Material and energy recovery in integrated waste management systems: A life-cycle costing approach  

SciTech Connect (OSTI)

Highlights: > The study aims at assessing economic performance of alternative scenarios of MSW. > The approach is the life-cycle costing (LCC). > Waste technologies must be considered as complementary into an integrated strategy. - Abstract: A critical assumption of studies assessing comparatively waste management options concerns the constant average cost for selective collection regardless the source separation level (SSL) reached, and the neglect of the mass constraint. The present study compares alternative waste management scenarios through the development of a desktop model that tries to remove the above assumption. Several alternative scenarios based on different combinations of energy and materials recovery are applied to two imaginary areas modelled in order to represent a typical Northern Italian setting. External costs and benefits implied by scenarios are also considered. Scenarios are compared on the base of the full cost for treating the total waste generated in the area. The model investigates the factors that influence the relative convenience of alternative scenarios.

Massarutto, Antonio [University of Udine, Udine (Italy); IEFE, Bocconi University, Milan (Italy); Carli, Alessandro de, E-mail: alessandro.decarli@unibocconi.it [IEFE, Bocconi University, Milan (Italy); Graffi, Matteo [University of Udine, Udine (Italy); IEFE, Bocconi University, Milan (Italy)

2011-09-15T23:59:59.000Z

443

Assessing Risk in Costing High-energy Accelerators: from Existing Projects to the Future Linear Collider  

E-Print Network [OSTI]

High-energy accelerators are large projects funded by public money, developed over the years and constructed via major industrial contracts both in advanced technology and in more conventional domains such as civil engineering and infrastructure, for which they often constitute one-of markets. Assessing their cost, as well as the risk and uncertainty associated with this assessment is therefore an essential part of project preparation and a justified requirement by the funding agencies. Stemming from the experience with large circular colliders at CERN, LEP and LHC, as well as with the Main Injector, the Tevatron Collider Experiments and Accelerator Upgrades, and the NOvA Experiment at Fermilab, we discuss sources of cost variance and derive cost risk assessment methods applicable to the future linear collider, through its two technical approaches for ILC and CLIC. We also address disparities in cost risk assessment imposed by regional differences in regulations, procedures and practices.

Lebrun, Philippe

2010-01-01T23:59:59.000Z

444

Energy efficiency and the cost of GHG abatement: A comparison of bottom-up and hybrid models for the US  

E-Print Network [OSTI]

Energy efficiency and the cost of GHG abatement: A comparison of bottom-up and hybrid models marginal cost, as well as a smaller contribution from energy efficiency relative to other abatement of energy efficiency potential and green- house gas (GHG) abatement potential that have been highly

445

Extensive English Summary CPB Special Publication 57: Wind energy at the North Sea: A social Cost-benefit analysis  

E-Print Network [OSTI]

1 Extensive English Summary CPB Special Publication 57: Wind energy at the North Sea: A social Cost 2004, in which they requested a breakdown of the costs and benefits of 6,000 MW of offshore wind energy sensitivity analyses were carried out: 1. 6,000 MW offshore wind energy, ready in 2020 2. Equivalent

446

Clean renewable energy bonds (CREBs) present a low-cost opportunity for public entities to issue bonds to finance  

E-Print Network [OSTI]

Clean renewable energy bonds (CREBs) present a low-cost opportunity for public entities to issue bonds to finance renewable energy projects. The federal government lowers the cost of debt by providing created under the Energy Tax Incentives Act of 2005 (and detailed in Internal Revenue Code Section 54

447

Energy information systems (EIS): Technology costs, benefit, and best practice uses  

SciTech Connect (OSTI)

Energy information systems are the web-based software, data acquisition hardware, and communication systems used to store, analyze, and display building energy data. They often include analysis methods such as baselining, benchmarking, load profiling, and energy anomaly detection. This report documents a large-scale assessment of energy information system (EIS) uses, costs, and energy benefits, based on a series of focused case study investigations that are synthesized into generalizable findings. The overall objective is to provide organizational decision makers with the information they need to make informed choices as to whether or not to invest in an EIS--a promising technology that can enable up to 20 percent site energy savings, quick payback, and persistent low-energy performance when implemented as part of best-practice energy management programs.

Granderson, Jessica; Lin, Guanjing; Piette, Mary Ann

2013-11-26T23:59:59.000Z

448

Forest products markets badly hit by the crisis but use of wood energy on the rise -UNECE/FAO http://www.portofentry.com/site/root/resources/industry_news/8067.html[10/1/2009 8:21:58 AM  

E-Print Network [OSTI]

Forest products markets badly hit by the crisis but use of wood energy on the rise - UNECE/FAO http.html[10/1/2009 8:21:58 AM] revenues from forests throughout the UNECE region. The surge in wood energy countries Select channel: All channels Forest products markets badly hit by the crisis but use of wood

449

Solar Energy: As the Cost of This Resource Becomes More Competitive With  

E-Print Network [OSTI]

Solar Energy: As the Cost of This Resource Becomes More Competitive With Other Renewable Resources, Applications to Construct New Solar Power Plants Should Increase January 2008 Report 2007-119 C A L I F O R N I audit report concerning the siting and permitting of large solar power plants--those of at least 50

450

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

SciTech Connect (OSTI)

Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

2011-07-01T23:59:59.000Z

451

Managing the Cost, Energy Consumption, and Carbon Footprint of Internet Services  

E-Print Network [OSTI]

Managing the Cost, Energy Consumption, and Carbon Footprint of Internet Services Kien Le , Ozlem electricity consumptions translate into large carbon footprints, since most of the electricity in the US such as government imposed Kyoto- style carbon limits. Extensive simulations and real experiments show that our

Martonosi, Margaret

452

Low-Cost, Robust, Threat-aware Wireless Sensor Network for Assuring the Nation's Energy Infrastructure  

SciTech Connect (OSTI)

The objective of this project was to create a low-cost, robust anticipatory wireless sensor network (A-WSN) to ensure the security and reliability of the United States energy infrastructure. This document highlights Eaton Corporation's plan to bring these technologies to market.

Carlos H. Rentel

2007-03-31T23:59:59.000Z

453

Grazing Strategies for Beef Production Escalating energy costs and alternative cropping systems for biofuels production have  

E-Print Network [OSTI]

Grazing Strategies for Beef Production Escalating energy costs and alternative cropping systems with pasture-feedlot manage-· ment alternatives. Assess economic implications of beef production using an array character- istics of beef that may provide an alternative lean-to-fat composition for consum- ers. http

454

Estimates of Energy Cost Savings Achieved from 2009 IECC Code-Compliant, Single Family Residences in Texas  

E-Print Network [OSTI]

The annual energy cost savings were estimated with $0.11/kWh for electricity and $0.84/therm (Climate Zone 2) and $0.64/therm (Climate Zone 3 and 4) for natural gas. 2009 IECC Cost Savings Report, p.ii January 2011 Energy Systems Laboratory, Texas A...). 3.2 Annual Total Energy Cost Similar trends were observed in the annual energy costs estimated with $0.11/kWh for electricity and $0.84/therm (Climate Zone 2) and $0.64/therm (Climate Zone 3 and 4) for natural gas. Across the counties, the 2001...

Kim, H.; Baltazar, J. C.; Haberl, J.

455

RESULTS FROM THE U.S. DOE 2006 SAVE ENERGY NOW ASSESSMENT INITIATIVE: DOE's Partnership with U.S. Industry to Reduce Energy Consumption, Energy Costs, and Carbon Dioxide Emissions  

SciTech Connect (OSTI)

In the wake of Hurricane Katrina and other severe storms in 2005, natural gas supplies were restricted, prices rose, and industry sought ways to reduce its natural gas use and costs. In October 2005, U.S. Department of Energy (DOE) Energy Secretary Bodman launched his Easy Ways to Save Energy campaign with a promise to provide energy assessments to 200 of the largest U.S. manufacturing plants. A major thrust of the campaign was to ensure that the nation's natural gas supplies would be adequate for all Americans, especially during home heating seasons. In a presentation to the National Press Club on October 3, 2005, Secretary Bodman said: 'America's businesses, factories, and manufacturing facilities use massive amounts of energy. To help them during this period of tightening supply and rising costs, our Department is sending teams of qualified efficiency experts to 200 of the nation's most energy-intensive factories. Our Energy Saving Teams will work with on-site managers on ways to conserve energy and use it more efficiently.' DOE's Industrial Technologies Program (ITP) responded to the Secretary's campaign with its Save Energy Now initiative, featuring a new and highly cost-effective form of energy assessments. The approach for these assessments drew heavily on the existing resources of ITP's Technology Delivery component. Over the years, ITP-Technology Delivery had worked with industry partners to assemble a suite of respected software decision tools, proven assessment protocols, training curricula, certified experts, and strong partnerships for deployment. Because of the program's earlier activities and the resources that had been developed, ITP was prepared to respond swiftly and effectively to the sudden need to promote improved industrial energy efficiency. Because of anticipated supply issues in the natural gas sector, the Save Energy Now initiative strategically focused on natural gas savings and targeted the nation's largest manufacturing plants--those that consume a total of 1 trillion British thermal units (Btu) or more annually. The approximately 6800 U.S. facilities that fall into this category collectively account for about 53% of all energy consumed by industry in the United States. The 2006 Save Energy Now energy assessments departed from earlier DOE plant assessments by concentrating solely on steam and process heating systems, which are estimated to account for approximately 74% of all natural gas use for manufacturing. The assessments also integrated a strong training component designed to teach industrial plant personnel how to use DOE's steam or process heating opportunity assessment software tools. This approach had the advantages of promoting strong buy-in of plant personnel for the assessment and its outcomes and preparing them better to independently replicate the assessment process at the company's other facilities. The Save Energy Now initiative also included provisions to help plants that applied for but did not qualify for assessments (based on the 1 trillion Btu criterion). Services offered to these plants included (1) an assessment by one of DOE's 26 university-based Industrial Assessment Centers (IACs), (2) a telephone consultation with a systems expert at the DOE's Energy Efficiency and Renewable Energy Information Center, or (3) other technical materials and services available through ITP (e.g., the Save Energy Now CD). By the end of 2006, DOE had completed all 200 of the promised assessments, identifying potential natural gas savings of more than 50 trillion Btu and energy cost savings of about $500 million. These savings, if fully implemented, could reduce CO2 emissions by 4.04 million metric tons annually. These results, along with the fact that a large percentage of U.S. energy is used by a relatively small number of very large plants, clearly suggest that assessments are an expedient and cost-effective way to significantly affect large amounts of energy use. Building on the success of the 2006 initiative, ITP has expanded the effort in 2007 with the goal of conducting 250 more asse

Wright, Anthony L [ORNL; Martin, Michaela A [ORNL; Gemmer, Bob [U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; Scheihing, Paul [U.S. Department of Energy, Industrial Technologies Program; Quinn, James [U.S. Department of Energy

2007-09-01T23:59:59.000Z

456

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

and CAC 2003). Centrifugal compressors are cost effectiveapplied to centrifugal and rotary screw compressors. Single

Worrell, Ernst

2008-01-01T23:59:59.000Z

457

Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California  

SciTech Connect (OSTI)

Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing carbon dioxide (CO2) emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world and in California. Successful implementation of applicable emerging technologies not only may help advance productivities, improve environmental impacts, or enhance industrial competitiveness, but also can play a significant role in climate-mitigation efforts by saving energy and reducing the associated GHG emissions. Developing new information on costs and savings benefits of energy efficient emerging technologies applicable in California market is important for policy makers as well as the industries. Therefore, provision of timely evaluation and estimation of the costs and energy savings potential of emerging technologies applicable to California is the focus of this report. The overall goal of the project is to identify and select a set of emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. Specifically, this report contains the results from performing Task 3 Technology Characterization for California Industries for the project titled Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies, sponsored by California Energy Commission (CEC) and managed by California Institute for Energy and Environment (CIEE). The project purpose is to characterize energy savings, technology costs, market potential, and economic viability of newly selected technologies applicable to California. In this report, LBNL first performed technology reviews to identify new or under-utilized technologies that could offer potential in improving energy efficiency and additional benefits to California industries as well as in the U.S. industries, followed by detailed technology assessment on each targeted technology, with a focus on California applications. A total of eleven emerging or underutilized technologies applicable to California were selected and characterized with detailed information in this report. The outcomes essentially include a multi-page summary profile for each of the 11 emerging or underutilized technologies applicable to California industries, based on the formats used in the technology characterization reports (Xu et al. 2010; Martin et al. 2000).

Xu, Tengfang; Slaa, Jan Willem; Sathaye, Jayant

2010-12-15T23:59:59.000Z

458

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

Neelis, Maarten; Worrell, Ernst; Masanet, Eric

2008-09-01T23:59:59.000Z

459

1/25/2010 Zadok & Sion I/UCRC CDDA organizational workshop 1 Energy and Cost Analysis of Cloud  

E-Print Network [OSTI]

Now Add Security to Clouds Secure data storage 700+ picocents/bit Private Information Retrieval (PIR, ... Costs: Tech costs, data transfers, security, ... IT people, energy, hardware, space. 1/25/2010 Zadok-costs of security Give users "formula" to choose SLA levels 1/25/2010 Zadok & Sion ­ I/UCRC CDDA organizational

460

Ris Energy Report 5 Photovoltaics 6.3.1 Photovoltaics  

E-Print Network [OSTI]

to rise (Figure 16), high cost remains the principal barrier to PV as a large-scale energy producer 16. Efficiencies of research solar cells continue to rise, but cost is still an issue. figure 17 strategy in 2005 and Danish R&D and industry will certainly benefit from this fast-growing renewable energy

Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

23rd steam-station cost survey  

SciTech Connect (OSTI)

The results of the 23rd Steam Station Cost Survey covering the year 1982 are summarized. The major categories of the survey are as follows: general data; output data, 1982; fuel consumption, 1982; operation 1982 (mills/net kWh); investment ($/net kWh); energy cost, 1982 (mills/net kWh); and station performance, 1982. Thirty-one fossil-fuel steam plants and four nuclear stations were included in the survey. Fuel and operating cost increases are felt to be responsible for the moderate rise in total busbar-enery costs. 11 figures, 1 table.

Friedlander, G.D.; Going, M.C.

1983-11-01T23:59:59.000Z

462

Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions  

SciTech Connect (OSTI)

The aim of commissioning new buildings is to ensure that they deliver, if not exceed, the performance and energy savings promised by their design. When applied to existing buildings, commissioning identifies the almost inevitable 'drift' from where things should be and puts the building back on course. In both contexts, commissioning is a systematic, forensic approach to quality assurance, rather than a technology per se. Although commissioning has earned increased recognition in recent years - even a toehold in Wikipedia - it remains an enigmatic practice whose visibility severely lags its potential. Over the past decade, Lawrence Berkeley National Laboratory has built the world's largest compilation and meta-analysis of commissioning experience in commercial buildings. Since our last report (Mills et al. 2004) the database has grown from 224 to 643 buildings (all located in the United States, and spanning 26 states), from 30 to 100 million square feet of floorspace, and from $17 million to $43 million in commissioning expenditures. The recorded cases of new-construction commissioning took place in buildings representing $2.2 billion in total construction costs (up from 1.5 billion). The work of many more commissioning providers (18 versus 37) is represented in this study, as is more evidence of energy and peak-power savings as well as cost-effectiveness. We now translate these impacts into avoided greenhouse gases and provide new indicators of cost-effectiveness. We also draw attention to the specific challenges and opportunities for high-tech facilities such as labs, cleanrooms, data centers, and healthcare facilities. The results are compelling. We developed an array of benchmarks for characterizing project performance and cost-effectiveness. The median normalized cost to deliver commissioning was $0.30/ft2 for existing buildings and $1.16/ft2 for new construction (or 0.4% of the overall construction cost). The commissioning projects for which data are available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded the direct value of the energy savings. Commissioning also improves worker comfort, mitigates indoor air quality problems

Mills, Evan

2009-07-16T23:59:59.000Z

463

Cost effectiveness of the 1993 model energy code in New Jersey  

SciTech Connect (OSTI)

This is an analysis of cost effectiveness the Council of American Building Officials` 1993 Model Energy Code (MEC) building thermal-envelope requirements for single-family houses and multifamily housing units in New Jersey. Goal was to compare the cost effectiveness of the 1993 MEC to the alternate allowed in the 1993 Building Officials & Code Administrators (BOCA) National Energy Conservation Code -- American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90A-1980 -- based on a comparison of the costs and benefits associated with complying with each. This comparison was performed for Camden, New Brunswick; Somerville, and Sparta. The analysis was done for two different scenarios: a ``move-up`` home buyer purchasing a single-family house and a ``first-time`` financially limited home buyer purchasing a multifamily unit. For the single-family home buyer, compliance with the 1993 MEC was estimated to increase first costs by $1028 to $1564, resulting in an incremental down payment increase of $206 to $313 (at 20% down). The time when the homeowner realizes net cash savings (net positive cash flow) for houses built in accordance with the 1993 MEC was from 1 to 5 years. The home buyer who paid 20% down had recovered increases in down payments and mortgage payments in energy cost savings by the end of the fifth year or sooner and thereafter will save more money each year. For the multifamily unit home buyer first costs were estimated to increase by $121 to $223, resulting in an incremental down payment increase of $12 to $22 (at 10% down). The time when the homeowner realizes net cash savings (net positive cash flow) for houses built in accordance with the 1993 MEC was 1 to 3 years.

Lucas, R.G.

1995-09-01T23:59:59.000Z

464

Sharing local energy infrastructure : organizational models for implementing microgrids and district energy systems in urban commercial districts  

E-Print Network [OSTI]

There is a growing trend in cities toward establishing localized, shared energy infrastructure. As existing energy infrastructure ages and demand increases, cities face rising energy costs and security risks combined with ...

Sherman, Genevieve Rose

2012-01-01T23:59:59.000Z

465

Integration Costs: Are They Unique to Wind and Solar Energy? Preprint  

SciTech Connect (OSTI)

Over the past several years, there has been considerable interest in assessing wind integration costs. This is understandable because wind energy does increase the variability and uncertainty that must be managed on a power system. However, there are other sources of variability and uncertainty that also must be managed in the power system. This paper describes some of these sources and shows that even the introduction of base-load generation can cause additional ramping and cycling. The paper concludes by demonstrating that integration costs are not unique to wind and solar, and should perhaps instead be assessed by power plant and load performance instead of technology type.

Milligan, M.; Hodge, B.; Kirby, B.; Clark, C.

2012-05-01T23:59:59.000Z

466

Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle  

SciTech Connect (OSTI)

At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications. 26 refs., 3 figs., 25 tabs.

Humphreys, K.K.; Brown, D.R.

1990-01-01T23:59:59.000Z

467

Ohio Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC  

SciTech Connect (OSTI)

The 2012 International Energy Conservation Code (IECC) yields positive benefits for Ohio homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Ohio homeowners will save $5,151 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $330 for the 2012 IECC.

Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

2012-07-03T23:59:59.000Z

468

Nevada Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC  

SciTech Connect (OSTI)

The 2012 International Energy Conservation Code (IECC) yields positive benefits for Nevada homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Nevada homeowners will save $4,736 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 2 years for the 2012 IECC. Average annual energy savings are $360 for the 2012 IECC.

Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

2012-07-03T23:59:59.000Z

469

Pennsylvania Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IRC  

SciTech Connect (OSTI)

The 2012 International Energy Conservation Code (IECC) yields positive benefits for Pennsylvania homeowners. Moving to the 2012 IECC from Chapter 11 of the 2009 International Residential Code (IRC) is cost-effective over a 30-year life cycle. On average, Pennsylvania homeowners will save $8,632 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $515 for the 2012 IECC.

Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

2012-07-03T23:59:59.000Z

470

Idaho Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC  

SciTech Connect (OSTI)

The 2012 International Energy Conservation Code (IECC) yields positive benefits for Idaho homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Idaho homeowners will save $4,057 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $285 for the 2012 IECC.

Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

2012-07-03T23:59:59.000Z

471

An evaluation of crew-share payments in the Gulf of Mexico shrimp fishery: assessing the impacts of modifications in a profit sharing technique upon the firm and labor in a rising cost structure  

E-Print Network [OSTI]

compensation package (sharing arrangement) performs. Variability in harvests and the ex- vessel price preclude accurate projections of labor income. Costs also are variable, but the rate of change is less difficult to project. The analysis of the profit...]ections of fuel cost. Labor costs (shares) were computed at breakeven cashflow positions for each of the 12-month intervals. The percentage change in crew-shares was then compared with the cumulative percentage changes in the Consumer Price Index for all items...

Haby, Michael George

2012-06-07T23:59:59.000Z

472

Reducing Idle Power Consumption in Office Spaces Saves U.S. Navy in Energy Costs (Fact Sheet)  

SciTech Connect (OSTI)

As part of a two-year project to demonstrate energy efficiency measures, renewable energy generation, and energy systems integration, the National Renewable Energy Laboratory (NREL) has identified advanced plug load controls as a promising technology for reducing energy use and related costs in the U.S. Navy's Naval Facilities Engineering Command (NAVFAC) office spaces.

Not Available

2014-04-01T23:59:59.000Z

473

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

2008-01-01T23:59:59.000Z

474

Paying Too Much for Energy? The True Costs of Our Energy Choices  

E-Print Network [OSTI]

Energy consumption is critical to economic growth and quality of life. America's energy system, however, is malfunctioning. The status quo is characterized by a tilted playing field, where energy choices are based on the ...

Looney, Adam

475

Cost Control Best Practices for Net Zero Energy Building Projects: Preprint  

SciTech Connect (OSTI)

For net zero energy (NZE) buildings to become the norm in commercial construction, it will be necessary to design and construct these buildings cost effectively. While industry leaders have developed workflows (for procurement, design, and construction) to achieve cost-effective NZE buildings for certain cases, the expertise embodied in those workflows has limited penetration within the commercial building sector. Documenting cost control best practices of industry leaders in NZE and packaging those strategies for adoption by the commercial building sector will help make the business case for NZE. Furthermore, it will promote market uptake of the innovative technologies and design approaches needed to achieve NZE. This paper summarizes successful cost control strategies for NZE procurement, design, and construction that key industry users (such as building owners, architects, and designers) can incorporate into their everyday workflows. It will also evaluate the current state of NZE economics and propose a path forward for greater market penetration of NZE buildings. By demonstrating how to combine NZE technologies and design approaches into an overall efficiency package that can be implemented at minimal (zero, in certain cases) incremental capital cost, the domain of NZE design and construction can be expanded from a niche market to the commercial construction mainstream.

Leach, M.; Pless, S.; Torcellini, P.

2014-02-01T23:59:59.000Z

476

Michigan Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the Michigan Uniform Energy Code  

SciTech Connect (OSTI)

The 2012 International Energy Conservation Code (IECC) yields positive benefits for Michigan homeowners. Moving to the 2012 IECC from the Michigan Uniform Energy Code is cost-effective over a 30-year life cycle. On average, Michigan homeowners will save $10,081 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $604 for the 2012 IECC.

Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

2012-07-03T23:59:59.000Z

477

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

SciTech Connect (OSTI)

A green building competition, to be known as the Energy Free Home Challenge (EFHC), is scheduled to be opened to teams around the world in 2010. This competition will encourage both design innovation and cost reduction, by requiring design entries to meet 'zero net energy' and 'zero net cost' criteria. For the purposes of this competition, a 'zero net energy' home produces at least as much energy as it purchases over the course of a year, regardless of the time and form of the energy (e.g., electricity, heat, or fuel) consumed or produced. A 'zero net cost' home is no more expensive than a traditional home of comparable size and comfort, when evaluated over the course of a 30-year mortgage. In other words, the 'green premium' must have a payback period less than 30 years, based on the value of energy saved. The overarching goal of the competition is to develop affordable, high-performance homes that can be mass-produced at a large scale, and are able to meet occupant needs in harsh climates (as can be found where the competition will be held in Illinois). This report outlines the goals of the competition, and gauges their feasibility using both modeling results and published data. To ensure that the established rules are challenging, yet reasonable, this report seeks to refine the competition goals after exploring their feasibility through case studies, cost projections, and energy modeling. The authors of this report conducted a survey of the most progressive home energy-efficiency practices expected to appear in competition design submittals. In Appendix A, a summary can be found of recent projects throughout the United States, Canada, Germany, Switzerland, Sweden and Japan, where some of the most progressive technologies have been implemented. As with past energy efficient home projects, EFHC competitors will incorporate a multitude of energy efficiency measures into their home designs. The authors believe that the cost of electricity generated by home generation technologies will continue to exceed the price of US grid electricity in almost all locations. Strategies to minimize whole-house energy demand generally involve some combination of the following measures: optimization of surface (area) to volume ratio; optimization of solar orientation; reduction of envelope loads; systems-based engineering of high efficiency HVAC components, and on-site power generation. A 'Base Case' home energy model was constructed, to enable the team to quantitatively evaluate the merits of various home energy efficiency measures. This Base Case home was designed to have an energy use profile typical of most newly constructed homes in the Champaign-Urbana, Illinois area, where the competition is scheduled to be held. The model was created with the EnergyGauge USA software package, a front-end for the DOE-2 building energy simulation tool; the home is a 2,000 square foot, two-story building with an unconditioned basement, gas heating, a gas hot-water heater, and a family of four. The model specifies the most significant details of a home that can impact its energy use, including location, insulation values, air leakage, heating/cooling systems, lighting, major appliances, hot water use, and other plug loads. EFHC contestants and judges should pay special attention to the Base Case model's defined 'service characteristics' of home amenities such as lighting and appliances. For example, a typical home refrigerator is assumed to have a built-in freezer, automatic (not manual) defrost, and an interior volume of 26 cubic feet. The Base Case home model is described in more detail in Section IV and Appendix B.

Al-Beaini, S.; Borgeson, S.; Coffery, B.; Gregory, D.; Konis, K.; Scown, C.; Simjanovic, J.; Stanley, J.; Strogen, B.; Walker, I.

2009-09-01T23:59:59.000Z

478

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

2008-01-01T23:59:59.000Z

479

Study of Possible Applications of Currently Available Building Information Modeling Tools for the Analysis of Initial Costs and Energy Costs for Performing Life Cycle Cost Analysis  

E-Print Network [OSTI]

power to the manufacturing industry. The need to satisfy the environmental sustainability requirements, improve operational effectiveness of buildings and apply value engineering principles has increased the dependency on life cycle costing analysis...

Mukherji, Payal Tapandev

2011-02-22T23:59:59.000Z

480

Integrated Ice Storage/Sprinkler HVAC System Sharply Cuts Energy Costs and Air-Distribution First Costs  

E-Print Network [OSTI]

Integrated ice thermal storage/sprinkler HVAC systems developed and applied by the author in several commercial applications shift a major portion of electric utility demand to cheaper off-peak hours, while also reducing significantly the first cost...

Meckler, G.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rising energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The Cost of Superconducting Magnets as a Function of Stored Energy and Design Magnetic Induction Times the Field Volume  

SciTech Connect (OSTI)

By various theorems one can relate the capital cost of superconducting magnets to the magnetic energy stored within that magnet. This is particularly true for magnet where the cost is dominated by the structure needed to carry the magnetic forces. One can also relate the cost of the magnet to the product of the magnetic induction and the field volume. The relationship used to estimate the cost the magnet is a function of the type of magnet it is. This paper updates the cost functions given in two papers that were published in the early 1990 s. The costs (escalated to 2007 dollars) of large numbers of LTS magnets are plotted against stored energy and magnetic field time field volume. Escalated costs for magnets built since the early 1990 s are added to the plots.

Green, Mike; Green, M.A.; Strauss, B.P.

2007-08-27T23:59:59.000Z

482

IEA Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind Energy; Work Package 1 Final Report  

SciTech Connect (OSTI)

The lifetime cost of wind energy is comprised of a number of components including the investment cost, operation and maintenance costs, financing costs, and annual energy production. Accurate representation of these cost streams is critical in estimating a wind plant's cost of energy. Some of these cost streams will vary over the life of a given project. From the outset of project development, investors in wind energy have relatively certain knowledge of the plant's lifetime cost of wind energy. This is because a wind energy project's installed costs and mean wind speed are known early on, and wind generation generally has low variable operation and maintenance costs, zero fuel cost, and no carbon emissions cost. Despite these inherent characteristics, there are wide variations in the cost of wind energy internationally, which is the focus of this report. Using a multinational case-study approach, this work seeks to understand the sources of wind energy cost differences among seven countries under International Energy Agency (IEA) Wind Task 26 - Cost of Wind Energy. The participating countries in this study include Denmark, Germany, the Netherlands, Spain, Sweden, Switzerland, and the United States. Due to data availability, onshore wind energy is the primary focus of this study, though a small sample of reported offshore cost data is also included.

Schwabe, P.; Lensink, S.; Hand, M.

2011-03-01T23:59:59.000Z

483

Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

Galitsky, Christina; Worrell, Ernst; Ruth, Michael

2003-07-01T23:59:59.000Z

484

Fermilab Central Computing Facility: Energy conservation report and mechanical systems design optimization and cost analysis study  

SciTech Connect (OSTI)

This report is developed as part of the Fermilab Central Computing Facility Project Title II Design Documentation Update under the provisions of DOE Document 6430.1, Chapter XIII-21, Section 14, paragraph a. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis and should be considered as a supplement to the Title I Design Report date March 1986 wherein energy related issues are discussed pertaining to building envelope and orientation as well as electrical systems design.

Krstulovich, S.F.

1986-11-12T23:59:59.000Z

485

Electrolytic Methods as a Cost and Energy Effective Alternative of Harvesting Algae for Biofuel  

E-Print Network [OSTI]

ELECTROLYTIC METHODS AS A COST AND ENERGY EFFECTIVE ALTERNATIVE OF HARVESTING ALGAE FOR BIOFUEL A Thesis by TAYLOR LEE MORRISON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... was from the Department of Energy through the National Alliance for Advanced Biofuels and Bioproducts. The Texas A&M campus facilities available were Dr. Ron Lacey?s micro-algae lab, Dr. Nikolov?s bio-separations lab and Dr. Karthi?s water quality lab...

Morrison, Taylor 1986-

2012-08-30T23:59:59.000Z

486

Low-Cost Direct Bonded Aluminum (DBA) Substrates | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJenniferLeslieEnergy LoanOfficialLow-Cost Direct Bonded

487

Low-Cost Gas Heat Pump For Building Space Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJenniferLeslieEnergy LoanOfficialLow-Cost Direct

488

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

refrigeration systems lead to high compressor energy consumptionrefrigeration systems can help energy managers and facilities engineers track energy consumption,

Galitsky, Christina

2008-01-01T23:59:59.000Z

489

Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

strategic energy management programin a strategic energy management program are depicted inof a strategic energy management program A successful

Worrell, Ernst

2008-01-01T23:59:59.000Z

490

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

perpetuate less energy efficient designs. When a companytips for the energy efficient design of new labs andEnergy Guide. Energy efficient system design. The greatest

Galitsky, Christina

2008-01-01T23:59:59.000Z

491

On the global economic potentials and marginal costs of non-renewable resources and the price dynamics of energy commodities  

E-Print Network [OSTI]

A model is presented in this work for simulating endogenously the evolution of the marginal costs of production of energy carriers from non-renewable resources, their consumption, depletion pathways and timescales. Such marginal costs can be used to simulate the long term average price formation of energy commodities. Drawing on previous work where a global database of energy resource economic potentials was constructed, this work uses cost distributions of non-renewable resources in order to evaluate global flows of energy commodities. A mathematical framework is given to calculate endogenous flows of energy resources given an exogenous commodity price path. This framework can be used in reverse in order to calculate an exogenous marginal cost of production of energy carriers given an exogenous carrier demand. Using rigid price inelastic assumptions independent of the economy, these two approaches generate limiting scenarios that depict extreme use of natural resources. This is useful to characterise the cur...

Mercure, Jean-Francois

2013-01-01T23:59:59.000Z

492

A review of the Energy Productivity Center's Least-Cost Energy Strategy study  

E-Print Network [OSTI]

The Mellon Institute's Energy Productivity Center (EPC) has recently completed a study asking the question, "How would the nation have provided energy services in 1978 if its capital stock had een reconfigured to be optimal ...

Berndt, Ernst R.

1981-01-01T23:59:59.000Z

493

World-Class Energy Assessments: Industrial Action Plans for Greater and More Durable Energy Cost Control  

E-Print Network [OSTI]

This report summarizes recommendations for improving the impact of industrial energy assessments. This initiative responds to the observation that less than half of recommended energy improvements are implemented as a result of traditional...

Russell, C.

2007-01-01T23:59:59.000Z

494

Toward zero net energy buildings : optimized for energy use and cost  

E-Print Network [OSTI]

Recently, there has been a push toward zero net energy buildings (ZNEBs). While there are many options to reduce the energy used in buildings, it is often difficult to determine which are the most appropriate technologies ...

Brown, Carrie Ann, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

495

Program Potential: Estimates of Federal Energy Cost Savings from Energy Efficient Procurement  

E-Print Network [OSTI]

Freezers Commercial Steam Cookers b EnergyStar EnergyStarFreezers Com Steam Cookers Water-Cooled Ice Machines Pre-Printer Commercial Steam Cookers Commercial Central Air 

Taylor, Margaret

2014-01-01T23:59:59.000Z

496

The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs  

E-Print Network [OSTI]

Residential programs designed around directly influencing household habits and decision-making on energy consumption through quantitative or graphical feedback

Billingsley, Megan A.

2014-01-01T23:59:59.000Z

497

The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs  

E-Print Network [OSTI]

ISO/RTO forward capacity markets, or as an environmentalfor wholesale energy and capacity markets. More rigorous and

Billingsley, Megan A.

2014-01-01T23:59:59.000Z

498

'Tilted' Industrial Electric Rates: A New Negative Variable for Energy Engineers  

E-Print Network [OSTI]

The cost of purchased electricity for industry is rising even faster than for other sectors. Conventional means of reducing power costs include internal techniques like load management, demand controls and energy conservation. External mechanisms...

Greenwood, R. W.

1981-01-01T23:59:59.000Z

499

Waste-to-energy plants face costly emissions-control upgrades  

SciTech Connect (OSTI)

One treatment method of municipal solid waste, incineration, has fallen in and out of public favor. In the 1970s, emerging consciousness of the threat to groundwater posed by leaking landfills made incineration an attractive option. Prompted by disrupted energy supplies and steeply rising prices, more than 100 municipalities began to generate electricity from the heat produced by burning trash. In the 1990s, the pendulum of public enthusiasm has swung away from incineration. Energy prices have declined dramatically, and safety and siting concerns complicate new projects. A recent Supreme Court decision ruled that municipal incinerator ash must be tested as hazardous waste and disposed accordingly if levels of such pollutants as cadmium and lead exceed Resource Conservation and Recovery Act limits. So-called flow control regulations, which allowed municipalities to apportion garbage disposal to ensure steady supplies to incinerators, also have been struck down. EPA is tackling the issue of air emissions from waste-to-energy and non-energy-producing municipal waste combustors. Emissions guidelines for MWCs and new-source performance standards for new units, proposed Sept. 20 under Sec. 129 of the Clean Air Act Amendments of 1990, are the culmination of a stalled and litigated initiative dating back to the CAA Amendments of 1977.

McIlvaine, R.W.

1995-06-01T23:59:59.000Z

500

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

the effects of low refrigerant charge. The cost of automatedby applying this measure. Monitoring of refrigerant charge.A low refrigerant charge can exist in many small direct

Galitsky, Christina

2008-01-01T23:59:59.000Z