National Library of Energy BETA

Sample records for ring-shaped protein explains

  1. Rotary Firing in Ring-Shaped Protein Explains Unidirectionality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Hexameric motor proteins represent a complex class of molecular machines that variously push and pull on...

  2. Rotary Firing in Ring-Shaped Protein Explains Unidirectionality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Wednesday, 28 April 2010 00:00 Hexameric motor proteins represent a complex class of molecular machines that variously push and pull on biological molecules using adenosine triphosphate (ATP) as chemical fuel. A specialized class of ring-shaped motor proteins, hexameric helicases, can unwind DNA strands and perform large-scale manipulations of single-stranded

  3. Rotary Firing in Ring-Shaped Protein Explains Unidirectionality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Hexameric motor proteins represent a complex class of molecular machines that variously push and pull on biological molecules using adenosine triphosphate (ATP) as chemical fuel. A specialized class of ring-shaped motor proteins, hexameric helicases, can unwind DNA strands and perform large-scale manipulations of single-stranded nucleic acids in processes such as DNA replication, DNA repair, and gene expression. To understand

  4. Rotary Firing in Ring-Shaped Protein Explains Unidirectionality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Hexameric motor proteins represent a complex class of molecular machines that variously push and pull on biological molecules using adenosine triphosphate (ATP) as chemical fuel. A specialized class of ring-shaped motor proteins, hexameric helicases, can unwind DNA strands and perform large-scale manipulations of single-stranded nucleic acids in processes such as DNA replication, DNA repair, and gene expression. To understand

  5. Rotary Firing in Ring-Shaped Protein Explains Unidirectionality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Hexameric motor proteins represent a complex class of molecular machines that variously push and pull on biological molecules using adenosine triphosphate (ATP) as chemical fuel. A specialized class of ring-shaped motor proteins, hexameric helicases, can unwind DNA strands and perform large-scale manipulations of single-stranded nucleic acids in processes such as DNA replication, DNA repair, and gene expression. To understand

  6. Rotary Firing in Ring-Shaped Protein Explains Unidirectionality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Hexameric motor proteins represent a complex class of molecular machines that variously push and pull on biological molecules using adenosine triphosphate (ATP) as chemical fuel. A specialized class of ring-shaped motor proteins, hexameric helicases, can unwind DNA strands and perform large-scale manipulations of single-stranded nucleic acids in processes such as DNA replication, DNA repair, and gene expression. To understand

  7. Rotary Firing in Ring-Shaped Protein Explains Unidirectionality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Hexameric motor proteins represent a complex class of molecular machines that variously push and pull on biological molecules using adenosine triphosphate (ATP) as chemical fuel. A specialized class of ring-shaped motor proteins, hexameric helicases, can unwind DNA strands and perform large-scale manipulations of single-stranded nucleic acids in processes such as DNA replication, DNA repair, and gene expression. To understand

  8. Rotary Firing in Ring-Shaped Protein Explains Unidirectionality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Hexameric motor proteins represent a complex class of molecular machines that variously push and pull on biological molecules using adenosine triphosphate (ATP) as chemical fuel. A specialized class of ring-shaped motor proteins, hexameric helicases, can unwind DNA strands and perform large-scale manipulations of single-stranded nucleic acids in processes such as DNA replication, DNA repair, and gene expression. To understand

  9. Rotary Firing in Ring-Shaped Protein Explains Unidirectionality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Hexameric motor proteins represent a complex class of molecular machines that variously push and pull on biological molecules using adenosine triphosphate (ATP) as chemical fuel. A specialized class of ring-shaped motor proteins, hexameric helicases, can unwind DNA strands and perform large-scale manipulations of single-stranded nucleic acids in processes such as DNA replication, DNA repair, and gene expression. To understand

  10. Rotary Firing in Ring-Shaped Protein Explains Unidirectionality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the structure of a hexameric helicase, the Rho transcription termination factor (from E. coli), bound to both ATP mimics and an RNA substrate. The results showed that Rho...

  11. Rotary Firing in Ring-Shaped Protein Explains Unidirectionality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Root Cause Analysis (RCA) & Corrective Action Plan (CAP) Root Cause Analysis (RCA) & Corrective Action Plan (CAP) Improving the Department of Energy's project and contract management continues to be one of the Department's management priorities. Excellence in this area helps ensure that DOE's programs and projects meet DOE's strategic objectives, provide value to the American taxpayer, and foster public confidence in DOE's ability to manage its responsibilities. As part of our

  12. Rotary Firing in Ring-Shaped Protein Explains Unidirectionality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    perform large-scale manipulations of single-stranded nucleic acids in processes such as DNA replication, DNA repair, and gene expression. To understand how certain hexameric...

  13. Rotary Firing in Ring-Shaped Protein Explains Unidirectionality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    structure of a hexameric helicase, the Rho transcription termination factor (from E. coli), bound to both ATP mimics and an RNA substrate. The results showed that Rho functions...

  14. Rotary Firing in Ring-Shaped Protein Explains Unidirectionality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manipulations of single-stranded nucleic acids in processes such as DNA replication, DNA repair, and gene expression. To understand how certain hexameric helicases walk with...

  15. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Monday, 28 November 2011 14:52 Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin

  16. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but

  17. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but

  18. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but

  19. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but

  20. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but

  1. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but

  2. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Monday, 28 November 2011 14:52 Movement is fundamental to life. It...

  3. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported...

  4. Ring-shaped polariton lasing in pillar microcavities

    SciTech Connect (OSTI)

    Kalevich, V. K. Afanasiev, M. M.; Lukoshkin, V. A.; Kavokin, K. V.; Tsintzos, S. I.; Savvidis, P. G.; Kavokin, A. V.

    2014-03-07

    Optically generated exciton-polaritons in cylindric semiconductor pillar microcavity with embedded GaAs/AlGaAs quantum wells demonstrate a clear polariton lasing regime. When exciting in the center of the pillar, we detect a ring-shaped emission, where the peak of intensity can be separated from the excitation spot by more than 10 μm. The spatial coherence of the ring emission is verified by interferometry measurements. These observations are interpreted by drift of the exciton polariton condensate away from the excitation spot due to its repulsion from the exciton reservoir and by its spatial confinement by the pillar boundary.

  5. Peculiarity of convergence of shock wave generated by underwater electrical explosion of ring-shaped wire

    SciTech Connect (OSTI)

    Shafer, D.; Toker, G. R.; Gurovich, V. Tz.; Gleizer, S.; Krasik, Ya. E.

    2013-05-15

    Nanosecond timescale underwater electrical wire explosions of ring-shaped Cu wires were investigated using a pulsed generator with a current amplitude up to 50 kA. It was shown that this type of wire explosion results in the generation of a toroidal shock wave (SW). Time- and space-resolved optical diagnostics were used to determine azimuthal uniformity of the shock wave front and its velocity. It was found that the shock wave preserves its circular front shape in the range of radii 50?mexplaining the constant velocity of the shock wave.

  6. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feature called the buttress that may play an important role in dynein's mechanical cycle. Yeast Yields Enable Protein Study The transportation of materials around a cell is...

  7. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    But the yield of protein from yeast was low, prompting researchers to try fed-batch fermentation, an approach used to make commercial yeast. In this method, a sugar solution is fed...

  8. Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma

    SciTech Connect (OSTI)

    Xiaolong, Wei; Haojun, Xu; Min, Lin; Chen, Su; Jianhai, Li

    2015-05-28

    An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density (N{sub e}) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP generator in size of 20 × 20 × 7 cm{sup 3} without magnetic confinement is designed. The discharge results show that the ICP is amorphous in E-mode and ring-shaped in H-mode. The structure of ICP stratifies into core region and edge halo in H-mode, and its width and thickness changes from power and pressure. Such phenomena are explained by the distribution of RF magnetic field, the diffusion of negative ions plasma and the variation of skin depth. In addition, the theoretical analysis shows that the N{sub e} achieves nearly uniform within the electronegative core and sharply steepens in the edge. The N{sub e} of core region is diagnosed by microwave interferometer under varied conditions (pressure in range of 10–50 Pa, power in 300–700 W). Furthermore, the electromagnetic wave attenuation measurements were carried out with the air ICP in the frequencies of 4–5 GHz. The results show that the interspaced ICP is still effective to wave attenuation, and the wave attenuation increases with the power and pressure. The measured attenuation is approximately in accordance with the calculation data of finite-different time-domain simulations.

  9. Electrodynamics of a ring-shaped spiral resonator

    SciTech Connect (OSTI)

    Maleeva, N.; Karpov, A.; Averkin, A.; Fistul, M. V.; Zhuravel, A. P.; Jung, P.; Ustinov, A. V.

    2014-02-14

    We present analytical, numerical, and experimental investigations of electromagnetic resonant modes of a compact monofilar Archimedean spiral resonator shaped in a ring, with no central part. Planar spiral resonators are interesting as components of metamaterials for their compact deep-subwavelength size. Such resonators couple primarily to the magnetic field component of the incident electromagnetic wave, offering properties suitable for magnetic meta-atoms. Surprisingly, the relative frequencies of the resonant modes follow the sequence of the odd numbers as f{sub 1}:f{sub 2}:f{sub 3}:f{sub 4}… = 1:3:5:7…, despite the nearly identical boundary conditions for electromagnetic fields at the extremities of the resonator. In order to explain the observed spectrum of resonant modes, we show that the current distribution inside the spiral satisfies a particular Carleman type singular integral equation. By solving this equation, we obtain a set of resonant frequencies. The analytically calculated resonance frequencies and the current distributions are in good agreement with experimental data and the results of numerical simulations. By using low-temperature laser scanning microscopy of a superconducting spiral resonator, we compare the experimentally visualized ac current distributions over the spiral with the calculated ones. Theory and experiment agree well with each other. Our analytical model allows for calculation of a detailed three-dimensional magnetic field structure of the resonators.

  10. Cell culture arrays using micron-sized ferromagnetic ring-shaped thin films

    SciTech Connect (OSTI)

    Huang, Chen-Yu; Wei, Zung-Hang; Lai, Mei-Feng; Ger, Tzong-Rong

    2015-05-07

    Cell patterning has become an important technology for tissue engineering. In this research, domain walls are formed at the two ends of a ferromagnetic ring thin film after applying a strong external magnetic field, which can effectively attract magnetically labeled cells and control the position for biological cell. Magnetophoresis experiment was conducted to quantify the magnetic nanoparticle inside the cells. A ring-shaped magnetic thin films array was fabricated through photolithography. It is observed that magnetically labeled cells can be successfully attracted to the two ends of the ring-shaped magnetic thin film structure and more cells were attracted and further attached to the structures. The cells are co-cultured with the structure and kept proliferating; therefore, such ring thin film can be an important candidate for in-vitro biomedical chips or tissue engineering.

  11. Trapping two types of particles using a double-ring-shaped radially polarized beam

    SciTech Connect (OSTI)

    Zhang Yaoju; Ding Biaofeng; Suyama, Taikei

    2010-02-15

    An optical-trap method based on the illumination of a double-ring-shaped radially polarized beam (R-TEM{sub 11}*) is proposed. The numerical results based on the vector diffraction theory show that a highly focused R-TEM{sub 11}* beam not only can produce a bright spot but also can form an optical cage in the focal region by changing the truncation parameter {beta}, defined as the ratio of the radius of the aperture to the waist of the beam. The radiation forces acting on Rayleigh particles are calculated by using the Rayleigh scattering theory. The bright spot generated by the R-TEM{sub 11}* beam with a {beta} value close to 2 can three-dimensionally trap a particle with a refractive index larger than that of the ambient. An optical cage or three-dimensional dark spot generated by the R-TEM{sub 11}* beam with a {beta} value close to 1.3 can three-dimensionally trap a particle with refractive index smaller than that of the ambient. Because the adjustment of the truncation parameter can be actualized by simply changing the radius of a circular aperture inserted in the front of the lens, only one optical-trap system in the present method can be used to three-dimensionally trap two types of particles with different refractive indices.

  12. Criteria of radio-frequency ring-shaped hollow cathode discharge using H{sub 2} and Ar gases for plasma processing

    SciTech Connect (OSTI)

    Ohtsu, Yasunori; Kawasaki, Yujiro

    2013-01-21

    In order to achieve high-density capacitively coupled plasma, a radio-frequency (RF) ring-shaped hollow cathode discharge has been developed as a candidate for processing plasma sources. The plasma density in the hollow cathode discharge reaches a high magnitude of 10{sup 10}-10{sup 11} cm{sup -3}. The RF ring-shaped hollow cathode discharge depends on the pressure and mass of the working gas. Criteria required for producing a RF ring-shaped hollow cathode discharge have been investigated for various gas pressures using H{sub 2} and Ar gases for high-density plasma production. The results reveal that the criteria for the occurrence of the hollow cathode effect are that the trench width should be approximately equal to the sum of the electron-neutral mean free paths and twice the sheath thickness of the RF powered electrode.

  13. Transcriptional bursting explains the noise–versus–mean relationship in mRNA and protein levels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dar, Roy; Shaffer, Sydney M.; Singh, Abhyudai; Razooky, Brandon S.; Simpson, Michael L.; Raj, Arjun; Weinberger, Leor S.

    2016-07-28

    Recent analysis demonstrates that the HIV-1 Long Terminal Repeat (HIV LTR) promoter exhibits a range of possible transcriptional burst sizes and frequencies for any mean-expression level. However, these results have also been interpreted as demonstrating that cell-tocell expression variability (noise) and mean are uncorrelated, a significant deviation from previous results. Here, we re-examine the available mRNA and protein abundance data for the HIV LTR and find that noise in mRNA and protein expression scales inversely with the mean along analytically predicted transcriptional burst-size manifolds. We then experimentally perturb transcriptional activity to test a prediction of the multiple burst-size model: thatmore » increasing burst frequency will cause mRNA noise to decrease along given burst-size lines as mRNA levels increase. In conclusion, the data show that mRNA and protein noise decrease as mean expression increases, supporting the canonical inverse correlation between noise and mean.« less

  14. Wedding ring shaped excitation coil

    DOE Patents [OSTI]

    MacLennan, Donald A.; Tsai, Peter

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency.

  15. Protein Structure Suggests Role as Molecular Adapter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Structure Suggests Role as Molecular Adapter Protein Structure Suggests Role as Molecular Adapter Print Wednesday, 24 June 2009 00:00 To split and copy DNA during replication, all cellular organisms use a multicomponent molecular machine known as the replisome. An essential step in replisome assembly is the loading of ring-shaped helicases (motor proteins) onto the separated strands of DNA. Dedicated ATP-fueled proteins regulate the loading; however, the mechanism by which these proteins

  16. Protein Structure Suggests Role as Molecular Adapter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Structure Suggests Role as Molecular Adapter Print To split and copy DNA during replication, all cellular organisms use a multicomponent molecular machine known as the replisome. An essential step in replisome assembly is the loading of ring-shaped helicases (motor proteins) onto the separated strands of DNA. Dedicated ATP-fueled proteins regulate the loading; however, the mechanism by which these proteins recruit and deposit helicases has remained unclear. To better understand this

  17. Protein Structure Suggests Role as Molecular Adapter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Structure Suggests Role as Molecular Adapter Print To split and copy DNA during replication, all cellular organisms use a multicomponent molecular machine known as the replisome. An essential step in replisome assembly is the loading of ring-shaped helicases (motor proteins) onto the separated strands of DNA. Dedicated ATP-fueled proteins regulate the loading; however, the mechanism by which these proteins recruit and deposit helicases has remained unclear. To better understand this

  18. Protein Structure Suggests Role as Molecular Adapter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Structure Suggests Role as Molecular Adapter Print To split and copy DNA during replication, all cellular organisms use a multicomponent molecular machine known as the replisome. An essential step in replisome assembly is the loading of ring-shaped helicases (motor proteins) onto the separated strands of DNA. Dedicated ATP-fueled proteins regulate the loading; however, the mechanism by which these proteins recruit and deposit helicases has remained unclear. To better understand this

  19. Protein Structure Suggests Role as Molecular Adapter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Structure Suggests Role as Molecular Adapter Print To split and copy DNA during replication, all cellular organisms use a multicomponent molecular machine known as the replisome. An essential step in replisome assembly is the loading of ring-shaped helicases (motor proteins) onto the separated strands of DNA. Dedicated ATP-fueled proteins regulate the loading; however, the mechanism by which these proteins recruit and deposit helicases has remained unclear. To better understand this

  20. Proteins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proteins Scientists manipulate and mimic proteins for use in creating solutions for medicine, sustainable energy, and more Read caption + Los Alamos National Laboratory graduate student, Patricia Langan, changes the properties of a green fluorescent protein in order to create new fluorescent protein variants. Overview of Research and Highlights Scientists at Los Alamos apply a unique collection of tools and expertise to gain a comprehensive understanding of the structure and function of proteins

  1. Proteins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proteins Protein Engineering, Structure, and Function Los Alamos scientists seek a comprehensive understanding of the structure and function of proteins which can lead to a multitude of possibilities, such as enhancing cellulose degradation for biofuels or creating new therapeutics. Contact Us Tom Terwilliger Laboratory Fellow Email Andrew Bradbury Bioscience Group Leader Email Rebecca McDonald Bioscience Communications Email Los Alamos scientists are developing mosaic proteins that may one day

  2. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    normal density. A 75-liter fed-batch growth produced 14 kg of yeast and required a new freezer be purchased to store it all. With this massive increase in starting material, enough...

  3. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    normal density. A 75-liter fed-batch growth produced 14 kg of yeast and required a new freezer be purchased to store it all. With this massive increase in starting material,...

  4. Dark antiatoms can explain DAMA

    SciTech Connect (OSTI)

    Wallemacq, Quentin; Cudell, Jean-René E-mail: jr.cudell@ulg.ac.be

    2015-02-01

    We show that the existence of a sub-dominant form of dark matter, made of dark ''antiatoms'' of mass m∼ 1 TeV and size a-dot {sub 0}∼ 3 fm, can explain the results of direct detection experiments, with a positive signal in DAMA/NaI and DAMA/LIBRA and no signal in other experiments. The signal comes from the binding of the dark antiatoms to thallium, a dopant in DAMA, and is not present for the constituent atoms of other experiments. The dark antiatoms are made of two particles oppositely charged under a dark U(1) symmetry and can bind to terrestrial atoms because of a kinetic mixing between the photon and the massless dark photon, such that the dark particles acquire an electric millicharge ∼ ± 5.10{sup −4}e. This millicharge enables them to bind to high-Z atoms via radiative capture, after they thermalize in terrestrial matter through elastic collisions.

  5. Physics of Intrinsic Plasma Rotation Explained for First Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics of Intrinsic Plasma Rotation Explained for First Time Physics of Intrinsic Plasma Rotation Explained for First Time Key understanding for modeling future fusion reactors ...

  6. Natural Aerosols Explain Seasonal and Spatial Patterns of Southern...

    Office of Scientific and Technical Information (OSTI)

    Natural Aerosols Explain Seasonal and Spatial Patterns of Southern Ocean Cloud Albedo Citation Details In-Document Search Title: Natural Aerosols Explain Seasonal and Spatial ...

  7. Crystal structure of a ;#8203;BRAF kinase domain monomer explains...

    Office of Scientific and Technical Information (OSTI)

    Crystal structure of a ;8203;BRAF kinase domain monomer explains basis for allosteric regulation Citation Details In-Document Search Title: Crystal structure of a ;8203;BRAF ...

  8. Energy Units - Energy Explained, Your Guide To Understanding...

    U.S. Energy Information Administration (EIA) Indexed Site

    Calculators Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  9. Adsorption of Organic Molecules May Explain Growth of Newly Nucleated...

    Office of Scientific and Technical Information (OSTI)

    Adsorption of Organic Molecules May Explain Growth of Newly Nucleated Clusters and New Particle Formation Citation Details In-Document Search Title: Adsorption of Organic Molecules ...

  10. Home - Energy Explained, Your Guide To Understanding Energy ...

    Gasoline and Diesel Fuel Update (EIA)

    Use of Electricity Prices and Factors Affecting Prices Electricity & the Environment Hydrogen Production of Hydrogen Use of Hydrogen Help promote Energy Explained with the...

  11. NREL Explains the Higher Cellulolytic Activity of a Vital Microorganis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explains the Higher Cellulolytic Activity of a Vital Microorganism Wide range of cellulase ... The scientists found the microorganism utilizes the common cellulase degradation ...

  12. Assembling a ring-shaped crystal in a microfabricated surface ion trap

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stick, Daniel Lynn; Univ. of New Mexico, Albuquerque, NM; Tabakov, Boyan; Univ. of New Mexico, Albuquerque, NM; Benito, Francisco; Blain, Matthew; Clark, Craig R.; Clark, Susan; Haltli, Raymond A.; Maunz, Peter; et al

    2015-09-01

    We report on experiments with a microfabricated surface trap designed for confining a chain of ions in a ring. Uniform ion separation over most of the ring is achieved with a rotationally symmetric design and by measuring and suppressing undesired electric fields. After reducing stray fields, the ions are confined primarily by a radio-frequency pseudopotential and their mutual Coulomb repulsion. As a result, approximately 400 40Ca+ ions with an average separation of 9 μm comprise the ion crystal.

  13. Assembling a ring-shaped crystal in a microfabricated surface ion trap

    SciTech Connect (OSTI)

    Stick, Daniel Lynn; Tabakov, Boyan; Benito, Francisco; Blain, Matthew; Clark, Craig R.; Clark, Susan; Haltli, Raymond A.; Maunz, Peter; Sterk, Jonathan D.; Tigges, Chris

    2015-09-01

    We report on experiments with a microfabricated surface trap designed for confining a chain of ions in a ring. Uniform ion separation over most of the ring is achieved with a rotationally symmetric design and by measuring and suppressing undesired electric fields. After reducing stray fields, the ions are confined primarily by a radio-frequency pseudopotential and their mutual Coulomb repulsion. As a result, approximately 400 40Ca+ ions with an average separation of 9 μm comprise the ion crystal.

  14. Home - Energy Explained, Your Guide To Understanding Energy - Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Explained Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for Future

  15. Physics of Intrinsic Plasma Rotation Explained for First Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics of Intrinsic Plasma Rotation Explained for First Time Physics of Intrinsic Plasma Rotation Explained for First Time Key understanding for modeling future fusion reactors such as ITER July 23, 2013 CHANG.JPG Flamelets or hot spots along the plasma edge (a) drive turbulence intensity (b), temperature intensity (c), and intrinsic torque (d) inward, converting heat into toroidal rotation. (S. Ku et al.) If humans could harness nuclear fusion, the process that powers stars like our sun, the

  16. Measuring and Explaining Electricity Price Changes in Restructured States

    SciTech Connect (OSTI)

    Fagan, Mark L.

    2006-06-15

    An effort to determine the effect of restructuring on prices finds that, on average, prices for industrial customers in restructured states were lower, relative to predicted prices, than prices for industrial customers in non-restructured states. This preliminary analysis also finds that these price changes are explained primarily by high pre-restructuring prices, not whether or not a state restructured. (author)

  17. ALSNews Vol. 308

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Print In This Issue Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Biomimetic Dye Molecules for Solar Cells Photon Science for Renewable Energy: A News ALS Brochure Everything You Wanted To Know About ALS Proposals, Beam Time Allocations ALS Science Cafés Successful, Continue VUVX 2010 Conference Update Ring Leaders: Scientific Support Group Announcements: Vogue Shines Light on the ALS, ALS Facebook Flourishing, Guest House Special Extended Who's in the News Operations Update

  18. ALSNews Vol. 308

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 ALSNews Vol. 308 Print Wednesday, 28 April 2010 00:00 In This Issue Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Biomimetic Dye Molecules for Solar Cells Photon Science for Renewable Energy: A News ALS Brochure Everything You Wanted To Know About ALS Proposals, Beam Time Allocations ALS Science Cafés Successful, Continue VUVX 2010 Conference Update Ring Leaders: Scientific Support Group Announcements: Vogue Shines Light on the ALS, ALS Facebook Flourishing, Guest House

  19. ALSNews Vol. 308

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Print In This Issue Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Biomimetic Dye Molecules for Solar Cells Photon Science for Renewable Energy: A News ALS Brochure Everything You Wanted To Know About ALS Proposals, Beam Time Allocations ALS Science Cafés Successful, Continue VUVX 2010 Conference Update Ring Leaders: Scientific Support Group Announcements: Vogue Shines Light on the ALS, ALS Facebook Flourishing, Guest House Special Extended Who's in the News Operations Update

  20. ALSNews Vol. 308

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Print In This Issue Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Biomimetic Dye Molecules for Solar Cells Photon Science for Renewable Energy: A News ALS Brochure Everything You Wanted To Know About ALS Proposals, Beam Time Allocations ALS Science Cafés Successful, Continue VUVX 2010 Conference Update Ring Leaders: Scientific Support Group Announcements: Vogue Shines Light on the ALS, ALS Facebook Flourishing, Guest House Special Extended Who's in the News Operations Update

  1. ALSNews Vol. 308

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    08 Print In This Issue Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Biomimetic Dye Molecules for Solar Cells Photon Science for Renewable Energy: A News ALS Brochure Everything You Wanted To Know About ALS Proposals, Beam Time Allocations ALS Science Cafés Successful, Continue VUVX 2010 Conference Update Ring Leaders: Scientific Support Group Announcements: Vogue Shines Light on the ALS, ALS Facebook Flourishing, Guest House Special Extended Who's in the News Operations

  2. ALSNews Vol. 308

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Print In This Issue Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Biomimetic Dye Molecules for Solar Cells Photon Science for Renewable Energy: A News ALS Brochure Everything You Wanted To Know About ALS Proposals, Beam Time Allocations ALS Science Cafés Successful, Continue VUVX 2010 Conference Update Ring Leaders: Scientific Support Group Announcements: Vogue Shines Light on the ALS, ALS Facebook Flourishing, Guest House Special Extended Who's in the News Operations Update

  3. ALSNews Vol. 308

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Print In This Issue Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Biomimetic Dye Molecules for Solar Cells Photon Science for Renewable Energy: A News ALS Brochure Everything You Wanted To Know About ALS Proposals, Beam Time Allocations ALS Science Cafés Successful, Continue VUVX 2010 Conference Update Ring Leaders: Scientific Support Group Announcements: Vogue Shines Light on the ALS, ALS Facebook Flourishing, Guest House Special Extended Who's in the News Operations Update

  4. ALSNews Vol. 308

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Print In This Issue Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Biomimetic Dye Molecules for Solar Cells Photon Science for Renewable Energy: A News ALS Brochure Everything You Wanted To Know About ALS Proposals, Beam Time Allocations ALS Science Cafés Successful, Continue VUVX 2010 Conference Update Ring Leaders: Scientific Support Group Announcements: Vogue Shines Light on the ALS, ALS Facebook Flourishing, Guest House Special Extended Who's in the News Operations Update

  5. ALSNews Vol. 308

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Print In This Issue Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Biomimetic Dye Molecules for Solar Cells Photon Science for Renewable Energy: A News ALS Brochure Everything You Wanted To Know About ALS Proposals, Beam Time Allocations ALS Science Cafés Successful, Continue VUVX 2010 Conference Update Ring Leaders: Scientific Support Group Announcements: Vogue Shines Light on the ALS, ALS Facebook Flourishing, Guest House Special Extended Who's in the News Operations Update

  6. ALSNews Vol. 308

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Print In This Issue Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Biomimetic Dye Molecules for Solar Cells Photon Science for Renewable Energy: A News ALS Brochure Everything You Wanted To Know About ALS Proposals, Beam Time Allocations ALS Science Cafés Successful, Continue VUVX 2010 Conference Update Ring Leaders: Scientific Support Group Announcements: Vogue Shines Light on the ALS, ALS Facebook Flourishing, Guest House Special Extended Who's in the News Operations Update

  7. Solar - Energy Explained, Your Guide To Understanding Energy - Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Solar Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for Future Emissions

  8. Solar Energy and the Environment - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) Indexed Site

    Understanding Energy - Energy Information Administration Energy & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where

  9. Solar Thermal Collectors - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy - Energy Information Administration Collectors Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook

  10. Solar Thermal Power Plants - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy - Energy Information Administration Power Plants Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From

  11. Wind - Energy Explained, Your Guide To Understanding Energy - Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Wind Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for Future Emissions

  12. Wind Energy and the Environment - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) Indexed Site

    Understanding Energy - Energy Information Administration Wind > Wind Energy & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the

  13. NREL Explains the Higher Cellulolytic Activity of a Vital Microorganism |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy | NREL NREL Explains the Higher Cellulolytic Activity of a Vital Microorganism Wide range of cellulase modalities in C. thermocellum makes it one of the most efficient biomass degraders February 5, 2016 Researchers at the Energy Department's National Renewable Energy Laboratory (NREL) and the BioEnergy Science Center (BESC) say better understanding of a bacterium could lead to cheaper production of cellulosic ethanol and other advanced biofuels. Their discovery was made during an

  14. Energy and the Environment - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy - Energy Information Administration Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook

  15. Nuclear forensics, explained: NNSA analytic chemists help keep the world

    National Nuclear Security Administration (NNSA)

    safe | National Nuclear Security Administration | (NNSA) forensics, explained: NNSA analytic chemists help keep the world safe Thursday, February 25, 2016 - 2:46pm One of the gravest threats the world faces is the possibility that terrorists will acquire nuclear weapons or the necessary materials to construct a weapon. Part of the work of NNSA's Office of Defense Nuclear Nonproliferation and the national laboratories is to support investigations into the diversion, trafficking, or illicit

  16. Nonrenewable Energy Sources - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy - Energy Information Administration Sources Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for

  17. Renewable Energy Sources - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy - Energy Information Administration Sources Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for

  18. Secondary Energy Sources - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy - Energy Information Administration Sources Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for

  19. Biodiesel - Energy Explained, Your Guide To Understanding Energy - Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Biodiesel Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for Future

  20. Biodiesel and the Environment - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) Indexed Site

    Understanding Energy - Energy Information Administration Biodiesel & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where

  1. Biofuels: Ethanol and Biodiesel - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) Indexed Site

    Understanding Energy - Energy Information Administration Biodiesel Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come

  2. Biomass - Energy Explained, Your Guide To Understanding Energy - Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Biomass Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for Future

  3. Biomass and the Environment - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy - Energy Information Administration Biomass & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases

  4. Coal - Energy Explained, Your Guide To Understanding Energy - Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Coal Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for Future Emissions

  5. Coal and the Environment - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy - Energy Information Administration Coal > Coal & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where

  6. Diesel and the Environment - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy - Energy Information Administration Diesel Fuel > Diesel & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where

  7. Electricity - Energy Explained, Your Guide To Understanding Energy - Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Electricity Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for Future

  8. Energy Use for Transportation - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) Indexed Site

    Understanding Energy - Energy Information Administration For Transportation Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse

  9. Energy Use in Commercial Buildings - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) Indexed Site

    Understanding Energy - Energy Information Administration Commercial Buildings Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse

  10. Energy Use in Industry - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy - Energy Information Administration Industry Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook

  11. Ethanol - Energy Explained, Your Guide To Understanding Energy - Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Ethanol Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for Future

  12. Ethanol and the Environment - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy - Energy Information Administration Ethanol & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases

  13. Gasoline and the Environment - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) Indexed Site

    Understanding Energy - Energy Information Administration Gasoline > Gasoline & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the

  14. Geothermal - Energy Explained, Your Guide To Understanding Energy - Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Geothermal Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for Future

  15. Geothermal Energy and the Environment - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) Indexed Site

    Understanding Energy - Energy Information Administration Geothermal > Geothermal Energy & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases

  16. Greenhouse Gases - Energy Explained, Your Guide To Understanding Energy -

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information Administration Environment > Greenhouse Gases Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come

  17. Hydrogen - Energy Explained, Your Guide To Understanding Energy - Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Hydrogen Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for Future

  18. Hydropower - Energy Explained, Your Guide To Understanding Energy - Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Hydropower Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for Future

  19. Hydropower and the Environment - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) Indexed Site

    Understanding Energy - Energy Information Administration Hydropower > Hydropower & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on

  20. Landfill Gas and Biogas - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy - Energy Information Administration Landfill Gas and Biogas Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come

  1. Natural Gas - Energy Explained, Your Guide To Understanding Energy - Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Gas Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for Future Emissions

  2. Natural Gas and the Environment - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) Indexed Site

    Understanding Energy - Energy Information Administration Gas > Natural Gas & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the

  3. Nuclear - Energy Explained, Your Guide To Understanding Energy - Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Nuclear Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for Future

  4. Oil and the Environment - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy - Energy Information Administration Oil and the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come

  5. Oil: Crude and Petroleum Products - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) Indexed Site

    Understanding Energy - Energy Information Administration Products Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come

  6. Photovoltaics and Electricity - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) Indexed Site

    Understanding Energy - Energy Information Administration Photovoltaics and Electricity Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where

  7. Vocational Rehabilitation -Value Added: Explaining What We Do,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vocational Rehabilitation -Value Added: Explaining What We Do, Craig Bock, MA, CRC Washington State IARP Quarterly Newsletter - June 2009 If you have an injury at work, do you know what happens next or how you would navigate the Workers' Compensation system should you need to? What does RCW 51.32.095 (state law) and WAC 296-19A-070 (administrative rules) mean to you? If you could not return to your job and had permanent physical or cognitive restrictions who would help you explore your return to

  8. High Poisson;s ratio of Earth;s inner core explained by carbon...

    Office of Scientific and Technical Information (OSTI)

    High Poisson;s ratio of Earth;s inner core explained by carbon alloying Citation Details In-Document Search Title: High Poisson;s ratio of Earth;s inner core explained by carbon ...

  9. Explaining the Cosmic-Ray E+/(E- + E+) and Anti-P/P Ratios Using...

    Office of Scientific and Technical Information (OSTI)

    Explaining the Cosmic-Ray E+(E- + E+) and Anti-PP Ratios Using a Steady-State Injection Model Citation Details In-Document Search Title: Explaining the Cosmic-Ray E+(E- + E+) ...

  10. ATLAS/BNL Physicist Marc-Andre Pleier Explains the Higgs Mechanism

    SciTech Connect (OSTI)

    Pleier,Marc-Andre

    2013-10-07

    ATLAS/BNL Physicist Marc-Andre Pleier explains his role in analyzing data from the Large Hadron Collider and the search for the Higgs boson

  11. Use of Energy in the United States - Energy Explained, Your Guide...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  12. ATLAS/BNL Physicist Marc-Andre Pleier Explains the Higgs Mechanism

    ScienceCinema (OSTI)

    Pleier,Marc-Andre

    2014-06-04

    ATLAS/BNL Physicist Marc-Andre Pleier explains his role in analyzing data from the Large Hadron Collider and the search for the Higgs boson

  13. An Explainer: How "Grid Modernization" Could Improve Your Life |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy An Explainer: How "Grid Modernization" Could Improve Your Life An Explainer: How "Grid Modernization" Could Improve Your Life January 14, 2016 - 1:10pm Addthis Understanding how the grid works is the first step to understanding our grid modernization efforts. This new video breaks it down. | Video by Simon Edelman, Energy Department. Franklin (Lynn) Orr Franklin (Lynn) Orr Under Secretary for Science and Energy KEY FACTS U.S. Department of Energy

  14. Capturing the Motion of the Ocean: Wave Energy Explained | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Capturing the Motion of the Ocean: Wave Energy Explained Capturing the Motion of the Ocean: Wave Energy Explained July 6, 2015 - 11:44am Addthis Energy Department-supported "Azura" wave energy converter is installed at a U.S. Navy test site in Hawaii. | Photo courtesy of Northwest Energy Innovations. Energy Department-supported "Azura" wave energy converter is installed at a U.S. Navy test site in Hawaii. | Photo courtesy of Northwest Energy Innovations. Matt

  15. Getting Ready for LEDs: LED Lighting Video Series Explains the Basics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Getting Ready for LEDs: LED Lighting Video Series Explains the Basics Getting Ready for LEDs: LED Lighting Video Series Explains the Basics November 26, 2012 - 3:09pm Addthis Part 1 of the ElectricTV.net video series. Part 2 of the ElectricTV.net video series. Roland Risser Roland Risser Deputy Assistant Secretary for Renewable Power (Acting) How can I participate? Learn more about the advantages and accessiblity of LED lighting from this series of videos. If you haven't

  16. Assessing Energetic Contributions to Binding from a Disordered Region in a Protein-Protein Interaction

    SciTech Connect (OSTI)

    S Cho; C Swaminathan; D Bonsor; M Kerzic; R Guan; J Yang; C Kieke; P Anderson; D Kranz; et al.

    2011-12-31

    Many functional proteins are at least partially disordered prior to binding. Although the structural transitions upon binding of disordered protein regions can influence the affinity and specificity of protein complexes, their precise energetic contributions to binding are unknown. Here, we use a model protein-protein interaction system in which a locally disordered region has been modified by directed evolution to quantitatively assess the thermodynamic and structural contributions to binding of disorder-to-order transitions. Through X-ray structure determination of the protein binding partners before and after complex formation and isothermal titration calorimetry of the interactions, we observe a correlation between protein ordering and binding affinity for complexes along this affinity maturation pathway. Additionally, we show that discrepancies between observed and calculated heat capacities based on buried surface area changes in the protein complexes can be explained largely by heat capacity changes that would result solely from folding the locally disordered region. Previously developed algorithms for predicting binding energies of protein-protein interactions, however, are unable to correctly model the energetic contributions of the structural transitions in our model system. While this highlights the shortcomings of current computational methods in modeling conformational flexibility, it suggests that the experimental methods used here could provide training sets of molecular interactions for improving these algorithms and further rationalizing molecular recognition in protein-protein interactions.

  17. Waste-to-Energy (Municipal Solid Waste) - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) Indexed Site

    Understanding Energy - Energy Information Administration Waste-to-Energy (MSW) Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse

  18. Wood and Wood Waste - Energy Explained, Your Guide To Understanding Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    - Energy Information Administration Wood and Wood Waste Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From

  19. Magnetic Amplification in Cosmic Field Explained | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Magnetic Amplification in Cosmic Field Explained Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: Email Us More

  20. Magnetic Amplification in Cosmic Field Explained | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Magnetic Amplification in Cosmic Field Explained Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » 08.01.15 Magnetic Amplification

  1. INL Director Explains How the National Labs Are Assisting With Japan's Nuclear Crisis

    ScienceCinema (OSTI)

    Grossenbacher, John

    2013-05-28

    Idaho National Laboratory's Director John Grossenbacher discusses the types of nuclear expertise and capabilities that exist within the U.S. Department of Energy's national labs to assist with the Japan nuclear crisis. He also explains how the labs will provide long-term research that will uncover lessons learned from the Fukushima nuclear plants. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  2. INL Director Explains How the National Labs Are Assisting With Japan's Nuclear Crisis

    SciTech Connect (OSTI)

    Grossenbacher, John

    2011-01-01

    Idaho National Laboratory's Director John Grossenbacher discusses the types of nuclear expertise and capabilities that exist within the U.S. Department of Energy's national labs to assist with the Japan nuclear crisis. He also explains how the labs will provide long-term research that will uncover lessons learned from the Fukushima nuclear plants. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  3. U.S. Energy Facts - Energy Explained, Your Guide To Understanding Energy -

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information Administration U.S. Energy Facts Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook

  4. 8. EXPLAIN HOW YOU BELIEVE YOU WERE DISCRIMINATED AGAINST (TREATED DIFFERENTLY FROM OTHER EMPLOYEES OR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8. EXPLAIN HOW YOU BELIEVE YOU WERE DISCRIMINATED AGAINST (TREATED DIFFERENTLY FROM OTHER EMPLOYEES OR APPLICANTS) BECAUSE OF YOUR RACE, COLOR, RELIGION, SEX, AGE, NATIONAL ORIGIN, RETALIATION, OR PHYSICAL AND/OR MENTAL DISABILITY. (For each allegation, please state to the best of your knowledge, information and belief what incident occurred and when the incident occurred. You may continue your answer on another sheet of paper if you need more space.) FOR AGENCY USE DOE F 1600.1 (06-96) All

  5. Energy Use in Homes - Energy Explained, Your Guide To Understanding Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    - Energy Information Administration Homes Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for Future

  6. Can Magnetism Explain High Temperature Superconductivity? | U.S. DOE Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Science (SC) Can Magnetism Explain High Temperature Superconductivity? Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 05.01.12 Can Magnetism

  7. Shotgun protein sequencing.

    SciTech Connect (OSTI)

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.

    2009-06-01

    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  8. Explaining the t - t¯ asymmetry with a light axigluon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marques Tavares, Gustavo; Schmaltz, Martin

    2011-09-12

    We propose an axigluon with mass between 400 and 450 GeV and flavor-universal couplings to quarks to explain the Tevatron t -t¯ forward-backward asymmetry. The model predicts a small negative asymmetry for t - t¯ pairs with invariant mass below 450 GeV and a large positive asymmetry above 450 GeV. The asymmetry arises from interference between s-channel gluon and axigluon diagrams and requires a relatively weakly coupled axigluon (ga=gqcd/3). Axigluon-gluon interference does not contribute to the t - t¯ cross section. New contributions to the cross section arise only at fourth order in the axigluon coupling and are very smallmore » for a sufficiently broad axigluon. Dijet measurements do not significantly constrain the axigluon couplings. We propose several possible UV completions of the phenomenological axigluon which explain the required small couplings and large width. Such UV completions necessarily contain new colored fermions or scalars below the axigluon mass and predict multijet events with large cross sections at the Tevatron and LHC.« less

  9. Can surface cracks and unipolar arcs explain breakdown and gradient limits?

    SciTech Connect (OSTI)

    Insepov, Zeke; Norem, Jim

    2013-01-15

    The authors argue that the physics of unipolar arcs and surface cracks can help understand rf breakdown and vacuum arc data. They outline a model of the basic mechanisms involved in breakdown and explore how the physics of unipolar arcs and cracks can simplify the picture of breakdown and gradient limits in accelerators, tokamaks as well as laser ablation, micrometeorites, and other applications. Cracks are commonly seen in SEM images of arc damage and they are produced as the liquid metal cools. They can produce the required field enhancements to explain field emission data and can produce mechanical failure of the surface that would trigger breakdown events. Unipolar arcs can produce currents sufficient to short out rf structures, and can cause the sort of damage seen in SEM images. They should be unstable, and possibly self-quenching, as seen in optical fluctuations and surface damage. The authors describe some details and consider the predictions of this simple model.

  10. Engineering and Characterization of a Superfolder Green Fluorescent Protein

    SciTech Connect (OSTI)

    Pedelacq,J.; Cabantous, S.; Tran, T.; Terwilliger, T.; Waldo, G.

    2006-01-01

    Existing variants of green fluorescent protein (GFP) often misfold when expressed as fusions with other proteins. We have generated a robustly folded version of GFP, called 'superfolder' GFP, that folds well even when fused to poorly folded polypeptides. Compared to 'folding reporter' GFP, a folding-enhanced GFP containing the 'cycle-3' mutations and the 'enhanced GFP' mutations F64L and S65T, superfolder GFP shows improved tolerance of circular permutation, greater resistance to chemical denaturants and improved folding kinetics. The fluorescence of Escherichia coli cells expressing each of eighteen proteins from Pyrobaculum aerophilum as fusions with superfolder GFP was proportional to total protein expression. In contrast, fluorescence of folding reporter GFP fusion proteins was strongly correlated with the productive folding yield of the passenger protein. X-ray crystallographic structural analyses helped explain the enhanced folding of superfolder GFP relative to folding reporter GFP.

  11. Communication: Cosolvency and cononsolvency explained in terms of a Flory-Huggins type theory

    SciTech Connect (OSTI)

    Dudowicz, Jacek Freed, Karl F.; Douglas, Jack F.

    2015-10-07

    Standard Flory-Huggins (FH) theory is utilized to describe the enigmatic cosolvency and cononsolvency phenomena for systems of polymers dissolved in mixed solvents. In particular, phase boundaries (specifically upper critical solution temperature spinodals) are calculated for solutions of homopolymers B in pure solvents and in binary mixtures of small molecule liquids A and C. The miscibility (or immiscibility) patterns for the ternary systems are classified in terms of the FH binary interaction parameters (χ{sub αβ}) and the ratio r = ϕ{sub A}/ϕ{sub C} of the concentrations ϕ{sub A} and ϕ{sub C} of the two solvents. The trends in miscibility are compared to those observed for blends of random copolymers (A{sub x}C{sub 1−x}) with homopolymers (B) and to those deduced for A/B/C solutions of polymers B in liquid mixtures of small molecules A and C that associate into polymeric clusters (A{sub p}C{sub q}){sub i}, (i = 1, 2, …, ∞). Although the classic FH theory is able to explain cosolvency and cononsolvency phenomena, the theory does not include a consideration of the mutual association of the solvent molecules and the competitive association between the solvent molecules and the polymer. These interactions can be incorporated in refinements of the FH theory, and the present paper provides a foundation for such extensions for modeling the rich thermodynamics of polymers in mixed solvents.

  12. New positron spectral features from supersymmetric dark matter: A way to explain the PAMELA data?

    SciTech Connect (OSTI)

    Bergstroem, Lars; Bringmann, Torsten; Edsjoe, Joakim

    2008-11-15

    The space-borne antimatter experiment PAMELA has recently reported a surprising rise in the positron to electron ratio at high energies. It has also recently been found that electromagnetic radiative corrections in some cases may boost the gamma-ray yield from supersymmetric dark-matter annihilations in the galactic halo by up to 3 or 4 orders of magnitude, providing distinct spectral signatures for indirect dark matter searches to look for. Here, we investigate whether the same type of corrections can also lead to sizeable enhancements in the positron yield. We find that this is indeed the case, albeit for a smaller region of parameter space than for gamma rays; selecting models with a small mass difference between the neutralino and sleptons, like in the stau-coannihilation region in mSUGRA, the effect becomes more pronounced. The resulting, rather hard positron spectrum with a relatively sharp cutoff may potentially fit the rising positron ratio measured by the PAMELA satellite. To do so, however, very large 'boost factors' have to be invoked that are not expected in current models of halo structure. If the predicted cutoff would also be confirmed by later PAMELA data or upcoming experiments, one could either assume nonthermal production in the early universe or nonstandard halo formation to explain such a spectral feature as an effect of dark-matter annihilation. At the end of the paper, we briefly comment on the impact of radiative corrections on other annihilation channels, in particular, antiprotons and neutrinos.

  13. Protein- protein interaction detection system using fluorescent protein microdomains

    DOE Patents [OSTI]

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  14. IS COMPTON COOLING SUFFICIENT TO EXPLAIN EVOLUTION OF OBSERVED QUASI-PERIODIC OSCILLATIONS IN OUTBURST SOURCES?

    SciTech Connect (OSTI)

    Mondal, Santanu; Chakrabarti, Sandip K.; Debnath, Dipak E-mail: chakraba@bose.res.in

    2015-01-01

    In outburst sources, quasi-periodic oscillation (QPO) frequency is known to evolve in a certain way: in the rising phase, it monotonically goes up until a soft intermediate state is achieved. In the propagating oscillatory shock model, oscillation of the Compton cloud is thought to cause QPOs. Thus, in order to increase QPO frequency, the Compton cloud must collapse steadily in the rising phase. In decline phases, the exact opposite should be true. We investigate cause of this evolution of the Compton cloud. The same viscosity parameter that increases the Keplerian disk rate also moves the inner edge of the Keplerian component, thereby reducing the size of the Compton cloud and reducing the cooling timescale. We show that cooling of the Compton cloud by inverse Comptonization is enough for it to collapse sufficiently so as to explain the QPO evolution. In the two-component advective flow configuration of Chakrabarti-Titarchuk, centrifugal force-induced shock represents the boundary of the Compton cloud. We take the rising phase of 2010 outburst of Galactic black hole candidate H 1743-322 and find an estimation of variation of the α parameter of the sub-Keplerian flow to be monotonically rising from 0.0001 to 0.02, well within the range suggested by magnetorotational instability. We also estimate the inward velocity of the Compton cloud to be a few meters per second, which is comparable to what is found in several earlier studies of our group by empirically fitting the shock locations with the time of observations.

  15. Allostery through protein-induced DNA bubbles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Traverso, Joseph J.; Manoranjan, Valipuram S.; Bishop, A. R.; Rasmussen, Kim Ø.; Voulgarakis, Nikolaos K.

    2015-03-12

    Allostery through DNA is increasingly recognized as an important modulator of DNA functions. Here, we show that the coalescence of protein-induced DNA bubbles can mediate allosteric interactions that drive protein aggregation. We propose that such allostery may regulate DNA's flexibility and the assembly of the transcription machinery. Mitochondrial transcription factor A (TFAM), a dual-function protein involved in mitochondrial DNA (mtDNA) packaging and transcription initiation, is an ideal candidate to test such a hypothesis owing to its ability to locally unwind the double helix. Numerical simulations demonstrate that the coalescence of TFAM-induced bubbles can explain experimentally observed TFAM oligomerization. The resultingmore » melted DNA segment, approximately 10 base pairs long, around the joints of the oligomers act as flexible hinges, which explains the efficiency of TFAM in compacting DNA. Since mitochondrial polymerase (mitoRNAP) is involved in melting the transcription bubble, TFAM may use the same allosteric interaction to both recruit mitoRNAP and initiate transcription.« less

  16. Destabilized bioluminescent proteins

    DOE Patents [OSTI]

    Allen, Michael S.; Rakesh, Gupta; Gary, Sayler S.

    2007-07-31

    Purified nucleic acids, vectors and cells containing a gene cassette encoding at least one modified bioluminescent protein, wherein the modification includes the addition of a peptide sequence. The duration of bioluminescence emitted by the modified bioluminescent protein is shorter than the duration of bioluminescence emitted by an unmodified form of the bioluminescent protein.

  17. The HPr Proteins from the Thermophile Bacillus stearothermophilus Can Form Domain-swapped Dimers

    SciTech Connect (OSTI)

    Sridharan, Sudharsan; Razvi, Abbas; Scholtz, J. Martin; Sacchettini, James C. (TAM)

    2010-07-20

    The study of proteins from extremophilic organisms continues to generate interest in the field of protein folding because paradigms explaining the enhanced stability of these proteins still elude us and such studies have the potential to further our knowledge of the forces stabilizing proteins. We have undertaken such a study with our model protein HPr from a mesophile, Bacillus subtilis, and a thermophile, Bacillus stearothermophilus. We report here the high-resolution structures of the wild-type HPr protein from the thermophile and a variant, F29W. The variant proved to crystallize in two forms: a monomeric form with a structure very similar to the wild-type protein as well as a domain-swapped dimer. Interestingly, the structure of the domain-swapped dimer for HPr is very different from that observed for a homologous protein, Crh, from B. subtilis. The existence of a domain-swapped dimer has implications for amyloid formation and is consistent with recent results showing that the HPr proteins can form amyloid fibrils. We also characterized the conformational stability of the thermophilic HPr proteins using thermal and solvent denaturation methods and have used the high-resolution structures in an attempt to explain the differences in stability between the different HPr proteins. Finally, we present a detailed analysis of the solution properties of the HPr proteins using a variety of biochemical and biophysical methods.

  18. Highly thermostable fluorescent proteins

    DOE Patents [OSTI]

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  19. Highly thermostable fluorescent proteins

    DOE Patents [OSTI]

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2011-11-29

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  20. Highly thermostable fluorescent proteins

    DOE Patents [OSTI]

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2012-05-01

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  1. Protein kinesis: The dynamics of protein trafficking and stability

    SciTech Connect (OSTI)

    NONE

    1995-12-31

    The purpose of this conference is to provide a multidisciplinary forum for exchange of state-of-the-art information on protein kinesis. This volume contains abstracts of papers in the following areas: protein folding and modification in the endoplasmic reticulum; protein trafficking; protein translocation and folding; protein degradation; polarity; nuclear trafficking; membrane dynamics; and protein import into organelles.

  2. Pressure cryocooling protein crystals

    DOE Patents [OSTI]

    Kim, Chae Un; Gruner, Sol M.

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  3. Algae Protein Fermentation

    Broader source: Energy.gov (indexed) [DOE]

    Protein Fermentation March 24, 2015 Ryan W Davis, PhD Sandia National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted ...

  4. Self assembling proteins

    DOE Patents [OSTI]

    Yeates, Todd O.; Padilla, Jennifer; Colovos, Chris

    2004-06-29

    Novel fusion proteins capable of self-assembling into regular structures, as well as nucleic acids encoding the same, are provided. The subject fusion proteins comprise at least two oligomerization domains rigidly linked together, e.g. through an alpha helical linking group. Also provided are regular structures comprising a plurality of self-assembled fusion proteins of the subject invention, and methods for producing the same. The subject fusion proteins find use in the preparation of a variety of nanostructures, where such structures include: cages, shells, double-layer rings, two-dimensional layers, three-dimensional crystals, filaments, and tubes.

  5. LucY: A versatile new fluorescent reporter protein

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Auldridge, Michele E.; Cao, Hongnan; Sen, Saurabh; Franz, Laura P.; Bingman, Craig A.; Yennamalli, Ragothaman M.; Phillips, Jr., George N.; Mead, David; Steinmetz, Eric J.; Michnick, Stephen W.

    2015-04-23

    We report on the discovery, isolation, and use of a novel yellow fluorescent protein. Lucigen Yellow (LucY) binds one FAD molecule within its core, thus shielding it from water and maintaining its structure so that fluorescence is 10-fold higher than freely soluble FAD. LucY displays excitation and emission spectra characteristic of FAD, with 3 excitation peaks at 276nm, 377nm, and 460nm and a single emission peak at 530nm. These excitation and emission maxima provide the large Stokes shift beneficial to fluorescence experimentation. LucY belongs to the MurB family of UDP-N-acetylenolpyruvylglucosamine reductases. The high resolution crystal structure shows that in contrastmore » to other structurally resolved MurB enzymes, LucY does not contain a potentially quenching aromatic residue near the FAD isoalloxazine ring, which may explain its increased fluorescence over related proteins. Using E. coli as a system in which to develop LucY as a reporter, we show that it is amenable to circular permutation and use as a reporter of protein-protein interaction. Fragmentation between its distinct domains renders LucY non-fluorescent, but fluorescence can be partially restored by fusion of the fragments to interacting protein domains. Thus, LucY may find application in Protein-fragment Complementation Assays for evaluating protein-protein interactions.« less

  6. CHANGES OF THE SOLAR MERIDIONAL VELOCITY PROFILE DURING CYCLE 23 EXPLAINED BY FLOWS TOWARD THE ACTIVITY BELTS

    SciTech Connect (OSTI)

    Cameron, R. H.; Schuessler, M.

    2010-09-10

    The solar meridional flow is an important ingredient in Babcock-Leighton type models of the solar dynamo. Global variations of this flow have been suggested to explain the variations in the amplitudes and lengths of the activity cycles. Recently, cycle-related variations in the amplitude of the P{sup 1}{sub 2} term in the Legendre decomposition of the observed meridional flow have been reported. The result is often interpreted in terms of an overall variation in the flow amplitude during the activity cycle. Using a semi-empirical model based upon the observed distribution of magnetic flux on the solar surface, we show that the reported variations of the P{sup 1}{sub 2} term can be explained by the observed localized inflows into the active region belts. No variation of the overall meridional flow amplitude is required.

  7. Protein crystallography prescreen kit

    DOE Patents [OSTI]

    Segelke, Brent W.; Krupka, Heike I.; Rupp, Bernhard

    2007-10-02

    A kit for prescreening protein concentration for crystallization includes a multiplicity of vials, a multiplicity of pre-selected reagents, and a multiplicity of sample plates. The reagents and a corresponding multiplicity of samples of the protein in solutions of varying concentrations are placed on sample plates. The sample plates containing the reagents and samples are incubated. After incubation the sample plates are examined to determine which of the sample concentrations are too low and which the sample concentrations are too high. The sample concentrations that are optimal for protein crystallization are selected and used.

  8. Protein crystallography prescreen kit

    DOE Patents [OSTI]

    Segelke, Brent W.; Krupka, Heike I.; Rupp, Bernhard

    2005-07-12

    A kit for prescreening protein concentration for crystallization includes a multiplicity of vials, a multiplicity of pre-selected reagents, and a multiplicity of sample plates. The reagents and a corresponding multiplicity of samples of the protein in solutions of varying concentrations are placed on sample plates. The sample plates containing the reagents and samples are incubated. After incubation the sample plates are examined to determine which of the sample concentrations are too low and which the sample concentrations are too high. The sample concentrations that are optimal for protein crystallization are selected and used.

  9. ProteinShop: A tool for interactive protein manipulation and...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: ProteinShop: A tool for interactive protein manipulation and steering ... DOE Contract Number: AC03-76SF00098 Resource Type: Journal Article Resource Relation: ...

  10. Environmental Impact Statement Explained

    Broader source: Energy.gov [DOE]

    The National Environmental Policy Act (NEPA) requires Federal agencies to prepare an Environmental Impact Statement (EIS) for all major Federal actions that may significantly affect the quality of...

  11. Comment Period Closed Explained

    Broader source: Energy.gov [DOE]

    The public comment period on the Draft Environmental Impact Statement (EIS) has ended, and DOE is preparing a Final EIS. The Final EIS will consider and respond to all timely public comments on the...

  12. Protein Dynamics and Biocatalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Dynamics and Biocatalysis Protein Dynamics and Biocatalysis 1998 Annual Report Grand Challenge Projects biocatalysis.gif A model of the Michaelis complex for the TEM-1/penicillin system from molecular dynamics simulations. Investigators: P. A. Bash, Northwestern University Medical School and M. Karplus, Harvard University Research Objectives A guiding principle of molecular biology is that the structure of a biomolecule defines its function. This principle is especially true in the case

  13. Solitons and protein folding: An In Silico experiment

    SciTech Connect (OSTI)

    Ilieva, N.; Dai, J.; Sieradzan, A.; Niemi, A.

    2015-10-28

    Protein folding [1] is the process of formation of a functional 3D structure from a random coil — the shape in which amino-acid chains leave the ribosome. Anfinsen’s dogma states that the native 3D shape of a protein is completely determined by protein’s amino acid sequence. Despite the progress in understanding the process rate and the success in folding prediction for some small proteins, with presently available physics-based methods it is not yet possible to reliably deduce the shape of a biologically active protein from its amino acid sequence. The protein-folding problem endures as one of the most important unresolved problems in science; it addresses the origin of life itself. Furthermore, a wrong fold is a common cause for a protein to lose its function or even endanger the living organism. Soliton solutions of a generalized discrete non-linear Schrödinger equation (GDNLSE) obtained from the energy function in terms of bond and torsion angles κ and τ provide a constructive theoretical framework for describing protein folds and folding patterns [2]. Here we study the dynamics of this process by means of molecular-dynamics simulations. The soliton manifestation is the pattern helix–loop–helix in the secondary structure of the protein, which explains the importance of understanding loop formation in helical proteins. We performed in silico experiments for unfolding one subunit of the core structure of gp41 from the HIV envelope glycoprotein (PDB ID: 1AIK [3]) by molecular-dynamics simulations with the MD package GROMACS. We analyzed 80 ns trajectories, obtained with one united-atom and two different all-atom force fields, to justify the side-chain orientation quantification scheme adopted in the studies and to eliminate force-field based artifacts. Our results are compatible with the soliton model of protein folding and provide first insight into soliton-formation dynamics.

  14. Amphiphiles for protein solubilization and stabilization (Patent...

    Office of Scientific and Technical Information (OSTI)

    The invention provides amphiphiles for manipulating membrane proteins. The amphiphiles can ... and stabilization of membrane proteins, including photosynthetic protein ...

  15. Purine inhibitors of protein kinases, G proteins and polymerases

    DOE Patents [OSTI]

    Gray, Nathanael S. (Berkeley, CA); Schultz, Peter (Oakland, CA); Kim, Sung-Hou (Moraga, CA); Meijer, Laurent (Roscoff, FR)

    2001-07-03

    The present invention relates to purine analogs that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such purine analogs to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  16. Purine inhibitors of protein kinases, G proteins and polymerases

    DOE Patents [OSTI]

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2001-07-03

    The present invention relates to purine analogs that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such purine analogs to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  17. Molecular dynamics and Monte Carlo simulations resolve apparent diffusion rate differences for proteins confined in nanochannels

    SciTech Connect (OSTI)

    Tringe, J. W.; Ileri, N.; Levie, H. W.; Stroeve, P.; Ustach, V.; Faller, R.; Renaud, P.

    2015-08-01

    We use Molecular Dynamics and Monte Carlo simulations to examine molecular transport phenomena in nanochannels, explaining four orders of magnitude difference in wheat germ agglutinin (WGA) protein diffusion rates observed by fluorescence correlation spectroscopy (FCS) and by direct imaging of fluorescently-labeled proteins. We first use the ESPResSo Molecular Dynamics code to estimate the surface transport distance for neutral and charged proteins. We then employ a Monte Carlo model to calculate the paths of protein molecules on surfaces and in the bulk liquid transport medium. Our results show that the transport characteristics depend strongly on the degree of molecular surface coverage. Atomic force microscope characterization of surfaces exposed to WGA proteins for 1000 s show large protein aggregates consistent with the predicted coverage. These calculations and experiments provide useful insight into the details of molecular motion in confined geometries.

  18. Molecular dynamics and Monte Carlo simulations resolve apparent diffusion rate differences for proteins confined in nanochannels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tringe, J. W.; Ileri, N.; Levie, H. W.; Stroeve, P.; Ustach, V.; Faller, R.; Renaud, P.

    2015-08-01

    We use Molecular Dynamics and Monte Carlo simulations to examine molecular transport phenomena in nanochannels, explaining four orders of magnitude difference in wheat germ agglutinin (WGA) protein diffusion rates observed by fluorescence correlation spectroscopy (FCS) and by direct imaging of fluorescently-labeled proteins. We first use the ESPResSo Molecular Dynamics code to estimate the surface transport distance for neutral and charged proteins. We then employ a Monte Carlo model to calculate the paths of protein molecules on surfaces and in the bulk liquid transport medium. Our results show that the transport characteristics depend strongly on the degree of molecular surface coverage.more » Atomic force microscope characterization of surfaces exposed to WGA proteins for 1000 s show large protein aggregates consistent with the predicted coverage. These calculations and experiments provide useful insight into the details of molecular motion in confined geometries.« less

  19. Coadsorbed species explain the mechanism of methanol temperature-desorption on CeO2(111)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sutton, Jonathan E.; Steven H. Overbury; Beste, Ariana

    2016-03-24

    Here, we have used density functional theory calculations to investigate the temperature-programmed desorption (TPD) of methanol from CeO2(111). For the first time, low-temperature water formation and high-temperature methanol desorption are explained by our calculations. High coverages of methanol, which correspond to experimental conditions, are required to properly describe these features of the TPD spectrum. We identify a mechanism for the low-temperature formation of water involving the dissociation of two methanol molecules on the same surface O atom and filling of the resulting surface vacancy with one of the methoxy products. After water desorption, methoxy groups are stabilized on the surfacemore » and react at higher temperatures to form methanol and formaldehyde by a disproportionation mechanism. Alternatively, the stabilized methoxy groups undergo sequential C–H scission reactions to produce formaldehyde. Calculated energy requirements and methanol/formaldehyde selectivity agree with the experimental data.« less

  20. Cellulose binding domain proteins

    DOE Patents [OSTI]

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  1. Cellulose binding domain proteins

    DOE Patents [OSTI]

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  2. Bayesian Estimator of Protein-Protein Association Probabilities

    Energy Science and Technology Software Center (OSTI)

    2008-05-28

    The Bayesian Estimator of Protein-Protein Association Probabilities (BEPro3) is a software tool for estimating probabilities of protein-protein association between bait and prey protein pairs using data from multiple-bait, multiple-replicate, protein LC-MS/MS affinity isolation experiments. BEPro3 is public domain software, has been tested on Windows XP and version 10.4 or newer of the Mac OS 10.4, and is freely available. A user guide, example dataset with analysis and additional documentation are included with the BEPro3 download.

  3. Purine inhibitors of protein kinases, G proteins and polymerases

    DOE Patents [OSTI]

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2004-10-12

    The present invention relates to 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  4. Bone morphogenetic protein

    SciTech Connect (OSTI)

    Xiao Yongtao; Xiang Lixin; Shao Jianzhong

    2007-10-26

    Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the transforming growth factor-beta superfamily. It has been demonstrated that BMPs had been involved in the regulation of cell proliferation, survival, differentiation and apoptosis. However, their hallmark ability is that play a pivotal role in inducing bone, cartilage, ligament, and tendon formation at both heterotopic and orthotopic sites. In this review, we mainly concentrate on BMP structure, function, molecular signaling and potential medical application.

  5. Validation of Shewanella oneidensis MR-1 Small Proteins by AMT Tag-based Proteome Analysis

    SciTech Connect (OSTI)

    Romine, Margaret F.; Elias, Dwayne A.; Monroe, Matthew E.; Auberry, Kenneth J.; Fang, Ruihua; Fredrickson, Jim K.; Anderson, Gordon A.; Smith, Richard D.; Lipton, Mary S.

    2004-09-01

    Using stringent criteria for protein identification by accurate mass and time (AMT) tag mass spectrometric methodology, we detected 36 proteins <101 amino acids in length, including 10 that were annotated as hypothetical proteins, in 172 global tryptic digests of Shewanella oneidensis MR-1 proteins analyzed. Peptides that map to the conserved, but functionally uncharacterized proteins SO4134 and SO2787, were the most frequently detected small proteins in these samples, while hypotheticals SO2669 and SO2063, conserved hypotheticals SO0335 and SO2176, and the SlyX protein (SO1063) were observed at frequencies similar to small expected abundant ribosomal proteins and translation initiation factor IF-1 and consequently, likely to encode important cellular functions. In addition, 30 proteins including three of the small proteins that map to genes predicted to encode frameshifts, point mutations, or recoding signals were detected. Of these 30 genes, peptides that map to positions beyond internal stop codons were detected in 13 genes (SO0101, SO0419, SO0590, SO0738, SO1113, SO1211, SO3079, SO3130, SO3240, SO4231, SO4328, SO4422, and SO4657). While expression of the full-length formate dehydrogenase encoded by SO0101 can be explained by incorporation of selenocysteine at the internal stop codon, the mechanism of translating downstream sequences in the remaining genes remains unknown.

  6. Stabilized polyacrylic saccharide protein conjugates

    DOE Patents [OSTI]

    Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.

    1996-01-01

    This invention is directed to water soluble protein polymer conjugates which are stabile in hostile environments. The conjugate comprises a protein which is linked to an acrylic polymer at multiple points through saccharide linker groups.

  7. Stabilized polyacrylic saccharide protein conjugates

    DOE Patents [OSTI]

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1996-02-20

    This invention is directed to water soluble protein polymer conjugates which are stable in hostile environments. The conjugate comprises a protein which is linked to an acrylic polymer at multiple points through saccharide linker groups. 16 figs.

  8. Protein Flips Lipids Across Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Flips Lipids Across Membranes Protein Flips Lipids Across Membranes Print Wednesday, 26 October 2005 00:00 Found ubiquitously in both bacteria and humans, membrane proteins of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter family have been implicated in both antibiotic and cancer-drug resistance. The mechanisms used by these proteins to expel toxins from cells therefore represent key targets for the development of drugs designed to combat the growing problem of

  9. Protein subcellular localization assays using split fluorescent proteins

    DOE Patents [OSTI]

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  10. Microsoft Word - Translocator_protein bh

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2015 Translocator Protein Structure and Function Translocator protein (TSPO) is an ancient conserved protein whose functions in bacteria and higher eukaryotes are yet to...

  11. Signature Product Code for Predicting Protein-Protein Interactions

    Energy Science and Technology Software Center (OSTI)

    2004-09-25

    The SigProdV1.0 software consists of four programs which together allow the prediction of protein-protein interactions using only amino acid sequences and experimental data. The software is based on the use of tensor products of amino acid trimers coupled with classifiers known as support vector machines. Essentially the program looks for amino acid trimer pairs which occur more frequently in protein pairs which are known to interact. These trimer pairs are then used to make predictionsmore » about unknown protein pairs. A detailed description of the method can be found in the paper: S. Martin, D. Roe, J.L. Faulon. "Predicting protein-protein interactions using signature products," Bioinformatics, available online from Advance Access, Aug. 19, 2004.« less

  12. Targeting diverse protein-protein interaction interfaces with...

    Office of Scientific and Technical Information (OSTI)

    targeting vascular endothelial growth factor (VEGF) can structurally and functionally ... -peptides that bind to two other protein partners, IgG and tumor necrosis factor-. ...

  13. Protein detection system

    DOE Patents [OSTI]

    Fruetel, Julie A.; Fiechtner, Gregory J.; Kliner, Dahv A. V.; McIlroy, Andrew

    2009-05-05

    The present embodiment describes a miniature, microfluidic, absorption-based sensor to detect proteins at sensitivities comparable to LIF but without the need for tagging. This instrument utilizes fiber-based evanescent-field cavity-ringdown spectroscopy, in combination with faceted prism microchannels. The combination of these techniques will increase the effective absorption path length by a factor of 10.sup.3 to 10.sup.4 (to .about.1-m), thereby providing unprecedented sensitivity using direct absorption. The coupling of high-sensitivity absorption with high-performance microfluidic separation will enable real-time sensing of biological agents in aqueous samples (including aerosol collector fluids) and will provide a general method with spectral fingerprint capability for detecting specific bio-agents.

  14. Protein Flips Lipids Across Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Flips Lipids Across Membranes Print Found ubiquitously in both bacteria and humans, membrane proteins of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter family have been implicated in both antibiotic and cancer-drug resistance. The mechanisms used by these proteins to expel toxins from cells therefore represent key targets for the development of drugs designed to combat the growing problem of multidrug resistance. Toward this end, researchers from The Scripps Research

  15. Protein Flips Lipids Across Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Flips Lipids Across Membranes Print Found ubiquitously in both bacteria and humans, membrane proteins of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter family have been implicated in both antibiotic and cancer-drug resistance. The mechanisms used by these proteins to expel toxins from cells therefore represent key targets for the development of drugs designed to combat the growing problem of multidrug resistance. Toward this end, researchers from The Scripps Research

  16. Protein Flips Lipids Across Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Flips Lipids Across Membranes Print Found ubiquitously in both bacteria and humans, membrane proteins of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter family have been implicated in both antibiotic and cancer-drug resistance. The mechanisms used by these proteins to expel toxins from cells therefore represent key targets for the development of drugs designed to combat the growing problem of multidrug resistance. Toward this end, researchers from The Scripps Research

  17. Protein Flips Lipids Across Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Flips Lipids Across Membranes Print Found ubiquitously in both bacteria and humans, membrane proteins of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter family have been implicated in both antibiotic and cancer-drug resistance. The mechanisms used by these proteins to expel toxins from cells therefore represent key targets for the development of drugs designed to combat the growing problem of multidrug resistance. Toward this end, researchers from The Scripps Research

  18. Developing algorithms for predicting protein-protein interactions of homology modeled proteins.

    SciTech Connect (OSTI)

    Martin, Shawn Bryan; Sale, Kenneth L.; Faulon, Jean-Loup Michel; Roe, Diana C.

    2006-01-01

    The goal of this project was to examine the protein-protein docking problem, especially as it relates to homology-based structures, identify the key bottlenecks in current software tools, and evaluate and prototype new algorithms that may be developed to improve these bottlenecks. This report describes the current challenges in the protein-protein docking problem: correctly predicting the binding site for the protein-protein interaction and correctly placing the sidechains. Two different and complementary approaches are taken that can help with the protein-protein docking problem. The first approach is to predict interaction sites prior to docking, and uses bioinformatics studies of protein-protein interactions to predict theses interaction site. The second approach is to improve validation of predicted complexes after docking, and uses an improved scoring function for evaluating proposed docked poses, incorporating a solvation term. This scoring function demonstrates significant improvement over current state-of-the art functions. Initial studies on both these approaches are promising, and argue for full development of these algorithms.

  19. High throughput protein production screening

    DOE Patents [OSTI]

    Beernink, Peter T.; Coleman, Matthew A.; Segelke, Brent W.

    2009-09-08

    Methods, compositions, and kits for the cell-free production and analysis of proteins are provided. The invention allows for the production of proteins from prokaryotic sequences or eukaryotic sequences, including human cDNAs using PCR and IVT methods and detecting the proteins through fluorescence or immunoblot techniques. This invention can be used to identify optimized PCR and WT conditions, codon usages and mutations. The methods are readily automated and can be used for high throughput analysis of protein expression levels, interactions, and functional states.

  20. Molecular dynamics of membrane proteins.

    SciTech Connect (OSTI)

    Woolf, Thomas B.; Crozier, Paul Stewart; Stevens, Mark Jackson

    2004-10-01

    Understanding the dynamics of the membrane protein rhodopsin will have broad implications for other membrane proteins and cellular signaling processes. Rhodopsin (Rho) is a light activated G-protein coupled receptor (GPCR). When activated by ligands, GPCRs bind and activate G-proteins residing within the cell and begin a signaling cascade that results in the cell's response to external stimuli. More than 50% of all current drugs are targeted toward G-proteins. Rho is the prototypical member of the class A GPCR superfamily. Understanding the activation of Rho and its interaction with its Gprotein can therefore lead to a wider understanding of the mechanisms of GPCR activation and G-protein activation. Understanding the dark to light transition of Rho is fully analogous to the general ligand binding and activation problem for GPCRs. This transition is dependent on the lipid environment. The effect of lipids on membrane protein activity in general has had little attention, but evidence is beginning to show a significant role for lipids in membrane protein activity. Using the LAMMPS program and simulation methods benchmarked under the IBIG program, we perform a variety of allatom molecular dynamics simulations of membrane proteins.

  1. Structure of a Light-Activated LOV Protein Dimer That Regulates Transcription

    SciTech Connect (OSTI)

    Vaidya, Anand T.; Chen, Chen-Hui; Dunlap, Jay C.; Loros, Jennifer J.; Crane, Brian R.

    2012-10-25

    Light, oxygen, or voltage (LOV) protein domains are present in many signaling proteins in bacteria, archaea, protists, plants, and fungi. The LOV protein VIVID (VVD) of the filamentous fungus Neurospora crassa enables the organism to adapt to constant or increasing amounts of light and facilitates proper entrainment of circadian rhythms. Here, we determined the crystal structure of the fully light-adapted VVD dimer and reveal the mechanism by which light-driven conformational change alters the oligomeric state of the protein. Light-induced formation of a cysteinyl-flavin adduct generated a new hydrogen bond network that released the amino (N) terminus from the protein core and restructured an acceptor pocket for binding of the N terminus on the opposite subunit of the dimer. Substitution of residues critical for the switch between the monomeric and the dimeric states of the protein had profound effects on light adaptation in Neurospora. The mechanism of dimerization of VVD provides molecular details that explain how members of a large family of photoreceptors convert light responses to alterations in protein-protein interactions.

  2. Structural Genomics of Protein Phosphatases

    SciTech Connect (OSTI)

    Almo,S.; Bonanno, J.; Sauder, J.; Emtage, S.; Dilorenzo, T.; Malashkevich, V.; Wasserman, S.; Swaminathan, S.; Eswaramoorthy, S.; et al

    2007-01-01

    The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.

  3. Expression of multiple proteins in transgenic plants

    DOE Patents [OSTI]

    Vierstra, Richard D.; Walker, Joseph M.

    2002-01-01

    A method is disclosed for the production of multiple proteins in transgenic plants. A DNA construct for introduction into plants includes a provision to express a fusion protein of two proteins of interest joined by a linking domain including plant ubiquitin. When the fusion protein is produced in the cells of a transgenic plant transformed with the DNA construction, native enzymes present in plant cells cleave the fusion protein to release both proteins of interest into the cells of the transgenic plant. Since the proteins are produced from the same fusion protein, the initial quantities of the proteins in the cells of the plant are approximately equal.

  4. ProteinShop: A Tool for Interactive Protein

    Office of Scientific and Technical Information (OSTI)

    ... Also, it can be used to define the minimum and maximum per-atom energy values that will be mapped to ProteinShop's green-yellow-red color ramp, and to select any combination of ...

  5. Assigning protein functions by comparative genome analysis protein phylogenetic profiles

    DOE Patents [OSTI]

    Pellegrini, Matteo; Marcotte, Edward M.; Thompson, Michael J.; Eisenberg, David; Grothe, Robert; Yeates, Todd O.

    2003-05-13

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  6. ProteinShop: A Tool for Interactive Protein

    Office of Scientific and Technical Information (OSTI)

    ... To guide the manipulation with an energy function, ProteinShop can be used with the AMBER ... of amino acids from the input file, and the atom positions from residue template files. ...

  7. Adhesives from modified soy protein

    DOE Patents [OSTI]

    Sun, Susan; Wang, Donghai; Zhong, Zhikai; Yang, Guang

    2008-08-26

    The, present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  8. Small-Angle X-Ray Scattering From RNA, Proteins, And Protein...

    Office of Scientific and Technical Information (OSTI)

    Small-Angle X-Ray Scattering From RNA, Proteins, And Protein Complexes Citation Details In-Document Search Title: Small-Angle X-Ray Scattering From RNA, Proteins, And Protein ...

  9. Fast events in protein folding

    SciTech Connect (OSTI)

    Woodruff, W.; Callender, R.; Causgrove, T.; Dyer, R.; Williams, S.

    1996-04-01

    The primary objective of this work was to develop a molecular understanding of how proteins achieve their native three-dimensional (folded) structures. This requires the identification and characterization of intermediates in the protein folding process on all relevant timescales, from picoseconds to seconds. The short timescale events in protein folding have been entirely unknown. Prior to this work, state-of-the-art experimental approaches were limited to milliseconds or longer, when much of the folding process is already over. The gap between theory and experiment is enormous: current theoretical and computational methods cannot realistically model folding processes with lifetimes longer than one nanosecond. This unique approach to employ laser pump-probe techniques that combine novel methods of laser flash photolysis with time-resolved vibrational spectroscopic probes of protein transients. In this scheme, a short (picosecond to nanosecond) laser photolysis pulse was used to produce an instantaneous pH or temperature jump, thereby initiating a protein folding or unfolding reaction. Structure-specific, time-resolved vibrational probes were then used to identify and characterize protein folding intermediates.

  10. Amphiphiles for protein solubilization and stabilization (Patent...

    Office of Scientific and Technical Information (OSTI)

    Amphiphiles for protein solubilization and stabilization Citation Details In-Document Search Title: Amphiphiles for protein solubilization and stabilization The invention provides ...

  11. DOE Science Showcase - Understanding Protein Membranes | OSTI...

    Office of Scientific and Technical Information (OSTI)

    DOE Science Showcase - Understanding Protein Membranes Protein membrane simulation and ... Database DOE R&D Project Summaries DOE Data Explorer Visit the Science Showcase homepage.

  12. Protein Instability and Lou Gehrig's Disease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light Source, researchers focused on the effects of mutations to a gene coding for a protein called superoxide dismutase (SOD). The study provides evidence that those proteins...

  13. Experimental Approach to Controllably Vary Protein Oxidation...

    Office of Scientific and Technical Information (OSTI)

    Vary Protein Oxidation While Minimizing Electrode Adsorption for Boron-Doped Diamond ... Vary Protein Oxidation While Minimizing Electrode Adsorption for Boron-Doped Diamond ...

  14. SciTech Connect: "protein folding"

    Office of Scientific and Technical Information (OSTI)

    protein folding" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "protein folding" Semantic Semantic Term Title: Full Text: Bibliographic Data:...

  15. Oncoprotein protein kinase antibody kit (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Oncoprotein protein kinase antibody kit Title: Oncoprotein protein kinase antibody kit An ... domain and polynucleotide sequences and method of detection of JNK are provided herein. ...

  16. Microsecond Microfluidic Mixing for Investigation of Protein...

    Office of Scientific and Technical Information (OSTI)

    for Investigation of Protein Folding Kinetics Citation Details In-Document Search Title: Microsecond Microfluidic Mixing for Investigation of Protein Folding Kinetics You ...

  17. Elementary tetrahelical protein design for diverse oxidoreductase...

    Office of Scientific and Technical Information (OSTI)

    Elementary tetrahelical protein design for diverse oxidoreductase functions Citation Details In-Document Search Title: Elementary tetrahelical protein design for diverse...

  18. Manipulating and Visualizing Proteins Simon, Horst D. 59 BASIC...

    Office of Scientific and Technical Information (OSTI)

    ACIDS; CALIFORNIA; CHAINS; CHEMISTRY; DISEASES; FIBROSIS; FORECASTING; GENETICS; OPTIMIZATION; PROTEIN STRUCTURE; PROTEINS; QUEUES; SHAPE; SIMULATION PROTEIN STRUCTURE...

  19. Rosetta stone method for detecting protein function and protein-protein interactions from genome sequences

    DOE Patents [OSTI]

    Eisenberg, David; Marcotte, Edward M.; Pellegrini, Matteo; Thompson, Michael J.; Yeates, Todd O.

    2002-10-15

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  20. Protein design for pathway engineering

    SciTech Connect (OSTI)

    Eriksen, DT; Lian, JZ; Zhao, HM

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. (C) 2013 Elsevier Inc. All rights reserved.

  1. Characterization of protein folding intermediates

    SciTech Connect (OSTI)

    Kim, P.S.

    1986-01-01

    The three-dimensional structure of a protein is encoded in its linear sequence of amino acids. Studies of protein folding are aimed at understanding the nature of this code which translates one-dimensional information to three-dimensions. It is now well-established that protein folding intermediates exist and can be populated significantly under some conditions. A method to characterize kinetic folding intermediates is described. The method takes advantage of the decrease in exchange rates between amide protons (i.e., peptide backbone NH) and solvent water protons, when the amide proton is involved in structure. The feasibility of using amide proton exchange to pulse-label proteins during folding has been demonstrated using (/sup 3/H)-H/sub 2/O. The results with ribonuclease A (RNase A) support a framework model for folding, in which the secondary structure of a protein is formed before tertiary structure changes are complete. Extension of these studies using NMR should permit characterization of early secondary structure folding frameworks.

  2. Pinkbar is an epithelial-specific BAR domain protein that generates planar membrane structures

    SciTech Connect (OSTI)

    Pyklinen, Anette; Boczkowska, Malgorzata; Zhao, Hongxia; Saarikangas, Juha; Rebowski, Grzegorz; Jansen, Maurice; Hakanen, Janne; Koskela, Essi V.; Pernen, Johan; Vihinen, Helena; Jokitalo, Eija; Salminen, Marjo; Ikonen, Elina; Dominguez, Roberto; Lappalainen, Pekka

    2013-05-29

    Bin/amphipysin/Rvs (BAR)-domain proteins sculpt cellular membranes and have key roles in processes such as endocytosis, cell motility and morphogenesis. BAR domains are divided into three subfamilies: BAR- and F-BAR-domain proteins generate positive membrane curvature and stabilize cellular invaginations, whereas I-BAR-domain proteins induce negative curvature and stabilize protrusions. We show that a previously uncharacterized member of the I-BAR subfamily, Pinkbar, is specifically expressed in intestinal epithelial cells, where it localizes to Rab13-positive vesicles and to the plasma membrane at intercellular junctions. Notably, the BAR domain of Pinkbar does not induce membrane tubulation but promotes the formation of planar membrane sheets. Structural and mutagenesis analyses reveal that the BAR domain of Pinkbar has a relatively flat lipid-binding interface and that it assembles into sheet-like oligomers in crystals and in solution, which may explain its unique membrane-deforming activity.

  3. Recombinant fluorescent protein microsphere calibration standard

    DOE Patents [OSTI]

    Nolan, John P.; Nolan, Rhiannon L.; Ruscetti, Teresa; Lehnert, Bruce E.

    2001-01-01

    A method for making recombinant fluorescent protein standard particles for calibration of fluorescence instruments.

  4. Protein folding in the ER.

    SciTech Connect (OSTI)

    Stevens, F. J.; Argon, Y.; Biosciences Division; Univ. of Chicago

    1999-10-01

    The endoplasmic reticulum (ER) is a major protein folding compartment for secreted, plasma membrane and organelle proteins. Each of these newly-synthesized polypeptides folds in a deterministic process, affected by the unique conditions that exist in the ER. An understanding of protein folding in the ER is a fundamental biomolecular challenge at two levels. The first level addresses how the amino acid sequence programs that polypeptide to efficiently arrive at a particular fold out of a multitude of alternatives, and how different sequences obtain similar folds. At the second level are the issues introduced by folding not in the cytosol, but in the ER, including the risk of aggregation in a molecularly crowded environment, accommodation of post-translational modifications and the compatibility with subsequent intracellular trafficking. This review discusses both the physicochemical and cell biological constraints of folding, which are the challenges that the ER molecular chaperones help overcome.

  5. Protein Structure Determination Using Protein Threading and Sparse NMR Data

    SciTech Connect (OSTI)

    Crawford, O.H.; Einstein, J.R.; Xu, D.; Xu, Y.

    1999-11-14

    It is well known that the NMR method for protein structure determination applies to small proteins and that its effectiveness decreases very rapidly as the molecular weight increases beyond about 30 kD. We have recently developed a method for protein structure determination that can fully utilize partial NMR data as calculation constraints. The core of the method is a threading algorithm that guarantees to find a globally optimal alignment between a query sequence and a template structure, under distance constraints specified by NMR/NOE data. Our preliminary tests have demonstrated that a small number of NMR/NOE distance restraints can significantly improve threading performance in both fold recognition and threading-alignment accuracy, and can possibly extend threading's scope of applicability from structural homologs to structural analogs. An accurate backbone structure generated by NMR-constrained threading can then provide a significant amount of structural information, equivalent to that provided by the NMR method with many NMR/NOE restraints; and hence can greatly reduce the amount of NMR data typically required for accurate structure determination. Our preliminary study suggests that a small number of NMR/NOE restraints may suffice to determine adequately the all-atom structure when those restraints are incorporated in a procedure combining threading, modeling of loops and sidechains, and molecular dynamics simulation. Potentially, this new technique can expand NMR's capability to larger proteins.

  6. Using proteins as chainmail armor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using proteins as chainmail armor Click to share on Facebook (Opens in new window) Click to share on Twitter (Opens in new window) Click to share on Reddit (Opens in new window) Click to share on Pinterest (Opens in new window) Many bacteria and archaea encase themselves within a self-assembling protective shell of proteins, like chainmail armor. The process is a model for the self assembly of 2-D and 3-D organic and inorganic nanostructures, and could be used to make adhesive nanostructures

  7. Method for protein structure alignment

    DOE Patents [OSTI]

    Blankenbecler, Richard; Ohlsson, Mattias; Peterson, Carsten; Ringner, Markus

    2005-02-22

    This invention provides a method for protein structure alignment. More particularly, the present invention provides a method for identification, classification and prediction of protein structures. The present invention involves two key ingredients. First, an energy or cost function formulation of the problem simultaneously in terms of binary (Potts) assignment variables and real-valued atomic coordinates. Second, a minimization of the energy or cost function by an iterative method, where in each iteration (1) a mean field method is employed for the assignment variables and (2) exact rotation and/or translation of atomic coordinates is performed, weighted with the corresponding assignment variables.

  8. Shining a spotlight on intact proteins

    SciTech Connect (OSTI)

    Pasa-Tolic, Ljiljana; Masselon, Christophe

    2014-05-01

    Cells react to cues from their environment using various mechanisms that include changes in metabolites, gene expression, protein binding partners, protein localization, and protein posttranslational modifications (PTMs), all of which contribute to altered cellular signatures that enable appropriate cellular responses. Given the seemingly infinite number of mechanisms available to affect protein function and modulate biological processes, the question arises as to how cells manage to interpret protein readouts to accomplish the appropriate cell-type specific response to a particular stimulus.

  9. Protein Dynamics Hit the Big Screen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Dynamics Hit the Big Screen Protein Dynamics Hit the Big Screen Now playing at a supercomputer near you: proteins in action June 29, 2005 Contact: Dan Krotz, dakrotz@lbl.gov 06tyrosinekinasechanging.jpg This simulation of a tyrosine kinase reveals how the protein changes shape. Scientists from Berkeley Lab and UC Berkeley are using one the world's most powerful computers to simulate how protein molecules move, rotate, and fold as they carry out life's most fundamental tasks.Although they

  10. Cellulose binding domain fusion proteins

    DOE Patents [OSTI]

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  11. Cellulose binding domain fusion proteins

    DOE Patents [OSTI]

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  12. Method for voltage-gated protein fractionation

    DOE Patents [OSTI]

    Hatch, Anson; Singh, Anup K.

    2012-04-24

    We report unique findings on the voltage dependence of protein exclusion from the pores of nanoporous polymer exclusion membranes. The pores are small enough that proteins are excluded from passage with low applied electric fields, but increasing the field enables proteins to pass through. The requisite field necessary for a change in exclusion is protein-specific with a correlation to protein size. The field-dependence of exclusion is important to consider for preconcentration applications. The ability to selectively gate proteins at exclusion membranes is also a promising means for manipulating and characterizing proteins. We show that field-gated exclusion can be used to selectively remove proteins from a mixture, or to selectively trap protein at one exclusion membrane in a series.

  13. Building Biochips: A Protein Production Pipeline

    SciTech Connect (OSTI)

    de Carvalho-Kavanagh, M; Albala, J S

    2004-02-09

    Protein arrays are emerging as a practical format in which to study proteins in high-throughput using many of the same techniques as that of the DNA microarray. The key advantage to array-based methods for protein study is the potential for parallel analysis of thousands of samples in an automated, high-throughput fashion. Building protein arrays capable of this analysis capacity requires a robust expression and purification system capable of generating hundreds to thousands of purified recombinant proteins. We have developed a method to utilize LLNL-I.M.A.G.E. cDNAs to generate recombinant protein libraries using a baculovirus-insect cell expression system. We have used this strategy to produce proteins for analysis of protein/DNA and protein/protein interactions using protein microarrays in order to understand the complex interactions of proteins involved in homologous recombination and DNA repair. Using protein array techniques, a novel interaction between the DNA repair protein, Rad51B, and histones has been identified.

  14. Proteins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Such understanding could help scientists develop new antibiotics to battle "superbugs" such as MRSA (methicillin-resistant Staphylococcus aureus) infections, as well as engineered ...

  15. Proteins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Such understanding could help scientists develop new antibiotics to battle "superbugs" such as MRSA (methicillin-resistant Staphylococcus aureus) infections, as well as engineered ...

  16. Extracellular secretion of recombinant proteins

    DOE Patents [OSTI]

    Linger, Jeffrey G.; Darzins, Aldis

    2014-07-22

    Nucleic acids encoding secretion signals, expression vectors containing the nucleic acids, and host cells containing the expression vectors are disclosed. Also disclosed are polypeptides that contain the secretion signals and methods of producing polypeptides, including methods of directing the extracellular secretion of the polypeptides. Exemplary embodiments include cellulase proteins fused to secretion signals, methods to produce and isolate these polypeptides, and methods to degrade lignocellulosic biomass.

  17. A Designed Protein Maps Brain Activity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Designed Protein Maps Brain Activity Print A team of scientists from the Howard Hughes ... a fluorescent protein (CaMPARI) that allows the permanent marking of active brain cells. ...

  18. A Designed Protein Maps Brain Activity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Designed Protein Maps Brain Activity A Designed Protein Maps Brain Activity Print Wednesday, 28 October 2015 00:00 A team of scientists from the Howard Hughes Medical Institute's ...

  19. Protein Instability and Lou Gehrig's Disease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Instability and Lou Gehrig's Disease Print A new study links protein instability with the progression of a lethal degenerative disease: amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease. Using several biophysical techniques as well as small-angle x-ray scattering (SAXS) at the Advanced Light Source, researchers focused on the effects of mutations to a gene coding for a protein called superoxide dismutase (SOD). The study provides evidence that those proteins linked

  20. A Designed Protein Maps Brain Activity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Designed Protein Maps Brain Activity A Designed Protein Maps Brain Activity Print Wednesday, 28 October 2015 00:00 A team of scientists from the Howard Hughes Medical Institute's Janelia Research Campus designed and validated via x-ray crystallographic studies a fluorescent protein (CaMPARI) that allows the permanent marking of active brain cells. The protein was then used to study live changes via fluorescence in the active nerve cells in brains of fruit flies, zebrafish, and mice. The Neural

  1. Validating Computer-Designed Proteins for Vaccines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validating Computer-Designed Proteins for Vaccines Print In the struggle to keep up with microbes whose rapid mutations outpace our ability to produce vaccines, the human race has a powerful ally: computers. Researchers have now figured out a way to use computational protein design to generate small, stable proteins that accurately mimic key viral structures; these can then be used in vaccines to induce potent neutralizing antibodies. The results were validated in part using protein structures

  2. Translocator Protein Structure and Function | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource Translocator Protein Structure and Function Monday, November 30, 2015 Translocator protein (TSPO) is an ancient conserved protein whose functions in bacteria and higher eukaryotes are yet to be clearly defined in spite of more than 30 years of study. In mitochondria, it was first recognized as an outer membrane protein that binds benzodiazepine drugs, but distinct from the central nervous system site, the GABAA receptor(1). Originally called the peripheral

  3. Exploring the Repeat-Protein Universe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exploring the Repeat-Protein Universe Exploring the Repeat-Protein Universe Print Wednesday, 13 April 2016 00:00 Naturally occurring proteins-chains of amino acids that fold into functional, three-dimensional shapes-are believed to represent just a small fraction of the universe of all possible permutations of amino-acid sequences and folds. How can we begin to systematically sift through those permutations to find and engineer from scratch (de novo) proteins with the characteristics desired for

  4. Validating Computer-Designed Proteins for Vaccines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validating Computer-Designed Proteins for Vaccines Print In the struggle to keep up with microbes whose rapid mutations outpace our ability to produce vaccines, the human race has a powerful ally: computers. Researchers have now figured out a way to use computational protein design to generate small, stable proteins that accurately mimic key viral structures; these can then be used in vaccines to induce potent neutralizing antibodies. The results were validated in part using protein structures

  5. Validating Computer-Designed Proteins for Vaccines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validating Computer-Designed Proteins for Vaccines Print In the struggle to keep up with microbes whose rapid mutations outpace our ability to produce vaccines, the human race has a powerful ally: computers. Researchers have now figured out a way to use computational protein design to generate small, stable proteins that accurately mimic key viral structures; these can then be used in vaccines to induce potent neutralizing antibodies. The results were validated in part using protein structures

  6. Validating Computer-Designed Proteins for Vaccines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validating Computer-Designed Proteins for Vaccines Print In the struggle to keep up with microbes whose rapid mutations outpace our ability to produce vaccines, the human race has a powerful ally: computers. Researchers have now figured out a way to use computational protein design to generate small, stable proteins that accurately mimic key viral structures; these can then be used in vaccines to induce potent neutralizing antibodies. The results were validated in part using protein structures

  7. Validating Computer-Designed Proteins for Vaccines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validating Computer-Designed Proteins for Vaccines Validating Computer-Designed Proteins for Vaccines Print Thursday, 21 August 2014 12:05 In the struggle to keep up with microbes whose rapid mutations outpace our ability to produce vaccines, the human race has a powerful ally: computers. Researchers have now figured out a way to use computational protein design to generate small, stable proteins that accurately mimic key viral structures; these can then be used in vaccines to induce potent

  8. Microsecond Microfluidic Mixing for Investigation of Protein...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 59 BASIC BIOLOGICAL SCIENCES; 60 APPLIED LIFE SCIENCES; COMPATIBILITY; DIFFUSION; FOCUSING; HYDRODYNAMICS; KINETICS; MIXERS; PROTEINS; REACTION KINETICS; ...

  9. Protein Instability and Lou Gehrig's Disease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Instability and Lou Gehrig's Disease Print A new study links protein instability with the progression of a lethal degenerative disease: amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease. Using several biophysical techniques as well as small-angle x-ray scattering (SAXS) at the Advanced Light Source, researchers focused on the effects of mutations to a gene coding for a protein called superoxide dismutase (SOD). The study provides evidence that those proteins linked

  10. Protein Instability and Lou Gehrig's Disease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Instability and Lou Gehrig's Disease Print A new study links protein instability with the progression of a lethal degenerative disease: amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease. Using several biophysical techniques as well as small-angle x-ray scattering (SAXS) at the Advanced Light Source, researchers focused on the effects of mutations to a gene coding for a protein called superoxide dismutase (SOD). The study provides evidence that those proteins linked

  11. Protein Instability and Lou Gehrig's Disease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Instability and Lou Gehrig's Disease Print A new study links protein instability with the progression of a lethal degenerative disease: amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease. Using several biophysical techniques as well as small-angle x-ray scattering (SAXS) at the Advanced Light Source, researchers focused on the effects of mutations to a gene coding for a protein called superoxide dismutase (SOD). The study provides evidence that those proteins linked

  12. Protein Instability and Lou Gehrig's Disease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Instability and Lou Gehrig's Disease Protein Instability and Lou Gehrig's Disease Print Wednesday, 25 March 2015 00:00 A new study links protein instability with the progression of a lethal degenerative disease: amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease. Using several biophysical techniques as well as small-angle x-ray scattering (SAXS) at the Advanced Light Source, researchers focused on the effects of mutations to a gene coding for a protein called

  13. Validation of Novel Proteins Inspired by Nature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation of Novel Proteins Inspired by Nature Validation of Novel Proteins Inspired by Nature Print Wednesday, 10 August 2016 00:00 Over the course of billions of years, nature has evolved particular molecular structures that form the basis of life, such as those found in nucleic acids and proteins. Using the natural form as a springboard, University of Washington researchers have designed protein homo-oligomers, or identical interacting subunits, that can contain interchangeable

  14. Radioactive Lysine in Protein Metabolism Studies

    DOE R&D Accomplishments [OSTI]

    Miller, L. L.; Bale, W. F.; Yuile, C. L.; Masters, R. E.; Tishkoff, G. H.; Whipple,, G. H.

    1950-01-09

    Studies of incorporation of DL-lysine in various body proteins of the dog; the time course of labeled blood proteins; and apparent rate of disappearance of labeled plasma proteins for comparison of behavior of the plasma albumin and globulin fractions; shows more rapid turn over of globulin fraction.

  15. Protein Structures Revealed at Record Pace

    ScienceCinema (OSTI)

    Greg Hura

    2010-01-08

    The structure of a protein in days -- not months or years -- ushers in a new era in genomics research. Berkeley Lab scientists have developed a high-throughput protein pipeline that could expedite the development of biofuels and elucidate how proteins carry out lifes vital functions.

  16. Protein Structures Revealed at Record Pace

    ScienceCinema (OSTI)

    Hura, Greg

    2013-05-29

    The structure of a protein in days -- not months or years -- ushers in a new era in genomics research. Berkeley Lab scientists have developed a high-throughput protein pipeline that could expedite the development of biofuels and elucidate how proteins carry out lifes vital functions.

  17. Protein Structures Revealed at Record Pace

    SciTech Connect (OSTI)

    Hura, Greg

    2009-01-01

    The structure of a protein in days -- not months or years -- ushers in a new era in genomics research. Berkeley Lab scientists have developed a high-throughput protein pipeline that could expedite the development of biofuels and elucidate how proteins carry out lifes vital functions.

  18. Amphiphiles for protein solubilization and stabilization

    SciTech Connect (OSTI)

    Gellman, Samuel Helmer; Chae, Pil Seok; Laible, Phillip D; Wander, Marc J

    2014-11-04

    The invention provides amphiphiles for manipulating membrane proteins. The amphiphiles can feature carbohydrate-derived hydrophilic groups and branchpoints in the hydrophilic moiety and/or in a lipophilic moiety. Such amphiphiles are useful as detergents for solubilization and stabilization of membrane proteins, including photosynthetic protein superassemblies obtained from bacterial membranes.

  19. Amphiphiles for protein solubilization and stabilization

    DOE Patents [OSTI]

    Gellman, Samuel Helmer; Chae, Pil Seok; Laible, Philip D.; Wander, Marc J.

    2012-09-11

    The invention provides amphiphiles for manipulating membrane proteins. The amphiphiles can feature carbohydrate-derived hydrophilic groups and branchpoints in the hydrophilic moiety and/or in a lipophilic moiety. Such amphiphiles are useful as detergents for solubilization and stabilization of membrane proteins, including photosynthetic protein superassemblies obtained from bacterial membranes.

  20. Erythropoietin binding protein from mammalian serum

    DOE Patents [OSTI]

    Clemons, Gisela K.

    1997-01-01

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.

  1. Erythropoietin binding protein from mammalian serum

    DOE Patents [OSTI]

    Clemons, G.K.

    1997-04-29

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.

  2. Structures of Clamp-Loader Complexes Are Key to DNA Replication

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures of Clamp-Loader Complexes Are Key to DNA Replication Print DNA Replication: An Open-and-Shut Case Every time a cell divides, whether in humans or in other organisms, its chromosomes must be copied quickly but without mistakes. When copying errors do occur, the resulting mutations can lead to cancer or other life-threatening diseases, so understanding the copying process is important for improving human health. The protein that copies DNA (DNA polymerase) requires a ring-shaped protein

  3. Structures of Clamp-Loader Complexes Are Key to DNA Replication

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures of Clamp-Loader Complexes Are Key to DNA Replication Print DNA Replication: An Open-and-Shut Case Every time a cell divides, whether in humans or in other organisms, its chromosomes must be copied quickly but without mistakes. When copying errors do occur, the resulting mutations can lead to cancer or other life-threatening diseases, so understanding the copying process is important for improving human health. The protein that copies DNA (DNA polymerase) requires a ring-shaped protein

  4. Structures of Clamp-Loader Complexes Are Key to DNA Replication

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures of Clamp-Loader Complexes Are Key to DNA Replication Print DNA Replication: An Open-and-Shut Case Every time a cell divides, whether in humans or in other organisms, its chromosomes must be copied quickly but without mistakes. When copying errors do occur, the resulting mutations can lead to cancer or other life-threatening diseases, so understanding the copying process is important for improving human health. The protein that copies DNA (DNA polymerase) requires a ring-shaped protein

  5. Structures of Clamp-Loader Complexes Are Key to DNA Replication

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures of Clamp-Loader Complexes Are Key to DNA Replication Print DNA Replication: An Open-and-Shut Case Every time a cell divides, whether in humans or in other organisms, its chromosomes must be copied quickly but without mistakes. When copying errors do occur, the resulting mutations can lead to cancer or other life-threatening diseases, so understanding the copying process is important for improving human health. The protein that copies DNA (DNA polymerase) requires a ring-shaped protein

  6. Temperature and length scale dependence of hydrophobic effects and their possible implications for protein folding

    SciTech Connect (OSTI)

    Huang, David M.; Chandler, David

    2000-04-01

    The Lum-Chandler-Weeks theory of hydrophobicity [J. Phys. Chem. 103, 4570 (1999)] is applied to treat the temperature dependence of hydrophobic solvation in water. The application illustrates how the temperature dependence for hydrophobic surfaces extending less than 1nm differs significantly from that for surfaces extending more than 1nm. The latter is the result of water depletion, a collective effect, that appears at length scales of 1nm and larger. Due to the contrasting behaviors at small and large length scales, hydrophobicity by itself can explain the variable behavior of protein folding.

  7. Method for voltage-gated protein fractionation (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Method for voltage-gated protein fractionation Title: Method for voltage-gated protein fractionation We report unique findings on the voltage dependence of protein exclusion from ...

  8. Activity-Based Protein Profiling of Microbes

    SciTech Connect (OSTI)

    Sadler, Natalie C.; Wright, Aaron T.

    2015-02-01

    Activity-Based Protein Profiling (ABPP) in conjunction with multimodal characterization techniques has yielded impactful findings in microbiology, particularly in pathogen, bioenergy, drug discovery, and environmental research. Using small molecule chemical probes that react irreversibly with specific proteins or protein families in complex systems has provided insights in enzyme functions in central metabolic pathways, drug-protein interactions, and regulatory protein redox, for systems ranging from photoautotrophic cyanobacteria to mycobacteria, and combining live cell or cell extract ABPP with proteomics, molecular biology, modeling, and other techniques has greatly expanded our understanding of these systems. New opportunities for application of ABPP to microbial systems include: enhancing protein annotation, characterizing protein activities in myriad environments, and reveal signal transduction and regulatory mechanisms in microbial systems.

  9. Coevolution of gene expression among interacting proteins

    SciTech Connect (OSTI)

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  10. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    SciTech Connect (OSTI)

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.